
English

FUJITSU Software

openUTM V7.0

Administering Applications

User Guide

*

Edition November 2019

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your opinion on this manual. Your feedback helps us to
optimize our documentation to suit your individual needs.

Feel free to send us your comments by e-mail to: .bs2000services@ts.fujitsu.com

Certified documentation according to DIN EN ISO 9001:2015
To ensure a consistently high quality standard and user-friendliness, this documentation was created to meet the
regulations of a quality management system which complies with the requirements of the standard DIN EN ISO

.9001:2015

Copyright and Trademarks
Copyright © Fujitsu Technology Solutions GmbH.2019

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:bs2000services@ts.fujitsu.com

Table of Contents

 Administering Applications . 11
1 Preface . 12

1.1 Summary of contents and target group . 14
1.2 Summary of contents of the openUTM documentation 15

1.2.1 openUTM documentation . 16
1.2.2 Documentation for the openSEAS product environment 19
1.2.3 Readme files . 20

1.3 Changes in openUTM V7.0 . 21
1.3.1 New server functions . 22
1.3.2 Discontinued server functions . 26
1.3.3 New client functions . 27
1.3.4 New functions for openUTM WinAdmin . 28
1.3.5 New functions for openUTM WebAdmin . 29

1.4 Notational conventions . 30
2 Overview of openUTM administration . 32

2.1 Command interface . 34
2.2 KDCADMI program interface . 36
2.3 Sample programs . 40
2.4 PADM, DADM for administering message queues and printers 41
2.5 Administration tool CALLUTM (BS2000 systems) . 42
2.6 openUTM WinAdmin and openUTM WebAdmin . 43

3 Administering objects and setting parameters . 44
3.1 Information functions in openUTM . 45
3.2 Performance check . 47

3.2.1 Information about the utilization level of the application 48
3.2.2 Diagnosing errors and bottlenecks . 49
3.2.3 Possible measures . 50

3.3 Avoiding a page pool bottleneck . 55
3.3.1 Page pool of a standalone application . 56
3.3.2 Page pools of a UTM cluster application . 59

3.4 Exchanging the application program . 60
3.5 Clients and printers . 61

4 Changing the configuration dynamically . 64
4.1 Requirements for KDCDEF generation . 65
4.2 Adding objects to the configuration dynamically . 68

4.2.1 Adding clients, printers and LTERM partners . 69

4.2.2 Adding program units, transaction codes, TAQ queues and VORGANG exits . . .
72
4.2.3 Creating user IDs . 73
4.2.4 Creating key sets . 74
4.2.5 Entering LU6.1 connections for distributed processing 75
4.2.6 Entering LTACs . 76
4.2.7 Format and uniqueness of object names . 77

4.3 Deleting objects dynamically from the configuration 79
4.3.1 Deleting clients/printers and LTERM partners . 81
4.3.2 Deleting program units, transaction codes and VORGANG exits 83
4.3.3 Deleting user IDs . 85
4.3.4 Deleting key sets . 87
4.3.5 Deleting LU6.1 connections and sessions . 88
4.3.6 Deleting LTACs . 89

4.4 Modifying object properties . 90
4.4.1 Modifying clients/printers and LTERM partners . 91
4.4.2 Modifying transaction codes and TAC queues . 92
4.4.3 Modifying user IDs . 93
4.4.4 Modifying key sets . 94
4.4.5 Modifying LU6.1 sessions . 95

5 Generating konfiguration statements from the KDCFILE 96
5.1 Starting the inverse KDCDEF . 98
5.2 Result of the inverse KDCDEF run . 100
5.3 Inverse KDCDEF for version migrations . 101
5.4 Recommendations for regeneration of an application 102

6 Administration using commands . 104
6.1 Administration in dialog . 105
6.2 Administration using message queuing . 106

7 Writing your own administration programs . 109
7.1 Dialog administration programs . 110

7.1.1 Several administration calls . 111
7.1.2 Multi-step service . 112

7.2 Diagnostic options for the administration interface . 113
8 Central administration of several applications . 114

8.1 Administration using WinAdmin and WebAdmin . 115
8.1.1 Adapting generation of the UTM application . 116
8.1.2 Configuration of WinAdmin and WebAdmin . 118

8.2 Configuration models for own application of administration 120
8.2.1 Administration via UPIC clients . 121
8.2.2 Administration via distributed processing . 126
8.2.3 Administration via a TS application . 131

8.3 Central Administration using commands . 133
8.4 Central Administration using programs . 134

8.4.1 Decentralized administration programs . 135
8.4.2 Central administration programs . 137

9 Automatic administration . 139
9.1 Control using the MSGTAC program . 140
9.2 Control via user-specific message destinations . 143

10 Access rights and data access control . 144
10.1 Configuring the administrator connection . 147
10.2 Granting administration privileges . 148
10.3 Generating administration commands . 149

11 Program interface for administration - KDCADMI . 151
11.1 Calling the KDCADMI functions . 152

11.1.1 The KDCADMI function call . 153
11.1.2 Description of the data areas to be supplied . 154
11.1.3 Return codes . 166
11.1.4 Supplying the fields of the data structure with data when passing data 170

11.2 KDCADMI operation codes . 171
11.2.1 KC_CHANGE_APPLICATION- Exchange application program 172
11.2.2 KC_CREATE_DUMP - Create a UTM dump . 179
11.2.3 KC_CREATE_OBJECT - Add objects to the configuration 181

11.2.3.1 obj_type=KC_CON . 186
11.2.3.2 obj_type=KC_KSET . 188
11.2.3.3 obj_type=KC_LSES . 189
11.2.3.4 obj_type=KC_LTAC . 190
11.2.3.5 obj_type=KC_LTERM . 193
11.2.3.6 obj_type=KC_PROGRAM . 198
11.2.3.7 obj_type=KC_PTERM . 199
11.2.3.8 obj_type=KC_TAC . 207
11.2.3.9 obj_type=KC_USER . 215
11.2.3.10 Returncodes . 224

11.2.4 KC_CREATE_STATEMENTS - Create KDCDEF control statements (inverse
 KDCDEF) . 245

11.2.5 KC_DELETE_OBJECT - Delete objects . 255
11.2.6 KC_ENCRYPT - Create, delete, read RSA key pairs 268
11.2.7 KC_GET_OBJECT - Query information . 277
11.2.8 KC_LOCK_MGMT - Release locks in UTM cluster applications 303
11.2.9 KC_MODIFY_OBJECT - Modify object properties and application parameters .
308

11.2.9.1 obj_type=KC_CLUSTER_NODE . 315
11.2.9.2 obj_type=KC_DB_INFO . 316

11.2.9.3 obj_type=KC_KSET . 317
11.2.9.4 obj_type=KC_LOAD_MODULE . 318
11.2.9.5 obj_type=KC_LPAP . 321
11.2.9.6 obj_type=KC_LSES . 325
11.2.9.7 obj_type=KC_LTAC . 327
11.2.9.8 obj_type=KC_LTERM . 329
11.2.9.9 obj_type=KC_MUX (BS2000 systems) . 333
11.2.9.10 obj_type=KC_OSI_CON . 335
11.2.9.11 obj_type=KC_OSI_LPAP . 336
11.2.9.12 obj_type=KC_PTERM . 341
11.2.9.13 obj_type=KC_TAC . 345
11.2.9.14 obj_type=KC_TACCLASS . 350
11.2.9.15 obj_type=KC_TPOOL . 353
11.2.9.16 obj_type=KC_USER . 355
11.2.9.17 obj_type=KC_CLUSTER_CURR_PAR . 361
11.2.9.18 obj_type=KC_CLUSTER_PAR . 362
11.2.9.19 obj_type=KC_CURR_PAR . 364
11.2.9.20 obj_type=KC_DIAG_AND_ACCOUNT_PAR . 368
11.2.9.21 obj_type=KC_MAX_PAR . 379
11.2.9.22 obj_type=KC_TASKS_PAR . 382
11.2.9.23 obj_type=KC_TIMER_PAR . 384
11.2.9.24 Return codes . 388

11.2.10 KC_ONLINE_IMPORT - Import application data online 408
11.2.11 KC_PTC_TA - Roll back transaction in PTC state 412
11.2.12 KC_SEND_MESSAGE - Send message (BS2000 systems) 416
11.2.13 KC_SHUTDOWN - Terminate the application run 420
11.2.14 KC_SPOOLOUT - Establish connections to printers 428
11.2.15 KC_SYSLOG - Administer the system log file . 432
11.2.16 KC_UPDATE_IPADDR - Update IP addresses . 444
11.2.17 KC_USLOG - Administer the user log file . 451

11.3 Data structures used to pass information . 454
11.3.1 Data structures for describing object properties . 456

11.3.1.1 kc_abstract_syntax_str - Abstract syntax for communication via OSI TP . . .
457
11.3.1.2 kc_access_point_str - OSI TP access point . 458
11.3.1.3 kc_application_context_str - Application context for communication via OSI

 TP . 463
11.3.1.4 kc_bcamappl_str - Names and addresses of the local application 464
11.3.1.5 kc_character_set_str - Names of character sets (for BS2000 systems only)
467
11.3.1.6 kc_cluster_node_str - Node applications of a UTM cluster application . . 468

11.3.1.7 kc_con_str - LU6.1 connections . 474
11.3.1.8 kc_db_info_str - Output database information . 479
11.3.1.9 kc_edit_str - EDIT profile options (BS2000 systems) 481
11.3.1.10 kc_gssb_str - Global secondary storage areas of the application 484
11.3.1.11 kc_http_descriptor_str - HTTP descriptors of the application 485
11.3.1.12 kc_kset_str - Key sets of the application . 487
11.3.1.13 kc_load_module_str - Load modules (BS2000 systems) or shared objects

 /DLLs (Unix, Linux and Windows systems) . 489
11.3.1.14 kc_lpap_str - Properties of LU6.1 partner applications 493
11.3.1.15 kc_lses_str - LU6.1 sessions . 499
11.3.1.16 kc_ltac_str - Transaction codes of remote services (LTAC) 502
11.3.1.17 kc_lterm_str - LTERM partners . 507
11.3.1.18 kc_message_module_str - User message modules 516
11.3.1.19 kc_mux_str - Multiplex connections (BS2000 systems) 518
11.3.1.20 kc_osi_association_str - Associations to OSI TP partner applications . 522
11.3.1.21 kc_osi_con_str - OSI TP connections . 524
11.3.1.22 kc_osi_lpap_str - Properties of OSI TP partner applications 532
11.3.1.23 kc_program_str - Program units and VORGANG exits 539
11.3.1.24 kc_ptc_str - Transactions in PTC state . 543
11.3.1.25 kc_pterm_str - Clients and printers . 545
11.3.1.26 kc_queue_str - Properties of temporary queues 558
11.3.1.27 kc_sfunc_str - Function keys . 559
11.3.1.28 kc_subnet_str - Information on subnets . 561
11.3.1.29 kc_tac_str - Transaction codes of local services 562
11.3.1.30 kc_tacclass_str - TAC classes for the application 573
11.3.1.31 kc_tpool_str - LTERM pools for the application 576
11.3.1.32 kc_transfer_syntax_str - Transfer syntax for communication via OSI TP . .
585
11.3.1.33 kc_user_str, kc_user_fix_str, kc_user_dyn1_str and kc_user_dyn2_str user

 IDs . 586
11.3.2 Data structures used to describe the application parameters 604

11.3.2.1 kc_cluster_curr_par_str - Statistics values of a UTM cluster application 605
11.3.2.2 kc_cluster_par_str - Global properties of a UTM cluster application 606
11.3.2.3 kc_curr_par_str - Current values of the application parameters 613
11.3.2.4 kc_diag_and_account_par_str - Diagnostic and accounting parameters 625
11.3.2.5 kc_dyn_par_str - Dynamic objects . 633
11.3.2.6 kc_max_par_str - Maximum values for the application (MAX parameters) . .
638
11.3.2.7 kc_msg_dest_par_str - Properties of the user-specific message destinations
 . 655
11.3.2.8 kc_pagepool_str - Current utilization of the page pool 657
11.3.2.9 kc_queue_par_str - Properties of queue objects 659

11.3.2.10 kc_signon_str - Properties of the sign-on process 660
11.3.2.11 kc_system_par_str - System parameters . 664
11.3.2.12 kc_tasks_par_str - Number of processes . 668
11.3.2.13 kc_timer_par_str - Timer settings . 672
11.3.2.14 kc_utmd_par_str - Parameters for distributed processing 676

12 Administration commands - KDCADM . 678
12.1 KDCAPPL - Change properties and limit values for an operation 681
12.2 KDCBNDL - Replace Master LTERM . 693
12.3 KDCDIAG - Switch diagnostic aids on and off . 694
12.4 KDCHELP - Query the syntax of administration commands 702
12.5 KDCINF - Request information on objects and application parameters . . . 703

12.5.1 KDCINF - Syntax description . 705
12.5.2 Output from KDCINF . 714

12.6 KDCLOG - Change the user log file . 751
12.7 KDCLPAP - Administer connections to (OSI-)LPAP partners 752
12.8 KDCLSES - Establish/shut down connections for LU6.1 sessions 759
12.9 KDCLTAC - Change the properties of LTACs . 761
12.10 KDCLTERM - Change the properties of LTERM partners 763
12.11 KDCMUX - Change properties of multiplex connections (BS2000 systems) .
766
12.12 KDCPOOL - Administer LTERM pools . 769
12.13 KDCPROG - Replace load modules/shared objects/DLLs 771
12.14 KDCPTERM - Change properties of clients and printers 776
12.15 KDCSEND - Send a message to LTERM partners (BS2000 systems) 781
12.16 KDCSHUT - Terminate an application run . 782
12.17 KDCSLOG - Administer the SYSLOG file . 785
12.18 KDCSWTCH - Change the assignment of clients and printers to LTERM

 partners . 790
12.19 KDCTAC - Lock/release transaction codes and TAC queues 794
12.20 KDCTCL - Change number of processes of a TAC class 796
12.21 KDCUSER - Change user properties . 800

13 Administering message queues and controlling printers 802
13.1 Authorization concept (BS2000, Unix and Linux systems) 804
13.2 Administering message queues (DADM) . 806

13.2.1 Displaying information on messages in a queue - DADM RQ 808
13.2.2 Reading user information about a message - DADM UI 809
13.2.3 Prioritizing messages in the queue - DADM CS . 810
13.2.4 Deleting messages from a queue - DADM DA/DL . 811
13.2.5 Move messages from the dead letter queue - DADM MA/MV 812

13.3 Administering printers and control print output (PADM) 813
13.3.1 Administering printers with PADM . 814

13.3.1 Administering printers with PADM . 814
13.3.1.1 Querying information about a printer PADM PI . 815
13.3.1.2 Changing the printer status - PADM CS . 816
13.3.1.3 Assigning a printer to another LTERM partner - PADM CA 817

13.3.2 Print control with PADM . 818
13.3.2.1 Activating/deactivating confirmation mode - PADM AC/AT 820
13.3.2.2 Confirming or repeating print output - PADM OK/PR 821
13.3.2.3 Querying information about print jobs to be confirmed - PADM AI 822

13.3.3 Handling of errors during print output . 823
13.4 UTM program units for DADM and PADM functions 824

13.4.1 Generating KDCDADM and KDCPADM . 825
13.4.2 KDCDADM - Administer messages . 826

13.4.2.1 DELETE - Delete messages from the message queue 827
13.4.2.2 INFORM - Display information about message queues and messages . 829
13.4.2.3 MOVE - Move messages from the dead letter queue 832
13.4.2.4 NEXT - Prioritize messages in the message queue 834

13.4.3 KDCPADM - Print control and printer administration 835
13.4.3.1 INFORM - Display information about printers for a printer control LTERM . .
836
13.4.3.2 MODE - Change the confirmation mode for a printer 839
13.4.3.3 PRINT - Confirm / repeat print job . 840
13.4.3.4 STATE - Change the status of a printer . 841
13.4.3.5 SWITCH - Change the assignment of printers to LTERM partners 842

14 Appendix . 843
14.1 Program interface for administration in COBOL . 844

14.1.1 COPY members for the program interface in COBOL 845
14.1.2 KDCADMI function call . 849
14.1.3 Notes on programming . 850

14.2 Sample programs . 851
14.2.1 The C program unit HNDLUSR (BS2000 systems) 852
14.2.2 The C program unit SUSRMAX . 853
14.2.3 The COBOL program unit COBUSER . 854
14.2.4 The C program unit ENCRADM . 855
14.2.5 The C program units ADJTCLT . 856

14.3 CALLUTM - Tool for administration and client/server communication (BS2000
 systems) . 861

14.3.1 Generation . 862
14.3.2 Description of CALLUTM program statements . 865
14.3.3 Components, system environment, software configuration on BS2000 systems
 . 880
14.3.4 Integration in a UTM application on BS2000 systems 881
14.3.5 Program-monitoring job variables on BS2000 systems 882

14.3.6 Messages issued by CALLUTM (BS2000 systems) 884
15 Glossary . 887
16 Abbreviations . 920
17 Related publications . 925

openUTM V7.0. Administering Applications. User Guide.

 11

Administering Applications

openUTM V7.0. Administering Applications. User Guide.

 12

1 Preface

The IT infrastructure of today's companies as the heart and engine of the business must meet the requirements of
the digital age. At the same time, it has to cope with increased amounts of data as well as with stricter requirements
from the environment, e.g. compliance requirements. It must also be possible to integrate additional applications at
short notice. And all this under the aspect of guaranteed security.
Thus, essential requirements for a modern IT infrastructure consist of, among others

Flexibility and almost limitless scalability also for future requirements

high robustness with highest availability

absolute safety in all respects

Adaptability to individual needs

Causing low costs

To meet these challenges, Fujitsu offers an extensive portfolio of innovative enterprise hardware, software, and
support services within the environment of our enterprise mainframe platforms, and is therefore your

Reliable service provider, giving you longterm, flexible, and innovative support in running your company’s
mainframe-based core applications

Ideal partner for working together to meet the requirements of digital transformation

Longterm partner, by reason of continuous adjustment of modern interfaces required by a modern IT landscape
with all its requirements.

With openUTM, Fujitsu provides you a thoroughly tried-and-tested solution from the middleware area.

openUTM is a high-end platform for transaction processing that offers a runtime environment that meets all these
requirements of modern, business-critical applications, because openUTM combines all the standards and
advantages of transaction monitor middleware platforms and message queuing systems:

consistency of data and processing

high availability of the applications

high throughput even when there are large numbers of users (i.e. highly scalable)

flexibility as regards changes to and adaptation of the IT system

A UTM application on can be run as a standalone UTM application or Unix, Linux and Windows systems
sumultanously on several different computers as a UTM cluster application.

openUTM forms part of the comprehensive offering. In conjunction with the Oracle Fusion middleware, openSEAS
openSEAS delivers all the functions required for application innovation and modern application development.
Innovative products use the sophisticated technology of openUTM in the context of the product offering:openSEAS

BeanConnect is an adapter that conforms to the Java EE Connector Architecture (JCA) and supports
standardized connection of UTM applications to Java EE application servers. This makes it possible to integrate
tried-and-tested legacy applications in new business processes.

Existing UTM applications can be migrated to the Web without modification. The UTM-HTTP interface and the
WebTransactions product, are two openSEAS alternatives that allows proven host applications to be used
flexibly in new business processes and modern application scenarios.

The products BeanConnect and WebTransactions are briefly presented in the performance overview.
There are separate manuals for these products.

openUTM V7.0. Administering Applications. User Guide.

 13

Wherever the term Linux system or Linux platform is used in the following, then this should be understood
to mean a Linux distribution such as SUSE or Red Hat.

Wherever the term Windows system or Windows platform is in the following, this should be understood to
mean all the variants of Windows under which openUTM runs.

Wherever the term Unix system or Unix platform is used in the following, then this should be understood
to mean a Unix-based operating system such as Solaris or HP-UX.

i

openUTM V7.0. Administering Applications. User Guide.

 14

1.1 Summary of contents and target group

The manual “Administering Applications” is intended for UTM application administrators and administration
programmers. It describes the program interface for administration which you can use to write your own
administration programs, the administration command interface, and the options available for administering
message queues.

Readers are expected to have a thorough grasp of the C programming language and to be familiar with openUTM.
It is particularly important to have competent knowledge of the generation tool KDCDEF and the program interface
KDCS. For further information, please refer also to the openUTM manuals “Generating Applications” and
“Programming Applications with KDCS”.

Chapters 2, 3, 8, 9 and 10 of this manual contain general information about UTM administration. They are intended
both for programmers who write their own administration programs and for the users who use the administration
programs. For example, they provide information on the various interfaces that openUTM offers for administering
your UTM application, contain examples of how you can use the openUTM administration functions to ensure that
your application offers lasting performance and reliability, and introduce you to the options available for central and
automatic administration. Chapter 8 also examines the administration of UTM cluster applications on Unix, Linux
and Windows systems in greater detail.

Chapters 4, 5, 7 and 11 contain special information for programmers who write their own administration programs.
They provide a detailed description of the structure of administration programs and of the dynamic entry and
deletion of clients, printers, services and user IDs. Chapter 11 contains all the administration calls for the C program
interface and the C data structures of the interface. It also describes in detail which administration functions you can
implement with the aid of the interface.

Chapters 6 and 12 address the particular needs of the users of administration commands. Chapter 6 gives you
information on synchronous and asynchronous administration using administration commands. Chapter 12 includes
a description of the administration commands, and of the functions that you can execute with these commands.

Chapter 13 contains information on administering local message queues and on the administration of printers via a
printer control LTERM.

openUTM V7.0. Administering Applications. User Guide.

 15

1.2 Summary of contents of the openUTM documentation

This section provides an overview of the manuals in the openUTM suite and of the various related products.

openUTM V7.0. Administering Applications. User Guide.

 16

1.2.1 openUTM documentation

The openUTM documentation consists of manuals, the online help for the graphical administration workstation
openUTM WinAdmin and the graphical administration tool WebAdmin as well as release notes.
There are manuals and release notes that are valid for all platforms, as well as manuals and release notes that are
valid for BS2000 systems and for Unix, Linux and Windows systems.

All the manuals are available on the internet at . For the BS2000 platform, you will https://bs2manuals.ts.fujitsu.com
also find the manuals on the Softbook DVD.

The following sections provide a task-oriented overview of the openUTM V7.0 documentation.

You will find a complete list of documentation for openUTM in the chapter on related publications at the back of the
manual.

Introduction and overview

The manual gives a coherent overview of the essential functions, features and areas of Concepts and Functions
application of openUTM. It contains all the information required to plan a UTM operation and to design a UTM
application. The manual explains what openUTM is, how it is used, and how it is integrated in the BS2000, Unix,
Linux and Windows based platforms.

Programming

You will require the manual to create server Programming Applications with KDCS for COBOL, C and C++
applications via the KDCS interface or UTM-HTTP programming interface. This manual describes the KDCS
interface as used for COBOL, C and C++. This interface provides the basic functions of the universal transaction
monitor, as well as the calls for distributed processing. The manual also describes interaction with databases.
The UTM-HTTP programming interface provides functions that may be used for communication with HTTP
clients.

You will require the manual if you want to use the X/Open Creating Applications with X/Open Interfaces
interface. This manual contains descriptions of the openUTM-specific extensions to the X/Open program
interfaces TX, CPI-C and XATMI as well as notes on configuring and operating UTM applications which use X
/Open interfaces. In addition, you will require the X/Open-CAE specification for the corresponding X/Open
interface.

If you want to interchange data on the basis of XML, you will need the document entitled openUTM XML for
. This describes the C and COBOL calls required to work with XML documents.openUTM

For BS2000 systems there is supplementary documentation on the programming languages Assembler, Fortran,
Pascal-XT and PL/1.

