
English

FUJITSU Software

openUTM-Client V7.0 for the UPIC Carrier
System

Client-Server Communication with openUTM

User Guide

*

November 2019

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your opinion on this manual. Your feedback helps us to
optimize our documentation to suit your individual needs.

Feel free to send us your comments by e-mail to: .bs2000services@ts.fujitsu.com

Certified documentation according to DIN EN ISO 9001:2015
To ensure a consistently high quality standard and user-friendliness, this documentation was created to meet the
regulations of a quality management system which complies with the requirements of the standard DIN EN ISO

.9001:2015

Copyright and Trademarks
Copyright © Fujitsu Technology Solutions GmbH.2019

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:bs2000services@ts.fujitsu.com

Table of Contents

 Client-Server Communication with openUTM . 8
1 Preface . 9

1.1 Brief description of the openUTM-Client product . 11
1.2 Summary of contents and target group . 12
1.3 Summary of contents of the openUTM documentation 13

1.3.1 openUTM documentation . 14
1.3.2 Documentation for the openSEAS product environment 17
1.3.3 Readme files . 18

1.4 Changes since the last version of this manual . 19
1.5 Notational conventions . 20

2 Application area . 22
2.1 The concept of openUTM-Client . 23
2.2 Client/server communication with openUTM . 25
2.3 UPIC local, UPIC remote and multithreading . 26

2.3.1 UPIC remote . 27
2.3.1.1 Distribution of communication over multiple communication end points . . 28
2.3.1.2 Setting up a list of communication end points . 29

2.3.2 UPIC local (Unix, Linux and Windows systems) . 30
2.3.3 Multithreading . 31

2.4 Support for UTM cluster applications on Linux-, Unix- and Windows-Systems
32

3 CPI-C interface . 33
3.1 CPI-C terms . 34
3.2 General structure of a CPI-C application . 38
3.3 Exchange of messages with a UTM service . 39

3.3.1 Sending a message and starting a UTM service . 40
3.3.2 Receiving a message, blocking and non-blocking receive 42
3.3.3 Sending and receiving formats . 44
3.3.4 UTM function keys . 47
3.3.5 Cursor position . 48
3.3.6 Code conversion . 49

3.3.6.1 Standard code conversion tables . 50
3.3.6.2 Modifying code conversion tables on Unix and Linux systems 52
3.3.6.3 Modifying code conversion tables on Windows systems 53
3.3.6.4 Modifying code conversion tables on BS2000 systems 54

3.4 Communicating with an UTM application . 55
3.4.1 Communicating in a single-step UTM service . 56

3.4.2 Communicating in a multi-step UTM service . 58
3.4.3 Communicating in a multi-step UTM service with distributed transaction

 processing . 59
3.4.4 Querying the transaction state . 60

3.5 User concept, security and restart . 61
3.5.1 User concept . 62
3.5.2 Security functions . 63
3.5.3 Restart . 65

3.6 Encryption . 68
3.7 Multiple conversations (Unix, Linux and Windows systems) 72
3.8 DEFAULT server and DEFAULT name of a client . 76

3.8.1 Multiple connections to the same UTM application with the same name 77
3.9 CPI-C calls in UPIC . 78

3.9.1 Overview . 79
3.9.2 Allocate - Establishing a conversation . 82
3.9.3 Convert_Incoming - Converting data from code of sender to local code 85
3.9.4 Convert_Outgoing - Converting data from local code to code of receiver . . . 86
3.9.5 Deallocate - Terminating a conversation . 87
3.9.6 Deferred_Deallocate - Terminating a conversation after termination of a

 transaction . 89
3.9.7 Disable_utm70_upic - Signing off from the UPIC carrier system 91
3.9.8 Enable_utm70_upic - Signing on to the UPIC carrier system 93
3.9.9 Extract_Client_Context - Querying the client context 96
3.9.10 Extract_Conversation_Encryption_Level - Querying encryption level 99
3.9.11 Extract_Conversation_State - Querying state of conversation 102
3.9.12 Extract_Convertion - Querying the value of the CHARACTER_CONVERTION

 conversation characteristic . 104
3.9.13 Extract_Cursor_Offset - Querying cursor position offset 106
3.9.14 Extract_Max_Partner_Index - Querying the maximum index of partner

 applications . 108
3.9.15 Extract_Partner_LU_Name - Querying partner_LU_Name 110
3.9.16 Extract_Partner_LU_Name_Ex - Querying full length partner_LU_Name . . 112
3.9.17 Extract_Secondary_Information - Querying secondary information 114
3.9.18 Extract_Secondary_Return_Code - Querying secondary return codes 116
3.9.19 Extract_Shutdown_State - Querying the shutdown state of the server 120
3.9.20 Extract_Shutdown_Time - Query the shutdown time of the server 122
3.9.21 Extract_Transaction_State - Querying service and transaction state of the server
 . 125

3.9.22 Initialize_Conversation - Initializing the conversation characteristics 128
3.9.23 Prepare_To_Receive - Changing state from “Send” to “Receive” 131
3.9.24 Receive - Receiving data from a UTM service . 133

3.9.25 Receive_Mapped_Data - Receiving data and format identifier from a UTM
 service . 142

3.9.26 Send_Data - Sending data to a UTM service . 151
3.9.27 Send_Mapped_Data - Sending data and format identifier 153
3.9.28 Set_Allocate_Timer - Setting timer for the allocate call 156
3.9.29 Set_Client_Context - Setting the client context . 158
3.9.30 Set_Conversation_Encryption_Level - Setting the encryption level 160
3.9.31 Set_Conversation_Security_New_Password - Setting new password 163
3.9.32 Set_Conversation_Security_Password - Setting the password 165
3.9.33 Set_Conversation_Security_Type - Setting the security type 167
3.9.34 Set_Conversation_Security_User_ID - Setting the UTM user ID 169
3.9.35 Set_Convertion - Setting the CHARACTER_CONVERTION conversation

 characteristic . 171
3.9.36 Set_Deallocate_Type - Setting deallocate_type . 173
3.9.37 Set_Function_Key - Setting a UTM function key . 175
3.9.38 Set_Partner_Host_Name - Setting the partner host name 177
3.9.39 Set_Partner_Index - Setting the partner application index 179
3.9.40 Set_Partner_IP_Address - Setting the IP address of the partner application . . .
181
3.9.41 Set_Partner_LU_Name - Setting the conversation characteristics

 partner_LU_name . 184
3.9.42 Set_Partner_Port - Setting the TCP/IP port for the partner application 186
3.9.43 Set_Partner_Tsel - Setting the T-SEL of the partner application 188
3.9.44 Set_Partner_Tsel_Format - Setting the T-SEL format of the partner application
 . 190
3.9.45 Set_Receive_Timer - Setting the timer for a blocking receive 192
3.9.46 Set_Receive_Type - Setting the receive type . 194
3.9.47 Set_Sync_Level - Setting a synchronization level . 196
3.9.48 Set_TP_Name - Setting TP-name . 198
3.9.49 Specify_Local_Port - Setting the TCP/IP port of the local application 200
3.9.50 Specify_Local_Tsel - Setting the T-SEL of the local application 202
3.9.51 Specify_Local_Tsel_Format - Setting the TSEL format of the local application .
204
3.9.52 Specify_Secondary_Return_Code - Setting the properties of the secondary

 return code . 206
3.10 COBOL interface . 208

4 XATMI interface . 210
4.1 Linking client/server applications . 211

4.1.1 Default server . 212
4.1.2 Restart . 213

4.2 Communication paradigms . 214
4.3 Typed buffers . 217

4.4 Program interface . 220
4.4.1 XATMI functions for clients . 221
4.4.2 Calls for connecting to the carrier system . 223

4.4.2.1 tpinit - Initializing the client . 224
4.4.2.2 tpterm - Signing the client off . 226

4.4.3 Transaction control . 227
4.4.4 Mixed operation . 228
4.4.5 Administration interface . 229
4.4.6 Header files and COPY elements . 230
4.4.7 Events and error handling . 231
4.4.8 Creating typed buffers . 232
4.4.9 Characteristics of XATMI in UPIC . 234

4.5 Configuring . 235
4.5.1 Creating the local configuration file . 236
4.5.2 The xatmigen tool . 240
4.5.3 Configuring the carrier system and UTM partners . 243

4.5.3.1 Configuring UPIC . 244
4.5.3.2 Initialization parameters and UTM configuration . 245

4.6 Running XATMI applications . 248
4.6.1 Linking and starting an XATMI program . 249

4.6.1.1 Linking an XATMI program on Windows systems 250
4.6.1.2 Linking an XATMI program on Unix and Linux systems 251
4.6.1.3 Linking an XATMI program on BS2000 systems . 252
4.6.1.4 Starting the program . 253

4.6.2 Setting Environment variables on Unix, Linux and Windows systems 254
4.6.3 Setting job variables on BS2000 systems . 256
4.6.4 Trace . 258

4.7 xatmigen messages . 259
5 Configuration . 262

5.1 Configuration without upicfile . 263
5.1.1 UPIC-R configuration . 265
5.1.2 UPIC-L configuration (Unix, Linux and Windows systems) 267
5.1.3 Configuration using BCMAP entries (BS2000 systems) 268

5.2 The side information file (upicfile) . 269
5.2.1 Side information for standalone UTM applications . 270
5.2.2 Side information for list of partner applications . 275
5.2.3 Side information for UTM cluster applications . 276
5.2.4 Side information for the local application . 281

5.3 Coordination with the partner configuration . 284
6 Implementing CPI-C applications . 287

6.1 Runtime environment, linking, starting . 288

6.1.1 Implementing on Windows systems . 290
6.1.1.1 Compilation, linking, starting on Windows systems 291
6.1.1.2 Runtime environment, environment variables on Windows systems 292
6.1.1.3 Special features of implementing UPIC local on Windows systems 293

6.1.2 Implementation on Unix and Linux systems . 295
6.1.2.1 Compilation, linking, starting on Unix and Linux systems 296
6.1.2.2 Runtime environment, environment variables on Unix and Linux systems . . .
297
6.1.2.3 Special features when using UPIC local on Unix and Linux systems 298

6.1.3 Using on BS2000 systems . 299
6.2 Handling of CPI-C partners by openUTM . 300
6.3 Behavior in the event of errors . 301
6.4 Diagnostics . 304

6.4.1 UPIC log file . 305
6.4.2 UPIC trace . 306
6.4.3 PCMX diagnostics (Windows systems) . 310

7 Examples . 311
7.1 Sample programs for Windows systems . 312

7.1.1 uptac (Windows systems) . 313
7.1.2 utp32 (Windows systems) . 314
7.1.3 tpcall (Windows systems) . 315
7.1.4 upic-cob (Windows systems) . 316

7.2 UpicAnalyzer and UpicReplay on 64-bit Linux systems 317
7.2.1 UpicAnalyzer (64-bit Linux systems) . 318
7.2.2 UpicReplay (64-bit Linux systems) . 319

7.3 Configuration UPIC on Windows systems <-> openUTM on BS2000 systems .
321

7.3.1 Configuration on the Windows system . 322
7.3.2 UTM Configuration on the BS2000 system . 323

7.4 Configuration UPIC on Windows systems <-> openUTM on Unix or Linux
 systems . 324

7.4.1 UPIC Configuration on the Windows system . 325
7.4.2 UTM Configuration on the Unix or Linux system . 326

8 Appendix . 327
8.1 Differences between the X/Open CPI-C interface . 328
8.2 Character sets . 330
8.3 State table . 332

9 Glossary . 339
10 Abbreviations . 372
11 Related publications . 377

 8

Client-Server Communication with openUTM

 9

1 Preface

The IT infrastructure of today's companies as the heart and engine of the business must meet the requirements of
the digital age. At the same time, it has to cope with increased amounts of data as well as with stricter requirements
from the environment, e.g. compliance requirements. It must also be possible to integrate additional applications at
short notice. And all this under the aspect of guaranteed security.
Thus, essential requirements for a modern IT infrastructure consist of, among others

Flexibility and almost limitless scalability also for future requirements

high robustness with highest availability

absolute safety in all respects

Adaptability to individual needs

Causing low costs

To meet these challenges, Fujitsu offers an extensive portfolio of innovative enterprise hardware, software, and
support services within the environment of our enterprise mainframe platforms, and is therefore your

Reliable service provider, giving you longterm, flexible, and innovative support in running your company’s
mainframe-based core applications

Ideal partner for working together to meet the requirements of digital transformation

Longterm partner, by reason of continuous adjustment of modern interfaces required by a modern IT landscape
with all its requirements.

With openUTM, Fujitsu provides you a thoroughly tried-and-tested solution from the middleware area.

openUTM is a high-end platform for transaction processing that offers a runtime environment that meets all these
requirements of modern, business-critical applications, because openUTM combines all the standards and
advantages of transaction monitor middleware platforms and message queuing systems:

consistency of data and processing

high availability of the applications

high throughput even when there are large numbers of users (i.e. highly scalable)

flexibility as regards changes to and adaptation of the IT system

A UTM application on can be run as a standalone UTM application or Unix, Linux and Windows systems
sumultanously on several different computers as a UTM cluster application.

openUTM forms part of the comprehensive offering. In conjunction with the Oracle Fusion middleware, openSEAS
openSEAS delivers all the functions required for application innovation and modern application development.
Innovative products use the sophisticated technology of openUTM in the context of the product offering:openSEAS

BeanConnect is an adapter that conforms to the Java EE Connector Architecture (JCA) and supports
standardized connection of UTM applications to Java EE application servers. This makes it possible to integrate
tried-and-tested legacy applications in new business processes.

Existing UTM applications can be migrated to the Web without modification. The UTM-HTTP interface and the
WebTransactions product, are two openSEAS alternatives that allows proven host applications to be used
flexibly in new business processes and modern application scenarios.

The products BeanConnect and WebTransactions are briefly presented in the performance overview.
There are separate manuals for these products.

 10

Wherever the term Linux system or Linux platform is used in the following, then this should be understood
to mean a Linux distribution such as SUSE or Red Hat.

Wherever the term Windows system or Windows platform is in the following, this should be understood to
mean all the variants of Windows under which openUTM runs.

Wherever the term Unix system or Unix platform is used in the following, then this should be understood
to mean a Unix-based operating system such as Solaris or HP-UX.

i

 11

1.1 Brief description of the openUTM-Client product

The product openUTM-Client offers client/server communication with openUTM server applications which run on
Unix, Linux and Windows systems and on BS2000 systems. openUTM-Client is available with the carrier systems
UPIC and OpenCPIC. It is the job of the carrier system to establish the connection to other necessary system
components (e.g. the transport system) and to control the client/server communication.

For calling the services of an UTM server application, openUTM-Client provides the standardized X/Open interfaces
CPI-C, XATMI and TX. CPI-C, XATMI and TX are defined in the corresponding X/Open specifications, see chapter
„Related publications“ starting on ."Related publications"

TX is supported by the OpenCPIC carrier system. CPI-C and XATMI are supported by both the UPIC and the
OpenCPIC carrier systems:

CPI-C stands for ommon rogramming nterface for ommunication.CPI-C implements a subset of the C P I C
functions of the CPI-C interface defined in X/Open. CPI-C enables client/server communication between a CPI-C
client application and services of a UTM application which use either the CPI-C or the KDCS interface.

XATMI is an X/Open interface for a communication resource manager, with which client/server communication
can be implemented with remote UTM server applications. XATMI enables communication with the services of a
UTM application which use the XATMI server interface.

openUTM-Client for different platforms

openUTM-Client is available for the following platforms:

Windows systems

Unix and Linux systems

BS2000 systems (UPIC carrier system only)

Because the CPI-C and XATMI interfaces are standardized, i.e. are identical on all platforms, client applications
created and tested on one platform can be ported to any of the other platforms.

Wherever the term Unix system is used in the following, then this should be understood to mean a Unix-
based operating system such as Solaris or HP-UX.
Wherever the term Linux system is used in the following, then this should be understood to mean a Linux
distribution such as SUSE or Red Hat.

Wherever the term Windows system or Windows platform is used below, this should be understood to
mean all the variants of Windows under which openUTM runs.

i

 12

1.2 Summary of contents and target group

This manual is intended for organization planners, application planners, programmers and administrators who wish
to create and run client applications based on UPIC for communication with UTM server applications. It describes
openUTM-Client only for the UPIC carrier system. Information on the OpenCPIC carrier system can be found in a
separate manual “openUTM-Client for the OpenCPIC Carrier System”.

The description given in this manual applies to the Windows platforms, Unix platforms, Linux platforms and BS2000
systems.

 13

1.3 Summary of contents of the openUTM documentation

This section provides an overview of the manuals in the openUTM suite and of the various related products.

 14

1.3.1 openUTM documentation

The openUTM documentation consists of manuals, the online help for the graphical administration workstation
openUTM WinAdmin and the graphical administration tool WebAdmin as well as release notes.
There are manuals and release notes that are valid for all platforms, as well as manuals and release notes that are
valid for BS2000 systems and for Unix, Linux and Windows systems.

All the manuals are available on the internet at . For the BS2000 platform, you will https://bs2manuals.ts.fujitsu.com
also find the manuals on the Softbook DVD.

The following sections provide a task-oriented overview of the openUTM V7.0 documentation.

You will find a complete list of documentation for openUTM in the chapter on related publications at the back of the
manual.

Introduction and overview

The manual gives a coherent overview of the essential functions, features and areas of Concepts and Functions
application of openUTM. It contains all the information required to plan a UTM operation and to design a UTM
application. The manual explains what openUTM is, how it is used, and how it is integrated in the BS2000, Unix,
Linux and Windows based platforms.

Programming

You will require the manual to create server Programming Applications with KDCS for COBOL, C and C++
applications via the KDCS interface or UTM-HTTP programming interface. This manual describes the KDCS
interface as used for COBOL, C and C++. This interface provides the basic functions of the universal transaction
monitor, as well as the calls for distributed processing. The manual also describes interaction with databases.
The UTM-HTTP programming interface provides functions that may be used for communication with HTTP
clients.

You will require the manual if you want to use the X/Open Creating Applications with X/Open Interfaces
interface. This manual contains descriptions of the openUTM-specific extensions to the X/Open program
interfaces TX, CPI-C and XATMI as well as notes on configuring and operating UTM applications which use X
/Open interfaces. In addition, you will require the X/Open-CAE specification for the corresponding X/Open
interface.

If you want to interchange data on the basis of XML, you will need the document entitled openUTM XML for
. This describes the C and COBOL calls required to work with XML documents.openUTM

For BS2000 systems there is supplementary documentation on the programming languages Assembler, Fortran,
Pascal-XT and PL/1.

Configuration

The manual is available to you for defining configurations. This describes for both Generating Applications
standalone UTM applications and UTM cluster applications on Unix, Linux and Windows systems how to use the
UTM tool KDCDEF to

define the configuration

generate the KDCFILE

and generate the UTM cluster files for UTM cluster applications

https://bs2manuals.ts.fujitsu.com/index

 15

In addition, it also shows you how to transfer important administration and user data to a new KDCFILE using the
KDCUPD tool. You do this, for example, when moving to a new openUTM version or after changes have been
made to the configuration. In the case of UTM cluster applications, it also indicates how you can use the KDCUPD
tool to transfer this data to the new UTM cluster files.

Linking, starting and using UTM applications

In order to be able to use UTM applications, you will need the manual for the relevant Using UTM Applications
operating system (BS2000 or Unix, Linux and Windows systems). This describes how to link and start a UTM
application program, how to sign on and off to and from a UTM application and how to replace application programs
dynamically and in a structured manner. It also contains the UTM commands that are available to the terminal user.
Additionally, those issues are described in detail that need to be considered when operating UTM cluster
applications.

Administering applications and changing configurations dynamically

The manual describes the program interface for administration and the UTM Administering Applications
administration commands. It provides information on how to create your own administration programs for
operating a standalone UTM application or a UTM cluster application and on the facilities for administering
several different applications centrally. It also describes how to administer message queues and printers using
the KDCS calls DADM and PADM.

If you are using the graphical administration workstation or the Web application openUTM WinAdmin openUTM
, which provides comparable functionality, then the following documentation is available to you:WebAdmin

A and , which provide a comprehensive overview of the description of WinAdmin description of WebAdmin
functional scope and handling of WinAdmin/WebAdmin.

The respective , which provide context-sensitive help information on all dialog boxes and online help systems
associated parameters offered by the graphical user interface. In addition, it also tells you how to configure
WinAdmin or WebAdmin in order to administer standalone UTM applications and UTM cluster applications.

Testing and diagnosing errors

You will also require the manuals (there are separate manuals for Unix, Messages, Debugging and Diagnostics
Linux and Windows systems and for BS2000 systems) to carry out the tasks mentioned above. These manuals
describe how to debug a UTM application, the contents and evaluation of a UTM dump, the openUTM message
system, and also lists all messages and return codes output by openUTM.

Creating openUTM clients

The following manuals are available to you if you want to create client applications for communication with UTM
applications:

The describes the creation and operation of client applications openUTM-Client for the UPIC Carrier System
based on UPIC. It indicates what needs to be taken into account when programming a CPI-C application and
what restrictions apply compared with the X/Open CPI-C interface.

For detailed information on the integration of openUTM WebAdmin in SE Server's SE Manager, see
the SE Server manual .Operation and Administration

i

 16

The manual describes how to install and configure openUTM-Client for the OpenCPIC Carrier System
OpenCPIC and configure an OpenCPIC application. It indicates what needs to be taken into account when
programming a CPI-C application and what restrictions apply compared with the X/Open CPI-C interface.

The documentation for the product shipped with consists of the manual and openUTM-JConnect BeanConnect
a Java documentation with a description of the Java classes.

The manual describes how you can extend existing COBOL programs of a UTM application in BizXML2Cobol
such a way that they can be used as an XML-based standard Web service. How to work with the graphical user
interface is described in the .online help system

You can also use the software product WS4UTM (WebServices for openUTM) to provide services of UTM
applications as Web services. To do this, you need the manual. Working with the Web Services for openUTM
graphical user interface is described in the corresponding .online help system

Communicating with the IBM world

If you want to communicate with IBM transaction systems, then you will also require the manual Distributed
. This describes the CICS Transaction Processing between openUTM and CICS, IMS and LU6.2 Applications

commands, IMS macros and UTM calls that are required to link UTM applications to CICS and IMS applications.
The link capabilities are described using detailed configuration and generation examples. The manual also
describes communication via openUTM-LU62 as well as its installation, generation and administration.

PCMX documentation

The communications program PCMX is supplied with openUTM on Unix, Linux and Windows systems. The
functions of PCMX are described in the following documents:

CMX manual “Betrieb und Administration“ (Unix-Systeme) for Unix, Linux and Windows systems (only available
in German)

PCMX online help system for Windows systems

 17

1.3.2 Documentation for the openSEAS product environment

The manual briefly describes how openUTM is connected to the openSEAS product Concepts and Functions
environment. The following sections indicate which openSEAS documentation is relevant to openUTM.

Integrating Java EE application servers and UTM applications

The BeanConnect adapter forms part of the openSEAS product suite. The BeanConnect adapter implements the
connection between conventional transaction monitors and
Java EE application servers and thus permits the efficient integration of legacy applications in Java applications.

The manual describes the product BeanConnect, that provides a JCA 1.5- and JCA 1.6-compliant BeanConnect
adapter which connects UTM applications with applications based on Java EE, e.g. the Oracle application server.

Connecting to the web and application integration

Alternatively, you can use the WebTransactions product instead of the UTM HTTP program interface. Then you will
need the manuals. The manuals will also be supplemented by JavaDocs.WebTransactions

 18

1.3.3 Readme files

Information on any functional changes and additions to the current product version described in this manual can be
found in the product-specific Readme files.

Readme files are available to you online in addition to the product manuals under the various products at
. For the BS2000 platform, you will also find the Readme files on the Softbook DVD.https://bs2manuals.ts.fujitsu.com

Information on BS2000 systems

When a Readme file exists for a product version, you will find the following file on the BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D). You can view this
information on screen using the command or an editor. /SHOW-FILE

The command shows the /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product>

user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and using a product version
are contained in the associated Release Notice. These Release Notices are available online at https://bs2manuals.

.ts.fujitsu.com

https://bs2manuals.ts.fujitsu.com/index
https://bs2manuals.ts.fujitsu.com/index
https://bs2manuals.ts.fujitsu.com/index

 19

1.4 Changes since the last version of this manual

The manual openUTM-Client V7.0 for the UPIC Carrier System covers the following no functional changes since the
manual openUTM-Client V6.5 for the UPIC Carrier System:

Encryption

The encryption functionality in openUTM-Client has been revised. Security gaps have been closed, modern
methods have been adopted and delivery has been simplified as follows:

UTM-CLIENT-CRYPT variant
Until now, the encryption functionality in openUTM-Client was only available if the product UTM-CLIENT-CRYPT
was installed. With openUTM Client V7.0 this is no longer necessary. As of this version, it is decided at runtime
whether the encryption functionality is available or not.

Security
A vulnerability has been fixed when communicating with a UTM application.

Encryption Level 5
The o V7.0 supports communication with UTM V7.0 applications ENCRYPTION-LEVEL 5 penUTM client when
was generated for the connections to the UPIC client.
With Level 5 the Diffie-Hellman method, based on Elliptic Curves, is used to agree on the session key. Input
/output messages are encrypted using the AES-GCM algorithm. AES-GCM is an authenticated encryption
algorithm designed to provide both data authenticity (integrity) and confidentiality.
Level 5 is supported by the on all platforms.openUTM-Client

Encryption BS2000
openUTM-Client (BS2000) uses openSSL instead of BS2000-CRYPT analogous to Unix, Linux and Windows
systems.

https://en.wikipedia.org/wiki/Authenticated_encryption

 20

1.5 Notational conventions

Metasyntax

The table below lists the metasyntax and notational conventions used throughout this manual:

Representation Meaning Example

UPPERCASE
LETTERS

Uppercase letters denote constants (names of calls, statements,
field names, commands and operands etc.) that are to be entered
in this format.

LOAD-MODE=STARTUP

lowercase
letters

In syntax diagrams and operand descriptions, lowercase letters
are used to denote place-holders for the operand values.

KDCFILE=filebase

lowercase
letters in
italics

In running text, variables and the names of data structures and
fields are indicated by lowercase letters in italics.

utm-installationpath is
the UTM installation
directory

Typewriter

font

Typewriter font (Courier) is used in running text to identify
commands, file names, messages and examples that must be
entered in exactly this form or which always have exactly this
name or form.

The call tpcall

{ } and | Curly brackets contain alternative entries, of which you must
choose one. The individual alternatives are separated within the
curly brackets by pipe characters.

STATUS={ ON | OFF }

[] Square brackets contain optional entries that can also be omitted. KDCFILE=(filebase

[, { SINGLE |

DOUBLE }])

() Where a list of parameters can be specified for an operand, the
individual parameters are to be listed in parentheses and
separated by commas. If only one parameter is actually specified,
you can omit the parentheses.

KEYS=(key1,key2,...

keyn)

Underscoring Underscoring denotes the default value. CONNECT= { YES |

 }NO

abbreviated
form

The standard abbreviated form of statements, operands and
operand values is emphasized in boldface type. The abbreviated
form can be entered in place of the full designation.

RANSPORTT -SEL

ECTOR=c‘C‘

. . . An ellipsis indicates that a syntactical unit can be repeated. It can
also be used to indicate sections of a program or syntax
description etc.

Start KDCDEF

...

OPTION

DATA=statement_file

...

END

 21

Symbols

 Indicates references to comprehensive, detailed information on the relevant topic.

Other

utmpath On Unix, Linux and Windows systems, designates the directory under which openUTM was installed.

filebase On Unix, Linux and Windows systems, designates the directory of the UTM application. This is the base
name generated in the KDCDEF statement MAX KDCFILE=.

$userid On BS2000 systems, designates the user ID under which openUTM was installed.

upic_dir The directory under which UPIC Client for UPIC Carrier System is installed on Unix, Linux, or Windows
system.

Indicates notes that are of particular importance.i

Indicates warnings.!

 22

2 Application area

Since the screen layout is not actually a function of the transaction monitor, it is delegated to clients by the UTM
application. The UTM application is thus the server. openUTM-Client with the interfaces CPI-C and XATMI allows
you to create client programs that work with the UTM application as the server.

However, you can also use client programs for load simulations of UTM applications.

The client/server concept

The aim of the client/server concept is to provide the individual users in a network with services (such as data,
programs, devices) and to ensure that optimum use is made of the strong points of the individual systems.

The client/server concept is always implemented where many clients require the same service. An analogy to the
client/server concept is as follows: the procedure or subroutine call sets up a client/server relationship between the
main program and the subroutine. The only difference is that the called procedure now runs remotely from the
“client”.

Clients (users of services) can request services and information from all servers in the network.

Servers (providers of services) provide services whereby shared information sources, such as files and databases,
can be distributed randomly within a network configuration.

 23

2.1 The concept of openUTM-Client

To call services, openUTM-Client offers standardized X/Open interfaces on various platforms and carrier systems.

Figure 1: Standardized X/Open interfaces

Interfaces

openUTM-Client can be programmed with the X/Open interfaces CPI-C and XATMI.

Carrier systems

The CPI-C and XATMI interfaces are provided by both the UPIC carrier system and the OpenCPIC carrier system.
The task of the carrier system is to establish the connection to the other necessary components, such as the
transport access system (TCP/IP in Unix, Linux and Windows systems or BS2000 systems, PCMX in Unix, Linux
and Windows systems or BCAM in BS2000 systems).

The UPIC carrier system offers the following advantages over OpenCPIC:

The client program can simulate the activation of function keys.

Format IDs can also be exchanged between client and server as structure information together with the data.

The client program can assign a new password.

Operating system platforms

A carrier system can reside on the following different kinds of different platform:

Windows systems

Unix and Linux systems

BS2000 systems (UPIC carrier system only)

Because the CPI-C and XATMI interfaces are standardized, i.e. identical on all platforms, the client applications
created and tested on one platform can be ported to any of the other platforms.

Definition of terms

A program containing CPI-C calls is referred to below as a and a program containing XATMI calls CPI-C program
is referred to as an . The underlying carrier system is only mentioned if it influences the XATMI program
functionality or is visible on the interface.

 24

A or an is the totality of the CPI-C or XATMI programs plus all configuration CPI-C application XATMI application
files required for the respective carrier system.

 25

2.2 Client/server communication with openUTM

The diagram below indicates the interfaces via which openUTM clients can communicate with an UTM server
application.

Figure 2: Interfaces between openUTM server and openUTM Clients

A client with a CPI-C program can communicate both with a KDCS program unit and with a CPI-C program unit; a
client with an XATMI program can only ever use an XATMI program unit as a service. A KDCS program unit is a
program unit of a UTM server which contains KDCS calls.

On all platforms, the client and server can reside on the same system.

A UTM server application is always referred to below as a UTM application.

 26

2.3 UPIC local, UPIC remote and multithreading

With UPIC as the carrier system, you have two main options for linking client programs: UPIC local (Unix, Linux and
Windows systems) and UPIC remote (all platforms)

Unless otherwise specified, the information in this manual applies to both alternatives.

 27

2.3.1 UPIC remote

With UPIC remote (UPIC-R) you can link a client program with UTM applications running on any system in the
network. This option is available for all server platforms (Unix, Linux and Windows systems and BS2000 systems).
You need the product openUTM-Client for this. openUTM-Client contains two different versions of UPIC remote. In
one variant, TCP/IP is used via the socket interface. No additional communications components are necessary for
this. In the classic variant, access to the network is controlled via the platform-specific communication components
PCMX or CMX (see).figure 3 (UPIC remote)

Figure 3: Remote connection to UTM applications

With a remote connection too, it is possible that the client program and the UTM application reside on the same
system. Even in this case, however, communication between the client program and the openUTM application is
handled by the communication components TCP/IP or PCMX.

 28

2.3.1.1 Distribution of communication over multiple communication end points

UPIC-Remote enables communication and thus load to be distributed over multiple communication end points. This
allows the implementation of “UPIC routing”. For example, if a very large number of clients (more than 1000) are
communicating with a standalone UTM application on a Unix, Linux, or Windows system, it may be necessary to
distribute the clients over multiple communication end points (BCAMAPPLs) in the UTM application. It is even
possible to distribute communication over multiple standalone UTM applications. However, due to code conversion
these should all be running on the same platform.

The client program requires a list of the associated communication end points for the UTM application(s). From this
list, a random communication end point is then selected and is used to start the next communication. This random
selection ensures client-side load balancing.

If communication is not possible with this selected communication end point, an attempt is automatically made to
establish a connection with a different communication end point. Once again, this communication end point is
selected randomly from the remaining entries in the list.

This process is repeated until a connection can be established with a communication end point for the UTM
application or until it is detected that none of the communication end points from the list can be accessed.

The figure below shows a distribution of communication over three communication end points:

Figure 4: Communication of clients with multiple communication end points

 29

1.

2.

3.

4.

2.3.1.2 Setting up a list of communication end points

The list of communication end points can be specified directly in the client program or passed to the side
information file ().upicfile

How to transfer a list of communication end points using the is described in detail in upicfile section “Side

.information for list of partner applications”

Setting up a list in the client program

To specify the list in the client program:

Select the first communication end point in the list using the call with index 1. For Set_Partner_Index (CMSPIN)
details, see .section “Set_Partner_Index - Setting the partner application index”

Use subsequent calls to assign the appropriate addressing information to this communication Set_Partner_xxx
end point.

For the next communication end point, repeat steps 1 and 2 with the index 2.

Repeat steps 1 and 2, incrementing the index, until the list is complete.

Note

As long as no call has been executed yet, you can change the values of individual communication end Allocate
points at any time.

Once entries have been created, they cannot be deleted within a conversation.

When a conversation is terminated, the list is automatically deleted and can be set up again after an
 call.Initialize_Conversation

 30

2.3.2 UPIC local (Unix, Linux and Windows systems)

With UPIC local (UPIC-L), you can link a client program locally with a UTM application on the same Unix, Linux or
Windows system. The UPIC-local carrier system is available for Unix, Linux and Windows systems. It is integrated
into the openUTM server software. For connection via UPIC local you therefore require neither the product
openUTM-Client nor the communication component PCMX.

This option is only available on a Unix, Linux or Windows system.

Figure 5: Local connection to a UTM application

The interface functions provide a user-friendly interface. The client program communicates with the UTM application
using CPI-C calls or XATMI calls, whereby only net data is transmitted.

 31

2.3.3 Multithreading

The UPIC carrier system is basically multithreading-capable. Whether you can use this capability in your application
depends on the communication mode (local/remote) and the platform:

UPIC-L on Unix, Linux and Windows systems is not multithreading-capable

UPIC-R on Windows systems is multithreading-capable

UPIC-R on Unix or Linux systems is multithreading-capable depending on the UPIC library which is used (
 , or)libupiccmx libupicsoc libupicsocmt

UPIC-R on BS2000 systems is not multithreading-capable

 32

2.4 Support for UTM cluster applications on Linux-, Unix- and Windows-
Systems

An openUTM client with UPIC as the carrier system can communicate with a UTM cluster application in the same
way as with a standalone UTM application.

A cluster is a number of computers (nodes) connected over a fast network. openUTM runs on a cluster in the form
of a UTM cluster application. From a physical perspective, a UTM cluster application is made up of several
identically generated UTM applications (the node applications) that run on the individual nodes.

The client requires a list of the associated node applications. An arbitrary node application is then selected from this
list to be used for the next communication operation.

If communication is not possible with the selected node application, the system automatically attempts to establish a
connection to the next node application in the list. This process is repeated until communication can be successfully
established to a running node application or until the system detects that none of the node applications in the list
can be accessed.

Figure 6: Communication with a UTM cluster application

The list of node applications for each UTM cluster application is passed in the side information file (). For upicfile

details, see the .section “Side information for UTM cluster applications”

 33

3 CPI-C interface

With UPIC as the carrier system you can link CPI-C applications which run on your local system with UTM
applications which run on Unix, Linux or Windows systems or BS2000 systems. The UTM service requested by the
client can use either the CPI-C or the KDCS interface of openUTM.

This chapter describes:

the general structure of CPI-C client programs

the exchange of messages between client and server

conversion of the exchanged data in heterogeneous links

programming notes for communication with UTM single-step and multi-step services

the encryption procedures

programming client programs that are linked to several services in parallel (multiple conversations). Multiple
conversations are only possible if the client is running on a system that supports multithreading.

the security functions of openUTM, which can be used when UPIC client programs are connected.

the CPI-C functions supported by the UPIC carrier system. The individual CPI-C function calls are described in
full (the CPI-C Specification of X/Open is therefore not necessary).

First, however, we will explain some CPI-C terms which are used in the following chapters.

 34

3.1 CPI-C terms

The terms ‘conversation’, ‘conversation characteristics’, and ‘side information’ exist in CPI-C.

A is a communication relationship processed by a CPI-C program in a UTM service.conversation

Conversation characteristics describe the current parameters and features of a conversation, see
.Conversation Characteristics

In connection with the UPIC carrier system, basically describes the addressing information side information
required for a conversation. The addressing information necessary for a conversation is contained in the side

.information file (upicfile)

Conversation state

The state of a conversation reflects the last action of this conversation or defines the next actions that are permitted.

When you write a program that uses CPI-C calls, you must ensure that the appropriate calls are always used in the
CPI-C program and in the UTM program unit. In particular, only the partner with send authorization is permitted to
send data.

With the UPIC carrier system, a conversation can have one of the following states:

State Description

Start The program is not signed on to the UPIC carrier system. (before the call or after Enable_UTM_UPIC
the call).Disable_UTM_UPIC

Reset No conversation is assigned to the conversation_ID.

Initialize The call was completed successfully and a was assigned to Initialize_Conversation conversation_ID
the conversation.

Send The program is authorized to send data in the conversation.

Receive The program can receive information via the conversation.

Table 1: Conversation states

At the beginning, a conversation is in the “Reset” state and then enters various follow-up states, depending on the
actual calls issued and the information received from the partner program.

The “Send” and “Receive” states have a special role to play. This role is described in section “Exchange of
. A table of states can be found in the appendix on page . Here you will messages with a UTM service” State table

find the state changes of a CPI-C conversation, depending on the CPI-C calls and their results.

UPIC monitors the current state of a conversation. If the synchronization of the two sides is violated by an illegal
call, this error is displayed with the value CM_PROGRAM_STATE_CHECK as the result of the call.

The X/Open CPI-C Specification defines further states, but these do not apply to the UPIC carrier system.

 35

Conversation characteristics

The conversation characteristics are managed in a control block together with the side information of a
conversation. This section describes the characteristics relevant to CPI-C with the UPIC carrier system, as well as
the values assigned to these characteristics in the call. The X/OPEN interface CPI-C Initialize_Conversation
contains additional characteristics which are not listed here.

There are three types of conversation characteristics:

those that are preset

those that can be modified using CPI-C calls

those that are UPIC specific

The following conversation characteristics are preset:

Conversation characteristics Initialization value for Initialize_Conversation

conversation_type CM_MAPPED_CONVERSATION

return_control CM_WHEN_SESSION_ALLOCATED

send_type CM_BUFFER_DATA

sync_level CM_NONE

Table 2: Preset conversation characteristics

The following conversation characteristics can be modified using CPI-C calls:

Conversation characteristics Initialization value for Initialize_Conversation

deallocate_type CM_DEALLOCATE_SYNC_LEVEL

partner_LU_name Value from side information, dependent on the symbolic destination name

partner_LU_name_length Length of partner_LU_name

receive_type CM_RECEIVE_AND_WAIT

security_new_password Empty

security_new_password_length 0

security_password Blank

security_password_length 0

security_type CM_SECURITY_NONE

security_user_ID Blank

security_user_ID_length 0

TP_name Value from side information, dependent on the symbolic destination name

 36

TP_name_length Length of TP_name

Table 3: Conversation characteristics which can be modified

The following conversation characteristics are UPIC specific and can be modified. The distinction is made between
characteristics for a partner application and values for a local application:

Conversation characteristics Initialization value for Initialize_Conversation

CHARACTER_CONVERTION CM_NO_CHARACTER_CONVERTION

CLIENT_CONTEXT empty

ENCRYPTION-LEVEL 0

PORT 102

T-SEL Value derived from partner_LU_name

T-SEL-FORMAT Value derived from partner_LU_name

HOSTNAME Value derived from partner_LU_name

IP-ADDRESS Not initialized

RSA-KEY Allocated by the UTM application

SECONDARY_RETURN_CODE CM_RETURN_TYPE_SECONDARY

TRANSACTION_STATE empty

Table 4: UPIC specific conversation characteristics for remote applications

Values for local applications Initialization value for Enable_UTM_UPIC

PORT 102

T-SEL Value derived from local application name

T-SEL-FORMAT Value derived from local application name

Table 5: UPIC specific values for local applications

The characteristics and local values are not explained in greater detail. This list is merely given to enable the
conversation characteristics in the CPI-C interface provided by UPIC to be compared with those in the X/Open CPI-
C interface. A detailed explanation can be found in the X/Open specification “CPI-C Specification Version 2”.

Side information

Because the addressing information is dependent on the respective configuration, CPI-C applications use the
following symbolic names for addressing.

 37

Symbolic Destination Name
The addresses the communication partner. The Symbolic Destination Name Symbolic Destination Name
comprises two components:

partner_LU_name
addresses the partner UTM application and can be overwritten in the program by .Set_Partner_LU-name

TP_name
addresses the UTM service within the UTM partner application. is a transaction code and can be TP_name
overwritten by the program with , e.g. =KDCDISP for the restart.Set_TP_Name TP_name

The UTM service addressed by this transaction code is started as soon as the program has issued the first
 call or a call.Receive Prepare_To_Receive

Keywords
further UPIC-specific conversation characteristics can be set with various keywords. A program can overwrite
these characteristics with the corresponding CPI-C calls (for example,).Set_Encryption_Level

The is linked with the “real” addressing (,) using the Symbolic Destination Name partner_LU_Name TP_Name
. , and the keywords are just some of the conversation characteristics upicfile partner_LU_name TP_Name

described below.

local_name
The assigns the local application name for the local application. A symbolic name can be assigned local_name
for the in the . UPIC-local values can be set using keywords. This means that the name local_name upicfile

assigned by the program is independent of the name used in the UTM configuration. A program can overwrite
these characteristics with the corresponding CPI-C calls (for example,).Specify_Local_Tsel

A description of how the is created and how the entries are linked with the UTM configuration is found in upicfile

.section “Coordination with the partner configuration”
When a is used, this offers the advantage that ther UTM configuration can be modified (e.g. by moving upicfile

the UTM server application to another system) without the client programs having to be modified.

 38

1.

2.

3.

4.

5.

6.

3.2 General structure of a CPI-C application

A CPI-C application is a main program which generally includes the following:

operation of an interface to a presentation system

internal processing routines (operation of other interfaces if necessary)

operation of the CPI-C interface (to a UTM application)

overview of special CPI-C and UTM functions which the clients can use via UPIC

Sequence of calls in a CPI-C application

The following rules apply to the interface calls described in :section “CPI-C calls in UPIC”

The first CPI-C function call in your program must be and the last call must be Enable_UTM_UPIC
. Between these two calls, you can repeat the other CPI-C calls as often as desired in Disable_UTM_UPIC

accordance with the rules described below. provides the runtime environment for the client.Enable_UTM_UPIC

After calling , you can use the calls to modify the UPIC-specific values of the Enable_UTM_UPIC Specify_...
local application.

You must initialize the conversation characteristics with . The characteristics are Initialize_Conversation
described on ."CPI-C terms"

After initialization you can set or modify various conversation characteristics using the calls (see the Set_...
modifiable characteristics on)."CPI-C terms"

You must establish the conversation with the call.Allocate

Following an call you can perform processing with the calls , as well Allocate Send_Data Send_Mapped_Data
as , and . After the call, however, a Prepare_To_Receive Receive Receive_Mapped_Data Allocate Send_Data
or call has to be made first before the program can receive data from the UTM server with Send_Mapped_Data

 or . For more information on the and calls, see Receive Receive_Mapped_Data Send Receive section
.“Exchange of messages with a UTM service”

If a CPI-C program is to hold several conversations consecutively, for performance reasons it is advisable to issue
only one and one call in a CPI-C application, i.e. you should not issue an Enable_UTM_UPIC Disable_UTM_UPIC
Enable call before each and a Disable call each time the conversation is terminated.Initialize_Conversation

If a CPI-C program is to hold several conversations simultaneously, and call must be made for Enable_UTM_UPIC
each of these conversations before the . All CPI-C calls belonging to a conversation must Initialize_Conversation
occur in the same thread. See .section “Multiple conversations (Unix, Linux and Windows systems)”

 39

3.3 Exchange of messages with a UTM service

Once a conversation has been established between a client and a UTM service, the client must pass messages to
the UTM service to control it. The service sends the client the processing result in the form of a message. Note,
however, that only one side (client or service) at a time may send data in a conversation. We say that this side of
the conversation has “permission to send”. Permission to send must be explicitly transferred to the other side of the
conversation so that the partner can send data.

This section describes

how the exchange of messages works,

what you have to consider when programming a client application and

which functions are available for the exchange of messages.

In you will find detailed examples of communication between section “Communicating with the UTM application”
client and UTM server application, contrasting the program sequence on the client side and the server side (KDCS
interface).

 40

1.

2.

3.

3.3.1 Sending a message and starting a UTM service

The following diagram illustrates the sequence in the client program via which the client starts the service in the
UTM server application and transfers a message to the service.

Figure 7: Client starts service in a UTM partner application

Explanation of the diagram

Following the call, the conversation is “established” and a connection to the UTM application has been Allocate
set up. The UTM service, however, is not yet started. UPIC now manages an internal buffer to which the data
from the conversation is written.

Following the call, the client is in the “Send” state; it has permission to send data to the conversation Allocate
and must now transfer a message for the addressed service () to UPIC. The message must contain TP_Name
the input data to be processed by the service. The following calls are available to the client for this:Send

Send_Data
Send_Mapped_Data

After the call you may still modify the conversation characteristic and the values for the Allocate receive_type
receive timer and the function key using calls.Set_...

Send_Mapped_Data differs from the call in that, as well as the message, format names are also Send_Data
sent to the server. In the same way, the client can receive data together with the format names from the service
with . See .Receive_Mapped_Data section“Sending and receiving formats”

The call writes the data from UPIC into a local send buffer which is uniquely assigned to the UTM service Send
on the local system.
The client can issue several calls for transferring the message.Send

If the UTM service does not need any data for processing the request, the client must send an empty message
to the server.

Once the client has transferred the message completely to UPIC, it must pass on send authorization to the
server by changing to the “Receive” state. The following CPI-C calls are available for this:

 41

3.

Receive
Receive_Mapped_Data
Prepare_To_Receive

Only now does UPIC transfer the last section of the send buffer to the UTM service together with permission to
send. The corresponding program unit of the UTM server application is started.

If you use a call to transfer permission to send to the UTM application, the client transfers permission Receive
to send and then waits in the for the response from the service (blocking receive; see Receive section

).“Receiving a message, blocking and non-blocking receive”

The call causes the local UPIC send buffer to be transferred to the server Prepare_To_Receive immediately
together with permission to send. The client switches to the “Receive” state but does not receive any data yet.
When the response is received from the UTM service, the client must call or . Receive Receive_Mapped_Data
Before this call, however, the client cannot execute further (local) processing steps which do not use Receive
the CPI-C interface. Because the conversation is in the “Receive” state, only the CPI-C calls

and are allowed between and Set_Receive_Type, Set_Receive_Timer Set_Function_Key Prepare_To_Receive
the or call. is useful if you are starting a “long-running” Receive Receive_Mapped_Data Prepare_To_Receive
service which will not necessarily produce a reply, e.g. services with several database accesses or with
distributed transaction processing between the UTM partner application and other server applications. The
client program and the process are then not blocked for the entire processing time.

 42

1.

3.3.2 Receiving a message, blocking and non-blocking receive

The UTM service transfers its results in the form of a message or several message segments to the client. This can
also be an empty message. Moreover, the UTM application either transfers permission to send to the client or
terminates the conversation. The message from the UTM service is received by UPIC and stored locally in a receive
buffer. The client can pick up the message from the receive buffer as required using one of the following Receive
calls:

Receive
Receive_Mapped_Data

Every message segment from the UTM service (every MPUT NT/NE) must be received with its own call. If Receive
the field is set to CM_SEND_RECEIVED for the call, the client receives permission to status_received Receive
send.

When the UTM service terminates (PEND FI), the conversation is terminated by the server. In the , the Receive
return code CM_DEALLOCATE_NORMAL is returned to the client and the conversation switches to the “Reset”
state.

The following diagram shows how messages are received in the client program.

Figure 8: Client receives a message from server, conversation is shut down

Explanation of the diagram

With the call you can specify whether the data is to be received with or without blocking. Set_Receive_Type
Whether a call is processed with blocking or without depends on the value of the conversation Receive
characteristic . After initialization of the conversation characteristics with the receive_type Initialize_Conversation
call, a blocking is set for the conversation. You can change this default setting using the Receive

 call.Set_Receive_Type

A CPI-C program must always issue at least one call, i.e. calls without a following Receive Send Receive
call are not permitted.

i

 43

1.

2.

3.

With a call (=CM_RECEIVE_AND_WAIT) the client program waits in the blocking Receive receive_type
 or until data from the server arrives for the conversation or the call is Receive Receive_Mapped_Data

interrupted by a timer. Only then is control returned to the client program and the program run can be resumed.

If you are working with the blocking receive, you should make sure that the program does not wait “for ever” by
setting appropriate timers in the UTM server application (see the openUTM manual “Administering Applications”
and the openUTM manual “Generating Applications”). On the client side, a timeout timer can be set for the
blocking with .Receive Set_Receive_Timer

In the case of a call (=CM_RECEIVE_IMMEDIATE), control is returned to non-blocking Receive receive_type
the program immediately. If data from the service is present at the time of the call, it is transferred to the
program. If there is no data present at the time of the call, the call returns the return code
CM_UNSUCCESSFUL.

The characteristic can be changed as often as you like within the conversation. For each , receive_type Receive
the setting defined by the last call before the applies.Set_Receive_Type Receive

Upic local:
Local connection via UPIC local does not support the non-blocking or the call.Receive Set_Receive_Type

With the or call, the client reads the data from the receive buffer. If data is Receive Receive_Mapped_Data
present, the call passes the data directly to the client program. The remaining course of the client Receive
program depends on the result of the call (fields). The Receive data_received, status_received, return_code
following results can occur:

Once the program has fully read the message with the call (Receive data_received
=CM_COMPLETE_DATA_RECEIVED) and the UTM service has terminated the conversation (PEND FI
called), the program switches to the “Reset” state. It can now establish a new conversation or sign off from
UPIC with .Disable_UTM_UPIC

The program has not yet read all message segments that were received from the service. It must continue to
issue calls until assumes the value CM_COMPLETE_DATA_RECEIVED. One Receive data_received

 call must be issued for each message segment the service sends (MPUT NT).Receive

The program has read the full message from the service and the service transfers permission to send to the
client (=CM_SEND_RECEIVED). The next thing the client must do is issue at least one status_received Send
call and then issue calls again. In this case the UTM service is a multi-step service (the program Receive
unit has terminated with PEND KP).

Once the last conversation has terminated, the client program calls in order to sign off Disable_UTM_UPIC
from UPIC.

 44

3.3.3 Sending and receiving formats

A CPI-C client using the UPIC carrier system can together with a user message, send format names to a UTM
service and receive format names from a UTM service.

The format names transferred with the user message can be used to describe the data format of the user data. The
user data and format names that are exchanged between client and server are transferred transparently, i.e. they
can contain any bit combinations, which must be interpreted by the recipient of the message. The user message is
not processed by a form generating system by means of the format name.

The format names exchanged between UPIC and UTM can generally be freely selected, as can the structure. The
structure information is important if programs written for terminals are to be used to communicate with UPIC clients.
In this event, the format ID plays a role. The format ID is made up of a prefix (-, +, # or *) and the actual format
name.

UPIC clients and UTM programs use the format names which are defined in the UTM application in order to specify
the structuring characteristics of a message. For each format ID that the UTM application recognizes there is a data
structure (addressing aid) in the UTM application. A UPIC client can also use this function to call UTM applications
which communicate with terminals using formats. To do this the client program must transfer the format ID that the
UTM program expects. The user message is then made up according to the format IDs.

In the same way, when sending format data the UTM server application passes on to the client program the format
identifier which describes the structure of the message area.

CPI-C calls for exchanging format data

Because the CPI-C interface does not have its own concept for transferring format names to the interface, UPIC
uses the functions

Send_Mapped_Data and
Receive_Mapped_Data

to send and receive messages together with format names.

To send format data to the UTM server application, call . In the field of the call, the Send_Mapped_Data map_name
client transfers the format ID as structure information for the message which is to be sent to the UTM server
application.
The message must be structured according to the format defined in the server application. is Send_Mapped_Data
described on .section “Send_Mapped_Data - Sending data and format identifier”

If the UTM service returns a format, the client program must call in order to receive the Receive_Mapped_Data
message from the UTM service together with the format ID. In the field, UPIC transfers the format ID map_name
used by the server to structure the message. In the client program the message must be interpreted according to
the structuring used by the UTM service. is described on Receive_Mapped_Data section “Receive_Mapped_Data -

.Receiving data and format identifier from a UTM service”

If several partial formats are to be sent to a UTM service, the client program must issue a separate
 call for each one. The UTM service reads each partial format with a separate MGET NT call.Send_Mapped_Data

By the same token, if a message from the UTM service consists of several partial formats, the client program must
issue a call for each partial format.Receive_Mapped_Data

 45

Figure 9: Exchange of formats

Detailed information on working with formats in a UTM application can be found in the openUTM manual
„Programming Applications with KDCS”.

UTM format identifiers and -format types

The format names exchanged between a UPIC client program and a UTM program unit can consist of up to 8
characters of your choice. The important thing to remember is that both the communication partners must agree on
the structure and meaning of the user data transferred using the format name.

If a client program calls a UTM program unit that also communicates with terminals using format IDs, the format ID
must correspond with the rules for form configuring systems supported by openUTM. These format IDs consist of:

a one-byte prefix specifying the type of the format (possible values are “ ”, “ ”, “ ” and “ ”)* + # -

a format name up to 7 characters long.

The format types can be classified as follows:

*formats:
The display attributes of the format fields cannot be modified by a UTM program unit. Only the contents of the data
fields are transferred.

 46

+formats and #formats:
A UTM program unit can modify the display attributes of the data fields or global attributes. The data fields are
therefore assigned attribute fields or blocks. If a +format or a #format is exchanged, the client program must take
these attribute fields into account.

-formats
They are formats which are created with the FORMAT event exit.

For more about format IDs and types, see the openUTM manual „Programming Applications with KDCS”.

The rules for format IDs do not need to be observed if a UTM program unit only communicates with UPIC-
Client program units. Formatting systems do not play any part in this form of communication.

i

 47

3.3.4 UTM function keys

In an UTM application, function keys can be configured (F1, F2, ...F24 and in BS2000 systems also K1 through
K14). Each function key can be assigned via UTM configuration a particular function, which openUTM executes
when the function key is pressed.

A CPI-C client program can activate function keys in an UTM application.

For “pressing a UTM function key”, the function call is provided. is a UPIC-Set_Function_Key Set_Function_Key
specific function which is not part of the functional scope of the X/Open-CPI-C interface.

With the client program specifies the function key which is to be activated in the UTM application.Set_Function_Key

The return code assigned to this function key is transferred to the UTM service by openUTM at the first MGET call
(KCRCCC field). The program-unit run of the UTM service can be controlled via the return code (e.g. a particular
follow-up TAC can be started). To read the message from the client which sent it with , a Send_Mapped_Data
second MGET call must be made.

Calling is only permitted in the “Send” and “Receive” states. The function key is transferred to Set_Function_Key
the service together with the data of the following call.Send

Figure 10: Pressing a function key in a UTM application

 48

3.3.5 Cursor position

If, in a dialog step in a UTM program unit, a format output is intended and the cursor is to set to a field using the
KDCSUR call, then this information will be transferred to UPIC. UTM uses the differences between the address of
the specified field and the start address of the format to create an offset. This offset is transferred to the UPIC client
and can be interrogated using the call.Extract_Cursor_Offset

The call delivers a return value. If this value is 0, KDCSCUR in the UTM program unit was Extract_Cursor_Offset
not called, unless the cursor is to be set at the beginning of the format and the call really does result in the offset 0.
If KDCSCUR is called in the UTM program unit, delivers the cursor address in the format, as Extract_Cursor_Offset
a integer in a format relative to the start of the message area.