Configuration

The manual is available to you for defining configurations. This describes for both Generating Applications
standalone UTM applications and UTM cluster applications on Unix, Linux and Windows systems how to use the
UTM tool KDCDEF to

define the configuration

generate the KDCFILE

and generate the UTM cluster files for UTM cluster applications

https://bs2manuals.ts.fujitsu.com/index

openUTM V7.0. Administering Applications. User Guide.

 17

In addition, it also shows you how to transfer important administration and user data to a new KDCFILE using the
KDCUPD tool. You do this, for example, when moving to a new openUTM version or after changes have been
made to the configuration. In the case of UTM cluster applications, it also indicates how you can use the KDCUPD
tool to transfer this data to the new UTM cluster files.

Linking, starting and using UTM applications

In order to be able to use UTM applications, you will need the manual for the relevant Using UTM Applications
operating system (BS2000 or Unix, Linux and Windows systems). This describes how to link and start a UTM
application program, how to sign on and off to and from a UTM application and how to replace application programs
dynamically and in a structured manner. It also contains the UTM commands that are available to the terminal user.
Additionally, those issues are described in detail that need to be considered when operating UTM cluster
applications.

Administering applications and changing configurations dynamically

The manual describes the program interface for administration and the UTM Administering Applications
administration commands. It provides information on how to create your own administration programs for
operating a standalone UTM application or a UTM cluster application and on the facilities for administering
several different applications centrally. It also describes how to administer message queues and printers using
the KDCS calls DADM and PADM.

If you are using the graphical administration workstation or the Web application openUTM WinAdmin openUTM
, which provides comparable functionality, then the following documentation is available to you:WebAdmin

A and , which provide a comprehensive overview of the description of WinAdmin description of WebAdmin
functional scope and handling of WinAdmin/WebAdmin.

The respective , which provide context-sensitive help information on all dialog boxes and online help systems
associated parameters offered by the graphical user interface. In addition, it also tells you how to configure
WinAdmin or WebAdmin in order to administer standalone UTM applications and UTM cluster applications.

Testing and diagnosing errors

You will also require the manuals (there are separate manuals for Unix, Messages, Debugging and Diagnostics
Linux and Windows systems and for BS2000 systems) to carry out the tasks mentioned above. These manuals
describe how to debug a UTM application, the contents and evaluation of a UTM dump, the openUTM message
system, and also lists all messages and return codes output by openUTM.

Creating openUTM clients

The following manuals are available to you if you want to create client applications for communication with UTM
applications:

The describes the creation and operation of client applications openUTM-Client for the UPIC Carrier System
based on UPIC. It indicates what needs to be taken into account when programming a CPI-C application and
what restrictions apply compared with the X/Open CPI-C interface.

For detailed information on the integration of openUTM WebAdmin in SE Server's SE Manager, see
the SE Server manual .Operation and Administration

i

openUTM V7.0. Administering Applications. User Guide.

 18

The manual describes how to install and configure openUTM-Client for the OpenCPIC Carrier System
OpenCPIC and configure an OpenCPIC application. It indicates what needs to be taken into account when
programming a CPI-C application and what restrictions apply compared with the X/Open CPI-C interface.

The documentation for the product shipped with consists of the manual and openUTM-JConnect BeanConnect
a Java documentation with a description of the Java classes.

The manual describes how you can extend existing COBOL programs of a UTM application in BizXML2Cobol
such a way that they can be used as an XML-based standard Web service. How to work with the graphical user
interface is described in the .online help system

You can also use the software product WS4UTM (WebServices for openUTM) to provide services of UTM
applications as Web services. To do this, you need the manual. Working with the Web Services for openUTM
graphical user interface is described in the corresponding .online help system

Communicating with the IBM world

If you want to communicate with IBM transaction systems, then you will also require the manual Distributed
. This describes the CICS Transaction Processing between openUTM and CICS, IMS and LU6.2 Applications

commands, IMS macros and UTM calls that are required to link UTM applications to CICS and IMS applications.
The link capabilities are described using detailed configuration and generation examples. The manual also
describes communication via openUTM-LU62 as well as its installation, generation and administration.

PCMX documentation

The communications program PCMX is supplied with openUTM on Unix, Linux and Windows systems. The
functions of PCMX are described in the following documents:

CMX manual “Betrieb und Administration“ (Unix-Systeme) for Unix, Linux and Windows systems (only available
in German)

PCMX online help system for Windows systems

openUTM V7.0. Administering Applications. User Guide.

 19

1.2.2 Documentation for the openSEAS product environment

The manual briefly describes how openUTM is connected to the openSEAS product Concepts and Functions
environment. The following sections indicate which openSEAS documentation is relevant to openUTM.

Integrating Java EE application servers and UTM applications

The BeanConnect adapter forms part of the openSEAS product suite. The BeanConnect adapter implements the
connection between conventional transaction monitors and
Java EE application servers and thus permits the efficient integration of legacy applications in Java applications.

The manual describes the product BeanConnect, that provides a JCA 1.5- and JCA 1.6-compliant BeanConnect
adapter which connects UTM applications with applications based on Java EE, e.g. the Oracle application server.

Connecting to the web and application integration

Alternatively, you can use the WebTransactions product instead of the UTM HTTP program interface. Then you will
need the manuals. The manuals will also be supplemented by JavaDocs.WebTransactions

openUTM V7.0. Administering Applications. User Guide.

 20

1.2.3 Readme files

Information on any functional changes and additions to the current product version described in this manual can be
found in the product-specific Readme files.

Readme files are available to you online in addition to the product manuals under the various products at
. For the BS2000 platform, you will also find the Readme files on the Softbook DVD.https://bs2manuals.ts.fujitsu.com

Information on BS2000 systems

When a Readme file exists for a product version, you will find the following file on the BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D). You can view this
information on screen using the command or an editor. /SHOW-FILE

The command shows the /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product>

user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and using a product version
are contained in the associated Release Notice. These Release Notices are available online at https://bs2manuals.

.ts.fujitsu.com

https://bs2manuals.ts.fujitsu.com/index
https://bs2manuals.ts.fujitsu.com/index
https://bs2manuals.ts.fujitsu.com/index

openUTM V7.0. Administering Applications. User Guide.

 21

1.3 Changes in openUTM V7.0

The following sections provide more details about the changes in the individual functional areas.

openUTM V7.0. Administering Applications. User Guide.

 22

1.3.1 New server functions

UTM as HTTP-Server

A UTM application can also act as an HTTP server.

GET, PUT, POST and DELETE are supported as methods. In addition to HTTP, access via HTTPS is also
supported.

The following interfaces have been changed:

Generation

All systems:

KDCDEF statement BCAMAPPL:

operand T-PROT= with value SOCKETAdditional specification for the transport protocol for the

*USP: The UTM socket protocol is to be used on connections from this access point.

*HTTP: The HTTP protocol is to be used for connections from this access point.

*ANY: Both the UTM socket protocol and the HTTP protocol are supported on connections from
this access point.

 Additional specification for encryption for the operand T-PROT= with value SOCKET

SECURE: On connections from this access point, communication takes place using transport layer
security (TLS).

New operand USER-AUTH = *NONE | *BASIC. Herewith you can specify which authentication
mechanism HTTP clients must use for this access point.

KDCDEF statement HTTP-DESCRIPTOR:
This statement defines a mapping of the path received in an HTTP request to a TAC and additional
processing parameters can be specified.

BS2000 systems:

KDCDEF statement CHAR-SET:
With this statement, each of the four UTM code conversions provided by openUTM can be assigned up to
four character set names.

Programming

KDCS communication area (KB):
In the header of the KDCS communication area, there are new indicators for the client protocols HTTP, USP-
SECURE, and HTTPS in the field.kccp/KCCP

KDCS call INIT PU:

The version of the interface has been increased to 7.

To obtain the complete available information, the value 372 must be specified in the KCLI field.

New fields for requesting (KCHTTP/http_info) and returning (KCHTTPINF/httpInfo) HTTP-specific
information.

Administration interface KDCADMI

The data structure version of KDCADMI has been changed to version 11 (field in the parameter version_data
area).

openUTM V7.0. Administering Applications. User Guide.

 23

New structure in the identification area to support the HTTP descriptor.kc_http_descriptor_str

New structure in the identification area for supporting the HTTP character set.kc_character_set_str

New fields and in structure for the support of HTTP access points.secure_soc user_auth kc_bcamappl_str

UTM-HTTP program interface

In addition to the KDCS interface, UTM provides an interface for reading and writing HTTP protocol information
and handling the HTTP message body.
The functions of the interface are briefly listed below:

Function kcHttpGetHeaderByIndex()
This function returns the name and value of the HTTP header field for the specified index.

Function kcHttpGetHeaderByName()
The function returns the value of the HTTP header field specified by the name.

Function kcHttpGetHeaderCount()
This function returns the number of header fields contained in the HTTP request, that can be read by the
program unit.

Function kcHttpGetMethod()
 This function returns the HTTP method of the HTTP request.

Function kcHttpGetMputMsg()
This function returns the MPUT message generated by the program unit.

Function kcHttpGetPath()
This function returns the HTTP path of the HTTP request normalized with
KC_HTTP_NORM_UNRESERVED.

Function kcHttpGetQuery()
This function returns the HTTP query of the HTTP request normal with ized
KC_HTTP_NORM_UNRESERVED.

Function kcHttpGetRc2String()
Help function to convert a function result of type enum into a printable zero terminated string.

Function kcHttpGetReqMsgBody()
This function returns the message body of the HTTP request.

Function kcHttpGetScheme()
This function returns the schema of the HTTP request.

Function kcHttpGetVersion()
This function returns the version of the HTTP request.

Function kcHttpPercentDecode()
Function to convert characters in percent representation in strings to their normal one-character
representation.

Function kcHttpPutHeader()
This function passes an HTTP header for the HTTP response.

Function kcHttpPutMgetMsg()
This function passes a message for the program unit, which can be read with MGET.

Function kcHttpPutRspMsgBody()
This function passes a message for the message body of the HTTP response.

Function kcHttpPutStatus()
This function passes a .HTTP status code for the HTTP response

openUTM V7.0. Administering Applications. User Guide.

 24

Communication via the Secure Socket Layer (SSL)
BS2000 systems:

If a BCAMAPPL with T-PROT=(SOCKET,...,SECURE) has been generated for a UTM application, an
additional task is started with a reverse proxy when UTM starts the application. The reverse proxy acts as the
TLS Termination Proxy for the application and handles all SSL communication.

 :Unix, Linux and Windows systems

Another network process is available for secure access with TLS. of the type utmnetssl

If BCAMAPPL is generated with T-PROT=(SOCKET,...,SECURE) for a UTM application, a number of
 processes are started when UTM is started. The number of these processes depends on the value utmnetssl

LISTENER-ID of these BCAMAPPL objects. All TLS communication for the assigned BCAMAPPL port
numbers is handled in a process.utmnetssl

Encryption

The encryption functionality in UTM between a UTM application and a UPIC client has been revised. Security gaps
have been closed, modern methods have been adopted and delivery has been simplified as follows:

UTM-CRYPT variant

Previously, the encryption functionality in UTM was only available if the product UTM-CRYPT had been
installed. With UTM V7.0 this is no longer necessary. As of this version, the decision as to whether or not to use
the encryption functionality is made via generation or at the time of application start.

Security
A vulnerability has been fixed in the communication between a UTM application and a UPIC client.

Encryption Level 5 (Unix, Linux and Windows systems)

KDCDEF statements PTERM, TAC and TPOOL
The operand ENCRYPTION-LEVEL has an additional level 5, where the Diffie-Hellman method based on Elliptic
Curves is used to agree the session key and input/output messages are encrypted with the AES-GCM algorithm.

OSI-TP communication and port numbers

BS2000 systems:

KDCDEF statement OSI-CON
The operand LISTENER-PORT can also be specified on BS2000 systems.

 interface KDCADMIAdministration
In the structure , the port number is also displayed in the field on BS2000 systems.kc_osi_con_str listener-port

Subnets

In a UTM application, subnets can also be generated on BS2000 systems in order to restrict access to UTM
applications to defined IP address ranges. In addition, name resolution can be controlled via DNS.

The following interfaces have been changed for this purpose:

This means that encrypted communication with a UTM application V7.0 is only possible together with
UPIC client applications as of UPIC V7.0!

!

openUTM V7.0. Administering Applications. User Guide.

 25

Generation
BS2000 systems:

KDCDEF statement SUBNET:
The SUBNET statement can also be specified on BS2000 systems.

All systems:

KDCDEF statement SUBNET:

RESOLVE-NAMES=YES/NO can be used to specify whether or not a name resolution via DNS is to take
place after a connection is established.

If name resolution takes place, the real processor name of the communication partner is displayed via the
administration interface and in messages. Otherwise, the IP address of the communication partner and the
name of the subnet defined in the generation are displayed as the processor name.

Administration interface KDCADMI
The structures and kc_tpool_str contain a new field .kc_subnet_str resolve_names

Access data for the XA database connection

A modified but not yet activated user name for the XA database connection can be read by Administration
(KDCADMI):

Operation code KC_GET_OBJECT:
Data Structure : New field .kc_db_info_str db_new_userid

Reconnect for the XA database connection

If an XA action to control the transaction detects that the connection to the database has been lost, the system tries
to renew the connection and repeat the XA action.

Only if this is not successful, the affected UTM process . and the UTM application are terminated abnormally
Previously, the UTM application was terminated abnormally, .if a XA-Connection was lost without trying to reconnect

Other changes

XA messages
The messages regarding the XA interface were extended by the inserts UTM-Userid and TAC. The messages
K204-K207, K212-K215 and K217-K218 are affected.

UTM-Tool KDCEVAL
In the TRACE 2 record of KDCEVAL the type of the last order (bourse announcement) was recorded in the
WAITEND record (first two bytes can be printed).

openUTM V7.0. Administering Applications. User Guide.

 26

1.3.2 Discontinued server functions

In particular, the following functions has been discontinued:

KDCDEF utiliy
Several functions have been deleted and can no longer be generated in KDCDEF. If they are still specified, this
will be rejected with a syntax error in the KDCDEF run.

KDCDEF statement PTERM
Operand values 1 and 2 for ENCRYPTION-LEVEL

KDCDEF statement TPOOL
Operanden values 1 and 2 for ENCRYPTION-LEVEL

KDCDEF statement TAC
Operanden value 1 for ENCRYPTION-LEVEL

BS2000 systems

UTM Cluster:
UTM cluster applications are no longer supported on BS2000 systems.

Unix, Linux and Windows systems

TNS operation:
When starting a UTM application, the TNS generation is no longer read. The addressing information must be
stored completely during configuration with KDCDEF.

openUTM V7.0. Administering Applications. User Guide.

 27

1.3.3 New client functions

Encryption

The encryption functionality in openUTM-Client has been revised. Security gaps have been closed, modern
methods have been adopted and delivery has been simplified as follows:

UTM-CLIENT-CRYPT variant
Until now, the encryption functionality in openUTM-Client was only available if the product UTM-CLIENT-CRYPT
was installed. With openUTM Client V7.0 this is no longer necessary. As of this version, it is decided at runtime
whether the encryption functionality is available or not.

Security
A vulnerability has been fixed when communicating with a UTM application.

Encryption Level 5
The o V7.0 supports communication with UTM V7.0 applications ENCRYPTION-LEVEL 5 penUTM client when
was generated for the connections to the UPIC client.
With Level 5 the Diffie-Hellman method, based on Elliptic Curves, is used to agree on the session key. Input
/output messages are encrypted using the AES-GCM algorithm. AES-GCM is an authenticated encryption
algorithm designed to provide both data authenticity (integrity) and confidentiality.
Level 5 is supported by the on all platforms.openUTM-Client

Encryption BS2000
openUTM-Client (BS2000) uses openSSL instead of BS2000-CRYPT analogous to Unix, Linux and Windows
systems.

https://en.wikipedia.org/wiki/Authenticated_encryption

openUTM V7.0. Administering Applications. User Guide.

 28

1.3.4 New functions for openUTM WinAdmin

WinAdmin supports all new features of openUTM 7.0 relating to the program interface for the administration.

openUTM V7.0. Administering Applications. User Guide.

 29

1.3.5 New functions for openUTM WebAdmin

WebAdmin supports all new features of openUTM 7.0 relating to the program interface for the administration.

openUTM V7.0. Administering Applications. User Guide.

 30

1.4 Notational conventions

Metasyntax

The table below lists the metasyntax and notational conventions used throughout this manual:

Representation Meaning Example

UPPERCASE
LETTERS

Uppercase letters denote constants (names of calls, statements,
field names, commands and operands etc.) that are to be entered
in this format.

LOAD-MODE=STARTUP

lowercase
letters

In syntax diagrams and operand descriptions, lowercase letters
are used to denote place-holders for the operand values.

KDCFILE=filebase

lowercase
letters in
italics

In running text, variables and the names of data structures and
fields are indicated by lowercase letters in italics.

utm-installationpath is
the UTM installation
directory

Typewriter

font

Typewriter font (Courier) is used in running text to identify
commands, file names, messages and examples that must be
entered in exactly this form or which always have exactly this
name or form.

The call tpcall

{ } and | Curly brackets contain alternative entries, of which you must
choose one. The individual alternatives are separated within the
curly brackets by pipe characters.

STATUS={ ON | OFF }

[] Square brackets contain optional entries that can also be omitted. KDCFILE=(filebase

[, { SINGLE |

DOUBLE }])

() Where a list of parameters can be specified for an operand, the
individual parameters are to be listed in parentheses and
separated by commas. If only one parameter is actually specified,
you can omit the parentheses.

KEYS=(key1,key2,...

keyn)

Underscoring Underscoring denotes the default value. CONNECT= { YES |

 }NO

abbreviated
form

The standard abbreviated form of statements, operands and
operand values is emphasized in boldface type. The abbreviated
form can be entered in place of the full designation.

RANSPORTT -SEL

ECTOR=c‘C‘

. . . An ellipsis indicates that a syntactical unit can be repeated. It can
also be used to indicate sections of a program or syntax
description etc.

Start KDCDEF

...

OPTION

DATA=statement_file

...

END

openUTM V7.0. Administering Applications. User Guide.

 31

Symbols

 Indicates references to comprehensive, detailed information on the relevant topic.

Other

utmpath On Unix, Linux and Windows systems, designates the directory under which openUTM was installed.

filebase On Unix, Linux and Windows systems, designates the directory of the UTM application. This is the base
name generated in the KDCDEF statement MAX KDCFILE=.

$userid On BS2000 systems, designates the user ID under which openUTM was installed.

upic_dir The directory under which UPIC Client for UPIC Carrier System is installed on Unix, Linux, or Windows
system.

Indicates notes that are of particular importance.i

Indicates warnings.!

openUTM V7.0. Administering Applications. User Guide.

 32

2 Overview of openUTM administration

The term “administration” covers all activities involved in the control and administration of the current application.
“Administering” means adapting the application to changing circumstances and requirements without interrupting
the application run.

To help you administer your UTM application, openUTM provides you with the interfaces and tools in the following
list.

The command interface on which the basic administration functions are available. This is implemented in the
KDCADM administration program.

The KDCADMI program interface for administration which you can use to generate administration programs
specifically tailored to your application. The UTM administration functions are provided at this program interface.

The PADM and DADM calls at the KDCS program interface with which you administer local message queues
and printers, enabling you to control the output of print jobs. The UTM program units KDCDADM and KDCPADM
provide you with all the functions of the KDCS calls DADM and PADM.

The openUTM component WinAdmin with which you can administer several UTM applications in a network from
the graphical user interface on your PC.

The openUTM WebAdmin component that provides a Web application for the administration of UTM applications.

Only on BS2000 systems

WebAdmin can be integrated into the SE Manager as an add-on.

The administration tool CALLUTM with which you can start also administration services in UTM applications
while in a BS2000 task, and which enables you to call up administration commands.

The KDCISAT and KDCMSAT commands (dialog transaction codes) with which you can control the SAT logging
function for your application. These commands are described in the openUTM manual “Using UTM Applications
on BS2000 Systems”.

openUTM provides you with a comprehensive range of administration functions via the command interface and the
program interfaces KDCADMI and KDCS, enabling you to obtain optimum performance and flexibility from your
application, and ensuring that the application can operate without interruption (7*24-hour operation). You can, for
example, perform the following actions:

Check the performance of the application by querying information about the current utilization level of the
application, diagnosing performance bottlenecks and errors and, where necessary, taking measures to improve
performance.

Replace parts of the application program or the entire application program at runtime. This enables you to modify
program units during the application run or to add new program units.

Assign the restart information and/or print queues on terminals and printers where hardware faults arise to other
terminals or printers. This enables the user to continue work from a different terminal, or to redirect print jobs to
an intact printer.

Disable/enable clients, printers, LTERM pools, user IDs, services and the connection points for communication
partners (LTERM, LPAP and OSI-LPAP partners) where necessary.

Establish and shut down connections to clients, printers and partner applications or switch to replacement
connections.

openUTM V7.0. Administering Applications. User Guide.

 33

Request information about the configuration of an application and the current settings for application and
operating parameters.

Modify the configuration of an application at runtime by adding to the configuration services, user IDs, clients,
printers, connections and session names for distributed processing by means of LU6.1, key sets and transaction
codes for partner applications or by deleting them from it.

Administer TAC, USER and temporary queues as well as the local message queues of LTERM partners and
transaction codes.

Terminate an application.

You can call up the administration functions of openUTM (with the exception of the SAT administration command) in
dialog mode or by means of message queuing. The message queuing form of administration for a UTM application
involves the use of “programmed administrators”, i.e. you can generate programs which execute administration
functions at a given time (DPUT call) or in response to specific events. The program interface calls and
administration commands can, in particular, be called by the MSGTAC event service.

You can also take advantage of the opportunities offered by the user-specific message destinations. These
message destinations allow you to read messages in a TAC or USER queue, for example, by means of the KDCS
program interface and the DGET function. With this function and corresponding follow-up processing, you can
design MSGTAC-like programs that respond specifically to a message.

For information on automatic administration refer to .chapter "Automatic administration"

UTM administration privileges are required for all administration functions which involve write access to
configuration data of the application. There is also a slightly lower level of authorization which entitles users to use
administration functions which have read-only access to the application data.

For details of the authorizations concept, see .chapter "Access rights and data access control"

The following section provides a summary of the range of functions for individual interfaces and tools and also
describes the differences between them and their respective areas of application.

openUTM V7.0. Administering Applications. User Guide.

 34

2.1 Command interface

openUTM is supplied with the standard administration program KDCADM in which some of the functions at the
program interface for administration (KDCADMI) are implemented. The command interface for administration
supports some of the functions of the program interface for administration (KDCADMI).

KDCADM provides the basic administration functions which you need in order to ensure that the application is
available continuously, and to check the performance of the application. KDCADM is not able to add new objects
dynamically or to delete objects from the configuration.

In order to call up individual KDCADM functions, you must assign specified transaction codes to the program
KDCADM. These transaction codes are referred to as administration codes.

There is a dialog transaction code (dialog command) for each KDCADM function and an asynchronous transaction
code (asynchronous command). You can therefore call the KDCADM administration functions synchronously in
dialog mode or asynchronously by means of message queuing.

When you call a command you can specify operands. With these operands, you can define the type of action which
is to be executed and specify the objects in the application to which the action must relate. The operands are
identical for the respective dialog and asynchronous commands.

The KDCADM administration commands and their operands are described in chapter "Administration
.commands - KDCADM"

Administration commands can only be entered in line mode. Similarly, administration commands are also output in
line mode. It is not possible to use formats.

You will find information about the layout of output for administration in message queuing mode in chapter
."Administration using commands"

You will need to use KDCDEF to generate both the administration commands you wish to use at runtime and the
administration program KDCADM. Alternatively, you can use the KDCADMI program interface to include them
dynamically. You must always enter the KDCSHUT command used for terminating the application normally in the
configuration for your application.

The following table contains a summary of KDCADM functions and the commands which you use to call up these
functions.

KDCADM administration function Dialog
command

Asynchronous
command

Adjust the settings for application parameters and timers,define current number
of processes for the application, establish connections to the printers for which
print jobs exist, replace the entire application program

KDCAPPL KDCAPPLA

Exchange master LTERMs of two LTERM bundles KDCBNDL KDCBNDLA

Producing diagnostic documentation, e.g. request a UTM diagnosis dump KDCDIAG KDCDIAGA

Query properties of objects and the current settings of application parameters,
request statistical information

KDCINF KDCINFA

Switch the user log file to the next file generation KDCLOG KDCLOGA

openUTM V7.0. Administering Applications. User Guide.

 35

KDCADM administration function Dialog

command
Asynchronous
command

Disable/enable LTERM partners, set up and shut down connections KDCLTERM KDCLTRMA

Change the number of clients approved for an LTERM pool KDCPOOL KDCPOOLA

Exchange load modules/shared objects/DLLs in the application KDCPROG KDCPROGA

Disable/enable clients/printers, set up and shut down connections KDCPTERM KDCPTRMA

Terminate the UTM application run KDCSHUT KDCSHUTA

Switch the system log file (SYSLOG) of the application, activate/deactivate
size monitoring, modify the control value for size monitoring, query information
via the SYSLOG

KDCSLOG KDCSLOGA

Change the assignment of clients/printers to LTERM partners KDCSWTCH KDCSWCHA

Disable/enable transaction codes (local services) KDCTAC KDCTACA

Modify the maximum number of processes entitled to process jobs for a TAC
class simultaneously

KDCTCL KDCTCLA

Disable/enable user IDs, change passwords KDCUSER KDCUSERA

Only on BS2000 systems:

Exchange sections of the application marked in the common memory pool for
exchange.

KDCAPPL KDCAPPLA

Disable/enable multiplex connections, set up and shut down connections KDCMUX KDCMUXA

Send a message to one or more dialog terminals KDCSEND KDCSENDA

The following functions are available for the administration of server-server communication via LU6.1 and OSI TP:

Set up and shut down logical connections to partner applications, switch
replacement connections to OSI TP partners, disable/enable LPAP or OSI-
LPAP partners, change timers for monitoring sessions and associations.

KDCLPAP KDCLPAPA

Set up and shut down logical connections for a session KDCLSES KDCLSESA

Disable/enable a remote service (LTAC) for the local application, and adjust
timer settings for monitoring the establishment of sessions/associations and
their response times.

KDCLTAC KDCLTACA

KDCADM functions and transaction codes

openUTM V7.0. Administering Applications. User Guide.

 36

2.2 KDCADMI program interface

You can use the program interface for administration (KDCADMI) to create administration programs specifically
tailored to suit your application. This program interface is provided in C/C++ and COBOL. This manual describes
the program interface for C/C++. Since the COBOL interface is broadly similar to the C/C++ interface, you can also
use the description in this manual as a guide when creating COBOL administration programs. For additional
information about creating administration programs in COBOL, see also the appendix, starting from "Program

.interface for administration in COBOL"

The program interface offers functions which go beyond the basic administration functions of KDCADM. The
KDCADMI program interface also offers you the following additional functions:

Functions with which you can modify the configuration dynamically:
You can add new services (program units, transaction codes), clients, printers, user IDs, connections and
session names for distributed processing by means of LU6.1, key sets, transaction codes for partner applications
and service-controlled queues to the configuration dynamically, delete them from the configuration or change the
properties of objects or application parameters.

Inverse KDCDEF:
You can generate control statements for generation tool KDCDEF from the configuration information stored in
the KDCFILE.
This means that changes to the configuration made during the application run can be transferred when the
application is regenerated.

Output all configuration data when information is requested:
When information is requested for individual objects or application parameters, all the configuration data stored
in the KDCFILE for this object or parameter is returned. In a custom-made administration program you can
analyze and process exactly the data that is of interest for a given application. When requesting information, you
can restrict output to those objects which satisfy particular criteria by entering these selection criteria when you
make the call.

The following table lists the functions of KDCADMI and the operation codes which are used to call up program
functions.

The KDCADMI program interface and all data structures are described in chapter "Program interface for
. administration - KDCADMI"

Information about dynamic administration and inverse KDCDEF can be found in chapter "Changing the
 and .configuration dynamically" chapter "Generating konfiguration statements from the KDCFILE"

KDCADMI Function KDCADMI operation code

Exchange the entire application program without shutting down the application.
BS2000 systems:
Exchange sections of the application in the common memory pool which are
marked for exchange.
Unix, Linux and Windows systems:
When doing this, you must specify whether the next higher version, the next
lower version or the current version of the application program is to be loaded.

KC_CHANGE_APPLICATION

Generate a UTM diagnosis dump without terminating the application. KC_CREATE_DUMP

openUTM V7.0. Administering Applications. User Guide.

 37

KDCADMI Function KDCADMI operation code

Extend the configuration of an application dynamically to include new services
(program units, transaction codes), clients, printers, user IDs, connections and
session names for distributed processing by means of LU6.1, key sets,
transaction codes for partner applications and service-controlled queues.

KC_CREATE_OBJECT

Start an inverse KDCDEF run online KC_CREATE_STATEMENTS

Delete clients, printers, user IDs, services, connections and session names for
distributed processing by means of LU6.1, key sets, transaction codes for
partner applications and service-controlled queues from the configuration of the
application.

KC_DELETE_OBJECT

Generate, activate or delete RSA key pair.
Read public key of RSA key pair.

KC_ENCRYPT

Query the names and properties of objects, the current settings of application
parameters and statistical information

KC_GET_OBJECT

On Unix, Linux and Windows systems: Permit a new sign-on for all users or for
an individual user still recorded as signed on at a failed node application or who
have/has a service bound to the failed node application.
Release cluster user file lock after incorrectly terminated KDCDEF run.
(Only in UTM cluster applications)

KC_LOCK_MGMT

Modify the properties of objects or application parameters, e.g.:
change the settings for application parameters and timers,
define current process numbers for the application,
activate/deactivate traces,
replace load modules/shared objects/DLLs in the application,
disable/enable user IDs, transaction codes, clients/printers or connections to
partner applications,
establish and shut down connections to clients, printers and partner applications,
activate OSI TP replacement connections,
change the number of clients approved for an LTERM pool,
change the assignment of clients/printers to LTERM partners,
reset counter for statistics data,
change keys in key sets,
change the data access control for transaction codes, users and TAC queues.

KC_MODIFY_OBJECT

On Unix, Linux and Windows systems: Import application data from a terminated
into a running node application (only for UTM cluster applications).

KC_ONLINE_IMPORT

Roll back transaction in PTC state (prepare to commit). KC_PTC_TA

Only on BS2000 systems:
Send message to a dialog terminal or to all active dialog terminals.

KC_SEND_MESSAGE

Terminate the UTM application run. KC_SHUTDOWN

openUTM V7.0. Administering Applications. User Guide.

 38

KDCADMI Function KDCADMI operation code

Establish connections to printers for which print jobs exist. KC_SPOOLOUT

Switch the system log file (SYSLOG) in the application, activate/deactivate size
monitoring on/off, modify the control value for size monitoring, request information
via SYSLOG

KC_SYSLOG

Determine IP addresses of generated communication partners;
on BS2000 systems: only for T-PROT=SOCKET

KC_UPDATE_IPADDR

Switch the user log file(s) to the next generation of file KC_USLOG

Administration functions in the program interface for administration

In addition to the greater range of functions that you can use in administration programs you write yourself,
administration programs which utilize the functions of the program interface also offer the following advantages:

For administration by means of message queuing, you can choose any recipient for the results. This means that,
depending on the result of a KDCADMI call, you can call up various follow-up transactions.

This yields advantages for automatic and programmed administration.

The results of an administration call can be analyzed and further processed in the program unit containing the
The number of administration calls which are subject to transaction management and which are to be executed
in a single transaction is, however, limited by the generated size of the restart area (generation statement MAX,
parameter RECBUF, see openUTM manual “Generating Applications”).

Only on BS2000 systems: You can use formats for the entry and output of administration programs.

Calls for administration functions must be made between the KDCS calls INIT and PEND. The data structures
required for the exchange of data between openUTM and the program are predefined. For C/C++, the data
structures are provided in the include file (Unix, Linux and Windows systems) or in the include member kcadminc.h

 in the SYSLIB.UTM.070.C library (BS2000 systems).kcadminc.h

For information about setting up a program, see chapter chapter "Writing your own administration
.programs"

openUTM on BS2000, Unix, Linux and Windows systems use the identical data structures. These data structures
contain a few fields which only relate to one of these operating systems. In the other operating system, binary
zeroes must be entered in these fields. The program is able to determine which operating system it is running on
with the aid of a KDCADMI call.

Since the KDCADMI calls and the data structures used are platform-independent, you can use KDCADMI to create
administration programs which:

allow the user to administer several UTM applications from one “central” location. These UTM applications can
even be running on different platforms. In particular, you can administer UTM applications on BS2000 systems
from a UTM application on Unix, Linux or Windows system and vice versa. These applications can be running
under different versions of openUTM.

are portable. You can compile the same source of an administration program on any of the three platforms and
link it to a UTM application from there.

openUTM V7.0. Administering Applications. User Guide.

 39

For information on central administration of applications, see chapter "Central administration of several
.applications"

KDCADMI calls can, with one exception (termination of application run: KC_SHUTDOWN with subcode KC_KILL),
be submitted in dialog as well as asynchronous services.

These dialog services can be started by users at the terminal, via UPIC clients or OpenCPIC partners, by a partner
application or by HTTP clients.
The asynchronous services can be started by users at the terminal, by partner applications and by OpenCPIC
partners or from a program unit.

The program interface for administration is subject to the compatibility guarantee, i.e. it is offered source-
compatible across several different versions of openUTM. For this reason, administration programs do not
need to be adapted to changes of version if they set those version as KDCADMI data structure version for
which they had been developed. I.e. the administration programs should be recompiled as they are and
then linked into a UTM application running under the follow-up version.

i

openUTM V7.0. Administering Applications. User Guide.

 40

2.3 Sample programs

openUTM is shipped with sample programs in the form of source code and object modules. You can use these as a
basis for your own administration programs, modify them as required, compile them and integrate them in your
application. The sample programs are the programs HNDLUSR (only BS2000 systems), ENCRADM, SUSRMAX
and COBUSER. You will find an introduction to these in the .section “Sample programs”

openUTM V7.0. Administering Applications. User Guide.

 41

2.4 PADM, DADM for administering message queues and printers

You can use the PADM and DADM calls at the KDCS program interface to administer the message queues and
printers for an application and to control the printer output.

For example, you can change the sequence of the jobs or messages in a queue, delete jobs or messages from the
queues, generate printer pools and, in the event of a printer fails, you can redirect print jobs to another printer. In
addition, you can move messages from the dead letter queue into other message queues in order to edit them.

The calls PADM and DADM enable users or clients with no administration privileges to administer printers, control
printer output and administer the message queues for a printer. In other words, “normal” users can administer their
own “local” printers and administer the print jobs sent to these printers. Administration can be performed from the
print control LTERM to which the printer being administered is assigned.

PADM and DADM can also be used by the event service MSGTAC. The MSGTAC routine can be started
automatically if a printer fails and appropriate action can be taken in response to PADM and DADM calls.

Program units KDCDADM and KDCPADM are supplied with openUTM. These sample programs provide access to
all services requested by the DADM and PADM calls without requiring you to create your own program units.

The PADM and DADM calls and the KDCDADM and KDCPADM programs are described in chapter
."Administering message queues and controlling printers"

Print output from a UTM application is not supported by openUTM on Windows systems. Consequently,
the PADM function in UTM applications on Windows systems is not relevant.

i

openUTM V7.0. Administering Applications. User Guide.

 42

2.5 Administration tool CALLUTM (BS2000 systems)

CALLUTM is an UPIC client on a BS2000 system with the aid of which you can call UTM services from any BS2000
task. Using CALLUTM’s SDF interface, you can start administration services in UTM applications on the same
computer and also on other computers on the network. In particular, you can administer several UTM applications in
the network centrally. These can either be UTM applications on BS2000 systems or UTM on Unix, Linux or
Windows systems. CALLUTM is capable of running in dialog or in batch mode.

CALLUTM is described in the appendix, starting from "CALLUTM - Tool for administration and client
./server communication"

openUTM V7.0. Administering Applications. User Guide.

 43

2.6 openUTM WinAdmin and openUTM WebAdmin

The openUTM components WinAdmin and WebAdmin provide you with a convenient graphical user interface for
the administration of individual or multiple UTM applications.

WinAdmin and WebAdmin both provide much the same function scope. While openUTM WinAdmin is a Java
application that runs on Windows, Unix and Linux systems, openUTM WebAdmin is a web application which can be
accessed from any computers or mobile devices using a web browser.

The UTM applications may be distributed across the network. They can run on all approved platforms and possess
different version levels. Both WinAdmin and WebAdmin support the full function scope of the program interface
offered by the version in question.

The UTM applications requiring administration can be grouped into collections which can then be administered
jointly.

You have to generate the KDCWADMI administration program and the relevant transaction code KDCWADMI, in
order to be able to administer a UTM application through WinAdmin or WebAdmin. Specify ADMIN=YES for the
transaction code. KDCWADMI is part of the delivery scope of openUTM.

You can also use WinAdmin and WebAdmin to start and end UTM applications. When you start a UTM application,
the system assumes that openFT is available on the relevant computer. Consequently the openUTM WebAdmin
add-on in the SE Manager cannot start any UTM applications.

Security

The full range of UTM security functions, starting with access control using UTM user IDs and passwords through to
password and data encryption, is at your disposal in WinAdmin and WebAdmin.

WinAdmin and WebAdmin, moreover, also offer their own user concept, allowing you to define several users with
different rights, from read-only users through to “master” users, i.e. the WinAdmin or WebAdmin administrators.
Each user’s access to WinAdmin or WebAdmin is password-protected.

Differences between WinAdmin and WebAdmin

Using WinAdmin it is possible to modify objects in multiple applications in a single step or to combine multiple
administration steps in a single transaction.

You will find an introduction to WinAdmin and WebAdmin in section “Administration using WinAdmin and
.WebAdmin”

openUTM V7.0. Administering Applications. User Guide.

 44

3 Administering objects and setting parameters

This chapter provides a summary of the options made available by UTM’s administration functionality. A few
application areas of UTM administration are illustrated here by way of example. The administration commands and
program interface calls with which you can perform individual actions are merely referred to.

The and the chapter "Program interface for administration - KDCADMI" chapter "Administration commands -
 contain a detailed description of the actions which you are able to perform with the aid of the program KDCADM"

interface and the administration commands.

The present chapter does not provide details of the administration functions for dynamically entering new objects in
the configuration, changing object properties or deleting objects. These administration functions are described in

.chapter "Changing the configuration dynamically"

The following symbols are used in the ensuing description:

refers to the administration command with which you can perform actions. Only the dialog command is
indicated in each case. However, you can also use the appropriate asynchronous command to execute the
specified actions (see table in).chapter "Command interface"

refers to the function call at the program interface for administration with which you can execute the
required administration function.

You call also use all of the functions described in this section with the administration tools, WinAdmin and
WebAdmin.

openUTM V7.0. Administering Applications. User Guide.

 45

3.1 Information functions in openUTM

openUTM provides you with information functions with which you can obtain an overview of the configuration of
your application, the settings for application parameters and the current utilization level of the application. You can
call the information functions of UTM administration with:

KDCINF

KC_GET_OBJECT

These information functions can also be utilized by users who do not have administration privileges (see chapter
)."Access rights and data access control"

With the aid of information functions, you can, for instance, arrange for output of the following information:

Application and system parameters defined during KDCDEF generation with the MAX statement
(/ section "type=SYSPARM" in chapter "Output from KDCINF" "kc_max_par_str - Maximum values for the

).application (MAX parameters)"

Number of processes currently active for the application, maximum number of processes that can be available
for asynchronous processing at one time, maximum number of processes that are available for processing
services at one time and that contain blocking calls, such as the KDCS call PGWT or the XATMI call tpcall
(section "type=SYSPARM" in chapter /)."Output from KDCINF" "kc_tasks_par_str - Number of processes"

Data about the current utilization level of the application. This information can, for example, include utilization of
the page pool or the cluster page pool, the total number of messages being exchanged, the number of users and
clients signed on, the number of services open at the present time, the number of transactions performed per
unit of time, the number of jobs buffered in the message queues etc.
(see sections "type=STATISTICS" and "type=SYSPARM" in chapter / "Output from KDCINF" "kc_curr_par_str -

).Current values of the application parameters"

Current settings for the timers. In UTM, for example, timers are defined for assigning and waiting for resources,
waiting for an answer from a dialog partner both during and outside of a transaction, waiting for confirmations,
and waiting for a connection or session to be established (see section "type=SYSPARM" in chapter "Output from

 /).KDCINF" "kc_timer_par_str - Timer settings"

Configuration data on all objects which appear in the configuration. This includes the names and logical
properties defined when adding objects to the configuration. It also includes control values for the message
queues, the number of LTERM partners in an LTERM pool or the maximum number of parallel connections
generated to an OSI TP partner application.

Status of individual communication partners and printers in the application, and of connections to these. For
example, the output can show whether the communication partner is connected to the application and the length
of time that such a connection has been in existence, as well as whether or not the communication partner is
currently disabled, the number of messages exchanged on the connection, and whether automatic connection
setup is generated.

Maximum number of objects of a given type that the configuration of the application can maintain.

Number of objects that can still be added dynamically to the configuration.

Details of which specific data are returned is described in for section "Data structures used to pass information"
queries with KC_GET_OBJECT and as of for queries using the administration command "Output from KDCINF"
KDCINF.

openUTM V7.0. Administering Applications. User Guide.

 46

With information queries you can specify the selection criteria, i.e. you can request information on objects which
have particular properties, e.g.:

all LU6.1 connections currently established

the association ID of all associations currently established to an OSI TP partner application

all clients and printers currently connected to the application

all users currently connected to the application

all LTERMs of a connection bundle or all (OSI-)LPAPs of a LPAP bundle

openUTM V7.0. Administering Applications. User Guide.

 47

3.2 Performance check

openUTM offers you numerous functions which you can use to obtain up-to-date information about the utilization
level of the application, to diagnose bottlenecks and to initiate actions to improve performance.

Reasons for performance bottlenecks can include such things as:

Increased requirements on service calls during peak times

Too many users/clients are working with the application at the same time

The processes that are available to the application are occupied by jobs for an extended period because they
have to wait for resources locked by other processes

Processing of a large number of asynchronous jobs impairs dialog operation

Too many long-running program units are running at the same time, e.g. program units which conduct a search
of all data for specific information

Many program units containing blocking calls are running at the same time, e.g. the KDCS call PGWT or the
XATMI call . During the waiting period, each of these program units occupies a process in the application tpcall
on an exclusive basis.

With distributed processing using OSI TP or LU6.1, the system waits long for an association or session to be
assigned

Frequent I/O accesses to the page pool
Frequent read accesses may indicate that the cache generated for the UTM application is too small.

Bottlenecks to connections to communication partners in the application

openUTM V7.0. Administering Applications. User Guide.

 48

3.2.1 Information about the utilization level of the application

On the basis of data relating to the current and maximum utilization level of the application and of individual objects
supplied by the information functions of UTM, you can identify pending bottlenecks and introduce measures in good
time to prevent these bottlenecks from occurring.

You can obtain important data for performance control purposes with the following calls:

KDCINF STATISTICS or SYSPARM (general data)
KDCINF object type (query about data for individual objects)
The data actually returned by KDCINF STATISTICS are described "type=STATISTICS" in in sections
chapter ."Output from KDCINF"

KC_GET_OBJECT with =KC_CURR_PAR (general data)obj_type
For queries about object-related data, enter the type of the object in .obj_type
The data actually returned in response to queries with KC_CURR_PAR is described in chapter

. Object-specific data can be found in "kc_curr_par_str - Current values of the application parameters"
.section "Data structures for describing object properties"

KC_GET_OBJECT with =KC_CLUSTER_CURR_PAR obj_type for Unix, Linux and Windows systems
Supplies information about the occupancy of the cluster page pool in UTM cluster applications, see

."kc_cluster_curr_par_str - Statistics values of a UTM cluster application"

If the information functions mentioned above indicate bottlenecks, you should carry out a more detailed analysis
using the UTM metering monitor KDCMON which gathers statistical data, e.g. on the utilization level of the
application, the progress of application program units, and the time needed to process a job. With the aid of system
administration, you can activate KDCMON and deactivate it again after a desired period of time while the system is
running. You can evaluate the data thus obtained using the UTM tool KDCEVAL.

KDCAPPL KDCMON

KC_MODIFY_OBJECT with =KC_DIAG_AND_ACCOUNT_PARobj_type

KDCMON and the tool KDCEVAL are described in the openUTM manual “Using UTM Applications”, where you will
also find interpretation aids for the statistics produced by KDCMON and the measures you can take to eliminate
bottlenecks.

For performance control purposes, you also have the software monitor openSM2.
openSM2 supplies statistical data on the performance of the complete application program and the utilization level
of the system resources. You can activate/deactivate the supply of data to openSM2 through Administration. For
further information on openSM2 also refer to the openUTM manual “Using UTM Applications”.

KDCAPPL SM2

KC_MODIFY_OBJECT with =KC_MAX_PARobj_type

openUTM V7.0. Administering Applications. User Guide.

 49

3.2.2 Diagnosing errors and bottlenecks

openUTM provides the following functions which assist you during the diagnosis of performance bottlenecks and
incorrect program behavior:

You can check the maximum utilization of an application in a particular period.

You can log events in the form of UTM messages in the SYSLOG.

In order to diagnose bottlenecks and errors in connections to communication partners, you can activate the UTM
BCAM trace or the OSS trace. The UTM BCAM trace can be activated for all connections, for a specific user only
or just for connections to specific partner applications and clients.

You can enable the CPI-C trace, TX trace or XATMI trace to diagnose errors that occur in program units that use
the X/Open interfaces CPI-C, TX or XATMI.

You can enable the ADMI trace to diagnose errors that occur at the administration program interface (KDCADMI).

You can activate test mode. Test mode is used to generate diagnostic documentation when errors occur in the
UTM system code. Since test mode has a negative impact on UTM application performance, you should only
activate test mode when requested to do so by Systems Support. In test mode, additional internal UTM
plausibility checks are conducted and internal trace information is logged.

You can request a diagnostic dump without having to interrupt the execution of the application. In this case, you
can do the following by issuing a command or via the program interface:

immediately request a general diagnosis dump. This has the ID DIAGDP.

or request a dump as soon as a particular event (message, KDCS return code, signon return code) is
generated by openUTM. The dump ID is dependent on the event. You must first activate test mode since the
dump is only written when test mode is active.

KDCDIAG

KC_MODIFY_OBJECT with obj_type=KC_DIAG_AND_ACCOUNT_PAR

openUTM V7.0. Administering Applications. User Guide.

 50

3.2.3 Possible measures

The following section describes some of the measures you can take to avoid performance bottlenecks or to remedy
existing bottlenecks.

Increasing the total number of processes for an application

If extended wait periods arise when processing jobs, particularly in dialog mode, you can increase the number of
processes in which the application program runs.

This makes particular sense in the event that the current application load rises above 80 % and at the same time
sufficient system resources are still free on the computer (memory space, CPU capacity). This value should fall
again after the total number of processes has been increased sufficiently.