 49

3.3.6 Code conversion

With a heterogeneous link to a UTM application, it may be the case that different codes (ASCII, EBCDIC) are used
in the client and the server systems, because Unix, Linux and Windows systems use ASCII compatible codes, while
BS2000 systems use EBCDIC code, for example:

a client application running on a Unix, Linux or a Windows system communicates with a UTM application on a
BS2000 system.

a client application running on a BS2000 system communicates with a UTM application on a Unix, Linux or
Windows system.

In the case of such a heterogeneous link, messages which contain printable characters can be converted, say for
output. Pure binary data must not be converted. The conversion can take place on the client side on the either or
server side. You must make sure that it only occurs .once

If the conversion is to take place in the client, two options are available with the UPIC carrier system:

The CPI-C calls and Convert_Incoming Convert_Outgoing
In this case, the data is converted by the program. With you can convert a received message Convert_Incoming
into the code used locally (see). section “Convert_Incoming - Converting data from code of sender to local code”
With you can convert the data to be sent (before it is sent) from the local code into the code of Convert_Outgoing
the recipient (see).section “Convert_Outgoing - Converting data from local code to code of receiver”

Automatic code conversion of the UPIC carrier system
You activate automatic code conversion for the connection to a specific server using the

 conversation characteristic. You can activate as CHARACTER_CONVERTION CHARACTER_CONVERTION
follows:

by entering a corresponding ID in the side information entry or the for this server (see upicfile section

).“Side information for standalone UTM applications”

or by means of the call.Set_Convertion()

When code conversion is activated, UPIC converts all data which arrives from this server into the locally used
code before it is transferred to the client program, and all data sent from the client program to the server into the
code of the server before it is sent. The client program no longer needs to deal with the conversion;

 and must no longer be executed.Convert_Incoming Convert_Outgoing

The automatic code conversion makes it possible with a single CPI-C program to communicate both with a UTM
application on Unix, Linux or Windows systems based on the ASCII compatible code and with a UTM application
on a BS2000 system based on an EBCDIC code (if the user data does not contain any binary information that
was falsified during the code conversion).

Code conversion for UPIC-Clients cannot be generated in openUTM (the MAP parameter for PTERM and
TPOOL can only have the value USER for UPIC clients). Server-side conversion must therefore be
carried out by the user in the program unit.

i

CAUTION!

Keep in mind to convert the messages only once. Only messages containing printable characters may be
safely converted. No conversion at all is allowed with a homogeneous link and with the link Windows
system <-> Unix or Linux system.

!

 50

3.3.6.1 Standard code conversion tables

The conversion tables are provided in a separate library.

At installation, the following files and libraries are installed:

Unix and Linux systems:

upic-dir/sys/libutmconvt.so (conversion library)

upic-dir/kcsaeea.c (source file for the conversion tables)

Windows systems:

In Windows, some of these files are installed as a 32-bit or 64-bit version depending on the platform and are given a
corresponding suffix. This suffix (32 or 64) is indicated below as nn and is in italics.

upic-dir\sys\utmcnvnn.dll (conversion library)

upic-dir\utmcnv\utmcnvnn.rc, (resource files with version information)resource.h

upic-dir\utmcnv\kcsaeea.c (source file for the conversion tables)

B2000:

The conversion tables are located in the PLAM library $userid.SYSLIB.UTM-CLIENT.070 in the element
KDCAEEA#LLM. This is also the location of the source file KDCAEEA.C.

Source file kcsaeea.c or KDCAEEA.C

The file or contains eight tables for four code conversions. The tables provided convert kcsaeea.c KDCAEEA.C

the data as follows:

BS2000, Unix, and Linux systems:

kcsaebc and : ISO8859-i <-> EBCDIC.DF.04.i (EDF04i)kcseasc

kcsaebc2 and : ISO8859-1 <-> EBCDIC.DF.04.DRV (EDF04DRV)kcseasc2

kcsaebc3 and : ISO646-IRV <-> EBCDIC.03.DF.03.IRV (EDF03IRV))kcseasc3

kcsaebc4 and : ISO646-IRV <-> EBCDIC.03.DF.03.DRV (EDF03DRV).kcseasc4

Windows systems:

kcsaebc and : Windows-1252 <-> EBCDIC.DF.04.F (EDF04F)kcseasc

kcsaebc2 and : Windows-1252 <-> EBCDIC.DF.04.DRV (EDF04DRV)kcseasc2

kcsaebc3 and : ISO646-IRV <-> EBCDIC.03.DF.03.IRV (EDF03IRV))kcseasc3

kcsaebc4 and : ISO646-IRV <-> EBCDIC.03.DF.03.DRV (EDF03DRV).kcseasc4

In each case, the first and second code conversion are conversions between two 8-bit codes. The third and fourth
code conversion are conversions between two 7-bit codes.

Adapting tables in kcsaeea.c or KDCAEEA.C

UPIC always uses the tables and for the code conversions. If you want to modify the code kcsaebc kcseasc

conversion for your client applications, you have the following options:

Modify the tables and directly using the editor.kcsaebc kcseasc

 51

Use another of the predefined code conversions (e.g. and) and rename it to or kcsaebc2 kcseasc2 kcsaebc

.kcseasc

Create your own tables and rename them to or kcsaebc kcseasc.

The following sections describe the individual steps necessary on the different platforms.

 52

1.

2.

3.

4.

3.3.6.2 Modifying code conversion tables on Unix and Linux systems

In client applications on Unix and Linux systems, you can modify the standard conversion tables as follows:

Copy the file to a separate directory.kcsaeea.c

Modify the tables as required, see Paragraph AdaptingTables in .Standard code conversion tables

Compile the modified source file and use it to create a shared object.

Link the client application to this additional shared object.Edit

https://edsys.g02.fujitsu.local:8443/pages/editpage.action?pageId=58916154

 53

1.

2.

a.

b.

3.3.6.3 Modifying code conversion tables on Windows systems

In client applications on Windows systems, you can modify the standard conversion tables as follows:

Modifying the library utmcnvnn.dll

To modify the library the following steps are necessary:utmcnvnn.dll

Modify the tables as required, see “Adapting tables in kcsaeea.c or KDCAEEA.C (Standard code conversion
”.tables)

Create the library .utmcnvnn.dll

If you are using Microsoft Visual Studio:

In the directory create a new, blank Win32 project with the name (64-bit) upic-dir\utmcnv utmcnv64

and the application type .Dynamic-Link Library

Add the following files to the project:

The modified code tables file ,kcsaeea.c

If necessary, .utmcnvnn.rc

c. Use this project to create .utmcnvnn.dll

Once the library has been created successfully, you still have to copy it into the utmcnvnn.dll upic-dir\sys
directory containing the UPIC library or which is loaded by your application.upicwnn.dll upicwsnn.dll

Verify that the original library is either overwritten by copying or is deleted, otherwise it may be utmcnvnn.dll
loaded inadvertently by the system instead of the new library.

The version information of the created DLL is not essential in order to create the library.i

 54

1.

2.

3.

4.

3.3.6.4 Modifying code conversion tables on BS2000 systems

In client applications on BS2000 systems, you can modify the standard conversion tables as follows:

Copy the file KDCAEEA.C to your user ID.

Modify the tables as required, see “Adapting tables in kcsaeea.c or KDCAEEA.C (Standard code conversion
”.tables)

Compile the modified source file in LLM format to a PLAM library.

When starting your client application, use the SET- FILE-LINK command to assign a link name BLSLIB (with nn
00<=nn<=99) to the PLAM library with the LLM. Here, must be less than the number of the BLSLIB which nn
you assign to the PLAM library $userid.SYSLIB.UTM-CLIENT.070. Alternative: Link the L element to your client
application.

 55

3.4 Communicating with an UTM application

In this section, examples are used to show how a CPI-C program can communicate with a UTM application in
single-step and multi-step services. In a multi-step service, more than one transaction may be executed in the UTM
application. This can also include distributed transaction processing (see diagram Communicating in a multi-step

.UTM service with distributed transaction processing

The calls used in the following examples are explained below:

sign on to the UPIC carrier system ()Enable_UTM_UPIC

initialize the conversation characteristics ()Initialize_Conversation

establish the conversation ()Allocate

send data (you can also use)Send_Data; Send_Mapped_Data

receive the response (; you can also use)Receive Receive_Mapped_Data

sign off from the UPIC carrier system ()Disable_UTM_UPIC

To simplify the diagrams in this section, the buffering of the data in the local UPIC memory during sending and
receiving is not shown.

 56

3.4.1 Communicating in a single-step UTM service

The two diagrams below show the possible forms of cooperation between a CPI-C application and a UTM
application in a single-step service.

One Send and one Receive call

Figure 11: Single-step service with a / callSend() Receive()

With a call, the program waits until the response arrives from openUTM.Receive
CM_COMPLETE_DATA_RECEIVED indicates that the response has been received in full. The fact that it was the
last and only message is clear from CM_DEALLOCATE_NORMAL. Instead of and , you can Send_Data Receive
also use and .Send_Mapped_Data Receive-Mapped_Data

If larger volumes of data are to be transferred, several and calls can be used when communicating in Send Receive
a single-step service; see the following diagram.

 57

Multiple Send and Receive calls

Figure 12: Single-step service with several Send/Receive calls

A separate call is issued for each MPUT call.Receive

After the first call, CM_NO_STATUS_RECEIVED together with CM_OK indicates that there are still more Receive()
 messages. Therefore, a second call is necessary to receive the second and last message.Receive() The last

message is indicated by the return code CM_DEALLOCATED_NORMAL.

 58

3.4.2 Communicating in a multi-step UTM service

The diagram below illustrates one possible form of cooperation between a CPI-C application and a UTM application
in a multi-step service. Data is sent and received several times in this example.

Figure 13: Multi-step service

Communication in a multi-step service is required if the first response must be processed in the CPI-C application
before the second message is sent to UTM.

 59

3.4.3 Communicating in a multi-step UTM service with distributed transaction processing

The diagram below illustrates one possible form of cooperation between a CPI-C application and a UTM application
in a multi-step service. In this example, distributed transaction processing (DTP) is initiated on the UTM side
between two UTM applications.

Figure 14: Multi-step service with DTP

 60

3.4.4 Querying the transaction state

The openUTM application sends information on the transaction and service state to the client with each user
message. The CPI-C application can read this information using the call.Extract_Transaction_State

The state information is sent in a 4-byte field. The first two bytes indicate the state of the service and transaction,
the second two bytes supply diagnostics information, see section “Extract_Transaction_State - Querying service

. The program can therefore detect, for example,and transaction state of the server”

whether the processing step was completed with or without transaction termination,

whether the service was also terminated, or

whether the transaction was rolled back.

The CPI-C program can respond appropriately and, for example, provide detailed information on whether input was
accepted successfully or whether input must be re-sent to the server because the transaction was rolled back.

 61

3.5 User concept, security and restart

With the UPIC carrier system, the UTM user concept can be used on the CPI-C and XATMI interface. In this case,
important openUTM security functions and restart functions relevant for data security are available with client/server
communication.

 62

3.5.1 User concept

In a UTM application, it is possible to generate UTM user IDs and protect them by passwords of a particular
complexity level. These user IDs and passwords with their complexity levels must be generated in the UTM
application with USER statements. Each user ID generated for a UTM application can be used both by a client
program and by a terminal user.

The user concept implemented on the CPI-C and XATMI interface is valid for the duration of a conversation, i.e.
each time a conversation is established the program must transfer the authorization data (user ID and possibly
password) to openUTM. In openUTM, a client program can also sign on using a sign on service (SIGNON service;
see the openUTM manual „Programming Applications with KDCS”).

Multiple sign-ons with one UTM user ID

If a UTM user ID is generated with service restart (USER ...,RESTART=YES), openUTM links the UTM user ID with
a restartable service context which is implicitly assigned using the user ID.

Only one client program or one terminal user can work with the UTM application at any one time under this type of
UTM user ID.

If, in an application which allows multiple sign-ons with a user ID (SIGNON ..., MULTI-SIGNON=YES), a UTM user
ID is generated without restart (USER ...,RESTART=NO), then multiple sign-ons with this user ID are possible. The
restartable service context is not required in this case.

 63

1.

3.5.2 Security functions

The following security functions are available in UTM:

System access control functions

These functions are available in openUTM by UTM user IDs and passwords of a particular complexity level. The
functions are used as follows in CPI-C and XATMI:

The following calls are available in CPI-C:

Set_Conversation_Security_Type: define type of system access control
: specify UTM user IDSet_Conversation_Security_User_ID

: specify associated passwordSet_Conversation_Security_Password

In addition with UPIC

Set_Conversation_Security_New_Password: assign a new password

You must issue these calls before the conversation is established.

If sign-on was unsuccessful, the following call is also available after a or call:Receive Receive_Mapped_Data

Extract_Secondary_Return_Code: query the secondary return code

On the XATMI interface, the call has parameters to activate these system access control functions (see tpinit()
.tpinit - Initializing the client

As soon as the CPI-C or XATMI program uses these calls, the system access control functions and data security
functions outlined below become effective implicitly.

Data access control functions

In order to make certain services of the UTM server application accessible to a select group of users only, you
can use the key code/lock code concept or the access list concept of openUTM (see the openUTM manual
“Concepts and Functions”).

By means of the lock/key code concept lock codes can be assigned to the transaction codes (services) and
the LTERM partners of the UTM server application. These objects can only be accessed by users or clients
whose user IDs are assigned the corresponding key codes. At configuration time, a key set with one or more
key codes is assigned to the user ID (USER ...,KSET=key-set-name). The key set defines which services of
the UTM application can be accessed by the client.

In the access list concept roles are defined as key codes. The transaction codes are protected using access
lists. One or more roles are assigned to each user ID (configuration statement USER ...,KSET=). A client may
not access a service using a specific user ID unless at least one of the roles of the user ID is included in the
access list. Roles can also be assigned to LTERM partners; the same then applies for access using an
LTERM partner.

Data security through user-specific long-term storage area (ULS)

A user-specific long-term storage area can be assigned to each UTM user ID at configuration. This storage area
can only be accessed by program units of the user/client as well as programs started by the administrator,
whereby conflicting accesses are prevented by openUTM. The information in the ULS is retained even after the
conversation is terminated. It is not deleted, but can only be overwritten by blank messages. The ULS is used to
transfer data between conversations and the user’s programs.

A user-specific long-term storage area is assigned to each user ID of the UTM application with the KDCDEF
control statement ULS.

Security functions in the client/server environment are implemented as follows within openUTM:

 64

1.

2.

3.

4.

Before a UTM service is started, the authorization data coming from the client is validated and the
corresponding UTM user ID is assigned, together with the associated key set. This corresponds roughly to a
KDCSIGN of a terminal user immediately before the service starts.

Sign-on is still possible if the validity period of the user password has expired but the UTM application is
configured with Grace Sign-On.

If the lock/key code or access list concept is used, openUTM checks whether the service may be started under
this user ID and using this LTERM partner. If so, in the UTM service, the UTM user ID transferred from the
client appears in the header of the communication area (KB header). The authorizations (key sets) linked with
this UTM user ID apply.

The ULS block assigned to the UTM user ID transferred from the client can be used. If several clients sign on
under one user ID, they share usage of the same ULS block, as there is only ever one ULS block for each user
ID.

At the end of the service, the assignment (points 1 through 3) is canceled again.

Sign-on after expiry of the password validity period (Grace Sign-On)

If the UTM application is configured with Grace Sign-On, a client may still sign on to the application after expiry of
the password validity period. If no sign-on service is configured for the UPIC client, the program is supplied with the
return code CM_SECURITY_NOT_VALID after a or call. Additional information is Receive Receive_Mapped_Data
supplied in the form of a secondary return code. If the password has expired, this code contains one of the following
values:

CM_SECURITY_PWD_EXPIRED_RETRY if the application is configured with Grace Sign-On. In this case the
program can set a new password using at the next sign-on. The Set_Conversation_Security_New_Password
new password must differ from the old password but must satisfy the same requirements (length, complexity, use
of special characters).

CM_SECURITY_PWD_EXPIRED_NO_RETRY if the application is not configured with Grace Sign-On. In this
case the client user can no longer sign on using this UTM user ID. He or she must request the administrator of
the UTM application to issue a new password.

The secondary return code of a or call can also be queried using a subsequent Receive Receive_Mapped_Data
CPI-C call. supplies the secondary return code of Extract_Secondary_Returncode Extract_Secondary_Returncode
the last or call.Receive Receive_Mapped_Data

 65

3.5.3 Restart

A true restart is only possible with the CPI-C interface from UPIC, because only this interface can communicate in
multi-step UTM services. However, the last output message can also be read with the XATMI interface; see section

. The following description therefore only refers to CPI-C client programs.“Restart” - XATMI

A service context is linked with the UTM user ID. Amongst other things, the service context contains the last output
message and service data such as KB and LSSBs, etc. The client can also send a client context to the UTM
application, see .Restart with Client Context

Restart capability depends on how a UTM user ID is configured:

If a UTM user ID is configured as USER ...,RESTART=YES (default value), openUTM performs a service restart
after system failure or after loss of the connection to the client. In other words, openUTM reactivates the service
context and, where appropriate, the client context for the user ID.

If a UTM user ID is configured as RESTART=NO, openUTM does not implement any service restarts, even if the
LTERM partner used by the client is configured with LTERM ...,RESTART=YES.

A service restart means that after the client signs on again, processing continues at the last synchronization point of
a service which is still open. openUTM retransmits the last message of the open service and, where appropriate,
the client context to the client. The client can then continue the service.

If an open service exists for the client under the user ID, this service must be continued immediately after the next
sign-on, as otherwise openUTM terminates the open service abnormally.

The client program must initiate the restart by first of all establishing a new conversation and transferring the
KDCDISP transaction code in the call. The example below illustrates this type of “restart program” Set_TP_Name
for CPI-C.

Example

Initialize_Conversation (...)
Set_Conversation_Security_Type (...,CM_SECURITY_PROGRAM,..) // 1.
Set_Conversation_Security_User_ID (...,"UTMUSER1",..) // 1.
Set_Conversation_Security-Password (...,"SECRET",..) // 1.
Set_TP_Name (...,"KDCDISP",...) // 2.
Allocate (...)
Send_Data (...) // 3.
 /* blank message */
Receive (...)
 return_code=CM_OK
 /* service open, send authorization transferred to client */
 /* continue communication in UTM service */
 status_received=CM_SEND_RECEIVED // 4.

/* or */

return_code=CM_DEALLOCATED_NORMAL // 5.
/* end of service, restart terminated */

/* or */

 66

1.

2.

3.

4.

5.

6.

return_code=CM_TP_NOT_AVAILABLE_NO_RETRY
// 6.
/* restart not possible */

The program uses the system access control functions of openUTM and explicitly sets the UTM user ID
and password.

The program must set the to KDCDISP for the restart.TP_name

No data can be sent with , i.e. must be set to 0 (“blank message”).Send_Data send_length

Processing and communication with the UTM service can be continued.

The program has already received the last output message; there are no more open services on the UTM
side.

A restart is not possible, due to UTM reconfiguration.

The client always receives the last output message of openUTM with as the result of this type of restart Receive
program.

A user can sign on to a UTM server under a particular user ID in one of several ways:

from a terminal

via a transport system application

via a client program with various carrier systems

A restart by a client program is only possible if the user ID was also last used by a client program with the same
carrier system. If this is not the case, openUTM rejects the client programs’ attempt to sign on
(CM_SECURITY_NOT_VALID) because the open service must first be terminated by the partner that started it.

If no open service exists when the conversation is established with KDCDISP, openUTM terminates the
conversation after sending the last output message of the previous service. If the last service was started by a
different partner, openUTM does not transfer any messages (return code CM_TP_NOT_AVAILABLE_NO_RETRY).

If no application context exists following a re-configuraton of the UTM application, the program receives the return
code CM_TP_NOT_AVAILABLE_NO_RETRY. openUTM then terminates the conversation.

Restart with client context

With each user message the client can send what is known as a client context to the UTM application. A client
context consists of a string up to 8 bytes long. The string may contain, for example, the time or a message ID.

If the user ID is configured with RESTART=YES, the client context is buffered by openUTM until the end of the
conversation unless it is overwritten with a new context.

If the client requests a restart, openUTM transfers the client context to the client together with the last dialog
message. By referring to the client context the program is able to uniquely identify at which point in the dialog a

To avoid these problems, a UTM user ID configured as RESTART=YES should be used either only by
client programs with the same carrier system, or only by terminal users.

i

The UTM utility KDCUPD transfers services of a client with restart capability.i

 67

restart must be made and how the program must respond; for example, by outputting a specific form. The following
UPIC calls are available to set and read the client context:

Set_Client_Context: set client context

Extract_Client_Context: output the last client context sent by openUTM

 68

3.6 Encryption

Clients access unencrypted UTM services. There is, therefore, the possibility that unauthorized persons on the line
can monitor and, for example, discover passwords for UTM user IDs or sensitive user data (man-in-the-middle
attack). In order to avoid this, openUTM supports the encryption of passwords and user data for client connections.

Encryption in openUTM can be used to control access from clients and also access to certain services.

openUTM uses a hybrid encryption scheme. this is a combination of an asymmetric encryption for the exchange of
the AES key and symmetric encryption with an AES key for the data.

How to enable encryption see section Runtime environment, linking, starting

Encryption methods

The encryption of user data for connections to UTM applications always follows the same pattern: First, a session
key is exchanged or agreed between the two partners, and the user data is then encrypted with this session key
between the two partners.
The session key used in all encryption levels is an AES key with a length of 256 bits.

For Encryption Levels 3 and 4, the session key is exchanged with the RSA algorithm. The client encrypts the
created AES key with the public RSA key of the UTM application. Depending on the encryption level, an RSA key
with a length of 1024 or 2048 bits is used.

At Encryption Level 5, the agreement of the AES key is done using the Elliptic Curve Diffie Hellman method. The
RSA key of the UTM application is used in this method only to sign the public Diffie-Hellman key of the UTM
application to prove the origin of the Diffie-Hellman key. The Diffie-Hellman method has the advantage that the AES
key does not need to be transferred from the client to the server. Thus, this method offers Perfect Forward Secrecy.

 Encryption levels 3 and 4 use the AES-CBC procedure to encrypt the user data. Encryption Level 5 uses the newer
 AES/GCM process. AES/GCM offers the advantage that in addition to the encryption of the user data, further

protocol parts of the message are protected against changes by a message authentication code (MAC).

Configured
encryption level

Public key Symmetric key authenticated
encryption

perfect forward
secrecy

TRUSTED No key No key no no

NONE Depending on
situation

Depending on
situation

Depending on
situation

Depending on
situation

3 RSA - 1024 bit AES (256 bit) nein nein

4 RSA - 2048 bit AES (256 bit) nein nein

5 ECDH secp256k1 AES (256 bit) ja ja

Table 6: Configured encryption levels and associated keys

 69

In openUTM each RSA key pair can be modified and activated using administration facilities. Only activated RSA
keys are used. For encryption levels 3 and 4 the UPIC client can store the public key locally in advance. When a
connection is set up, the public key received is checked against the stored public key.

The active RSA key can be read out and can be deleted by using calls of the UTM administration interface or by
using the openUTM WinAdmin administration tool.

Requirements

If an encryption level of 3 to 5 is generated for the partner in openUTM but the encryption requirements have not
been satisfied, no connection is set up. This may be for one of the following reasons.

The client does not support encryption because of the encryption functionality is not available.

Procedure

When the client attempts to connect to the UTM application, it informs openUTM whether it supports encryption.

Once the connection between the client and the server has been established and if encryption is supported by both
partners, the client sends information to the server indicating the level up to which it supports encryption. The server
compares this with the configured information for the partner.

Depending on the encryption level the client generates in the UTM apllication, various situations can occur.

ENCRYPTION-LEVEL=TRUSTED

The client is configured as trusted. In this case openUTM does not request encryption. Neither can the
client force encryption.

ENCRYPTION-LEVEL=NONE

In this case the UTM application sends the RSA key with maximum modulo length to the client. The RSA
key determines the encryption level.

Depending on the length of the RSA key received the client generates an AES key (if the RSA key length
>= 1024). The client encrypts the AES key with the RSA key and returns it to the server. openUTM stores
the key for later use on this connection.

By default only passwords are encrypted.

However, the client can enforce encryption of user data by using the ENCRYPTION_LEVEL keyword in
the or by means of the call.upicfile Set_Conversation_Encryption_Level

Notes

If the software requirements for encryption are not met, passwords and user data are exchanged without
encryption.

ENCRYPTION-LEVEL= 3 or 4

The UTM server sends the public RSA key associated with the appropriate encryption level. The length of
this key is 1024 or 2048, see .table6 Encryption

The client generates an AES key, encrypts it with the RSA key and sends it back to the server. openUTM
stores the AES key for later use on this connection.

Passwords and user data are encrypted.

 70

The call or an ENCRYPTION_LEVEL entry in the has no Set_Conversation_Encryption_Level upicfile

effect.

ENCRYPTION-LEVEL= 5

The UPIC client and the UTM application agree on a common secret with the ECDH procedure.

The client generates an AES key, encrypts it with the shared secret, and sends it back to the UTM
application. openUTM saves the AES key for later use on this connection.

Passwords and user data are encrypted.

The call or an ENCRYPTION_LEVEL entry in the has no Set_Conversation_Encryption_Level upicfile

effect.

The encryption level of the conversation can be read out using the client-level
 call, preferrably after the call.Extract_Conversation_Encryption_Level Allocate

Encryption with protected TAC

A service of a UTM application can be protected by assigning an encryption level to the associated TAC in the
ENCRYPTION-LEVEL= operand at generation. This ensures that a client cannot call the protected service tac-level
unless data is transferred with the specified encryption. The following situations can occur depending on the
generation of the client and on the encryption level of the TAC.

TRUSTED is generated for the client

openUTM does not request encryption and the client can also start protected services. The client cannot
force encryption because no keys were exchanged.

NONE is generated for the client

openUTM does not request encryption. If a encryption level > 0 was established at connection client-level
setup and if a conversation whose TAC requires level 2 or level 5 encryption is initialized, there are the
following possibilities.

client-level >= tac-level
where the client has activated encryption for this conversation.
The service can be started. The client sends user data in an encrypted form right from the beginning.

client-level >= tac-level
where the client has activated encryption for this conversation and has not yet sent any user data. not
The service can be started. The UTM application transmits all output on the encryption client-level
level to the client in an encrypted form. The client also encrypts all subsequent messages to openUTM
on the encryption level.client-level

client-level < tac-level
The UPIC client has already sent user data that was either not encrypted or was encrypted with a
lower encryption level.

openUTM ends the conversation.

3 ,4 or 5 is generated for the client

If a conversation whose TAC requires level 2 or level 5 encryption () is initialized, there are the tac-level
following possibilities.

 71

client-level >= tac-level
The service can be started.

client-level < tac-level
The service cannot be started and openUTM terminates the conversation.

Note that for the connection between client and server (and therefore for all subsequent conversations on
this connection) more encryption levels can be specified than for the TAC.

i

 72

3.7 Multiple conversations (Unix, Linux and Windows systems)

The multiple conversations functionality enables a CPI-C client to hold several conversations at once within a
program run. The conversations can be established with different UTM server applications or the same UTM server
application.

The UPIC carrier system supports multiple conversations only on systems which support multithreading (e.g. Unix,
Linux and Windows systems). For more information, see ."Multithreading"

Multithreading means that several threads can be started within the process in which a program is running. Threads
are program segments running in parallel within a process, in which processing steps are processed independently
of each other. Threads are therefore often called concurrent processes. The use of threads is equivalent to a type of
multiprocessing that is administered by the program itself and is executed in the same process as the program itself.

CPI-C clients which run on systems with multithreading and are implemented accordingly can therefore be
connected to several UTM services at the same time.

CPI-C clients which run on systems that do not support multithreading can only hold one conversation at a time.
Only when this conversation is shut down can a new one be established.

If a client application wants to process several conversations at once, each one of these conversations must be
processed in a separate thread independently of the others. Here you must note the following:

The first thread of the process in which the other threads are started is the main thread. A conversation can also
be established in the main thread, as in any other process.

For each additional conversation that the program is to establish and process in parallel, a thread must be
started explicitly. System calls are provided for starting the threads. These system calls are dependent on the
operating system and on the compiler used (see example on "Multiple conversations (Unix, Linux and Windows

).systems)"

In each of the started threads, the runtime environment for the CPI-C client must be started. For this purpose, an
 call must be issued in every thread. The CPI-C program can sign on in all threads with the Enable_UTM_UPIC

same or with different names.

In each individual thread the conversation characteristics must be set with an call. The Initialize_Conversation
conversation is assigned a separate conversation ID by UPIC.

Each conversation ID can only be used within the thread in which the associated conversation was initialized and
established. If the conversation ID is specified in another thread in a CPI-C call, UPIC brings back the return
code CM_PROGRAM_PARAMETER_CHECK.

In each thread the program must sign off from UPIC with before the thread is terminated.Disable_UTM_UPIC

The main thread must not terminate until all other threads have signed off and terminated.

The sequences within the client program are shown in the following diagram.

Upic local

Upic-L does not support the “Multiple conversations” capability.

i

 73

Figure 15: Starting several threads within a process (Unix, Linux and Windows systems)
(the gray-hatched area corresponds to the process in which the client program is running)

The schema belonging to the client program is structured as follows:

Example of multiple conversations in Visual C++

void main () 1.
{
 ...
 thrd[0] = CreateThread(...,UpicThread,...); 2.

 74

1.

2.

3.

4.

5.

6.

7.

 thrd[1] = CreateThread(...,UpicThread,...);
 ...
 Enable_UTM_UPIC (...); 3.
 ...
 /* Calls for establishing and processing a conversation */
 /* in the main thread: */
 Initialize_Conversation (...)
 ...
 Allocate (...)

 Send_Data (...)
 ...
 Receive (...)
 ...
 Disable_UTM_UPIC (...);
 ...
 WaitforMultipleObjects(2,&thrd[0],...); 4.
 ExitProcess (0); 5.
}
DWORD WINAPI UpicThread(LPVOID arg) 6.
{
 ...
 Enable_UTM_UPIC (...);
 ...
 /* Calls for establishing and processing conversation in thread */
 /* as in main thread under 3. */
 ...
 Disable_UTM_UPIC (...);
 ...
 ExitThread(0); 7.
}

Process and main thread are started.

Two further threads are started via the corresponding system call. The system call depends on the system and
compiler used.
Each thread is started with the function. In a conversation is established and UpicThread() UpicThread()
processed. is a freely selectable name.UpicThread

Each thread must explicitly execute an call and a call. At this point the Enable_UTM_UPIC Disable_UTM_UPIC
main thread signs on to UPIC. After the call the CPI-C calls can then be issued for Enable_UTM_UPIC
establishing a conversation in the main thread and processing this conversation. Several conversations can be
processed in the main thread. Once the conversation in the main thread has terminated, this consecutively
thread must sign off with .Disable_UTM_UPIC

The main thread waits until both the threads it has started have terminated.

End of the process and the main thread.

UpicThread() is the function that is called when a new thread is started. In this function, the relevant thread
signs on to UPIC with and processes “its conversation” (with , Enable_UTM_UPIC() Initialize_Conversation()

, , ...). Here too, several conversations can be processed . When the Set_... Send_Data() Receive() consecutively
last conversation has terminated, the thread signs off with . Disable_UTM_UPIC

UpicThread() must be programmed such that the threads running concurrently do not interfere with each other.
The code must therefore be structured so that it can be executed by several threads at the same time, i.e. the
functions used must not mutually destroy the context.

Termination of the thread.

 75

openUTM-Client comes with the source code for a sample program on multiple conversations (see section “Sample
).programs for Windows systems”

 76

3.8 DEFAULT server and DEFAULT name of a client

In practice it is often the case that a client communicates mainly with one particular UTM server. To simplify the
configuration of UPIC clients and the programming of CPI-C client programs in such cases, you can define a
DEFAULT server for your client application in the (see upicfile "Side information for standalone UTM

). In order to be connected to the DEFAULT server, the client program can omit specification of a applications"
symbolic destination name when initializing the conversation with . It transfers an empty Initialize_Conversation
name to UPIC and is then automatically connected to the DEFAULT server.

You can also define a service on the DEFAULT server as the DEFAULT service. To do this, you specify the
transaction code of this service in the DEFAULT server entry in the . If the CPI-C program then does not upicfile

specify a transaction code when initializing a conversation for the DEFAULT server (it does not call), Set_TP_Name
the conversation is automatically established with the DEFAULT service. If another service is to be started on the
DEFAULT server, the client program must transfer the transaction code of this service to UPIC with Set_TP_Name
(e.g. =KDCDISP must be selected at service restart).TP_name

In the same way, you can define a DEFAULT name for the local CPI-C client application in the . If the upicfile

client program specifies an empty local application name when the application signs on to UPIC (with
), the client is signed onto UPIC with the DEFAULT name and UPIC uses the address Enable_UTM_UPIC

information assigned to the DEFAULT name to establish the conversation.

If a DEFAULT name is used for the CPI-C application, it may occur that several program runs of a UPIC client want
to sign on to a UTM application with the same name at the same time. This is the case if the client program is
started several times in parallel or if a program wants to establish several conversations with a UTM application in
parallel (multiple conversations). To enable the server application to accept these sign-ons, the conditions
described in the following section must be met.

 77

3.8.1 Multiple connections to the same UTM application with the same name

Multiple simultaneous connections by a client application to a UTM application using the same name in each case is
possible.

To enable a client to connect more than once with the same name, an LTERM pool which supports multiple
connections with the same name must have been generated in the UTM server application for the system on which
the client is running. Such an LTERM pool is generated in openUTM as follows:

TPOOL ...,CONNECT-MODE=MULTI

For the name the client uses to connect to the UTM application (PTERM name), a PTERM statement must not be
generated in the UTM application (see openUTM manual “Generating Applications”), otherwise multiple connections
via the LTERM pool is not possible.

The CPI-C program can connect to the UTM application via the LTERM pool as many times as there are LTERM
partners available in the LTERM pool (the number is set by UTM administration). It can use the same name or
different names to connect.

 78

3.9 CPI-C calls in UPIC

Input and output parameters and possible return codes are described below for each function.

In general, all parameters are passed at the interface by means of addresses. The symbols --> and <-- designate
input and output parameters respectively.

The and the are always exactly eight characters long.symbolic destination name conversation_ID

The return codes supplied at the interface are independent of the transport system used. A distinction between local
and remote connections is made only in the explanation of certain return codes and in notes on error messages.

 79

3.9.1 Overview

The interface functions can be used on all platforms in the programming languages C, C++ and COBOL, and are
provided in libraries.

The following description of the CPI-C calls has therefore been kept as language-independent as possible, even
though it uses the notation of the C interface. In you will find a description of the special section“COBOL interface”
features of the COBOL interface which you must take into account when creating CPI-C programs in COBOL.

The precise function declaration is given separately for each call.

Program calls

A client communicates with a UTM server application by calling functions. These calls are used to establish the
conversation characteristics and to exchange data and control information. The CPI-C calls supported by UPIC can
be categorized into two groups:

Starter-set calls
Starter-set calls enable simple communication with a UTM server. They are used for simple data exchange
processes, e.g. for accepting the initialized values of conversation characteristics.

Advanced-function calls
Advanced-function calls allow more specialized functions to be executed. For example, the conversation
characteristics can be modified using Set calls.

Starter-set functions

Function Description

Initialize_Conversation Initializes conversation characteristic

Allocate Starts a conversation

Deallocate Ends a conversation abnormally

Send_Data Sends data

Receive Receives data

Table 7: Starter-set functions

It is assumed that the CPI-C program (client) is always the active part. For this reason the CPI-C function
 is not supported.Accept_Conversation

On systems which support multithreading (e.g. Windows, Solaris 5.7), several conversations with different UTM
servers can be active at the same time in a CPI-C program. Each conversation, including the associated

 and calls, must be executed in a separate thread.Enable_UTM_UPIC Disable_UTM_UPIC

On all other systems, only conversation at a time can be active in a CPI-C program.one

Advanced-function calls

Function Description

Convert_Incoming Converts received data to the local code

 80

Convert_Outgoing Converts the data to be sent from the local code to the code of the
communication partner

Deferred_Deallocate Terminates the conversation as soon as the current transaction has
been terminated successfully

Extract_Conversation_State Inquires about the conversation state

Extract_Secondary_Information Inquires about further information

Extract_Partner_LU_Name Inquires about the value of the conversation characteristics
 up to a maximum length of 32 bytespartner_LU_name

Extract_Partner_LU_Name_Ex Inquires about the value of the conversation characteristics
 in full lengthpartner_LU_name

Prepare_To_Receive Sends the data buffered in the send buffer to the communication partner
immediately and switches to the “Receive” state

Receive_Mapped_Data 1 Receives the data together with the structure information (format
identifier)

Send_Mapped_Data 1 Sends the data together with the structure information (format identifier)

Set_Conversation_Security_Password Sets the password for a UTM user ID

Set_Conversation_Security_Type Activates or deactivates the security function

Set_Conversation_Security_User_ID Sets the UTM user ID

Set_Partner_LU_name Sets the value for the conversation characteristics partner_LU_name

Set_Deallocate_Type Sets values for the conversation characteristic deallocate_type

Set_Receive_Type Sets values for the conversation characteristic receive_type

Set_Sync_Level Sets values for the conversation characteristic sync_level

Set_TP_Name Sets the name for a partner program (transaction code)

Table 8: Advanced Functions

1Not a component of X/Open CPI-C version 2

Additional UPIC functions

Function Description

Enable_UTM_UPIC Signs on to the UPIC carrier system

Extract_Client_Context Outputs the client context

Extract_Conversation_Encryption_Level Inquires about encryption level

 81

Extract_Convertion Queries the ASCII-EBCDIC conversion

Extract_Cursor_Offset Inquires about cursor position offset

Extract_Max_Partner_Index Queries the maximum index of the partner applications

Extract_Secondary_Return_Code Queries secondary return codes

Extract_Shutdown_State Queries the shutdown state of the server

Extract_Shutdown_Time Queries the shutdown time of the server

Extract_Transaction_State Queries the service and transaction state of the server

Disable_UTM_UPIC Signs off from the UPIC carrier system

Set_Allocate_Timer Setting timer for the Allocate call

Set_Client_Context Sets the client context

Set_Convertion Sets the ASCII-EBCDIC conversion

Set_Conversation_Encryption_Level Sets encryption level

Set_Conversation_Security_New_Password Sets a new password for a UTM user ID

Set_Function_Key Sets the value of the function key to be transferred

Set_Partner_Index Sets the index of the partner application

Set_Receive_Timer Sets the timeout timer for the blocking receive of data

Set_Partner_Host_Name Sets the host name of the partner application

Set_Partner_IP_Address Sets the IP address of the partner application

Set_Partner_Port Sets the TCP/IP port of the partner application

Set_Partner_Tsel Sets the TSEL of the partner application

Set_Partner_Tsel_Format Sets the TSEL format of the partner application

Specify_Local_Tsel Sets the TSEL of the local application

Specify_Local_Tsel_Format Sets the TSEL format of the local application

Specify_Local_Port Sets the TCP/IP port of the local application

Specify_Secondary_Return_Code Sets the properties of the secondary return code

Table 9: Additional UPIC Functions

 82

3.9.2 Allocate - Establishing a conversation

A program uses the (CMALLC) call to establish a conversation with a UTM application. The name of the Allocate
CPI-C program is specified in the preceding call.Enable_UTM_UPIC

Syntax

CMALLC (conversation_ID, return_code)

Parameters

--> conversation_ID Identifier of the initialized conversation (supplied by the Initialize call).

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_ALLOCATE_FAILURE_RETRY

UPIC-L The conversation cannot be established due to a temporary resource bottleneck. Check the
error message for the local UTM application as well.

CM_ALLOCATE_FAILURE_NO_RETRY

Possible causes:

The conversation cannot be established due to an error, e.g. the transport connection to the UTM
application could not be set up.

The transport connection was rejected by the UTM end because in the UTM application a TPOOL or
PTERM connecting point is defined with ENCRYPTION_LEVEL=1 (or 3, 4, 5), but but the encryption
requisites are not met.

The transport connection was rejected by the UTM end because in the UTM application a TPOOL or
PTERM connecting point is defined with ENCRYPTION_LEVEL=NONE and the called TAC with
ENCRYPTION_LEVEL=2.

CM_OPERATION_INCOMPLETE

The call was interrupted by the expiry of the timer set using Set_Allocate_Timer.

CM_PARAMETER_ERROR

A TAC was not specified in the or in a call, or the upicfile Set_TP_Name() conversation_security_type
is CM_SECURITY_PROGRAM and the characteristic is not set.security_user_ID

CM_PROGRAM_STATE_CHECK

The call is not permitted in the current state.

 83

CM_PROGRAM_PARAMETER_CHECK

The value for is invalid.conversation_ID

CM_PRODUCT_SPECIFIC_ERROR

There is a protocol error.

For this conversation, there is an RSA key stored in the ; this key differs in either content or upicfile

length from the received RSA key.

CM_SECURITY_NOT_SUPPORTED

The partner application does not support the desired .security_type

A new password has been set, but the partner application with which a conversation has been
established does not support password changes for the UPIC-Client.

State change

If the return code is CM_OK, the conversation is established and the program enters the “Send” state.

If the return code is CM_ALLOCATE_FAILURE_RETRY/NO_RETRY or CM_SECURITY_NOT_SUPPORTED,
the program enters the “Reset” state.

In all other error situations, the program does not change its state.

Notes

If the UTM application rejects initiation of the service, e.g. due to an invalid transaction code, this is not reported
until the next call is issued.Receive

If the specified user ID was not generated in the UTM application, or if an incorrect password or no password
was sent for a generated user ID, this is not reported until the next call is issued.Receive

Behavior in the event of errors

CM_ALLOCATE_FAILURE_RETRY

Temporary resource bottleneck has occurred during the conversation.
, followed by the call.Initialize_Conversation Allocate

CM_ALLOCATE_FAILURE_NO_RETRY

Reboot the UTM application or generate the PTERM specified in for openUTM. You Enable_UTM_UPIC
may need to install the encryption module as well or change the encryption level.

CM_PARAMETER_ERROR

Add a TAC to the entry for the current or specify a TAC with the call.sym_dest_name Set_TP_Name

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

 84

Store either a valid RSA key or no key at all.

Notify the service department and produce diagnostic report

Function declaration: Allocate

CM_ENTRY Allocate (unsigned char CM_PTR conversation_ID,
 CM_RETURN_CODE CM_PTR return_code)

 85

3.9.3 Convert_Incoming - Converting data from code of sender to local code

With the UPIC carrier system on Unix and Linux systems, the (CMCNVI) call converts the data Convert_Incoming
form EBCDIC.DF.04.i to ISO8859-i by default.

With the UPIC carrier system on Windows systems, the (CMCNVI) call converts the data form Convert_Incoming
EBCDIC.DF.04.F to Windows-1252 by default.

With the UPIC carrier system on BS2000 systems, (CMCNVI) converts the data from ISO8859-i Convert_Incoming
to EBCDIC.DF.04.i.

Syntax

CMCNVI (data, length, return_code)

Parameters

<--> data Address of the data to be converted. The data is then overwritten by the converted data.

--> length Length of the data to be converted.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

State change

This call does not change the program state.

Notes

The data must be in printable form.

The relevant conversion table is stored on

on Unix, Linux and Windows systems in the file under or .kcsaeea.c upic-dir upic-dir\utmcnv

on BS2000 in the file KDCAEEA.C in the library .$userid SYSLIB.UTM-CLIENT.070

Function declaration: Convert_Incoming

CM_ENTRY Convert_Incoming (unsigned char CM_PTR string,
 CM_INT32 CM_PTR string_length,
 CM_RETURN_CODE CM_PTR return_code)

 86

3.9.4 Convert_Outgoing - Converting data from local code to code of receiver

With the UPIC carrier system on Unix and Linux systems, the (CMCNVO) call converts the data Convert_Outgoing
form ISO8859-i to EBCDIC.DF.04.i by default.

With the UPIC carrier system on Windows systems, the (CMCNVO) call converts the data form Convert_Outgoing
Windows-1252 to EBCDIC.DF.04.F by default.

With the UPIC carrier system on BS2000 systems, (CMCNVO) converts the data from EBCDIC.Convert_Outgoing
DF.04.i to ISO8859-i.

Syntax

CMCNVO (data, length, return_code)

Parameters

<--> data Address of the data to be converted. The data is then overwritten by the converted data.

--> length Length of the data which are converted.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

State change

This call does not change the program state.

Notes

The data must be in printable form.

The relevant conversion table is stored on

Unix, Linux and Windows systems in the file under or .kcsaeea.c upic-dir upic-dir\utmcnv

on BS2000 systems in the file KDCAEEA.C in the library .$userid SYSLIB.UTM-CLIENT.070

Function declaration: Convert_Outgoing

CM_ENTRY Convert_Outgoing (unsigned char CM_PTR string,
 CM_INT32 CM_PTR string_length,
 CM_RETURN_CODE CM_PTR return_code)

 87

3.9.5 Deallocate - Terminating a conversation

A CPI-C program uses the (CMDEAL) call to end a conversation abnormally. After the call has been Deallocate
executed successfully, the is no longer assigned to a conversation. Normally, a conversation is conversation_ID
always ended together with the UTM process. Termination of a conversation by the CPI-C program is always
regarded as abnormal. The value of must therefore be set to CM_DEALLOCATE_ABEND by the deallocate_type

 (CMSDT) call before a call is issued.Set_Deallocate_Type Deallocate

Syntax

CMDEAL (conversation_ID, return_code)

Parameters

--> conversation_ID Identifier of the conversation to be ended.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_STATE_CHECK

The call is not permitted in the current state.

CM_PROGRAM_PARAMETER_CHECK

The value of is invalid.conversation_ID

CM_PRODUCT_SPECIFIC_ERROR

The value of has not been set to CM_DEALLOCATE_ABEND by a preceding deallocate_type
 call.Set_Deallocate_Type

State change

If the return code is CM_OK, the program enters the “Reset” state. In all other error situations, the program does not
change its state.

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

 88

Modify the program and incorporate the call.Set_Deallocate_Type

Function declaration: Deallocate

CM_ENTRY Deallocate (unsigned char CM_PTR conversation_ID,
 CM_RETURN_CODE CM_PTR return_code)

 89

3.9.6 Deferred_Deallocate - Terminating a conversation after termination of a transaction

A CPI-C program uses the (CMDFDE) call to terminate the conversationDeferred_Deallocate
as soon as the current transaction is successfully terminated. The call can be used at any time within a transaction.

 serves only to make CPI-C programs more portable. It does not change the state of the Deferred_Deallocate
program.

CMDFDE (conversation_ID, return_code)

Syntax

CMDFDE (conversation_ID, return_code)

Parameters

--> conversation_ID Identifier of the conversation to be terminated.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_PARAMETER_CHECK

The value of is invalid.conversation_ID

CM_PROGRAM_STATE_CHECK

The program is in “Start” state.

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

State change

This call does not change the program state.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide enough memory for the internal buffers. Check whether the memory
requirement of your program is too high and if necessary reboot your system.

CM_PROGRAM_STATE_CHECK

Modify program

 90

Function declaration: Deferred_Deallocate

CM_ENTRY Deferred_Deallocate (unsigned char CM_PTR conversation_ID,
 CM_RETURN_CODE CM_PTR return_code)

 91

3.9.7 Disable_utm70_upic - Signing off from the UPIC carrier system

A program uses the (CMDISA) call to sign off from the UPIC carrier system. After the call has Disable_UTM_UPIC
been successfully executed, no further CPI-C calls are permitted. If another connection exists for the program, it is
cleared down. In addition, the program signs off from the transport system.

This call must be the last call of a CPI-C program. It is not needed if you continue with a further call after Initialize
ending the conversation.

This function is not included in the CPI-C interface, but is one of the additional UPIC functions.

Syntax

CMDISA (local_name, local_name_length, return_code)

Parameters

--> local_name Name of the program, i.e. the name specified in the preceding call.Enable_UTM_UPIC

--> local_name_length Length of .local_name

Minimum: 0, maximum: 8

local_name_length=0 means that an “empty local application name”
is transferred (see)section “Enable_UTM_UPIC - Signing on to the UPIC carrier system”

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_STATE_CHECK

The call is not permitted in the current state.

CM_PROGRAM_PARAMETER_CHECK

The program is not signed on to UPIC with , or the value oflocal_name
 is < 1 or > 8.local_name_length

CM_PRODUCT_SPECIFIC_ERROR

An error occurred when signing off from UPIC or when clearing down the connection.

State change

If the return code is CM_OK, the program is signed off and enters the “Start” state. In all other error conditions, the
program does not change its state.

 92

Note

You must use this call if you wish to terminate the process with in the event of an error condition in the exit()
application program.
For performance reasons, this function should only be called immediately before the process is terminated,
provided no error has occurred.

Behavior in the event of errors

CM_PRODUCT_SPECIFIC_ERROR

Notify the service department and produce diagnostic report.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

Function declaration: Disable_UTM_UPIC

CM_ENTRY Disable_UTM_UPIC (unsigned char CM_PTR local_name,
 CM_INT32 CM_PTR local_name_length,
 CM_RETURN_CODE CM_PTR return_code)

 93

3.9.8 Enable_utm70_upic - Signing on to the UPIC carrier system

This call must be issued before other CPI-C calls are used. The (CMENAB) call enables a Enable_UTM_UPIC
program to sign on to the UPIC carrier system using its own name. The name serves to establish the
connection between the CPI-C program and the UTM application (see also section “Initialize_Conversation -

).Initializing the conversation characteristics”

In the , you can define a default name for the CPI-C application (LN.DEFAULT entry; see upicfile "Side

). If the CPI-C program is to connect to the UPIC carrier system with this default information for the local application"
name, it can specify an “empty local name” in the field. UPIC then searches in the for the LN.local_name upicfile

DEFAULT entry and uses the corresponding local application name to establish the connection to the UTM
application. Several CPI-C program runs can connect with the default name simultaneously and also establish
conversations to the same UTM service.

After the call has been executed successfully, the program is provided with an intact runtime Enable_UTM_UPIC
environment. After this call is issued, changes in the do not come into effect for the program until the upicfile

next call.Enable_UTM_UPIC

This function is not included in the CPI-C interface, but is one of the additional UPIC functions.

Syntax

CMENAB (local_name, local_name_length, return_code)

Parameters

--> local_name Name of the program.
The following specifications are possible (see also section “Side information for the local

):application”

with UPIC remote:

Local application name defined in the .upicfile

Name under which the program is known in CMX.

Any name, whose properties can still be modified using the following calls.Specify

Empty local application name.

The program then signs on to UPIC under the DEFAULT name of the CPI-C application,
provided that an LN.DEFAULT entry exists in the at the time of the call.upicfile

with UPIC local on Unix, Linux and Windows systems:

PTERM name by which the client is known in the configuration of the UTM application.

Local application name defined in the .upicfile

If an LTERM pool for the partner type UPIC-L (TPOOL with PTYPE=UPIC-L) exists in
the UTM partner application, you can specify any name of up to 8 characters for

.local_name

Empty local application name.
The prerequisite is that an LN.DEFAULT entry exists in the at the time of upicfile

the call.

 94

You can transfer an empty local application name by:

transferring 8 blanks in and setting =8local_name local_name_length

setting =0. local_name_length

If you transfer an empty application local name, UPIC takes the application name of the
LN.DEFAULT entry to establish the connection to the UTM partner application.

--
> local_name_length

Length of local_name

Minimum: 0, maximum: 8

If a local application name from the is entered in , then upicfile local_name
=8 must be specified.local_name_length

If you specify =0, the contents of the field will be ignored, local_name_length local_name
that is will be treated as an “empty local name”. An LN.DEFAULT entry must local_name
exist in the .upicfile

<-- return_code Result of the function call

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_STATE_CHECK

The program is already signed on to UPIC.

CM_PROGRAM_PARAMETER_CHECK

Possible causes:

the value of is less than 1 or greater than 8local_name_length

there is not enough internal memory available, or

an attempt to access the has failedupicfile

CM_PRODUCT_SPECIFIC_ERROR

Possible causes:

The UPIC instance could not be found

With UPIC local Unix, Linux and Windows systems only: the environment variable UTMPATH is not set

State change

If the return code is CM_OK, the program enters the “Reset” state. In all other cases, the program does not change
its state.

Notes

Several CPI-C program runs with the same name can connect to the UPIC carrier system simultaneously.

 95

A CPI-C program which has been started more than once can also connect to the same UTM application more
than once with the same name (e.g. the application name assigned to the DEFAULT name). For this purpose,
the UTM application must be configured as follows:

There must be no LTERM partner explicitly generated for this openUTM-Client, i.e. no PTERM with its name
and PTYPE=UPIC-R must exist for this system in the configuration of the UTM application.

An LTERM pool (TPOOL) with CONNECT-MODE=MULTI is generated for the system on which the client is
running. The CPI-C program can then connect to the UTM application under the same name as often as there
are LTERM partners available in the LTERM pool (the number is set by UTM administration).

with Unix, Linux and Windows systems only: To enable the CPI-C program to connect to the local UPIC local
UTM application, the environment variable UTMPATH must be set.In rare cases it can occur with local
communication that the function terminates with CM_PROGRAM_STATE_CHECK, even though shortly
beforehand was called and CM_OK returned. The cause is an incomplete disconnect within Disable_UTM_UPIC
the UTM application.

Behavior in the event of errors

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for internal buffers. Check whether the
memory requirement of your program is too high; if necessary, reboot your system.

With UPIC local Unix, Linux and Windows systems only: Set the UTMPATH environment variable and
restart the program.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

Increase the virtual memory if necessary.

Function declaration: Enable_UTM_UPIC

CM_ENTRY Enable_UTM_UPIC (unsigned char CM_PTR local_name,
 CM_INT32 CM_PTR local_name_length,
 CM_RETURN_CODE CM_PTR return_code)

 96

3.9.9 Extract_Client_Context - Querying the client context

The call provides the program with the client-specific context last sent by openUTM.Extract_Client_Context

The context is buffered by openUTM until the end of the conversation unless it is overwritten with a new context. If
the client requests a restart, the context last saved is transferred back to the client together with the last dialog
message.

The client context is not saved by openUTM unless the client is signed on with a UTM user ID with restart
functionality. This is a requirement for service restart.

The call is permitted in the "Send" and "Receive" state and in the "Reset" state directly after Extract_Client_Context
a / call.Receive Receive_Mapped_Data

Extract_Client_Context is not part of the CPI-C specification but is an additional function of the UPIC carrier system.

Syntax

CMECC (conversation_ID, buffer, requested_length, data_received, received_length,
return_code)

Parameters

--
> conversation_ID

Identifier of the conversation already initialized (is supplied by the call).Initialize

<-- buffer Buffer in which the data is received.
If the value of = 0, the content of is undefined.received_length buffer

--
> requested_length

Maximum length of the data that can be received.

<-- data_received Specifies whether the program has received the client context in full.

If the result () is not CM_OK, the value of is undefined.return_code data_received

The data_received variable can have one of the following values:

CM_COMPLETE_DATA_RECEIVED
The client context was received in full.

CM_INCOMPLETE_DATA_RECEIVED
The client context was not received in full by the program.

<-- received_length Length of the received data. If the value of = 0, no client context has been received_length
received. The value of is undefined if the result () is not received_length return_code
CM_OK.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK

 97

CM_PROGRAM_PARAMETER_CHECK

The value in is invalid or the value for is more than 32767 or less than conversation_ID requested_length
1.

The value in is invalid because the function was called more than once after the end of conversation_ID
the conversation or because no conversation existed (the call has not yet been Enable_UTM_UPIC
followed by an call).Initialize_Conversation

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

CM_PROGRAM_STATE_CHECK

The conversation is not in the "Reset", "Send" or "Receive" state.

Notes

If a message segment was received with one or more / calls (has Receive Receive_Mapped_Data data_received
the value CM_COMPLETE_DATA_RECEIVED), the and parameters are client_context client_context_length
reset in a subsequent / call.Receive Receive_Mapped_Data

The value in remains valid for this function call after the end of a conversation until an conversation_ID
 or an call has been made.Initialize_Conversation Extract_Client_Context

The internal buffer size is currently limited to 8 bytes.

openUTM currently always returns a client context with a length of 8 bytes. Consequently, if a valid client context
has been received from UPIC, the is 8. If a client context with a length of less than 8 bytes was received_length
sent to openUTM, the client context of openUTM is padded with binary zeros to a length of 8 bytes.

If the value for

requested_length is less than the length of the internally buffered , the buffer made available by the client_context
application program is completely filled and is set to CM_INCOMPLETE_DATA_RECEIVED. If data_received
another CMECC call is then immediately made with a sufficiently large value for (i.e. >= 8), the requested_length
buffer is read in full by such a call.

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for internal buffers. Check whether the memory
requirement of your program is too high and if necessary reboot your system.

Function declaration: Extract_Client_Context

CM_ENTRY Extract_Client_Context (
 unsigned char CM_PTR conversation_ID,

 98

 unsigned char CM_PTR buffer,
 CM_INT32 CM_PTR requested_length,
 CM_DATA_RECEIVED_TYPE CM_PTR data_received,
 CM_INT32 CM_PTR received_length,
 CM_RETURN_CODE CM_PTR return_code)

 99

3.9.10 Extract_Conversation_Encryption_Level - Querying encryption level

A program uses the (CMECEL) call to extract the encryption levels which Extract_Conversation_Encryption_Level
have been set up. The call is permitted in the following states: “Initialize”, Extract_Conversation_Encryption_Level
“Send” and “Receive”.

UPIC local on Unix, Linux and Windows systems: The data transfer is protected by the type of transfer being used.
The call is not supported.Extract_Conversation_Encryption_Level

This function belongs to the additional UPIC carrier system functions; it is not a component of the CPI-C interface.

Syntax

CMECEL (conversation_ID, encryption_level, return_code)

Parameters

--> conversation_ID Conversation identifier

<-- encryption_level the variable can have one of the following values:status_received

CM_ENC_LEVEL_NONE
The user data of the conversation is transferred in unencrypted form.

CM_ENC_LEVEL_3
The user data is encrypted before transfer using the AES algorithm. An RSA key with a key
length of 1024 bits is used for exchange of the AES key.

CM_ENC_LEVEL_4
The user data is encrypted before transfer using the AES algorithm. An RSA key with a key
length of 2048 bits is used for exchange of the AES key.

CM_ENC_LEVEL_5

The user data is encrypted before transfer using the AES algorithm. For the exchange of
the AES key, an ECDH algorithm with a key length of 2048 bits is used.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
The function is not supported. This return code only occurs for UPIC-L. This indicates to the program that
encryption is not necessary.

CM_PROGRAM_STATE_CHECK

The conversation is in either the “Start” or the “Reset” state.

CM_PROGRAM_PARAMETER_CHECK

 100

The value of is invalid.conversation_ID

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

CM_ENCRYPTION_NOT_SUPPORTED

Encryption is not available for this conversation for one of the following reasons:

the UTM partner application does not want encryption because the UPIC client is trusted.

the UPIC client cannot implement encryption because the encryption functionality is not available.

State change

The call does not alter the state of the conversation.

Notes

CMECEL can only ever supply the current value of the encryption level. The encryption level can always be
modified using a subsequent CPI-C call.

If several conversations are established with the same partner application (or in other words, the communication
connection is not set up and cleared down every time), the result of CMECEL will be CMINIT CM_OK after the
first call, but after all subsequent CMINIT calls it will be CM_ENCRYPTION_NOT_SUPPORTED. The UPIC
library only establishes the connection to the partner application after the first CMALLOC call and thus specifies
the encryption option.

Behavior in event of errors

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
This is not necessarily an error: If the application is intended for both UPIC-L and UPIC-R this return code
just means that the application is linked to a UPIC-L library. If this is the case, encryption is not
necessary. The program can take note of this return code and avoid making further calls requesting
encryption.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirement of your program is too high and if necessary reboot your system.

CM_ENCRYPTION_NOT_SUPPORTED

This is not necessarily an error: If a UPIC-R application is communicating with several UTM partners
some of which implement data encryption and some of which do not, then this return code just means
that the UTM application the current application is communicating with either cannot or does not wish to
implement encryption. In this case, encryption is not possible. The program can take note of this return
code and avoid making further calls requesting encryption.

 101

Function declaration: Extract_Conversation_Encryption_Level

Extract_Conversation_Encryption_Level (unsigned char CM_PTR conversation_ID,
 CM_ENCRYPTION_LEVEL CM_PTR encryption_level,
 CM_RETURN_CODE CM_PTR return_code)

 102

3.9.11 Extract_Conversation_State - Querying state of conversation

The call (CMECS) is used to provide the program with the current state of the Extract_Conversation_State
conversation.

Syntax

CMECS (conversation_ID, conversation_state, return_code)

Parameters

--> conversation_ID Conversation identifier

<-- conversation_state The variable can have one of the following values:conversation_state

CM_INITIALIZE_STATE

CM_SEND_STATE

CM_RECEIVE_STATE

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_PARAMETER_CHECK

The value of is invalid.conversation_ID

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

State change

The call does not change the state of the conversation.

Notes

If the return code is not CM_OK, the value for has no significance.conversation_state

For the states “Start” and “Reset”, there is never a valid .conversation_ID

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

 103

The operating system cannot provide sufficient memory for internal buffers. Check whether the memory
requirement of your program is too high and if necessary reboot your system.

Function declaration: Extract_Conversation_State

CM_ENTRY Extract_Conversation_State (unsigned char CM_PTR conversation_ID,
 CM_CONVERSATION_STATE CM_PTR conversation_state,
 CM_RETURN_CODE CM_PTR return_code)

 104

3.9.12 Extract_Convertion - Querying the value of the CHARACTER_CONVERTION
conversation characteristic

The (CMECNV) call provides the program with the current value of the Extract_Convertion
 conversation characteristic.CHARACTER_CONVERTION

This function is one of the additional functions of the UPIC carrier system; it is not a component of the CPI-C
interface.

The call is permitted only in the “Initialize” state.Extract_Convertion

Syntax

CMECNV (conversation_ID, character_convertion, return_code)

Parameters

--> conversation_ID Conversation identifier

<-- character_convertion The value specifies whether code conversion is carried out or not for the user ID.

The following values can be returned for .character_convertion

CM_NO_CHARACTER_CONVERTION
There is no automatic code conversion when data is sent or received.

CM_IMPLICIT_CHARACTER_CONVERTION
Data is automatically converted when sent or received (see also section “Code

).conversion”

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK

CM_PROGRAM_PARAMETER_CHECK

The value in conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Initialize” state.

State change

The call does not change the state of the conversation.

Note

If the return code is not CM_OK, the characteristic remains unchanged.CHARACTER_CONVERTION

 105

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK

Modify program

CM_PROGRAM_PARAMETER_CHECK

Modify program

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for internal buffers. Check whether the memory
requirement of your program is too high and if necessary reboot your system.

Function declaration: Extract_Convertion

CM_ENTRY Extract_Convertion(
 unsigned char CM_PTR conversation_ID,
 CM_CHARACTER_CONVERTION_TYPE CM_PTR convertion_type,
 CM_RETURN_CODE CM_PTR return_code)

 106

3.9.13 Extract_Cursor_Offset - Querying cursor position offset

The (CMECO) call provides the program with the last value for the cursor position, as sent Extract_Cursor_Offset
by openUTM to the client, as long as the cursor is set in the UTM program unit using KDCSCUR.

The call is only allowed in the states “Send” and “Receive” and in the “Reset” state after a Extract_Cursor_Offset
-/ call.Receive Receive_Mapped_Data

This function is not a component of the CPI-C specification, it is an additional function of the UPIC carrier system.

Syntax

CMECO(conversation_ID, cursor_offset, return_code)

Parameters

--> conversation_ID Conversation identifier

<-- cursor_offset Offset of the cursor position.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call was OK.

CM_PROGRAM_PARAMETER_CHECK

The value in is invalid. The value of is invalid because the function was conversation_ID conversation_ID
called more than once after terminating the conversation or because no conversation yet exists (after the

 call no has been issued).Enable_UTM_UPIC IInitialize_Conversation

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

CM_PROGRAM_STATE_CHECK

The conversation is not in one of the following states: “Reset”, “Receive” or “Send”.

State change

The call does not change the state of the conversation.

Notes

If the return code is not CM_OK, the value of has no significance.cursor_offset

The value for remains valid for this function call, even after terminating a conversation and conversation_ID
continues to be valid until or are called.Initialize_Conversation Extract_Cursor_Offset

A KDCSCUR call overwrites a previous KDCSCUR call in the UTM program unit.

If an invalid address is entered in KDCSCUR in the UTM program unit returns the value 0.Extract_Cursor_Offset

For a +format the address of the attribute field is given as the cursor position.

 107

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK

Modify program

CM_PROGRAM_PARAMETER_CHECK

Modify program

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirement of your program is too high and if necessary reboot your system.

Function declaration: Extract_Cursor_Offset

CM_ENTRY Extrac_Cursor_Offset (unsigned char CM_PTR conversation_ID,
 CM_INT32 CM_PTR cursor_offset,
 CM_RETURN_CODE CM_PTR return_code)

 108

3.9.14 Extract_Max_Partner_Index - Querying the maximum index of partner applications

Calling (CMEPIN) provides the program with the number of partner applications in the Extract_Max_Partner_Index
partner applications list, i.e. the highest index set with Set_Partner_Index()

This function is one of the additional functions of the UPIC carrier system; it is not part of the CPI-C interface.

UPIC-Local on Unix, Linux and Windows Systems:

The call is not supported for a connection using UPIC-L.Extract_Max_Partner_Index

Syntax

CMEPIN (conversation_ID, partner_index, return_code)

Parameter

--> conversation_ID Identification of the conversation

<-- partner_index Returns the maximum index for a list of partner applications.

Minimum: 1

<-- return_code Result of the function call

Result (return_code)

CM_OK

Call ok

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
The function is not supported. This return code only occurs with UPIC-L.

CM_PROGRAM_PARAMETER_CHECK

The value of the is invalid.conversation_ID

CM_PROGRAM_STATE_CHECK

The conversation is not in "Initialize” state.

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found or there is a memory bottleneck.

State change

The call does not change the state of the conversation.

Behavior in the event of errors

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
Normal behavior if the application is linked to a UPIC-L library.

 109

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for internal buffers. Check whether the memory
requirement of your program is too high and if necessary reboot your system.

Function declaration: Extract_Max_Partner_Index

CM_ENTRY Extract_Max_Partner_Index(unsigned char CM_PTR conversation_ID,
 CM_INT32 CM_PTR partner_index,
 CM_RETURN_CODE CM_PTR return_code)

 110

3.9.15 Extract_Partner_LU_Name - Querying partner_LU_Name

The call (CMEPLN) provides the program with the current of the Extract_Partner_LU_Name partner_LU_name
conversation.

This call belongs to the advanced functions.

Syntax

CMEPLN(conversation_ID, partner_LU_name, partner_LU_name_length, return_code)

Parameters

--> conversation_ID Conversation identifier

<-- partner_LU_name Returns the . The length of the parameter must be at least 32 partner_LU_name
bytes.

<-- partner_LU_name_length Specifies the length of the value returned in .partner_LU_name
Minimum: 1, maximum: 32.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_PARAMETER_CHECK

The value in is invalid.conversation_ID

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Initialize” state.

State change

The call does not change the state of the conversation.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program

CM_PRODUCT_SPECIFIC_ERROR

If the return code is not CM_OK, the value of has no significance.partner_LU_name!

 111

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirement of your program is too high and if necessary reboot your system.

CM_PROGRAM_STATE_CHECK

Modify program

Function declaration: Extract_Partner_LU_Name

CM_ENTRY Extract_Partner_LU_Name (unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR partner_LU_name,
 CM_INT32 CM_PTR partner_LU_name_length,
 CM_RETURN_CODE CM_PTR return_code)

 112

3.9.16 Extract_Partner_LU_Name_Ex - Querying full length partner_LU_Name

The call (CMEPLNX) provides the program with the current for Extract_Partner_LU_Name_Ex partner_LU_name
the conversation at full length.

This call is one of the advanced functions.

Note

The call returns names with a maximum length of 32 bytes.Extract_Partner_LU_Name

Syntax

CMEPLNX(conversation_ID, partner_LU_name, requested_length,partner_LU_name_length,
return_code)

Parameter

--> conversation_ID Identification of the conversation.

<-- partner_LU_name Returns the .partner_LU_name

--> requested_length Maximum length of that can be received.partner_LU_name

<-- partner_LU_name_length Specifies the length of the value supplied in . The value of partner_LU_name
 is undefined if the return code is different than CM_OK.partner_LU_name_length

Minimum: 1, Maximum: 73.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

Call OK

CM_PROGRAM_PARAMETER_CHECK

The value in is invalid or is not large enough to receive the conversation_ID requested_length
.partner_LU_name

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

CM_PROGRAM_STATE_CHECK

The conversation is not in “Initialize” state.

State change

The call does not change the state of the conversation.

Note

If the return code is different than CM_OK the value of has no meaning.partner_LU_name

 113

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for internal buffers. Check whether the memory
requirement of your program is too high and if necessary reboot your system.

CM_PROGRAM_STATE_CHECK

Modify program.

Function declaration: Extract_Partner_LU_Name_Ex

CM_ENTRY Extract_Partner_LU_Name_Ex (unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR partner_LU_name,
 CM_INT32 CM_PTR requested_length,
 CM_INT32 CM_PTR partner_LU_name_length,
 CM_RETURN_CODE CM_PTR return_code)

 114

3.9.17 Extract_Secondary_Information - Querying secondary information

The (CMESI) call provides the program with expanded information (secondary Extract_Secondary_Information
information) relating to the return code of the most recent CPI-C call.

Syntax

CMESI (conversation_ID, call_ID, buffer, requested_length, data_received, received_length,
return_code)

Parameters

--
> conversation_ID

Identifier for the started conversation (supplied by the call).Initialize

--> call_ID Specifies the function on which secondary information is required.

<-- buffer Buffer which receives the data. If the return code of is data_received
CM_NO_DATA_RECEIVED, the contents of are undefined.buffer

--
> requested_length

Maximum length of data that can be received

<-- data_received Specifies whether the program has completely received the secondary information. If the
result () is not CM_OK, the value of is undefined.return_code data_received

data_received can have one of the following values:

CM_COMPLETE_DATA_RECEIVED
The secondary information was received completely.

CM_INCOMPLETE_DATA_RECEIVED
The secondary information was incompletely received by the program.

<-- received_length Length of received data. The value of is undefined as long as the result (received_length
) does not have the value CM_OK.return_code

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK

CM_NO_SECONDARY_INFORMATION

There is no secondary information available for the call of the specified conversation.

CM_PROGRAM_PARAMETER_CHECK

The value of is invalid, the specifies CMESI or an invalid value, or the value of conversation_ID call_ID
 is greater than 32767 or less than 1.requested_length

CM_PRODUCT_SPECIFIC_ERROR

 115

The UPIC instance could not be found.

Notes

The program should make this call immediately after receiving a . Subsequent CPI-C calls can return_code
overwrite the secondary information. If there is no conversation, for example, if the library is in the “Reset” state,
then is ignored.conversation_ID

When the call is successfully terminated, the returned secondary information Extract_Secondary_Information
does not remain saved. The same information will no longer be available in a subsequent

 call.Extract_Secondary_Information

The program cannot use the call to extract secondary information from a previous
 call.Extract_Secondary_Information

The full complexity of this function is not implemented as laid down in the CPI-C specification. The simplifications
in comparison with CPI-C are as follows:

- The internal buffer is limited to a size of 1024 bytes.

- If the value of is less than the length of the secondary information saved internally, the requested_length
buffer made available by the application program is filled completely and is set to data_received
CM_INCOMPLETE_DATA_RECEIVED. It is not possible to obtain the remaining data using further CMESI
calls.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirement of your program is too high and if necessary reboot your system.

Function declaration: Extract_Secondary_Information

CM_ENTRY Extract_Secondary_Information (
 unsigned char CM_PTR conversation_ID,
 CM_INT32 CM_PTR call_ID,
 unsigned char CM_PTR buffer,
 CM_INT32 CM_PTR requested_length,
 CM_DATA_RECEIVED_TYPE CM_PTR data_received,
 CM_INT32 CM_PTR received_length,
 CM_RETURN_CODE CM_PTR return_code)

 116

3.9.18 Extract_Secondary_Return_Code - Querying secondary return codes

The (CMESRC) call provides the program with secondary return codes that relate Extract_Secondary_Return_Code
to the primary return code of the last CPI-C call.

This function is one of the additional functions of the UPIC carrier system; it is not a component of the CPI-C
interface.

Syntax

CMESRC (conversation_ID, call_ID, secondary_return_code, return_code)

Parameters

--> conversation_ID Identifier of the conversation already initialized (is supplied by the call).Initialize

--> call_ID Specifies the function whose secondary return code is to be output.

Supplies the secondary return code of the last CPI-C call. If the result is not
CM_OK, the value of is undefined.secondary_return_code

<-- secondary_return_code Returns the secondary return code of the last CPI-C call.
When is not CM_OK, ithe value of is undefined.return_code secondary_return_code

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK

CM_NO_SECONDARY_RETURN_CODE

There is no secondary return code for the call of the specified conversation.

CM_PROGRAM_PARAMETER_CHECK

The value in is invalid, the specifies CMESRC or an invalid value.conversation_ID call_ID

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

Secondary return code (secondary_return_code)

CM_SECURITY_USER_UNKNOWN

The specified user ID is not configureded.

CM_SECURITY_STA_OFF

The specified user ID is locked by configuration or administration.

The administrator of the UTM application can remove the lock.

CM_SECURITY_USER_IS_WORKING

 117

Somebody has already signed on to this UTM application with this user ID.

CM_SECURITY_OLD_PSWORD_WRONG

The old password entered is incorrect.

CM_SECURITY_NEW_PSWORD_WRONG

The new password information cannot be used. Possible cause: minimum period of validity not yet
expired.

Use the old password until its validity expires.

CM_SECURITY_NO_CARD_READER

The user is configured with a magnetic stripe card and cannot sign on via UPIC.

CM_SECURITY_CARD_INFO_WRONG

The user is configured with a chipcard and cannot sign on via UPIC.

CM_SECURITY_NO_RESOURCES

Sign-on is not possible at the moment. Possible cause:

a resource bottleneck, or

the maximum number of simultaneous users signed on has been reached (see KDCDEF statement
MAX CONN-USERS=), or

an inverse KDCDEF is running

Try again later.

CM_SECURITY_NO_KERBEROS_SUPPORT

The user is configuredwith a Kerberos principal and cannot sign on via UPIC.

CM_SECURITY_TAC_KEY_MISSING

The current LTERM is not authorized to resume the service.

CM_SECURITY_PWD_EXPIRED_NO_RETRY

The validity period of the user password has expired, the UTM application is configured with SIGNON
GRACE=NO.

The client user can no longer sign on. He or she must request the administrator of the UTM application to
issue a new password.

CM_SECURITY_COMPLEXITY_ERROR

The new password is not sufficiently complex. See KDCDEF control statement USER PROTECT-PW= .

CM_SECURITY_PASSWORD_TOO_SHORT

The new password is too short.
See KDCDEF control statement USER PROTECT-PW=.

CM_SECURITY_UPD_PSWORD_WRONG

 118

The password transferred by KDCUPD does not satisfy the complexity or minimum length requirement
defined in application configuration.
See KDCDEF control statement USER PROTECT-PW= .

The password must be changed by administration before the user can sign on again.

CM_SECURITY_TA_RECOVERY

A transaction restart is required for the specified user ID.

CM_SECURITY_PROTOCOL_CHANGED

The user has an open service that cannot be resumed from a UPIC client.

CM_SECURITY_SHUT_WARN

The application run is terminated, only users with administration authorization may still sign on.

Sign on is not possible until the UTM application has been restarted.

CM_SECURITY_ENC_LEVEL_TOO_HIGH

The encryption mechanism required to resume the open service is not available on the connection.

CM_SECURITY_PWD_EXPIRED_RETRY

The validity period of the user password has expired, the UTM application is cofigured with SIGNON
GRACE=YES.

The client can nevertheless sign on by entering a suitable new password in addition to the old password.

If the new password is the same as the old password, openUTM rejects sign-on. In this case, the
secondary return code set by UPIC is CM_SECURITY_NEW_PSWORD_WRONG .

The following secondary return codes only occur in the context of UTM cluster applications:

CM_SECURITY_USER_GLOBALLY_UNKNOWN

The specified user ID is not recognized in the cluster user file.

CM_SECURITY_USER_SIGNED_ON_OTHER_NODE

A user has already signed on to another node application with this user ID.

CM_SECURITY_TRANSIENT_ERROR

A temporary error occurred during signon. The cluster user file could not be accessed in the time
configured in the node application.

Try signing on again later.

Notes

The program should issue this call immediately after receipt of a return code. Subsequent CPI-C calls may
overwrite the secondary return code. The is ignored if no conversation exists, i.e. the library is in conversation_ID
the "Reset" state.

If the call terminates successfully, the secondary return code supplied is no Extract_Secondary_Return_Code
longer saved. The same return code is then no longer available in the next call.Extract_Secondary_Return_Code

 119

The program cannot use the call to obtain a secondary return code from a preceding
 call.Extract_Secondary_Return_Code

The secondary return code and associated description can be found in the individual UPIC calls.

State change

No state change.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for internal buffers. Check whether the memory
requirement of your program is too high and if necessary reboot your system.

Function declaration: Extract_Secondary_Return_Code

CM_ENTRY Extract_Secondary_Return_Code (
 unsigned char CM_PTR conversation_ID,
 CM_INT32 CM_PTR call_ID,
 CM_RETURN_CODE CM_PTR secondary_return_code,
 CM_RETURN_CODE CM_PTR return_code)

 120

3.9.19 Extract_Shutdown_State - Querying the shutdown state of the server

By issuing the (CMESHS) call, a program can obtain the current shutdown state of the Extract_Shutdown_State
UTM partner application.

The call is permitted in the "Send" and "Receive" states as well as in the "Reset" state Extract_Shutdown_State
immediately after a -/ call.Receive Receive_Mapped_Data

This function is not part of the CPI-C specification but an additional function of the UPIC carrier system.

Syntax

CMESHS (conversation_ID, shutdown_state, return_code)

Parameters

--
> conversation_ID

Identification of the conversation

<-- shutdown_state The value contains the shutdown state of the UTM partner application. The shutdown_state
variable can have one of the following values:

CM_SHUTDOWN_NONE:
The application has not initiated a shutdown.

CM_SHUTDOWN_WARN:
The application has initiated SHUTDOWN WARN.

CM_SHUTDOWN_GRACE:
The application has initiated SHUTDOWN GRACE.

<-- return_code Result of the function call

Result (return_code)

CM_OK

Call OK

CM_PROGRAM_PARAMETER_CHECK

The value in is invalid. conversation_ID
The value of is invalid because the function was called more than once after the end of conversation_ID
the conversation or because no conversation existed at the time (there was no call Initialize_Conversation
after the call).Enable_UTM_UPIC

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

State change

The call does not change the state of the conversation.

 121

Note

If the return code is different from CM_OK then the value of is of no significance.shutdown_state

After the end of the conversation, the value of remains valid for this function call until conversation_ID
 or is called.Initialize_Conversation Extract_Shutdown_State

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for internal buffers. Check whether the memory
requirement of your program is too high and if necessary reboot your system.

Function declaration: Extract_Shutdown_State

CM_ENTRY Extract_Shutdown_State(
 unsigned char CM_PTR conversation_ID,
 CM_SHUTDOWN_STATE CM_PTR shutdown_state,
 CM_RETURN_CODE CM_PTR return_code)

 122

3.9.20 Extract_Shutdown_Time - Query the shutdown time of the server

By issuing the (CMESHT) call, a program can obtain the current shutdown time of the Extract_Shutdown_Time
UTM partner application.

The shutdown time is returned in printable format of length and has the Universal Time received_length
Coordinated (UTC) time format. It still has to be converted to the time in the local time zone.

The call is permitted in the "Send" and "Receive" states as well as in the "Reset" state Extract_Shutdown_Time
immediately after a -/ call or after an call .Receive Receive_Mapped_Data Extract_Shutdown_State

This function is not part of the CPI-C specification but an additional function of the UPIC carrier system.

Syntax

CMESHT (conversation_ID, buffer, requested_length, data_received, received_length,
return_code)

Parameters

--
> conversation_ID

Identification of the conversation

<-- buffer Buffer in which the data is received. If the return value of is data_received
CM_NO_DATA_RECEIVED the content of is undefined.buffer

buffer returns the time at which the application is shut down. The individual bytes have the
following meanings:

Bytes 1 - 8: Date in the format yyyymmdd:

yyyy:Year, four-digit

mm: Month

dd: Day

Bytes 9 - 11

ddd: Day in year

Bytes 12 - 17: Time in the format hhmmss (UTC format):

hh: Hour

mm: Minute

ss: Second

--
> requested_length

Maximum length of the data that can be received.

<-- data_received Specifies whether the program has received all the data.

If the result () does not have one of the values CM_OK or return_code
CM_DEALLOCATED_NORMAL then the value of is undefined.data_received

 123

The variable can have the following values: data_received

CM_COMPLETE_DATA_RECEIVED
The data was received in full.

CM_INCOMPLETE_DATA_RECEIVED
The data was not received in full.

CM_NO_DATA_RECEIVED
No data was received.

<-- received_length Length of the received data. The value of is undefined if is not received_length return_code
equal to CM_OK.

<-- return_code Result of the function call

Result (return_code)

CM_OK

Call OK

CM_PROGRAM_PARAMETER_CHECK

The value in is invalid. conversation_ID
The value of is invalid because the function was called more than once after the end of conversation_ID
the conversation or because no conversation existed at the time (there was no call Initialize_Conversation
after the call). Alternatively, the value for is greater than 32767 or Enable_UTM_UPIC requested_length
smaller than 1.

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

Note

This function has not been implemented at its full level of complexity in accordance with the CPI-C specification.
The simplifications compared to CPI-C are as follows:

The internal buffer possesses a restricted size of 1024 bytes.

If the value of is smaller than the length of the internally stored extended information then requested_length
the buffer made available by the application program is completely filled and is set to data_received
CM_INCOMPLETE_DATA_RECEIVED. It is not possible to obtain the remaining data using further CMESHT
calls.

After the end of the conversation, the value of remains valid for this function call until conversation_ID
 or is called.Initialize_Conversation Extract_Shutdown_Time

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

 124

The operating system cannot provide sufficient memory for internal buffers. Check whether the memory
requirement of your program is too high and if necessary reboot your system.

Function declaration: Extract_Shutdown_Time

CM_ENTRY Extract_Shutdown_Time(
 unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR buffer,
 CM_INT32 CM_PTR requested_length,
 CM_DATA_RECEIVED_TYPE CM_PTR data_received,
 CM_INT32 CM_PTR received_length,
 CM_RETURN_CODE CM_PTR return_code)

 125

3.9.21 Extract_Transaction_State - Querying service and transaction state of the server

The call provides the program with the service and transaction state sent to the client by Extract_Transaction_State
openUTM.

The call is permitted only in the "Send" and "Receive" state and in the "Reset" state Extract_Transaction_State
directly after a / call.Receive Receive_Mapped_Data

This function is not a component of the CPI-C specification but is an additional function of the UPIC carrier system.

Syntax

CMETS (conversation_ID, transaction_state, requested_length, transaction_state_length,
return_code)

Parameters

--> conversation_ID Conversation identifier

<-- transaction_state Transaction and service state

--> requested_length Maximum length of the data that can be received

<-- transaction_state_length Length of the message received

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK

CM_PROGRAM_PARAMETER_CHECK

The value in is invalid. conversation_ID
The value in is invalid because the function was called more than once after the end of conversation_ID
the conversation or because no conversation existed (the call has not yet been Enable_UTM_UPIC
followed by an call).Initialize_Conversation

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

CM_PROGRAM_STATE_CHECK

The conversation is not in the "Reset", "Send" or "Receive" state.

State change

The call does not change the state of the conversation.

Notes

If the return code is not CM_OK, the value of has no significance.transaction_state

The value of remains valid for this function call after the end of a conversation until an conversation_ID
 or an call has been made.Initialize_Conversation Extract_Transaction_State

 126

If the value of is 0, no new was received.transaction_state_length transaction_state

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for internal buffers. Check whether the memory
requirement of your program is too high and if necessary reboot your system.

Description of transaction_state

The first two bytes of contain the information on the service and transaction state of the server transaction_state
and can be evaluated accordingly. The remaining bytes (dd dd) contain internal diagnostics information.

transaction_state
(hexadecimal)

Meaning

17 08 dd dd
18 08 dd dd

End of the processing step; the transaction is not completed, the service is still open (PEND
/PGWT KP).

15 06 dd dd
16 06 dd dd

End of the processing step; the transaction is completed, the service is still open (PEND RE
/PGWT CM).

1A 04 dd dd End of a service and end of the transaction (PEND FI).

30 04 dd dd End of a service with memory dump (PEND ER).

31 04 dd dd End of a service (system PEND ER, i.e. PEND ER by openUTM).

32 04 dd dd End of a service due to abnormal task termination (only openUTM on BS2000 systems).

20 04 dd dd
21 04 dd dd

Roll back of the first transaction of a service and end of the service
(PEND RS).

20 06 dd dd
21 06 dd dd

Roll back of a follow-up transaction to the last synchronization point; the service is still open
(PEND RS).

For further information on PEND and PGWT calls refer to the openUTM manual „Programming Applications with
KDCS”.

Function declaration: Extract_Transaction_State

CM_ENTRY Extract_Transaction_State(
 unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR transaction_state,
 CM_INT32 CM_PTR requested_length,
 CM_INT32 CM_PTR transaction_state_length,
 CM_RETURN_CODE CM_PTR return_code)

 127

 128

3.9.22 Initialize_Conversation - Initializing the conversation characteristics

The (CMINIT) call reads the entry specified by the symbolic destination name in the Initialize_Conversation
 and initializes the conversation characteristics. The characteristics , upicfile partner_LU_name

, , and are assigned corresponding values from the . All partner_LU_name_lth TP_name TP_name_length upicfile

other conversation characteristics are initialized with default values.

In addition to initializing the conversation characteristics, this call also specifies whether the user data will be
converted automatically from ASCII to EBCDIC (or vice versa) during the next or calls. Conversion Send Receive
takes place:

in Unix, Linux and Windows systems, if the identifier HD is placed before the symbolic destination name

in BS2000 systems, if the identifier SD is placed before the .symbolic destination name

For details see also ."Side information for standalone UTM applications"

The call returns an eight-character conversation_ID. This uniquely identifies the conversation and must be used in
all subsequent CPI-C calls to address the conversation.

It is possible to change the initial values of the conversation characteristics , , TP_name TP_name_length
 and at a later stage. The and receive_type deallocate_type Set_TP_Name, Set_Receive_Type

 calls are provided for this purpose. A value changed with a Set call is applicable until the end Set_Deallocate_Type
of the conversation or until a new Set call is issued.

The Set calls are not part of the CPI-C starter set, but are advanced-function calls.

Syntax

CMINIT (conversation_ID, sym_dest_name, return_code)

Parameters

<-- conversation_ID Identifier assigned to the conversation and returned to the program as a result parameter.

--
> sym_dest_name

If you use no , you must specify 8 blanks for (“emptyupicfile sym_dest_name
”). sym_dest_name

If you work with the , enter the reference to the side information (8-character upicfile

name). For you can also specify 8 blanks (“empty ”).sym_dest_name sym_dest_name
In this case the symbolic destination name .DEFAULT is sought in the side information (see

) and the corresponding values are set "Side information for standalone UTM applications"
for , , and partner_LU_name partner_LU_name_lth TP_name

. If you are working with the , you can specify 8 blanks for TP_name_length upicfile

 (“empty ”).sym_dest_name sym_dest_name

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_PARAMETER_CHECK

 129

The value of or (with) is invalid or the specified entry sym_dest_name local_name Enable_UTM_UPIC
in the could not be read or is syntactically invalid.upicfile

An attempt (if any) to sign on to or sign off from the transport interface was unsuccessful.

In or in (with) an empty name was specified but sym_dest_name local_name Enable_UTM_UPIC
there is no corresponding default entry in the or the default entry is invalid.upicfile

Error in the :upicfile

The CD or ND entries for the specified are not consecutive or the CD entries for the sym_dest_name
specified contain different TACs.sym_dest_name

CM_PRODUCT_SPECIFIC_ERROR

A conversation is already active for this program, or no call has been issued yet.Enable_UTM_UPIC

The transport interface did not respond as expected.

State change

If the return code is CM_OK, the program enters the “Initialize” state and the conversation characteristics are
initialized. Further details can be found in . In all other error conditions, “Conversation characteristics” (CPI-C terms)
the program does not change its state.

Notes

The call must be executed by the program before another call is issued for this Initialize_Conversation
conversation.

If the call or the subsequent Set calls of the program supply invalid information for Initialize_Conversation
establishing the conversation, errors of a syntactical kind are detected immediately but semantic errors are not
detected until the (CMALLC) call is executed.Allocate

Multiple programs can connect with the same name if CONNECT-MODE=MULTI is defined for the
corresponding TPOOL statement.

With a remote connection:

The function may sign the program on to the transport system (e.g.TCP/IP, PCMX, BCAM) using the name of
the preceding call. No signing on takes place if the program is already signed on with the Enable_UTM_UPIC
same name.

Any remaining connection to a partner (except for the partner in the) is shut down.upicfile

With a local connection (UPIC on Unix, Linux and Windows systems):

The function performs the sign-on to the UTM-internal process communication (with the UTM application
name from the) if the program is not yet signed on with the same name. If the program is still upicfile

signed on with a different name, it is first signed off from the UTM-internal process communication. An existing
conversation with this UTM application is hereby implicitly shut down. Only then is the program signed on with
the new name.

At sign-on to the UTM application, the of the UTM application is read. For this purpose the shell applifile
variable UTMPATH, which points to the corresponding UTM directory , is interpreted. This variable utmpath
must have been set.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

 130

Create the or set the environment variable or job variable UPICPATH to the correct values. upicfile

Check the BCMAP entry in BS2000 systems.

Enter the current in the or check the entry for for correct sym_dest_name upicfile sym_dest_name
syntax.

With a local connection on Unix, Linux and Windows systems: set the environment variable UTMPATH
to the correct values. It is also possible that there is no longer a semaphore available.

Modify the : Check and adjust the CD and ND entries, respectively.upicfile

CM_PRODUCT_SPECIFIC_ERROR

Modify the program or inform the service department and produce diagnostic report.

Function declaration: Initialize_Conversation

CM_ENTRY Initialize_Conversation (unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR sym_dest_name,
 CM_RETURN_CODE CM_PTR return_code)

 131

3.9.23 Prepare_To_Receive - Changing state from “Send” to “Receive”

The (CMPTR) call has the following effect:Prepare_To_Receive

All data which is still stored in the local send buffer at the time of the call is transferred to the UTM service
together with permission to send.

Once the data has been transferred from the send buffer to the UTM service, the conversation switches from the
“Send” state to the “Receive” state.

Prepare_To_Receive can only be called when the conversation is in the “Send” state, but not directly after the
 call or after receipt of permission to send from the partner. In these two exceptional cases, a or Allocate Send_Data

 call must be issued before the call.Send_Mapped_Data Prepare_To_Receive

After the call, a or call must be issued. Before the or Prepare_To_Receive Receive Receive_Mapped_Data Receive
 call, however, or may be called.Receive_Mapped_Data Set_Receive_Timer Set_Receive_Type

Syntax

CMPTR (conversation_ID, return_code)

Parameters

--> conversation_ID Identifier of the conversation

<-- return_code Result of the function call

Result (return_code)

CM_OK

The call is OK. The conversation has switched from the “Send” state to the “Receive” state.

CM_DEALLOCATED_ABEND

Possible causes:

abnormal termination of the UTM service

termination of the UTM application

connection shutdown by UTM administration

connection shutdown by the transport system

Connection shutdown by openUTM because the maximum permitted number of users (MAX
statement, CONN-USERS=) has been exceeded. This may also occur if an administrator user was
transferred in the call. This is the case if a user ID that has no Set_Conversation_Security_User_ID
administration authorization is assigned to the LTERM partner of the CPI-C program in the UTM
application (via LTERM ...USER=).

The program enters the “Reset” state.

CM_PRODUCT_SPECIFIC_ERROR

Possible causes:

The UPIC instance could not be found.

 132

The call was issued immediately after an call instead of a or Prepare_To_Receive Allocate Send_Data
 call.Send_Mapped_Data

CM_PROGRAM_STATE_CHECK

The call is not permitted in the current state of the conversation.

CM_PROGRAM_PARAMETER_CHECK

The value of is invalid.conversation_ID

CM_RESOURCE_FAILURE_NO_RETRY

An error has occurred which led to a premature termination of the conversation (e.g. a protocol error or a
premature loss of the network connection). The program enters the “Reset” state.

State change

If the result of the call is CM_OK, the state of the conversation changes from “Send” to “Receive”.

With the following results, the program enters the “Reset” state:
CM_DEALLOCATED_ABEND
CM_RESOURCE_FAILURE_NO_RETRY

In all other error conditions, the program does not change its state.

Behavior in the event of errors

CM_PRODUCT_SPECIFIC_ERROR

Modify program.

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirement of your program is too high and if necessary reboot your system.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_RESOURCE_FAILURE_NO_RETRY

Inform the service department and produce a diagnostic report. A fault in the transport system could also
be the reason for this error code.

Function declaration: Prepare_To_Receive

CM_ENTRY Prepare_To_Receive (unsigned char CM_PTR conversation_ID,
 CM_RETURN_CODE CM_PTR return_code)

 133

3.9.24 Receive - Receiving data from a UTM service

A program uses the (CMRCV) call to receive information from a UTM service.Receive

The call can be executed with or without blocking.

The call is “blocking” when the characteristic has the value CM_RECEIVE_AND_WAIT. If Receive receive_type
no information (data or permission to send) is present at the time of the call, the program run waits in Receive
the until information is available for this conversation. Only then does the program run return from the Receive

 call and bring back the information. If there is information available at the time of the call, the program Receive
receives it without waiting.

To limit the wait time for a blocking call, appropriate timers should be set in the UTM partner application.Receive

The call is “non-blocking” when the characteristic has the value Receive receive_type
CM_RECEIVE_IMMEDIATE. If no information is present at the time of the call, the program run Receive does not
wait until information for this conversation arrives. The program run returns from the call immediately. If Receive
there is already information available, it is transferred to the program.

UPIC local on Unix, Linux and Windows systems:Local connection via UPIC local does not support the non-
blocking call.Receive

You can set the characteristic with the call before the call. After a receive_type Set_Receive_Type Receive
conversation has been initialized, the blocking receive is set by default.

Syntax

CMRCV (conversation_ID, buffer, requested_length, data_received, received_length,
status_received, control_information_received, return_code)

Parameters

--> conversation_ID Identifier of the conversation.

<-- buffer Buffer in which the data is received. If the return value of is data_received
CM_NO_DATA_RECEIVED, the contents of are undefined.buffer

--> requested_length Maximum length of data that can be received.

<-- data_received Specifies whether the program has received data.

If the result () is neither CM_OK nor return_code
CM_DEALLOCATED_NORMAL, the value of is undefined.data_received

data_received can have one of the following values:

CM_NO_DATA_RECEIVED

No data was available for the program. Permission to send may have been
received.

CM_COMPLETE_DATA_RECEIVED

A complete message available for the program was received.

CM_INCOMPLETE_DATA_RECEIVED

 134

A message was not transferred in full to the program. If has this data_received
value, the program must issue repeated calls until the message is Receive
received in its entirety, i.e. until has the value data_received
CM_COMPLETE_DATA_RECEIVED.

<-- received_length Length of the data received. If the program has not received data (
=CM_NO_DATA_RECEIVED) or if the result is not CM_OK or data_received

CM_DEALLOCATE_NORMAL, the value of is undefined.received_length

<-- status_received Specifies whether the program received permission to send.

status_received can have one of the following values:

CM_NO_STATUS_RECEIVED
Permission to send was not received.

CM_SEND_RECEIVED
The UTM service has passed permission to send to the program.
The program must then issue a call.Send_Data

Unless the return code is CM_OK, the value of is undefined.status_received

<-- control_information_received This is only supported syntactically and always has the value
CM_REQ_TO_SEND_NOT_RECEIVED.

If the return code is not CM_OK or CM_DEALLOCATE_NORMAL, the value of
 is undefined.control_information_received

<-- return_code Result of the function call.

Result (return_code)

CM_OK

If the return code is CM_OK, the program has one of the following states after function call:
“Receive”, if the value of is CM_NO_STATUS_RECEIVED.status_received

“Send”, if the value of is CM_SEND_RECEIVED.status_received

CM_SECURITY_NOT_VALID

Possible causes:

an invalid UTM user ID in the callSet_Conversation_Security_User_ID

an invalid password in the callSet_Conversation_Security_Password

the UTM application was configured without USER

the user cannot sign on to the UTM application due to a resource bottleneck

If the UPIC application communicates with an openUTM application that returns a detailed result of the
authorization check, the UPIC library supplies a secondary return code that describes the cause in detail.
The results received by the program are listed under , see secondary_return_code "Receive - Receiving

.data from a UTM service"

The secondary return codes can also be queried using the call, see Extract_Secondary_Return_Code
."Extract_Secondary_Return_Code - Querying secondary return codes"

 135

CM_TPN_NOT_RECOGNIZED

Possible causes:

invalid transaction code (TAC) in the or in the call, e.g.:upicfile Set_TP_Name

the TAC is not configured

you are not authorized to call this TAC

the TAC is permitted only as a follow-up TAC

the TAC is not a dialog TAC

TAC is configured with encryption, but user data is sent without implementing encryption, or
encryption is not supported for the connection, or the encrypted data does not have the required
encryption level.

a service restart with KDCDISP was rejected as no UTM user ID configured with RESTART=YES was specified

CM_TP_NOT_AVAILABLE_NO_RETRY

A service restart with KDCDISP is not possible as the UTM application has been re-configured.

CM_TP_NOT_AVAILABLE_RETRY

A service restart was rejected as the UTM application has been terminated.

CM_DEALLOCATED_ABEND

Possible causes:

abnormal termination of the UTM service

termination of the UTM application

connection shutdown by UTM administration

connection shutdown by the transport system

connection shutdown by UTM because the maximum permitted number of users (MAX statement,
CONN-USERS=) has been exceeded. This may also occur if an administrator user was transferred in
the call but the user ID implicitly assigned to the connection by Set_Conversation_Security_User_ID
UTM configuration or the (connection) user ID explicitly assigned using the statement LTERM...,
USER= is not an administrator user (CONN-USERS applies only for users without administration
authorization).

The program enters the “Reset” state.

CM_DEALLOCATED_NORMAL

A PEND-FI call was executed in the UTM service. The program enters the state “Reset”.

CM_RESOURCE_FAILURE_RETRY

A temporary resource bottleneck led to termination of the conversation. It may not be possible to buffer
any further data in the UTM page pool. If the error recurs, the page pool of the UTM application should be
enlarged (MAX statement, PGPOOL=).

CM_RESOURCE_FAILURE_NO_RETRY

An error occurred which led to premature termination of the conversation (e.g. protocol error or premature
loss of network connection).

 136

CM_PROGRAM_STATE_CHECK

The call is not permitted in the current state. The contents of all other variables are undefined.

CM_PROGRAM_PARAMETER_CHECK

The is invalid or the value in is greater than 32767 or less than 0. The conversation_ID requested_length
contents of all other variables are undefined.

CM_PRODUCT_SPECIFIC_ERROR

A call was issued instead of a call (only directly after an call).Receive Send_Data Allocate

CM_OPERATION_INCOMPLETE

The call was interrupted by the expiry of the timer that was set with . No data Receive Set_Receive_Timer
was received.

CM_UNSUCCESSFUL

receive_type has the value CM_RECEIVE_IMMEDIATE and there is currently no data available for the
conversation.

Secondary return code (secondary_return_code)

CM_SECURITY_USER_UNKNOWN

The specified user ID is not configured.

CM_SECURITY_STA_OFF

The specified user ID is locked.

CM_SECURITY_USER_IS_WORKING

Another user is already signed on with this user ID.

CM_SECURITY_OLD_PSWORD_WRONG

The old password entered is incorrect.

CM_SECURITY_NEW_PSWORD_WRONG

The new password information cannot be used. Possible cause: minimum period of validity not yet
expired.

CM_SECURITY_NO_CARD_READER

The user is configured with a magnetic stripe card and cannot sign on via UPIC.

CM_SECURITY_CARD_INFO_WRONG

The user is configured with a chipcard and cannot sign on via UPIC.

CM_SECURITY_NO_RESOURCES

Sign-on is not possible at the moment. Possible cause:

a resource bottleneck, or

the maximum number of simultaneous users signed on has been reached(see KDCDEF statement
MAX CONN-USERS=), or

 137

an inverse KDCDEF is running

Try again later.

CM_SECURITY_NO_KERBEROS_SUPPORT

The user is configured with a Kerberos principal and cannot sign on via UPIC.

CM_SECURITY_TAC_KEY_MISSING

The current LTERM is not authorized to resume the service.

CM_SECURITY_PWD_EXPIRED_NO_RETRY

The validity period of the user password has expired.

CM_SECURITY_COMPLEXITY_ERROR

The new password is not sufficiently complex.

CM_SECURITY_PASSWORD_TOO_SHORT

The new password is too short.

CM_SECURITY_UPD_PSWORD_WRONG

The password transfered by KDCUPD does not satisfy the complexity or minimum length requirement
defined in application configuration.

CM_SECURITY_TA_RECOVERY

A transaction restart is required for the specified user ID.

CM_SECURITY_PROTOCOL_CHANGED

The open sevice cannot be resumed from this LTERM partner.

CM_SECURITY_SHUT_WARN

The administrator has issued a SHUT WARN. Normal users may no longer sign on to the UTM
application, only the administrator may still sign on.

CM_SECURITY_ENC_LEVEL_TOO_HIGH

The encryption mechanism required to resume the open service is not available on the connection.

CM_SECURITY_PWD_EXPIRED_RETRY

The validity period of the user password has expired.

The following secondary return codes only occur in the context of UTM cluster applications:

CM_SECURITY_USER_GLOBALLY_UNKNOWN

The specified user ID is not recognized in the cluster user file.

CM_SECURITY_USER_SIGNED_ON_OTHER_NODE

A user has already signed on to another node application with this user ID.

CM_SECURITY_TRANSIENT_ERROR

 138

A temporary error occurred during signon. The cluster user file could not be accessed in the time
configured in the node application.

Try signing on again later.

State change

If the return code is CM_OK, the program has one of the following states after function call:

“Receive” if the value of is CM_NO_STATUS_RECEIVED.status_received

“Send” if the value of is CM_SEND_RECEIVED.status_received

With the following return codes, the program enters the “Reset” state:

CM_DEALLOCATED_ABEND
CM_DEALLOCATED_NORMAL
CM_SECURITY_NOT_VALID
CM_TPN_NOT_RECOGNIZED
CM_TPN_NOT_AVAILABLE_RETRY/NO_RETRY
CM_RESOURCE_FAILURE_RETRY/NO_RETRY
CM_SECURITY_USER_UNKNOWN
CM_SECURITY_STA_OFF
CM_SECURITY_USER_IS_WORKING
CM_SECURITY_OLD_PSWORD_WRONG
CM_SECURITY_NEW_PSWORD_WRONG
CM_SECURITY_NO_CARD_READER
CM_SECURITY_CARD_INFO_WRONG
CM_SECURITY_NO_RESOURCES
CM_SECURITY_NO_KERBEROS_SUPPORT
CM_SECURITY_TAC_KEY_MISSING
CM_SECURITY_PWD_EXPIRED_NO_RETRY
CM_SECURITY_COMPLEXITY_ERROR
CM_SECURITY_PASSWORD_TOO_SHORT
CM_SECURITY_UPD_PSWORD_WRONG
CM_SECURITY_TA_RECOVERY
CM_SECURITY_PROTOCOL_CHANGED
CM_SECURITY_SHUT_WARN
CM_SECURITY_ENC_LEVEL_TOO_HIGH
CM_SECURITY_PWD_EXPIRED_RETRY
CM_SECURITY_PWD_EXPIRED_RETRY
CM_SECURITY_USER_GLOBALLY_UNKNOWN
CM_SECURITY_USER_SIGNED_ON_OTHER_NODE
CM_SECURITY_TRANSIENT_ERROR

In all other error conditions, the program does not change its state.

Notes

If a maximum wait time was set with the call before a blocking call, the program run Set_Receive_Timer Receive
returns from the call at the latest once the wait time has expired, and the call then returns the Receive Receive
result (CM_OPERATION_INCOMPLETE.return_code)

 139

With a call, a program can only receive the amount of data specified in the parameter. Receive requested_length
It is therefore possible that a message is only partially received with the call. The Receive data_received
parameter indicates as shown below whether a complete message available for the program was received:

If the program has already received the complete message, the parameter has the value data_received
CM_COMPLETE_DATA_RECEIVED.

If the program has not yet received all data of the message, the parameter has the value data_received
CM_INCOMPLETE_DATA_RECEIVED. The program must then continue to call until has Receive data_received
the value CM_COMPLETE_DATA_RECEIVED.

A program can use a single call to receive both data and permission to send. The , , return_code data_received
and parameters supply details on the kind of information received by a program.status_received

If the program issues the call in the “Send” state, permission to send is passed to the UTM service. The Receive
send direction of the conversation is thus changed.

A call with = 0 has no special meaning. If data is available, it is received in the length Receive requested_length
0 and = CM_INCOMPLETE_DATA_RECEIVED. If no data is available, permission to send can be data_received
received. This means that either data or permission to send can be received, but not both.

If the UTM partner application transfers a format identifier (structure information concerning the transferred file),
this will be received by UPIC (no error occurs in the UTM service), but it cannot be passed on to the program.
Data together with format IDs can only be read with .Receive_Mapped_Data

Behavior in the event of errors

CM_RESOURCE_FAILURE_RETRY

Re-establish conversation.

CM_RESOURCE_FAILURE_NO_RETRY

Notify the service department and produce diagnostic report.
A fault in the transport system can also cause this return code.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

Modify program.

CM_SECURITY_USER_UNKNOWN

The UTM user ID is not configured. Use a user ID that is configured or create or dynamically configure
the user ID you want.

CM_SECURITY_STA_OFF

Configure the user ID with STATUS=ON or unlock it using administration facilities.

CM_SECURITY_USER_IS_WORKING

Use another UTM user ID or terminate the service of the user already signed on.

 140

CM_SECURITY_OLD_PSWORD_WRONG

Enter the password correctly.

CM_SECURITY_NEW_PSWORD_WRONG

Use the old password until its validity expires.

CM_SECURITY_NO_CARD_READER

The user is configured with a magnetic stripe card and cannot sign on via UPIC.

CM_SECURITY_CARD_INFO_WRONG

The user is configured with a chipcard.

CM_SECURITY_NO_RESOURCES

Try again later.

CM_SECURITY_NO_KERBEROS_SUPPORT

The user is configured with a Kerberos principal and cannot sign on via UPIC.

CM_SECURITY_TAC_KEY_MISSING

Configuration or modify program.

CM_SECURITY_PWD_EXPIRED_NO_RETRY

The validity period of the password has expired. The password must be changed using administration
facilities before the user can sign on again.

CM_SECURITY_COMPLEXITY_ERROR

Select a new password that satisfies the requirements of the configured complexity level, see KDCDEF
statement USER PROTECT-PW=.

CM_SECURITY_PASSWORD_TOO_SHORT

Select a longer password or change configuration, see KDCDEF statement USER PROTECT-PW= length
, ... (value for the minimum length).

CM_SECURITY_UPD_PSWORD_WRONG

The password is not sufficiently complex or is too short, see KDCDEF statement USER PROTECT-PW=.
The password must be changed using administration facilities before the user can sign on again.

CM_SECURITY_TA_RECOVERY

A transaction restart is required for the specified user ID.

CM_SECURITY_PROTOCOL_CHANGED

The user has an open service that cannot be resumed from a UPIC client.

CM_SECURITY_SHUT_WARN

The UTM application is terminated; only users with administration authorization may sign on. Wait until
the application has been restarted.

CM_SECURITY_ENC_LEVEL_TOO_HIGH

 141

The encryption mechanism required to resume the open service is not available on the connection.

CM_SECURITY_PWD_EXPIRED_RETRY

Repeat initiation of the conversation specifying the old password and the new password.

The following secondary return codes only occur in the context of UTM cluster applications:

CM_SECURITY_USER_GLOBALLY_UNKNOWN

The specified user ID is not recognized in the cluster user file.

CM_SECURITY_USER_SIGNED_ON_OTHER_NODE

A user has already signed on to another node application with this user ID.

CM_SECURITY_TRANSIENT_ERROR

A temporary error occurred during signon. The cluster user file could not be accessed in the time
configured in the node application.

Try signing on again later.

Function declaration: Receive

CM_ENTRY Receive (unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR buffer,
 CM_INT32 CM_PTR requested_length,
 CM_DATA_RECEIVED_TYPE CM_PTR data_received,
 CM_INT32 CM_PTR received_length,
 CM_STATUS_RECEIVED CM_PTR status_received,
 CM_CONTROL_INFORMATION_RECEIVED CM_PTR control_information_received,
 CM_RETURN_CODE CM_PTR return_code)

 142

3.9.25 Receive_Mapped_Data - Receiving data and format identifier from a UTM service

A program uses the (CMRCVM) call to receive information from a UTM service. The Receive_Mapped_Data
information received can be either data, a format identifier and/or permission to send.

The call can be executed with or without blocking.

The call is “blocking” when the characteristic has the value Receive_Mapped_Data receive_type
CM_RECEIVE_AND_WAIT.
If no information (data or permission to send) is present at the time of the call, the Receive_Mapped_Data
program run waits in until information is available for this conversation. Only then does Receive_Mapped_Data
the program run return from the call and bring back the information. If there is Receive_Mapped_Data
information available at the time of the call, the program receives it without waiting.

To limit the wait time for a blocking call, appropriate timers should be set in the UTM Receive_Mapped_Data
partner application.

The call is “non-blocking” when the characteristic has the value Receive_Mapped_Data receive_type
CM_RECEIVE_IMMEDIATE.
If no information is present at the time of the call, the program run wait until Receive_Mapped_Data does not
information for this conversation arrives. The program run returns from the call Receive_Mapped_Data
immediately. If there is already information available, it is transferred to the program.

You can set the characteristic with the call before the call.receive_type Set_Receive_Type Receive_Mapped_Data

Syntax

CMRCVM (conversation_ID, map_name, map_name_length, buffer, requested_length, data_received,
received_length, status_received, control_information_received, return_code)

Parameters

--> conversation_ID Identifier of the conversation.

<-- map_name Format identifier sent to the CPI-C program by the UTM partner application
together with the data. The format identifier specifies the structure information
for the received data.

<-- map_name_length Length of the format identifier in map_name.

<-- buffer Buffer in which the data is received. If the return value of is data_received
CM_NO_DATA_RECEIVED, the contents of are undefined.buffer

--> requested_length Maximum length of data that can be received.

<-- data_received Specifies whether data was received in the conversation.

data_received can have one of the following values:

CM_NO_DATA_RECEIVED
No data was available for the program. Permission to send may have been
received.

CM_COMPLETE_DATA_RECEIVED
A complete message available for the program was received.

 143

CM_INCOMPLETE_DATA_RECEIVED
A message was not transferred in full to the program. If has this data_received
value, the program must issue repeated or Receive Receive_Mapped_Data
calls until the message is received in its entirety, i.e. until has data_received
the value CM_COMPLETE_DATA_RECEIVED.
The value of is undefined if the result of the call is not CM_OK data_received
or CM_DEALLOCATED_NORMAL.