The maximum permitted number of processes is defined in MAX TASKS during KDCDEF generation.This maximum
number cannot be increased at the administrative level. However, if the number of processes currently set is less
than this maximum number, you can start additional processes for the application.

KDCINF SYSPARM:
Query the current maximum number of processes and the maximum permitted number of processes.
KDCAPPL TASKS: define a new number of processes.

KC_GET_OBJECT with =KC_TASKS_PAR: obj_type
Query the maximum permitted number of processes and the current number of processes.
KC_MODIFY_OBJECT with =KC_TASKS_PAR: change the number of processes.obj_type

Reducing the total number of processes for an application

Because of the possibility of load fluctuations, it is generally not sensible to reduce the total number of processes if
the application is not loaded to capacity part of the time.

The total number of processes should only be reduced when the computer as a whole encounters a bottleneck
which leads to reduced throughput and/or slower response times on the part of the application.

If you reduce the total number of processes, you must note the following points:

If the total number of processes is reduced to such a level that it is less than the currently set maximum number
of processes that can be used at the same time for asynchronous processing (hereafter referred to as
ASYNTASKS), openUTM resets the value for ASYNTASKS to the specified total number of processes. For
subsequent changes to the total number of processes, openUTM adapts the value of ASYNTASKS automatically
until the value is reached which was previously set by administration or in the startup parameter for ASYNTASKS.

The same applies to the maximum number of program units with blocking calls (TASKS-IN-PGWT) permitted to
run simultaneously. Note that the maximum number of processes must be at least 2 if a transaction code or a
TAC class is generated with PGWT=YES or if the application is a UTM cluster application.

If, in a dialog TAC class, the value for TASKS-FREE is greater than the current total number of processes, one
process then continues to process the jobs going to this TAC class.

If, in the application, job processing is priority controlled (TAC-PRIORITIES is generated), and the value for
FREE-DIAL-TASKS is greater than the current total number of processes, one process then continues to
process the jobs going to this TAC class.

To ensure that, after the total number of processes has been reduced, dialog operation is not impaired by long-
running asynchronous services or by programs with blocking calls, it is advisable to adapt the value of ASYNTASKS

openUTM V7.0. Administering Applications. User Guide.

 51

and TASKS-IN-PGWT to reflect the reduction you make in the total number of processes, i.e. you should also
reduce this value.

Reducing the number of processes available for asynchronous processing and for the
processing of program units with blocking calls

If the dialog mode for an application is delayed by time-consuming asynchronous processing (in other words, if
dialog jobs wait because too many processes are handling asynchronous jobs at the same time), you can reduce
the maximum number of processes (ASYNTASKS) that can be used at one time for asynchronous processing. This
means that there remain more processes free for synchronous processing. The number of processes in
ASYNTASKS is restricted by the maximum value generated in MAX ASYNTASKS.

You can occasionally set ASYNTASKS to 0. However, when doing so, you should note that all asynchronous jobs
are placed in buffer storage in the page pool. If the page pool is not large enough, this can cause bottlenecks in the
page pool.

When you reduce ASYNTASKS and if jobs are controlled through process restrictions for the individual TAC
classes in your application (TAC-PRIORITIES is not generated), you must also note the following:

If an asynchronous TAC class exists for which the current value set in TASKS-FREE is greater than or equal to
ASYNTASKS, then this TAC class is disabled, i.e. no further jobs are processed for this TAC class. In this instance,
TASKS-FREE is the minimum number of processes which should be kept free for processing other jobs going to
other asynchronous TAC classes.

To maintain a check, you should request information about the TAC classes after reducing the ASYNTASKS.

The same applies to the maximum number of processes (TASKS-IN-PGWT) in which program units with blocking
calls are allowed to run at the same time. In contrast to ASYNSTASKS, however, note that you set the value cannot
to 0, if such tasks exist.

KDCINF SYSPARM: Display current settings
KDCAPPL ASYNTASKS / TASKS-IN-PGWT: change number of processes

KC_GET_OBJECT with =KC_TASKS_PAR: Determine generated maximum number and obj_type
currently set number of processes
KC_MODIFY_OBJECT with =KC_TASKS_PAR: change number of processesobj_type

In applications without TAC-PRIORTIES:
changing the number of processes for individual TAC classes

If your application is generated with TAC classes, you can define a specific maximum number of processes for each
TAC class, i.e. the number of processes able to process jobs in one TAC class, and you can change this number if
so required.

When creating the transaction code, you indicate the TAC class to which a transaction code is to belong. You can
therefore group transaction codes belonging to long-running program units into one TAC class or several TAC
classes. The proportion of processes in the application that are authorized to process jobs in this TAC class at the
same time can then be set by you at a level which reflects the utilization of that application. In the case of dialog
TAC classes, at least one process must be allowed to process jobs in the TAC class. In the case of asynchronous
TAC classes, the number can be reduced to 0.

In particular you should group the dialog TACs in program units containing blocking calls (e.g. KDCS call PGWT, or
XATMI call) in one TAC class (with PGWT=YES). After a blocking call, the program unit waits until the data tpcall

openUTM V7.0. Administering Applications. User Guide.

 52

required for continuing the program has been received. For this period of time, the program unit and the related
transaction code assigns a process in the application on an exclusive basis. If several similar program units are
running concurrently, this can cause other jobs to remain waiting in the queue because no processes are available
to process them. The performance of the application is thus severely impaired. The wait time following a blocking
call can also be restricted using the timer PGWTTIME (see below).

KDCINF TACCLASS: Determine current setting
KDCTCL: change number of processes

KC_GET_OBJECT with =KC_TACCLASS: Determine current setting obj_type
KC_MODIFY_OBJECT with =KC_TACCLASS: change number of processesobj_type

Changing the setting for timers

Timers are defined to prevent processes from remaining assigned for excessive periods of time while waiting for
resources to be freed up or for connections and sessions to be established. The timers monitor these wait times
and roll back the waiting transaction after the specified time elapses. The timers are defined during KDCDEF
generation and can be adapted at runtime.

In openUTM, timers are defined for the following wait times:

Wait time after a blocking call ()pgwttime
The timer monitors the maximum length of time which a program unit waits before returning to the program unit
after placing a blocking call.

Maximum length of time during a transaction that is spent waiting for an answer from a dialog partner
(...).termwait

Maximum period of time over which resources can remain assigned by a transaction and the maximum period of
time that a program unit can wait for resources to be freed up (...).reswait

Using the information functions (parameter type STATISTICS/KC_CURR_PAR) you can, for example, determine
how frequently program units have had to wait for locked resources (relative figure).

Maximum length of time to wait for a session/association to the partner application to be assigned.

If the timers or are set for an excessively long period, particularly in bottleneck situations, then pgwttime reswait
individual processes in the application can be assigned by program units which either lock resources for too long at
a time (long-running units) or wait too long for required resources to become free. However, if the timers are not set
for long enough periods, system performance is impaired by transactions being rolled back frequently.

KDCINF SYSPARM or STATISTICS: Determine current timer settings and request information about
current wait times
KDCAPPL: change timer setting

The timers are intended as "emergency brakes" for unforeseen situations.
You should therefore set the timer values in such a way that they do not run when the application is
executing normally. Timeouts should only be caused by exceptional situations, for example when a
program error occurs or no response is received from a partner application.

i

openUTM V7.0. Administering Applications. User Guide.

 53

KC_GET_OBJECT with =KC_TIMER_PAR / KC_CURR_PAR: Determine current timer settings obj_type
and request information about current wait times
KC_MODIFY_OBJECT with =KC_TIMER_PAR: change timer settingobj_type

Restricting the number of users/clients signed on

At runtime you can influence the number of users/clients that can connect to the application and request services
from the application at the same time. For this purpose, you are offered the following options:

You can restrict the total number of users/clients able to sign on to an application at the same time.

You can restrict the number of clients able to connect via individual LTERM pools at the same time. To do this,
you disable some of the LTERM partners in the pool.

You can disable individual clients/LTERM partners/users.

You can disable LTERM pools completely. At this point, it is no longer possible for users/clients to sign on to the
application via a disabled LTERM pool.

Only on BS2000 systems: You allow only a small number of parallel sessions access to a multiplex connection.

KDCAPPL MAX-CONN-USERS: total number of users/clients
KDCPOOL: disable a number of approved pool LTERM partners / LTERM pool

KC_MODIFY_OBJECT
=KC_MAX_PAR: define total number of users/clientsobj_type
=KC_TPOOL: disable a number of approved pool LTERM partners / LTERM poolobj_type
=KC_PTERM: disable clients/printersobj_type
=KC_LTERM: disable LTERM partnersobj_type
=KC_USER: disable usersobj_type

Disabling services

It is, for example, possible to disable long-running services for a certain period by disabling the relevant transaction
code (State OFF). As of this point, jobs are no longer accepted for disabled transaction codes. In the case of
disabled asynchronous TACs, no further jobs are written to the message queue either.

You can disable a transaction code either exclusively as a service TAC or as both a service TAC and a follow-up
TAC (complete lock: State STOP).

You can also lock asynchronous services using the KEEP status, which means that jobs for the asynchronous TAC
are accepted, but not processed immediately. They can subsequently be processed when the application is less
busy, e.g. at night.

KDCTAC

KC_MODIFY_OBJECT obj_type=KC_TAC

Preventing or remedying bottlenecks for connections to partner applications

If bottlenecks occur during communication with LU6.1 or OSI TP partner applications, you can perform the following
actions:

openUTM V7.0. Administering Applications. User Guide.

 54

Establish other transport connections to an LU6.1 partner application. Before you can communicate with a
partner application, you must first have created or generated several parallel connections, but not all the
connections created or generated should yet have been established.

Increase the number of parallel logical connections to an OSI TP partner application. The maximum possible
number of parallel connections is defined during generation in the OSI-LPAP statement.

Adapt the timer (access wait) for the wait time following a request for a remote service within which a session or
association with a partner application is to become available or be established. You can set this timer individually
for each LTAC. If the timer is set to 0 for an asynchronous LTAC, asynchronous jobs for this LTAC are also not
arranged in the local message queue of the partner application.

Adapt the timer (reply wait) which monitors the wait time for an answer from the partner application. This timer is
also set individually for each LTAC.

Adapt the setting of the idle timer. This timer indicates the length of time that a session or association can remain
unused before openUTM terminates the connection to the partner application. If the timer setting is too long, an
inordinate number of resources will be reserved by unnecessary connections.
If the timer setting is too short, too may resources will be used up to allow the connection to be set up again. The
timer is set individually for each partner.

KDCLPAP / KDCLSES: establish connections, adjust idle time
KDCLTAC: change access wait and reply wait

KC_CREATE_OBJECT =KC_CON/KC_LSES: create connections and sessionsobj_type

KC_MODIFY_OBJECT
=KC_LPAP/KC_OSI_LPAP/KC_LSES: establish connections, adjust idle timeobj_type
=KC_LTAC: change access wait and reply waitobj_type

Note on Unix, Linux and Windows systems:

If a large amount of connections in your application are handled by the same BCAMAPPL name or access point in
your application, this can give rise to bottlenecks since processes can come up against system limitations (e.g. the
maximum number of file descriptors). During the next KDCDEF generation, you should then generate more
BCAMAPPL names and access points.

Enabling or disabling data compression

If GSSBs, LSSBs, ULS, TLS, or KB program areas are frequently read or written in a length which is greater than
one UTM page, you should check whether enabling data compression will enhance the performance of the UTM
application.

You can check whether data compression is worthwhile while it is enabled as follows:

KDCINF STAT, fieldAVG COMPRESS PAGES SAVED

KC_GET_OBJECT with obj_type=KC_CURR_PAR, avg_saved_pgs_by_compr field

openUTM V7.0. Administering Applications. User Guide.

 55

3.3 Avoiding a page pool bottleneck

The content and role of the page pool depends on whether the application is a standalone application (see below)
or a UTM cluster application (chapter).see "Page pools of a UTM cluster application"

openUTM V7.0. Administering Applications. User Guide.

 56

3.3.1 Page pool of a standalone application

User data generated during the application run is stored in the page pool of a standalone application. In addition to
UTM memory areas and service data, this includes:

the message queues of the asynchronous TACs, LTERM, LPAP and OSI-LPAP partners and the user, TAC and
temporary queues (i.e. jobs to local services and communication partners and print jobs to the printers of the
application) that are not being processed

dialog jobs or asynchronous jobs buffered for transaction codes of TAC classes, which are interrupted as a result
of TAC class control

The page pool size is defined during KDCDEF generation and cannot be modified at runtime.

While an application is running, it is necessary to ensure that the page pool is assigned completely. To this end, two
warning levels are defined for KDCDEF generation (page pool assignment in %). If page pool assignment reaches
one of these warning levels, openUTM generates message K041. If the destination MSGTAC is defined for this
message, you can respond to this event in an MSGTAC routine. If the second warning level (default setting 95%) is
reached, no more asynchronous jobs are written to the message queues and no more user log records (LPUT jobs)
are written to the user log file. Asynchronous jobs and LPUT calls then are rejected.

For this reason, when the first warning level is reached, measures must be taken to release memory space in the
page pool. While the application is running, you can obtain information about the current assignment of the page
pool.

KDCINF STATISTICS
KDCINF PAGEPOOL

KC_GET_OBJECT with =KC_CURR_PARobj_type
KC_GET_OBJECT with =KC_PAGEPOOLobj_type

However, if page pool bottlenecks occur frequently, the page pool is simply not large enough. In this case, you
should regenerate the application and increase the size of the page pool.

The following section describes how to terminate message queues and dialog jobs in buffer storage in order to clear
space, i.e. relieve congestion, in the page pool.

Reducing the size of message queues

You can implement the following measures to reduce the size of message queues:

Reduce printer queues by establishing connections to all printers for which print jobs are waiting. These print
jobs will then be processed immediately even if a control value () has been generated for a printer and this plev
has not yet been reached.

Request connections to TS applications and partner applications for which asynchronous jobs are in buffer store
in the page pool. If the communication partners are disabled, they must first be re-enabled.

Increase the number of processes that can be used concurrently for asynchronous processing purposes.

Increase the number of processes that can be used concurrently for processing jobs of a specific TAC class (in
applications without priority control).

openUTM V7.0. Administering Applications. User Guide.

 57

Unlock (status ON) or lock with status OFF any asynchronous transaction codes and TAC queues that are
locked with the KEEP status or blocked. The KEEP status means that jobs for the transaction code or queue in
question are accepted, but are not processed immediately, whereas the status OFF means that no further jobs
are accepted, but any waiting jobs will be processed.

Delete the asynchronous jobs in the message queues of dynamically deleted LTERM partners and
asynchronous TACs.

Delete older messages from service-controlled queues if they are no longer expected to be read.

Assign messages from the dead letter queue to a new destination again in order to allow them to be edited.

KDCINF STATISTICS:
total number of all messages in the buffer store in the page pool

KDCINF LTERM / LPAP / OSI-LPAP / TAC:
query the assignment of message queues for individual objects

KDCINF PAGEPOOL:
query the page pool page utilization subdivided according to types

KDCAPPL SPOOLOUT: reduce size of printer queues

KDCLTERM or KDCLPAP: establish connection to communication partners

KDCAPPL ASYNTASKS: change the number of processes

KDCTAC STATUS: change the status of a transaction code

KDCTCL: change the number of processes in a TAC class

KC_GET_OBJECT with =KC_CURR_PAR:obj_type
query the total number of messages in buffer store in the page pool
with =KC_LTERM / KC_LPAP / KC_OSI-LPAP / KC_TAC: obj_type
assignment of message queues of individual objects
with =KC_PAGEPOOL:obj_type
query the page pool page utilization subdivided according to types

KC_SPOOLOUT: reduce the size of printer queues

KC_MODIFY_OBJECT
with =KC_LTERM/ KC_LPAP/KC_OSI_LPAP: establish connectionsobj_type
with =KC_TASKS_PAR: change number of ASYNTASKS processes obj_type
with =KC_TAC: change the status of a transaction code or a TAC queueobj_type
with =KC_TACCLASS: change the number of processes in a TAC classobj_type

DADM (KDCS call): delete jobs and move messages from the dead letter queue

openUTM V7.0. Administering Applications. User Guide.

 58

In applications without TAC-PRIORITIES:
reducing the size of job queues in TAC classes

The information functions enable you to determine the number of jobs in buffer storage in the page pool in any
given TAC class. The information which openUTM issues on a TAC class includes the number of messages stored
in buffer storage in the page pool.

In order to reduce the size of these queues you can increase the maximum number of processes able to process
jobs in this TAC class at the same time.

KDCINF TACCLASS query number of dialog jobs in buffer storage
KDCTCL: change number of processes

KC_GET_OBJECT with =KC_TACCLASS:obj_type
query number of dialog jobs in buffer storage

KC_MODIFY_OBJECT with =KC_TACCLASS:obj_type
change number of processes

Enabling or disabling data compression

When a large number of page pool pages are utilized for GSSBs, LSSBs, TLS, or ULS (KDCINF PAGEPOOL or
KC_GET_OBJECT with =KC_PAGEPOOL), you should check whether enabling data compression might obj_type
possibly reduce the number of utilized pages.

You can check whether data compression is worthwhile while it is enabled as follows:

KDCINF STAT, fieldAVG COMPRESS PAGES SAVED

KC_GET_OBJECT with obj_type=KC_CURR_PAR, avg_saved_pgs_by_compr field

openUTM V7.0. Administering Applications. User Guide.

 59

3.3.2 Page pools of a UTM cluster application

Every node application in a UTM cluster application has its own page pool for data that is local to the node. In
addition, there is a common cluster page pool for data that is valid globally throughout the cluster. This results in
certain special characteristics compared to standalone applications:

Data that applies locally to the node is stored only in the page pool of the relevant node application. Data that
applies locally in the node includes, for example, the TLS areas, message queues as well as buffered dialog or
asynchronous jobs to transaction codes of TAC classes which have been interrupted due to TAC class control
activities.

Data that applies globally throughout the cluster is stored in the cluster page pool. This type of data includes
GSSB, ULS or cluster-wide service data.

Properties of the cluster page pool

The cluster page pool forms part of the UTM cluster files and consists of a management file and one or more files
containing the user data. The following are defined during generation with KDCDEF:

The size of the cluster page pool file(s)

The number of cluster page pool files

A warning level for the cluster page pool

The message that the value has risen above or fallen below the warning level is always output by the node
application that triggered the change of state.

The administration functions permit the following actions:

You can determine the current occupancy of the cluster page pool and reset the statistical values, e.g. by means
of WinAdmin, WebAdmin or the KDCADMI program interface.

KC_GET_OBJECT and KC_MODIFY_OBJECT with
=KC_CLUSTER_CURR_PARobj_type

You can increase the size of the cluster page pool files without terminating the UTM cluster application.

openUTM manual “Using UTM for Unix, Linux and Windows systems”, entry for Applications
"Increasing the size of the cluster pagepool" in the section "Update generation in a cluster".

openUTM V7.0. Administering Applications. User Guide.

 60

1.

2.

3.4 Exchanging the application program

You can use the administration functions of openUTM to exchange the entire application program or parts of the
application program (individual load modules or shared objects) without having to terminate the application.

In order to exchange individual parts of the application program, the application program must have been generated
with load modules (on BS2000 systems) or with shared objects (on Unix or Linux systems) or DLLs (on Windows
systems).

For more detailed information about program exchange and the conditions governing program exchange, see the
openUTM manual “Using UTM Applications”.

KDCAPPL PROGRAM: exchange of the entire application program
KDCPROG: exchange of individual load modules, shared objects or DLLs

KC_CHANGE_APPLICATION: exchange of the entire application program
KC_MODIFY_OBJECTS with = KC_LOAD_MODULE:obj_type
exchange of individual load modules, shared objects or DLLs

Notes for BS2000 systems

Please proceed as follows when replacing load modules stored in a common memory pool:

Identify the load modules to be exchanged. To do this, call KC_MODIFY_OBJECT with = obj_type
KC_LOAD_MODULE for these load modules and indicate which version is to be loaded during the ensuing
exchange operation. Alternatively, you can use the KDCPROG command.

In order to exchange the identified load modules, the entire application program must be terminated (all
individual processes) and reloaded. To do this, you call KC_CHANGE_APPLICATION or use the KDCAPPL
command.

openUTM V7.0. Administering Applications. User Guide.

 61

3.5 Clients and printers

For clients and printers in an openUTM application, you can perform the actions described in the following section.

Transferring logical properties from one terminal to another

If a terminal is defective, or if the user previously connected to the terminal wishes in future to work from a different
terminal, you can transfer the logical properties of one terminal to another one in stand-alone UTM applications.
You do this by assigning the LTERM partner of one terminal to another terminal (of the same type). In so doing, you
can for example transfer the following properties to the new terminal:

restart information

access rights (key set)

access protection (access list or lock code)

message queue with asynchronous messages

user ID for the automatic KDCSIGN, where defined

language environment, where defined

start format, where defined

control value for the message queue, where definedqlev

KDCSWTCH

KC_MODIFY_OBJECT with obj_type=KC_PTERM

Assigning the message queue of one printer to another printer

In standalone UTM applications, if one printer malfunctions, the printer queue can be assigned to another printer (of
the same type). This printer then processes the print jobs in that queue. To do this, you must disable the defective
printer and assign the LTERM partner of the printer to a different one.

In addition to the printer queue, defined logical properties are also transferred to the new printer. This includes the
control value for the printer queue and the value . As soon as plev print jobs are waiting in the printer qlev plev
queue, openUTM automatically sets up a connection to the printer.

KDCPTERM: Disable a printer
KDCSWTCH: Assign an LTERM partner to a different printer

KC_MODIFY_OBJECT with =KC_PTERMobj_type

Printers are not supported by openUTM on Windows systems.i

openUTM V7.0. Administering Applications. User Guide.

 62

Generating printer pools

In standalone UTM applications, at runtime you can group printers in the application together into printer pools.
Printer pools are created when you assign additional printers to the LTERM partner of one printer. The printer
queue belonging to the LTERM partner is then processed jointly by all printers assigned to that LTERM partner.
Good reasons for generating a printer pool can include:

The message queue of a printer may become too large. It may prove necessary to wait too long for requested
print outputs and the page pool in which jobs are kept in buffer storage can be placed under excessive strain. To
process print jobs in the queue, several printers should be implemented.

When a printer is entered, if the maximum specified number of print jobs which can be stored in a printer queue
at one time () is too small, print jobs sent to this printer will be rejected frequently.plev

Additional printers have recently become available in a branch office. These printers are to process all print jobs
from this branch office on a joint basis, i.e. when a print job is issued, it is sent for processing to a printer which is
free at the time. You can load these new printers in the configuration dynamically and group them in printer pools
with the existing printers.

KDCSWTCH

KC_MODIFY_OBJECT with obj_type=KC_PTERM

Disabling printers/clients and their LTERM partners

You can disable clients and printers and their LTERM printers. It is not possible to establish a connection to
disabled clients or via disabled LTERM partners. You can still send asynchronous jobs to disabled LTERM partners.
These are then stored in the message queue until the control value for that message queue is reached. However,
the jobs are not processed until the LTERM partners are re-enabled.

KDCLTERM, KDCPTERM

KC_MODIFY_OBJECT with obj_type=KC_PTERM or KC_LTERM

Connections to clients and printers

If necessary you can establish and terminate connections to TS applications, terminals and printers.
In the case of terminals, TS applications and printers that are always connected to the application, you can arrange
for connections to be established automatically each time the application starts.

KDCLTERM, KDCPTERM

KC_MODIFY_OBJECT with obj_type=KC_PTERM or KC_LTERM

openUTM V7.0. Administering Applications. User Guide.

 63

Reading information about the availability of clients and printers

Using the information functions of openUTM you can query information about the availability of clients and printers.
The following information is provided:

Current status of client/printer (is it disabled at present or not?)

Does a connection exist at present, or is an attempt currently being made to establish a connection?

Period of time where the printer or client has already been connected to the application

Number of messages replaced on the connection

Number of failures in the connection to client/printer

Control value of message queue ()qlev

Number of jobs in the message queue of a printer/printer pool for which a connection to the printer (pool) is
established automatically.

KDCINF LTERM or PTERM

KC_GET_OBJECT with obj_type=KC_PTERM or KC_LTERM

openUTM V7.0. Administering Applications. User Guide.

 64

4 Changing the configuration dynamically

openUTM provides you with functions at the administration program interface with which you can create new
objects in the configuration or delete them from the configuration during application runtime.

These functions further increase the availability of UTM applications. Regeneration of the application with KDCDEF,
for which operation has to be interrupted, is now required much less frequently. In addition, regeneration of a UTM
application is now much easier and a great deal less time-consuming. You will find appropriate recommendations
for regenerating a UTM application in .section “Recommendations for regeneration of an application”

Using the functions UTM provides for changing the configuration dynamically, you can create and delete the
following objects:

user IDs, including the associated queues

key sets

transport connections to remote LU6.1 applications

LU6.1 sessions

transaction codes for your own application

transaction codes, via which service programs can be started in partner applications

LTERM partners

clients, printers

program units and VORGANG exits
(only in applications with load modules, shared objects or DLLs)

TAC queues

To add and delete objects, use either the administration tools WinAdmin and WebAdmin or administration programs
you have generated yourself. Using the KC_CREATE_OBJECT call at the administration program interface, you
can add new objects to the configuration. With the KC_DELETE_OBJECT call, you can delete objects from the
configuration. The KC_MODIFY_OBJECT call allows you to change individual object properties.

The following section describes a number of things you need to be aware of during KDCDEF generation of the
application if you wish to add or delete objects to/from the configuration at runtime. It also describes points you must
consider when dynamically creating objects from your application configuration.

The full range of functions for dynamically changing the configuration can also be used in the function
variant UTM-F. openUTM saves all the changes made to the configuration (including the entry, deletion
and modification of dynamic objects) in the KDCFILE. The modified configuration data is then available
for the next application run.

i

openUTM V7.0. Administering Applications. User Guide.

 65

4.1 Requirements for KDCDEF generation

To enable you to add objects dynamically to the configuration of your UTM application, you must make the following
preparations when generating the application with KDCDEF.

No preparations are required for deleting objects from the configuration during KDCDEF generation.

Reserving spaces in the object tables of the KDCFILE

The configuration data of a UTM application is stored in the object tables of the KDCFILE that is created during
KDCDEF generation of the application. During KDCDEF generation, the space required to accommodate these
tables is also defined. For this reason, during KDCDEF generation, you must reserve table spaces for any objects
which you wish to add to the configuration of your application at runtime. You are assisted in this process by the
KDCDEF statement RESERVE (see the openUTM manual “Generating Applications”).

In the RESERVE statement you indicate how many table spaces are to be set aside for each single type of object, i.
e. how many LTERM partners are to be created dynamically, how many transaction codes etc. Table spaces are
reserved individually for each object type, i.e. a table space which you have reserved for an LTERM partner cannot
be occupied by a transaction code etc.

During the application run, you can dynamically create as many objects of one type as you have reserved table
spaces with KDCDEF. Deleting another object of the same type does not free up a table space for a new object. An
exception to this are user IDs and connections for distributed processing by means of LU6.1 for stand-alone
applications. These you can delete from the configuration immediately (see section "Deleting objects dynamically

). The table spaces occupied by these user IDs or LU6.1 connections are then freed up from the configuration"
immediately and are thus available for new user IDs and LU6.1 connections.

When reserving table spaces with RESERVE, always consider the following points:

openUTM internally creates one user ID for each UPIC and for each TS application (client of type APPLI or
SOCKET) which you add dynamically to the configuration. In UTM applications generated with user IDs (i.e. where
KDCDEF generation contains at least one USER statement), an additional table space is reserved for user IDs for
every APPLI, SOCKET or UPIC type client created dynamically. These table spaces are not freed up, when clients
are deleted. In applications with no user IDs, these table spaces are reserved by openUTM internally.

For further information about reserving table spaces, see the openUTM manual “Generating Applications”,
RESERVE control statement.

Generating lock codes, BCAMAPPL names and the formatting system

In the KDCDEF run you must have already generated objects or values statically in advance if you want to
reference them later in dynamic configuration; examples of this are the value range of lock codes and the names of
the transport system access points of the local application.

Lock codes (access protection) which you wish to assign to the transaction codes and LTERM partners must fall
in the range between 1 and the maximum value defined in KEYVALUE (MAX statement). For this reason, you
should select a sufficiently high number for KEYVALUE and also generate keysets containing the appropriate
keycodes (see notes on the lock/keycode concept in the openUTM manual “Concepts und Functions”).

All names in the local application (BCAMAPPL names) which are to be set up using connections to clients or
printers must be generated using KDCDEF. In particular, remember that you have to generate special
BCAMAPPL names in order to link TS applications via the socket interface or HTTP clients (PTYPE=SOCKET).

openUTM V7.0. Administering Applications. User Guide.

 66

1.

2.

3.

Only on BS2000 systems: If start formats are to be assigned to user IDs and LTERM partners, a formatting
system must be generated during KDCDEF generation (FORMSYS statement). If #formats are used as start
formats, an additional sign-on service must be generated.

Requirements for adding program units and VORGANG exits

You can only add new program units and VORGANG exits to the configuration of your application dynamically if the
application satisfies the following requirements:

UTM applications on BS2000 systems must be generated with load modules (KDCDEF generation with LOAD
MODULE statements).However, the program unit should not be linked to a load module which is linked statically
to the application program (STATIC load mode)

UTM applications on Unix or Linux systems must be generated with shared objects (KDCDEF generation with
SHARED-OBJECTS statements).

UTM applications on Windows systems must use Windows DLLs. You will find further details on how to generate
the application in the openUTM manual “Generating Applications”.

A program unit which you wish to create dynamically at runtime must be linked to a load module, shared object or a
DLL which was defined during KDCDEF generation.

At least one program unit must have been generated with KDCDEF for each programming language in which you
wish to create program units in your application. Only then does the application program contain the language link
modules and runtime systems it requires in order to run.

Note for BS2000 systems:

In the case of program units compiled with ILCS-capable compilers (COMP=ILCS), it is sufficient to generate a
program unit with COMP=ILCS during KDCDEF generation. No PROGRAM statements have to be submitted for
the various programming languages.

Requirements for the dynamic creation of transaction codes

If you wish to add transaction codes dynamically to the configuration, you must take account of the following points:

Transaction codes for program units which use an X/Open program interface can only be created dynamically if
at least one transaction code for an X/Open program unit was generated statically with KDCDEF (TAC statement
with API KDCS).!=

If you wish to divide the transaction codes into TAC classes, in order to be able to control job processing, then
you must create at least one TAC class during KDCDEF generation.

During KDCDEF generation you can create TAC classes in three ways:

Generate a transaction code for which you specify a TAC class in the TACCLASS operand (TAC statement).
KDCDEF will then implicitly generate the specified TAC class.

If you are running the application without priority control (it contains no TAC-PRIORITIES statement), you
can generate TAC classes by writing a TACCLASS statement.

You can create TAC classes implicitly by writing a TAC-PRORITIES statement.

In the case of COBOL programs, the relevant LOAD-MODULE must be generated with ALTERNATE-
LIBRARIES=YES in order to allow the required RTS modules to be dynamically loaded by autolink.

i

openUTM V7.0. Administering Applications. User Guide.

 67

Once you have created a TAC class during KDCDEF generation you can assign the transaction codes which you
create dynamically to any TAC class of your choice between 1 and 8 (dialog) or 9 and 16 (asynchronous). The
TAC classes are created by openUTM implicitly. These implicitly created TAC classes can be administered.

If you generated the application without TAC-PRIORITIES, openUTM specifies the number of processes
(TASKS) in implicitly generated TAC classes as follows:
1 for dialog TAC classes (classes 1 to 8),
and 0 for asynchronous TAC classes (classes 9 to 16).

However, openUTM only creates asynchronous TAC classes if you set ASYNTASKS > 0 in the MAX statement
during KDCDEF generation.

In applications containing TAC classes without priority control, you can only create transaction codes dynamically
which start program unit procedures with blocking calls if TAC classes with PGWT=YES (dialog and/or
asynchronous TAC class) were explicitly created with TACCLASS statements in KDCDEF generation and MAX
TASKS-IN-PGWT > 0.

In applications with priority control (with TAC-PRIORITIES statement), you can only create transaction codes
dynamically which start program unit procedures with blocking calls (='Y') if MAX TASKS-IN-kc_tac_str.pgwt
PGWT>0 was specified during KDCDEF generation.

Requirements for the dynamic creation of user IDs

You can only add user IDs to the configuration dynamically if your application was generated with user IDs. For this,
your KDCDEF generation must contain at least one USER statement and at least one user ID must have
administration privileges (USER with PERMIT=ADMIN).

Note for BS2000 systems:

If new user IDs with ID cards are also to be added to the configuration at runtime then, when reserving table spaces
with the RESERVE statement, you must explicitly indicate what percentage of user ID table spaces is to be set
aside for user IDs with ID cards (CARDS operand in the RESERVE statement).

If user IDs with Kerberos authentication are to be dynamically generated during operation, they must be reserved
using the PRINCIPALS operand of the RESERVE statement.

openUTM V7.0. Administering Applications. User Guide.

 68

4.2 Adding objects to the configuration dynamically

Using the KC_CREATE_OBJECT call you can add new objects to the configuration of your application during an
application run.

KC_CREATE_OBJECT in "KC_CREATE_OBJECT - Add objects to the configuration"

You can create exactly one object per KC_CREATE_OBJECT call. However, within the administration program, you
can call KC_CREATE_OBJECT several times in order to create several objects. When you place a call, you
indicate the type of object, its name and the properties you wish the object to have.

The creation of objects is subject to transaction management. Configuration data is not written to the object table
until the transaction has been logged successfully. This means that an object created in a program unit cannot be
accessed until the transaction has been concluded successfully. The object cannot be used before this happens
and it is also not possible to read or modify the object’s properties. Calls such as KC_MODIFY_OBJECT or
KC_GET_OBJECT can be submitted for the new object only after successful completion of the new create
operation, i.e. after successful completion of the transaction.

During the transaction in which an object is created, access to this object is only permitted in order to establish a
relational link to another object created in the same transaction. For example, a relationship of this kind can be
established between a client or printer and its connection point, the LTERM partner, between a transaction code
and the related program unit, between a transaction code and its VORGANG exit, or between a key set and the
objects (such as LTERMs, USERs, TACs or LTACs) to which it refers.

If two objects which relate to one another are created in one transaction, you must pay careful attention to the order
in which the objects were created. For example, you can create a client together with its connection point (LTERM
partner) in one and the same transaction. However, the LTERM partner must be created before the client since the
name of the LTERM partner is indicated when the client is created.

As a general rule, all objects to which you refer when creating a new object must either already feature in the
configuration or have been created in the same transaction prior to the new object. The following section provides a
detailed description of each type of object showing the sequence in which the objects must be created.

UTM cluster applications (Unix, Linux and Windows systems)

The following applies in UTM cluster applications:
The call applies globally to the cluster, i.e. the objects are dynamically entered in the configuration in all the node
applications.

Availability of dynamically created objects

Dynamically created objects are a component of the configuration, even in subsequent application runs, unless they
were deleted with KC_DELETE_OBJECT. The same applies to objects in a UTM-S and a UTM-F application.

openUTM V7.0. Administering Applications. User Guide.

 69

4.2.1 Adding clients, printers and LTERM partners

To add a client or printer you must call KC_CREATE_OBJECT with object type KC_PTERM. To add an LTERM
partner, you must specify object type KC_LTERM.

To enable you to connect a client or printer to the application, an LTERM partner must be assigned to it. If you
specify this LTERM partner when adding a client or printer, the LTERM partner must either already exist in the
configuration of that application or have been created in the same transaction prior to the client/printer. The
following rule therefore applies:

 LTERM partner (KC_LTERM) before client/printer (KC_PTERM)

When adding clients/printers, you must distinguish between the following two cases:

terminals and printers

TS applications and UPIC clients

Terminals and printers

You can add terminals and printers to the configuration without assigning an LTERM partner directly to them, i.e.
you do not have to specify an LTERM partner when adding them. You can then assign the LTERM partner to the
terminal or printer at a later date. To do this, you are provided with the administration command KDCSWTCH and
the call KC_MODIFY_OBJECT (object type KC_PTERM). Actual assignment must then take place in a separate
transaction.

However, if you do specify an LTERM partner when adding a terminal or printer then, according to the rule stated
above, this LTERM partner must already exist in the configuration of that application or have been created in the
same transaction as the terminal or printer before the terminal or printer was added.

You can assign an LTERM partner to a printer even if the LTERM partner is already assigned to another printer.
This does not cancel the previous assignment. One LTERM partner can be assigned to a number of printers. These
printers then form a printer pool and process the message queue of the LTERM partner jointly.

You can only assign an LTERM partner which is not already assigned to another client. Any assignment to another
terminal which already exists must be cancelled before the client is created in a separate transaction (with the
administration command KDCSWTCH or the call KC_MODIFY_OBJECT).

If an LTERM partner is to be created explicitly with an automatic KDCSIGN to connect a terminal, you must, during
the create operation, assign the user ID under which the automatic KDCSIGN is to be executed when a connection
is being established. The user ID must already feature in the configuration before the LTERM partner is added, or
have been created in the same transaction before the LTERM partner. Generally speaking, the following rule
applies:

 User ID (KC_USER) before LTERM partner (KC_LTERM)
before terminal (KC_PTERM)

On BS2000 systems, as a general rule, the following applies:
The property (D for dialog partner or O for output medium) of the LTERM partner must match the value usage_type
which you specify in when adding the client/printer.usage

Printers are not supported in UTM applications running on Windows systems.i

openUTM V7.0. Administering Applications. User Guide.

 70

If an LTERM partner is created for a printer which is to be administered by a print control LTERM (CTERM), you
must assign the printer control LTERM when adding the LTERM partner. Before adding the LTERM partner, the
printer control LTERM must either already be in the configuration of the application (created statically or
dynamically) or in the same transaction as the LTERM partner, where it must have been created before the LTERM
partner. The following rule applies:

Printer control LTERM (KC_LTERM) before LTERM partner (KC_LTERM)
before printer (KC_PTERM)

TS applications and UPIC Clients

You must assign an LTERM partner when creating TS applications or UPIC clients (APPLI, SOCKET, UPIC-R or
UPIC-L type clients). This LTERM partner must be added in the same transaction as the client but before the client
itself. In other words, the KC_CREATE_OBJECT call which creates the LTERM partner must be processed in the
same transaction and before the KC_CREATE_OBJECT call which creates the client. In this instance, the rule to
apply is as follows:

LTERM partner (KC_LTERM) before the TS application/UPIC client (KC_PTERM)
in the same transaction

The assignment of a client to an LTERM partner cannot be cancelled as long as the client remains in the
configuration.

For the LTERM partner of a client of this type, openUTM requires a permanently assigned user ID, i.e. the
connection user ID.

You can create a connection user ID explicitly, in which case it has to be included in the same transaction as the
LTERM partner and the client. However, the user ID must be added to the configuration the client. When before
assigning a user ID to an LTERM partner, you must distinguish between the following cases:

You are explicitly creating a user ID with the name of the LTERM partner. In this case, assignment is automatic
when you add the LTERM partner.

You are creating a user ID with any name. In this case, you must explicitly enter the name when adding the
LTERM partner (field).kc_lterm_str.user_gen

If you do not create the connection user ID explicitly, openUTM implicitly creates a user ID with the name of the
LTERM partner.

The connection user ID is always reserved for this client. No other user or client can log on with the application
under this user ID.

The user ID is assigned one of the reserved table spaces. If there are no more spare table spaces for this user ID,
the LTERM partner and client are not added to the configuration. The KC_CREATE_OBJECT calls are then
rejected.

In general terms, the following applies:
In applications with user IDs, you need three reserved table spaces to add a client of type APPLI, SOCKET or UPIC-
R/UPIC-L: one for object type PTERM, one for object type LTERM and one for object type USER.

openUTM V7.0. Administering Applications. User Guide.

 71

The following sequence must be observed:

User ID (KC_USER) before LTERM partner (KC_LTERM) before
TS application/UPIC client (KC_PTERM)

All three objects must be created in the same transaction

A connection user ID cannot be administered, i.e. once you have created the user ID, you can no longer modify its
properties.

Example of creating a TS application or an UPIC client

A program which creates a TS application or an UPIC client and which explicitly assigns it a connection user ID
must have the structure illustrated in the diagram below. The KDCS calls in angle brackets are optional. The
individual KC_CREATE_OBJECT calls, in particular, can be located in various different KDCS programs. However,
these programs must run in the same transaction (terminate program, for example with PEND PA).

 #include <kcadminc.h> /* Record definitions */
 INIT /* KDCS call for signing on with */
 /* UTM
 [MGET] /* KDCS call for reading the */
 /* calling TACs and the */
 /* passing parameters */
 KC_CREATE_OBJECT with obj_type=KC_USER /* KDCADMI call for creating the */
 /* user ID */
 /* Possible error handling: the following KC_CREATE_OBJECT call should */
 /* only be submitted if the previous call was error-free. */

 KC_CREATE_OBJECT with /* KDCADMI call for creating the */
 obj_type=KC_LTERM /* LTERM partner */
 /* Possible error handling */

 KC_CREATE_OBJECT with /* KDCADMI call for creating the */
 obj_type=KC_PTERM /* client */
 /* Possible error handling */
 MPUT /* KDCS call for sending a message */
 /* to the job-submitting service */
 PEND FI / RE / SP / FC /* KDCS call to terminate the */
 /* transaction */

openUTM V7.0. Administering Applications. User Guide.

 72

4.2.2 Adding program units, transaction codes, TAQ queues and VORGANG exits

To add a new program unit or VORGANG exit you must call KC_CREATE_OBJECT for the object type
KC_PROGRAM.
When adding a new transaction code or a new TAQ queue, you must specify the object type KC_TAC.

You can only add new program units and VORGANG exits dynamically if the application was generated with load
modules (BS2000 systems), shared objects (Unix or Linux systems) or DLLs (Windows systems).

You should assign at least one transaction code to one program unit to enable it to be called. You cannot add the
transaction code to the configuration until the program unit has been created. This means that program units must
either already be in the application configuration at the time the transaction code is created with
KC_CREATE_OBJECT, or they must have been created in the same transaction but before the transaction code
was created. The program unit can be created with KDCDEF or may have been created in a separate transaction.

You can also assign new transaction codes to program units already in the configuration.

A newly created program unit cannot be called until it has been loaded and at least one transaction code has been
assigned to it. To add the program unit, it must be compiled and linked into the application by a load module, shared
object or DLL created with KDCDEF. Following this, this load module, shared object or DLL must be replaced (see
KDCPROG or KC_MODIFY_OBJECT with in "KDCPROG - Replace load modules/shared objects/DLLs" "obj_type

).=KC_LOAD_MODULE"

Note for BS2000 systems:

If the public slice of the load module is located in a common memory pool, you must then still submit a
KDCAPPL PROG=NEW or KC_CHANGE_APPLICATION call to arrange for this load module to be replaced.
You cannot use the new or modified service until this has been done.

A new program unit cannot be linked into a load module which is statically linked to the application program
(STATIC load mode).

If a VORGANG exit is to be assigned to a transaction code which you are creating dynamically (kc_tac_str.
) then this VORGANG exit must exist in the configuration of your application before the transaction code exit_name

is created or must have been created first (before the code) in the same transaction in which the transaction code
itself was created.

To ensure that the VORGANG exit is able to run properly, the relevant program must be created. Dynamically
created VORGANG exits must, like program units, be linked to a load module, shared object or DLL which then has
to be replaced.

When creating program units, transaction codes and VORGANG exits, the following general rule applies:

Program unit (KC_PROGRAM) and VORGANG exit (KC_PROGRAM)
before transaction codes (KC_TAC)

The transaction codes for the event services BADTAC, MSGTAC and SIGNON (KDCBADTC,
KDCMSGTC, KDCSGNTC) cannot be created in the configuration dynamically.

i

openUTM V7.0. Administering Applications. User Guide.

 73

4.2.3 Creating user IDs

When creating a new user ID and an associated USER queue, you must call KC_CREATE_OBJECT for object type
KC_USER. User IDs which are to have a fixed assignment to specific LTERM partners for an automatic KDCSIGN
must be created before the LTERM partner is added. See also section “Adding clients, printers and LTERM

 for details of things you will need to remember.partners”

openUTM V7.0. Administering Applications. User Guide.

 74

4.2.4 Creating key sets

To create a new key set, you have to call KC_CREATE_OBJECT for the object type KC_KSET. You can then
assign the new key set in the same transaction to a new user ID, a new LTERM partner, a new transaction code or
TAC queue or a new LTAC.

The following rule applies:

Key set (KC_KSET) before LTERM partner (KC_LTERM)
and user ID (KC_USER) and transaction code (KC_TAC) and LTAC (KC_LTAC)

openUTM V7.0. Administering Applications. User Guide.

 75

4.2.5 Entering LU6.1 connections for distributed processing

In the case of a link by means of the LU6.1 protocol, for communication between the local UTM application and a
remote application you must define one or more transport connections and sessions by means of which the
communication relationships are set up.

For the entry of a transport connection, call KC_CREATE_OBJECT for the object type KC_CON. To define a
session, call KC_CREATE_OBJECT for the object type KC_LSES.

The prerequisite is that LPAP partners must be known and session properties defined in each application.

A number of CON and LSES objects must be created for each LPAP; the number of CON and LSES objects
determines the number of parallel connections that are possible with a partner application via an LPAP.

In cluster applications (Unix, Linux and Windows systems), it is necessary to generate, for each CON object, as
many LSES objects as there are node applications in order to enable the partner application to communicate with
all the node applications.

A CON object and an LSES object are created for each parallel connection via an LPAP and assigned to the LPAP.
Every CON object and every LSES object in each of the applications involved must be created appropriately so that
the following applies:

A CON name in the local application is the same as a BCAMAPPL name in the remote application and vice
versa.

An LSES name in the local application is the same as an RSES name in the remote application and vice versa.

CAUTION!
It is not permissible for an LPAP name to create a number of CON objects that lead to different
applications or are assigned to different LPAPs in the partner application via their corresponding CON
objects.

Such configurations are not recognized by UTM and lead to errors when connections and sessions are
set up and when sessions are restarted.

!

openUTM V7.0. Administering Applications. User Guide.

 76

4.2.6 Entering LTACs

In order to dynamically create a transaction code for starting a service or a remote service program in a partner
application, you have to call KC_CREATE_OBJECT for the object type KC_LTAC.

The local transaction code is assigned either

the name of a transaction code in a specific partner application (with single-step addressing), in which case the
local transaction code addresses both the partner application and the transaction code in this application, or

the name of a transaction code in any partner application (with double-step addressing). The partner application
in which the service program addressed by the local transaction code is to run must be specified explicitly in the
program interface.

If access rights are to be granted by means of an access list, the key set used for this must either already exist or
be dynamically created beforehand; the dynamic creation of the key set and the referenced LTAC can also take
place within a transaction. If the access rights are to be controlled by means of a lock code, the numeric value for
the lock code must not be less than 1 or greater than the maximum value permitted in the application (KDCDEF
statement MAX, KEYVALUE operand).

The following rule applies:

 Key set (KC_KSET) before LTAC (KC_LTAC)

openUTM V7.0. Administering Applications. User Guide.