<-- received_length Length of the data received. If the program has not received data (
=CM_NO_DATA_RECEIVED) or if the result is not CM_OK or data_received

CM_DEALLOCATE_NORMAL, the value of is undefined.received_length

<-- status_received Specifies whether the program received permission to send.

status_received can have one of the following values:

CM_NO_STATUS_RECEIVED
Permission to send was not received.

CM_SEND_RECEIVED
The UTM service has passed permission to send to the program.
The program must then issue a call.Send_Data

Unless the return code is CM_OK, the value of is undefined.status_received

<-- control_information_received This is only supported syntactically and always has the value
CM_REQ_TO_SEND_NOT_RECEIVED.

If the return code is not CM_OK or CM_DEALLOCATE_NORMAL, the value of
 is undefined.control_information_received

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK. The program has one of the following states after function call:

“Receive”, if the value of is CM_NO_STATUS_RECEIVED.status_received

“Send”, if the value of is CM_SEND_RECEIVED. status_received

CM_SECURITY_NOT_VALID

Possible causes:

an invalid UTM user ID in the callSet_Conversation_Security_User_ID

an invalid password in the callSet_Conversation_Security_Password

the UTM application was configured without user IDs (USER statements).

the user cannot sign on to the UTM application due to a resource bottleneck.

 144

If the UPIC application communicates with an openUTM application that returns a detailed result of the
authorization check, the UPIC library supplies a secondary return code that describes the cause in detail.
The results received by the program are listed under , see secondary_return_code

."Receive_Mapped_Data - Receiving data and format identifier from a UTM service"

The secondary return codes can also be queried using the call, see Extract_Secondary_Return_Code
."Extract_Secondary_Return_Code - Querying secondary return codes"

CM_TPN_NOT_RECOGNIZED

Possible causes:

a service restart with KDCDISP was rejected as no UTM user ID configured with RESTART=YES was
specified.

an invalid transaction code (TAC) in the or in the call, e.g.:upicfile Set_TP_Name

the TAC is not configured

you are not authorized to call this TAC

the TAC is permitted only as a follow-up TAC

the TAC is not a dialog TAC

The TAC is configured with encryption but user data was sent without encryption, or encryption is
not supported for the connection, or the
encrypted data does not have the required encryption level.

Service restart using KDCDISP was rejected because no UTM user ID configured with RESTART=YES was
specified.

CM_TP_NOT_AVAILABLE_NO_RETRY

A service restart with KDCDISP is not possible as the UTM application has been re-configured.

CM_TP_NOT_AVAILABLE_RETRY

A service restart was rejected as the UTM application has been terminated.

CM_DEALLOCATED_ABEND

Possible causes:

abnormal termination of the UTM service

termination of the UTM application

connection shutdown by UTM administration

connection shutdown by the transport system

connection shutdown by UTM because the maximum permitted number of users (MAX statement,
CONN-USERS=) has been exceeded. This may also occur if an administrator user was transferred in
the call but the user ID implicitly assigned to the connection by Set_Conversation_Security_User_ID
UTM configuration or the (connection) user ID explicitly assigned using the statement LTERM...,
USER= is not an administrator user (CONN-USERS applies only for users without administration
authorization).

The program enters the “Reset” state.

CM_DEALLOCATED_NORMAL

 145

A PEND-FI call was executed in the UTM service. The program enters the “Reset” state.

CM_OPERATION_INCOMPLETE

The call was interrupted by the expiry of the timer that was set with Receive_Mapped_Data
. No data was received.Set_Receive_Timer

CM_UNSUCCESSFUL

The characteristic has the value CM_RECEIVE_IMMEDIATE and there is currently no data receive_type
available for the conversation.

CM_RESOURCE_FAILURE_RETRY

A temporary resource bottleneck led to termination of the conversation. It may not be possible to buffer
any further data in the UTM page pool.

Remedy: enlarge the UTM page pool (MAX statement, PGPOOL=).

CM_RESOURCE_FAILURE_NO_RETRY

An error occurred which led to premature termination of the conversation (e.g. protocol error or premature
loss of network connection).

CM_PROGRAM_STATE_CHECK

The call is not permitted in the current state. The contents of all other variables are undefined.

CM_PROGRAM_PARAMETER_CHECK

The is invalid or the value in is greater than 32767 or less than 0. The conversation_ID requested_length
contents of all other variables are undefined.

CM_PRODUCT_SPECIFIC_ERROR

A call was issued instead of a call (only directly after an call).Receive Send_Data Allocate

CM_MAP_ROUTINE_ERROR

In the UTM partner application no format identifiers are supported in the UPIC protocol.

Secondary return code (secondary_return_code)

CM_SECURITY_USER_UNKNOWN

The specified user ID is not configured.

CM_SECURITY_STA_OFF

The specified user ID is locked.

CM_SECURITY_USER_IS_WORKING

Another user is already signed on with this user ID.

CM_SECURITY_OLD_PSWORD_WRONG

The old password entered is incorrect.

CM_SECURITY_NEW_PSWORD_WRONG

 146

The new password information cannot be used. Possible cause: minimum period of validity not yet
expired.

CM_SECURITY_NO_CARD_READER

The user is configured with a magnetic stripe card and cannot sign on via UPIC.

CM_SECURITY_CARD_INFO_WRONG

The user is configured with a chipcard and cannot sign on via UPIC.

CM_SECURITY_NO_RESOURCES

Sign-on is not possible at the moment. Possible cause:

a resource bottleneck, or

the maximum number of simultaneous users signed on has been reached (see KDCDEF statement
MAX CONN-USERS=), or

an inverse KDCDEF is running.

Try again later.

CM_SECURITY_NO_KERBEROS_SUPPORT

The user is configured with a Kerberos principal and cannot sign on via UPIC.

CM_SECURITY_TAC_KEY_MISSING

The current LTERM is not authorized to resume the service.

CM_SECURITY_PWD_EXPIRED_NO_RETRY

The validity period of the user password has expired.

CM_SECURITY_COMPLEXITY_ERROR

The new password is not sufficiently complex.

CM_SECURITY_PASSWORD_TOO_SHORT

The new password is too short.

CM_SECURITY_UPD_PSWORD_WRONG

The password transferred by KDCUPD does not satisfy the complexity or minimum length requirement
defined in application configuration.

CM_SECURITY_TA_RECOVERY

A transaction restart is required for the specified user ID.

CM_SECURITY_PROTOCOL_CHANGED

The open service cannot be resumed from this LTERM partner.

CM_SECURITY_SHUT_WARN

The administrator has issued a SHUT WARN. Normal users may no longer sign on to the UTM
application, only the administrator may still sign on.

CM_SECURITY_ENC_LEVEL_TOO_HIGH

 147

The encryption mechanism required to resume the open service is not available on the connection.

CM_SECURITY_PWD_EXPIRED_RETRY

The validity period of the user password has expired.

The following secondary return codes only occur in the context of UTM cluster applications:

CM_SECURITY_USER_GLOBALLY_UNKNOWN

The specified user ID is not recognized in the cluster user file.

CM_SECURITY_USER_SIGNED_ON_OTHER_NODE

A user has already signed on to another node application with this user ID.

CM_SECURITY_TRANSIENT_ERROR

A temporary error occurred during signon. The cluster user file could not be accessed in the time
configured in the node application.

Try signing on again later.

State change

If the return code is CM_OK, the program has one of the following states after function call:

“Receive” if the value of is CM_NO_STATUS_RECEIVED.status_received

“Send” if the value of is CM_SEND_RECEIVED.status_received

With the following return codes, the program enters the “Reset” state:
CM_DEALLOCATED_ABEND
CM_DEALLOCATED_NORMAL
CM_SECURITY_NOT_VALID
CM_TPN_NOT_RECOGNIZED
CM_TP_NOT_AVAILABLE_RETRY/NO_RETRY
CM_RESOURCE_FAILURE_RETRY/NO_RETRY

In all other error conditions, the program does not change its state.

Notes

With a call, a program can only receive the amount of data specified in the Receive_Mapped_Data
 parameter. It is therefore possible that the program has not read the complete message sent requested_length

by the partner. The parameter indicates as shown below whether there is still more message data data_received
to be read.

If the program has already received the complete message, the parameter has the value data_received
CM_COMPLETE_DATA_RECEIVED.

If the program has not yet received all data of the message, the parameter has the value data_received
CM_INCOMPLETE_DATA_RECEIVED. The program must then continue to call or Receive_Mapped_Data

 until has the value CM_COMPLETE_DATA_RECEIVEDReceive data_received

If a maximum wait time was set with the call before a blocking call, Set_Receive_Timer Receive_Mapped_Data
the program run returns from the call at the latest once the wait time has expired, and Receive_Mapped_Data
the call then returns the result (CM_OPERATION_INCOMPLETE.Receive_Mapped_Data return_code)

 148

A program can use a single call to receive both data and permission to send. The , , return_code data_received
and parameters supply details on the kind of information received by a program.status_received

If the program issues the call in the “Send” state, permission to send is passed to the Receive_Mapped_Data
UTM service. The send direction of the conversation is thus changed.

A call with = 0 has no special meaning. Receive requested_length
If data is available, it is received in the length 0 with = CM_INCOMPLETE_DATA_RECEIVED. data_received
If no data is available, permission to send can be received. This means that either data or permission to send
can be received, but not both.

If a message segment is received with calls (has the value Receive_Mapped_Data data_received
CM_INCOMPLETE_DATA_RECEIVED except in the last call), the and Receive_Mapped_Data map_name

 parameters are only supplied with values the first time is called. map_name_length Receive_Mapped_Data
However, they are not overwritten in the subsequent calls.Receive_Mapped_Data

If the UTM partner application transfers an empty format identifier (i.e. 8 blanks), is set to 8 blanks map_name
and to -1.map_name_length

Behavior in the event of errors

CM_RESOURCE_FAILURE_RETRY

Re-establish conversation. If the error recurs, the page pool of the UTM application may be too small and
should be enlarged (MAX statement, PGPOOL=).

CM_RESOURCE_FAILURE_NO_RETRY

Notify the service department and produce a diagnostic report.
A fault in the transport system can also cause this return code.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

Modify program.

CM_MAP_ROUTINE_ERROR

Modify program.

CM_OPERATION_INCOMPLETE

The conversation and the communication connection must be explicitly shut down with the
 call.Disable_UTM_UPIC

Any other call can lead to unpredictable results.

CM_SECURITY_USER_UNKNOWN

The UTM user ID is not configured. Use a user ID that is configured or create or dynamically configure
the user ID you want.

CM_SECURITY_STA_OFF

Configure the user ID with STATUS=ON or unlock it using administration facilities.

 149

CM_SECURITY_USER_IS_WORKING

Use another UTM user ID or terminate the service of the user already signed on.

CM_SECURITY_OLD_PSWORD_WRONG

Enter the password correctly.

CM_SECURITY_NEW_PSWORD_WRONG

Use the old password until its validity expires.

CM_SECURITY_NO_CARD_READER

The user is configured with a magnetic stripe card and cannot sign on via UPIC.

CM_SECURITY_CARD_INFO_WRONG

The user is configured with a chipcard.

CM_SECURITY_NO_RESOURCES

Try again later.

CM_SECURITY_NO_KERBEROS_SUPPORT

The user is configured with a Kerberos principal and cannot sign on via UPIC.

CM_SECURITY_TAC_KEY_MISSING

Configuration or modify program.

CM_SECURITY_PWD_EXPIRED_NO_RETRY

The validity period of the password has expired. The password must be changed using administration
facilities before the user can sign on again.

CM_SECURITY_COMPLEXITY_ERROR

Select a new password that satisfies the requirements of the configured complexity level, see KDCDEF
statement USER PROTECT-PW=.

CM_SECURITY_PASSWORD_TOO_SHORT

Select a longer password or change configuration, see KDCDEF statement USER PROTECT-PW= length
, ... (value for the minimum length).

CM_SECURITY_UPD_PSWORD_WRONG

The password is not sufficiently complex or is too short, see KDCDEF statement USER PROTECT-PW=.
The password must be changed using administration facilities before the user can sign on again.

CM_SECURITY_TA_RECOVERY

A transaction restart is required for the specified user ID.

CM_SECURITY_PROTOCOL_CHANGED

The user has an open service that cannot be resumed from a UPIC client.

CM_SECURITY_SHUT_WARN

 150

The UTM application is terminated; only users with administration authorization may sign on. Wait until
the application has been restarted.

CM_SECURITY_ENC_LEVEL_TOO_HIGH

The encryption mechanism required to resume the open service is not available on the connection.

CM_SECURITY_PWD_EXPIRED_RETRY

Repeat establishment of the conversation using the old password and a new password.

The following secondary return codes only occur in the context of UTM cluster applications:

CM_SECURITY_USER_GLOBALLY_UNKNOWN

The specified user ID is not recognized in the cluster user file.

CM_SECURITY_USER_SIGNED_ON_OTHER_NODE

A user has already signed on to another node application with this user ID.

CM_SECURITY_TRANSIENT_ERROR

A temporary error occurred during signon. The cluster user file could not be accessed in the time
configured in the node application.

Try signing on again later.

Function declaration: Receive_Mapped_Data

CM_ENTRY Receive_Mapped_Data (unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR map_name,
 CM_INT32 CM_PTR map_name_length,
 unsigned char CM_PTR buffer,
 CM_INT32 CM_PTR requested_length,
 CM_DATA_RECEIVED_TYPE CM_PTR data_received,
 CM_INT32 CM_PTR received_length,
 CM_STATUS_RECEIVED CM_PTR status_received,
 CM_CONTROL_INFORMATION_RECEIVED CM_PTR request_to_send_received,
 CM_RETURN_CODE CM_PTR return_code)

 151

3.9.26 Send_Data - Sending data to a UTM service

A program uses the (CMSEND) call to send data to a UTM service. A program must issue a Send_Data Send_Data
or call each time it receives permission to send. This is the case:Send_Mapped_Data

immediately after a successful call orAllocate

when has the value CM_SEND_RECEIVED after the or call status_received Receive() Receive_Mapped_Data()
(i.e. when the program has received permission to send).

Syntax

CMSEND (conversation_ID, buffer, send_length, control_information_received, return_code)

Parameters

--> conversation_ID Identifier of the conversation.

--> buffer Buffer with the data to be sent. The length of the data is specified in the
 parameter.send_length

--> send_length Length in bytes of data to be sent.

Minimum: 0, maximum: 32767

A call with length 0 means that a message with length 0 is sent.Send_Data

<-- control_information_received This is only supported syntactically and always has the value
CM_REQ_TO_SEND_NOT_RECEIVED.

If the return code is not CM_OK, the value of is control_information_received
undefined.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_TPN_NOT_RECOGNIZED

This return code can only occur with the first call after an call. After the Send_Data Allocate()
conversation was established, an error occurred which led to termination of the conversation.

CM_DEALLOCATED_ABEND

Possible causes:

termination of UTM application

connection shutdown by UTM administration

connection shutdown by the transport system

CM_RESOURCE_FAILURE_RETRY

 152

A temporary resource bottleneck led to termination of the conversation. It may not be possible to buffer
any further data in the UTM page pool.
Action: Increase the size of the UTM page pool (MAX statement PGPOOL=).

CM_PROGRAM_STATE_CHECK

The call is not permitted in the current state.

CM_PROGRAM_PARAMETER_CHECK

The is invalid or the value of is greater than 32767 or less than 0.conversation_ID send_length

State change

If the return code is CM_OK, the program remains in the “Send” state.

If the return code is CM_TPN_NOT_RECOGNIZED, CM_DEALLOCATED_ABEND, or
CM_RESOURCE_FAILURE_RETRY/NO_RETRY, the program enters the “Reset” state.

In all other error conditions, the program does not change its state.

Note

UPIC buffers the data to be sent, and does not send it to the UTM server until a later point in time. Consequently,
termination of the UTM application may not be returned immediately, and may not be reported until the next call has
been issued.

Behavior in the event of errors

CM_RESOURCE_FAILURE_RETRY

Re-establish conversation.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

Function declaration: Send_Data

CM_ENTRY Send_Data (unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR buffer,
 CM_INT32 CM_PTR send_length,
 CM_CONTROLINFORMATION_RECEIVED CM_PTR control_information_received,
 CM_RETURN_CODE CM_PTR return_code)

 153

3.9.27 Send_Mapped_Data - Sending data and format identifier

A program uses the (CMSNDM) call to send data and a format identifier to a UTM service. A Send_Mapped_Data
program must issue a or call each time it receives permission to send. This is the Send_Data Send_Mapped_Data
case

immediately after a successful call orAllocate

when has the value CM_SEND_RECEIVED after the or call; status_received Receive() Receive_Mapped_Data()
that is when the program has received permission to send.

Syntax

CMSNDM (conversation_ID, map_name, map_name_length, buffer, send_length,
control_information_received, return_code)

Parameters

--> conversation_ID Identifier of the conversation.

--> map_name Format identifier sent to the UTM application. The format identifier specifies
the structure information for the recipient of the data.

--> map_name_length Length of the format identifier in bytes.

--> buffer Address of the buffer with the data to be sent. The length of the data is
specified in the parameter.send_length

--> send_length Length in bytes of data to be sent.

Minimum: 0, maximum: 32767

A call with length 0 means that a message with length 0 Send_Mapped_Data
is sent.

<-- control_information_received This is only supported syntactically and always has the value
CM_REQ_TO_SEND_NOT_RECEIVED.

If the return code is not CM_OK, the value of is control_information_received
undefined.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_TPN_NOT_RECOGNIZED

This return code can only occur with the first call after an call. After the Send_Mapped_Data Allocate
conversation was established, an error occurred which led to termination of the conversation.

CM_DEALLOCATED_ABEND

 154

Possible causes:

termination of UTM application

connection shutdown by UTM administration

connection shutdown by the transport system

CM_RESOURCE_FAILURE_RETRY

A temporary resource bottleneck led to termination of the conversation. It may not be possible to buffer
any further data in the UTM page pool.

CM_PROGRAM_STATE_CHECK

The call is not permitted in the current state.

CM_PROGRAM_PARAMETER_CHECK

The is invalid or the value of is greater than 32767 or less than 0.conversation_ID send_length

CM_MAP_ROUTINE_ERROR

Possible causes:

In the UTM partner application, format identifiers are not supported in the UPIC protocol.

The length of the format identifier is less than 0 or greater than 8.

State change

If the return code is CM_OK, the program remains in the “Send” state.

If the return code is one of the following the program enters the “Reset” state:
CM_TPN_NOT_RECOGNIZED
CM_DEALLOCATED_ABEND
CM_RESOURCE_FAILURE_RETRY/NO_RETRY

In all other error conditions, the program does not change its state.

Notes

The data is always transferred transparently. The data sent is shown to the partner UTM service in the MGET
call.
The format identifier in is transferred to the UTM service in the KCMF/ field during the MGET call.map_name kcfn

For performance reasons, UPIC buffers the data to be sent, and does not send it to the UTM server until later
(with a follow-up call). Consequently, termination of the UTM application may not be returned immediately, and
may not be reported until the next call has been issued.

map_name is reset as soon as the value of is sent to UTM.map_name

Behavior in the event of errors

CM_RESOURCE_FAILURE_RETRY

Re-establish conversation. If the error recurs, the page pool of the UTM application may be too small and
should be enlarged (MAX statement, PGPOOL=).

CM_PROGRAM_STATE_CHECK

Modify program.

 155

CM_PROGRAM_PARAMETER_CHECK

Modify program.

Function declaration: Send_Mapped_Data

CM_ENTRY Send_Mapped_Data(unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR map_name,
 CM_INT32 CM_PTR map_name_length,
 unsigned_char CM_PTR buffer,
 CM_INT32 CM_PTR send_length,
 CM_CONTROL_INFORMATION_RECEIVED CM_PTR control_information_received,
 CM_RETURN_CODE CM_PTR return_code)

 156

3.9.28 Set_Allocate_Timer - Setting timer for the allocate call

The call (CMSAT) sets the timeout for an Allocate call.Set_Allocate_Timer

When this timer is set, the Allocate call is broken off after the time defined in the array.allocate_timer

The call is only permitted in the “Initialize” state.Set_Allocate_Timer

This function is one of the additional functions of the UPIC carrier system; it is not a component of the CPI-C
specification.

UPIC-Local on Unix, Linux and Windows systems Connection via UPIC-Local does not support the :
 call.Set_Allocate_Timer

Syntax

CMSAT (conversation_ID, allocate_timer, return_code)

Parameters

--
> conversation_ID

Conversation identifier

--> allocate_timer Time in milliseconds after which an Allocate call is broken off. The Allocate timer is reset if
you set to 0. The waiting time of the Allocate call is then no longer monitored. allocate_timer
The value specified for is rounded up to the next whole second.allocate_timer

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
The function is not supported. This return code only occurs for UPIC-L.

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Initialize” state.

CM_PROGRAM_PARAMETER_CHECK

The value of is invalid, or a value < 0 was specified in .conversation_ID allocate_timer

CM_PRODUCT_SPECIFIC_ERROR

The UPIC intance could not be found.

State change

If there are no errors the function returns CM_OK. The call does not change the state of the conversation.

 157

Note

The only makes sense in conjunction with the Allocate call. can be called Set_Allocate_Timer Set_Allocate_Timer
as often as desired between an call and an Allocate call. The value which applies is always Initialize_Conversation
the one to have been set when was last called prior to an allocate call.Set_Allocate_Timer

Behavior in the event of errors

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
This is not necessarily an error: If the application is intended for both UPIC-L and UPIC-R this return code
just means that the application is linked to a UPIC-L library. If this is the case, timer functions are not
possible. The program can take note of this return code and avoid making further calls relating to the
timer.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are excessive and if necessary reboot your system.

Function declaration: Set_Allocate_Timer

CM_ENTRY Set_Allocate_Timer (unsigned char CM_PTR conversation_ID,
 CM_TIMEOUT CM_PTR allocate_timer,
 CM_RETURN_CODE CM_PTR return_code)

 158

3.9.29 Set_Client_Context - Setting the client context

The (CMSCC) call sets the value for the client context. To simplify restart at the client side, the Set_Client_Context
client can specify and store what is known as a client context openUTM. Whenever the client sends user data to the
UTM partner application, the last client context set using the function is also sent to the UTM Set_Client_Context
application. The context is buffered by openUTM until the end of the conversation unless it is overwritten with a new
context.

If the client requests a restart, the last context saved is transferred back to the client together with the last dialog
message.

The client context is not saved by openUTM unless the client is signed on using a UTM user ID with restart
functionality. This is a requirement for service restart. The context is ignored in all other cases.

The call is permitted only in the "Send" state.Set_Client_Context

This function is not a component of the CPI-C specification but is an additional function of the UPIC carrier system.

Syntax

CMSCC (conversation_ID, client_context, client_context_length, return_code)

Parameters

--> conversation_ID Conversation identifier

--> client_context Specifies the context the client wants to send to openUTM

--> client_context_length Length of the context
Minimum 0, maximum: 8

<-- return_code Result of the function call

Result (return_code)

CM_OK

The call is OK

CM_PROGRAM_STATE_CHECK

The conversation is not in the "Send" state.

CM_PROGRAM_PARAMETER_CHECK

The value in is invalid or the value of is less than 0 or more than 8.conversation_ID client_context_length

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

State change

If there are no errors, the function returns CM_OK. The call does not change the state of the conversation.

 159

Notes

If the return code is not CM_OK, remains unchanged.client_context

The internal buffer size for the client context is currently limited to 8 bytes.

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for internal buffers. Check whether the memory
requirement of your program is too high and if necessary reboot your system.

Function declaration: Set_Client_Context

CM_ENTRY Set_Client_Context (
 unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR client_context,
 CM_INT32 CM_PTR client_context_length,
 CM_RETURN_CODE CM_PTR return_code)

 160

3.9.30 Set_Conversation_Encryption_Level - Setting the encryption level

The (CMSCEL) call influences the value of the Set_Conversation_Encryption_Level ENCRYPTION-LEVEL
conversation characteristic. The encryption level is used to specify whether during a conversation user data is to be
transferred in an encrypted form or not. The call overwrites the value of , which was assigned in the encryption_level

 call.Initialize_Conversation

The call is only permitted in the “Initialize” state.Set_Conversation_Encryption_Level

UPIC local: The data transfer is protected by the type of transfer being used. The
 call is not supported.Set_Conversation_Encryption_Level

This function is one of the additional functions of the UPIC carrier system; it is not a component of the CPI-C
interface.

Syntax

CMSCEL (conversation_ID, encryption_level, return_code)

Parameters

--
> conversation_ID

Conversation identifier

--
> encryption_level

Specifies whether the conversation user data is to be transferred in an encrypted or
unencrypted form. The following values can be used:

CM_ENC_LEVEL_NONE
The conversation user data is to be transferred in an unencrypted form.

CM_ENC_LEVEL_3
The user data is to be transferred in an encrypted form using the AES algorithm. An RSA key
with a key length of 1024 bits is used for exchange of the AES key.

CM_ENC_LEVEL_4
The user data is to be transferred in an encrypted form using the AES algorithm. An RSA key
with a key length of 2048 bits is used for exchange of the AES key.

CM_ENC_LEVEL_5

 User data are encrypted and authenticated, using the AES/GCM algorithm. The Diffie-
Hellman algorithm is used to exchange the AES key with a length of 2048 bits.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_CALL_NOT_SUPPORTED

 161

This return code only applies to Unix, Linux and Windows systems.
The function is not supported. This return code only occurs for UPIC-L. It indicates to the program that
encryption is not necessary.

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Initialize” state.

CM_PROGRAM_PARAMETER_CHECK

The value of is invalid, or the value of is undefined.conversation_ID encryption_level

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

CM_ENCRYPTION_NOT_SUPPORTED

Encryption is not available for this conversation for one of the following reasons:

the software requirements are not met.

the UTM partner application does not want to implement encryption because the UPIC-L client is
trusted.

CM_ENCRYPTION_LEVEL_NOT_SUPPORTED

Encryption with the specified encryption level () is not supported by UPIC.encryption_level

State change

If there are no errors the function returns CM_OK. The call does not change the state of the conversation.

Notes

If the return code is not CM_OK, the ENCRYPTION_LEVEL characteristic remains unchanged.

If the encryption level requested by the UTM application is higher than the one on the UPIC client side, the
higher encryption level is implemented. Or in other words, if the UTM application requests a certain level of
encryption, the UPIC client encrypts the data on this level regardless of the level of encryption set by the UPIC
application.

If there is no communication connection set up to the UTM partner application at the time when the call is made,
the function terminates with the CM_OK return code The system decides when the subsequent call is Allocate
made whether the requested encryption level is to be implemented.

Behavior in the event of errors

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
Is not necessarily an error: If an application is intended for both UPIC-L and for UPIC-R, this return code
just means that the application is linked to a UPIC-L library. In this case encryption is not necessary. The
program can take note of this return code and avoid making further calls requesting encryption.

CM_PROGRAM_STATE_CHECK

Modify program.

 162

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are too high and if necessary reboot your system.

CM_ENCRYPTION_NOT_SUPPORTED

Is not necessarily an error: If a UPIC-R application is communicating with several UTM partners some of
which implement encryption and some of which do not, then this return code just means that it is
communicating with an application which either cannot or doesn’t want to implement encryption. In this
case encryption is not possible. The program can take note of this return code and avoid making further
calls requesting encryption.

CM_ENCRYPTION_LEVEL_NOT_SUPPORTED

The UPIC library has possibly loaded an old encryption library. Make sure that the encryption library of
the latest openUTM client version is installed and is also loaded. Note the search sequence for libraries in
the different operating systems.

Function declaration: Set_Conversation_Encryption_Level

CM_ENTRY Set_Conversation_Encryption_Level
 unsigned char CM_PTR conversation_ID,
 CM_ENCRYPTION_LEVEL CM_PTR encryption_level,
 CM_RETURN_CODE CM_PTR return_code)

 163

3.9.31 Set_Conversation_Security_New_Password - Setting new password

The (CMSCSN) call sets the value for the conversation characteristics Set_Conversation_Security_New_Password
 and . The is understood as the security_new_password security_new_password_length ssecurity_new_password

new password of a UTM user ID.

A program can only specify a new password if the characteristic is set to CM_SECURITY_PROGRAM.security_type

The call cannot be issued after an call.Allocate

This function is one of the additional functions of the UPIC carrier system; it is not a component of the CPI-C
interface.

Syntax

CMSCSN (conversation_ID, security_new_password, security_new_password_length, return_code)

Parameters

--> conversation_ID Identifier of the conversation.

--> security_new_password Password which is to replace the old password. The password must consist
of characters which are allowed in the UTM partner application, see
openUTM manual “Generating Applications”, USER statement.

The UTM partner application uses this new password to replace the old
password following a valid access authorization with the old password.

--
> security_new_password_length

Length in bytes of the password specified in .security_new_password
Minimum: 0, maximum: 16

If you specify 0 here, is filled with 16 spaces, i.e. security_new_password
UTM does not alter the existing password.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Initialize” state or is not set to CM_SECURITY_PROGRAM.security_type

CM_PROGRAM_PARAMETER_CHECK

The value of is invalid, the value in is less than 0 or conversation_ID security_new_password_length
greater than 16, or the new password only comprises blanks.

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

If the return code is not CM_OK, the and characteristics security_new_password security_new_password_length
remain unchanged.

 164

State change

The call does not change the state of the conversation.

Notes

If a program calls , a user ID must also be specified. The user ID is Set_Conversation_Security_New_Password
set in the program using the call.Set_Conversation_Security_User_ID

An invalid password is not detected with this call. The partner application checks the password for validity after
the conversation is established. If the password is invalid, the partner application issues an error message which
is stored in the UPIC log file.

The program is notified of the incorrect password by means of the return code CM_SECURITY_NOT_VALID.
This is returned following a CPI-C call issued after the call.Allocate

If only blanks were specified for the new password, this means the UTM application should reset the password,
that is the user no longer requires a password. However, this is not permitted from the client, so consequently
the error CM_PROGRAM_PARAMETER_CHECK is returned.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are too high and if necessary reboot your system.

Function declaration: Set_Conversation_Security_New_Password

CM_ENTRY Set_Conversation_Security_New_Password (
 unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR security_new_password,
 CM_INT32 CM_PTR security_new_password_length,
 CM_RETURN_CODE CM_PTR return_code)

 165

3.9.32 Set_Conversation_Security_Password - Setting the password

The (CMSCSP) call sets the values for the conversation characteristics Set_Conversation_Security_Password
 and . The is understood as the password of a UTM security_password security_password_length security_password

user ID.

A program can only specify a password if the characteristic is set to CM_SECURITY_PROGRAM.security_type

The call cannot be issued after an call.Allocate

This function is one of the advanced functions.

Syntax

CMSCSP (conversation_ID, security_password, security_password_length, return_code)

Parameters

--> conversation_ID Identifier of the conversation.

--> security_password Password used to establish the conversation. The UTM partner application uses
this password together with the user ID in order to check access authorization.The
password is specified in the local code used on the machine and converted into
EBCDIC if necessary (see .section “Code conversion”

--
> security_password_length

Length in bytes of the password specified in .Minimum: 0, security_password
maximum: 16If you specify 0 here, is filled with 16 blanks; that security_password
is no password is transferred to openUTM for checking access authorization.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Initialize” state or is not set to CM_SECURITY_PROGRAM.security_type

CM_PROGRAM_PARAMETER_CHECK

The is invalid or the value in is less than 0 or greater than 16.conversation_ID security_password_length

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

If the return code is not CM_OK, the and characteristics remain security_password security_password_length
unchanged.

State change

None.

 166

Notes

If a program calls , a user ID must also be specified. The user ID is set in Set_Conversation_Security_Password
the program using the call.Set_Conversation_Security_User_ID

An invalid password is not detected with this call. The partner application checks the password for validity after
the conversation is established. If the password is invalid, the partner application issues an error message which
is stored in the UPIC log file (see).section “UPIC log file”

The program is notified of the incorrect password by means of the return code CM_SECURITY_NOT_VALID.
This is returned following a CPI-C call issued after the call.Allocate

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are excessive and if necessary reboot your system.

Function declaration: Set_Conversation_Security_Password

CM_ENTRY Set_Conversation_Security_Password (
 unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR security_password,
 CM_INT32 CM_PTR security_password_length,
 CM_RETURN_CODE CM_PTR return_code)

 167

3.9.33 Set_Conversation_Security_Type - Setting the security type

The (CMSCST) call sets the value for the conversation characteristic Set_Conversation_Security_Type
.security_type

The call overwrites the value assigned in the call, and must not be executed after the Initialize_Conversation
 call.Allocate

This function is one of the advanced functions.

Syntax

CMSCST (conversation_ID, security_type, return_code)

Parameters

--
> conversation_ID

Identifier of the conversation.

--> security_type Specifies the type of access information sent when establishing the conversation with the
partner application. This information is used by the partner application to check access
authorization.

The following values can be set for security_type:

CM_SECURITY_NONE
No access information is transferred to the partner application.

CM_SECURITY_PROGRAM
The values of the and characteristics are used as security_user_ID security_password
access information. This means that the access information consists of:

either a UTM user ID

or a UTM user ID and a password.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Initialize” state.

CM_PROGRAM_PARAMETER_CHECK

The is invalid or the value in is undefined.conversation_ID security_type

CM_PARM_VALUE_NOT_SUPPORTED

A value not supported by CPI-C has been entered in .security_type

CM_PRODUCT_SPECIFIC_ERROR

 168

The UPIC instance could not be found.

If the return code is not CM_OK, the characteristic remains unchanged.security_type

State change

None.

Notes

If the value CM_SECURITY_PROGRAM is entered in , the user ID and possibly the password must security_type
be set using the following calls: and .Set_Conversation_Security_User_ID Set_Conversation_Security_Password

If only the user ID is required for the access check, the call is not Set_Conversation_Security_Password
necessary.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PARM_VALUE_NOT_SUPPORTED

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are too high, and if necessary reboot your system.

Function declaration: Set_Conversation_Security_Type

CM_ENTRY Set_Conversation_Security_Type (
 unsigned char CM_PTR conversation_ID,
 CM_CONVERSATION_SECURITY_TYPE CM_PTR conversation_security_type,
 CM_RETURN_CODE CM_PTR return_code)

 169

3.9.34 Set_Conversation_Security_User_ID - Setting the UTM user ID

The (CMSCSU) call sets the values for the conversation characteristics Set_Conversation_Security_User_ID
 and . security_user_ID security_user_ID_length

The is understood as a user ID of a UTM application.security_user_ID

A program can only specify a user ID if the characteristic is set to CM_SECURITY_PROGRAM.security_type

The call must not be executed after the call.Allocate

This function is one of the advanced functions.

Syntax

CMSCSU (conversation_ID, security_user_ID, security_user_ID_length, return_code)

Parameters

--> conversation_ID Identifier of the conversation.

--> security_user_ID User ID used to establish the conversation. The UTM partner application uses the
user ID and possibly the password to check access authorization.

The partner application may also use the user ID for logging or accounting purposes.

--
> security_user_ID_length

Length in bytes of the user ID specified in . security_user_ID

Minimum: 0, maximum: 8

If 0 is specified here, despite the fact that is set to security_type
CM_SECURITY_PROGRAM in the call, a Set_Conversation_Security_Type
connection is not set up to UTM (error in the call).Allocate

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Initialize” state or is not set to CM_SECURITY_PROGRAM.security_type

CM_PROGRAM_PARAMETER_CHECK

The is invalid or the value in is less than 0 or greater than 8.conversation_ID security_user_ID_length

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

If the return code is not CM_OK, the and characteristics remain security_user_ID security_user_ID_length
unchanged.

 170

State change

None.

Notes

The call does not check the user ID for validity. This is carried out by the partner application after the
conversation is established. If the user ID is invalid, the UTM server rejects the conversation

The program is notified of an invalid user ID or an incorrect password by means of the return code
CM_SECURITY_NOT_VALID. This is returned following a call issued after the call.Receive Allocate

If the parameter is set to CM_SECURITY_NONE in the call, the security_type Set_Conversation_Security_Type
 call is not permitted.Set_Conversation_Security_User_ID

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are too high and if necessary reboot your system.

Function declaration: Set_ Conversation_Security_User_ID

CM_ENTRY Set_Conversation_Security_User_ID (
 unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR security_user_ID,
 CM_INT32 CM_PTR security_user_ID_length,
 CM_RETURN_CODE CM_PTR return_code)

 171

3.9.35 Set_Convertion - Setting the CHARACTER_CONVERTION conversation
characteristic

The (CMSCNV) call sets the conversation characteristic.Set_Convertion CHARACTER_CONVERTION

Set_Convertion changes the values that were taken from the side information during the Initialize_Conversation
call. The changed values apply only for the duration of a conversation. The values in the side information are not
changed.

The call can no longer be issued after the call.Set_Convertion Allocate

This function is one of the additional functions of the UPIC carrier system; it is not a component of the CPI-C
interface.

Syntax

CMSCNV (conversation_ID, character_convertion, return_code)

Parameters

--> conversation_ID Conversation identifier

-->
character convertion

Specifies whether code conversion for the user data is to be performed or not.

The following values can be set for :character_convertion

CM_NO_CHARACTER_CONVERTION
There is no automatic code conversion when data is sent or received.

CM_IMPLICIT_CHARACTER_CONVERTION
Data is automatically converted when sent or received (see also section “Code

).conversion”

<-- return_code Result of the function call

Result (return_code)

CM_OK

The call is OK

CM_PROGRAM_PARAMETER_CHECK

The value in or the value for is invalid.conversation_ID CHARACTER_CONVERTION

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Initialize” state.

State change

The call does not change the state of the conversation.

 172

Note

If the return code is not CM_OK, the characteristic remains unchanged.

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for internal buffers. Check whether the memory
requirement of your program is too high and if necessary reboot your system.

Function declaration: Set_Convertion

CM_ENTRY Set_Convertion(
 unsigned char CM_PTR conversation_ID,
 CM_CHARACTER_CONVERTION_TYPE CM_PTR convertion_type,
 CM_RETURN_CODE CM_PTR return_code)

 173

3.9.36 Set_Deallocate_Type - Setting deallocate_type

A program uses the (CMSDT) call to set the value of the conversation characteristic Set_Deallocate_Type
.deallocate_type

This call is one of the advanced functions.

Syntax

CMSDT (conversation_ID, deallocate_type, return_code)

Parameters

--> conversation_ID Identifier of the conversation.

--> deallocate_type Specifies the type of deallocation for a conversation.

deallocate_type must have the value CM_DEALLOCATE_ABEND.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_PARAMETER_CHECK

The is invalid or the value of is out of range. The value of conversation_ID deallocate_type
 remains unchanged.deallocate_type

CM_PRODUCT_SPECIFIC_ERROR

The value of is not CM_DEALLOCATE_ABEND. deallocate_type
The value of remains unchanged.deallocate_type

State change

None.

Note

The CM_DEALLOCATE_ABEND is used by a program to terminate a conversation unconditionally deallocate_type
(regardless of the current state). This type of deallocation should be carried out by the program only in exceptional
circumstances.

Behavior in the event of errors

CM_PROGRAM_SPECIFIC_ERROR

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

 174

Function declaration: Set_Deallocate_Type

CM_ENTRY Set_Deallocate_Type (unsigned char CM_PTR conversation_ID,
 CM_DEALLOCATE_TYPE CM_PTR deallocate_type,
 CM_RETURN_CODE CM_PTR return_code)

 175

3.9.37 Set_Function_Key - Setting a UTM function key

The (CMSFK) call sets the value for the characteristic. specifies a Set_Function_Key function_key function_key
function key of the UTM partner application.

The value of is transferred to the UTM application together with the data of the next or function_key Send_Data
 call, and the function assigned to this function key in the UTM application is executed. The Send_Mapped_Data

CPI-C program has in effect “pressed the function key”.

The call is only permitted in the “Send” or “Receive” states.Set_Function_Key

Set_Function_Key is not part of the CPI-C Specification, but is an additional function of the UPIC carrier system.

Syntax

CMSFK (conversation_ID, function_key, return_code)

Parameters

--
> conversation_ID

Identifier of the conversation

--> function_key “Function key” that the local CPI-C program wants to “press” in the remote UTM application.

The function keys must be specified in the format CM_FKEY_ , where is the number fkey fkey
of the K or F key to be “pressed”.
Example: if function key F10 of the UTM partner application is to be “pressed”, you must
specify for the value CM_FKEY_F10.function_key

openUTM on Unix, Linux and Windows systems support the function keys F1 through F20.

openUTM on BS2000 systems supports the function keys K1 through K14 and F1 through
F24.

The value CM_UNMARKED specifies that no function key is set.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Send” or “Receive” state.

CM_PROGRAM_PARAMETER_CHECK

The or is invalid.conversation_ID function_key

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

CM_MAP_ROUTINE_ERROR

 176

In the UTM partner application, function keys are not supported in the UPIC protocol.

State change

If there are no errors, this function returns the result CM_OK. This call does not change the state of the program.

Notes

With openUTM on Unix, Linux and Windows systems, function keys are only effective in format mode, i.e. when
the and calls are used to exchange data.Send_Mapped_Data Receive_Mapped_Data

The function key specified in is only transferred to the UTM partner application together with Set_Function_Key
the data of the subsequent call.Send_Data or Send_Mapped_Data
As soon as the value of is sent to UTM, is reset to CM_UNMARKED (no function key) function_key function_key
in the local CPI-C program.

If the UTM partner application receives a function key from a UPIC client, only the RET parameter of the SFUNC
control statement which describes the function key is interpreted. RET contains the return code which appears in
the KCRCCC field of the communication area after the MGET call of the UTM service. If the RET parameter is
not generated for the function key, UTM always supplies the return code 19Z with the MGET call (function key
not generated or special function invalid).

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are too high and if necessary reboot your system.

Function declaration: Set_Function_Key

CM_ENTRY Set_Function_Key (unsigned char CM_PTR conversation_ID,
 CM_INT32 CM_PTR function_key,
 CM_RETURN_CODE CM_PTR return_code)

 177

3.9.38 Set_Partner_Host_Name - Setting the partner host name

The (CMSPHN) call sets the value for the characteristic of the partner Set_Partner_Host_Name HOSTNAME
application of the conversation. The call overwrites the value which was assigned using the Initialize_Conversation
call. After an call it may no longer be issued.Allocate

This function is one of the additional functions of the UPIC carrier system; it is not a component of the CPI-C
interface.

UPIC-Local on Unix, Linux and Windows systems:

The Set_Partner_Host_Name call is not supported for connection over UPIC-L.

UPIC-R using UTM clusters:

The call is not supported if an openUTM cluster is configured.Set_Partner_Host_Name

Syntax

CMSPHN (conversation_ID, host_name, host_name_length, return_code)

Parameters

--> conversation_ID Conversation identifier

--> host_name Specifies which host name is to be used.

--> host_name_length Specifies the length of in bytes.host_name

Minimum:1, maximum:64

<-- return_code Result of the function call

Result (return_code)

CM_OK

The call is OK

CM_CALL_NOT_SUPPORTED

This call is not supported in UPIC-L. It indicates to the program that a cannot be used host_name
because UPIC-L does not need this information as a result of the underlying communication system.

The return code only occurs with UPIC-R if an openUTM cluster has been configured. It indicates to the
program that the cannot be modified.host_name

CM_PROGRAM_PARAMETER_CHECK

The value of or is invalid.conversation_ID host_name_length

CM_PROGRAM_STATE_CHECK

The conversation is in the “Initialize” state.

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

 178

State change

The call does not change the state of the conversation.

Note

The value of is ignored if there is also a value set for , either in the or using a host_name ip_address upicfile

 call in the UPIC program.Set_Partner_IP_Address

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for internal buffers. Check whether the memory
requirements of your program are too high and if necessary reboot your system.

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
This is not necessarily an error: The program can take note of this return code and avoid making further
calls to set address information.

Function declaration: Set_Partner_Host_Name

CM_ENTRY Set_Partner_Host_Name(unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR host_name,
 CM_INT32 CM_PTR host_name_lth,
 CM_RETURN_CODE CM_PTR return_code)

 179

3.9.39 Set_Partner_Index - Setting the partner application index

The call (CMSPIN) sets the index for the subsequent calls by the partner Set_Partner_Index Set_Partner_xxx
application in the conversation. It may no longer be called after the call. calls without a Allocate Set_Partner_xxx
preceding call are handled in the same way as after a call with the index 1.Set_Partner_Index Set_Partner_Index

This function is one of the additional functions of the UPIC carrier system; it is not part of the CPI-C interface.

UPIC-Local on Unix, Linux and Windows systems:

The call is not supported for the connection using UPIC-L.Set_Partner_Index

Syntax

CMSPIN (conversation_ID, partner_index, return_code)

Parameter

--
> conversation_ID

Identification of the conversation

--> partner_index Specifies the to which the following calls relate.partner_index Set_Partner_xxx

Minimum: 1 (default value); the sequence of values may not contain any partner_index
gaps.

<-- return_code Result of the function call

Result (return_code)

CM_OK

Call ok

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.The function is not supported.

For UPIC-L the return code always occurs.

For UPIC-R the return code only occurs if an openUTM cluster has been configured.

CM_PROGRAM_PARAMETER_CHECK

The value of the or for is invalid.conversation_ID partner_index

CM_PROGRAM_STATE_CHECK

The conversation is not in "Initialize” state.

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found or there is a memory bottleneck.

State change

The call does not change the state of the conversation.

 180

Behavior in the event of errors

CM_CALL_NOT_SUPPORTED

Normal behavior if

the application is linked to a UPIC-L library (on Unix, Linux and Windows systems),

or an openUTM cluster has been configured.

In this case, the functionality is not available.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for internal buffers. Check whether the memory
requirement of your program is too high and if necessary reboot your system.

Function declaration: Set_Partner_Index

CM_ENTRY Set_Partner_Index(unsigned char CM_PTR conversation_ID,
 CM_INT32 CM_PTR partner_index,
 CM_RETURN_CODE CM_PTR return_code)

 181

3.9.40 Set_Partner_IP_Address - Setting the IP address of the partner application

The (CMSPIA) call sets the value for the characteristic of the conversation. Set_Partner_IP_Address IP-ADDRESS
The call overwrites the value assigned using call. After the call, this call can no Initialize_Conversation Allocate
longer be issued.

This function is one of the additional functions of the UPIC carrier system; it is not a component of the CPI-C
interface.

UPIC-Local on Unix, Linux and Windows systems:

The () call is not supported for connection over UPIC-L.Set_Partner_IP_Address

UPIC-R using UTM clusters:

The call is not supported if an openUTM cluster is configured.Set_Partner_IP_Address

Syntax

CMSPIA (conversation_ID, ip_address, ip_address_length, return_code)

Parameters

--> conversation_ID Conversation identifier

--> ip_address Specifies that an IP address is to be used instead of a characteristic.hostname

--> ip_address_length Specifies the length of in bytes.ip_address

Minimum:0, maximum:64.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_CALL_NOT_SUPPORTED

The function is not supported.

On Unix, Linux and Windows systems, this code is always returned with UPIC-L. It indicates to the
program that an cannot be used because UPIC-L does not need this information as a result of ip_address
the underlying communication systems.

The return code only occurs with UPIC-R if an openUTM cluster has been configured. It indicates to the
program that the cannot be modified.ip_address

The code is returned with UPIC-R for BS2000 systems in the event that the UPIC library on BS2000 is
used together with CMX. The CMX communication system used by UPIC-R does not provide any option
on BS2000 systems for passing IP addresses for addressing the partner application at the interface.

CM_PROGRAM_PARAMETER_CHECK

The value of or is invalid.conversation_ID ip_address_length

 182

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Initialize” state.

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

State change

The call does not change the state of the conversation.

Notes

For IPv4, is specified using the usual dot notation:ip_address

xxx.xxx.xxx.xxx

The individual octets xxx are restricted to 3 digits. The contents of the octet are always interpreted as a decimal
number. In particular, this means that octets which are padded with leading zeros interpreted as octal not
numbers.

ip_address

is specified for IPv6 using normal colon notation:

x:x:x:x:x:x:x:x

x is a hexadecimal number between 0 and FFFF. The alternative methods of writing IPv6 addresses are

permitted (see RFC2373).

If an embedded IPv4 address in dot notation is specified in the IPv6 address, the above also supplies to the octet
for the IPv4 address. The octets are always interpreted as octal numbers.

If both and HOST_NAME are set, the value of HOST_NAME is ignored.ip_address

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are too high and if necessary reboot your system.

CM_CALL_NOT_SUPPORTED

On Unix, Linux and Windows systems, this is not necessarily an error: The program can take note of this
return code and avoid making further calls to set address information.

On BS2000 systems, this return code means that the application is connected to UPIC-R and CMX. The
program can remember this return code and then no longer requires the and Set_Partner_IP_Address

 calls.Set_Partner_Port

Function declaration: Set_Partner_IP_Address

 183

CM_Entry Set_Partner_IP_Address (unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR ip_address,
 CM_INT32 CM_PTR ip_address_length,
 CM_RETURN_CODE CM_PTR return_code)

 184

3.9.41 Set_Partner_LU_Name - Setting the conversation characteristics partner_LU_name

The call (CMSPLN) sets the conversation characteristics and Set_Partner_LU_Name partner_LU_name
.partner_LU_name_length

Set_Partner_LU_Name changes the values taken from the side information in the call. The Initialize_Conversation
changed values only apply for the duration of a conversation; the values in the side information itself are not
changed.

The call cannot be executed after the call.Set_Partner_LU_Name Allocate

This call is one of the advanced functions.

UPIC-R using UTM clusters:

The call is not supported if an openUTM cluster is configured.Set_Partner_LU_Name

Syntax

CMSPLN (conversation_ID, partner_LU_name, partner_LU_name_length, return_code)

Parameters

--> conversation_ID Conversation identifier

--> partner_LU_name Defines which should be used.partner_LU_name

--> partner_LU_name_length Specifies the length of .partner_LU_name
Minimum: 1, maximum: 73.
UPIC-L:
Minimum: 1, maximum: 8.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_PARAMETER_CHECK

The value of is invalid or is invalid or the value in conversation_ID partner_LU_name
 is less than 1 or greater than 73.partner_LU_name_length

CM_PROGRAM_STATE_CHECK

The conversation is not in "Initialize" state.

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

CM_CALL_NOT_SUPPORTED

This function is not supported.

 185

The return code occurs with UPIC-R if an openUTM cluster has been configured. It indicates to the
program that the cannot be modified.partner_LU_name

State change

The call does not change the state of the conversation.

Notes

If the return code is not CM_OK, the characteristic remains unchanged.partner_LU_name

This call only sets the characteristic. An invalid is not detected with this partner_LU_name partner_LU_name
call. Only the call detects an invalid , if it is unable to establish a transport connection Allocate partner_LU_name
to the UTM application. In this case, it returns the CM_ALLOCATE_FAILURE_NO_RETRY return code.

The call returns CM_OK if an application is linked with UPIC-L and passes a Set_Partner_LU_Name
 with a length > 8. However, the is cut to length 8 without notification in the partner_LU_name partner_LU_name

following call.Allocate

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are too high and if necessary reboot your system.

CM_CALL_NOT_SUPPORTED

Is not necessarily an error: The program can remember this return code and no longer issue any calls for
setting address information.

Function declaration: Set_Partner_LU_Name

CM_ENTRY Set_Partner_LU_Name (unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR partner_LU_name,
 CM_INT32 CM_PTR partne_LU_name_length,
 CM_RETURN_CODE CM_PTR return_code)

 186

3.9.42 Set_Partner_Port - Setting the TCP/IP port for the partner application

The (CMSPP) call sets the port number for TCP/IP for the partner application and in doing so also Set_Partner_Port
sets the conversation characteristic. The call overwrites the value assigned using the PORT Initialize_Conversation
call. It may no longer be issued after an call.Allocate

The function is one of the additional functions of the UPIC carrier systems; it is not a component of the CPI-C
interface.

UPIC-Local:

Connection via UPIC local does not support the Set_Partner_Port call.

Syntax

CMSPP (conversation_ID, listener_port, return_code)

Parameters

--
> conversation_ID

Conversation identifier

--> port_number Specifies which port number is searched for in the communication system by the partner
application.
Minimum: 0; maximum: 32767

<-- return_code Result of the function call

Result (return_code)

CM_OK

The call is OK.

CM_CALL_NOT_SUPPORTED

The function is not supported. This return code occurs for UPIC-L and for UPIC-R on BS2000 systems:

On Unix, Linux and Windows systems, this code is always returned with UPIC-L. It indicates to the
program that a port number cannot be assigned because UPIC-L does not require this information as a
result of the underlying communication system.

The code is only returned with UPIC-R on BS2000 systems in the event that the UPIC library on the
BS2000 system is used together with CMX. The CMX communication system used by UPIC-R does
not provide any option on

BS2000 systems for passing IP addresses for addressing the partner application at the interface. If the
UPIC library uses the Socket interface as its communication system, the code is never returned.

CM_PROGRAM_PARAMETER_CHECK

The value of or is invalid.conversation_ID port_number

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Initialize” state.

 187

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

State change

The call does not change the state of the conversation.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are too high and if necessary reboot your system.

CM_CALL_NOT_SUPPORTED

This is not necessarily an error: If the application is intended for both UPIC-L and UPIC-R on Unix, Linux
and Windows systems this return code just means that the application is linked to a UPIC-L library. The
program can take note of this return code and avoid making further calls to set address information.

On BS2000 systems, this return code means that the application is connected to UPIC-R and CMX. The
program can remember this return code and then no longer requires the and Set_Partner_IP_Address

 calls.Set_Partner_Port

Function declaration: Set_Partner_Port

CM_ENTRY Set_Partner_Port (unsigned char CM_PTR conversation_ID,
 CM_INT32 CM_PTR port_number,
 CM_RETURN_CODE CM_PTR return_code)

 188

3.9.43 Set_Partner_Tsel - Setting the T-SEL of the partner application

The (CMSPT) call sets the value for the characteristic of the partner application of the Set_Partner_Tsel T-SEL
conversation. The call overwrites the value assigned using the call. After the call, Initialize_Conversation Allocate
this call may no longer be issued.

This function is one of the additional functions of the UPIC carrier system; it is not a component of the CPI-C
interface.

UPIC-Local on Unix, Linux and Windows systems:

Connection via UPIC local does not support the call.Set_Partner_Tsel

Syntax

CMSPT (conversation_ID, transport_selector, transport_selector_length, return_code)

Parameters

--> conversation_ID Conversation identifier

--> transport_selector Transport selector of the partner application which is transferred to the
communication system.

--
> transport_selector_length

Length of the transport selector in bytes.
Minimum: 0, maximum: 8

If the length of the transport selector is entered as 0, the first name part of the
partner_LU_name is used as the transport selector.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
The function is not supported. This return code only occurs for UPIC-L. It indicates to the program that a
TSEL cannot be allocated because UPIC-L does not need this information as a result of the underlying
communication system.

CM_PROGRAM_PARAMETER_CHECK

The value of either or is invalid.conversation_ID transport_selector_length

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Initialize” state.

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

 189

State change

The call does not change the state of the conversation.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are too high and if necessary reboot your system.

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
This is not necessarily an error: If the application is intended for both UPIC-L and UPIC-R this return code
just means that the application is linked to a UPIC-L library. The program can take note of this return code
and avoid making further calls to set address information.

Function declaration: Set_Partner_Tsel

CM_ENTRY Set_Partner_TSEL (unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR transport_selector,
 CM_INT32 CM_PTR transport_selector_length,
 CM_RETURN_CODE CM_PTR return_code)

 190

3.9.44 Set_Partner_Tsel_Format - Setting the T-SEL format of the partner application

The (CMSPTF) call sets the value for the characteristic of the partner Set_Partner_Tsel_Format T-SEL-FORMAT
application of the conversation. The call overwrites the value assigned using the call. After Initialize_Conversation
the call, this call can no longer be issued.Allocate

This function is one of the additional functions of the UPIC carrier system; it is not a component of the CPI-C
interface.

UPIC-Local on Unix, Linux and Windows systems:

Connection via UPIC local does not support the call.Set_Partner_Tsel_Format

Syntax

CMSPTF (conversation_ID, tsel_format, return_code)

Parameters

--
> conversation_ID

Conversation identifier

--> tsel_format Specifies which character set is to be used for the transport selector (TSEL). The following
values can be entered:

CM_TRANSDATA _FORMAT
The transport selector is transferred to the communication system using TRANSDATA
format.

CM_EBCDIC_FORMAT
The transport selector is transferred to the communication system using EBCDIC format.

CM_ASCII_FORMAT
The transport selector is transferred to the communication system using ASCII format.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
The function is not supported. This return code only occurs in UPIC-L. It indicates to the program that a
TSEL format cannot be assigned because UPIC-L does not require this information as a result of the
underlying communication system.

CM_PROGRAM_PARAMETER_CHECK

The value of either or is invalid.conversation_ID tsel_format

CM_PROGRAM_STATE_CHECK

 191

The conversation is not in the “Initialize” state.

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

State change

The call does not change the state of the conversation.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are too high and if necessary reboot your system.

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
This is not necessarily an error: If the application is intended for both UPIC-L and UPIC-R this return code
just means that the application is linked to a UPIC-L library. The program can take note of this return code
and avoid making further calls to set address information.

Function declaration: Set_Partner_TSEL_Format

CM_ENTRY Set_Partner_TSEL_Format (unsigned char CM_PTR conversation_ID,
 CM_TSEL_Format CM_PTR tsel_format,
 CM_RETURN_CODE CM_PTR return_code)

 192

3.9.45 Set_Receive_Timer - Setting the timer for a blocking receive

The (CMSRCT) call sets the timeout timer for a blocking or Set_Receive_Timer Receive Receive_Mapped_Data
call.

When this timer is set and =CM_RECEIVE_AND_WAIT is set for receiving data, the and receive_type Receive
 calls are aborted after the period of time defined in the field.Receive_Mapped_Data receive_timer

Set_Receive_Timer can be called after the call at any time and as often as you like within a conversation. Allocate
The timer setting of the last call applies in each case.Set_Receive_Timer

This function is not part of the CPI-C Specification, but is an additional function of the UPIC carrier system.

UPIC local on Unix, Linux and Windows systems:
Connection via UPIC local does not support the call.Set_Receive_Timer

Syntax

CMSRCT (conversation_ID, receive_timer, return_code)

Parameters

--
> conversation_ID

Identifier of the conversation

--> receive_timer Time in milliseconds after which a blocking or call is Receive Receive_Mapped_Data
interrupted. The and calls have a blocking effect when the Receive Receive_Mapped_Data

characteristic has the value CM_RECEIVE_AND_WAIT. The receive timer is receive_type
reset when you set to 0. The wait time of the or receive_timer Receive

 call is then no longer monitored.Receive_Mapped_Data

The value specified for is rounded up to the next full second.receive_timer

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Send” or “Receive” state.

CM_PROGRAM_PARAMETER_CHECK

conversation_ID is invalid or a value < 0 was specified in .receive_timer

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

CM_CALL_NOT_SUPPORTED

The function is not supported.

 193

State change

If there are no errors, this function returns the result CM_OK. This call does not change the state of the
conversation.

Notes

The is only useful in connection with the and calls.Set_Receive_Timer Receive Receive_Mapped_Data

Set_Receive_Timer can be called an unlimited number of times within a conversation. The valid value is always
the one which was set in the last call of before a or call. Set_Receive_Timer Receive Receive_Mapped_Data
The value set remains valid until the next call or until the end of the conversation.Set_Receive_Timer

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are too high and if necessary reboot your system.

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
This is not necessarily an error: If the application is intended for both UPIC-L and UPIC-R this return code
just means that the application is linked to a UPIC-L library. The program can take note of this return code
and avoid making further Set_Receive_Timer calls.

Function declaration: Set_Receive_Timer

CM_ENTRY Set_Receive_Timer (unsigned char CM_PTR conversation_ID,
 CM_TIMEOUT CM_PTR timeout_time,
 CM_RETURN_CODE CM_PTR return_code)

 194

3.9.46 Set_Receive_Type - Setting the receive type

The (CMSRT) call sets the value for the conversation characteristic . In Set_Receive_Type receive_type
 you define whether the and calls are to be executed with blocking or receive_type Receive Receive_Mapped_Data

without. The call overwrites the value of which was assigned during the call.receive_type Initialize_Conversation

The call is only permitted in one of the following states: “Initialize”, “Send” or “Receive”.Set_Receive_Type

This function is one of the advanced functions.

UPIC local on Unix, Linux and Windows systems:
Local connection via UPIC local does not support the call.Set_Receive_Type

Syntax

CMSRT (conversation_ID, receive_type, return_code)

Parameters

--
> conversation_ID

Identifier of the conversation

--> receive_type Defines whether the following / calls are to be executed with Receive Receive_Mapped_Data
blocking or without. You can specify the following values:

CM_RECEIVE_AND_WAIT
The and calls have a blocking effect, i.e. if no information Receive Receive_Mapped_Data
is available at the time of the call, the program run waits until information arrives for this
conversation. Only then does the program run return from the or Receive

 call and transfer the data to the program. If there is information Receive_Mapped_Data
available at the time of the call, the program receives it without waiting. If a maximum wait
time (timeout timer) was set with before the or Set_Receive_Timer Receive

 call, the program run returns from the or Receive_Mapped_Data Receive
call on expiry of this wait time, even if there is still no information Receive_Mapped_Data

available.

CM_RECEIVE_IMMEDIATE
The and calls have a non-blocking effect, i.e. if there is Receive Receive_Mapped_Data
information present at the time of the call, the program receives it without waiting. If there
is no information at the time of the call, the program does not wait. The program run
returns from the or call immediately.Receive Receive_Mapped_Data

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_PARAMETER_CHECK

 195

conversation_ID is invalid or the value of is undefined.receive_type

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

CM_CALL_NOT_SUPPORTED

The function is not supported.

State change

If there are no errors, this function returns the result CM_OK. This call does not change the state of the
conversation.

Notes

If the return code is not CM_OK, the characteristic remains unchanged.receive_type

If is called in the “Start” or “Reset” state, the value transferred in is always Set_Receive_Type cconversation_ID
invalid. The return code CM_PROGRAM_PARAMETER_CHECK is then always returned as the result of the call.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are too high and if necessary reboot your system.

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
This is not necessarily an error: If the application is intended for both UPIC-L and UPIC-R this return code
just means that the application is linked to a UPIC-L library. The program can take note of this return code
and avoid making further Set_Receive_Type calls.

Function declaration: Set_Receive_Type

CM_ENTRY Set_Receive_Type (unsigned char CM_PTR conversation_ID,
 CM_RECEIVE_TYPE CM_PTR receive_type,
 CM_RETURN_CODE CM_PTR return_code)

 196

3.9.47 Set_Sync_Level - Setting a synchronization level

The (CMSSL) call sets the value for the conversation characteristic. The call overwrites Set_Sync_Level sync_level
the value that was assigned at the call.Initialize_Conversation

The call cannot be executed after an call.Set_Sync_Level Allocate

This function is one of the advanced functions.

Syntax

CMSSL (conversation_ID, sync_level, return_code)

Parameters

--
> conversation_ID

Identifier of the conversation.

--> sync_level Defines the level of synchronization that the local CPI-C program and the remote UTM
application can use during this conversation.

sync_level must have the value CM_NONE.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Initialize” state.

CM_PROGRAM_PARAMETER_CHECK

conversation_ID is invalid or the value in is undefined.sync_level

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

State change

If there are no errors, this function returns the result CM_OK. This call does not change the state of the
conversation.

Note

The call serves only to improve the portability of CPI-C programs. Even if it returns CM_OK, is not sync_level
changed. UPIC internally always uses "sync_level=CM_NONE".

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK

 197

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are too high and if necessary reboot your system.

Function declaration: Set_Sync_Level

CM_ENTRY Set_Sync_ Level (unsigned char CM_PTR conversation_ID,
 CM_SYNC_LEVEL CM_PTR sync_level,
 CM_RETURN_CODE CM_PTR return_code)

 198

3.9.48 Set_TP_Name - Setting TP-name

A program uses the (CMSTPN) call to set the values of the conversation characteristics Set_TP_Name TP_name
and . The is the transaction code of a UTM program unit.TP_name_length TP_name

Set_TP_Name modifies the values taken from the side information with the call. The Initialize_Conversation
modified values apply only for the duration of a conversation; the values in the side information itself remain
unchanged.

The call cannot be executed after the call.Set_TP_Name Allocate

This call is one of the advanced functions.

Syntax

CMSTPN (conversation_ID, TP_name, TP_name_length, return_code)

Parameters

--> conversation_ID Identifier of the conversation.

--> TP_name UTM transaction code.

--> TP_name_length Length of .TP_name

Minimum: 1, maximum: 8

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_PROGRAM_STATE_CHECK

The call is not permitted in this state.

CM_PROGRAM_PARAMETER_CHECK

The or is invalid or the value in is less than 1 or greater than conversation_ID TP_name TP_name_length
8.

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

If the return code is not CM_OK, and remain unchanged.TP_name TP_name_length

State change

None

Behavior in the event of errors:

CM_PROGRAM_STATE_CHECK

 199

Modify program.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are too high and if necessary reboot your system.

Function declaration: Set_TP_Name

CM_ENTRY Set_TP_name (unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR TP_name,
 CM_INT32 CM_PTR TP_name_length,
 CM_RETURN_CODE CM_PTR return_code)

 200

3.9.49 Specify_Local_Port - Setting the TCP/IP port of the local application

The (CMSLP) call sets the port number of the local application. The call overwrites the value Specify_Local_Port
assigned using the call. After the call, this call may no longer be issued.Enable_UTM_UPIC Initialize_Conversation

This function is one of the additional functions of the UPIC carrier system; it is not a component of the CPI-C
interface.

UPIC-Local on Unix, Linux and Windows systems:

Connection via UPIC local does not support the call.Specify_Local_Port

Syntax

CMSLP (port_number, return_code)

Parameters

--
> port_number

Specifies which port number the local application uses when signing on to the communication
system.
Minimum: 0, maximum: 32767

<--
return_code

Result of the function call

Result (return_code)

CM_OK

The call is OK.

CM_CALL_NOT_SUPPORTED

The function is not supported. This return code occurs in UPIC-L and in UPIC-R on BS2000 systems.

On Unix, Linux and Windows systems, this code is always returned with UPIC-L. It indicates to the
program that a port number cannot be assigned because UPIC-L does not require this information as a
result of the underlying communication system.

The code is only returned with UPIC-R on BS2000 systems in the event that the UPIC library on the
BS2000 system is used together with CMX. The CMX communication system used by UPIC-R does not
provide any option on BS2000 systems for passing IP addresses for addressing the partner application at
the interface. If the UPIC library uses the Socket interface as its communication system, the code is never
returned.

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Reset” state.

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

CM_PROGRAM_PARAMETER_CHECK

The value of is invalid.port_number

 201

State change

The call does not change the state of the conversation.

Note

The local port number is a purely formal value which has no effect whatsoever. Specification of this value is only
supported for reasons of compatibility. It should be omitted.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are too high and if necessary reboot your system.

CM_CALL_NOT_SUPPORTED

This is not necessarily an error:

If the application is intended for both UPIC-L and UPIC-R on Unix, Linux and Windows systems this
return code just means that the application is linked to a UPIC-L library.The program can take note of this
return code and avoid making further calls to set address information.

On BS2000 systems, this return code means that the application is connected to UPIC-R and CMX. The
program can remember this return code and then no longer requires the call.Specify_Local_Port

Function declaration: Specify_Local_Port

CM_ENTRY Specify_Local_Port (CM_INT32 CM_PTR port_number,
 CM_RETURN_CODE CM_PTR return_code)

 202

3.9.50 Specify_Local_Tsel - Setting the T-SEL of the local application

The (CMSLT) call sets the value of the characteristic of the local application. The call Specify_Local_Tsel T-SEL
overwrites the value assigned using the call. After the call, this call may Enable_UTM_UPIC Initialize_Conversation
no longer be issued.

This function is one of the additional functions of the UPIC carrier system; it a not a component of the CPI-C
interface.

UPIC-Local on Unix, Linux and Windows systems:

Connection via UPIC local does not support the call.Specify_Local_Tsel

Syntax

CMSLT (transport_selector, transport_selector_length, return_code)

Parameters

--> transport_selector Transport selector of the local application which is transferred to the communication
system

--
> transport_selector_length

Length of the transport selector in bytes.
Minimum: 0, maximum: 8

If the length of the transport selector is entered as 0, the name of the local
application itself is used as the transport selector.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
The function is not supported. This return code only occurs in UPIC-L. It indicates to the program that a T-
SEL cannot be assigned because UPIC-L does not require this information because of the underlying
communication system.

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Reset” state.

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

CM_PROGRAM_PARAMETER_CHECK

The value of is invalid.transport_selector_length

 203

State change

The call does not change the state of the conversation.

Behavior in the event of errors

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
Is not necessarily an error: If an application is intended for both UPIC-L and UPIC-R, this return code just
means that the application is linked to a UPIC-L library. The program can take note of this return code
and avoid sending further calls to set address information.

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffers. Check whether the
memory requirements of your program are too high and if necessary reboot your system.

Function declaration: Specify_Local_Tsel

CM_ENTRY Specify_Local_Tsel (unsigned char CM_PTR transport_selector,
 CM_INT32 CM_PTR transport_selector_length,
 CM_RETURN_CODE CM_PTR return_code)

 204

3.9.51 Specify_Local_Tsel_Format - Setting the TSEL format of the local application

The (CMSLTF) call sets the value of the ccharacteristic of the local Specify_Local_Tsel_Format T-SEL-FORMAT
application. The call overwrites the value assigned by the call. After the Enable_UTM_UPIC Initialize_Conversation
call, this call may no longer be issued.

This function is one of the additional functions of the UPIC carrier system; it is not a component of the CPI-C
interface.

UPIC-Local on Unix, Linux and Windows systems:

Connection via UPIC local does not support the call.Specify_Local_Tsel_Format

Syntax

CMSLTF (tsel_format, return_code)

Parameters

--> tsel_format Specifies which character set is to be used for the transport selector (TSEL). The following
values can be entered:

CM_TRANSDATA _FORMAT
The transport selector is transferred to the communication system using TRANSDATA
format.

CM_EBCDIC_FORMAT
The transport selector is transferred to the communication system using EBCDIC format.

CM_ASCII_FORMAT
The transport selector is transferred to the communication system using ASCII format.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK.

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
The function is not supported. This return code only occurs in UPIC-L. It indicates to the program that a
format cannot be assigned for the transport selector because UPIC-L does not require this information as
a result of the underlying communication system.

CM_PROGRAM_STATE_CHECK

The conversation is not in the “Reset” state.

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

CM_PROGRAM_PARAMETER_CHECK

 205

The value of is invalid.tsel_format

State change

The call does not change the state of the conversation.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for the internal buffer. Check whether the
memory requirements of your program is too high and if necessary reboot your system.

CM_CALL_NOT_SUPPORTED

This return code only applies to Unix, Linux and Windows systems.
Is not necessarily an error: If an application is intended for both UPIC-L and UPIC-R, this return code just
means that the application is linked to a UPIC-L library. The program can take note of this return code
and avoid sending further calls to set address information.

Function declaration: Specify_Local_Tsel_Format

CM_ENTRY Specify_Local_Tsel_Format (CM_TSEL_FORMAT CM_PTR tsel_format,
 CM_RETURN_CODE CM_PTR return_code)

 206

3.9.52 Specify_Secondary_Return_Code - Setting the properties of the secondary return
code

The (CMSSRC) call causes the program to set the secondary return code Specify_Secondary_Return_Code
property of the CPI-C calls.

This function belongs to the additional UPIC carrier system functions; it is not a component of the CPI-C interface.

Syntax

CMSSRC (return_type, return_code)

Parameters

--> return_type Specifies the secondary return code property of the CPI-C calls. The following values can be
specified:

CM_RETURN_TYPE_PRIMARY:
The corresponding UPIC calls return the secondary return code.

CM_RETURN_TYPE_SECONDARY:
The secondary return code can be read out only by means of the CMESRC call. The
corresponding UPIC calls do not return a secondary return code.

<-- return_code Result of the function call.

Result (return_code)

CM_OK

The call is OK

CM_NO_SECONDARY_RETURN_CODE

The secondary return code property is not available.

CM_PROGRAM_PARAMETER_CHECK

The value of is invalid.return_type

CM_PROGRAM_STATE_CHECK

The program is in the “Start” state.

CM_PRODUCT_SPECIFIC_ERROR

The UPIC instance could not be found.

Note

The function can be called directly after an call. It has no effect on the call.Enable_UTM_UPIC Enable_UTM_UPIC

State change

No state change.

 207

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK

Modify program.

CM_PROGRAM_STATE_CHECK

Modify program.

CM_PRODUCT_SPECIFIC_ERROR

The operating system cannot provide sufficient memory for internal buffers. Check whether the memory
requirement of your program is too high and if necessary reboot your system.

CM_NO_SECONDARY_RETURN_CODE

Is not necessarily an error. If a UPIC-R application communicates with various UTM partners, some of
which can support secondary return codes and some of which cannot, this return code means simply that
the application wishes to communicate with a UTM application that does not support secondary return
codes. The program can take note of this return code and dispense with further

 calls.Extract_Secondary_Return_Code

Function declaration: Specify_Secondary_Return_Code

CM_ENTRY Specify_Secondary_Return_Code (
 CM_INT32 CM_PTR return_type,
 CM_RETURN_CODE CM_PTR return_code)

 208

3.10 COBOL interface

The CPI-C-COBOL program interface largely corresponds to the C interface described in section “CPI-C calls in
. You can therefore consult this description when creating CPI-C programs in COBOL. This section groups UPIC”

together the special features of the COBOL interface which apply for the data structures and CPI-C calls.

COPY element CMCOBOL

The COPY element CMCOBOL, which contains the condition variables and names, is supplied for CPI-C
applications in COBOL. After installation of the UPIC carrier system, you will find CMCOBOL

on Window systems in the file \ or \ directoryupic-dir copy-cobol upic-dir netcobol

on Unix and Linux systems in the directory orupic-dir/copy-cobol85

upic-dir/copy-netcobol

on BS2000 systems in the library returned by the following SDF-P function

INSTALLATION-PATH(INSTALLATION-UNIT='UTM-CLIENT',LOGICAL-ID='SYSLIB',DEFAULT-PATH-
NAME='*UNKNOWN')

CMCOBOL must be included in the WORKING-STORAGE-SECTION using the COPY statement. The names of
constants are derived from the C names only through the use of hyphens instead of underscores, e.g. “CM-SEND-
RECEIVED” instead of “CM_SEND_RECEIVED”.

The name TIME-OUT or TIMEOUT is used in CMCOBOL for the CPI-C interface as a result of the CPI-C
specification. These words are reserved by Micro Focus, so this name must be modified in the source, for example
using the following statement:

COPY-Statement to avoid the keyword TIMEOUT

COPY CMCOBOL REPLACING TIME-OUT BY CPIC-TIMEOUT

CPI-C calls in COBOL

The function names are identical in C and COBOL. The following applies for the parameters of the CPI-C calls:

As is normal in COBOL, the parameters must be transferred by reference.

Each variable in the parameter list must begin with the level number 01.

Numerical data must be in the COMP format that produces the same binary format as with C on the respective
machine.

When using COBOL on Windows systems you must bear in mind the necessary call conventions for the dynamic
library (DLL).

Example: Extract from a program with the “Initialize” call:

...
 WORKING-STORAGE-SECTION.

 COPY CMCOBOL.
...

 209

 PROCEDURE DIVISION.

...
 CALL "CMINIT" USING CONVERSATION-ID,SYM-DEST-NAME,CM-RETCODE.

 210

4 XATMI interface

XATMI has been standardized by X/Open and is a program interface for a communication resource manager which
enables transaction-logged client/server communication.

The XATMI program interface is based on the X/Open CAE Specification “Distributed Transaction Processing: The
XATMI Specification” of November 1995. Knowledge of this specification is essential for understanding this chapter.
This chapter describes the XATMI interface for openUTM clients using UPIC.

For information on OpenCPIC, please refer to the manual “openUTM-Client for the OpenCPIC Carrier System”.

With a few exceptions, the description of the XATMI interface is platform-independent. The exceptions are indicated
in the text.

Terms

The following terms are used in this description:

Service A service function that is programmed in C or COBOL in accordance with the XATMI
specification. XATMI distinguishes between two different types of services: end services and
intermediate services.

An “end” service is linked only to its client and does not call any other services.

An “intermediate” service calls one or more other services.

Client An application that calls service functions.

A UTM application containing the service functions in C and/or COBOL. The service functions
can comprise a number of program units.

Request A request is a service call. This call can be initiated by a client or by an intermediate service.

Requester The XATMI specification uses the term “requester” to refer to the application that calls a service.
A requester can be either a client or a server.

Typed buffers Buffers for exchanging type-encoded and structured data between communication partners. With
these typed buffers, the structure of the exchanged data is implicitly known to the carrier system
and the application, and is also adapted automatically (encoded, decoded) in heterogeneous
connections.

 211

4.1 Linking client/server applications

The diagram below shows the connection of client/server applications, linking the client, server and requester. They
exchange their type-encoded data structures () in accordance with the protocol of the “XATMI U-ASE typed buffers
Definition”.

Figure 16: Client/server applications

With any heterogeneous application link, a local configuration must be provided both for the servers and the clients.
This configuration is defined in the local configuration file (LCF). The local configuration describes the respective
services and their associated data structures, namely:

in the case of a server, all available services

in the case of a client, the services of all servers to which the client is connected

in the case of a requester, all services available as well as all services used

The local configurations of all applications involved must be coordinated with each other.

A number of communication paradigms are available for processing the client/server connections Con11, Con13,...
(see).section “Communication paradigms”

 212

4.1.1 Default server

To simplify the client/server configuration openUTM allows you to declare a default server using the statement
DEST=.DEFAULT in the SVCU statement of the local configuration file (see)."Creating the local configuration file"

If the call or use a service to which there is no SVCU entry in the local tpcall, tpacall tpconnect svcname2
configuration file, the following entry is used automatically:

SVCU svcname2, RSN=svcname2, TAC=scvname2, DEST=.DEFAULT, MODE=RR

In this case UPIC expects a suitable default server entry in the , i.e.upicfile

LN.DEFAULT localname
SD.DEFAULT servername
ND.DEFAULT servername

Furthermore you are allowed to call a service using without entering a svcname2@BRANCH9 DEST=BRANCH9

declaration in the local configuration file. In such a case the following entry is assumed:

SVCU svcname2, RSN=svcname2, TAC=scvname2, DEST=BRANCH9, MODE=RR

The partner, in this case BRANCH9, must be known to the carrier system. However, if the local configuration file
contains an entry , this entry takes precedence over the default server assumption.svcname2@BRANCH9

 213

4.1.2 Restart

Although there is no service restart for XATMI (as XATMI does not support complex services), you have the option
of defining a recovery service, which resends the last output message from openUTM to the client.

This recovery service is defined with the transaction code KDCRECVR.

 214

4.2 Communication paradigms

The programmer can choose from three communication paradigms for client/server communication:

synchronous request response paradigm: single-step dialog.
The client is blocked after sending the service request until it receives a response.

asynchronous request response paradigm: single-step dialog.
The client is not blocked after sending the service request.

conversational paradigm: multi-step dialog.
Client and server can exchange data in any way required.

The XATMI functions required for these communication paradigms are described only briefly below; C notation is
used here. An exact description of the XATMI functions can be found in the X/Open Specification “Distributed
Transaction Processing: The XATMI Specification”.

Synchronous request-response paradigm

The client only needs one single call for the communication.tpcall()

The call addresses the service, sends precisely one message to this service, and waits until it receives a tpcall()
response, i.e. has a blocking effect.tpcall()

Figure 17: Synchronous request response paradigm

In this diagram, is the internally used service name, is the service info structure with the service name, svc svcinfo
and is the program name of the service routine. The service info structure is part of the XATMI interface.tpservice

With this paradigm, a dialog TAC for the requested service has to be generated on the UTM server side.

Asynchronous request-response paradigm

With this paradigm, communication is handled in two steps. In the first step, a call is used to address the tpacall()
service and send the message. In the second step the response is fetched with at a later stage, see tpgetrply()
diagram below.

 215

Figure 18: Asynchronous request response paradigm

In this diagram, refers to the internally used service name, is the communication descriptor in the specific svc cd
process, is the service info structure with the service name, and is the program name of the svcinfo tpservice
service routine.

tpacall is non-blocking, i.e. the client can carry out other local processing tasks in the meantime. However, the client
cannot call another service, as only one job is permitted at any one time with the UPIC carrier system.
If the client is to engage several services in parallel, you must use the OpenCPIC carrier system.

In contrast, is blocking, which means that the client waits until the response is received.tpgetrply

With this paradigm, a dialog TAC must be generated for the service on the UTM server side (as with synchronous
request-response).

Conversational paradigm

XATMI offers the conversational paradigm for connection-oriented tasks (“conversations”).

This paradigm can be used, for example, to transfer large volumes of data in several substeps. This avoids
problems which can occur in the synchronous request response paradigm (call) due to the limited size of tpcall()
the local data buffers.

In the conversational paradigm, the conversation is explicitly established to a service with the call. As tpconnect
long as the conversation exists, the client and server can exchange data with and . However, this tpsend tprecv
“dialog” is not a dialog in the sense of OSI TP, and only one transaction can be processed.
The conversation is terminated when the server signals the end with ; the client then receives a tpreturn
corresponding code with in the variable. The client program must therefore contain at least one tprecv tperrno tprecv
call.

 216

Figure 19: Conversational paradigm

In this diagram, refers to the local name of the service, is the communication descriptor in the specific svc cd
process, is the program name of the service routine, and is the service info structure with the tpservice svcinfo
service name and the communication descriptor.

With this paradigm, a dialog TAC must be generated for the service on the UTM server side.

In the event of errors, the client can force a conversation abort with the call.tpdiscon

 217

4.3 Typed buffers

XATMI applications exchange messages using “typed data buffers”. This ensures that the data sent over the
network is transferred correctly to the application, i.e. in accordance with the data structure - and associated data
types - which is identified by the buffer name.

The advantage of this is that the application need not take account of any machine dependencies, such as Big
Endian/Little Endian representation, ASCII/EBCDIC conversion, or alignment with word limits. This means that data
types such as , , , etc. can be transferred as such. There is no need for any encoding/decoding by int long float

the application because this is carried out by XATMI (in accordance with the rules of the XATMI U-ASE definition).

A data buffer object comprises four components:

type: defines the class of buffer; there are three types

subtype: defines the object of the type, i.e. the actual data structure

length specification

data contents

This type of data buffer is created at runtime and can then be addressed by its variable name (= subtype name).
The subtype defines the structure, while the type defines the set of values of the permitted elementary data types.
In C programs, these buffers are created dynamically with and are then called “typed buffers”; in COBOL tpalloc()
programs, these buffers are defined statically and are then called “typed records”.

Types

The data buffer type defines which elementary data types of the employed programming language are permitted.
This enables a shared data understanding in a heterogeneous client/server network.

Three types are defined in XATMI:

X_OCTET Non-typed data stream of bytes (“user buffer”). This type has no subtypes.

No conversion takes place.

X_COMMON All data types that can be used in common by C and COBOL.
Conversion is carried out by XATMI.

X_C_TYPE All elementary C data types, with the exception of pointers.
Conversion is carried out by XATMI.

Subtypes

A subtype has a name of up to 16 characters, with which it is addressed in the application program. Each subtype is
assigned a data structure (C structure or COBOL record) which determines the syntax of the subtype, see "Creating

.typed buffers"
The data types must not be nested.

The structure of a subtype is represented by a syntax string in the local configuration. In this string each elementary
data type (basic type) is identified by a code which, if necessary, may also contain the field length specification
(<m> and <n>).
The table below provides an overview of the elementary data types (basic types), their codes, and the character set
of the string types:

 218

Code
1

Meaning ASN.1 type X_C_TYPE X_COMMON

s short integer INTEGER short S9(4)
COMP-5

S<n> short integer array SEQUENCE
OF INTEGER

short[n] S9(4)
COMP-5 ...

i integer INTEGER integer --2

I<n> integer array SEQUENCE
OF INTEGER

integer[n] --

l long integer INTEGER long S9(9)
COMP-5

L<n> long integer array SEQUENCE
OF INTEGER

long[n] S9(9)
COMP-5 ...

f float REAL float --

F<n> float array SEQUENCE
OF REAL

float[n] --

d double REAL double --

D<n> double array SEQUENCE
OF REAL

double[n] --

c character OCTET STRING char PIC X

t character T.61-String char PIC X

C<n> character array: All values from 0 thru 255 (decimal) OCTET STRING char[n] PIC X(n)

C!<n> character array, terminated by null ('\0') OCTET STRING char[n] --

C<m>:
<n>

character matrix3 SEQUENCE
OF OCTET
STRING

char [m][n] --

C!
<m>:
<n>

character matrix, terminated by null ('\0') SEQUENCE
OF OCTET
STRING

char [m][n] --

T<n> The printable characters A-Z, a-z, and 0-9 plus 4

a range of special characters and control characters,
see ."Character sets"

T.61 string char[n] PIC X(n)

T!<n> character array, terminated by null ('\0') T.61-String t61str[n] --

T<m>:
<n>

character matrix SEQUENCE
OF T.61-String

t61str[m][n] --

 219

T!
<m>:
<n>

character matrix, terminated by null ('\0') SEQUENCE
OF T.61-String

t61str[m][n] --

1used in the local configuration to describe the data structures

2-- : not available in X_COMMON

3character matrix: two-dimensional character array

4in accordance with CCITT Recommendation T.61 or ISO 6937

The assignment between data structures, subtypes, and desired services is defined in the local configuration, see
."Creating the local configuration file"

Character set conversion with X_C_TYPE and X_COMMON

The data buffers are transmitted over the network encoded in the ASCII character set.

However, a partner can use a different character set encoding instead of ASCII, for example a BS2000 application
which uses EBCDIC. In this case, the XATMI library converts the ASN.1-type for all incoming and T.61 string
outgoing data (with the exception that OCTET strings are not converted).

Therefore no automatic conversion may be generated. For the UPIC carrier system this means the respective
identifier be generated in the :must upicfile

This is or for Unix, Linux and Windows systems (stand-alone application). SD ND

This is for BS2000 systems (stand-alone application). HD

This is for the node applications of a UTM cluster application.CD

 220

4.4 Program interface

The following sections provide an overview of the XATMI client program interface. A detailed description of the
program interface as well as the error and return codes can be found in the X/Open Specification “Distributed
Transaction Processing: The XATMI Specification”. Knowledge of this specification is essential for creating XATMI
programs.

The program interface is available for both C and COBOL.

 221

4.4.1 XATMI functions for clients

The tables below list all XATMI client calls and indicate the communication paradigm with which they can be used
and if the function may also be called by a server.

In addition there are the UTM-Client calls and . These two functions are not included in the XATMI tpinit tpterm
standard and are used to connect XATMI to the carrier system. They are described in section “Calls for connecting

.to the carrier system”

Calls of the request/response paradigm

C call COBOL call Call in
Client/
Server

Description

tpcall TPCALL C Service request in synchronous request/response paradigm

tpacall TPACALL C Service request in asynchronous request/response paradigm or single
request paradigm (flag TPNOREPLY set)

tpgetrply TPGETRPLY C Response request in synchronous request/response paradigm

tpcancel TPCANCEL C Deletes an asynchronous service request before the requested
response is received

Table 10: Calls of the request/response paradigm

Calls for the conversational paradigm

C call COBOL call Call in
Client/
Server

Description

tpconnect TPCONNECT C establishes a connection for message exchange

tpsend TPSEND C, S sends a message

tprecv TPRECV C, S receives a message

tpdiscon TPDISCON C closes down a connection for message exchange

Table 11: Calls for the conversational paradigm

Calls for typed buffers

C call COBOL call Call in Client/Server Description

tpalloc -- C, S reserves memory area for a typed buffer

tprealloc -- C, S modifies the size of a typed buffer

tpfree -- C, S releases a typed buffer

tptypes -- C, S ascertains the type of a typed buffer

 222

Table 12: Calls for typed buffers

 223

4.4.2 Calls for connecting to the carrier system

The openUTM client may use UPIC or OpenCPIC as the carrier system. An XATMI application program must
therefore explicitly sign on to the carrier system using and sign off using , i.e. the program has the tpinit tpterm
following structure:

Basic structure of a XATMI-Programm

tpinit()

XATMI-Aufrufe, z.B. tpalloc(), tpcall(), tpconnect(), ...tpdiscon()

tpterm()

The two calls and are described below.tpinit() tpterm()

For a general description of the UTM user concept, see .section “User concept, security and restart”

 224

4.4.2.1 tpinit - Initializing the client

Syntax in C

C: #include <xatmi.h>
 int tpinit (TPCLTINFO *tpinfo) (in)

Syntax in COBOL

COBOL: 01 TPINIT-REC.
 COPY TPCLTDEF.
 01 TPSTATUS-REC.
 COPY TPSTATUS.
 CALL "TPINIT" USING TPINIT-REC TPSTATUS-REC.

Description

The function initializes a client and identifies the client to the carrier system. It must be the XATMI tpinit first
function called in a client program.

In C, you must pass a pointer to the predefined structure as a parameter.TPCLTINFO

The COBOL call needs two parameters:

First parameter: TPCLTDEF record.

The second parameter returns the return state of the call.

C structure TPCLTINFO

#define MAXTIDENT 9
#define MAXPASSWORD 17
typedef struct {
 long flags; /* for future use */
 char usrname[MAXTIDENT];
 char cltname[MAXTIDENT];
 char passwd [MAXPASSWORD];
} TPCLTINFO;

COBOL record TPCLTDEF

05 FLAG PIC S9(9) COMP-5.
05 USRNAME PIC X(8).
05 CLTNAME PIC X(8).
05 PASSWD PIC X(16).

A user ID is entered in and a password in . Both parameters are used to establish a conversation, usrname passwd
and serve as proof of access authorization on the UTM side. (= local client name) identifies the client to the cltname
carrier system.

cltname is

 225

For Unix, Linux and Windows systems: With UPIC-L it is the PTERM name or the local application name from
the upicfile.

With UPIC-R it is the the upicfile entry or the BCMAP entry (BS2000 systems, see section “Configuration using
).BCMAP entries (BS2000 systems)”

If and are initialized with the null string (COBOL: spaces), the security functions are not activated, usrname passwd
i.e. there is no access control in openUTM. If at least one of these two parameters contains a valid value, this is
checked by UTM.
If is initialized with the null string or with spaces, the local client name is preset to 8 spaces.cltname

In C, if is called with a null pointer, then no access control is activated and the local client name is preset to 8 tpinit
blanks. In COBOL, the structure must be filled with spaces for this purpose.

The entries in , , and (if any) must comply with the UTM name conventions, i.e. they can usrname passwd cltname
be up to eight (or 16 for) characters in length, wherein the following applies:passwd

In C, they must be terminated with the end-of-string character (“\0”).

In COBOL, they must be filled up to the respective length if necessary.

Return codes

In the event of an error, returns in C the value -1 and sets the error variable to one of the following tpinit tperrno
values:

TPEINVAL

One or more parameters were assigned invalid values.

TPENOENT

Initialization could not be performed, e.g. there may not be sufficient memory for internal buffers.

TPEPROTO

tpinit was called at an inappropriate time, e.g. the client is already initialized.

TPESYSTEM

An internal error has occurred.

In COBOL, in case of error in the TPINIT call the corresponding value is supplied directly as the return tperrno
status.

 226

4.4.2.2 tpterm - Signing the client off

Syntax in C

int tpterm ()

Syntax in COBOL

CALL "TPTERM" USING TPSTATUS-REC.

Description

The function is used to sign a client off from the carrier system. The client is the one in which this function tpterm()
is called and must have been initialized previously with . Following a call, no further XATMI calls tpinit() tpterm()
(apart from) are permitted.tpinit()

Return codes

In the event of an error, returns in C the value -1 and sets the error variable to one of the following tpterm() tperrno
values:

TPENOENT

The client could not sign off in the normal way. There may be problems in the carrier system.

TPEPROTO

tpterm was called at an inappropriate time, i.e. the client is not yet initialized.

TPESYSTEM

An internal error has occurred.

In COBOL, in case of error in the TPTERM call the corresponding value is supplied directly as the return tperrno
status.

 227

4.4.3 Transaction control

When an XATMI service is called, the client uses the call parameter (in C) or the TPTRAN-FLAG (in COBOL) to flag
specify whether or not a called UTM service is included in the global transaction.
The XATMI-C interface includes the service in the global transaction by default. In order to exclude the service from
the global transaction, you must set the TPNOTRAN flag explicitly. No default value exists for the XATMI-COBOL
interface, you must set either TPTRAN or TPNOTRAN.

If the service is started with the TPTRAN flag, then it is included in the global transaction.

When using the call, the parameter returns the values TPSUCCESS or TPFAIL. This determines tpreturn() rval
whether the transaction is terminated successfully or rolled back.

When using the XATMI interface with the UPIC carrier system the TPTRAN flag is ignored and the
TPNOTRAN flag set internally. This behaviour improves the portability of XATMI programs.

i

 228

4.4.4 Mixed operation

Mixed operation refers to communication between an XATMI program and a CPI-C program.

For interaction with a CPI-C program the XATMI program must contain the corresponding CPI-C calls, although the
connection is established by the XATMI partner. For communication with a partner, the same interface must be
used on both sides, i.e. the call is forbidden in XATMI programs.Deallocate()

 229

4.4.5 Administration interface

In XATMI programs, only the KDCS call KDCADMI() can be used; other KDCS calls are not permitted.

On the UTM side, the corresponding TAC and possibly USER must be configured with administration authorization
during KDCDEF configuration.

 230

1.

2.

1.

2.

4.4.6 Header files and COPY elements

For the creation of openUTM-Client programs which use the XATMI interface, header files for C and COPY
elements for COBOL are supplied.

When linking the client programs, the UTM client library must be incorporated.

C modules with XATMI calls require the following files:

The header file .xatmi.h

The file(s) with the data structures for all typed buffers used in the module, see also ."Typed buffers"

COBOL modules with XATMI calls require the following COPY elements and files:

The COPY elements TPSTATUS, TPTYPE, TPSVCDEF and TPCLTDEF.

The file(s) with the data structures for all “typed records” used in the module.

Windows systems

On Windows systems you will find the header files in the directory

upic-dir\xatmi\include

No COPY elements are supplied for COBOL.

Unix and Linux systems

On Unix and Linux systems you will find the header files in the directory

upic-dir/ /xatmi include

and the COPY elements in the directory

upic-dir/ / or / /xatmi copy-cobol85 upic-dir xatmi netcobol

The openUTM client library is called and is located in the directory .libxtclt upic-dir/xatmi/sys

BS2000 systems

On BS2000 systems the include files and the COPY members are S type members of the library

$userid.SYSLIB.UTM-CLIENT.070

In Windows systems the XATMI interface is not supported in COBOL.i

 231

4.4.7 Events and error handling

When an event or an error occurs, XATMI functions return the return code -1. The program must evaluate the
variable to determine the event or error more precisely.tperrno

With the conversational function , indicates that an event has occurred. This event can be tprecv tperrno=TPEEVENT
determined by evaluating the parameter . For example, the successful termination of a conversational tprevc revent
service is indicated as follows:

Return code of tprecv =-1
tperrno=TPEEVENT
revent=TPEV_SVCSUCC

The parameter is of no significance with the function.revent tpsend

Furthermore, at the end of the service function the service program can return a freely defined error code with
 in the parameter; this error code can be evaluated on the client side using the external variable tpreturn rcode
, see the X/Open Specification “Distributed Transaction Processing: The XATMI Specification”.tpurcode

 232

4.4.8 Creating typed buffers

Typed buffers are defined by data structures in header files (in C) or COPY elements (in COBOL), which must be
used in the participating programs.

Data is exchanged between the programs on the basis of these data structures, which must therefore be known to
both the client and the server. All data types described in the table on are permitted."Typed buffers"

The header files or COBOL COPY files in which the typed buffers are described serve as input for the configuration
program , see . The following rules apply to these files:xatmigen section “The xatmigen tool”

C and COBOL data structures must be contained in separate files. A file that contains both C includes and
COBOL COPY elements is not permitted as input.

The files can only comprise definitions of data structures, blank lines, and comment statements. Macro
statements, i.e. statements beginning with ‘#’, are permitted in C.

The data structure definitions must be specified in full. In particular, COBOL data records must begin with the
level number “01”.

The data structures must not be nested.

Only absolute values are permitted as field lengths, macro constants are not accepted.

Only the data types listed in the table on are permitted. In particular, no pointer types are "Typed buffers"
permitted in C.

The user may have to use the configuration tool to map the character arrays to xatmigen

ASN.1 string types because neither C nor COBOL recognizes these data types; see .section“The xatmigen tool”

XATMI calls for memory allocation are available for C (...).tpalloc

Two simple examples are provided below for C and COBOL respectively.

Example

C include for typed buffer

typedef struct {
 char name[20]; /* person’s name */
 int age; /* age */
 char sex;
 long shoesize;
} t_person;
struct t_city {
 char name[32]; /* name of city */
 char country;
 long inhabitants;
 short churches[20];
 long founded;
}

COBOL COPY for typed record

***** Personal record
 01 PERSON-REC.
 05 NAME PIC X(20).
 05 AGE PICTURE S9(9) COMP-5.

 233

 05 SEX PIC X.
 05 SHOESIZE PIC S9(9) COMP-5.
***** City record
 01 CITY-REC.
 05 NAME PIC X(32).
 05 COUNTRY PIC X.
 05 INHABITANTS PIC S9(9) COMP-5.
 05 CHURCHES PIC S9(4) COMP-5 OCCURS 20 TIMES.
 05 FOUNDED PIC S9(9) COMP-5.

Further examples can be found in the X/Open Specification on XATMI.

 234

4.4.9 Characteristics of XATMI in UPIC

This section describes the distinctive features that arise when implementing the XATMI interface in openUTM.

All XATMI calls relevant for clients are supported. Additionally the two calls and are provided.tpinit tpterm

Only one conversation per service is allowed.

A maximum of 100 buffer entities can be used simultaneously within a client application. For example, with an
application in C this is a maximum of 100 calls without a call. tpalloc tpfree

The maximum message length is 32000 bytes.

The maximum size of a typed buffer is always less than the maximum possible message length because the
messages contain an “overhead” in addition to the net data. The more complex the buffer, the bigger the
overhead.

The following applies as a rule of thumb: max. buffer size = 2/3 of max. message length

With larger data volumes, the conversational paradigm (/) should thus always be used.tpsend tprecv

The following limits apply to name lengths:

service name
buffer name

16 bytes
16 bytes

In accordance with the standard, service names can be 32 bytes long; however, only the first 16 bytes are
relevant (XATMI_SERVICE_NAME_LENGTH constant). It is therefore advisable to use no more than 16 bytes
for service names.

 235

4.5 Configuring

The user must create a local configuration for each XATMI application. This describes the services provided and
used, together with their target addresses, and also describes the typed buffers used with their syntax. The
information is stored in a file, known as the local configuration file (LCF), which is read once by the application at
startup. An LCF is required both for the client and the service side.

 236

4.5.1 Creating the local configuration file

As users, you must create an input file known as the local configuration definition file. This input file must be made
up of individual lines that comply with the following syntax:

A line begins with an SVCU or BUFFER statement and specifies precisely one service or one subtype (=typed
buffer).

Two operands are separated by a comma.

A statement is concluded by a semicolon (‘;’).

If the statement occupies more than one line, the continuation character ‘\’ (backslash) must appear at the end of
each line.

A comment line begins with the ‘#’ character.

Blank lines can be inserted, e.g. to improve legibility.

Using the tool, you create the actual local configuration file () from the file which xatmigen "The xatmigen tool"

contains the local configuration definition.

The SVCU and BUFFER statements are described below.

SVCU statement: Define available service

In an SVCU statement, the characteristics required to call a service in the partner application are described for the
client.

The SVCU statement can be omitted, if a default server is declared in the side information file of UPIC () upicfile

with = = .transaction-code remote-service-name internal-service-name

Default-Server:

To simplify the client/server configuration openUTM client allows you to declare a default server using the statement
DEST=.DEFAULT in the SVCU statement of the local configuration file.

If the calls or use a service to which there is no SVCU entry in the local tpcall, tpacall tpconnect svcname2
configuration file, the following entry is used automatically:

SVCU svcname2, RSN=svcname2, TAC=SCVname2, DEST=.DEFAULT, MODE=RR

In this case UPIC expects a suitable default server entry in the , i.e.upicfile

LN.DEFAULT localname
SD.DEFAULT servername
ND.DEFAULT servername

Furthermore you are allowed to call a service using without entering a svcname2@BRANCH9 DEST=BRANCH9

declaration in the local configuration file. In such a case the following entry is assumed:

SVCU svcname2, RSN=svcname2, TAC=SCVname2, DEST=BRANCH9, MODE=RR

The partner, in this case BRANCH9, must be known to UPIC.
However, if the local configuration file contains an entry , this entry will be used.svcname2@BRANCH9

 237

Operator Operand Explanation

SVCU internal-service-name maximum 16 bytes

[,RSN=remote-service-name] default: internal-service-name

[,TAC=transaction-code] default: internal-service-name

,DEST={ destination-name | .DEFAULT } partner application

[,MODE= / CV]RR RR=request/response, default CV=conversation

[,BUFFERS=(subtype-1,...,subtype-n)] default: no subtype

internal-service-name

A name of up to 16 bytes under which a (remote) service can be addressed in the program. This name
must be unique within the application, i.e. it can only appear once in the LCF.

Mandatory operand!

RSN=remote-service-name

A name of up to 16 bytes of a service in the application. This name is passed to the remote remote
application (TPSVCINFO structure); it can appear repeatedly in the LCF.

If this operand is omitted, sets RSN= .xatmigen internal-service-name

TAC=transaction-code

A transaction code of up to 8 bytes with which the service must be configured in the remote application.

If this operand is omitted, sets TAC= and, if necessary, truncates this to xatmigen internal-service-name
the first 8 bytes.

The transaction code KDCRECVR can be used to define a recovery service that sends the last output
message of UTM to the client.

DEST=destination-name / .DEFAULT

 A partner application identification of up to 8 bytes.

This name must be specified in the as the symbolic destination name (see upicfile "Configuring UPIC"

).

.DEFAULT
A default server is used.

Mandatory operand!

MODE=RR / CV

Determines which communication paradigm is used for the service:

RR request-response paradigm, default value

CV conversational paradigm

 238

BUFFERS=(subtype-1,...,subtype-n)

List of subtype names that can be sent to the service (type X_OCTET is allowed always). Each name can
be up to 16 bytes long.

A separate BUFFER statement, which defines the characteristics of the particular subtype, must be
specified for each of the subtypes listed here (see below).

The BUFFERS= operand is sensitive to position and must (if specified) be the operand of the last
statement.
If BUFFERS= is omitted, only a buffer of type X_OCTET should be sent to the service (no type check is
performed).

BUFFER statement

A BUFFER statement defines a typed buffer. Buffers of the same name must be defined in the same way on both
the client side and the server side.
Multiple definitions are not checked. The first buffer entry is valid, while all others are ignored.

Buffers of type “X_OCTET” have no special features and therefore do not require definition. Typed buffers are
defined with the following parameters:

Operator Operand Explanation

BUFFER subtype-name maximum 16 bytes

[,REC=referenced-record-name] default: subtype-name

[,TYPE=X_COMMON / X_C_TYPE] default: xatmigen sets TYPE automatically

subtype-name

A buffer name of up to 16 bytes; must also be specified in the BUFFERS= operand in the SVCU
statement. The name must be unique in the application.

REC=referenced-record-name

Name of the data structure for the buffer, e.g. with C structures this is the name of “typedef” or the “struct
name”.

If the operand is omitted, xatmigen sets REC=subtype-name.

TYPE=

Type of buffer; for further details on types see ."Typed buffers"

If the operand is omitted, xatmigen sets the type to X_C_TYPE or X_COMMON, depending on which
elementary data types were used.

During the configuration run, also creates two additional operands with the following meaning:xatmigen

LEN=length length of the data buffer

SYNTAX=code

 239

syntax description of the data structure in code representation, as specified in the table on
."Typed buffers"

 240

4.5.2 The xatmigen tool

The tool creates a local configuration file (LCF) from a file containing the local configuration definition xatmigen

(LC definition file) and one or more files containing C or COBOL data structures (LC description files), see diagram
below:

Figure 20: Working with xatmigen

The local configuration file is structured in the same way as the LC definition file, and differs from this only in the
description of the buffer type, buffer length, and buffer syntax string. In other words, the operands LEN=, SYNTAX=,
and possibly TYPE= are added to the BUFFER statements compared to the definition file.

If the buffer type is not specified in the LC definition file, configures the “smallest” value range for the xatmigen

buffer type, i.e. first the type .X_COMMON

All file names must be specified explicitly. If desired, a file can be created which contains the configuration
statements for UPIC.

On Windows systems, success and error messages are written to the program window.

On Unix and Linux systems, success and error messages are written to and .stdout stderr

On BS2000 systems, success messages and error messages are written to and .SYSOUT SYSLST

Although in principle it is possible to edit the LCF, you are strongly advised not to do this.

Calling xatmigen

On Windows systems is called withxatmigen

xatmigen[.exe] parameter

xatmigen.exe is located in the directory.upic-dir \xatmi\ex

On Unix and Linux systems, is called withxatmigen

xatmigen parameter

xatmigen can be found in the directory.upic-dir /xatmi/ex

On BS2000 systems, you start with the following command:xatmigen

 241

/START-XATMIGEN
% CCM0001 PARAMETER EINGEBEN:
* parameter

When entering the command, you can, of course, use lowercase letters in place of uppercase letters.

You can specify the following parameters; the switches () must be written in lowercase. -d, -l, -i, -c

The option and, if specified, the options and must each be followed by the associated parameter. -d -l -c
Specification of an option without a parameter is not permitted.

[upic]
 -d lcdf-name
[-l lcf-name]
[-i]
[-c stringcode]
[descript-file-1] ... [descript-file-n]

upic If specified, a file containing entries for the configuration of the is xtupic.def upicfile

created. The file is written to the current directory.

If specified, must be the first parameter in . If the parameter is omitted, No upic xatmigen

configuration statements are created.

-d lcdf-
name

Name of the LC definition file; mandatory specification

-l lcf-name Name of the local configuration file to be created. The name must comply with the conventions of
the respective operating system. It is advisable to choose a name with a maximum of 8 characters
and add the extension “ ”..lcf

If the option is omitted, creates the file in the current directory.xatmigen xatmilcf

-i Interactive mode, i.e. the string code is queried for each typed buffer containing a character array.
The possible specifications for the string code are described under the “ ” option.-c

The option takes priority over the option, if this is specified. If is running in the -i -c xatmigen

background or in batch mode, the option must not be specified.-i

-c
stringcode

The specified string type applies for the entire run, i.e. for all character arrays. In xatmigen

interactive mode (“ ”), the “ ” option is ignored.-i -c

The following values can be specified for (see table on):stringcode "Typed buffers"

C
C!
T
T!

octet string
octet string, terminated by '\0'
T.61 string
T.61 string, terminated by '\0'

If no specification is made, is used.T!

Any existing LCF of the same name is automatically overwritten.i

 242

Individual characters are also interpreted as T.61 strings (=). Lowercase letters c and stringcode T!

t are also valid.

descript-file-
1... descript-
file-n

List of files containing the include or COPY elements with the data structures of the typed buffers.

If the list is omitted, only the type is allowed.X_OCTET

 243

4.5.3 Configuring the carrier system and UTM partners

For an XATMI application to be functional, carry out the following steps:

with the UPIC carrier system, align the UPIC configuration () with the local configuration and the upicfile

partner configuration

align the initialization parameters specified in with the openUTM application configuration tpinit()

 244

4.5.3.1 Configuring UPIC

A side information file () must be created for the carrier system UPIC. See figure 21 below to see which upicfile

entries you must make in the , and how these correspond to the local configuration file and KDCFILE of upicfile

the UTM partner. For more information, please refer to .section “Side information for stand-alone UTM applications”

Figure 21: Conformance considerations when configuring server and client

Unix, Linux and Windows systems

An entry must start with or (Unix, Linux and Windows systems) if the server is a stand-alone SD ND
application on a Unix or Windows system. If the server is a UTM cluster application then the entries for the
node applications must start with CD, see .section “Side information for UTM cluster applications”

utmappl is the name of the UTM application, as configured with the KDCDEF statements MAX APPLINAME or
BCAMAPPL=. Address information, such as IP address and port number, must be specified in the upicfile. With
UTM applications on BS2000 systems, no UPIC communication can be made via the application name defined with
MAX APPLINAME, since this is defined with T-PROT = NEA.

The transaction code in the SVCU statement must be defined with a TAC statement in the UTM configuration.tac

If you specify the “upic” parameter for , a is created in which the individual lines need only be xatmigen upicfile

extended to include the parameter (using an editor). If you do not specify the “upic” parameter, you must partner
create the entire yourself.upicfile

 245

4.5.3.2 Initialization parameters and UTM configuration

An XATMI client is initialized using the function. Parameters for the user ID, password, and local application tpinit()
name are passed in the structure. These parameters must be aligned with the UTM configuration as TPCLTINIT

described below.

User ID and password

This security function can only be used with the UPIC carrier system.

Figure 22: Corresponding configuration parameters

A corresponding UTM user ID must be configured in the UTM application with a USER statement for the user ID
user passed with the call. On the basis of the access data user and password, if given, UTM checks the tpinit()
access authorization.

Local name

The diagram below shows the initialization procedure in a case where a local application name is defined in the
.upicfile

Figure 23: Initialization of a local application

 246

1.

2.

If a local application name is configured in the , this name can be specified for (in this upicfile tpinit() client
example).
The associated application name must then be the same as the name specified in the PTERM statement

If no local application name is configured in the , the name defined on the UTM side in the PTERM upicfile

statement must be specified (in this example).upicclt

Example

The sample extract below covers all the relevant steps in local configuration, UPIC configuration, initialization, and
KDCDEF configuration.

client

Local configuration:

SVCU ...
 ,RSN=SERVICE1
 ,TAC=TAC1
 ,DEST=SATURNUS
 ...

upicfile:

SDSATURNUS utmserv1

Initialization

TPCLTINIT tpinfo;
strcpy (tpinfo.cltname, "CLIENT1");
strcpy (tpinfo.usrname, "UPICUSER");
strcpy (tpinfo.passwd, "SECRET");
tpinit (tpinfo);

Server

Local configuration

SVCP SERVICE1 ... (REQP also possible)

 ,TAC=TAC1

KDCDEF statements

MAX APPLINAME=UTMSERV1

or

BCAMAPPL UTMSERV1 (on BS2000 systems, also with parameter TPROT=ISO)
LTERM UPICTERM
PTERM UPRCLIENT, PTYPE=UPIC-R, PRONAM=DxxxSyyy (with UPIC remote conn.)

 247

2.

PTERM CLIENT1, PTYPE=UPIC-L (with UPIC local conn.)
TAC TAC1, PROGRAM=..., API=(XOPEN,XATMI)
USER UPICUSER,PASS=SECRET

 248

4.6 Running XATMI applications

the following items are described in this section:

Linking and starting an XATMI program

Linking an XATMI program on Windows systems

Linking an XATMI program on Unix and Linux systems

Linking an XATMI program on BS2000 systems

Starting the program

Setting Environment variables on Unix, Linux and Windows systems

Setting job variables on BS2000 systems

Trace

 249

4.6.1 Linking and starting an XATMI program

The following items are described in this section:

Linking an XATMI program on Windows systems

Linking an XATMI program on Unix and Linux systems

Linking an XATMI program on BS2000 systems

Starting the program

 250

1.

2.

4.6.1.1 Linking an XATMI program on Windows systems

You are advised to compile the XATMI program using the option __STDC__ (ANSI). When you link an XATMI client
application, the following libraries must be included:

All client modules with the main program

The XATMI client library or under xtclt32.dll xtclt64.dll upic-dir\xatmi\sys

The UPIC DLLs and the PCMX DLL must be available.

If you wish to run XATMI with UPIC-L on Windows, you must link the library into your libxtclt.lib

application program.

 251

1.

2.

3.

1.

2.

1.

2.

3.