 77

4.2.7 Format and uniqueness of object names

You must assign a name or logical address (clients and printers) to every object which you create dynamically in the
configuration using KC_CREATE_OBJECT. Using this name and its logical address, it must be possible to uniquely
identify the object in its application. Note the following rules when assigning names.

You cannot use any reserved names. (-->)Reserved names

The name of an object must be unique in the class of name belonging to the object name. (--> Unique names
)and addresses

The names must not exceed the specified maximum length and can only contain certain characters (format). (-->
)Format of the names

The names of objects tagged for deleting at a later point in time with KC_DELETE_OBJECT may not be used for
objects in the same class of name. The names of user IDs and the names of connections for distributed processing
by means of LU6.1 that are deleted immediately can be reassigned again immediately.

Reserved names

Names of transaction codes starting with KDC are reserved for transaction codes in the event services and the
administration commands. Names starting with KDC therefore be used for other objects.must not

In UTM applications on BS2000 systems, program unit names must not begin with a prefix that is used for compiler
runtime modules (e.g. IT, IC).

In UTM applications on Unix, Linux or Windows systems, names of objects must also not start with KC, x, ITS or
mF. External names (e.g. program unit names) should not begin with ‘f_', ‘n_', ‘t_', ‘a_', ‘o_', ‘p_' or ‘s_'. ‘t_' is
reserved for PCMX. ‘a_', ‘o_', ‘p_' and ‘s_' are reserved for OSS.

Any names reserved on a specific platform should not be used on any of the other platforms, in order to render the
applications portable.

Unique names and addresses

The names and addresses of objects in a UTM application are summarized in name classes. Within each name
class, the object names must be uniquely identified. They cannot be assigned to several objects. There are three
classes of name:

The following objects belong to the 1st class of names:

LTERM partners (object type KC_LTERM);
the LTERM partners of the LTERM pools also belong to this class.

Transaction codes and TAC queues (object type KC_TAC).

LPAP and OSI-LPAP partners for the server-server communication (object type KC_LPAP and KC_OSI_LPAP).

The following objects belong to the 2nd class of names:

User IDs, including the associated queues (object type KC_USER)

Sessions for distributed processing using LU6.1 (object type KC_LSES)

Connections and associations for distributed processing using OSI TP (object type KC_OSI_ASSOCIATION)

openUTM V7.0. Administering Applications. User Guide.

 78

1.

2.

3.

The following objects belong to the 3rd class of names:

Clients and printers (object type KC_PTERM).
In this context, clients are: terminals, UPIC clients, TS applications (DCAM, CMX applications and UTM
applications) which do not use LU6.1 and OSI TP protocols for communication.

Name of the partner application for distributed processing using protocol LU6.1 (object type KC_CON).

Name of the partner application in the case of distributed processing using the OSI TP protocol.
Even if it is not possible to generate OSI-CONs dynamically, the names already generated for OSI-CONs are
already allocated to this name class and cannot be used for other objects of this name class.

Multiplex connections (object type KC_MUX, only on BS2000 systems).

The objects listed in the 3rd class of name are communication partners for the UTM application. They or the
connections to them must be uniquely identifiable for openUTM. For this reason, every communication partner must
be identified with a logical address. The logical address is a name triplet made up of the following components:

Name of the communication partner (, of the LU6.1 connection,). This is the pt_name co_name mx_name
symbolic name by which the communication partner is known to the transport system.

Name of the computer on which the communication partner is located ().pronam

Name of the local application via which the connection to the communication partner is established (bcamappl
or ACCESS-POINT). Even if OSI TP connections cannot be generated dynamically, the names that have
already been generated for ACCESS POINTS must be taken into account.

Each communication partner must have a different name triplet.

Format of the names

All names which you define must conform to the following conventions:

The names of LTERM partners, clients and printers (KC_PTERM), transaction codes, user IDs, LU6.1
connections and sessions as well as transaction codes for remote services must only be 1 to 8 characters in
length.

The names of program units can be up to 32 characters in length if the application was generated using load
modules/shared objects/DLLs.

Permissible characters for object names in a UTM application on BS2000 systems are:A,B,C,...,Z, 0,1,...,9, #, @,
$. Any combination of these characters is permitted.

Permissible characters for object names in a UTM application on Unix, Linux systems and Windows systems are:
A,B,C,...,Z, a, b, c,..., z, 0,1,...,9, #, @, $.

openUTM V7.0. Administering Applications. User Guide.

 79

4.3 Deleting objects dynamically from the configuration

You can use the KC_DELETE_OBJECT call at the program interface for administration to delete objects from the
configuration of your application while the application is running.

KC_DELETE_OBJECT in "KC_DELETE_OBJECT - Delete objects"

We distinguish two methods for deleting objects: delayed delete and immediate delete.

delayed delete (KC_DELETE_OBJECT =KC_DELAY)subopcode1

The term delayed delete is used to mean that objects are simply designated as deleted. The objects and their
properties remain in the object table as before. Delayed deletion acts like a permanent lock which cannot be
undone. Physical deletion of objects from the object table only takes place during regeneration if you are working
with the inverse KDCDEF.

Users no longer have access to an object designated for delayed deleting. Only the administrator still has read-
only access to such objects, i.e. you can read the names and properties of objects designated for “delayed
delete” with KC_GET_OBJECT or with the administration command KDCINF. However, it is no longer possible
to change the properties of these objects. User IDs designated for a “delayed delete” can, however, be
completely removed from the configuration using an “immediate delete”.

A delayed delete frees up no space in the object table. The names of deleted objects remain assigned, i.e. no
more new objects can be created dynamically in their name class. In particular, no new objects can be created
dynamically with the same name and the same object type.

Key sets, LU6.1 sessions, LTACs, LTERM partners, program units, transaction codes and TAC queues can only
be removed from the configuration using the delayed delete method.

immediate delete (KC_DELETE_OBJECT =KC_IMMEDIATE)subopcode1

Immediate deletion is only permitted for the user IDs and LU6.1 connections of standalone UTM applications.

Immediate delete removes an object and its properties from the object table with immediate effect. The table
space assigned to a user ID or CON object removed using the “immediate delete” method is available for a
newly created user ID or CON object right away without the application needing to be regenerated. The name of
a user ID or CON object that is deleted immediately does remain locked. You can generate a new user ID or not
CON object using the same name right away.

Once an object is deleted in this fashion, nobody, including the administrator, any longer has any kind of access
to it, neither read nor write access.

You can delete just one object with each KC_DELETE_OBJECT call (delayed or immediate delete). In any one
program unit, you can make several KC_DELETE_OBJECT calls in succession, i.e. you can delete several objects
of different types. In the case of objects related to one another, it is nevertheless important to pay attention to the
sequence in which these objects are deleted. An object to which other objects are related cannot be deleted until
the other related objects have been deleted, i.e. until their relationship has been cancelled by means of
administration functions (e.g. KDCSWTCH can be used to terminate the relationship between terminal/printer and
LTERM partner). The following sections describe the rules you must observe when deleting objects.

Object deletion, be it delayed or immediate, is subject to transaction management. The object is not deleted until
the transaction in which the KC_DELETE-OBJECT is being processed has been completed successfully.

However, only objects that are featured in the configuration can be deleted. In other words, you cannot delete an
object created dynamically in the configuration until the transaction in which the create operation took place has
been completed.

openUTM V7.0. Administering Applications. User Guide.

 80

Deletion in UTM-F and UTM-S applications applies beyond the end of these applications and cannot be undone.

UTM cluster applications (Unix, Linux and Windows systems)

The following applies in UTM cluster applications:
The call applies globally to the cluster, i.e. objects are deleted from the configuration in all the node applications.
Only delayed deletion is permitted in UTM cluster applications.

openUTM V7.0. Administering Applications. User Guide.

 81

4.3.1 Deleting clients/printers and LTERM partners

Clients/printers and LTERM partners can only be removed from the configuration with a delayed delete.

To delete a client or printer from the configuration you must call KC_DELETE_OBJECT (with subopcode1
=KC_DELAY) for the object type KC_PTERM. To delete an LTERM partner, you have to indicate the object type
KC_LTERM.

You are only allowed to delete a client/printer and its related LTERM partners if the client/printer is not connected to
the application. For this reason, you should disable the client/printer before deletion to prevent errors from
occurring. Such disabling operations must take place in a separate transaction. To disable the client/printer, see
KDCPTERM or KC_MODIFY_OBJECT with in "KDCPTERM - Change properties of clients and printers" "obj_type

.=KC_PTERM"

Clients/printers and their associated LTERM partners have a logical relationship to one another. For this reason,
you must pay attention to the sequence when deleting clients, printers and their LTERM partners. In general terms,
the following rule applies:

 An LTERM partner cannot be deleted while a.client/printer is assigned to it.

If the client/printer and the related LTERM partner are to be deleted from the configuration, the following rule applies:

 Client/printer (KC_PTERM) before LTERM partner (KC_LTERM).

Both objects can only be deleted from the configuration one after the other in different transactions.

When deleting LTERM partners, please note:

With UPIC clients (type UPIC-R and UPIC-L) and TS applications (type APPLI or SOCKET), you must delete the
client from the configuration before deleting the LTERM partner.

With terminals and printers, you can delete the LTERM partner without removing the terminal or printer from the
configuration. In this event, before deleting the LTERM partner, you must assign the client or printer to another
LTERM partner in a separate transaction (KDCSWTCH in "KDCSWTCH - Change the assignment of clients and

 or KC_MODIFY_OBJECT with).printers to LTERM partners" " =KC_PTERM"obj_type

You cannot delete the following LTERM and PTERM partners:

LTERM partners belonging to an LTERM pool

LTERMs, belonging to LTERM bundles or LTERM groups,

printer control LTERMs

the LTERM partner KDCMSGLT which openUTM creates internally for the MSGTAC service

LTERM partners belonging to a multiplex connection (only on BS2000 systems)

LTERM and PTERM partners that are used for cluster-internal communication in UTM cluster applications (Unix,
Linux and Windows systems).

You can delete all other LTERM partners and clients/printers from the configuration if you comply with the above
rules, regardless of whether they were added to the configuration statically (with KDCDEF) or dynamically.

openUTM V7.0. Administering Applications. User Guide.

 82

Deleting clients, printers and LTERM partners has the following effects:

It is no longer possible to set up a connection to a deleted client/printer. This means that no more messages can
be sent to a client or printer once it has been deleted.

No more asynchronous messages can be created for a deleted LTERM partner. In other words, no more
asynchronous jobs can be added to the message queue of the LTERM partner.

Asynchronous jobs in the message queue of the LTERM partner at the time of deletion, i.e. jobs created before
the deletion process, can no longer be read from the queue by the client/printer. In other words, the
asynchronous jobs in the queue can no longer be processed. However, they can still be accessed by
administration functions: they can be deleted from the queue. To do this, you can use the KDCS call DADM (see
openUTM manual „Programming Applications with KDCS”).

Asynchronous jobs created by an LTERM partner which has already been deleted are still able to run and can be
administered. However, when processing jobs, it is no longer possible to create any further asynchronous jobs
(follow-up jobs).

TLS areas (TLS = terminal-specific long-term storage area) belonging to a deleted LTERM partner are still
available for read and write accesses.

You can delete the LTERM partner defined as recipient () for the results of asynchronous destadm
administration commands. However, in this case, you should define a new recipient, as otherwise the
results of asynchronously processed administration commands are lost. To do this, you have the
KC_MODIFY_OBJECT call with parameter type KC_MAX_PAR and the administration command
KDCAPPL.

i

openUTM V7.0. Administering Applications. User Guide.

 83

4.3.2 Deleting program units, transaction codes and VORGANG exits

Program units, transaction codes, TAC queues and VORGANG exits can only be deleted from the configuration
using the delayed delete method.

To delete a program unit or VORGANG exit from the configuration you must call KC_DELETE_OBJECT (with
=KC_DELAY) for the object type KC_PROGRAM. To delete a transaction code or a TAC queue, you subopcode1

must specify the object type KC_TAC.

Transaction codes and the program unit to which this transaction code is assigned are related to one another. In the
same way, a VORGANG exit is related to the transaction codes to which it is assigned. For this reason, you must
note the sequence followed when deleting transaction codes, program units and VORGANG exits. The following
rule applies:

A program unit/VORGANG exit cannot be deleted until all related transaction codes have been deleted.

The following program units must not be deleted:

program units belonging to the event exits, START, SHUT, FORMAT or INPUT.

BS2000 systems: program units and VORGANG exits linked to load modules with the STATIC load mode.

Unix, Linux and Windows systems: program units and VORGANG exits linked statically to the application
program, i.e. you can only delete program units and VORGANG exits that are contained in shared objects or
DLLs.

The following transaction codes must not be deleted:

transaction codes KDCMSGTC, KDCSGNTC, KDCBADTC in event services MSGTAC, SIGNON and BADTACS

the administration command KDCSHUT in the administration program KDCADM

transaction codes KDCTXCOM and KDCTXRLB created internally by openUTM for XATMI.

Transaction codes defined in the SIGNON-TAC parameter of the BCAMAPPL statement.

The following TAC queue must not be deleted:

the dead letter queue KDCDLETQ.

You can delete all other program units and VORGANG exits (that are not statically linked) and transaction codes
from the configuration, regardless of whether they were created in the configuration dynamically or statically.

You can delete an asynchronous TAC or a TAC queue defined as a recipient () for the results of destadm
the asynchronous commands. In this event, you should define a new recipient, otherwise the results are
lost. To do this, you can use the call KC_MODIFY_OBJECT with parameter type KC_MAX_PAR and the
administration command KDCAPPL.

i

openUTM V7.0. Administering Applications. User Guide.

 84

Deletion of program units, VORGANG exits, transaction codes and TAC queues has the following effects:

Deleted program units and VORGANG exits can no longer be called.

Asynchronous jobs to a deleted transaction code can no longer be created.

Asynchronous jobs that are still in the message queue of a transaction code at the time of deletion are no longer
processed. They do, however, remain in the message queue of the asynchronous TAC. To relieve capacity
constraints in the page pool you should delete these asynchronous jobs from the queue (see KDCS call DADM
in the openUTM manual „Programming Applications with KDCS”).

No dialog services can be started to a deleted TAC. Dialog services that are open at the time of deletion can still
be processed normally provided that only the service TAC is deleted. They are, however, terminated if a follow-
up TAC is called which has already been deleted.

When a TAC queue is deleted, its messages are deleted immediately. New messages cannot be created for a
deleted TAC queue.

openUTM V7.0. Administering Applications. User Guide.

 85

4.3.3 Deleting user IDs

You can remove a user ID from the configuration using either the “delayed” or the “immediate” delete method (see
). In UTM cluster applications (Unix, Linux and Windows "Deleting objects dynamically from the configuration"

systems) only the delayed delete method is possible.

To delete a user ID from the configuration you must call KC_DELETE_OBJECT (with =KC_DELAY or subopcode1
KC_IMMEDIATE) for the object type KC_USER.

Apart from the exceptions listed below, you can delete any user ID created explicitly in the configuration (statically
or dynamically).

You cannot delete the following user IDs:

KDCMSGUS, which openUTM creates internally for the MSGTAC service

user IDs assigned to a terminal for an automatic KDCSIGN (see)"Adding clients, printers and LTERM partners"

connection user IDs (i.e. user IDs that are permanently assigned to a client of the type UPIC, APPLI or socket)

In applications without explicitly generated user IDs, the deletion of user IDs created internally is generally not
possible.

The following restrictions apply with regard to the point in time at which a user ID may be deleted:

You can only delete a user ID (delayed or immediate delete) if no user or client is signed on to the application at the
time of deletion. For this reason, you should disable the user ID before deletion to avoid errors. Such disabling
operations must occur in a separate transaction. To disable a user ID, see KDCUSER in "KDCUSER - Change user

 or KC_MODIFY_OBJECT with .properties" " =KC_USER"obj_type

Deleting a user ID is also temporarily not possible in the following cases:

an asynchronous job is being processed, i.e. has been retrieved from the message queue and started.

a distributed transaction is in PTC status (PTC = Prepare to Commit).

the user-specific long-term storage area (ULS) of the user ID cannot be locked, e.g. because the administrator or
an administration program is accessing it.

Delayed delete

Delayed deletion of a user ID has the following effects:

No users/clients are able to sign on to the application with a user ID designated for a delayed delete.

Asynchronous services which were started before the user ID was deleted and which are not being processed at
the time of deletion are still able to run and can be administered. These services are not, however, able to create
any more asynchronous jobs themselves.

An open dialog service cannot be continued any further. Any service data that has been saved for a user (e.g.
LSSB data, dialog messages) is deleted:

in the case of standalone applications, the next time the application is started

in UTM cluster on the next start-up of the node application applications (Unix, Linux and Windows systems),
at which the user was last signed on

The data is not deleted if an open service has a transaction in the PTC state. In this case, the transaction must
first either be committed or rolled back. You can, for example, roll back transactions with the PTC state using the
program interface (opcode KC_PTC_TA).

openUTM V7.0. Administering Applications. User Guide.

 86

ULS areas (ULS = user-specific long-term storage area) belonging to the user ID are still available for read and
write accesses.

All the messages in the message queue for this user ID are deleted immediately. No new messages can be
created for this message queue.

Immediate delete

Immediate deletion of a user ID has the following effects:

No users/clients are able to sign on to the application with an immediately deleted user ID.

Asynchronous jobs which were generated and placed in the message queue by openUTM before the user ID
was deleted, do not start, i.e. openUTM does not process them. They are deleted the moment openUTM
retrieved them from the message queue for processing.

If you query the information on jobs in the message queue using DADM RQ (see "Displaying information on
), openUTM, instead of the user ID that issued the job, will output *NONE for messages in a queue - DADM RQ"

the jobs of a deleted user ID.

Jobs for LTERM or LPAP partners that are started before the user ID is deleted and are still in the partner’s
message queue, are sent.

An open dialog service that was started by a deleted user ID, is also deleted immediately. There may be open
dialog services for a user who is not signed on, e.g. if the user signed off during the service using KDCOFF after
a synchronization point had already been reached.

ULS areas (ULS = user-specific long-term storage area) belonging to the deleted user ID cannot be accessed.
They are deleted.

All the messages in the message queue for this user ID are deleted immediately.

openUTM V7.0. Administering Applications. User Guide.

 87

4.3.4 Deleting key sets

Key sets can only be deleted from the configuration after a delay. To delete a key set, you have to call
KC_DELETE_OBJECT (with =KC_DELAY) for the object type KC_KSET.subopcode1

Restriction: The KDCAPLKS key set cannot be deleted at all.

Objects that reference a deleted key set lose their access rights. However, other key sets can be assigned
dynamically to TACs, TAC queues and user IDs.

openUTM V7.0. Administering Applications. User Guide.

 88

1.

2.

3.

4.3.5 Deleting LU6.1 connections and sessions

To delete an LU6.1 transport connection between the local UTM application and a partner application, you must call
KC_DELETE_OBJECT (in standalone applications with =KC_IMMEDIATE, in UTM cluster applications subopcode1
with KC_DELAY) for the object type KC_CON. If you want to delete an LU6.1 session, call KC_DELETE_OBJECT
(with =KC_DELAY) for the object type KC_LSES.subopcode1

Deleting LU6.1 connections

It is not possible to delete a CON object when it is linked to the application.

Points to note when deleting LU6.1 sessions

An LSES object (LU6.1 session) can only be deleted when:

The session is not set up, and

Neither of the two half-sessions have the status PTC.

In order to check whether a session has the status PTC, you can query the status of the session (e.g. by means of
KC_GET_OBJECT with the object type LSES).

The following procedure is recommended for deleting an LSES object:

Set up the session before deleting the object.

Set the session to “quiet”.

Once the connection is set up, delete the object by means of the above call.

openUTM V7.0. Administering Applications. User Guide.

 89

4.3.6 Deleting LTACs

Transaction codes by means of which service programs are started in partner applications can only be deleted from
the configuration after a delay.

To delete an LTAC, you have to call KC_DELETE_OBJECT (with =KC_DELAY) for the object type subopcode1
KC_LTAC.

openUTM V7.0. Administering Applications. User Guide.

 90

4.4 Modifying object properties

You can use the KC_MODIFY_OBJECT call during an application run to modify the properties of objects and
parameters of the application program and initiate actions (e.g. resetting of statistical values).

KC_MODIFY_OBJECT in "KC_MODIFY_OBJECT - Modify object properties and application parameters"

The following object types have properties that can be modified dynamically:

KC_CLUSTER_NODE, KC_DB_INFO, KC_KSET, KC_LOAD_MODULE, KC_LPAP, KC_LSES, KC_LTAC,
KC_LTERM, KC_MUX, KC_OSI_CON, KC_OSI_LPAP, KC_PTERM, KC_TAC, KC_TACCLASS, KC_TPOOL,
KC_USER.

The following sections describe how to modify certain object types in more detail (KC_PTERM, KC_LTERM,
KC_TAC, KC_USER, KC_KSET and KC_LSES).

The following parameter types have properties that can be modified dynamically:

KC_CLUSTER_CURR_PAR, KC_CLUSTER_PAR, KC_CURR_PAR, KC_DIAG_AND_ACCOUNT_PAR,
KC_MAX_PAR, KC_TASKS_PAR, KC_TIMER_PAR.

You can modify a single object with each KC_MODIFY_OBJECT call. However, it is possible in an administration
program to call KC_MODIFY_OBJECT more than once in order to modify the properties of multiple objects. In the
call you specify the type of the object, its name and the properties to be modified.

When modifying application parameters, in a single call you can modify all the parameters that belong to the same
parameter type.

The section entitled explains which "KC_MODIFY_OBJECT - Modify object properties and application parameters"
properties can be modified for which object type or application parameter and which actions are thus initiated.

The effectiveness and duration of a change depends on the object type or application parameter and on the
property that is changed. Some changes apply only to the current application run, whereas others apply beyond it
as well (durable). A change can take effect:

immediately

after transaction processing (PEND)

when the utilization of the application permits it

UTM cluster applications (Unix, Linux and Windows systems)

The following applies in a UTM cluster application:
Depending on the object, the call can initiate actions that apply either globally in the cluster or locally in the node.
Actions with a global effect apply to all the node applications in the UTM cluster application irrespective of whether a
node application is currently active or not. Actions with a local effect only apply to the node applications at which
they are executed.

openUTM V7.0. Administering Applications. User Guide.

 91

4.4.1 Modifying clients/printers and LTERM partners

In order to modify the properties of a client or printer, you have to call KC_MODIFY_OBJECT with the object type
KC_PTERM. To modify the properties of an LTERM partner, you must specify the object type KC_LTERM.

LTERM partners that belong to an LTERM pool or clients/printers that are connected via an LTERM pool cannot be
modified.

In the case of clients/printers and LTERM partners, you can change the status and the current state of the
connection to the client/printer. A change of status (enabled/disabled) continues to apply after transaction
processing beyond the end of the application run. A change to the current state (connection in existence, not in
existence, currently being set up) applies when permitted by the utilization level of the application, but not after the
end of the application run.

If you want to change the assignment of a client/printer to an LTERM partner, the partner must be in existence (it
must not have been deleted). The LTERM partner must not be configured for connection to a client of the type
UPIC. In addition, the LTERM partner must not be the master slave of an LTERM bundle or an alias or primary
LTERM of an LTERM group. A change to the assignment continues to apply after transaction processing beyond
the end of the application run.

In the case of clients/printers, only the LTERM partner, if assigned, or only one mode may be modified for automatic
connection setup at the startup of the application. It is only possible to request automatic connection setup at
startup of the application if the client/printer is not disabled. A change to connection setup at application startup
continues to apply after transaction processing beyond the end of the application run.

Note on BS2000 Systems:

If the LTERM partner is assigned to a terminal, you can change the format attributes. However, a specific start
format can only be used for applications without user IDs or when a separate sign-on service is defined. A change
to the format attributes continues to apply after transaction processing beyond the end of the application run.

openUTM V7.0. Administering Applications. User Guide.

 92

4.4.2 Modifying transaction codes and TAC queues

In order to modify the properties of a TAC or a TAC queue, you must call KC_MODIFY_OBJECT with the object
type KC_TAC.

It is not possible to change the status of a TAC and at the same time reset specific statistical values.

Changes to the status of a TAC or a TAC queue take effect immediately and continue to apply beyond the end of
the application run. Changes to the statistical values of a transaction code take effect immediately.

If you want to control accesses to a transaction code by means of a key set, you can assign an existing key set to
the access list of the transaction code. If there is a lock code, you have to remove it (set it to zero). Conversely, if
access to the transaction code is protected by a lock code, there must not be a key set defined in the access list.

You can also protect a TAC queue against unauthorized reading/deletion and writing by means of a key set. To do
this, assign the desired key set to the and/or parameters.q_read_acl q_write_acl

Changes to the parameters that control access continue to apply after transaction processing beyond the end of the
application run.

Backup of messages in the dead letter queue in the event of processing errors can be enabled or disabled for
asynchronous transaction codes using CALL=BOTH/FIRST and TAC queues. This backup option is not possible for
MSGTAC and KDCDLETQ. Enabling and disabling of backup to the dead letter queue remains in effect after the
end of the transaction and beyond the application run.

openUTM V7.0. Administering Applications. User Guide.

 93

4.4.3 Modifying user IDs

In order to modify the properties of a user ID or the assigned USER queue, you have to call KC_MODIFY_OBJECT
with the object type KC_USER.

You cannot disable user IDs with administration authorization, nor can you modify properties of user IDs that are
assigned to a client of the type APPLI, SOCKET or UPIC.

If you want to change the password for a user ID, ensure that:

The new password corresponds to the complexity level defined for the user ID.

The existing password is not reused when it is only possible to use passwords with a limited period of validity for
the user ID.

You can supply a user ID with access rights (key set) or change them.

You can use a key set to protect a USER queue against unauthorized reading/deletion and writing. To do this,
assign the desired key set to the and/or parameters (see q_read_acl q_write_acl "kc_user_str, kc_user_fix_str,

).kc_user_dyn1_str and kc_user_dyn2_str user IDs"

Any changes you make to the properties of a user ID or a USER queue continue to apply after transaction
processing beyond the end of the application run.

openUTM V7.0. Administering Applications. User Guide.

 94

4.4.4 Modifying key sets

In order to modify the keys of a key set, you must call KC_MODIFY_OBJECT with the object type KC_KSET.

Note that the KDCAPLKS key set cannot be modified and that it is not permissible to specify a key less than 1 or
greater than the maximum value permitted in the application (KDCDEF statement MAX, KEYVALUE operand).

Key sets with the MASTER attribute cannot be modified either.

openUTM V7.0. Administering Applications. User Guide.

 95

4.4.5 Modifying LU6.1 sessions

In order to modify the properties of an LU6.1 session, you must call KC_MODIFY_OBJECT with the object type
KC_LSES.

For an LU6.1 session you can initiate connection establishment or connection cleardown and, in the case of
connection establishment, assign a transport connection to the session.

If you request the immediate establishment of a connection, the QUIET property must not be set and the LPAP
partner must not be disabled. If you request the immediate cleardown of a connection, none of the other properties
must be modified.

When specifying a transport connection for the session, you should ensure that the connection exists and is
generated for the associated LPAP partner.

Any changes you make to an LSES object do not take effect unless the utilization level of the application permits it.

openUTM V7.0. Administering Applications. User Guide.

 96

5 Generating konfiguration statements from the KDCFILE

To ensure that regeneration does not cause you to lose the changes you made to your configuration while the
application was running, openUTM provides you with the inverse KDCDEF. You can use this inverse KDCDEF to
generate control statements for the UTM tool KDCDEF from current configuration data in the KDCFILE.

KDCDEF control statements generated by the inverse KDCDEF

The inverse KDCDEF generates control statements for the object types for which dynamic entry and deletion is
possible. The inverse KDCDEF does not generate control statements for other objects and components in the
application or for application parameters. However, you can use the inverse KDCDEF to generate the following
KDCDEF control statements:

USER statements

For all user IDs that currently exist in the application. The inverse KDCDEF does not create any USER
statements for the user IDs created internally by openUTM.

In applications without user IDs, the inverse KDCDEF does not generate any USER statements.

LTERM statements

For all LTERM partners in the application which do not belong to an LTERM pool or a multiplex connection.

PTERM statements

For all clients and printers entered in the configuration. For clients belonging to an LTERM pool or a multiplex
connection, no PTERM statements are generated.

PROGRAM statements

For all program units and exits currently contained in the configuration of that application.

TAC statements

For all transaction codes and TAC queues in the application.

KSET statements

For all the application’s key sets.

CON statements

For all the application’s LU6.1 connections.

LSES statements

For all the application’s LU6.1 sessions.

LTAC statements

For all the transaction codes for partner applications.

The inverse KDCDEF generates control statements for all objects in the application belonging to one of these object
types, regardless of whether the objects were entered in the configuration dynamically or were generated statically
during a previous KDCDEF generation process. All modifications which you performed for this object during the
application run are taken into account.

The inverse KDCDEF generate control statements for objects which were deleted dynamically from does not any
the configuration of this application. After the next regeneration, these objects are therefore deleted completely from
the configuration. They then cease to occupy any space in the table and the names of these objects can reused
during regeneration.

openUTM V7.0. Administering Applications. User Guide.

 97

Over and above this, after regeneration with KDCDEF, the UTM tool KDCUPD does not transmit any application
data relating to the dynamically deleted objects from the old KDCFILE to the new KDCFILE, even if there is an
object with the same name and object type as a deleted object in the new KDCDEF generation process. In
particular, no asynchronous jobs generated by LTERM partners or user IDs which have subsequently been deleted
are passed from KDCUPD.

The USER statements generated by the inverse KDCDEF do not contain any passwords. For user IDs generated
with a password, the inverse KDCDEF generates USER control statements in this form:

USER name, PASS=*RANDOM,....

After a new KDCFILE has been generated, i.e. after the following KDCDEF run, you must pass the passwords for
user IDs to the new KDCFILE using the UTM tool KDCUPD (see the openUTM manual “Generating Applications”).
This is also possible in a UTM-F application.

In the case of UTM cluster applications, the passwords are present in the cluster user file and do no have
to be transferred to a new KDCFILE using KDCUPD.

i

openUTM V7.0. Administering Applications. User Guide.

 98

5.1 Starting the inverse KDCDEF

You can start the inverse KDCDEF “online” or “offline”. “Online” means that you start the inverse KDCDEF during
the application is running. “Offline” means that you start the inverse KDCDEF after shutting down the application run.

In both cases, you can call the inverse KDCDEF in such a way that it produces KDCDEF control statements for all
possible objects. However, you can also call the inverse KDCDEF in such a way that it only generates control
statements for specified object types, which are grouped together in the object groups CON, DEVICE, KSET, LSES,
LTAC, PROGRAM and USER.

You can request KDCDEF control statements for just one or more of these groups.

Starting inverse KDCDEF online

In order to start an inverse KDCDEF run online, you must generate your own application program which calls
KC_CREATE_STATEMENTS.

KC_CREATE_STATEMENTS in "KC_CREATE_STATEMENTS - Create KDCDEF control statements
(inverse KDCDEF)"

The time at which the KDCDEF run actually starts depends on whether or not, when the
KC_CREATE_STATEMENTS call is placed, another service in the application currently has write access to the
configuration data in that application. Distinctions must be drawn between the following cases:

At the time the KC_CREATE_STATEMENTS call is made, transactions may be running which modify the
configuration data of the application or which change the passwords or locales.
In this case, the KC_CREATE_STATEMENTS call will generate an asynchronous job. The inverse KDCDEF run
is not started until these transactions have been completed.However, new transactions of this kind cannot be
started until the inverse KDCDEF run has been completed, i.e. until the asynchronous job has been processed.

The following also applies in UTM cluster applications:
In all running node applications, an administration action which applies globally to the cluster results in a
transaction which may delay the start of the inverse KDCDEF. Conversely, the execution of a global
administration action at a running node may be delayed if an inverse KDCDEF is currently running there.

At the time of the KC_CREATE_STATEMENTS call, transactions are running which modify the configuration no
data, passwords or locales.
In this case, the inverse KDCDEF run is started immediately (synchronously). The run will already have been
terminated when control is returned to the program unit. In other words, by this time, all requested KDCDEF
control statements have been generated and stored in files.

Note on UTM cluster applications:
It is not possible to start an online inverse KDCDEF as long as node applications with different generations are
running in a UTM cluster application.

An inverse KDCDEF run is not subject to transaction management.

With the aid of the inverse KDCDEF executed online, you can make all preparations for regenerating your
application parallel to the application run. This minimizes the amount of downtime incurred.

You can also start the inverse KDCDEF online using the administration tools WinAdmin and WebAdmin.i

openUTM V7.0. Administering Applications. User Guide.

 99

Starting the inverse KDCDEF offline

You can start the inverse KDCDEF offline, i.e. not during application runtime, by calling the UTM generation tool
KDCDEF and submitting the control statement CREATE-CONTROL-STATEMENTS.

CREATE-CONTROL-STATEMENTS; see the openUTM manual “Generating Applications”

Files generated by the inverse KDCDEF can then be processed in the same KDCDEF run, or in a later one.

openUTM V7.0. Administering Applications. User Guide.

 100

5.2 Result of the inverse KDCDEF run

The inverse KDCDEF either writes all control statements to one file or it writes the control statements for each
group of objects to separate files.

On BS2000 systems, the control statements can also be written to an LMS library element instead of a file.

You can pass the files written by inverse KDCDEF as input to KDCDEF when the application is regenerated. To do
so, you must enter the control statement OPTION DATA= for each of these files.filename

You can pass the files generated by inverse KDCDEF as input files direct to KDCDEF. However, you can also edit
the files as well, i.e. you can modify them before the next KDCDEF run.

Whether or not LMS library elements on BS2000 systems can be modified depends on their type – only text-type
elements can be modified.

You define the names of files generated by inverse KDCDEF when starting the inverse KDCDEF. If no file with this
name exists, a new one is created automatically. If a file of this name does exist, you can define whether it should
be overwritten or appended.

openUTM V7.0. Administering Applications. User Guide.

 101

5.3 Inverse KDCDEF for version migrations

When migrating to a new version of openUTM, you must first generate the KDCDEF control statements in the
previous version, i.e. you must start the inverse KDCDEF in the previous version. You can use the files this
KDCDEF generates as input files for KDCDEF in the new version of openUTM.

openUTM V7.0. Administering Applications. User Guide.

 102

5.4 Recommendations for regeneration of an application

When operating a UTM application, it may prove unavoidable to regenerate the application, i.e. to perform another
KDCDEF run. Possible reasons can include:

The maximum values defined during generation must be adapted.

New objects may have to be generated for distributed processing via LU6.1 or OSI TP because the server
network has to be extended for distributed processing.

A KDCDEF run is only required for distributed processing via LU6.1 when new LPAP objects have to be inserted.
Objects of the type CON, LSES and LTAC, on the other hand, can also be created by means of dynamic
administration (provided enough table spaces have been kept free by means of the RESERVE statement).

New load modules, shared objects or DLLs must be inserted in the application program.

The table spaces reserved for dynamic entry of objects in the configuration are occupied. The tables must be
extended or objects marked for deletion must be deleted now to create spare table spaces.

You can minimize the application downtime resulting from this type of regeneration. To do this, please note the
following :recommendations

When first generating your application, you should distribute the control statements for KDCDEF across several
files before making them available to KDCDEF with OPTION DATA=. In particular, you should write the control
statements USER, LTERM, PTERM, PROGRAM, TAC, CON, KSET, LSES and LTAC and TAC to separate files.
When doing so, ensure that all statements relating to one specific group (see) "Starting the inverse KDCDEF"
are written to one file. In this way, you can replace these files with files generated by an inverse KDCDEF if you
regenerate the application at a later time.

Before regenerating the application and before starting the inverse KDCDEF run, you should dynamically delete
all objects no longer intended for the new configuration (KC_DELETE_OBJECT). Compared with manual
deletion, dynamic deletion of related control statements from the input file has the following advantages for
KDCDEF:

Manual deletion of KDCDEF statements from the KDCDEF input file is messy and prone to errors. Due
account must be taken of relationships between the objects and, hence, between the KDCDEF statements
during the manual deletion process. If any such relationships are overlooked, you must repeat the KDCDEF
run. This only adds to the downtime.

You can automate the procedures involved in regeneration by calling the offline inverse KDCDEF followed by
KDCUPD, see openUTM manual “Generating Applications”.

Over and above this, please note that under certain circumstances, when objects are being deleted manually, data
stored in the KDCFILE and relating to the deleted objects can be passed to the new KDCFILE by KDCUPD, which
is executed in conjunction with the following regeneration operation:

You wish to prevent KDCUPD from transferring the data from the old KDCFILE for a given file (e.g. because the
"new" object has the same name and type but different properties). However, with KDCUPD you can only exclude
the transfer of data for all objects of a given type, but not for a given object. You should therefore delete the object
from the configuration dynamically. The object should be included again in the new generation.

In this case, KDCUPD does not transfer the data belonging to this object, as KDCUPD does not transfer the data of
deleted objects.

For information on update generations in a UTM cluster application, see the corresponding subsection in
the openUTM manual “Using UTM Applications on Unix, Linux and Windows systems”.

openUTM V7.0. Administering Applications. User Guide.

 103

Example

The new configuration should contain a transaction code with the name of an asynchronous transaction code which
existed in the “old” configuration. However, the new transaction code calls a different service (i.e. it is assigned to a
different program unit). A distinction must be made between the following cases:

The properties of the "old" transaction code have been changed:
In this case, if you enter TRANSFER ASYNTACS=YES, KDCUPD transfers the message queue of the “old”
transaction code to the new KDCFILE together with the asynchronous jobs in the queue and assigns them to the
“new” transaction code. Entering KDCUPD with TRANSFER ASYNTACS=NO ensures that none of the message
queues for asynchronous transaction codes are transferred from the old KDCFILE to the new one.

The old transaction code was dynamically deleted from the configuration. In the new configuration, it is included
again:
In this case, even if you enter TRANSFER ASYNTACS=YES, KDCUPD does not transfer the message queue
for the old transaction code to the new KDCFILE because KDCUPD does not transfer any data from deleted
objects.

The same applies to message queues for LTERM partners and USER queues of users.

openUTM V7.0. Administering Applications. User Guide.

 104

6 Administration using commands

To enable you to use the administration commands of openUTM, the following requirements must first be fulfilled:

The standard administration program KDCADM must have been generated (KDCDEF statement PROGRAM) or
included in the configuration dynamically (administration program with KC_CREATE_OBJECT and obj_type
=KC_PROGRAM).

The administration commands which you want to use must have been generated as transaction codes (KDCDEF
statement TAC) or included in the configuration dynamically (administration program with
KC_CREATE_OBJECT and =KC_TAC).obj_type

For details of KDCDEF generation for commands and of the authorization level required for calling commands, see
.chapter “Access rights and data access control”

The openUTM command interface provides a dialog command and an asynchronous command for every KDCADM
administration function. You can therefore terminate all actions (exception: shutting down the application run with
KDCSHUT KILL), either in dialog or message queuing.

openUTM commands can be issued by users on a terminal, by client programs and by partner
applications. However, in the first instance, they are intended for terminal input. For administration by
client programs and other applications, the program interface to administration is far more suitable.

i

openUTM V7.0. Administering Applications. User Guide.

 105

6.1 Administration in dialog

The dialog administration commands can be used by:

users on terminals

UPIC clients

TS applications

HTTP clients

LU6.1 or OSI TP partner applications

other dialog program units in the application

Input of administration commands

A user on the terminal must enter the commands in line mode. Formatted entries are not accepted (exception:
commands which have no operands).

The advantage of entering commands in line mode is that command processing does not take much time and
administration tasks can also be performed in conjunction with other services.

Output of results

openUTM returns the result of command processing to the job-submitting service. Output to the terminal also
occurs in line mode.

If output to a terminal does not fit on one page of the screen, openUTM offers a continuation prompt on the last line
of each screen display which can be used to continue output from the current position.

The describes what the result message for each command looks chapter “Administration commands - KDCADM”
like in the section describing the relevant commands.

Output after successful processing of an administration command does not necessarily mean that the action you
requested has been completed successfully. With some commands, the message merely means that openUTM has
initiated the action (e.g. to establish a connection, to exchange programs). The reason for this is that it takes an
extended period for these actions to be carried out or that openUTM is not able to execute the action until a later
time. You can find out whether the appropriate action was carried out successfully by submitting a KDCINF query at
a later date. With some of these actions (e.g. program exchange), openUTM generates K messages after
processing is complete which indicate to you whether or not the action was performed successfully. These
messages are usually sent to the message destination SYSLOG; output takes place in standard form (SYSOUT
/stderr).

The user IDs, LPAPs and OSI-LPAPs, which are calling the commands must have administrator
authorization.

i

In the UTM application on a BS2000 system, entries for administration commands will be rejected if an
edit profile was used the last time that output was issued.

i

openUTM V7.0. Administering Applications. User Guide.

 106

6.2 Administration using message queuing

The asynchronous commands can be called by:

terminal users

TS applications

LU6.1 or OSI TP partner applications

other dialog or asynchronous program units in the application

When an asynchronous command is submitted, an asynchronous job is generated which openUTM adds to the
message queue of the relevant administration TACs of KDCADM. The job is then executed independently of the job-
submitting service or program unit.

The asynchronous commands make “programmed or automatic administration” possible. The data supplied by the
standard administration program KDCADM can be passed to another program unit which analyzes the data and
initiates appropriate actions (calling additional commands or transaction codes). The asynchronous commands can,
for example, be called by event service MSGTAC which responds to certain events (UTM messages) when an
administration command is called.

Submitting administration commands

At a terminal, asynchronous commands must be entered in line mode, as they are with administration in dialog
mode. Partner applications pass commands together with operands to the application. The same operands are
passed as in dialog mode. The asynchronous commands differ from dialog commands only in terms of their name.

A KDCS program unit calls an asynchronous command, either by submitting an FPUT NE call or, if the command is
to be executed by a certain time, by submitting a DPUT NE call.

You supply the name of the asynchronous command (=transaction code) to the KDCS parameter field KCRN of the
call. The message area for the call must contain the operand list of the administration command. You must pass
every administration command in an FPUT or DPUT call.

You can send several calls relating to the same administration command and which are to be processed in one
transaction as message sections. Every message section must contain an administration command (including the
operands). The administration program KDCADM reads the message sections in a loop of FGET calls and
processes them.

FPUT NT or DPUT NT First call of the administration command, e.g. KDCLTRMA

FPUT NT or DPUT NT Second call from KDCLTRMA

... Further calls from KDCLTRMA

FPUT NE or DPUT NE Last call from KDCLTRMA

The user ID under which the program unit is running must have administration privileges. The MSGTAC program
unit always has administration privileges (see also the description of the MSGTAC program unit in the openUTM
manual „Programming Applications with KDCS”).

The users/(OSI-)LPAPs that call the commands must have administration authorization.i

openUTM V7.0. Administering Applications. User Guide.

 107

Output of the result

After the job has been processed, openUTM informs you of the result via an asynchronous message. This message
has the following format:

Header
1st line of result (= 1st line on screen, as for dialog output)
2nd line of result (= 2nd line on screen, as for dialog output)

:

:

The result is output with the same number of lines as the corresponding dialog command. Only the line output in
dialog mode for the scrolling function is omitted.

The structure of screen lines for dialog output is illustrated in beside chapter "Administration commands - KDCADM"
the description of the appropriate command.

Structure of header

ADMCMD: Command Name blank Operands in the administration command

8 bytes 8 bytes 1 byte ... variable ...

Recipient for the result

All messages generated by the asynchronous commands go to the same recipient (DESTADM) which can be
defined either during KDCDEF generation or at runtime by administration using either WinAdmin, WebAdmin or the
KDCADMI program interface (=KC_MODIFY_OBJECT and =KC_MAX_PAR, see opcode object_type

). Administration can define a different recipient at any time. A recipient can take the form "obj_type=KC_MAX_PAR"
of an asynchronous TAC which further processes the result or the LTERM partner of a terminal, printer or a TS
application.

If no recipient has been defined, openUTM still carries out the administration commands but the result messages
are lost in the process.

However, if an asynchronous TAC is defined as the recipient, and if it is not available, e.g. because it is disabled,
the command is not executed and openUTM generates the message K076.

If the recipient is an LTERM partner, the result is issued as an asynchronous message.
If the recipient is an asynchronous TAC, the relevant program unit must read every single line of the result with an
FGET call. The first FGET call supplies the header. Every subsequent call supplies one line of screen output.

The layout of the output is not subject to the compatibility guarantee, i.e. it may vary when changing to a
new version of openUTM. Program units which evaluate the output from administration commands may
therefore have to be adapted when a new version is installed.

i

openUTM V7.0. Administering Applications. User Guide.

 108

Assignment of jobs to results for the recipient

When entering the operands of an asynchronous command, you can also enter a comment in inverted commas
(“comment”). This comment can then be evaluated by the recipient for the results message.

As a comment you can, for example, enter a job number. The recipient can use this job number to identify the job.

In this case, the comment should be entered before the operand to ensure that job identification is always at the
start of each message and is easy to address.

asynchronous command "comment" operands

openUTM V7.0. Administering Applications. User Guide.

 109

7 Writing your own administration programs

The KDCADMI program interface allows you to write your own administration programs. You must always write an
administration program as a KDCS program unit, i.e. it must be framed by an INIT and a PEND call. The PEND call
should always terminate the transaction.

You can create administration programs:

as dialog program units for administration in dialog mode

as asynchronous program units for administration by means of message queues, e.g. for automatic
administration, see .chapter “Automatic administration”

Every administration program has the following structure:

 INIT
 ...
 MGET (or FGET, if it is an asynchronous program)
 ... Analyse input
 KDCADMI (call administration interface)
 [KDCADMI] (several calls if necessary)
 ...
 [RSET]
 MPUT (or FPUT/DPUT)
 PEND

You can submit several administration calls in an administration program. If you start a number of calls in a
transaction, you must take account of the fact that some calls have to be made in a certain order and that a number
of actions prompted by administration programs are subject to transaction management, i.e. they are not executed
until a PEND call has been carried out successfully. In this case, you should provide a RSET call in the event of a
fault.

A UTM application can have several administration programs for different purposes. An administration program can
be started from a terminal, a client or another program unit (e.g. MSGTAC) or indeed from another application.

openUTM V7.0. Administering Applications. User Guide.

 110

7.1 Dialog administration programs

If you wish to perform administration tasks in dialog mode, you can:

group several administration jobs in one program, or

program the administration tasks as a multi-step service and

input and output the data using formats (only on BS2000 systems)

The two examples below outline how you can implement this.

openUTM V7.0. Administering Applications. User Guide.

 111

7.1.1 Several administration calls

In this example, a load module, shared object or a DLL available in several versions is to be replaced at runtime
with a new version and extended by a new program unit with a new TAC. The exchange operation runs in three
steps.

First of all, a number of files must be requested by KDCADMI, e.g. the version of load module/shared object/DLL
loaded that is before the configuration (TAC, PROGRAM statement) is modified in a second step. The actual
exchange takes place in the final step.