4.6.1.2 Linking an XATMI program on Unix and Linux systems

When linking an XATMI client application, the following libraries must be included.

All client modules with the main program

XATMI client library and UPIC library (see below)

-lm (abbreviation for the “mathlib” on Unix and Linux systems)

Depending on whether UPIC-L or UPIC-R is used, the following XATMI and carrier-system libraries must be linked:

UPIC local carrier system:

libxtclt in the directory utmpath/upicl/xatmi/sys

libupicipc in the directory utmpath/upicl/sys

utmpath is the path name under which openUTM was installed.

UPIC remote carrier system:

libxtclt in the directory upic-dir/xatmi/sys

CMX: in the directory libxtclt upic-dir/xatmi/sys
Socket: in the directory libupicsoc upic-dir/sys/

CMX library

 252

1.

2.

4.6.1.3 Linking an XATMI program on BS2000 systems

The following libraries must be linked in when you link an XATMI client application:

All client modules with a main program

The XATMI client and UPIC library .$userid SYSLIB.UTM-CLIENT.070

The library . contains the example $userid SYSLIB.UTM-CLIENT.070

BIND-TPCALL for linking an XATMI program.

The link operation can be omitted if the link name BLSLIBxy is assigned to the required libraries in the
correct order on program start.

i

 253

4.6.1.4 Starting the program

An XATMI client program is started as an executable program.

 254

4.6.2 Setting Environment variables on Unix, Linux and Windows systems

For XATMI applications, openUTM-Client interprets a number of environment variables. The environment must be
set before the application is started.

For diagnostics while an application is running, traces can be activated.

Environment variables

The following environment variables are evaluatey by an XATMI application:

XTPATH Path name for trace files.

If this variable is not set, the trace files are written to the current directory (= directory from which the
XATMI application was started).

XTLCF Name of the local configuration file (LCF)
The file name of the local configuration file must comply with the operating system conventions.

If this variable is not set, a search is made under the name in the current directory.xatmilcf

XTPALCF Defines the search path for additional descriptions of typed buffers.
The buffer descriptions are read from local configuration files with the name or from the xatmilcf

name specified in XTLCF.

A search for all important XATMI versions (e.g. SVCU ...) is performed in the local configuration file
specified using XTLCF.

A search for local configuration files is performed in all the directories specified in XTPALCF and the
typed buffer descriptions are gathered internally
(If multiple buffers have the same name only the first buffer description is used).

The search path structure is exactly the same as in the default Unix, Linux and Windows systems
variable PATH: (... or ...).directory1 : directory2 : directory1 ; directory2 ;

If the specified search path has more than 1024 characters the path is truncated!

There is a maximum of 128 LCF entries.

XTSVRTR

E

I

F

Trace mode for the XATMI application. Possible specifications:

(error): activates the error trace

(interface): activates the interface trace for XATMI calls

(full): activates the full XATMI trace as well as the trace for sub-layers.

Setting environment variables on Windows systems

On Windows systems, you can set environment variables using the You Start/Settings/Control Panel.

can then create or expand the environment variables here. On Windows systems, these settings remain valid until
you change them again.

Setting environment variables on Unix and Linux systems

On Unix and Linux systems, environment variables are set using the following command:

 255

SET = variablename value

The environment variables are valid for one shell only; other values may apply for applications in another shell.

 256

1.

2.

3.

4.

5.

4.6.3 Setting job variables on BS2000 systems

Job variables can be set for an XATMI application. They are linked to the application using the following link names:

XTPATH Link to job variable containing the prefix for the names of the trace files.
If this link name is not assigned to any job variable, the names of the trace files will be constructed
without any prefix.

XTLCF Link to job variable containing the file name of the Local Configuration File (LCF).
The name of the Local Configuration File must comply with the operating system conventions. The
system searches for the file under the current user ID.
If XTLCF is not assigned to any job variable, the system searches under the name XATMILCF under
the current user ID.

XTPALCF Link to job variable containing the search path for additional descriptions of typecast buffers.
The buffer descriptions are read from Local Configuration Files with the names XATMILCF or the
name specified with XTLCF.

The system continues to search for all the important XATMI configurations (e.g. SVCU ...) in the
Local Configuration File specified by XTLCF.

The system searches for Local Configuration Files under all the IDs specified in the search path and
the descriptions of the typecast buffers are collected internally from these files (in the event of two
identical names, only the first buffer description takes effect).

The search path is specified in the form .userid1:userid2:...

XTCLTTR Link to job variable containing the trace mode for the XATMI client application.
Possible specifications:

E (Error): Activates the error trace

I (Interface): Activates the interface trace for the XATMI calls

F (Full): Activates the full XATMI trace and that UPIC trace

Table 13: Job variables on BS2000 systems

If the software product JV is loaded as a subsystem, the job variables can be set as follows on BS2000 systems, for
instance:

Create job variable:

CREATE-JV JV-NAME=FULLTR

Pass value to job variable:

MODIFY-JV JV[-CONTENTS]=FULLTR, SET-VALUE=‘F‘

Set task-specific job variable link:

SET-JV-LINK LINK-NAME=XTCLTTR, JV-NAME=FULLTR

Show task-specific job variable link:

SHOW-JV-LINK JV[-NAME]=FULLTR

Delete task-specific job variable link:

REMOVE-JV-LINK LINK-NAME=XTCLTTR

 257

The job variables are task-specific on BS2000 systems. Different job variables can be assigned to a second
application running under the same ID.

 258

4.6.4 Trace

Each client process writes the trace to a separate file, which can exist in two versions (old and new).

The maximum size of a trace file is 128 Kbytes. As soon as this size is reached, a second file is activated. If this has
also reached the limit, the first file is written again. For a client, a trace file has the following name:

Unix, Linux and Windows systems

XTCpid. ()n

XTC

pid

n

identifies an XATMI client trace

process ID of the client process, 4 or 5-positions

number of the version: 1 or 2
the more recent trace can be identified by the time stamp

BS2000 systems:

[prefix.]XTCtsn.n

prefix The part of the name specified in the job variable referred to by the linkname XTPATH (without
terminating period).

XTC

tsn

n

identifies an XATMI client trace

ID of the client task, 4-digit

number of the version: 1 or 2
the more recent trace can be identified by the time stamp

Example: XTC00341.1: client trace file number 1

XTC00341.2: client trace file number 2

 259

4.7 xatmigen messages

xatmigen messages have the form and are output to on Unix and Linux systems XGnn messagetext... stderr
or to the program window on Windows systems and to SYSLST on BS2000 systems.

On Unix, Linux and Windows systems, use the LANG environment variable to specify whether you want German or
English messages.

On BS2000 systems, you can assign the language code 'D' or 'E' to a task-specific job variable with the link name
LANG in order to control whether messages are issued in English or German.

XG01 Generation of the local configuration files: &LCF / &DEF / &CODE

Meaning
Start message of Tool.

&LCF
&DEF
&CODE

name of local configuration file created
name of configuration fragment created
string code for character array

XG02 Generation terminated successfully

Meaning
The LCF was created; configuration was terminated successfully.

XG03 Generation terminated successfully with warnings

Meaning
The LCF was created. Nevertheless, a warning is output because unnecessary files were specified, for
example. However, this warning has no effect on the configuration.

XG04 Generation terminated by error

No file created.

Meaning
The LCF was not created; the configuration could not be performed. The cause can be determined from
previous messages

XG05 &FTYPE file'&FNAME'

Meaning
This message specifies the file currently being edited, in the following form:

&FTYPE: “description” file contains data structures
“definition” file contains the LCF input
“LC” file contains the local configuration

&FNAME: File name

XG10 Call: &PARAM

Meaning
Syntax error when calling XATMIGEN:
PARAM: possible call parameters and switches

 260

XG11 [Error] Cannot create &FTYPE file '&FNAME'

&REASON

Meaning
The &FNAME file of type &FTYPE cannot be created
&REASON contains a more precise explanation.

&FTYPE: GEN = configuration fragment file (=configuration statements)

LC = local configuration file

XG12 [Warning] File not found.

Meaning
The definition file or a description file was not found; perhaps the file does not exist.

XG13 [Warning] Too many &OBJECTS, Maximum: &MAXNUM

Meaning
Message indicating that too many objects were found.

&OBJECTS: subtypes
&MAXNUM: maximum number

XG14 [Error] Line &LINE: Syntaxerror, &helptext

Meaning
Syntax error in line &LINE of the LC definition file
&HELPTEXT: help text

XG15 [Error] Line &LINE: No record definition found for buffer &BUFF

Meaning
No associated record definition could be found for the buffer &BUFF in line &LINE.

XG16 [Error] Line &LINE: Basictype error in buffer &BUFF

Meaning
The syntax description of the buffer &BUFF in line &LINE of the LCF contains an incorrect basic type (int,
short, etc.).

XG17 [Error] Cannot open &FTYPE file '&FNAME’.

&REASON

Meaning
The &FNAME file of type &FTYPE cannot be opened.
&REASON contains a more detailed explanation.
&FTYPE: DEF (= LC definition file)

XG18 [Error] &REASON

Meaning
General error.
&REASON contains a detailed reason for the error.

 261

XG19 [Message] Created new buffer: '&BUFF'

Meaning
&BUFF: created buffer

XG20 [Message] Service name '&SVC' truncated to 16 characters!

Meaning
&SVC : service name.

XG21 [Message] Line &LINE: unknown statement line '&HELPTEXT'

Meaning
Message for the line &LINE in the LC definition file
&HELPTEXT: help text (part of LC-line)

XG22 [Message] Line &LINE: Default set MODE='&TEXT'

Meaning
Message for the line &LINE in the LC definition file
&TEXT: set default mode

 262

5 Configuration

A client with the UPIC carrier system always uses UTM applications as servers in Unix, Linux or Windows systems
or BS2000 systems. The configuration of the UPIC carrier system must therefore be coordinated with the
configuration of the UTM partner application(s).

Figure 24: Configuration with and without side information file

 263

5.1 Configuration without upicfile

For communication between UPIC and UTM, it is necessary for both the UPIC client and the UTM server to sign on
to the local communication system with a name. UPIC signs itself on to the communication system with the

, UTM with the BCAMAPPL (application name). A communication relationship between the client and local_name
server is defined by UPIC addressing the UTM application in this case from BCAMAPPL and host name. UTM
receives the local name of the client in order to be able to authenticate the client (PTERM statement).

openUTM only accepts the connection if a PTERM statement or a suitable TPOOL exists for the complete address
consisting of local name, process name and BCAMAPPL.

UPIC addresses the UTM application using the . A is designated as single-part partner_LU_name partner_LU_name
if it only contains the address information about the name of the UTM partner application. The two-part

is identified by the fact that it contains a dot (“.”). The part to the left of the dot is the application partner_LU_name
name, the part to the right of the dot is the system name. The dot itself does not form part of the address.

The values for TSEL and HOSTNAME are derived from the . The left part, up to the period (" ") i.partner_LU_name .

e. the application name, is assigned to TSEL. The part to the right of the period, i.e. the host name, is assigned to
HOSTNAME.

Address components

local_name

The is set with the call. A preset is used if an empty (8 local_name Enable_UTM_UPIC() local_name local_name
blanks and/or length = 0) is passed with this call. The preset is assigned the following default value:local_name

On Unix, Linux and Windows systems:

UPICL with UPIC-L

UPICR with UPIC-R

It is overwritten with the call .Specify_Local_Tsel()

upicfile comparison

The value of can be overwritten using a . The is described in local_name upicfile upicfile section “The

.side information file (upicfile)”

partner_LU_name

Following the call, the is assigned the following default value:Initialize_Conversation partner_LU_name

On Unix, Linux and Windows systems:

UTM with UPIC-L

UTM.local with UPIC-R

It is overwritten with the call.Set_Partner_LU_Name()

upicfile comparison

The value of can also be overwritten using a . The in turn is partner_LU_name upicfile partner_LU_name
addressed using the in the .Symbolic Destination Name upicfile

The is described in .upicfile section “The side information file (upicfile)”

Symbolic Destination Name

The is precisely 8 characters in length and is passed in the Symbolic Destination Name Initialize_Conversation
call. An empty consists of precisely 8 blanks.Symbolic Destination Name

 264

An empty be passed as the in the Symbolic Destination Name must Symbolic Destination Name
 call.Initialize_Conversation

upicfile comparison

When a is being used, an empty can be passed in the upicfile Symbolic Destination Name
 call.Initialize_Conversation

The is described in .upicfile section “The side information file (upicfile)”

 265

5.1.1 UPIC-R configuration

UPIC-R uses transport systems for communication. In almost all practical situations, this involves TCP/IP with the
protocol referred to as RFC1006. Transport systems have their own address regulations. The RFC1006 protocol is
characterized by the fact that each transport system application signs itself on to the transport system with a name,
referred to as the transport selector (T-SEL). The partners address one another using these names. RFC1006 is
based on TCP/IP, so TCP/IP also requires the following addressing information:

System name

Port number

UPIC-R is configured using and with the being mapped on the local T-local_name partner_LU_name, local_name
SEL. The application name from the two-part is mapped on the remote T-SEL, the system name partner_LU_name
from the two-part is the name of the system in the network. The be two-partner_LU_name partner_LU_name must
part, otherwise the described procedure does not work.

When mapping the and the application name to the T-SEL, bear in mind that the character code of the local_name
T-SEL is not defined a priori. The two systems on which the server and client are running can use different
character codes for representing the T-SEL (e.g. Windows systems uses an extended ASCII character code,
BS2000 systems the EBCDIC character code). Consequently, the format of the names must be defined. Three
character formats are possible between UPIC and UTM: ASCII, EBCDIC and TRANSDATA. The TRANSDATA
character set is a restricted subset of the EBCDIC character set. UPIC-R checks whether the character set used by

 and/or the character set used by the application name can be converted into the TRANSDATA local_name
character set. The TRANSDATA character format is used if this is the case, otherwise the EBCDIC character format
is used.

One port number each is assigned to both the and the . The two port numbers are local_name partner_LU_name
not derived from the name, they are always set to the value 102 by default.

The local port number is assigned to the . The default value can be overwritten. The local port number is local_name
a purely formal value which does not have any effect, and is only entered on grounds of compatibility. It should be
disregarded in the configuration of UPIC-R.

The remote port number is assigned to . In contrast to the local port number, there is a significant partner_LU_name
importance attached to the remote port number. This is because the UTM partner application is addressed using
the remote port number.

For BS2000 systems, it has been agreed to use port number 102 wherever possible.
There is no general recommendation with respect to the port number on Unix, Linux and Windows
systems. Port number 102 should, however, be used with care.

i

BS2000 only

In the vast majority of practical cases, it is sufficient to use the default value 102. BCAM and CMX always
support port 102 as the central access port for RFC1006. Although it is possible to select another port,
this requires a significant amount of configuration work on the server side, for example BCMAP entries
have to be created for the BS2000 system. Such configurations require a certain level of experience and
are not described here. As a rule, port 102 cannot be used if the UTM partner application is running on a
system which uses PCMX to access the transport system. In this case, the value of the remote port
number must be overwritten with the value which is used by the UTM application.

i

 266

The values T-SEL, T-SEL format and local port number of the can be overwritten with the following calls:local_name

Specify_Local_Tsel
Specify_Local_Tsel_Format and
Specify_Local_Port

The values can also be overwritten by entries in the . In this case, the corresponding values are defined upicfile

using keywords. The is described in .upicfile section “The side information file (upicfile)”

The addressing information for the network can be formed by specifying the and using the internal rules local_name
of UPIC to have the network address created. It is also permitted and a function has been provided to overwrite one
or more of the values derived from the using the specified calls. It is permitted for any mixture of local_name
derived, default and explicitly set values to be used in this case. Equally, it is permitted for all of the values derived
from the to be overwritten. The is meaningless if you select this type of configuration. You local_name local_name
can then specify any whatsoever, only providing it is compliant with the formal criteria of the local_name

 call.Enable_UTM_UPIC

The values system name (or the Internet address derived from it), T-SEL, T-SEL format and remote port number
can be overwritten with the following calls:

Set_Partner_Host_Name
Set_Partner_IP_Address
Set_Partner_Tsel
Set_Partner_Tsel_Format
Set_Partner_Port

The call is ignored if the and calls are Set_Partner_Host_Name Set_Partner_Host_Name Set_Partner_IP_Address
both called. The values can also be overwritten by entries in the . In this case, the corresponding values upicfile

are defined using keywords. The is described in .upicfile section “The side information file (upicfile)”

In many cases, the addressing information for the network can be formed by specifying the and partner_LU_name
using the internal rules of UPIC to have the network address created. It is also permitted and a function has been
provided to overwrite one or more of the values derived from the using the specified calls. It is partner_LU_name
permitted for any mixture of derived, default and explicitly set values to be used in this case. Equally, it is permitted
for all of the values derived from the to be overwritten. The is meaningless if partner_LU_name partner_LU_name
you select this type of configuration. You can then specify any whatsoever, only providing it is partner_LU_name
compliant with the formal criteria which are required of it (among other aspects, it must be two-part).

 267

5.1.2 UPIC-L configuration (Unix, Linux and Windows systems)

UPIC-L uses the mechanisms of interprocess communication on Unix, Linux and Windows systems. In these
communication systems, the and the can be directly mapped to the addressing local_name partner_LU_name
formats of the communication system. You must bear in mind that the is only ever allowed to be partner_LU_name
specified as single-part, because the UPIC-L client and the UTM partner application always run on the same system
as a result of the communication system used. The specification of a two-part would also contain partner_LU_name
a system address. A two-part is treated as an error because it can never be used.partner_LU_name

 268

5.1.3 Configuration using BCMAP entries (BS2000 systems)

If UPIC uses the transport system component CMX(BS2000) for communication on BS2000 systems, the
configuration is influenced by BCMAP entries.

BCMAP entries for the client application and for the UTM partner application are only necessary in a few
exceptional cases where communication takes place with a UTM application on Windows systems.

The UPIC client cannot influence the effect of BCMAP entries.

BCMAP entries can be created both for the and for the . BCMAP entries for the local_name partner_LU_name
 are not recommended.local_name

BCMAP entries for the are generally required if a UPIC client on BS2000 systems is to partner_LU_name
communicate with a UTM application on Windows systems.

 269

5.2 The side information file (upicfile)

You must create the yourself. This file has the following format:upicfile

In Unix, Linux and Windows systems the file must contain only text and must be called . If you choose a upicfile
different name, you must also set the UPICFILE environment variable accordingly.

On BS2000: You must create a SAM file with the name . If you choose a different file name, you must upicfile

set the job variable link *UPICFIL accordingly.

This file is used by all client programs, e.g. in the or calls.Initialize_Conversation() Enable_UTM_UPIC()

On Linux Unix and Windows systems: The environment variable UPICPATH determines the directory; std =
current directory

On BS2000: the job variable linkname * UPICPAT determines a partially qualified file name; std = expiration
identifier of the UPIC client

The can contain the following types of entries:upicfile

communication partner entries which are addressed in the client program using the symbolic destination name:

Entries for the direct addressing of UTM applications (identifier HD or SD)

Entries for a list of communication partners (identifier ND) from which the client program selects an available
UTM partner via the load balancer. These
communication partners must be standalone UTM applications.

Entries for a list of communications partners in an openUTM cluster (identifier CD) from which the client
program selects an available cluster node via the load balancer.

Side information entries for the local application which are addressed in the client program using the local
application name (identifier LN). These entries are optional.

To make the layout of the legible, the file may also contain blank lines and/or comment lines. Comment upicfile

lines are identified by an asterisk („*“) in column 1. Note that a semicolon is always interpreted as an end-of-line
character, even within a comment line.

 270

5.2.1 Side information for standalone UTM applications

Each communication partner is addressed in the client program by its symbolic destination name. This name is
specified when a conversation is initialized (in the call).Initialize_Conversation

An entry must be created in the for every which is used in the program. upicfile Symbolic Destination Name
Each entry takes up one line in the .upicfile

The entry takes the following form for standalone UTM applications:

SD
/HD
/ND

symbolic
destination

name

blank partner_LU_name blank transactioncode blank keywords Z end-of-
line

character

2
bytes

8 bytes 1 byte 1-73 bytes1 1 byte 1-8 bytes 1 byte

--- optional --- --- optional ---

1For Unix, Linux and Windows systems: With local connection via UPIC local, “partner_LU_name” can only be up to
8 bytes long.

Description of the entry:

The names specified in the entry must be separated by blanks.
Exception:
There must be no blank between the identifiers SD/HD/ND and the symbolic destination name.

Identifiers SD/HD/ND:
The line begins with the identifier SD, HD or ND.

The identifier HD or SD specifies whether or not UPIC is to perform automatic code conversion during sending
and receiving of data. For more information on code conversion, see also .section “Code conversion”

The identifier ND specifies that it is an entry for a list of partner applications. Please refer to section “Side
 for details.information for list of partner applications”

HD and SD tags for Unix, Linux, and Windows systems:
 If you specify HD, then an automatic code conversion of the user data is carried out when sending and
receiving.
 Data sent to the UTM partner application is converted from the locally used code to EBCDIC.
 Data arriving from the partner application is converted to local code by EBCDIC.
 Enter SD, then no automatic code conversion will be performed.
Indicator HD and SD for BS2000 systems:
On BS2000 systems, the tags have the opposite meaning.
 HD means in UPIC on BS2000 systems that no automatic code conversion is performed when sending and
receiving data in the local system. HD should always be specified if the client communicates with a UTM
application on BS2000 systems (BS2000 - BS2000 coupling).
 SD means that EBCDIC-> ASCII conversion is performed before sending data, and ASCII-> EBCDIC
conversion when receiving.
 SD should be specified only for connections to UTM applications on Unix, Linux, or Windows systems.

 The indicator SD / HD in the upicfile can be overwritten with the call.Set_Convertion()

symbolic destination name
The symbolic destination name must be precisely eight characters long.

 271

partner_LU_name
With connections via UPIC remote, the can be between 1 and 73 characters long. For partner_LU_name

 you must specify the symbolic name under which the UTM partner application is known to the partner_LU_name
communication system.
With connections via UPIC remote you should always specify the in two levels (separated by partner_LU_name
a period) in the format . The values for TSEL (=) and applicationname.processorname applicationname
HOSTNAME (=) are derived from the two-part .processorname partner_LU_name

The following restrictions apply for the name lengths:

applicationname: maximum length eight characters

processorname: maximum length 64 characters

BS2000 systems
You have to specify the in two parts on BS2000 systems. must then match partner_LU_name processorname
the BCAM name of the remote computer.

Example: Specification in the upicfile

SDsymbdest UTMAPPL1.D123ZE45

An entry in the upicfile can be overwritten with the call.Set_Partner_LU_Name

The individual values of a two-level can be overwritten by entries in the side information file partner_LU_name
(HOSTNAME=, TSEL=) or by using the calls and .Set_Partner_Hostname Set_Partner_Tsel

UPIC-L for Unix, Linux and Windows systems:

With local connection to a UTM application via UPIC-L, the partner name must not exceed 8 characters and
must be specified in one level.

transaction code (optional):
You can specify the transaction code of a UTM service. The transaction code is between 1 and 8 characters
long. The transaction code you specify must have been generated in the UTM partner application (TAC
statement) or dynamically configured. Specification of a transaction code in an entry is optional. If it is not
specified, the transaction code (name of the service) in the program must be given in the call.Set_TP_Name

An entry in the can be overwritten with the call.upicfile Set_TP_Name

keywords (all entries are optional)
The following keywords can be used to influence the UPIC-specific conversation characteristics (see also section

) in the . The keywords are used to enter addressing information and to specify whether “CPI-C terms” upicfile

encryption is to be implemented.

You can enter keywords either after the partner name or after the transaction code. Keywords must be separated
from the partner name or transaction code by a space. You can enter as many keywords as you like in any order.
When entering more than one keyword, you must use a space to separate them.

ENCRYPTION-LEVEL={NONE | 0 | 3 | 4 | 5}
ENCRYPTION-LEVEL is used to specify whether or not the data for the conversation is to be encrypted and
which encryption level is to be used.

If you enter ENCRYPTION-LEVEL=NONE or ENCRYPTION-LEVEL=0 (both have the same effect), the user
data is not encrypted. If the application establishes a connection which demands encryption of data then the UTM

encryption level is automatically adjusted accordingly. The same happens if UPIC on a connection with

 272

ENCRYPTION-LEVEL=NONE calls a TAC which is generated using encryption and UPIC does not send user
data when calling the TAC. When UPIC receives encrypted data, the value of the encryption level is
automatically increased accordingly.

If you specify ENCRYPTION-LEVEL=3, 4 or 5 and can implement this encryption on the connection, openUTM

all user data of the subsequent conversation is encrypted with the same level before transfer.

Values 3 to 5 mean:

3 The user data is encrypted using the AES algorithm. An RSA key with a key length of 1024 bits is used for
exchange of the AES key.

4 The user data is encrypted using the AES algorithm. An RSA key with a key length of 2048 bits is used for
exchange of the AES key.

5 User data are encrypted and authenticated, using the AES/GCM algorithm. The Diffie-Hellman algorithm is
used to exchange the AES key length of 2048 bits. Not available on BS2000

The conversation is ended if openUTM does not support the specified encryption level.

The value is ignored if the UTM application cannot implement encryption for one of the following reasons:

the software requirements are not met.

it does not want to implement encryption because the client partner was generated as ’trusted’.

UPIC-L (Unix, Linux and Windows systems only): The value of ENCRYPTION-LEVEL is ignored.

The entry in the can be overwritten using the call.upicfile Set_Conversation_Encryption_Level

HOSTNAME=hostname

The host name is the processor name and can be up to 64 characters in length. The host name overwrites
the value assigned using .Initialize_Conversation

An entry in the can be overwritten using the call.upicfile Set_Partner_Host_Name

UPIC-L (Unix, Linux and Windows systems only): The value of HOSTNAME is ignored.

IP-ADDRESS= or = (IPv6)nnn.nnn.nnn.nnn x: x: x: x: x: x: x: x

You can enter an Internet address in IPv4 or IPv6 format.

If the Internet address is specified using traditional dot notation, it is interpreted as an IPv4 address.

If the Internet address is specified in the form , it is interpreted as an IPv6 address. x: x: x: x: x: x: x: x x
represents a hexadecimal number between 0 and FFFF. The alternative methods of writing IPv6
addresses (e.g. the omission of zeros using :: or IPv6 mapped format) are permitted.

If an Internet address is entered, the value of HOSTNAME is ignored.

An entry in the can be overwritten using the call.upicfile Set_Partner_IP_Address()

UPIC-L (Unix, Linux and Windows systems only): The value for IP-ADDRESS is ignored.

UPIC on BS2000 systems using CMX as its communication system: The value for IP-ADDRESS is ignored.

PORT=listener-port

The port number is only entered for the address format RFC1006. The port number can be a value between
0 and 32767. The port number overwrites the port-number value assigned using . Initialize_Conversation
Entering PORT is optional. The value of PORT is used as the port number and not 102.

An entry in the can be overwritten using the call.upicfile Set_Partner_Port()

UPIC-L (Unix, Linux and Windows systems only): The value of PORT is ignored.

UPIC on BS2000 systems using CMX as its communication system: The value for PORT is ignored.

 273

RSA-KEY=rsa-key

The public part of the RSA key of the partner application can be entered. If the public key is entered, the
UPIC library compares the entered key with the one it received from the UTM partner application on
connection setup. If there is a difference between keys, whether it be a change of at least one byte or just a
change in length, the connection to is cleared down immediately by the UPIC library. This procedure is used
to check whether the key is genuine.

UPIC-L (Unix, Linux and Windows systems only): The value of RSA-KEY is ignored.

T-SEL=transport-selector

The transport selector (T-SEL) of the transport address addresses the partner application within the remote
system. It must be the same as the entry in the remote system. The transport selector is a name and can be
up to 8 characters long. The specified T-SEL overwrites the value assigned using . Initialize_Conversation
The use of T-SEL is optional.

The entry in the can be overwritten using the call.upicfile Set_Partner_Tsel

UPIC-L (Unix, Linux and Windows systems only): The value of T-SEL is ignored.

T-SEL-FORMAT={T | E | A }

TSEL-FORMAT is the format indicator of the transport selector. The valid formats are:

Valid formats for TSEL-FORMAT

T for TRANSDATA
E for EBCDIC
A for ASCII

TSEL-FORMAT overwrites the value assigned using The use of T-SEL-FORMAT is Initialize_Conversation.
optional.

The value of TSEL-FORMAT is used. The entry in the can be overwritten using the upicfile

 call.Set_Partner_Tsel_Format()

UPIC-L (Unix, Linux and Windows systems only): The value of T-SEL-FORMAT is ignored.

End-of-line character:
The character that concludes the entry varies depending on the platform for which the is created:upicfile

Windows systems:
Each line is concluded with a carriage return and line feed (the return key). A semicolon before the carriage
return is optional.

Unix and Linux systems:
The line is concluded with a <newline> character (line feed). A semicolon before the <newline> character is
optional.

BS2000 systems:
The end of line is represented by a semicolon (;). No spaces are permitted after this.

If there is a semicolon in a line (contents of the side information entry), UPIC treats this as the end of the line and
interprets the rest of the line as a new line (until the next end-of-line character).

BS2000i

 274

Defining a DEFAULT server

For your client application you can define a DEFAULT server or a DEFAULT service (see also section “Default
). A client program is connected to the DEFAULT server/service if in the server and DEFAULT name of a client”

program an empty name is passed as a symbolic destination name. In the DEFAULT entry you enter the value.

 instead of the symbolic destination name. The DEFAULT server entry must therefore have the following DEFAULT

format:

SD
/HD
/ND

.DEFAULT blank partner_LU_name blank transaction
code

blank keywords end-of-
line

character

2
bytes

1 byte 1-73 bytes1 1 byte 1-8 bytes 1 byte

--- optional --- --- optional ---

1For Unix, Linux and Windows systems: With a local connection via UPIC locals, “partner_LU_name” can only be
up to 8 bytes long.

With such an entry you define the UTM partner application as the DEFAULT server. If you partner_LU_name
specify a transaction code, you also define the associated service as the DEFAULT service. You can call a different
service on the DEFAULT server by setting a different transaction code in the program with the call (e.Set_TP_Name
g. KDCDISP for the service restart). The specification in overwrites the value of in Set_TP_Name transactioncode
the side information entry.

How to pass a list of communication endpoints via the upicfile is described in detail in the chapter Side information
.for UTM cluster applications

In BS2000 systems, the next end of line character is also a semicolon. BS2000 editors such as EDT
have a different view of lines from UPIC. If a further blank follows the semicolon of line in the editor n
and line +1 starts with SD and ends with a semicolon, UPIC sees a line which starts with " SD" and n

 with "SD". The "Symbolic Destination Name" in this line is not found.not

 275

5.2.2 Side information for list of partner applications

Each communication partner from the list of UTM partner applications is addressed using an identical symbolic
destination name in the client program. This name is specified when initializing a conversation (call

). For each symbolic destination name used in the program, you must create entries in the Initialize_Conversation
.upicfile

To enable a UPIC client to access all communication partners, you create an entry in the for each upicfile

partner. When doing this, please observe the following rules.

Rules for configuring a list of communication partners

For a symbolic destination name, you must create a separate entry in the upicfile with the identifier ND for each
partner application. For example, if the list consists of three UTM applications, you must create three entries with
the same symbolic destination name.

All entries for a particular symbolic destination name must immediately follow one another, see example below.

The communication end points can belong to one specific UTM application or to different UTM applications. In
this case, the UTM applications should be running on the same platform in order to avoid code conversion
problems.

Example list of partner applications

You want to configure a list of three application names for a symbolic destination name (). The service1
application names are distributed over two different standalone UTM applications running on the computers

 and . In the UTM application on the two application names (BCAMAPPL) HOST01 HOST02 HOST01
 and are configured, and in the UTM application on the application name UTMAPPL1 UTMAPPL2 HOST02
.UTMAPPL1

The entries could, for instance, be as follows:

Sample for a list of partner applications

* entries for list of three communication end points in two UTM standalone applications
NDservice1 UTMAPPL1.HOST01 TAC1
NDservice1 UTMAPPL2.HOST01 TAC1
NDservice1 UTMAPPL1.HOST02 TAC1

 276

5.2.3 Side information for UTM cluster applications

Every communication partner, including UTM cluster applications is addressed by its symbolic destination name in
the client program. This name is specified when a conversation is initialized (call). You must Initialize_Conversation
make entries in the for each used in the program.upicfile symbolic destination name

A UTM cluster application is made up of several identical node applications running on the individual nodes of the
cluster. To allow a UPIC client to easily access all the node applications of a UTM cluster application, you must
configure an openUTM cluster in the . In doing this, you must observe the following rules.upicfile

Rules for configuring an UTM cluster application

For each , you must create a separate entry for each node application in the symbolic destination name
 with the identifier CD. If, for instance, the UTM cluster application is made up of three node upicfile

applications, you must create three entries using the same .symbolic destination name

All entries for a given must follow each other consecutively.symbolic destination name

The entries for a given differ only in terms of the address specifications for the node (symbolic destination name
 or, if used, the keywords HOSTNAME and IP-ADDRESS). The specifications for partner_LU_name transaction-

and the other keywords must match.code

Format of an entry

Each entry occupies one line in the . An entry takes the following form:upicfile

CD symbolic
destination name

blank partner_LU_name blank transaction
code

blank keywords end-of-
line

character

2
bytes

8 bytes 1
byte

1-73 bytes 1
byte

1-8 bytes 1
byte

--- optional --- --- optional ---

Description of the entry

The names specified in the entry must be separated by blanks. Exception:No blank is permitted between the CD
code and the symbolic destination name.

CD code: The line starts with the code CD. This code has no effect on automatic code conversion.

symbolic destination name: The symbolic destination name must be exactly 8 characters long.

The combination can occur any number of times in the .CDsymbolic_destination_name upicfile

partner_LU_name: The can be between 1 and 73 characters in length. The symbolic name partner_LU_name
under which the UTM partner application is known to the system must be specified for .partner_LU_name

You should always specify on two levels in the form partner_LU_name applicationname.processorname
(separated by a dot). The values for TSEL (=) and HOSTNAME (=) are derived applicationname processorname
from the two-level .partner_LU_name

The following restrictions apply for the name lengths:

applicationname: maximum length eight characters

processorname: maximum length 64 characters

 277

BS2000 systems

On BS2000 systems, you must specify the with two levels. must then match the partner_LU_name processorname
BCAM-name of the remote host.

Example: Specification in the upicfile

CDsymbdest UTMAPPL1.D123ZE45

An entry in the upicfile be overwritten by a call. The individual values of a two-level cannot Set_Partner_LU_Name
 must not be overwritten in the program. Any such call will be rejected.partner_LU_name

transaction-code (optional specification):
The transaction code of a UTM service can be specified. The transaction code is a name of up to 8 characters in
length. The specified transaction code must have been generated in the UTM partner application (TAC
statement) or must have been configured dynamically. Specification of a transaction code in an entry is optional.
If this specification is omitted, the transaction code (name of the service) must be specified in the program with
the call.Set_TP_Name

An entry in the can be overwritten by a call.upicfile Set_TP_Name

Keywords (all specifications optional):

You can influence the UPIC-specific conversation characteristics (see also “Conversation characteristics” (CPI-C
) in the with the following keywords. You use the keywords to specify the addressing terms) upicfile

information and specify whether encryption is to be used.You can specify the keywords after the partner name or
after the transaction code, separated by blanks in each case. The sequence and number of keywords is
arbitrary. Multiple keywords are separated by blanks.

ENCRYPTION-LEVEL={NONE | 0 | 3 | 4 | 5}:
ENCRYPTION-LEVEL specifies whether the data for the conversation is to be encrypted or not and what
encryption level is to be used.

If you specify ENCRYPTION-LEVEL=NONE or ENCRYPTION-LEVEL=0 (both have the same effect), the user
data is not encrypted. If, however, the UTM application requires the data to be encrypted over a given
connection, the encryption level is automatically increased. The same thing happens if UPIC calls a TAC
generated with encryption over a connection with ENCRYPTION-LEVEL=NONE and UPIC does not send any
user data when calling the TAC. If encrypted data is received, UPIC automatically increases the value for the
encryption level.

If you specify ENCRYPTION-LEVEL= 3, 4 or 5 and openUTM is able to encrypt the data accordingly over the
connection, all the user data of the following conversation is transmitted in encrypted form using the same level.

The values 3 through 5 have the following meanings:

3 Encryption of the user data using the AES algorithm. An RSA key with a key length of 1024 bits is used to
exchange the AES key.

4 Encryption of the user data using the AES algorithm. An RSA key with a key length of 2048 bits is used to
exchange the AES key.

5 User data are encrypted and authenticated, using the AES/GCM algorithm. The Diffie-Hellman algorithm is
used to exchange the AES key with a key length of 2048 bits. Not available on BS2000.

If openUTM does not support the specified encryption level, the conversation is terminated.

The value is ignored if a UTM application cannot perform encryption because

 278

the software requirements are not met

it does not wish to perform encryption because the client partner has been generated as trusted

HOSTNAME=hostname

The hostname is the processor name and can be up to 64 characters in length. The hostname overwrites
the value assigned with .Initialize_Conversation

An entry in the be overwritten by a call.upicfile cannot Set_Partner_Host_Name

IP-ADDRESS= (IPv4) or = (IPv6).nnn.nnn.nnn.nnn x: x: x: x: x: x: x: x

An Internet address can be specified in IPv4 and IPv6 format.

If the Internet address is specified using the traditional dot notation, it is interpreted as an IPv4 address.

If the Internet address is specified in the form , it is interpreted as an IPv6 address. In x: x: x: x: x: x: x: x
this notation, is a hexadecimal number between 0 and FFFF. The alternative notations for IPv6 x
addresses (e.g. the omission of zeros using :: or IPv6 mapped format) are permitted.

If an Internet address is specified, the value of HOSTNAME is ignored. An entry in the upicfile cannot
be overwritten by a call.Set_Partner_IP_Address

UPIC on BS2000 systems with CMX as the communication system

The value for IP-ADDRESS is ignored.

PORT=listener-port

The port number is only specified for the address format RFC1006. The port number can assume a value of
0 through 32767. This port number overwrites the value for the port number assigned with

. The PORT specification is optional.Initialize_Conversation

The value of PORT is used as the port number instead of 102.

An entry in the can be overwritten by a call.upicfile Set_Partner_Port

UPIC on BS2000 systems with CMX as the communication system

The value of PORT is ignored.

RSA-KEY=rsa-key

The public part of the RSA key of the partner application can be specified. If the public key is specified, the UPIC
the library compares the specified key with the key it receives from the UTM partner application when the
connection is established. If the two keys differ in at least one byte or even just in length, the connection is
immediately cleared again by the UPIC library. This procedure allows the genuineness of the key to be checked.

T-SEL=transport-selector

The transport selector (T-SEL) of the transport address addresses the partner application within the remote
system. It must match the specifications in the remote system. The transaction selector is a name of up to 8
characters in length. The T-SEL specified overwrites the value assigned with . The T-Initialize_Conversation
SEL specification is optional.

The entry in the can be overwritten by a call.upicfile Set_Partner_Tsel

T-SEL-FORMAT={T | E | A }

T-SEL-FORMAT is the format indicator of the transport selector. The valid formats are as follows:

Valid formats for TSEL-FORMAT

 279

T for TRANSDATA
E for EBCDIC
A for ASCII

T-SEL-FORMAT overwrites the value assigned with . The T-SEL-FORMAT Initialize_Conversation
specification is optional.

The value of TSEL-FORMAT is used. The entry in the can be overwritten by a upicfile

 call.Set_Partner_Tsel_Format

CONVERTION={IMPLICIT | NO}CONVERTION=IMPLICIT specifies that automatic code conversion is
performed on the user data on sending and receiving. For information on code conversion, see also the section

.“Code conversion”

If you do not specify CONVERTION= or if you specify CONVERTION=NO, no automatic conversion is performed.

End of line character: The character used to terminate the entry differs for the various platforms for which the
 is created:upicfile

Windows systems:
Lines are terminated by a carriage return and line feed (Return key). A semicolon can be optionally inserted in
front of the carriage return character.

Unix and Linux systems:
Lines are terminated with a <newline> character (linefeed). A semicolon can be optionally inserted in front of
the <newline> character.

BS2000 systems:
The end of the line is represented by a semicolon (;). No spaces are permitted after this.

If there is a semicolon in a line (contents of the side information entry), UPIC treats this as the end of the
line and interprets the rest of the line as a new line (until the next end of line character).

Example

Two and) are to be configured for one UTM cluster application. symbolic destination names (service1 service2
The UTM cluster application is made up of three node applications on the hosts CLNODE01, CLNODE02 and
CLNODE03. In addition, the upicfile contains a further entry for a standalone UTM application UTMAPPL2.

The entries could, for instance, be as follows:

Example of an upicfile

BS2000
Note that in BS2000 systems, the next end of line character is also a semicolon. BS2000 editors such
as EDT regard lines differently from UPIC. If the semicolon in line in the editorn

is followed by another blank and

line +1 starts with CD and ends with a semicolon,n

UPIC sees a line beginning with " CD" and with "CD". The "symbolic destination name" in this line not
is not found.

i

 280

* entries for UTM cluster application UTMAPPL1
CDservice1 UTMAPPL1.CLNODE01 TAC1
CDservice1 UTMAPPL1.CLNODE02 TAC1
CDservice1 UTMAPPL1.CLNODE03 TAC1
* entry for stand-alone application UTMAPPL2
SDservice2 UTMAPPL2.D123S234 TAC4

The transaction code TAC1 can be overwritten in the program using , thus allowing other TACs Set_TP_Name
to be addressed. In addition, it is possible to configure further standalone UTM applications (with the prefix SD,
HD or ND). These entries must, however, precede or follow the entries for the UTM cluster application
described above.

Defining the DEFAULT server

You can define a DEFAULT server or a DEFAULT service for your client application (see also the section “Default
). A client program is connected to the DEFAULT server/service if an empty server and DEFAULT name of a client”

name is passed as the symbolic destination name in the program. In the DEFAULT entry, you specify the value .

in place of the symbolic destination name. The DEFAULT server entry must therefore have the following DEFAULT

format:

CD .DEFAULT blank partner_LU_name blank transaction
code

blank keywords end-of
line

character

2
bytes

1 byte 1-73 bytes1 1 byte 1-8 bytes 1 byte

--- optional --- --- optional ---

An entry such as this defines the UTM partner application as the DEFAULT server. If you enter a partner_LU_name
transaction code, you also define the associated service as the DEFAULT service. You can call a different service
on the DEFAULT server if you use the call in the program to set a different transaction code (e.g. Set_TP_Name()
KDCDISP for a service restart). The specification in overwrites the value of in the Set_TP_Name transaction-code
side information entry.

 281

5.2.4 Side information for the local application

For each client application several entries can be created in the . Each entry defines a local application upicfile

name with which the client program can sign on to UPIC.

A side information entry for the local client application occupies one line and must have the following format:

LN local application
name

blank application
name

blank keywords end-of-line
character

2
bytes

8 bytes 1 byte 1-32 bytes1 1 byte

--- optional ---

1For Unix, Linux and Windows systems: With local connection via UPIC local, “application name” can only be up to
8 bytes long.

Description of the entry

The line begins with the identifier LN. LN indicates that this is a side information entry for the local client
application.

local application name
Here you specify the local application name with which a client program signs on to UPIC. There must be no
blank between the identifier LN and the local application name, but the local application name and the application
name which follows it must be separated by a blank.

application name
The application name can be up to 32 characters long. The client application signs on to the transport system
using the application name.

UPIC local (Unix, Linux and Windows systems only) The application name can be up to 8 characters long.:

keywords (optional)
The following keywords allow you to influence the UPIC-specific values for the local application (see also section

) in the . These keywords allow you to enter addressing information. “CPI-C terms” upicfile

Keywords can be entered after either the . You must separate the keyword by a space. You can application name
enter as many keywords as you like and in any order. When entering more than one keyword, you must separate
them with a space.

PORT=listener-port

The port number is only entered for the address format RFC1006. The port number can be a value between
0 and 32767.

The value of PORT is used as port number instead of 102.

An entry in the can be overwritten using the call.upicfile Set_Local_Port()

UPIC-L (Unix, Linux and Windows systems only): The value of PORT is ignored.

T-SEL=transport-selector

Is the transport selector (T-SEL) of the transport address. It must be the same as the entry in the remote
system. The transport selector is a name which is up to 8 characters long. The use of T-SEL is optional.

The value of T-SEL is used. The entry in the can be overwritten using the call.upicfile Set_Local_Tsel

UPIC-L (Unix, Linux and Windows systems only): The value of T-SEL is ignored.

T-SEL-FORMAT={T | E | A }

 282

TSEL-FORMAT is the format indicator of the transport selector. The valid formats are:

Valid formats for TSEL-FORMAT

T for TRANSDATA
E for EBCDIC
A for ASCII

The use of T-SEL-FORMAT is optional.

The value of TSEL-FORMAT is used. The entry in the can be overwritten using the upicfile

 call.Specify_Local_Tsel_Format

UPIC-L (Unix, Linux and Windows systems only): The value of T-SEL-FORMAT is ignored.

End-of-line character
The end-of-line character depends on the platform:

Windows systems:
Lines are terminated by a carriage return and line feed (Return key). A semicolon can be optionally used
before the carriage return character.

Unix and Linux systems:

The lines are terminated with the <newline> character (linefeed). A semicolon can be optionally used before
the <newline> character.

BS2000 systems:
The end of line is represented by a semicolon (;). No spaces are permitted after this.

If there is a semicolon in a line (contents of the side information entry), UPIC treats this as the end of the
line and interprets the rest of the line as a new line (until the next end-of-line character).

A local application name must always be specified for the local application in the call. If there is Enable_UTM_UPIC
no entry in the for this local name or if the entry is invalid, the local name specified with upicfile

 is taken as the application name.Enable_UTM_UPIC

Defining a DEFAULT name

In the you can define a DEFAULT name for your client application (see also upicfile section “Default server and

). The DEFAULT name is used whenever a client program passes an empty local DEFAULT name of a client”
application name at sign-on (). In the side information entry of the DEFAULT name you enter Enable_UTM_UPIC
the value instead of the local application name. The DEFAULT name entry must therefore have the .DEFAULT

following format:

LN .DEFAULT blank application name blank keywords end-of-line character

2 bytes 1 byte 1-32 bytes1 1 byte

--- optional ---

1For Unix, Linux and Windows systems: With local connection via UPIC local, “application name” can only be up to
8 bytes long.

Whenever a client program passes an empty local application name at sign-on, UPIC uses this entry and signs the
CPI-C program on to the transport access system with the application name specified in .application name

 283

It is possible for several CPI-C programs to sign on to UPIC at the same time with the default name. These
programs can even communicate with the same UTM application. But this is only possible if an LTERM pool with
CONNECT-MODE=MULTI exists in the UTM application for connection of the client application (see also section

).“Multiple sign-on to the same UTM application with the same name”

 284

5.3 Coordination with the partner configuration

BS2000 systems

If the client program is running on a BS2000 system, BCMAP entries may be required, see also "Configuration
.using BCMAP entries (BS2000 systems)"

There are dependencies between the entries in the client program, in the and the UTM configuration. upicfile

The following sections describe which parameters you must coordinate for partner configuration.

You can specifiy the information necessary for the transport system either using keywords directly in the upicfile

or using function calls in the client program. If you do not use either of these options, the preset values will be used.
The table below gives an overview of the preset values which can be modified in the side information file or in the
program:

Property Function Keyword Default value

local application name

T-SEL Specify_Local_Tsel T-SEL= local application name

T-TSEL format Specify_Local_Tsel_Format T-SEL-FORMAT= T

Port number Specify_Local_Port PORT= 102

transport address

T-SEL Set_Partner_Tsel T-SEL= partner name

T-TSEL format Set_Partner_Tsel_Format T-SEL-FORMAT= T

Port number Set_Partner_Port PORT= 102

Internet address1 Set_Partner_IP_Address IP-ADDRESS= Information from host

Host name Set_Partner_Host_Name HOSTNAME= Processor name

Table 14: Properties of the address information

1The Internet address takes priority over the host name.

The following relationships exist between the entries in the client program or in the and the configuration upicfile

of the UTM application.

Local application name

The local application name is specified in the calls and . A distinction is Enable_UTM_UPIC Disable_UTM_UPIC
made between the following cases:

The local application name is entered in the (identifier LN). The application name in this entry is upicfile

transferred directly to the transport system.

If the local application name is not entered in the , it is transferred as the application name directly by upicfile

UPIC to the transport system.

Partners on Unix, Linux or Windows systems or on BS2000 systems without a BCMAP entry

 285

If the partner is a UTM application on a Unix, Linux or Windows system or a UTM application on a BS2000 system
for which no BCMAP entries have been configured, the configuration must be coordinated as follows:

Both PTERM names must match. If there is no PTERM name configured for the client, there must be an LTERM
pool via which the client can sign on.

Partners on BS2000 systems with a BCMAP entry

If the partner is a UTM application on BS2000 systems that uses BCMAP entries, the configurations must be
harmonized as follows.

The T-selector of the local application must match the T-selector which is assigned to the client application in the
server system.

Partner name

If the () is specified in two parts (partner_LU_name "Side information for standalone UTM applications"
.), UPIC transfers this name directly to the transport system.applicationname processorname

Partners on Unix, Linux or Windows systems or on BS2000 systems without a BCMAP entry

If the partner is a UTM application on a Unix, Linux or a Windows system or a UTM application on a BS2000 system
for which no BCMAP entries have been configured, the configurations must be harmonized as follows:

The which UPIC transfers to the transport system must match the BCAMAPPL name of the UTM applicationname
application via which the connection to the client is made (in the diagram this is). must be utmsampl processorname
entered in the TCP/IP name service as the name of the remote system.

Partners on BS2000 systems with a BCMAP entry

 286

If the partner is a UTM application on a BS2000 system that uses BCMAP entries, the configurations must be
harmonized as follows.

applicationname must match the T-selector of the BCMAP entry for the UTM application on the remote processor.

 287

6 Implementing CPI-C applications

This chapter tells you what you need to know before and during implementation of CPI-C applications and what to
do in the event of an error.

Runtime environment, linking, starting

Handling of CPI-C partners by openUTM

Behavior in the event of errors

Diagnostics

 288

6.1 Runtime environment, linking, starting

Execution of CPI-C programs is controlled by environment variables or, on BS2000 systems, by the link name of the
job variables. The following tables list the variables necessary for this.

Unix, Linux and Windows systems

Environment
variable

Description

UPICPATH Specifies the directory in which the side information file () is stored. If the variable upicfile
is not set, the file is sought in the current directory.

UPICFILE Specifies the name of the side information file. If the variable is not set, the file name
 is set.upicfile

UPICLOG Specifies the directory in which the log file is stored. The the default value set depends
on the platform used; see .section “UPIC log file”

UPICTRACE Controls the creation of a trace, see ."UPIC trace"

UPIC_SSL_LIBRARY specifies the name of the openSSL library.

If the variable is not set, the following defaults are used:

Unix- and Linux systems: libssl.so

Windows systems: libeay32.dll

If the the openSSL library can't be loaded, encryption functionality is not available.

BS2000 systems

Link name of the
job variable

Description

UPICPAT Specifies the partially qualified file name [:catid:$.< >] under which the progid partial-name
side information file () is stored. If the variable is not set, the system searches for the upicfile
file under $. $ is the user ID in which the program is running.progid progid

UPICFIL Specifies the right-hand part of the name of the side information file. If this variable is not
set, the file name is set to upicfile.
The complete file name is composed of UPICPAT.UPICFIL.If neither UPICPAT nor UPICFIL
is set, the file name is "$ UPICFILE".progid.

UPICLOG Specifies the partially qualified file name under which the logging file is to be stored. The
value which is assumed if the variable is not set depends on the platform used, see UPIC

.trace

UPICTRA Controls configuration of a trace, see .section “UPIC trace”

The following pages describe what you have to take into account when creating and implementing a CPI-C
application on your system, depending on the platform used.

 289

Implementing on Windows systems

Implementation on Unix and Linux systems

Using on BS2000 systems

 290

6.1.1 Implementing on Windows systems

When creating and implementing CPI-C applications, take into account the special features described in section
 and in section Compilation, linking, starting on Windows systems “Runtime environment, environment variables on

.Windows systems”

When creating and implementing UPIC-local applications on Windows systems, you must also take into account the
specifications described in section .“Special features implementing UPIC local on Windows systems”

The setup for the UPIC client on Windows systems contains both the 32-bit and 64-bit variant. During the
installation operation, the appropriate variant is installed depending on the system architecture or the
selection..
In the case of PCMX (Windows), there is a separate package for 32-bit and 64-bit environments. i.e, it is
necessary to install the required PCMX packages depending on the UPIC bit mode.

i

 291

6.1.1.1 Compilation, linking, starting on Windows systems

When compiling and linking CPI-C applications on Windows systems, you must observe the following:

Every CPI-C program requires the following header files for compilation:

#include <windows.h>

#include <upic.h>

The header file is located in the directory .upic.h upic-dir\include

This order of includes shown above is mandatory. It is advisable to compile the program using the option
).__STDC__ (ANSI

When compiling CPI-C programs (UPIC remote only) you must set the following compiler options:
UTM_ON_WIN32

UTM_ON_WIN32 on 32-bit platforms

UTM_ON_WIN32 on 64-bit platformsand UTM_ON_WIN64

You can see the effect of these options in the header file . It is located in the directory .upic.h upic-dir\include

A CPI-C program consists of a series of modules which have to be linked to form a program. The following object
modules are required for linking:

main program of the user

user modules

For programs which want to use PCMX:
the library (32-bit) or (64-bit), located in the directory.upicw32.lib upicw64.lib upic-dir\sys

For programs which want to use Socket interface:
the library (32-bit) or (64-bit), located in the directory.upicws32.lib upicws64.lib upic-dir\SYS

Once the runtime environment has been made available (see below), you can start a CPI-C program just like any
other program in Windows systems.

 292

6.1.1.2 Runtime environment, environment variables on Windows systems

The environment variables listed in the table on are used for controlling CPI-"Runtime environment, linking, starting"
C applications.

The path name can be given with spaces in the UPICTRACE variable. If spaces are used, then the path name must
be enclosed in double quotes. Double quotes can also be used if there are no spaces in the path name.

There are user variables that apply only for the current user ID, and there are system variables that apply for all
users. You must set system variables if you want to run a UPIC application as a service (a service runs without a
user environment).

CPI-C program resources

One file descriptor is reserved permanently for the trace file.

If information is written to the log file, a file descriptor is used only during the write operation.

Reading from the only requires a file descriptor during the call.upicfile Enable_UTM_UPIC

Other resources are also used by the transport system.

 293

1.

6.1.1.3 Special features of implementing UPIC local on Windows systems

When implementing UPIC-local applications on Windows, you must bear in mind the special features described
below.

Linking UPIC-local applications

When linking UPIC-local applications on Windows systems the following libraries are supplied:

utmpath , which must be linked to every client program and, if necessary,\upicl\sys\libupicl.lib

utmpath , which must also be linked to XATMI programs.\xatmi\sys\libxtclt.lib

For further information on , refer to openUTM manual “Using UTM Applications on Unix, Linux and utmpath
Windows Systems”.

Runtime environment

Executing the UPIC-local clients requires the dynamic libraries and utmpath \ex\libupicl.dll utmpath
.\ex\libxtclt.dll

These DLLs can be found via the environment variable PATH. PATH is extended accordingly when openUTM is
installed. The PATH environment variable must be manually extended as required following the installation
openUTM.

Configuring a UPIC-local client with Visual C++ Developer Studio

The following briefly describes how you can configure a UPIC-local client project using the Visual Studio.

To configure the project, select the command from the menu of the Visual Studio. The Settings... Project Project
 dialog box is displayed on the screen. Now proceed as follows:Settings

Link in the UPIC-local libraries and :libupicl.lib libxtclt.lib

Select the tab sheet and make sure that in the list box the item are marked.Link Settings For All Configurations

In the list box set the category to , enter the name you want for the output file (Category General upicl.exe

here) and add the following libraries in the input field:Object/Library Modules

libupicl.lib for configuring CPI-C clients

libxtclt.lib and l for configuring XATMI clients (paying attention to the order: ibupicl.lib

 must come before). A space must always be entered as the delimiter.libxtclt.lib libupicl.lib

These libraries must be entered in front of all existing files. stands for the installation directory of *.lib utm-dir
openUTM. If you enter search paths in in Developer Studio, you need not type in the full Extras/Options
pathname here.

Client projects supplied with the openUTM Quickstart Kit are configured as described here.i

 294

1.

2. Configure debugger information:

Select the tab sheet and in the list box mark or in the list.Link Settings For Win32Debug x64 Debug Settings For

In the list box, set the category to and in and select the and Category Debug Debug Info Debug Info Both Formats
options in .Debug Info

3. Confirm your settings in by clicking on .Project Settings OK

 295

6.1.2 Implementation on Unix and Linux systems

When creating and implementing CPI-C applications, take into account the special features described in section
 and "Compilation, linking, starting on Unix and Linux systems" section “Runtime environment, environment

. variables on Unix and Linux systems”
When creating and implementing UPIC-local applications in Unix and Linux systems, you must also take into
account the specifications described in section “Special features implementing UPIC local on Unix and Linux

.systems”

 296

6.1.2.1 Compilation, linking, starting on Unix and Linux systems

When compiling and linking CPI-C applications on Unix and Linux systems, you must observe the following:

Every CPI-C program requires the following header file for compilation:

#include <upic.h>

The header file is located in the subdirectory of the UPIC installation directory.include

A CPI-C program consists of a set of modules which must be linked as a program using the C compiler of your
system. The following object modules are essential for linking:

main program of the user

user modules

For programs which use PCMX:

the system libraries , , (not on every system) and The library nsl.so dl.so socket.so cmx.so cmx.so

must be linked in before the library .nls.so

the library which can be found in the directory.libupiccmx upic-dir/sys/

For programs which do not use PCMX:

the system libraries On a few systems alsonsl.so and dl.so. socket.so

the library which can be found in the directory.libupicsoc upic-dir/sys/

For programs which do not use PCMX and use multi-threading:

the system libraries , and nsl.so dl.so socket.so

the library which can be found in the directory.libupicsocmt upic-dir/sys/

An example showing all necessary library and link options can be found in the makefile for the sample program
 in the directory.uptac.c upic-dir/sample

A CPI-C program is started just like any other program in Unix and Linux systems by entering the program name
(note that the UTM application must be started beforehand).

 297

6.1.2.2 Runtime environment, environment variables on Unix and Linux systems

The environment variables listed in the table on must be set in order to "Runtime environment, linking, starting"
operate CPI-C applications:

You can set the environment variables as follows:

UPICPATH=directory
UPICTRACE=option
UPICLOG=directory
UPICFILE=name-side-information-file
export UPICPATH UPICTRACE UPICLOG UPICFILE

Resources of a CPI-C program

A file descriptor is always required for the trace file.

If data is written to the log file, a file descriptor is only required while the data is being written.

To read from the , a file descriptor is only required during the call.upicfile Enable_UTM_UPIC

Transport system resources are also required.

Signals

Signal handling routines in a CPI-C program are allowed for the signals SIGHUP, SIGINT and SIGQUIT. The CPI-C
library functions are not interrupted by these three signals. This signal handling does not become effective until the
current CPI-C function has terminated.

All other signals are prohibited!

 298

6.1.2.3 Special features when using UPIC local on Unix and Linux systems

When using UPIC-local applications on Unix and Linux systems, you must also bear in mind the special features
described below.

Linking UPIC local applications in Unix and Linux systems

When a CPI-C client application is connected locally to a UTM application on a Unix or Linux system, you must link
in the library in the directory instead of .libupicipc utmpath/upicl/sys libupiccmx

For XATMI client programs based on UPIC-L, the library from the directory / libxtclt utmpath upicl/xatmi/sys

is also required.

On Linux systems, the option must also be specified.–lcrypt

Environment variables

For controlling a UPIC-local application, the environment variable UTMPATH is also interpreted. UTMPATH must
contain the name of the directory in which openUTM is installed.

Resources

With local connection, “shared memory” is used for communication with the UTM application. Access is via “shared
memory keys” and is serialized with the aid of a semaphore. An additional file descriptor is reserved for shared
memory.

 299

6.1.3 Using on BS2000 systems

You should take note of the special considerations listed below when using CPI-C applications on BS2000 systems.

Compilation, linking, starting on BS2000 systems

The following applies when compiling and linking CPI-C applications on BS2000 systems:

Every CPI-C program requires the following include file in order to allow compilation:

#include <upic.h>

The include file is located in the library .$userid.SYSLIB.UTM-CLIENT.070

A CPI-C program comprises a set of modules which must be linked to form a single program. The following
objects are required for linking:

main program of the user

User modules

For programs that wish to use CMX:

The system libraries and $sysid.SYSLNK.CRTE $sysid.SYSLIB.CMX.014

The libraries and$userid.SYSLIB.UTM-CLIENT.070.WCMX

$userid.SYSLIB.UTM-CLIENT.070

For programs that wish to use Sockets:

The system library $sysid.SYSLNK.CRTE

The library $userid.SYSLIB.UTM-CLIENT.070

You start a CPI-C program on a BS2000 system in the same way as any other program using the command
. START-EXECUTABLE-PROGRAM

In doing so you have to specify SHARE-SCOPE=SYSTEM-MEMORY (default at start time of the task), *NONE
must not be specified!

Runtime environment on BS2000 systems

Execution of CPI-C applications on BS2000 systems is controlled by the job variables. The link names of the job
variables are listed in the table on . You can set these as follows, for "Runtime environment, linking, starting"
example:

Setting jobvariables for UPIC client

/SET-JV-LINK LINK-NAME=*UPICPAT,JV-NAME=UPICPATH
/MODIFY-JV JV-CONTENTS=*LINK(LINK-NAME=UPICPAT),SET-VALUE='prefix'
/SET-JV-LINK LINK-NAME=*UPICFIL,JV-NAME=UPICFILE
/MODIFY-JV JV-CONTENTS=*LINK(LINK-NAME=UPICFIL),SET-VALUE='filename'
/SET-JV-LINK LINK-NAME=*UPICLOG,JV-NAME=UPICLOG
/MODIFY-JV JV-CONTENTS=*LINK(LINK-NAME=UPICLOG),SET-VALUE='prefix'
/SET-JV-LINK LINK-NAME=*UPICTRA,JV-NAME=UPICTRACE
/MODIFY-JV JV-CONTENTS=*LINK(LINK-NAME=UPICTRA),SET-VALUE='option'

Note that the link name assignment established with SET-JV-LINK is lost after LOGOFF. SET-VALUE='-r 128'
controls the trace (see).section “UPIC trace”

 300

6.2 Handling of CPI-C partners by openUTM

With a connection to a UTM application via CPI-C, some UTM functions cannot be used and some are used
differently.

This relates to the following functions:

INPUT exit and event service BADTAC

With input from the CPI-C client, openUTM does not call the input exit or BADTAC.

FPUT

It is not possible to send an asynchronous message to a CPI-C client using FPUT. The KDCS call supplies the
return code 44Z.

PEND RS

Under certain circumstances, PEND RS is handled like PEND FR for a CPI-C client; for further details, see the
openUTM manual „Programming Applications with KDCS”.

 301

6.3 Behavior in the event of errors

This section describes the effects on a communication partner when a UTM application or a CPI-C client application
terminates. It also explains how to re-establish a basic state for successful program-to-program communication in
the event of an error.

Termination of a UTM application

If the UTM application terminates, this is detected by the CPI-C program with the next call at the communication
interface. The following two cases can be distinguished:

a connection shutdown may be detected with a call orReceive

the termination of the application may be detected with a call at the communication interface, which also caused
the conversation to terminate automatically.

In both cases, CM_DEALLOCATED_ABEND is returned as the result.

Abnormal termination of a CPI-C program

The UTM application is generally informed of the program termination by means of a connection shutdown. In this
case, no further actions are required.

If the UTM application does not detect a connection shutdown, the connection still exists as far as openUTM is
concerned. Two cases can be distinguished:

On the UTM side a PTERM or an LTERM pool with TPOOL ...,CONNECT-MODE=SINGLE is configured for the
client application. In this case, openUTM can distinguish between the connected clients. As soon as a client
attempts (after a loss of connection) to open another connection under the same name, openUTM shuts down
the old connection and rejects the connection setup request. Any subsequent connection setup request from the
client is then accepted.

On the UTM side an LTERM pool with TPOOL ..., CONNECT-MODE=MULTI is configured for the client
application. In this case, several clients can connect to the UTM application from the same system and with the
same name. The UTM application can then no longer recognize whether a client is connecting from scratch or
after loss of a connection. A lost connection for which the UTM application was not shown a connection
shutdown must in this case be shut down explicitly by the administration, i.e. openUTM does not shut down the
“lost” connection itself the next time the client attempts to set up a connection.

UPIC local (Unix, Linux and Windows systems only):

The following can occur:

The UTM application has not recognized the termination of the CPI-C process. As soon as the CPI-C program
signs on to openUTM again with the same program name, openUTM shuts down the old connection and
accepts the new one.

Serious error in the CPI-C program

If a serious error occurs while the UPIC program is running, and this error effectively prevents the program from
continuing, the process is abnormally terminated (with in WIndows systems; with in Unix and FatalAppExit abort
Linux systems). The following error message is also written to the UPIC log file:

UPIC: internal error <reason>

The error messages that may occur on the CPI-C side are described in the table below.

 302

<reason> Meaning

1 When sending the rest of the data, the value of data length is negative

9 The SIGTRAP signal has occurred

10 Error when establishing the connection

11 Error when receiving confirmation for connection setup

12 Message other than connection setup received

13 Error when sending data

14 Error when receiving data

15 Invalid message received

16 Error when shutting down connection

For error diagnosis see also .section “Diagnostics”

UPIC local (Unix, Linux and Windows systems only):

With local communication via UPIC local, moreover, error messages beginning with the letters “IPC” can
occur. These come from openUTM and are described in the openUTM manual “Messages, Debugging and
Diagnostics on Unix, Linux and Windows Systems” under the dump error codes.

For error diagnosis you require the dump (e.g. core dump in Unix and Linux systems) together with the linked
program as well as the contents of the UPIC trace file and the UPIC log file.

Message exchange with a programmed PEND ER/FR

If a programmed PEND ER/FR was carried out while a UTM program unit was running, the message segments sent
with MPUT prior to the PEND ER/FR can be received. The or call is used for this Receive Receive_Mapped_Data
purpose (until the return code is CM_DEALLOCATED_ABEND).

Message exchange with SYSTEM PEND ER

If, in the event of an error, the UTM service ends with PEND ER, the result CM_DEALLOCATED_ABEND is
returned when or is called. In addition, an error message is written to the log file Receive() Receive_Mapped_Data()
(see also).section “UPIC log file”

A separate error message for a UPIC-Client can be created in a dialog program unit using the (error MPUT ES
system) call (see also openUTM manual „Programming Applications with KDCS”, call), which the UPIC MPUT ES
client can read with he call or . In this case, no error message is written to the Receive() Receive_Mapped_Data()
log file.

Problems with connection setup

Problems in setting up a connection to the UTM application can be detected by the fact that the call Allocate
does not terminate with the result CM_OK. In this case you should check the following:

 303

On BS2000 systemen invoke the ping command as follows

/&* for IPV4 connections
/START-PING4 <hostname>

/&* for IPV6 connetions
/START-PING6 <hostname>

Use a command to check whether it is possible at all to establish a network connection between the client ping

and server.

On Unix, Linux and Windows systems, call the command using:ping

ping <internetaddress> or ping <hostname>

ping must be in your path, i.e. the PATH variable must be suitably set.

On BS2000 systems, call ping as follows:

Check the TCP/IP protocol using one of the standard applications or .telnet ftp

On Unix, Linux and Windows systems, call these commands as follows:

telnet internetaddress or telnet hostname
 orftp internetaddress ftp hostname

The applications must be in your path, i.e. the PATH variable must be suitably set.

On BS2000 systems, the applications are called with:

START-TELNET
START-FTP

Check whether the necessary resources are available in the UTM partner application. For example, the LTERM
pool or the LTERM partner via which the client wants to sign on must not be locked. See also the openUTM
manual “Generating Applications”.

Check whether all the necessary resources are available on the local system. You should always check the local
configuration (side information if necessary) and the partner configuration (openUTM if necessary).

BS2000 systems:

In a configuration which requires BCMAP entries in the BS2000 system, you must make sure that the BCMAP
command does not perform any update function, i.e. that BCMAP entries must first be deleted and then
entered again. For more information on the BCMAP command, refer to the BCAM manuals.

 304

6.4 Diagnostics

The following documents are required for diagnostic purposes:

an exact description of the error situation

a specification of which software was implemented with which versions

exact specification of the system type

the CPI-C program as the source

the side information file ()upicfile

the UPIC log file and the UPIC trace files; see following sections

the PCMX trace files

with Unix and Linux systems the core files with accompanying phases

Additional UTM documents are required for errors relating to the UTM partner application:

KDCDEF configuration and UTM diagnostics dump of the UTM partner application

any output logs are sent to the standard output or standard error output

Unix, Linux and Windows systems: , stderr stdout

BS2000 systems: SYSLST, SYSLOG, SYSOUT

 305

6.4.1 UPIC log file

To simplify diagnosis, the UPIC carrier system keeps a log file. A UTM error message is written to this file if the
UTM application terminates a conversation abnormally. The log file is opened only for writing the error message
(append mode) and is then closed again.

The file can be read using any editor.

Windows systems

The log file has the name , where is the thread ID. You can define which directory the log file will UPICLtid.UPL tid
be stored in by means of the environment variable UPICLOG (see section “Runtime environment, environment

).variables on Windows systems”

If the UPICLOG environment variable is not set, the following are interpreted in the order shown:

the TEMP variable

the TMP variable

If a corresponding entry is found, the directory specified there is taken. If nothing is found, the file is stored in the %

 directory. This directory must exist and the CPI-C program must have write permission for this directory TEMP%

because otherwise log files will be lost.

Unix and Linux systems

The name of the log file is where is the process ID. You use the UPICLOG shell variable to define the UPICLpid, pid
directory in which the log file is stored. If this shell variable is not set, the file is stored in the directory./usr/tmp

BS2000 systems

The name of the logging file is , where is the TSN of the BS2000 task.UPICLtsn tsn

You specify the prefix for the logging file using the job variable with the link name (see UPICLOG section “Runtime

). environment, linking, starting”
If UPICLOG is not set, the system writes to the following logging file:

##.usr.tmp. tsnUPICL

If a UPIC process is re started on the BS2000 system without performing a LOGOFF/LOGON, the TSN is tsn
retained. This means that the logging file is overwritten!

 306

6.4.2 UPIC trace

With the UPIC carrier system it is possible to create trace information for all CPI-C interface calls. This is controlled
by setting the variable UPICTRACE.

The contents of the variable are evaluated when is called. If the variable is set, the parameters Enable_UTM_UPIC
and user data up to a length of 128 bytes are logged to a file for a specific process each time a function is called.
Logging is deactivated with the call.Disable_UTM_UPIC

If a CPI-C call returns a code other than CM_OK or CM_DEALLOCATED_ABEND, the cause of the error is also
logged to the UPIC trace file. This provides detailed information on a specific return code for troubleshooting.

Activating the UPIC trace

You activate the UPIC trace by setting the UPICTRACE variable accordingly. The UPIC trace is activated on the
individual platforms as follows:

Windows systems:

The UPIC trace can be activated by making the appropriate setting for the UPICTRACE environment variable. If
the environment variable UPICTRACE is set, the value of the environment variable is used.

The following options are available for UPICTRACE:

UPICTRACE=-S[X] [-r wrap] [-dpathname]

Unix and Linux systems:

The UPIC trace is activated when the UPICTRACE environment variable is set as follows:

UPICTRACE=-S[X] [-r wrap] [-dpathname]
export UPICTRACE

BS2000 systems:

The UPIC trace is activated as follows:

/SET-JV-LINK LINK-NAME=*UPICTRA,JV-NAME=UPICTRACE

/MODIFY-JV JV[-CONTENTS]=UPICTRACE,SET-VALUE='-S[X] [-R wrap] [-Dprefix]'

The -D option must be entered as an uppercase letter.

The options have the following meaning:

-S Full logging of the CPI-C calls, their arguments, and user data with a
maximum length of 128 bytes (mandatory specification).

-SX An additional trace of internal information at the interface to the transport
system is also provided. It is advisable always to use this option since
problems that arise are frequently related to the transport interface.

The switch -SX in PCMX is an extension of the switch -S.
In the case of Socket communication, this switch does not provide any
additional effects compared to the switch -S.

-r (Unix, Linux and wrap
Windows systems)

-R (BS2000 systems)wrap

The decimal number specified in wrap is multiplied by BUFSIZ. This results
in the maximum size of the trace file in bytes. BUFSIZ is a value which is
depending on the platform and the compiler.

 307

Maximum value of : 2^31 (maximum value of an int)wrap
Default value of : 128wrap

-d (Unix, Linux and Windows systems)pathname

-D (BS2000 systems)prefix

The path name (or the prefix) can be specified with spaces. If spaces are
used, then the path name (or prefix) must be enclosed in double quotes.
Double quotes can also be used if there are no spaces in the path name.

Windows systems:

The trace files are set up in the directory specified with .pathname
If you do not specify -d , the trace files are set up in the pathname
directory entered in the TEMP variable. If no value has been set for
TEMP, the system attempts to do the same with TMP. If neither of the
variables is set, the trace files will be stored in the \USR\TMP
directory. This directory must exist and the CPI-C program must have
write access to it, otherwise the trace files are lost.

Unix and Linux systems:

The trace files are set up in the directory specified with .pathname
If you do not specify , the trace files are set up in the -dpathname

directory. The CPI-C program must have write access to /usr/tmp

this directory, otherwise no trace is written.

BS2000 systems:

A file name prefix is specified for the trace files. This prefix should contain
no spaces. If you do not specify D the names of the trace files are prefixed ,
with ##.usr.tmp.

The trace files are stored under the ID under which the program was
started. The CPI-C program must be able to open the file, otherwise the
trace data will be lost.

Example

If is specified, the trace file will be written.-DTRC TRC.UPICTtsn

Trace files

The trace information is stored in a temporary file. This file is set up when is called, and Enable_UTM_UPIC
remains open until is called. The maximum size of this temporary file is defined by the decimal Disable_UTM_UPIC
number wrap.

Data is logged in the file until the value () bytes (BUFSIZ as in) is exceeded. A second wrap * BUFSIZ stdio.h

temporary file is then created and handled in the same way.

Each time the value () bytes is exceeded in the current file, the trace switches to the other file. The wrap * BUFSIZ
old contents of this file are thus overwritten.

The file names of the trace files are platform-specific. The following file names have been allocated:

Name of the Windows systems Unix and Linux systems BS2000 systems

 308

Unix and Linux
systems if threads
are used in programs

1st file UPICT .upttid1 UPICTpid2 UPICT .pid2 tid1 UPICTtsn3

2nd file UPICU .upttid1 UPICUpid2 UPIUT .pid2 tid1 UPICUtsn3

1tid = Thread ID

2pid = Process ID

3tsn = TSN Number

Extended UPIC trace

In an extended UPIC trace, internal information is logged at the interface to the transport system (UPIC <-> PCMX)
in addition. As well as the UPIC calls, the associated CMX calls are also logged. The extended trace is structured
as follows:

After logging of a UPIC call, first of all a line containing the additional plain text is output. This is followed by the
logging in two lines of the last CMX functions to be called. The information is separated by a comma or <newline>.

1st line:

The first line contains the following information:

Name of the CMX function called.

Return code of the CMX function . The return code is a hexadecimal number. If it is not zero, you can take t_error
the cause of any error which occurred from the return code.

The hexadecimal number can be decoded as follows:

with the command orcmxdec -d 0xhexadecimalnumber

using the Windows program in the PCMX program window. Choose the Trace Control Error Decoding
command from the menu.Options

Return code of the CMX function as decimal number (if the CMX function returns an int value).

An important exception is the CMX function . Its return value (i.e. the event that occurred) is always output in t_event
the first column of the second line.

2nd line:

The second line logs a CMX call which was issued because of an event () that occurred in connection with t_event
the CMX function logged in the 1st line. The 2nd line contains the following information in the order given:

Name of the event returned by the function.t_event

Name of the CMX function called.

Return code of if an error occurred during the second CMX function. If applicable, it returns the reason for t_error
a connection shutdown. The number can be decoded with as described above. The value “-1” denotes cmxdec

that there is no reason for a connection shutdown.

The last comma in this line can be followed by a UPIC return code.

 309

If no other CMX function was called in connection with the CMX function logged in the 1st line, only a blank and a
zero are output in the 2nd line.

Deactivating the UPIC trace

You can deactivate the UPIC trace by not setting a parameter for the UPICTRACE variable.

Windows systems:

by issuing the following SET command:

SET UPICTRACE=

Unix and Linux systems:

UPICTRACE=

export UPICTRACE

BS2000 systems:

with the command

/MODIFY-JV JV[-CONTENTS]=UPICTRACE,SET-VALUE=''

The JV contents are deleted.

with the command /DELETE-JV

The complete JV is deleted.

The trace is disabled when a UPIC process is restarted.

Editing the UPIC trace

The trace information is already in printable form and does not need to be edited by a utility.

Each action is logged with a time stamp and the values transferred.

 310

6.4.3 PCMX diagnostics (Windows systems)

PCMX diagnostics are controlled by the program (32-bit) or (64-bit). You can call cmxtrace.exe cmxtrc64.exe

this program in the Windows program group PCMX-32 or PCMX-64 by double-clicking on the Trace Control symbol.
This program enables you to:

activate and deactivate PCMX traces

view PCMX traces on screen or print them out

decode PCMX error codes (“Error Decoding” option)

The online help for the PCMX program group provides a more detailed description of how the program works.

 311

7 Examples

This chapter contains notes on the sample programs supplied, the description of the programs and UpicAnalyzer

, as well as some simple configuration examples for linking a CPI-C application on Windows systems UpicReplay

with openUTM on BS2000 systems, Unix, Linux and Windows systems.

 312

7.1 Sample programs for Windows systems

The openUTM client for the UPIC carrier system is supplied with the following sample

programs:

uptac Complete CPI-C application program

utp32 Program for the interactive entry of individual CPI-C calls, 32-bit only.

tpcall Complete XATMI program

upic-cob A Cobol project

In addition, the local definition file is provided, from which the tool XATMIGEN creates a local tpcall.ldf.smp
configuration file for the XATMI program .tpcall

uptac, , are ready to run after a minimum of preparation. To call them, double-click, for example, on the utp32 tpcall
corresponding icons which appear in the <variant>program window after Fujitsu Software openUTM-Client
installation.

All sample client programs are designed to be able to communicate with the sample UTM application on the server
side. For more information, please refer to the README file for the UTM sample application.

The following sections provide a brief introduction to these sample programs and describe the preparations you
must make to execute them.

 313

7.1.1 uptac (Windows systems)

uptac is a simple CPI-C application program. It consists of the files listed in the table below, which are stored in the
directory after installation:upic-dir\samples\uptac

File name Type of file

uptac.c C source code for the program; can be printed out

uptac.vcxprojuptac.
sln

Microsoft Visual C++ Developer Studio project file for creating an “.exe” file (including
Solution File)

uptac.exe Executable uptac program

uptac.bat Batch file for uptac.exe

You must configure UPIC to enable to communicate with the UTM sample application, e.g. the following uptac
entries can be made in the (see the model entries in the under , which are also upicfile upicfile upic-dir
supplied):

Side information file:

LN.DEFAULT UPIC0000

SD.DEFAULT SMP30111.unixhost PORT=30111

unixhost is the symbolic name of the host on which the UTM sample application is to run. If you want UPTAC to
communicate with another UTM application, (e.g. on a BS2000 system), you must adapt all the entries accordingly,
with the exception of .LN.DEFAULT

In the transport address (TA...), you can also enter the Internet address of the Unix or Linux system host in place of
the symbolic name. If you do so, check to ensure that the port number and the T-selector are 30111 SMP30111

also entered on the server side.

 314

7.1.2 utp32 (Windows systems)

utp32 is an example of a Visual Basic client application, which allows you to handle communication step by step via
the CPI-C interface. To do this you enter individual CPI-C calls and the associated parameters interactively in a
dialog box. The corresponding code is returned for each call.

utp32 is only available as a 32-bit variant.i

 315

7.1.3 tpcall (Windows systems)

tpcall is a simple XATMI application program which allows you to implement a synchronous request/response with
the sample UTM application. consists of the files listed in the following table, which are stored in the tpcall
subdirectory after installationxatmi\samples

File name Type of file

tpcall.c C source code for the program; can be printed out

tpcall.vcxproj Microsoft Visual C++ Developer Studio project file for creating an “.exe” file

tpcall.exe Executable tpcall program

Before using to communicate with the sample application, you must first:tpcall

make entries in the as with (see)upicfile uptac section “uptac (Windows systems)”

create a local configuration file by clicking on the XATMIGEN symbol in the Fujitsu Software openUTM-Client
<variant> program window.

The supplied local definition file is then used to create the file xatmi\samples\tpcall.ldf.smp xatmilcf

(in the same directory).

If you want to be able to communicate with other applications, you may have to make changes to the tpcall
 and, hence, to the local definition file upicfile tpcall.ldf.smp

(SVCU ... DEST statement, see also).section “Configuring UPIC”

 316

7.1.4 upic-cob (Windows systems)

The directory contains a sample project to create a UPIC-Cobol application. The example samples\upic-cob

was developed using a MicroFocus Cobol compiler.

 317

7.2 UpicAnalyzer and UpicReplay on 64-bit Linux systems

The programs and are components of the Workload Capture & Replay function. Workload UpicAnalyzer UpicReplay
Capture & Replay is a multi-component program package that is used for UTM application load simulation.

These two programs, and are briefly described below. The concept underlying Workload UpicAnalyzer UpicReplay ,
Capture & Replay, as well as further details, can be found in the platform-specific openUTM manual “Using UTM
Applications”.

The program must be compatible with the openUTM version which has been used for UpicAnalyzer
capturing. „openUTM-Client V7.0 for the UPIC carrier system“ is compatible with openUTM V7.0, for
example.

The version of the program can only process input files which have been created using the UpicReplay
same version of the program.UpicAnalyzer

i

 318

7.2.1 UpicAnalyzer (64-bit Linux systems)

UpicAnalyzers reads the trace records from a BTRACE trace, filters out the UPIC trace records, prepares these and
writes them to a file in a specific format (UPIC ReplayFile Layout).

 319

7.2.2 UpicReplay (64-bit Linux systems)

To perform the operation on a Linux system, you need the side information file upicfile containing at least one entry
with the name UPREPLAY.

Examples for a upicfile entry

Replay with the TAC DEMO. The UTM application UTMTEST1 runs on the computer HOST5678.

BS2000 systems:

SDUPREPLAY UTMTEST1.HOST5678 DEMO LISTENER-PORT=102 T-TSEL-Format=T

Unix, Linux and Windows systems:

DUPREPLAY UTMTEST1.HOST5678 DEMO LISTENER-PORT=11111 T-TSEL-Format=T

UTMTEST1 must have been configured either in MAX APPLINAME or in a BCAMAPPL statement. Please refer to
the correponding openUTM manual “Using UTM Applications” for details.

Calling UpicReplay

UpicReplay is called as follows from a Linux shell:

UpicReplay is invoked as follows from a Linux-Shell:

UpicReplay InputFileName [-c<numberOfClients>] [-s<speedPercentage>] [-d[d]]

InputFileName Name of the UPIC ReplayFile that you have created with UpicAnalyzer.

Mandatory parameter.

-c<numberOfClients> numberOfClients specifies the number of UPIC clients for which the recorded
conversations are to be replayed.

Default: 1, (corresponds to) i.e. only one client is simulated.-c1
The actual limit depends on the relevant system limit.

-
s<speedPercentage>

speedPercentage specifies the replay speed as a percentage of the original speed. This
makes it possible to simulate long and short thinking times.

Default: 100 (corresponds to i.e. original speed.-s100)

-s200 means 200%, i.e. twice the speed, achieved by halving the thinking time.

-d Enable debug output to , i.e. debug messages are output on thread configuration stderr
and there are fewer messages on send and receive calls.

-dd Enables extended debug output to , i.e. detailed debug messages are output. This stderr
option is only intended for internal diagnostic purposes.UpicReplay

-dd is only of value when simulating a small number of clients.

Default: no debug output.

 320

Example

The UPIC conversations recorded in the file are to be replayed at normal speed for 100 clients. The Replay.1239
call is as follows:

UpicReplay Replay.1239 -c100

 321

7.3 Configuration UPIC on Windows systems <-> openUTM on BS2000 systems

The following configuration example explains the principle of configuring a link between a CPI-C application on a
Windows system and a UTM application on a BS2000 system. Linking via RFC1006 is shown here.

In the example, the Windows system has the symbolic host name ; the BS2000 host has the name HOST123

.HOST456

 322

7.3.1 Configuration on the Windows system

UPIC parameter

Enable_UTM_UPIC "UPICTTY"
Initialize_Conversation "sampladm"

Side information file C:\UPIC\UPICFILE:

* UTM(BS2000) application
SDsampladm UTMUPICR.HOST456 KDCHELP
SDsampladm UTMUPICR.HOST456 KDCHELP HOSTNAME=HOST456 T-SEL=UTMUPICR PORT=102
* or, if automatic conversion of the user data is required
HDsampladm UTMUPICR.HOST456 KDCHELP

 323

7.3.2 UTM Configuration on the BS2000 system

In the example, is the BCAM-name of the remote system hosting the UPIC client.EXAMPLE

KDCDEF generation for the UTM application on the BS2000 system

BCAMAPPL UTMUPICR, T-PROT=ISO
PTERM UPICTTY, PTYPE=UPIC-R, LTERM=UPIC,
 BCAMAPPL=UTMUPICR, PRONAM=EXAMPLE
LTERM UPIC, USER=UPICUSER
USER UPICUSER, STATUS=ADMIN

 324

7.4 Configuration UPIC on Windows systems <-> openUTM on Unix or Linux
systems

The following configuration example explains the principle of configuring a link between a CPI-C application on a
Windows system and an UTM application on a Unix or Linux system. Linking via RFC1006 is shown here.

In the example, the Windows system has the symbolic host name ; the Unix or Linux system host has the HOST123

name .HOST789

 325

7.4.1 UPIC Configuration on the Windows system

UPIC-Parameter

Enable_UTM_UPIC "UPIC0000"
Initialize_Conversation "sampladm"

Side Information Datei C:\UPIC\UPICFILE

* UPIC client on Windows-System
LNUPIC0000 UPICTTY
* partner RFC1006
SDsampladm UTMUPICR.HOST789 KDCHELP HOSTNAME=HOST789 T-SEL=UTMUPICR PORT=1230

 326

7.4.2 UTM Configuration on the Unix or Linux system

KDCDEF configuration for the UTM application on Unix or Linux system

BCAMAPPL UTMUPICR
PTERM UPICTTY, PTYPE=UPIC-R, LTERM=UPIC,
 BCAMAPPL=UTMUPICR, PRONAM=HOST123
LTERM UPIC, USER=UPICUSER
USER UPICUSER, STATUS=ADMIN

 327

8 Appendix

This chapter contains the following information:

differences from the X/Open CPI-C interface

character set tables

state tables

 328

8.1 Differences between the X/Open CPI-C interface

This section describes all the extensions and special features of CPI-C with the UPIC carrier system compared to
the X/Open CPI-C interface.

Extensions compared to CPI-C

The following additional UPIC-specific functions are offered. These are:

Enable_UTM_UPIC
Extract_Client_Context
Extract_Conversation_Encryption_Level
Extract_Cursor_Offset
Extract_Convertion
Extract_Max_Partner_Index
Extract_Partner_LU_Name_Ex
Extract_Secondary_Return_Code
Extract_Shutdown_State
Extract_Shutdown_Time
Extract_Transaction_State

 Disable_UTM_UPIC
Set_Allocate_Timer
Set_Client_Context
Set_Conversation_Encryption_Level
Set_Conversation_New_Password
Set_Convertion

 Set_Function_Key
Set_Partner_Host_Name
Set_Partner_Index

 Set_Partner_IP_Address
 Set_Partner_Port
 Set_Partner_Tsel

 Set_Partner_Tsel_Format
 Set_Receive_Timer
 Specify_Local_Port

Specify_Local_Tsel
 Specify_Local_Tsel_Format

Specify_Secondary_Return_Code

The and functions regulate the signing on and signing off of CPI-C Enable_UTM_UPIC Disable_UTM_UPIC
programs with the UPIC carrier system. If these two calls are not used, it is not possible to connect to a
UTM application. For further details, see section and chapter .“CPI-C calls in UPIC” “Configuration”

With UPIC the and calls are used to send and receive format Send_Mapped_Data Receive_Mapped_Data
names.

Automatic conversion of user data by configuration

This also allows for the possibility of automatic code conversion of user data between ASCII and EBCDIC code;
see also . On the one hand, this reduces the effort involved in creating an application, section “Code conversion”
while on the other hand it enables a single CPI-C program to communicate both with a UTM application on a

 329

Unix or Linux system based on ASCII code and with a UTM application on a BS2000 system based on EBCDIC
code (if the user data does not contain any binary information that would be corrupted in the code conversion
process).

Special features of CPI-C implementation

The name for can be up to 73 characters long; for a local connection via UPIC local (Unix, partner_LU_name
Linux and Windows system) it can only be up to 8 characters.

The name for can be up to 8 characters long.TP_name

The prototypes, parameter types, and constants are described in detail in the header file .upic.h

 330

8.2 Character sets

At the CPI-C interface, the contents of the variable can only comprise characters from a sym_dest_name
predefined character set.

The character sets and their assignment to the variables are described below.

Variable Character set

sym_dest_name Set 1

Character Character set

Set 1 Set 2

.
<
(
+
&
*
)
;
-
/
,
%
-
>
?

:

'
=
"
a-z
A-Z
0-9

X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

Table 16: Character sets

 331

T.61 character set

0 1 2 3 4 5 6 7 8 9 ... F

0 SP 0 @ P p

1 ! 1 A Q a q

2 " 2 B R b r

3 # 3 C S c s

4 ¤ 4 D T d t

5 % 5 E U e u

6 & 6 F V f v

7 7 G W g w

8 BS (8 H X h x

9 SS2) 9 I Y i y

A LF SUB * : J Z j z

B ESC + ; K [k PLD CSI

C FF , < L l | PLU

D CR SS3 - = M] m

E LS1 . > N n

F LS0 / ? O - o

Table 17: Code table T.61 in accordance with CCITT recommodation

Meaning of abbreviations:

BS=BACKSPACE SUB=SUBSTITUTE CHARACTER

LF=LINE FEED ESC=ESCAPE

FF=FORM FEED SS3=SINGLE-SHIFT THREE

CR=CARRIAGE RETURN SP=SPACE

LS1=LOCKING SHIFT ONE PLD=PARTIAL LINE DOWN

LS0=LOCKING SHIFT ZERO PLU=PARTIAL LINE UP

SS2=SINGLE-SHIFT TWO CSI=CONTROL SEQUENCE INTRODUCER

Table 18: Abbreviations of special characters

 332

8.3 State table

In the following table, the follow-up state of a program that was previously in a particular state is indicated for the
individual calls (depending on their result). An explanation of the abbreviations used in the table is then provided.

Call Result Follow-up state, if previously in state

Start Reset Init. Send Receive

Initialize_Conversation ok psc Init. psc psc psc

Initialize_Conversation pc psc - psc psc psc

Initialize_Conversation ps psc - psc psc psc

Allocate ok psc psc Send psc psc

Allocate ae psc psc Reset psc psc

Allocate pc psc psc - psc psc

Allocate pe psc psc - psc psc

Allocate ps psc psc - psc psc

Deallocate ok psc psc Reset Reset Reset

Deallocate pc psc psc - - -

Deallocate ps psc psc - - -

Deferred_Deallocate - - - - - -

Extract_Client_Context ok psc - - - -

Extract_Client_Context pc psc - - - -

Extract_Client_Context ps psc - - - -

Extract_Conversation_Encryption_Level ok psc psc - - -

Extract_Conversation_Encryption_Level pc psc psc - - -

Extract_Conversation_Encryption_Level ps psc psc - - -

Extract_Conversation_State ok psc psc - - -

Extract_Conversation_State pc psc psc - - -

Extract_Conversation_State ps psc psc - - -

Extract_Convertion ok psc psc - psc psc

Extract_Convertion pc psc psc - psc psc

Extract_Convertion ps psc psc - psc psc

 333

Extract_Cursor_Offset ok psc -1 - - -

Extract_Cursor_Offset pc psc - - - -

Extract_Cursor_Offset ps psc - - - -

Extract_Max_Partner_Index ok - - - - -

Extract_Max_Partner_Index pc - - - - -

Extract_Max_Partner_Index ps - - - - -

Extract_Partner_LU_Name ok - - - - -

Extract_Partner_LU_Name pc - - - - -

Extract_Partner_LU_Name ps - - - - -

Extract_Partner_LU_Name_Ex ok - - - - -

Extract_Partner_LU_Name_Ex pc - - - - -

Extract_Partner_LU_Name_Ex ps - - - - -

Extract_Secondary_Information ok - - - - -

Extract_Secondary_Information pc - - - - -

Extract_Secondary_Information ps - - - - -

Extract_Secondary_Return_Code ok psc psc - - -

Extract_Secondary_Return_Code nr psc psc - - -

Extract_Secondary_Return_Code pc psc psc - - -

Extract_Secondary_Return_Code ps psc psc - - -

Extract_Shutdown_State ok psc -1 psc - -

Extract_Shutdown_State pc psc -1 psc - -

Extract_Shutdown_State ps psc -1 psc - -

Extract_Shutdown_Time ok psc -1 psc - -

Extract_Shutdown_Time pc psc -1 psc - -

Extract_Shutdown_Time ps psc -1 psc - -

Extract_Transaction_State ok psc -1 psc - -

Extract_Transaction_State pc psc -1 psc - -

Extract_Transaction_State ps psc -1 psc - -

Prepare_To_Receive ok psc psc psc Receive -

 334

Prepare_To_Receive da psc psc psc Reset psc

Prepare_To_Receive pc psc psc psc - psc

Prepare_To_Receive rf psc psc psc Reset psc

Receive / Receive_Mapped_Data ok{dr,no} psc psc psc Receive -

Receive / Receive_Mapped_Data ok{nd,se} psc psc psc - Send

Receive / Receive_Mapped_Data ok{dr,se} psc psc psc - Send

Receive / Receive_Mapped_Data ae psc psc psc Reset Reset

Receive / Receive_Mapped_Data da psc psc psc Reset Reset

Receive / Receive_Mapped_Data dn psc psc psc Reset Reset

Receive / Receive_Mapped_Data rf psc psc psc Reset Reset

Receive / Receive_Mapped_Data oi,un psc psc psc Receive -

Receive / Receive_Mapped_Data pc psc psc psc - -

Receive / Receive_Mapped_Data ps psc psc psc - -

Send_Data / Send_Mapped_Data ok psc psc psc - psc

Send_Data / Send_Mapped_Data ae psc psc psc Reset psc

Send_Data / Send_Mapped_Data da psc psc psc Reset psc

Send_Data / Send_Mapped_Data pc psc psc psc - psc

Send_Data / Send_Mapped_Data rf psc psc psc Reset psc

Set_Allocate_Timer ok psc psc - psc psc

Set_Allocate_Timer pc psc psc - psc psc

Set_Allocate_Timer ps psc psc - psc psc

Set_Client_Context ok psc psc psc - psc

Set_Client_Context pc psc psc psc - psc

Set_Client_Context ps psc psc psc - psc

Set_Conversation_Encryption_Level ok psc psc - psc psc

Set_Conversation_Encryption_Level pc psc psc - psc psc

Set_Conversation_Encryption_Level ps psc psc - psc psc

Set_Convertion ok psc psc - psc psc

Set_Convertion pc psc psc - psc psc

 335

Set_Convertion ps psc psc - psc psc

Set_Conversation_Security_Type ok psc psc - psc psc

Set_Conversation_Security_Type pc psc psc - psc psc

Set_Conversation_Security_Type pn psc psc - psc psc

Set_Conversation_Security_New_Password ok psc psc - psc psc

Set_Conversation_Security_New_Password pc psc psc - psc psc

Set_Conversation_Security_Password ok psc psc - psc psc

Set_Conversation_Security_Password pc psc psc - psc psc

Set_Conversation_Security_User_ID ok psc psc - psc psc

Set_Conversation_Security_User_ID pc psc psc - psc psc

Set_Deallocate_Type ok psc psc - - -

Set_Deallocate_Type pc psc psc - - -

Set_Deallocate_Type ps psc psc - - -

Set_Function_Key ok psc psc psc - -

Set_Function_Key pc psc psc psc - -

Set_Function_Key ps psc psc psc - -

Set_Receive_Timer ok psc psc psc - -

Set_Receive_Timer pc psc psc psc - -

Set_Receive_Timer ps psc psc psc - -

Set_Receive_Type ok - - - - -

Set_Receive_Type pc - - - - -

Set_Partner_Host_Name ok psc psc - psc psc

Set_Partner_Host_Name pc psc psc - psc psc

Set_Partner_Host_Name ps psc psc - psc psc

Set_Partner_Index ok psc psc - psc psc

Set_Partner_Index pc psc psc - psc psc

Set_Partner_Index ps psc psc - psc psc

Set_Partner_IP_Address ok psc psc - psc psc

Set_Partner_IP_Address pc psc psc - psc psc

 336

Set_Partner_IP_Address ps psc psc - psc psc

Set_Partner_LU_Name ok psc psc - psc psc

Set_Partner_LU_Name pc psc psc - psc psc

Set_Partner_LU_Name ps psc psc - psc psc

Set_Partner_Port ok psc psc - psc psc

Set_Partner_Port pc psc psc - psc psc

Set_Partner_Port ps psc psc - psc psc

Set_Partner_Tsel ok psc psc - psc psc

Set_Partner_Tsel pc psc psc - psc psc

Set_Partner_Tsel ps psc psc - psc psc

Set_Partner_Tsel_Format ok psc psc - psc psc

Set_Partner_Tsel_Format pc psc psc - psc psc

Set_Partner_Tsel_Format ps psc psc - psc psc

Set_Sync_Level ok psc - psc psc psc

Set_Sync_Level pc psc - psc psc psc

Set_Sync_Level ps psc - psc psc psc

Set_TP_Name ok psc psc - psc psc

Set_TP_Name pc psc psc - psc psc

Specify_Local_Port ok psc - psc psc psc

Specify_Local_Port pc psc - psc psc psc

Specify_Local_Port ps psc - psc psc psc

Specify_Local_Tsel ok psc - psc psc psc

Specify_Local_Tsel pc psc - psc psc psc

Specify_Local_Tsel ps psc - psc psc psc

Specify_Local_Tsel_Format ok psc - psc psc psc

Specify_Local_Tsel_Format pc psc - psc psc psc

Specify_Local_Tsel_Format ps psc - psc psc psc

Specify_Secondary_Return_Code ok psc - - - -

Specify_Secondary_Return_Code pc psc - - - -

 337

Specify_Secondary_Return_Code ps psc - - - -

Enable_UTM_UPIC ok Reset psc psc psc psc

Enable_UTM_UPIC pc - psc psc psc psc

Enable_UTM_UPIC ps - psc psc psc psc

Disable_UTM_UPIC ok psc Start Start Start Start

Disable_UTM_UPIC pc psc - - - -

Disable_UTM_UPIC ps psc - - - -

Table 19: State table for CPI-C calls

1Permitted only directly after a / callReceive() Receive_Mapped_Data()

Abbreviations for the state table:

Result Return codes

ae CM_ALLOCATE_FAILURE_RETRY
CM_ALLOCATE_FAILURE_NO_RETRY
CM_SECURITY_NOT_VALID
CM_SECURITY_NOT_SUPPORTED
CM_TPN_NOT_RECOGNIZED
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY

da CM_DEALLOCATED_ABEND

dn CM_DEALLOCATED_NORMAL

oi CM_OPERATION_INCOMPLETE

ok CM_OK

pe CM_PARAMETER_ERROR

pc CM_PROGRAM_PARAMETER_CHECK

pn CM_PARAM_VALUE_NOT_SUPPORTED

ps CM_PRODUCT_SPECIFIC_ERROR

rf CM_RESOURCE_FAILURE_RETRY
CM_RESOURCE_FAILURE_NO_RETRY

nr CM_NO_SECONDARY_RETURN_CODE

un CM_OPERATION_UNSUCCESSFUL

Table 20: Abbreviations for the state table (1)

 338

Result data_received and status_received:

dr CM_COMPLETE_DATA_RECEIVED
CM_INCOMPLETE_DATA_RECEIVED

nd CM_NO_DATA_RECEIVED

no CM_NO_STATUS_RECEIVED

se CM_SEND_RECEIVED

Table 21: Abbreviations for the state table (2)

Follow-up state Meaning

- No state change

psc Error CM_PROGRAM_STATE_CHECK

Table 22: Abbreviations for the state table (3)

The return code CM_CALL_NOT_SUPPORTED is not included in the state table. It is returned if the UPIC library
includes the call but the function is not supported in the specific situation. There is no change of state.

 339

9 Glossary

A term in font means that it is explained somewhere else in the glossary.italic

abnormal termination of a UTM application

Termination of a , where the is not updated. Abnormal termination is UTM application KDCFILE
caused by a serious error, such as a crashed computer or an error in the system software. If you
then restart the application, openUTM carries out a .warm start

abstract syntax (OSI)

Abstract syntax is defined as the set of formally described data types which can be exchanged
between applications via . Abstract syntax is independent of the hardware and programming OSI TP
language used.

acceptor (CPI-C)

The communication partners in a are referred to as the and the acceptor. The conversation initiator
acceptor accepts the conversation initiated by the initiator with Accept_Conversation.

access list

An access list defines the authorization for access to a particular , or service TAC queue USER
. An access list is defined as a and contains one or more , each of which queue key set key codes

represent a role in the application. Users or LTERMs or (OSI) LPAPs can only access the service or
/ when the corresponding roles have been assigned to them (i.e. when their TAC queue USER queue

 and the access list contain at least one common .key set key code)

access point (OSI)

See service access point.

ACID properties

Acronym for the fundamental properties of : atomicity, consistency, isolation and transactions
durability.

administration

Administration and control of a by an or an .UTM application administrator administration program

administration command

Commands used by the of a to carry out administration functions for administrator UTM application
this application. The administration commands are implemented in the form of .transaction codes

administration journal

See .cluster administration journal

administration program

Program unit containing calls to the . This can be either the program interface for administration
standard administration program that is supplied with openUTM or a program written by KDCADM
the user.

 340

administrator

User who possesses administration authorization.

AES

AES (Advanced Encryption Standard) is the current symmetric encryption standarddefined by the
National Institute of Standards and Technology (NIST) and based on the Rijndael algorithm
developed at the University of Leuven (Belgium). If the AES method is used, the UPIC client
generates an AES key for each session.

Apache Axis

Apache Axis (Apache eXtensible Interaction System) is a SOAP engine for the design of Web
services and client applications. There are implementations in C++ and Java.

Apache Tomcat

Apache Tomcat provides an environment for the execution of Java code on Web servers. It was
developed as part of the Apache Software Foundation's Jakarta project. It consists of a servlet
container written in Java which can use the JSP Jasper compiler to convert JavaServer pages into
servlets and run them. It also provides a fully featured HTTP server.

application cold start

See .cold start

application context (OSI)

The application context is the set of rules designed to govern communication between two
applications. This includes, for instance, abstract syntaxes and any assigned transfer syntaxes.

application entity (OSI)

An application entity (AE) represents all the aspects of a real application which are relevant to
communications. An application entity is identified by a globally unique name (“globally” is used here
in its literal sense, i.e. worldwide), the (AET). Every application entity application entity title
represents precisely one . One application process can encompass several application process
application entities.

application entity qualifier (OSI)

Component of the . The application entity qualifier identifies a application entity title service access
 within an application. The structure of an application entity qualifier can vary. openUTM point

supports the type “number”.

application entity title (OSI)

An application entity title is a globally unique name for an (“globally” is used here in application entity
its literal sense, i.e. worldwide). It is made up of the of the relevant application process title

 and the application process application entity qualifier.

 341

application information

This is the entire set of data used by the . The information comprises memory areas UTM application
and messages of the UTM application including the data currently shown on the screen. If operation
of the UTM application is coordinated with a database system, the data stored in the database also
forms part of the application information.

application process (OSI)

The application process represents an application in the . It is uniquely OSI reference model
identified globally by the .application process title

application process title (OSI)

According to the OSI standard, the application process title (APT) is used for the unique
identification of applications on a global (i.e. worldwide) basis. The structure of an application
process title can vary. openUTM supports the type .Object Identifier

application program

An application program is the core component of a . It comprises the main routine UTM application
 and any and processes all jobs sent to a .KDCROOT program units UTM application

application restart

see warm start

application service element (OSI)

An application service element (ASE) represents a functional group of the application layer (layer 7)
of the .OSI reference model

application warm start

see .warm start

association (OSI)

An association is a communication relationship between two application entities. The term
“association” corresponds to the term in .session LU6.1

asynchronous conversation

CPI-C conversation where only the is permitted to send. An asynchronous transaction code initiator
for the must have been generated in the .acceptor UTM application

asynchronous job

Job carried out by the job submitter at a later time. openUTM includes functions message queuing
for processing asynchronous jobs (see and . An UTM-controlled queue service-controlled queue)
asynchronous job is described by the , the recipient and, where applicable, asynchronous message
the required execution time. If the recipient is a terminal, a printer or a transport system application,
the asynchronous job is a . If the recipient is an of the same queued output job asynchronous service
application or a remote application, the job is a . Asynchronous jobs can be background job time-

or can be integrated in a . driven jobs job complex

 342

asynchronous message

Asynchronous messages are messages directed to a . They are stored temporarily message queue
by the local and then further processed regardless of the job submitter. Distinctions UTM application
are drawn between the following types of asynchronous messages, depending on the recipient:

In the case of asynchronous messages to a all further processing is UTM-controlled queue,
controlled by openUTM. This type includes messages that start a local or remote asynchronous

 (see also) and messages sent for output on a terminal, a printer or a service background job
transport system application (see also).queued output job

In the case of asynchronous messages to a , further processing is service-controlled queue
controlled by a of the application. This type includes messages to a , service TAC queue
messages to a and messages to a . The USER queue and the USER queue temporary queue
temporary queue must belong to the local application, whereas the TAC queue can be in both
the local application and the remote application.

asynchronous program

Program unit started by a .background job

asynchronous service (KDCS)

Service which processes a . Processing is carried out independently of the job background job
submitter. An asynchronous service can comprise one or more program units/transactions. It is
started via an asynchronous .transaction code

audit (BS2000 systems)

During execution of a UTM events which are of relevance in terms of security can UTM application,
be logged by for auditing purposes.SAT

authentication

See .system access control

authorization

See .data access control

Axis

See .Apache Axis

background job

Background jobs are destined for an of the current asynchronous jobs asynchronous service
application or of a remote application. Background jobs are particularly suitable for time-intensive
processing or processing which is not time-critical and where the results do not directly influence the
current dialog.

basic format

Format in which terminal users can make all entries required to start a service.

basic job

Asynchronous job in a .job complex

 343

browsing asynchronous messages

A sequentially reads the in a . The service asynchronous messages service-controlled queue
messages are not locked while they are being read and they remain in the queue after they have
been read. This means that they can be read simultaneously by different services.

bypass mode (BS2000 systems)

Operating mode of a printer connected locally to a terminal. In bypass mode, any asynchronous
 sent to the printer is sent to the terminal and then redirected to the printer by the terminal message

without being displayed on screen.

cache

Used for buffering application data for all the processes of a . UTM application
The cache is used to optimize access to the and, in the case of UTM cluster applications, page pool
the .cluster page pool

CCR (Commitment, Concurrency and Recovery)

CCR is an Application Service Element (ASE) defined by OSI used for OSI TP communication which
contains the protocol elements (services) related to the beginning and end (commit or rollback) of a

. CCR supports the commitment.transaction two-phase

CCS name (BS2000 systems)

See .coded character set name

client

Clients of a can be:UTM application

terminals

UPIC client programs

transport system applications (e.g. DCAM, PDN, CMX, socket applications or UTM applications
which have been generated as).transport system applications

Clients are connected to the UTM application via LTERM partners.
Note: UTM clients which use the OpenCPIC carrier system are treated just like .OSI TP partners

client side of a conversation

This term has been superseded by .initiator

cluster

A number of computers connected over a fast network and which in many cases can be seen as a
single computer externally. The objective of clustering is generally to increase the computing
capacity or availability in comparison with a single computer.

cluster administration journal

The cluster administration journal consists of:

two log files with the extensions JRN1 and JRN2 for global administration actions,

the JKAA file which contains a copy of the KDCS Application Area (KAA). Administrative
changes that are no longer present in the two log files are taken over from this copy.

 344

The administration journal files serve to pass on to the other node applications those administrative
actions that are to apply throughout the cluster to all node applications in a UTM cluster application.

cluster configuration file

File containing the central configuration data of a . The cluster configuration UTM cluster application
file is created using the UTM generation tool .KDCDEF

cluster filebase

Filename prefix or directory name for the .UTM cluster files

cluster GSSB file

File used to administer GSSBs in a . The cluster GSSB file is created using UTM cluster application
the UTM generation tool .KDCDEF

cluster lock file

File in a used to manage cross-node locks of user data areas.UTM cluster application

cluster page pool

The cluster page pool consists of an administration file and up to 10 files containing a UTM cluster
user data that is available globally in the cluster (service data including LSSB, GSSB application’s

and ULS). The cluster page pool is created using the UTM generation tool .KDCDEF

cluster start serialization file

Lock file used to serialize the start-up of individual node applications (only on Unix, Linux and
Windows systems).

cluster ULS file

File used to administer the ULS areas of a . The cluster ULS file is created UTM cluster application
using the UTM generation tool .KDCDEF

cluster user file

File containing the user management data of a . The cluster user file is UTM cluster application
created using the UTM generation tool .KDCDEF

coded character set name (BS2000 systems)

If the product (e tended ost ode upport) is used, each character set used is uniquely XHCS X H C S
identified by a coded character set name (abbreviation: “CCS name” or “CCSN”).

cold start

Start of a after the application terminates normally () or after a UTM application normal termination
new generation (see also). warm start

 345

communication area (KDCS)

KDCS , secured by transaction logging and which contains service-specific primary storage area
data. The communication area comprises 3 parts:

the KB header with general service data

the KB return area for returning values to KDCS calls

the KB program area for exchanging data between UTM program units within a single .service

communication end point

see transport system end point

communication resource manager

In distributed systems, communication resource managers (CRMs) control communication between
the application programs. openUTM provides CRMs for the international OSI TP standard, for the
LU6.1 industry standard and for the proprietary openUTM protocol UPIC.

configuration

Sum of all the properties of a . The configuration describes:UTM application

application parameters and operating parameters

the objects of an application and the properties of these objects. Objects can be program units
and , communication partners, printers, , etc.transaction codes user IDs

defined measures for controlling data and system access.

The configuration of a UTM application is defined at generation time () and can static configuration
be changed dynamically by the administrator (while the application is running, dynamic configuration
). The configuration is stored in the .KDCFILE

confirmation job

Component of a where the confirmation job is assigned to the . There are job complex basic job
positive and negative confirmation jobs. If the returns a positive result, the positive basic job
confirmation job is activated, otherwise, the negative confirmation job is activated.

connection bundle

see LTERM bundle.

connection user ID

User ID under which a or a is signed on at the directly TS application UPIC client UTM application
after the connection has been established. The following applies, depending on the client (= LTERM
partner) generation:

The connection user ID is the same as the USER in the LTERM statement (explicit connection
user ID). An explicit connection user ID must be generated with a USER statement and cannot
be used as a “genuine” .user ID

The connection user ID is the same as the LTERM partner (implicit connection user ID) if no
USER was specified in the LTERM statement or if an LTERM pool has been generated.

 346

In a , the service belonging to a connection user ID (RESTART=YES in UTM cluster application
LTERM or USER) is bound to the connection and is therefore local to the node.
A connection user ID generated with RESTART=YES can have a separate service in each node

.application

contention loser

Every connection between two partners is managed by one of the partners. The partner that
manages the connection is known as the . The other partner is the contention loser.contention winner

contention winner

A connection's contention winner is responsible for managing the connection. Jobs can be started by
the contention winner or by the . If a conflict occurs, i.e. if both partners in the contention loser
communication want to start a job at the same time, then the job stemming from the contention
winner uses the connection.

conversation

In CPI-C, communication between two CPI-C application programs is referred to as a conversation.
The communication partners in a conversation are referred to as the and the .initiator acceptor

conversation ID

CPI-C assigns a local conversation ID to each , i.e. the and each have conversation initiator acceptor
their own conversation ID. The conversation ID uniquely assigns each CPI-C call in a program to a
conversation.

CPI-C

CPI-C (ommon rogramming nterface for ommunication) is a program interface for program-to-C P I C
program communication in open networks standardized by X/Open and CIW (PI-C mplementor's C I

orkshop). W
The CPI-C implemented in openUTM complies with X/Open’s CPI-C V2.0 CAE Specification. The
interface is available in COBOL and C. In openUTM, CPI-C can communicate via the OSI TP, LU6.
1 and UPIC protocols and with openUTM-LU62.

Cross Coupled System / XCS

Cluster of BS2000 computers with the Multiple System Control Highly Integrated System Complex

Facility (HIPLEX MSCF).®

data access control

In data access control openUTM checks whether the communication partner is authorized to access
a particular object belonging to the application. The access rights are defined as part of the
configuration.

data space (BS2000 systems)

Virtual address space of BS2000 which can be employed in its entirety by the user. Only data and
programs stored as data can be addressed in a data space; no program code can be executed.

 347

dead letter queue

The dead letter queue is a TAC queue which has the fixed name KDCDLETQ.
It is always available to save queued messages sent to transaction codes, TAC queues, LPAP or
OSI-LPAP partners but which could not be processed. The saving of queued messages in the dead
letter queue can be activated or deactivated for each message destination individually using the
TAC, LPAP or OSI-LPAP statement's DEAD-LETTER-Q parameter.

DES

DES (Data Encryption Standard) is an international standard for encrypting data. One key is used in
this method for encoding and decoding. If the DES method is used, the UPIC client generates a
DES key for each session.

dialog conversation

CPI-C conversation in which both the and the are permitted to send. A dialog initiator acceptor
transaction code for the must have been generated in the .acceptor UTM application

dialog job, interactive job

Job which starts a . The job can be issued by a or, when two servers dialog service client
communicate with each other (), by a different application.server-server communication

dialog message

A message which requires a response or which is itself a response to a request. The request and
the response both take place within a single service. The request and reply together form a dialog
step.

dialog program

Program unit which partially or completely processes a .dialog step

dialog service

Service which processes a interactively (synchronously) in conjunction with the job submitter (job
 or another server application) . A dialog service processes received from the client dialog messages

job submitter and generates dialog messages to be sent to the job submitter. A dialog service
comprises at least one In general, a dialog service encompasses at least one dialog transaction.
step. Exception: in the event of it is possible for more than one service to comprise service chaining,
a dialog step.

dialog step

A dialog step starts when a is received by the . It ends when the dialog message UTM application
UTM application responds.

dialog terminal process (Unix , Linux and Windows systems)

A dialog terminal process connects a terminal of a Unix, Linux or Windows system with the work
processes of the . Dialog terminal processes are started either when the user enters UTM application
utmdtp or via the LOGIN shell. A separate dialog terminal process is required for each terminal to be
connected to a UTM application.

 348

distributed processing

Processing of by several different applications or the transfer of to dialog jobs background jobs
another application. The higher-level protocols and are used for distributed LU6.1 OSI TP
processing. openUTM-LU62 also permits distributed processing with LU6.2 partners. A distinction is
made between distributed processing with (transaction logging across distributed transactions
different applications) and distributed processing without distributed transactions (local transaction
logging only). Distributed processing is also known as server-server communication.

distributed transaction

Transaction which encompasses more than one application and is executed in several different (sub-
)transactions in distributed systems.

distributed transaction processing

Distributed processing with distributed transactions.

dynamic configuration

Changes to the made by the administrator. UTM objects such as , configuration program units
, , printers or can be added, modified or in transaction codes clients LU6.1 connections, user IDs

some cases deleted from the configuration while the application is running. To do this, it is
necessary to create separate which use the functions of the administration programs program

. The WinAdmin administration program or the WebAdmin administration interface for administration
program can be used to do this, or separate must be created that utilize the administration programs
functions of the administration program interface.

encryption level

The encryption level specifies if and to what extent a client message and password are to be
encrypted.

event-driven service

This term has been superseded by .event service

event exit

Routine in an application program which is started automatically whenever certain events occur (e.g.
when a process is started, when a service is terminated). Unlike , an event exit must event services
not contain any KDCS, CPI-C or XATMI calls.

event function

Collective term for and . event exits event services

 349

event service

Service started when certain events occur, e.g. when certain UTM messages are issued. The
for event-driven services must contain KDCS calls. program units

filebase

UTM application filebase
On BS2000 systems, filebase is the prefix for the , the USLOG and the KDCFILE user log file system

 SYSLOG. log file
On Unix, Linux and Windows systems, filebase is the name of the directory under which the
KDCFILE, the user log file USLOG, the system log file SYSLOG and other files relating to to the
UTM application are stored.

Functional Unit (FU)

A subset of the protocol providing a particular functionality. The OSI TP protocol is divided OSI TP
into the following functional units:

Dialog

Shared Control

Polarized Control

Handshake

Commit

Chained Transactions

Unchained Transactions

Recovery

Manufacturers implementing OSI TP need not include all functional units, but can concentrate on a
subset instead. Communications between applications of two different OSI TP implementations is
only possible if the included functional units are compatible with each other.

generation

See UTM generation.

global secondary storage area

See secondary storage area.

hardcopy mode

Operating mode of a printer connected locally to a terminal. Any message which is displayed on
screen will also be sent to the printer.

heterogeneous link

In the case of a link between a and a non-UTM server-server communication: UTM application
application, e.g. a CICS or TUXEDO application.

Highly Integrated System Complex / HIPLEX ®

Product family for implementing an operating, load sharing and availability cluster made up of a
number of BS2000 servers.

 350

 351

HIPLEX ® MSCF

(MSCF = ultiple ystem ontrol acility) M S C F

Provides the infrastructure and basic functions for distributed applications with HIPLEX .®

homogeneous link

In the case of : a link between two It is of no server-server communication UTM applications.
significance whether the applications are running on the same operating system platforms or on
different platforms.

inbound conversation (CPI-C)

See incoming conversation.

incoming conversation (CPI-C)

A conversation in which the local CPI-C program is the is referred to as an incoming acceptor
conversation. In the X/Open specification, the term “inbound conversation” is used synonymously
with “incoming conversation”.

initial KDCFILE

In a , this is the generated by and which must be copied UTM cluster application KDCFILE KDCDEF
for each node application before the node applications are started.

initiator (CPI-C)

The communication partners in a are referred to as the initiator and the . The conversation acceptor
initiator sets up the conversation with the CPI-C calls Initialize_Conversation and Allocate.

insert

Field in a message text in which openUTM enters current values.

inverse KDCDEF

A function which uses the dynamically adapted configuration data in the to generate KDCFILE
control statements for a run. An inverse KDCDEF can be started “offline” under KDCDEF KDCDEF
 or “online” via the .program interface for administration

IUTMDB

Interface used for the coordinated interaction with resource managers on BS2000 systems. This
includes data repositories (LEASY) and data base systems (SESAM/SQL, UDS/SQL).

JConnect client

Designation for clients based on the product openUTM-JConnect. The communication with the UTM
application is carried out via the .UPIC protocol

JDK

Java Development Kit
Standard development environment from Oracle Corporation for the development of Java
applications.

 352

job

Request for a provided by a . The request is issued by specifying a service UTM application
transaction code. See also: , , , . queued output job dialog job background job job complex

job complex

Job complexes are used to assign to . An asynchronous job confirmation jobs asynchronous jobs
within a job complex is referred to as a .basic job

job-receiving service (KDCS)

A job-receiving service is a started by a of another server application.service job-submitting service

job-submitting service (KDCS)

A job-submitting service is a which requests another service from a different server service
application () in order to process a job.job-receiving service

KDCADM

Standard administration program supplied with openUTM. KDCADM provides administration
functions which are called with transaction codes ().administration commands

KDCDEF

UTM tool for the of . KDCDEF uses the configuration information in the generation UTM applications
KDCDEF control statements to create the UTM objects and the ROOT table sources for KDCFILE
the main routine .KDCROOT
In UTM cluster applications, KDCDEF also creates the the , cluster configuration file, cluster user file
the , the and the .cluster page pool cluster GSSB file cluster ULS file

KDCFILE

One or more files containing data required for a to run. The KDCFILE is created UTM application
with the UTM generation tool . Among other things, it contains the of the KDCDEF configuration
application.

KDCROOT

Main routine of an which forms the link between the and the UTM application program program units
system code. KDCROOT is linked with the to form the .program units application program

KDCS message area

For KDCS calls: buffer area in which messages or data for openUTM or for the are program unit
made available.

KDCS parameter area

See parameter area.

KDCS program interface

Universal UTM program interface compliant with the national DIN 66 265 standard and which
includes some extensions. KDCS (compatible data communications interface) allows dialog services
to be created, for instance, and permits the use of functions. In addition, KDCS message queuing
provides calls for . distributed processing

 353

Kerberos

Kerberos is a standardized network authentication protocol (RFC1510) based on encryption
procedures in which no passwords are sent to the network in clear text.

Kerberos principal

Owner of a key.
Kerberos uses symmetrical encryption, i.e. all the keys are present at two locations, namely with the
key owner (principal) and the KDC (Key Distribution Center).

key code

Code that represents specific access authorization or a specific role. Several key codes are grouped
into a .key set

key set

Group of one or more under a particular a name. A key set defines authorization within key codes
the framework of the authorization concept used (lock/key code concept or concept). A access list
key set can be assigned to a , an an , a or a user ID LTERM partner (OSI) LPAP partner service

.TAC queue

linkage program

See .KDCROOT

local secondary storage area

See secondary storage area.

Log4j

Log4j is part of the Apache Jakarta project. Log4j provides information for logging information
(runtime information, trace records, etc.) and configuring the log output. uses the software WS4UTM
product Log4j for trace and logging functionality.

lock code

Code protecting an LTERM partner or transaction code against unauthorized access. Access is only
possible if the of the accesser contains the appropriate (lock/key code concept).key set key code

logging process

Process in Unix, Linux and Windows systems that controls the logging of account records or
monitoring data.

LPAP bundle

LPAP bundles allow messages to be distributed to LPAP partners across several partner
applications. If a UTM application has to exchange a very large number of messages with a partner
application then load distribution may be improved by starting multiple instances of the partner
application and distributing the messages across the individual instances. In an LPAP
bundle, openUTM is responsible for distributing the messages to the partner application instances.
An LPAP bundle consists of a master LPAP and multiple slave LPAPs. The slave LPAPs are
assigned to the master LPAP on UTM generation. LPAP bundles exist for both the OSI TP protocol
and the LU6.1 protocol.

 354

LPAP partner

In the case of via the protocol, an LPAP partner for each partner distributed processing LU6.1
application must be configured in the local application. The LPAP partner represents the partner
application in the local application. During communication, the partner application is addressed by
the name of the assigned LPAP partner and not by the application name or address.

LTERM bundle

An LTERM bundle (connection bundle) consists of a master LTERM and multiple slave LTERMs. An
LTERM bundle (connection bundle) allows you to distribute queued messages to a logical partner
application evenly across multiple parallel connections.

LTERM group

An LTERM group consists of one or more alias LTERMs, the group LTERMs and a primary LTERM.
In an LTERM group, you assign multiple LTERMs to a connection.

LTERM partner

LTERM partners must be configured in the application if you want to connect clients or printers to a
. A client or printer can only be connected if an LTERM partner with the appropriate UTM application

properties is assigned to it. This assignment is generally made in the , but can also be configuration
made dynamically using terminal pools.

LTERM pool

The TPOOL statement allows you to define a pool of LTERM partners instead of issuing one LTERM
and one PTERM statement for each . If a client establishes a connection via an LTERM pool, client
an LTERM partner is assigned to it dynamically from the pool.

LU6.1

Device-independent data exchange protocol (industrial standard) for transaction-oriented server-
.server communication

LU6.1-LPAP bundle

LPAP bundle for partner applications.LU6.1

LU6.1 partner

Partner of the that communicates with the UTM application via the protocol. UTM application LU6.1
Examples of this type of partner are:

a UTM application that communicates via LU6.1

an application in the IBM environment (e.g. CICS, IMS or TXSeries) that communicates via LU6.
1

main process (Unix /Linux / Windows systems)

Process which starts the . It starts the , the , UTM application work processes UTM system processes
and the and monitors the printer processes, network processes, logging process timer process UTM

. application

 355

main routine KDCROOT

See .KDCROOT

management unit

SE Servers component; in combination with the , permits centralized, web-based SE Manager
management of all the units of an SE server.

message definition file

The message definition file is supplied with openUTM and, by default, contains the UTM message
texts in German and English together with the definitions of the message properties. Users can take
this file as a basis for their own message modules.

message destination

Output medium for a . Possible message destinations for a message from the openUTM message
transaction monitor include, for instance, terminals, , the MSGTAC, the TS applications event service

SYSLOG or SYSOUT/SYSLST or system log file TAC queues, asynchronous TACs, USER queues,
stderr/stdout.
The message destinations for the messages of the UTM tools are SYSOUT/SYSLST and stderr
/stdout.

message queue

Queue in which specific messages are kept with transaction management until further processed. A
distinction is drawn between and , depending on service-controlled queues UTM-controlled queues
who monitors further processing.

message queuing

Message queuing (MQ) is a form of communication in which the messages are exchanged via
intermediate queues rather than directly. The sender and recipient can be separated in space or
time. The transfer of the message is independent of whether a network connection is available at the
time or not. In openUTM there are and .UTM-controlled queues service-controlled queues

MSGTAC

Special event service that processes messages with the message destination MSGTAC by means
of a program. MSGTAC is an asynchronous service and is created by the operator of the application.

multiplex connection (BS2000 systems)

Special method offered by to connect terminals to a . A multiplex connection OMNIS UTM application
enables several terminals to share a single transport connection.

multi-step service (KDCS)

Service carried out in a number of .dialog steps

multi-step transaction

Transaction which comprises more than one .processing step

Network File System/Service / NFS

Allows Unix systems to access file systems across the network.

 356

network process (Unix / Linux / Windows systems)

A process in a for connection to the network.UTM application

network selector

The network selector identifies a service access point to the network layer of the OSI reference
 in the local system.model

node

Individual computer of a .cluster

node application

UTM application that is executed on an individual as part of a .node UTM cluster application

node bound service

A node bound service belonging to a user can only be continued at the node application at which the
user was last signed on. The following services are always node bound:

Services that have started communications with a job receiver via LU6.1 or OSI TP and for
which the job-receiving service has not yet been terminated

Inserted services in a service stack

Services that have completed a SESAM transaction

In addition, a user’s service is node bound as long as the user is signed-on at a node application.

node filebase

Filename prefix or directory name for the , and node application's KDCFILE user log file system log
.file

node recovery

If a node application terminates abnormally and no rapid warm start of the application is possible on
its associated then it is possible to perform a node recovery for this node on another node computer
node in the UTM cluster. In this way, it is possible to release locks resulting from the failed node
application in order to prevent unnecessary impairments to the running .UTM cluster application

normal termination of a UTM application

Controlled termination of a . Among other things, this means that the administration UTM application
data in the are updated. The initiates normal termination (e.g. with KDCFILE administrator
KDCSHUT N). After a normal termination, openUTM carries out any subsequent start as a .cold start

object identifier

An object identifier is an identifier for objects in an OSI environment which is unique throughout the
world. An object identifier comprises a sequence of integers which represent a path in a tree
structure.

OMNIS (BS2000 systems)

OMNIS is a “session manager” which lets you set up connections from one terminal to a number of
partners in a network concurrently OMNIS also allows you to work with multiplex connections.

online import

 357

In a , online import refers to the import of application data from a normally UTM cluster application
terminated node application into a running node application.

online update

In a online update refers to a change to the application configuration or the UTM cluster application,
application program or the use of a new UTM revision level while a is UTM cluster application
running.

open terminal pool

Terminal pool which is not restricted to clients of a single computer or particular type. Any client for
which no computer- or type-specific terminal pool has been generated can connect to this terminal
pool.

OpenCPIC

Carrier system for UTM clients that use the protocol.OSI TP

OpenCPIC client

OSI TP partner application with the carrier system.OpenCPIC

openSM2

The openSM2 product line offers a consistent solution for the enterprise-wide performance
management of server and storage systems. openSM2 offers the acquisition of monitoring data,
online monitoring and offline evaluation.

openUTM cluster

From the perspective of UPIC clients, from the perspective of the server:Combination of several not
node applications of a UTM cluster application to form one logical application that is addressed via a
common symbolic destination name.

openUTM-D

openUTM-D (openUTM distributed) is a component of openUTM which allows distributed processing.
openUTM-D is an integral component of openUTM.

OSI-LPAP bundle

LPAP bundle for partner applications.OSI TP

OSI-LPAP partner

OSI-LPAP partners are the addresses of the generated in openUTM. In the case of OSI TP partners
 via the protocol, an OSI-LPAP partner for each partner application distributed processing OSI TP

must be configured in the local application. The OSI-LPAP partner represents the partner application
in the local application. During communication, the partner application is addressed by the name of
the assigned OSI-LPAP partner and not by the application name or address.

 358

OSI reference model

The OSI reference model provides a framework for standardizing communications in open systems.
ISO, the International Organization for Standardization, described this model in the ISO IS7498
standard. The OSI reference model divides the necessary functions for system communication into
seven logical layers. These layers have clearly defined interfaces to the neighboring layers.

OSI TP

Communication protocol for distributed transaction processing defined by ISO.
OSI TP stands for Open System Interconnection Transaction Processing.

OSI TP partner

Partner of the UTM application that communicates with the UTM application via the OSI TP protocol.
Examples of such partners are:

a UTM application that communicates via OSI TP

an application in the IBM environment (e.g. CICS) that is connected via openUTM-LU62

an OpenCPIC client

applications from other TP monitors that support OSI TP

outbound conversation (CPI-C)

See .outgoing conversation

outgoing conversation (CPI-C)

A conversation in which the local CPI-C program is the is referred to as an outgoing initiator
conversation. In the X/Open specification, the term “outbound conversation” is used synonymously
with “outgoing conversation”.

page pool

Part of the in which user data is stored.KDCFILE
In a this data consists, for example, of , messages sent to standalone application dialog messages

, . message queues secondary memory areas
In a UTM cluster application, it consists, for example, of messages to .message queues, TLS

parameter area

Data structure in which a program unit passes the operands required for a UTM call to openUTM.

partner application

Partner of a UTM application during . Higher communication protocols are distributed processing
used for distributed processing (, or LU6.2 via the openUTM-LU62 gateway).LU6.1 OSI TP

postselection (BS2000 systems)

Selection of logged UTM events from the SAT logging file which are to be evaluated. Selection is
carried out using the SATUT tool.

 359

prepare to commit (PTC)

Specific state of a distributed transaction
Although the end of the distributed transaction has been initiated, the system waits for the partner to
confirm the end of the transaction.

preselection (BS2000 systems)

Definition of the UTM events which are to be logged for the . Preselection is carried out SAT audit
with the UTM-SAT administration functions. A distinction is made between event-specific, user-
specific and job-specific (TAC-specific) preselection.

presentation selector

The presentation selector identifies a service access point to the presentation layer of the OSI
 in the local system.reference model

primary storage area

Area in main memory to which the has direct access, e.g. KDCS program unit standard primary
, .working area communication area

print administration

Functions for and the administration of , sent to a printer.print control queued output jobs

print control

openUTM functions for controlling print output.

printer control LTERM

A printer control LTERM allows a client or terminal user to connect to a UTM application. The
printers assigned to the printer control LTERM can then be administered from the client program or
the terminal. No administration rights are required for these functions.

printer control terminal

This term has been superseded by .printer control LTERM

printer group (Unix systems)

For each printer, a Unix system sets up one printer group by default that contains this one printer
only. It is also possible to assign several printers to one printer group or to assign one printer to
several different printer groups.

printer pool

Several printers assigned to the same .LTERM partner

printer process (Unix / Linux systems)

Process set up by the for outputting to a . The main process asynchronous messages printer group
process exists as long as the printer group is connected to the . One printer process UTM application
exists for each connected printer group.

 360

process

The openUTM manuals use the term “process” as a collective term for processes (Unix / Linux /
Windows systems) and tasks (BS2000 systems).

processing step

A processing step starts with the receipt of a sent to the by a dialog message UTM application client
 or another server application. The processing step ends either when a response is sent, thus also
terminating the , or when a dialog message is sent to a third party.dialog step

program interface for administration

UTM program interface which helps users to create their own . Among other administration programs
things, the program interface for administration provides functions for , for dynamic configuration
modifying properties and application parameters and for querying information on the configuration
and the current workload of the application.

program space (BS2000 systems)

Virtual address space of BS2000 which is divided into memory classes and in which both executable
programs and pure data are addressed.

program unit

UTM are implemented in the form of one or more program units. The program units are services
components of the . Depending on the employed API, they may have to contain application program
KDCS, XATMI or CPIC calls. They can be addressed using . Several different transaction codes
transaction codes can be assigned to a single program unit.

queue

See message queue.

queued output job

Queued output jobs are which output a message, such as a document, to a asynchronous jobs
printer, a terminal or a transport system application.
Queued output jobs are processed by UTM system functions exclusively, i.e. it is not necessary to
create program units to process them.

Quick Start Kit

A sample application supplied with openUTM (Windows systems).

redelivery

Repeated delivery of an that could not be processed correctly because, for asynchronous message
example, the was rolled back or the was terminated abnormally. transaction asynchronous service
The message is returned to the message queue and can then be read and/or processed again.

reentrant program

Program whose code is not altered when it runs. On BS2000 systems this constitutes a prerequisite
for using . shared code

 361

request

Request from a or another server for a .client service function

requestor

In XATMI, the term requestor refers to an application which calls a service.

resource manager

Resource managers (RMs) manage data resources. Database systems are examples of resource
managers. openUTM, however, also provides its own resource managers for accessing message
queues, local memory areas and logging files, for instance. Applications access RMs via special
resource manager interfaces. In the case of database systems, this will generally be SQL and in the
case of openUTM RMs, it is the KDCS interface.

restart

See screen restart.
see service restart.

RFC1006

A protocol defined by the IETF (Internet Engineering Task Force) belonging to the TCP/IP family that
implements the ISO transport services (transport class 0) based on TCP/IP.

RSA

Abbreviation for the inventors of the RSA encryption method (Rivest, Shamir and Adleman). This
method uses a pair of keys that consists of a public key and a private key. A message is encrypted
using the public key, and this message can only be decrypted using the private key. The pair of RSA
keys is created by the UTM application.

SAT audit (BS2000 systems)

Audit carried out by the SAT (Security Audit Trail) component of the BS2000 software product
SECOS.

screen restart

If a is interrupted, openUTM again displays the of the last completed dialog service dialog message
 on screen when the service restarts provided that the last transaction output a message transaction

on the screen.

SE manager

Web-based graphical user interface (GUI) for the SE series of Business Servers. SE Manager runs
on the and permits the central operation and administration of server units (with management unit
/390 architecture and/or x86 architecture), application units (x86 architecture), net unit and
peripherals.

SE server

A Business Server from Fujitsu's SE series.

 362

secondary storage area

Memory area secured by transaction logging and which can be accessed by the KDCS program unit
with special calls. Local secondary storage areas (LSSBs) are assigned to one Global service.
secondary storage areas (GSSBs) can be accessed by all services in a . Other UTM application
secondary storage areas include the and the terminal-specific long-term storage (TLS) user-specific

 .long-term storage (ULS)

selector

A selector identifies a service access point to services of one of the layers of the OSI reference
 in the local system. Each selector is part of the address of the access point.model

semaphore (Unix / Linux / Windows systems)

Unix, Linux and Windows systems resource used to control and synchronize processes.

server

A server is an which provides . The computer on which the applications are application services
running is often also referred to as the server.

server-server communication

See .distributed processing

server side of a conversation (CPI-C)

This term has been superseded by .acceptor

service

Services process the that are sent to a server application. A service of a UTM application jobs
comprises one or more transactions. The service is called with the . Services can be service TAC
requested by or by other servers.clients

service access point

In the OSI reference model, a layer has access to the services of the layer below at the service
access point. In the local system, the service access point is identified by a . During selector
communication, the links up to a service access point. A connection is established UTM application
between two service access points.

service chaining (KDCS)

When service chaining is used, a follow-up service is started without a specification dialog message
after a has completed.dialog service

service-controlled queue

Message queue in which the calling and further processing of messages is controlled by . A services
service must explicitly issue a KDCS call (DGET) to read the message. There are service-controlled
queues in openUTM in the variants , and . USER queue TAC queue temporary queue

 363

service restart (KDCS)

If a service is interrupted, e.g. as a result of a terminal user signing off or a being UTM application
terminated, openUTM carries out a . An is restarted or service restart asynchronous service
execution is continued at the most recent , and a continues synchronization point dialog service
execution at the most recent . As far as the terminal user is concerned, the synchronization point
service restart for a dialog service appears as a provided that a dialog message was screen restart
sent to the terminal user at the last synchronization point.

service routine

See .program unit

service stacking (KDCS)

A terminal user can interrupt a running and insert a new dialog service. When the dialog service
inserted has completed, the interrupted service continues.service

service TAC (KDCS)

Transaction code used to start a .service

session

Communication relationship between two addressable units in the network via the SNA protocol LU6.
 .1

session selector

The session selector identifies an in the local system to the services of the session access point
layer of the .OSI reference model

shared code (BS2000 systems)

Code which can be shared by several different processes.

shared memory

Virtual memory area which can be accessed by several different processes simultaneously.

shared objects (Unix / Linux / Windows systems)

Parts of the can be created as shared objects. These objects are linked to the application program
application dynamically and can be replaced during live operation. Shared objects are defined with
the KDCDEF statement SHARED-OBJECT.

sign-on check

See .system access control

sign-on service (KDCS)

Special for a user in which control how a user signs on to a UTM dialog service program units
application.

single-step service

Dialog service which encompasses precisely one . dialog step

 364

single-step transaction

Transaction which encompasses precisely one .dialog step

SOA

(Service-Oriented Architecture)
SOA is a system architecture concept in which functions are implemented in the form of re-usable,
technically independent, loosely coupled . Services can be called independently of the services
underlying implementations via interfaces which may possess public and, consequently, trusted
specifications. Service interaction is performed via a communication infrastructure made available
for this purpose.

SOAP

SOAP (Simple Object Access Protocol) is a protocol used to exchange data between systems and
run remote procedure calls. SOAP also makes use of the services provided by other standards, XML
for the representation of the data and Internet transport and application layer protocols for message
transfer.

socket connection

Transport system connection that uses the socket interface. The socket interface is a standard
program interface for communication via TCP/IP.

standalone application

See .standalone UTM application

standalone UTM application

Traditional that is not part of a .UTM application UTM cluster application

standard primary working area (KDCS)

Area in main memory available to all KDCS . The contents of the area are either program units
undefined or occupied with a fill character when the program unit starts execution.

start format

Format output to a terminal by openUTM when a user has successfully signed on to a UTM
(except after a and during sign-on via the).application service restart sign-on service

static configuration

Definition of the during generation using the UTM tool .configuration KDCDEF

SYSLOG file

See .system log file

synchronization point, consistency point

The end of a . At this time, all the changes made to the during the transaction application information
transaction are saved to prevent loss in the event of a crash and are made visible to others. Any
locks set during the transaction are released.

 365

system access control

A check carried out by openUTM to determine whether a certain is authorized to work with user ID
the . The authorization check is not carried out if the UTM application was UTM application
generated without user IDs.

system log file

File or file generation to which openUTM logs all UTM messages for which SYSLOG has been
defined as the during execution of a message destination UTM application.

TAC

See .transaction code

TAC queue

Message queue generated explicitly by means of a KDCDEF statement. A TAC queue is a service-
that can be addressed from any service using the generated name.controlled queue

temporary queue

Message queue created dynamically by means of a program that can be deleted again by means of
a program (see).service-controlled queue

terminal-specific long-term storage (KDCS)

Secondary storage area assigned to an or and which is retained LTERM, LPAP OSI-PAP partner
after the application has terminated.

time-driven job

Job which is buffered by openUTM in a up to a specific time until it is sent to the message queue
recipient. The recipient can be an of the same application, a , a asynchronous service TAC queue
partner application, a terminal or a printer. Time-driven jobs can only be issued by KDCS program

.units

timer process (Unix / Linux / Windows systems)

Process which accepts jobs for controlling the time at which are executed. It does work processes
this by entering them in a job list and releasing them for processing after a time period defined in the
job list has elapsed.

TLS termination proxy

A TLS termination proxy is a proxy server that is used to handle incoming TLS connections,
decrypting the data and passing on the unencrypted request to other servers.

TNS (Unix / Linux / Windows systems)

Abbreviation for the Transport Name Service. TNS assigns a transport selector and a transport
system to an application name. The application can be reached through the transport system.

Tomcat

see Apache Tomcat

https://en.wikipedia.org/wiki/Proxy_server
https://en.wikipedia.org/wiki/Transport_Layer_Security

 366

transaction

Processing section within a for which adherence to the is guaranteed. If, service ACID properties
during the course of a transaction, changes are made to the , they are either application information
made consistently and in their entirety or not at all (all-or-nothing rule). The end of the transaction
forms a .synchronization point

transaction code/TAC

Name which can be used to identify a . The transaction code is assigned to the program program unit
unit during or . It is also possible to assign more than one transaction static dynamic configuration
code to a program unit.

transaction rate

Number of successfully executed per unit of time.transactions

transfer syntax

With the data to be transferred between two computer systems is converted from the local OSI TP,
format into transfer syntax. Transfer syntax describes the data in a neutral format which can be
interpreted by all the partners involved. An must be assigned to each transfer Object Identifier
syntax.

transport connection

In the this is a connection between two entities of layer 4 (transport layer).OSI reference model,

transport layer security

Transport layer security is a hybrid encryption protocol for secure data transmission in the Internet.

transport selector

The transport selector identifies a service access point to the transport layer of the OSI reference
 in the local system.model

transport system access point

See transport system end point.

transport system application

Application which is based directly on a transport system interface (e.g. CMX, DCAM or socket).
When transport system applications are connected, the partner type APPLI or SOCKET must be
specified during . A transport system application cannot be integrated in a configuration distributed

.transaction

transport system end point

Client/server or server/server communication establishes a connection between two transport
system end points. A transport system end point is also referred to as a local application name and
is defined using the BCAMAPPL statement or MAX APPLINAME.

TS application

See transport system application.

 367

typed buffer (XATMI)

Buffer for exchanging typed and structured data between communication partners. Typed buffers
ensure that the structure of the exchanged data is known to both partners implicitly.

UPIC

Carrier system for openUTM clients. UPIC stands for Universal Programming Interface for
Communication. The communication with the UTM application is carried out via the .UPIC protocol

UPIC Analyzer

Component used to analyze the UPIC communication recorded with . This step is UPIC Capture
used to prepare the recording for playback using .UPIC Replay

UPIC Capture

Used to record communication between UPIC clients and UTM applications so that this can be
replayed subsequently ().UPIC Replay

UPIC client

The designation for openUTM clients with the UPIC carrier system and for .JConnect clients

UPIC protocol

Protocol for the client server communication with . The UPIC protocol is used by UTM applications
 and .UPIC clients JConnect clients

UPIC Replay

Component used to replay the UPIC communication recorded with and prepared with UPIC Capture
.UPIC Analyzer

user exit

This term has been superseded by event exit.

user ID

Identifier for a user defined in the for the (with an optional password configuration UTM application
for) and to whom special data access rights () have system access control system access control
been assigned. A terminal user must specify this ID (and any password which has been assigned)
when signing on to the UTM application. On BS2000 systems, system access control is also
possible via . Kerberos
For other clients, the specification of a user ID is optional, see also . connection user ID
UTM applications can also be generated without user IDs.

user log file

File or file generation to which users write variable-length records with the KDCS LPUT call. The
data from the KB header of the is prefixed to every record. The user log KDCS communication area
file is subject to transaction management by openUTM.

 368

USER queue

Message queue made available to every user ID by openUTM. A USER queue is a service-
and is always assigned to the relevant user ID. You can restrict the access of other controlled queue

UTM users to your own USER queue.

user-specific long-term storage

Secondary storage area assigned to a , a or an and which is retained user ID session association
after the application has terminated.

USLOG file

See user log file.

UTM application

A UTM application provides which process jobs from or other applications. services clients
openUTM is responsible for transaction logging and for managing the communication and system
resources. From a technical point of view, a UTM application is a process group which forms a
logical server unit at runtime.

UTM client

See client.

UTM cluster application

UTM application that has been generated for use on a cluster and that can be viewed logically as a
 application. single

In physical terms, a UTM cluster application is made up of several identically generated UTM
applications running on the individual cluster .nodes

UTM cluster files

Blanket term for all the files that are required for the execution of a UTM cluster application on Unix,
Linux and Windows systems. This includes the following files:

Cluster configuration file

Cluster user file

Files belonging to the cluster page pool

Cluster GSSB file

Cluster ULS file

Files belonging to the *cluster administration journal

Cluster lock file*

Lock file for start serialization*

The files indicated by * are created when the first node application is started. All the other files are
created on generation using KDCDEF.

UTM-controlled queue

Message queues in which the calling and further processing of messages is entirely under the
control of openUTM. See also and .asynchronous job, background job asynchronous message

 369

UTM-D

See openUTM-D.

UTM-F

UTM applications can be generated as UTM-F applications (UTM fast). In the case of UTM-F
applications, input from and output to hard disk is avoided in order to increase performance. This
affects input and output which uses to save user data and transaction data. Only changes to UTM-S
the administration data are saved.
In UTM cluster applications that are generated as UTM-F applications (APPLI-MODE=FAST),
application data that is valid throughout the cluster is also saved. In this case, GSSB and ULS data
is treated in exactly the same way as in UTM cluster applications generated with UTM-S. However,
service data relating to users with RESTART=YES is written only when the relevant user signs off
and not at the end of each transaction.

UTM generation

Static configuration of a using the UTM tool KDCDEF and creation of an application UTM application
program.

UTM message

Messages are issued to by the openUTM transaction monitor or by UTM UTM message destinations
tools (such as). A message comprises a message number and a message text, which can KDCDEF
contain with current values. Depending on the message destination, either the entire inserts
message is output or only certain parts of the message, such as the inserts).

UTM page

A UTM page is a unit of storage with a size of either 2K, 4K or 8 K. In standalone UTM applications,
the size of a UTM page on generation of the UTM application can be set to 2K, 4K or 8 K. The size
of a UTM page in a is always 4K or 8 K. The and the restart area UTM cluster application page pool
for the KDCFILE and are divided into units of the size of a UTM page.UTM cluster files

utmpath (Unix / Linux / Windows systems)

The directory under which the openUTM components are installed is referred to as in this utmpath
manual.
To ensure that openUTM runs correctly, the environment variable UTMPATH must be set to the
value of . On Unix and Linux systems, you must set UTMPATH before a UTM application is utmpath
started. On Windows systems UTMPATH is set in accordance with the UTM version installed most
recently.

UTM-S

In the case of UTM-S applications, openUTM saves all user data as well as the administration data
beyond the end of an application and any system crash which may occur. In addition, UTM-S
guarantees the security and consistency of the application data in the event of any malfunction. UTM
applications are usually generated as UTM-S applications (UTM secure).

UTM SAT administration (BS2000 systems)

UTM SAT administration functions control which UTM events relevant to security which occur during
operation of a are to be logged by . Special authorization is required for UTM UTM application SAT
SAT administration.

 370

UTM socket protocol (USP)

Proprietary openUTM protocol above TCP/IP for the transformation of the Socket interface received
byte streams in messages.

UTM system process

UTM process that is started in addition to the processes specified via the start parameters and which
only handles selected jobs. UTM system processes ensure that UTM applications continue to be
reactive even under very high loads.

UTM terminal

This term has been superseded by .LTERM partner

UTM tool

Program which is provided together with openUTM and which is needed for UTM specific tasks (e.g
for configuring).

virtual connection

Assignment of two communication partners.

warm start

Start of a application after it has terminated abnormally. The is reset UTM-S application information
to the most recent consistent state. Interrupted are rolled back to the most recent dialog services

, allowing processing to be resumed in a consistent state from this point (synchronization point
). Interrupted are rolled back and restarted or restarted at the service restart asynchronous services

most recent .synchronization point
For applications, only configuration data which has been dynamically changed is rolled back UTM-F
to the most recent consistent state after a restart due to a preceding abnormal termination.
In UTM cluster applications, the global locks applied to GSSB and ULS on abnormal termination of
this node application are released. In addition, users who were signed on at this node application
when the abnormal termination occurred are signed off.

WebAdmin

Web-based tool for the administration of openUTM applications via a Web browser. WebAdmin
includes not only the full function scope of the but also additional administration program interface
functions.

Web service

Application which runs on a Web server and is (publicly) available via a standardized, programmable
interface. Web services technology makes it possible to make UTM program units available for
modern Web client applications independently of the programming language in which they were
developed.

WinAdmin

Java-based tool for the administration of openUTM applications via a graphical user interface.
WinAdmin includes not only the full function scope of the but also administration program interface
additional functions.

 371

work process (Unix / Linux / Windows systems)

A process within which the of a run.services UTM application

workload capture & replay

Family of programs used to simulate load situations; consisting of the main components UPIC
, and and - on Unix, Linux and Windows systems - the utility Capture UPIC Analyzer Upic Replay

program . Workload Capture & Replay can be used to record UPIC sessions with UTM kdcsort
applications, analyze these and then play them back with modified load parameters.

WS4UTM

WS4UTM (eb ervices for open) provides you with a convenient way of making a service of a W S UTM
UTM application available as a Web service.

XATMI

XATMI (X/Open Application Transaction Manager Interface) is a program interface standardized by X
/Open for program-program communication in open networks.
The XATMI interface implemented in openUTM complies with X/Open’s XATMI CAE Specification.
The interface is available in COBOL and C. In openUTM, XATMI can communicate via the OSI TP,

 and UPIC protocols.LU6.1

XHCS (BS2000 systems)

XHCS (Extended Host Code Support) is a BS2000 software product providing support for
international character sets.

XML

XML (eXtensible Markup Language) is a metalanguage standardized by the W3C (WWW
Consortium) in which the interchange formats for data and the associated information can be
defined.

 372

10 Abbreviations

Please note: Some of the abbreviations used here derive from the German acronyms used in the original German
product(s).

ACSE Association Control Service Element

AEQ Application Entity Qualifier

AES Advanced Encryption Standard

AET Application Entity Title

APT Application Process Title

ASCII American Standard Code for Information Interchange

ASE Application Service Element

Axis Apache eXtensible Interaction System

BCAM Basic Communication Access Method

BER Basic Encoding Rules

BLS Binder - Loader - Starter (BS2000 systems)

CCP Communication Control Program

CCR Commitment, Concurrency and Recovery

CCS Coded Character Set

CCSN Coded Character Set Name

CICS Customer Information Control System

CID Control Identification

CMX Communication Manager in Unix, Linux and Windows Systems

COM Component Object Model

CPI-C Common Programming Interface for Communication

CRM Communication Resource Manager

CRTE Common Runtime Environment (BS2000 systems)

DB Database

DBH Database Handler

DC Data Communication

DCAM Data Communication Access Method

DES Data Encryption Standard

 373

DLM Distributed Lock Manager (BS2000 systems)

DMS Data Management System

DNS Domain Name Service

DP Distribted Processing

DSS Terminal (Datensichtstation)

DTD Document Type Definition

DTP Distributed Transaction Processing

EBCDIC Extended Binary-Coded Decimal Interchange Code

EJB Enterprise JavaBeansTM

FGG File Generation Group

FHS Format Handling System

FT File Transfer

GCM Galois/Counter Mode

GSSB Global Secondary Storage Area

HIPLEX® Highly Integrated System Complex (BS2000 systems)

HLL High-Level Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IFG Interactive Format Generator

ILCS Inter-Language Communication Services (BS2000 systems)

IMS Information Management System (IBM)

IPC Inter-Process Communication

IRV International Reference Version

ISO International Organization for Standardization

Java EE Java Platform, Enterprise Edition

JCA Java EE Connector Architecture

JDK Java Development Kit

KAA KDCS Application Area

KB Communication Area

 374

KBPRG KB Program Area

KDCADMI KDC Administration Interface

KDCS Compatible Data Communication Interface

KTA KDCS Task Area

LAN Local Area Network

LCF Local Configuration File

LLM Link and Load Module (BS2000 systems)

LSSB Local Secondary Storage Area

LU Logical Unit

MQ Message Queuing

MSCF Multiple System Control Facility (BS2000 systems)

NB Message Area

NEA Network Architecture for BS2000 Systems

NFS Network File System/Service

NLS Native Language Support

OLTP Online Transaction Processing

OML Object Module Library

OSI Open System Interconnection

OSI TP Open System Interconnection Transaction Processing

OSS OSI Session Service

PCMX Portable Communication Manager

PID Process Identification

PIN Personal Identification Number

PLU Primary Logical Unit

PTC Prepare to commit

RAV Computer Center Accounting Procedure

RDF Resource Definition File

RM Resource Manager

RSA Encryption algorithm according to Rivest, Shamir, Adleman

RSO Remote SPOOL Output (BS2000 systems)

 375

RTS Runtime System

SAT Security Audit Trail (BS2000 systems)

SECOS Security Control System

SEM SE Manager

SGML Standard Generalized Markup Language

SLU Secondary Logical Unit

SM2 Software Monitor 2

SNA Systems Network Architecture

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SPAB Standard Primary Working Area

SQL Structured Query Language

SSB Secondary Storage Area

SSL Secure Socket Layer

SSO Single Sign-On

TAC Transaction Code

TCEP Transport Connection End Point

TCP/IP Transport Control Protocol / Internet Protocol

TIAM Terminal Interactive Access Method

TLS Terminal-Specific Long-Term Storage

TLS Transport Layer Security

TM Transaction Manager

TNS Transport Name Service

TP Transaction Processing (Transaction Mode)

TPR Privileged Function State in BS2000 systems (Task Privileged)

TPSU Transaction Protocol Service User

TSAP Transport Service Access Point

TSN Task Sequence Number

TU Non-Privileged Function State in BS2000 systems (Task User)

TX Transaction Demarcation (X/Open)

 376

UDDI Universal Description, Discovery and Integration

UDS Universal Database System

UDT Unstructured Data Transfer

ULS User-Specific Long-Term Storage

UPIC Universal Programming Interface for Communication

USP UTM Socket Protocol

UTM Universal Transaction Monitor

UTM-D UTM Variant for Distributed Processing in BS2000 systems

UTM-F UTM Fast Variant

UTM-S UTM Secure Variant

UTM-XML openUTM XML Interface

VGID Service ID

VTSU Virtual Terminal Support

WAN Wide Area Network

WS4UTM Web-Services for openUTM

WSDD Web Service Deployment Descriptor

WSDL Web Services Description Language

XA X/Open Access Interface
(X/Open interface for acess to the resource manager)

XAP X/OPEN ACSE/Presentation programming interface

XAP-TP X/OPEN ACSE/Presentation programming interface Transaction Processing extension

XATMI X/Open Application Transaction Manager Interface

XCS Cross Coupled System

XHCS eXtended Host Code Support

XML eXtensible Markup Language

 377

11 Related publications

You will find the manuals on the internet at .https://bs2manuals.ts.fujitsu.com

openUTM documentation

openUTMConcepts and Functions

User Guide

openUTM Programming Applications with KDCS for COBOL, C and C++

Core Manual

openUTM Generating Applications

User Guide

openUTM Using UTM Applications on BS2000 Systems

User Guide

openUTM Using UTM Applications on Unix, Linux and Windows Systems

User Guide

openUTM Administering Applications

User Guide

openUTM Messages, Debugging and Diagnostics on BS2000 Systems

User Guide

openUTM Messages, Debugging and Diagnostics on Unix, Linux and Windows Systems

User Guide

openUTM Creating Applications with X/Open Interfaces

User Guide

openUTM XML for openUTM

openUTM Client (Unix systems) for the OpenCPIC Carrier System
Client-Server Communication with openUTM

User Guide

openUTM Client for the UPIC Carrier System
Client-Server Communication with openUTM

User Guide

https://bs2manuals.ts.fujitsu.com/index

 378

openUTM WinAdmin
Graphical Administration Workstation for openUTM

Description and online help system

openUTM WebAdmin
Web Interface for Administering openUTM

Description and online help system

openUTM, openUTM-LU62
Distributed Transaction Processing between openUTM and CICS, IMS and LU6.2
Applications

User Guide

openUTM (BS2000)
Programming Applications with KDCS for Assembler
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for Fortran
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for Pascal-XT
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for PL/I
Supplement to Core Manual

WS4UTM (Unix systems and Windows systems)
WebServices for openUTM

Documentation for the openSEAS product environment

BeanConnect

User Guide

openUTM-JConnect
Connecting Java Clients to openUTM

User documentation and Java docs

WebTransactions
Concepts and Functions

WebTransactions
Template Language

 379

WebTransactions
Web Access to openUTM Applications via UPIC

WebTransactions
Web Access to MVS Applications

WebTransactions
Web Access to OSD Applications

Documentation for the BS2000 environment

AID Advanced Interactive Debugger
Core Manual

User Guide

AID Advanced Interactive Debugger
Debugging of COBOL Programs

User Guide

AID Advanced Interactive Debugger
Debugging of C/C++ Programs

User Guide

BCAM
BCAM Volume 1/2

User Guide

BINDER
User Guide

BS2000 OSD/BC
Commands Volume 1 - 7

User Guide

BS2000 OSD/BC
Executive Macros

User Guide

BS2IDE
Eclipse-based Integrated Development Environment for BS2000
User Guide and Installation Guide
Web page: https://bs2000.ts.fujitsu.com/bs2ide/

https://bs2000.ts.fujitsu.com/bs2ide/

 380

BLSSERV
Dynamic Binder Loader / Starter in BS2000/OSD

User Guide

DCAM
COBOL Calls

User Guide

DCAM
Macros

User Guide

DCAM
Program Interfaces

Description

FHS
Format Handling System for openUTM, TIAM, DCAM

User Guide

IFG for FHS
User Guide

HIPLEX AF
High-Availability of Applications in BS2000/OSD

Product Manual

HIPLEX MSCF
BS2000 Processor Networks

User Guide

IMON
Installation Monitor

User Guide

MT9750 (MS Windows)
9750 Emulation under Windows
Product Manual

OMNIS/OMNIS-MENU
Functions and Commands

User Guide

 381

OMNIS/OMNIS-MENU
Administration and Programming

User Guide

OSS (BS2000)
OSI Session Service
User Guide

openSM2
Software Monitor

User Guide

RSO
Remote SPOOL Output

User Guide

SECOS
Security Control System

User Guide

SECOS
Security Control System

Ready Reference

SESAM/SQL
Database Operation

User Guide

TIAM
User Guide

UDS/SQL
Database Operation

User Guide

Unicode in BS2000/OSD
Introduction

VTSU
Virtual Terminal Support

User Guide

XHCS
8-Bit Code and Unicode Support in BS2000/OSD

User Guide

 382

Documentation for the Unix, Linux and Windows system environment

CMX V6.0 (Unix systems)
(only available in German)Betrieb und Administration

User Guide

CMX V6.0
Programming CMX Applications
Programming Guide

OSS (UNIX)
OSI Session Service
User Guide

PRIMECLUSTERTM

Concepts Guide (Solaris, Linux)

openSM2

The documentation of openSM2 is provided in the form of detailed online help systems, which are delivered with the
product.

Other publications

CPI-C

X/Open CAE Specification
Distributed Transaction Processing:
The CPI-C Specification, Version 2
ISBN 1 85912 135 7

Reference Model
X/Open Guide
Distributed Transaction Processing:
Reference Model, Version 2
ISBN 1 85912 019 9

REST
Architectural Styles and the Design of Network-based Software Architectures
Dissertation Roy Fielding

TX
X/Open CAE Specification
Distributed Transaction Processing:
The TX (Transaction Demarcation) Specification
ISBN 1 85912 094 6

XATMI
X/Open CAE Secification
Distributed Transaction Processing

 383

The XATMI Specification
ISBN 1 85912 130 6

XML
W3C specification (www consortium)

Web page: http://www.w3org/XML

http://www.w3org/XML

	Client-Server Communication with openUTM
	Preface
	Brief description of the openUTM-Client product
	Summary of contents and target group
	Summary of contents of the openUTM documentation
	openUTM documentation
	Documentation for the openSEAS product environment
	Readme files

	Changes since the last version of this manual
	Notational conventions

	Application area
	The concept of openUTM-Client
	Client/server communication with openUTM
	UPIC local, UPIC remote and multithreading
	UPIC remote
	Distribution of communication over multiple communication end points
	Setting up a list of communication end points

	UPIC local (Unix, Linux and Windows systems)
	Multithreading

	Support for UTM cluster applications on Linux-, Unix- and Windows-Systems

	CPI-C interface
	CPI-C terms
	General structure of a CPI-C application
	Exchange of messages with a UTM service
	Sending a message and starting a UTM service
	Receiving a message, blocking and non-blocking receive
	Sending and receiving formats
	UTM function keys
	Cursor position
	Code conversion
	Standard code conversion tables
	Modifying code conversion tables on Unix and Linux systems
	Modifying code conversion tables on Windows systems
	Modifying code conversion tables on BS2000 systems

	Communicating with an UTM application
	Communicating in a single-step UTM service
	Communicating in a multi-step UTM service
	Communicating in a multi-step UTM service with distributed transaction processing
	Querying the transaction state

	User concept, security and restart
	User concept
	Security functions
	Restart

	Encryption
	Multiple conversations (Unix, Linux and Windows systems)
	DEFAULT server and DEFAULT name of a client
	Multiple connections to the same UTM application with the same name

	CPI-C calls in UPIC
	Overview
	Allocate - Establishing a conversation
	Convert_Incoming - Converting data from code of sender to local code
	Convert_Outgoing - Converting data from local code to code of receiver
	Deallocate - Terminating a conversation
	Deferred_Deallocate - Terminating a conversation after termination of a transaction
	Disable_utm70_upic - Signing off from the UPIC carrier system
	Enable_utm70_upic - Signing on to the UPIC carrier system
	Extract_Client_Context - Querying the client context
	Extract_Conversation_Encryption_Level - Querying encryption level
	Extract_Conversation_State - Querying state of conversation
	Extract_Convertion - Querying the value of the CHARACTER_CONVERTION conversation characteristic
	Extract_Cursor_Offset - Querying cursor position offset
	Extract_Max_Partner_Index - Querying the maximum index of partner applications
	Extract_Partner_LU_Name - Querying partner_LU_Name
	Extract_Partner_LU_Name_Ex - Querying full length partner_LU_Name
	Extract_Secondary_Information - Querying secondary information
	Extract_Secondary_Return_Code - Querying secondary return codes
	Extract_Shutdown_State - Querying the shutdown state of the server
	Extract_Shutdown_Time - Query the shutdown time of the server
	Extract_Transaction_State - Querying service and transaction state of the server
	Initialize_Conversation - Initializing the conversation characteristics
	Prepare_To_Receive - Changing state from “Send” to “Receive”
	Receive - Receiving data from a UTM service
	Receive_Mapped_Data - Receiving data and format identifier from a UTM service
	Send_Data - Sending data to a UTM service
	Send_Mapped_Data - Sending data and format identifier
	Set_Allocate_Timer - Setting timer for the allocate call
	Set_Client_Context - Setting the client context
	Set_Conversation_Encryption_Level - Setting the encryption level
	Set_Conversation_Security_New_Password - Setting new password
	Set_Conversation_Security_Password - Setting the password
	Set_Conversation_Security_Type - Setting the security type
	Set_Conversation_Security_User_ID - Setting the UTM user ID
	Set_Convertion - Setting the CHARACTER_CONVERTION conversation characteristic
	Set_Deallocate_Type - Setting deallocate_type
	Set_Function_Key - Setting a UTM function key
	Set_Partner_Host_Name - Setting the partner host name
	Set_Partner_Index - Setting the partner application index
	Set_Partner_IP_Address - Setting the IP address of the partner application
	Set_Partner_LU_Name - Setting the conversation characteristics partner_LU_name
	Set_Partner_Port - Setting the TCP/IP port for the partner application
	Set_Partner_Tsel - Setting the T-SEL of the partner application
	Set_Partner_Tsel_Format - Setting the T-SEL format of the partner application
	Set_Receive_Timer - Setting the timer for a blocking receive
	Set_Receive_Type - Setting the receive type
	Set_Sync_Level - Setting a synchronization level
	Set_TP_Name - Setting TP-name
	Specify_Local_Port - Setting the TCP/IP port of the local application
	Specify_Local_Tsel - Setting the T-SEL of the local application
	Specify_Local_Tsel_Format - Setting the TSEL format of the local application
	Specify_Secondary_Return_Code - Setting the properties of the secondary return code

	COBOL interface

	XATMI interface
	Linking client/server applications
	Default server
	Restart

	Communication paradigms
	Typed buffers
	Program interface
	XATMI functions for clients
	Calls for connecting to the carrier system
	tpinit - Initializing the client
	tpterm - Signing the client off

	Transaction control
	Mixed operation
	Administration interface
	Header files and COPY elements
	Events and error handling
	Creating typed buffers
	Characteristics of XATMI in UPIC

	Configuring
	Creating the local configuration file
	The xatmigen tool
	Configuring the carrier system and UTM partners
	Configuring UPIC
	Initialization parameters and UTM configuration

	Running XATMI applications
	Linking and starting an XATMI program
	Linking an XATMI program on Windows systems
	Linking an XATMI program on Unix and Linux systems
	Linking an XATMI program on BS2000 systems
	Starting the program

	Setting Environment variables on Unix, Linux and Windows systems
	Setting job variables on BS2000 systems
	Trace

	xatmigen messages

	Configuration
	Configuration without upicfile
	UPIC-R configuration
	UPIC-L configuration (Unix, Linux and Windows systems)
	Configuration using BCMAP entries (BS2000 systems)

	The side information file (upicfile)
	Side information for standalone UTM applications
	Side information for list of partner applications
	Side information for UTM cluster applications
	Side information for the local application

	Coordination with the partner configuration

	Implementing CPI-C applications
	Runtime environment, linking, starting
	Implementing on Windows systems
	Compilation, linking, starting on Windows systems
	Runtime environment, environment variables on Windows systems
	Special features of implementing UPIC local on Windows systems

	Implementation on Unix and Linux systems
	Compilation, linking, starting on Unix and Linux systems
	Runtime environment, environment variables on Unix and Linux systems
	Special features when using UPIC local on Unix and Linux systems

	Using on BS2000 systems

	Handling of CPI-C partners by openUTM
	Behavior in the event of errors
	Diagnostics
	UPIC log file
	UPIC trace
	PCMX diagnostics (Windows systems)

	Examples
	Sample programs for Windows systems
	uptac (Windows systems)
	utp32 (Windows systems)
	tpcall (Windows systems)
	upic-cob (Windows systems)

	UpicAnalyzer and UpicReplay on 64-bit Linux systems
	UpicAnalyzer (64-bit Linux systems)
	UpicReplay (64-bit Linux systems)

	Configuration UPIC on Windows systems <-> openUTM on BS2000 systems
	Configuration on the Windows system
	UTM Configuration on the BS2000 system

	Configuration UPIC on Windows systems <-> openUTM on Unix or Linux systems
	UPIC Configuration on the Windows system
	UTM Configuration on the Unix or Linux system

	Appendix
	Differences between the X/Open CPI-C interface
	Character sets
	State table

	Glossary
	Abbreviations
	Related publications