 #include <kcadminc.h> /* Include file for the administration */
 INIT
 ...
 MGET /* Read in data (name, TAC,...) */
 /* of prog. unit being replaced */
 ... Analyse input
 /********************* 1st section:check and query *********************/
 KDCADMI opcode=KC_GET_OBJECT /* Is space for the TAC PROGRAM,... */
 /* statements reserved ? */
 KDCADMI opcode=KC_GET_OBJECT /* Check whether TAC PROGRAM statements ... */
 /* already exist */
 KDCADMI opcode=KC_GET_OBJECT /* Determine current version of load module */
 /* shared object */
 if {error in section 1:
 MPUT with PEND FI } /* If error message appears on screen */

/********************* 2nd section: dyn. generation *****************/
KDCADMI opcode=KC_CREATE_OBJECT
 /* Insert PROGRAM statement */
KDCADMI opcode=KC_CREATE_OBJECT
/* Insert TAC statement */
 if {error in section 2: RSET}/* roll back if fault in transaction */

/********************* 3rd section: replacing program ********************/
KDCADMI opcode=KC_MODIFY_OBJECT
 /* Exchange program unit */
MPUT /* Message on screen */
 PEND FI

If errors occur in section 2, the RSET call is necessary to prevent inconsistent generation from occurring. The
KC_CREATE_OBJECT operations must be specified for the objects shown in this sequence (PROGRAM TAC),
otherwise openUTM is unable to generate the necessary references.

openUTM V7.0. Administering Applications. User Guide.

 112

7.1.2 Multi-step service

In this example, information about the UTM application is retrieved in a first step and then, if necessary, object
properties are modified in a second step. Both programs operate using a #format.

 /************************ Program unit ADMREAD ***************************/
 #include <kcadminc.h> /* Header file for administration */
 INIT
 MGET ... KCMF=#FORMADM /* Entries are read in with a format */
 /* and the input is analyzed */
 KDCADMI opcode=KC_GET_OBJECT
 /* Administration call, UTM sends data to */
 /* the program */
 MPUT KCMF=#FORMADM /* Output data/result to screen */
 PEND RE KCRN=ADMMOD /* Service is continued */

 /************************ Program unit ADMMOD ****************************/
 #include <kcadminc.h> /* Header file for administration */
 INIT
 MGET ... KCMF=#FORMADM /* Entries are read in with a format */
 /* and the input is analyzed */
 KDCADMI opcode=KC_MODIFY_OBJECT
 /* The required object is modified */
 /* Several KDCADMI calls are possible */
 MPUT KCMF=#FORMADM /* Output data/result to screen */
 PEND FI /* Service is terminated */

You can extend these programs, for instance, as follows:

analyze the responses to the KDCADMI call and, in the event of errors, issue an appropriate message or

write the data supplied to an LSSB in ADMREAD which can be reused in ADMMOD.

openUTM on Unix, Linux and Windows systems does not support a formatting system, so if you want to call the
program using in a shell resp. DOS window, you must program the MGET and MPUT calls in line modeutmdtp

You can also address this program using a UPIC client.

openUTM V7.0. Administering Applications. User Guide.

 113

7.2 Diagnostic options for the administration interface

For error diagnosis for calls made to the administration interface, there are the two areas Administration DIAGAREA
and Administration USERAREA in the UTM dump and the ADMI trace as a individual file. openUTM offers the
following diagnosis options:

In the UTM Diagarea, the KDCS opcode ADMI displays the administration interface.

A simultaneous log is kept for all calls in Administration DIAGAREA. The Administration DIAGAREA is structured
in a similar manner to the UTM Diagarea and is described cyclically.

A simultaneous service-specific log is kept for all data transferred to openUTM in Administration USERAREA
(data area or selection area). In each case, the Administration USERAREA only receives the data of call to one
the administration interface.

You can enable the ADMI trace to diagnose errors that occur in programs that use the administration program
interface (KDCADMI).

On BS2000 systems, if SAT logging is activated and the UTM event ADM-CMD is selected, all calls to the
administration interface are logged. In addition, in the case of opcode=KC_GET_OBJECT, the return codes
KC_MC_OK and KC_MC_LAST_ELT are logged successfully.

For a description of Administration DIAGAREA, Administration USERAREA, ADMI trace and of the structure of the
SAT log records, please refer to the relevant openUTM manual ”Messages, Debugging and Diagnostics” for the
platform you are using.

openUTM V7.0. Administering Applications. User Guide.

 114

8 Central administration of several applications

If you want to administer several UTM applications centrally, you can either use WinAdmin or WebAdmin or perform
administration using your own command procedures or administration programs.

WinAdmin and provide all the functions of the programming interface in a convenient user interface. WebAdmin
You can administer several UTM applications running on different computers with BS2000, Unix, Linux or
Windows systems at the same time.

WinAdmin and WebAdmin are easy and quick to use, as no programming is required, either on the
administration computer or in the UTM applications to be administered.

You can create your own command procedures or programs if, for instance, you wish to use functions that are
not provided by WinAdmin or WebAdmin.

The administration tasks are split into a centralized part, the administration application, and a remote part which
runs on the particular UTM application to be administered.

You can handle central administration either via the command interface or via the program interface. You are
advised to always use the program interface for the administration of the program interface.

A number of basic models are available for configuring the central administration functions, see "Configuration
.models for own application of administration"

Administration of UTM cluster applications (Unix, Linux and Windows systems)

You can administer the node applications of a UTM cluster application together.

WinAdmin and provide administration functions which you can apply globally to all of the node WebAdmin
applications of the UTM cluster application. Furthermore, WinAdmin and WebAdmin allow you, for example, to
display statistical summaries which include all the running node applications.

For this reason, you are recommended to use WinAdmin or WebAdmin to administer UTM cluster applications.

You can create your own command procedures or programs in the usual way. Additional data structures are
available for administering UTM cluster applications:

The data structure is defined for the parameter type KC_CLUSTER_PAR. UTM uses kc_cluster_par_str
to return the current settings for the global properties made in a UTM cluster application kc_cluster_par_str

together with current data (e.g. generation time, start time, number of active and generated node applications)
(see).section "kc_cluster_par_str - Global properties of a UTM cluster application"

The data structure is defined for the object type KC_CLUSTER_NODE. UTM uses kc_cluster_node_str
 to return the properties of the individual node applications (instances) in a UTM cluster kc_cluster_node_str

application (see).section "kc_cluster_node_str - Node applications of a UTM cluster application"

The data structure is defined for the object type KC_CLUSTER_CURR_PAR. UTM kc_cluster_curr_par_str
returns current values for the UTM cluster application in (see kc_cluster_curr_par_str section

). In addition, "kc_cluster_curr_par_str -Statistics values of a UTM cluster application" kc_cluster_curr_par_str
can be used to reset the statistics counters of the UTM cluster application.

In section "Generation example for a UTM cluster application" in chapter , you "Administration via UPIC clients"
can find a generation example for the administration of a UTM cluster application via a UPIC client.

You can find further information on administering UTM cluster applications in the openUTM manual
“Using UTM Applications on Unix, Linux and Windows Systems”

openUTM V7.0. Administering Applications. User Guide.

 115

8.1 Administration using WinAdmin and WebAdmin

This section provides you with an introduction to working with WinAdmin and WebAdmin. For detailed information,
see

the which provides a comprehensive overview of the range of functions and the WinAdmin Description
WinAdmin handling. This document is available online as a PDF file.

the which provides a comprehensive overview of the range of functions and WebAdmin WebAdmin Description
handling. This document is available online as a PDF file.

the which describes context-sensitively all the dialog boxes and associated parameters online help system
available in the graphical user interface of WinAdmin and WebAdmin. It also illustrates how to configure
WinAdmin and WebAdmin in order to administer UTM applications.

WinAdmin and WebAdmin allow you to use the complete range of functions of KDCADMI, for instance to add
objects to configurations dynamically, delete objects or start and terminate UTM applications. Furthermore,
additional functions are available which cannot be accessed using KDCADMI:

Definition of message collectors in order to query, display and archive UTM messages from the live UTM
applications,

Administration of message queues,

Administration and control of printers,

Reviewing the contents of GSSBs and deleting GSSBs,

Creation and deletion of temporary queues,

Grouping of several administration steps in a single transaction (only WinAdmin),

Extremely comprehensive support for the UTM security concept using roles and access lists,

Definition of actions such as storing statitic values in files or reacting to thresholds being exceeded or not met,

Collection and archiving of statistical data on the UTM applications.

As far as openUTM is concerned, WinAdmin and WebAdmin area UPIC-R type clients. Before you can administer a
UTM application using WinAdmin or WebAdmin, you must therefore

generate WinAdmin or WebAdmin access in the UTM application (see "Adapting generation of the UTM
),application"

and configure the connection parameters in WinAdmin or WebAdmin (see "Configuration of WinAdmin and
).WebAdmin"

openUTM V7.0. Administering Applications. User Guide.

 116

8.1.1 Adapting generation of the UTM application

On the UTM application side, access to the program KDCWADMI and the UPIC connection from WinAdmin or
WebAdmin must be generated.

Enabling access to the program interface

In order to enable access to the program interface, the program KDCWADMI and the TAC KDCWADMI must be
generated. The following KDCDEF statements are required for this:

PROGRAM KDCWADMI, COMP=ILCS BS2000 systems

PROGRAM KDCWADMI, COMP=C Unix, Linux and Windows systems

and TAC KDCWADMI, PROGRAM=KDCWADMI, CALL=BOTH,

 ADMIN=Y

The program unit KDCWADMI is supplied with openUTM and can be linked to the application or be dynamically
loaded by the application.

openFT must be installed and configured if you want to use WinAdmin or WebAdmin to start UTM applications or
use WinAdmin to initiate KDCDEF/KDCUPD runs. WinAdmin can send or retrieve data via FTP.

openUTM V7.0. Administering Applications. User Guide.

 117

Making WinAdmin and WebAdmin known as a UPIC client

In addition, WinAdmin or WebAdmin must be generated as a UPIC client in all the openUTM applications to be
administered using WinAdmin or WebAdmin. The following KDCDEF statements serve as an example (PTERM
/LTERM):

BCAMAPPL , bcamappl_name
 T-PROT=RFC1006

BS2000 systems

BCAMAPPL , bcamappl_name
 T-PROT=RFC1006,

 LISTENER-PORT= port

Unix, Linux and Windows systems
Note: Although LISTENER-PORT is not a
mandatory parameter, it is required in practice.

and PTERM pterm-name ,

 LTERM= lterm-name,
 BCAMAPPL= bcamappl-name,

 PRONAM= processor-name,
 PTYPE=UPIC-R

LTERM lterm-name

MAX PRIVILEGED-LTERM= lterm-name

USER ' 'wadmin, PASS=C XYZ ,
 PERMIT=ADMIN,

 RESTART=NO

or TPOOL LTERM= upiclt,
 NUMBER=10,

 PRONAM=*ANY,

 PTYPE=UPIC-R,

 BCAMAPPL= bcamappl-name

However, in this case it is then not
possible to set up this connection
as a privileged LTERM.

The names , , , and are freely selectable in accordance with pterm-name lterm-name bcamappl-name, upiclt wadmin
the naming conventions.

 is the name you give to the WinAdmin or WebAdmin client. is the name you give to pterm-name bcamappl-name
the application for client/server communication. is the prefix for the name of the LTERM partner, is an upiclt wadmin
administration-authorized user ID for the application, and is the password for the user ID.XYZ wadmin

The assignment of a password is not mandatory, but a password should nevertheless always be used to maintain
the security of the application.

You need the application name assigned here, the user ID and possibly the password in order to configure
WinAdmin or WebAdmin.

openUTM V7.0. Administering Applications. User Guide.

 118

8.1.2 Configuration of WinAdmin and WebAdmin

A configuration database is set up when WinAdmin and WebAdmin are started for the first time. The administration
data of the UTM applications to be administered using WinAdmin or WebAdmin must be stored in this database to
begin with. You use this data to specify the following on the WinAdmin and WebAdmin side:

what the application is called

the system on which the application runs

the properties of the connection

the users who can administer this application

This data is assigned to the WinAdmin or WebAdmin objects „Hosts”, „UTM Applications”, „UPIC Connections” and
„WinAdmin Users“ or „WebAdmin Users”.

You can also define collections. A collection contains one or more UTM applications. By default, the collection <All
UTM Applications> is set up.

Configuration of WinAdmin and WebAdmin objects

The following table lists WinAdmin’s and WebAdmin‘s objects that have to be defined.

Object Description and properties

Hosts This object describes in WinAdmin or WebAdmin the system on which the UTM application runs
(application host).

UTM
Applications

This object describes the UTM application to be administered.

UPIC
Connections

You use this object to define the connection from WinAdmin or WebAdmin to the application.

WinAdmin /
WebAdmin

sersU

After installation, only the WinAdmin/WebAdmin user ID “Master” is authorized to do everything. It
is advisable to define further user IDs with restricted authorizations.

Collections This object combines UTM applications to form a collection.

For details, see the description of WinAdmin and/or WebAdmin.

Working with collections

A WinAdmin/WebAdmin user can combine multiple applications to form a collection in order to simplify their
administration.

Using WinAdmin, it is even possible to administer objects from different applications in an open collection together, i.
e. in a single step.

When changing the WinAdmin or WebAdmin version, you can import the data of the previous version.i

openUTM V7.0. Administering Applications. User Guide.

 119

Checking availability

When you have performed the necessary configuration steps in UTM and WinAdmin/WebAdmin, you can check
that the UTM application is accessible.

If the application is available, you can view its objects. These are displayed graphically in the WinAdmin/WebAdmin
user interface in a tree structure or as a table.

openUTM V7.0. Administering Applications. User Guide.

 120

8.2 Configuration models for own application of administration

You can implement the administration application as a UPIC client application, as a UTM application with distributed
processing (with or without global transaction management) or as a TS application (SOCKET, CMX, DCAM, UTM,
HTTP client). The figure below illustrates all possibilities and the interfaces they use.

In all cases, the administration application must be generated with administration privileges in the applications to be
administered.

The diagram applies equivalently for the administration of UTM cluster applications, see also section "Generation
example for a UTM cluster application” in chapter ."Administration via UPIC clients"

openUTM V7.0. Administering Applications. User Guide.

 121

8.2.1 Administration via UPIC clients

A UPIC client can run on BS2000, Unix, Linux and Windows systems. If the platform you select is Windows system,
you have the advantage of being able to generate a friendly graphical user interface for the administration program.

A client can also be restarted in that it can request the latest output message and continue the interrupted service;
see the manual „openUTM-Client for the UPIC Carrier System”.

Please note that a UPIC client

can only communicate with one application at any one time, if it is running under a BS2000 system

cannot itself send any asynchronous jobs to openUTM

always has to take the initiative, i.e. it cannot be started from the application to be administered.

UPIC clients for Unix, Linux and Windows systems are available for the products WinAdmin and
WebAdmin.
WinAdmin and WebAdmin offer the full function scope of the KDCADMI program interface (see the

).section "Administration using WinAdmin and WebAdmin"

UTM on BS2000 systems is supplied with a UPIC client program complete with an SDF command
interface in the form of a fully compiled object code. You can adapt the configuration for this program to
the needs of your own configuration. For more details, see section "CALLUTM - Tool for administration

 of the appendix.and client/server communication (BS2000 systems)"

i

openUTM V7.0. Administering Applications. User Guide.

 122

Programming

What you program is a UPIC program which sends the data required for administration (the administration
command or input for the administration command) to the remote application and receives the corresponding output
from the application being administered. The diagram below gives a rough outline of a UPIC program for Unix,
Linux or Windows systems.

 #include <upic.h>
 Enable_UTM_UPIC /* Sign on to UPIC carrier system */
 Initialize_Conversation /* Initialize conversation; */
 /* sym_dest_name addresses the */
 /* application to be administered. */
 Set_TP_Name /* TAC for administration program */
 /* or KDC.... administration TAC. */

 Set_Conversation_Security_Type=CM_SECURITY_PROGRAM
 /* Use UTM user concept */
 Set_Conversation_Security_User_ID /* Set UTM user ID which must have */
 /* administration privileges. */
 Set_Conversation_Security_Password /* Password for user ID */
 ...
 Allocate /* Set up conversation. */

 memcpy (buffer,) /* Supply data area with */
 /* command or program input */

 Send_Data /* Send command/program input to */
 /* the administered application. */

 Receive /* Message returned by UTM appli- */
 /* cation and then evaluated by */
 /* the program. */

 Disable_UTM_UPIC /* Sign off UPIC carrier system */

How the UPIC program can send and receive data is described in section "Central Administration using commands"
 and . section "Central Administration using programs"

openUTM V7.0. Administering Applications. User Guide.

 123

1.

2.

3.

Generation example (standalone UTM application)

The UPIC program on a Unix or Linux system is to administer three UTM applications. One application is UNIX0001
running on a BS2000 system , the second on a Unix system and the third on a Windows D123ZE45 D234S012
system . The UTM applications are to be able to shut down with the administration TAC KDCSHUT and WSERV01
to call the administration program with the TAC TPADMIN.

Entries in the UPIC client’s upicfile

upicfile:

* Local name of the CPI-C application
LNADMIN001 UPIC0001;
* UTM application on a BS2000 system
HDUTMAW001 APPLIBS2.D123ZE45 TPADMIN;
* UTM application on a Unix or Linux system
SDUTMAW002 APPLUnix.D234S012 TPADMIN PORT=30000;
* UTM application on a Windows system
SDUTMAW003 APPLIWIN.WSERV01 TPADMIN PORT=30000;

UTM generation on the BS2000 system:

BCAMAPPL APPLIBS2,T-PROT=ISO
PTERM UPIC0001,PTYPE=UPIC-R,LTERM=UPICLTRM,
 ,BCAMAPPL=APPLIBS2,PRONAM=UNIX0001,...
LTERM UPICLTRM,KSET=ALLKEYS,USER=REMADMIN,RESTART=N
USER REMADMIN,PERMIT=ADMIN,RESTART=NO *)
TAC KDCSHUT, PROGRAM=KDCADM,ADMIN=Y **)
TAC TPADMIN,PROGRAM=ADMINPRG,ADMIN=Y,...
PROGRAM ADMINPRG,...
PROGRAM KDCADM

The processor name must be generated in BCAM (by means of a BCIN or CREATE-PROCESSOR UNIX0001
command or in the RDF). BCMAP entries are not required for RFC1006 via port 102.

UTM generation on Unix and Linux systems:

BCAMAPPL APPLUnix,LISTENER-PORT=30000,TSEL-FORMAT=T,T-PROT=RFC1006
PTERM UPIC0001,PRONAM=UNIX0001,TSEL-FORMAT=T,PTYPE=UPIC-R,LTERM=UPICLTRM,
 ,BCAMAPPL=APPLUnix
LTERM UPICLTRM,KSET=ALLKEYS,USER=REMADMIN,RESTART=N
USER REMADMIN,PERMIT=ADMIN,RESTART=NO *)
TAC KDCSHUT, PROGRAM=KDCADM,ADMIN=Y **)
TAC TPADMIN,PROGRAM=ADMINPRG,ADMIN=Y,...
PROGRAM ADMINPRG,...
PROGRAM KDCADM

openUTM V7.0. Administering Applications. User Guide.

 124

3.

4.

1.

UTM generation on WIndows systems:

BCAMAPPL APPLIWIN,LISTENER-PORT=30000,TSEL-FORMAT=T,T-PROT=RFC1006
PTERM UPIC0001,PRONAM=UNIX0001,TSEL-FORMAT=T
 PTYPE=UPIC-R,LTERM=UPICLTRM,BCAMAPPL=APPLIWIN
LTERM UPICLTRM,KSET=ALLKEYS,USER=REMADMIN,RESTART=N
USER REMADMIN,PERMIT=ADMIN,RESTART=NO *)
TAC KDCSHUT, PROGRAM=KDCADM,ADMIN=Y **)
TAC TPADMIN,PROGRAM=ADMINPRG,ADMIN=Y,...
PROGRAM ADMINPRG,...
PROGRAM KDCADM

*) The connection user ID is used here, for which no password protection applies. If you require greater
security, the UPIC client has to pass on a “genuine” user ID to openUTM using the CPI-C calls

. In this case the user ID must have Set_Conversation_Security_Type/_User_ID/_Password
administrator privileges and be password protected.

**) You should generate all the relevant TACs. KDCSHUT must always be generated. In the UPIC,
program, the TAC can be set via the program (the default is TPADMIN).

Generation example for a UTM cluster application (Unix, Linux and Windows systems)

The UPIC program on Unix or Linux system is to administer a UTM cluster application on the Linux UNIX0002
systems , and . The UTM cluster application consists of three nodes C123DE10 C123DE11 C123DE12 APPLLINC
and the administration program should be able to call it by means of the TAC REMADMIN.

Entries in the UPIC client’s upicfile:

The UPIC client is configured in a way that requires a separate Symbolic Destination Name to be specified for
each node.

* Local name of the CPI-C application
LNADMIN001 UPIC0001;
* UTM cluster application on the Linux system
CDclnode01 APPLLINC.C123DE10 REMADMIN
CDclnode02 APPLLINC.C123DE11 REMADMIN
CDclnode03 APPLLINC.C123DE12 REMADMIN

In this case, the UPIC program must explicitly address the relevant node (or).clnode01,clnode02 clnode03

openUTM V7.0. Administering Applications. User Guide.

 125

1.

2. UTM generation on the Linux system (initial KDCFILE):

BCAMAPPL APPLLINC,T-PROT=ISO
PTERM UPIC0001,PTYPE=UPIC-R,LTERM=UPICLTRM,
 ,BCAMAPPL=APPLLINC,PRONAM=UNIX0002,...
LTERM UPICLTRM,KSET=ALLKEYS,USER=REMADMIN,RESTART=N

USER ADMUSR01,PERMIT=ADMIN,RESTART=NO *)
USER ADMUSR02,PERMIT=ADMIN,RESTART=NO *)
USER ADMUSR03,PERMIT=ADMIN,RESTART=NO *)
TAC KDCSHUT, PROGRAM=KDCADM,ADMIN=Y **)
TAC REMADMIN,PROGRAM=ADMINPRG,ADMIN=Y,...
PROGRAM ADMINPRG,...
PROGRAM KDCADM

*) For each node, you should generate a user ID with administration authorizations since, by default, a
user in a UTM cluster application continues to be signed on when the conversation terminates. The
UPIC program must assign the user ID.

**) You should generate all the relevant administration TACs. In the UPIC, program, the TAC can be set via
the program (the default is REMADMIN).

openUTM V7.0. Administering Applications. User Guide.

 126

8.2.2 Administration via distributed processing

If you want to handle central administration for openUTM via distributed processing, you have the following
advantages:

Several applications can be administered simultaneously.

Administration jobs can be started both from the administration application itself and from the applications being
administered (the polling function).

Time-driven administration jobs can be set up very easily (DPUT).

You can, if necessary, work with global transaction management. This allows you, for example, to ensure that
certain application parameters are modified simultaneously for all applications, which cannot be guaranteed
when administering applications via a UPIC client or a TS application (as network failures can mean that the
operation cannot be performed for one of the applications while the others are already working with the new
values).

You can use the LU6.1 or OSI TP protocols for communication between the administration application and the
servers being administered.

Programming

If you require global transaction management for your administration operations, one transaction from the
administration application will need to communicate with several job receivers. The figure below illustrates this
principle using the example of two administered applications, each of which submits several administration calls.

openUTM V7.0. Administering Applications. User Guide.

 127

The program TPADM sends jobs to both applications. The program TPREC is called only after responses have
been received from both applications. Once both applications have completed their respective jobs properly,
TPREC terminates the global transaction and the service.

The following example gives an idea of what the programs TPADM and TPREC might look like. The administrative
task is, from a Unix computer, to initiate the simultaneous exchange of a program in a UTM application on a Unix or
Linux system and a UTM application on a BS2000 system. Program exchange is handled differently on Unix, Linux
and Windows systems and BS2000 systems, however. BS2000 systems determine the current version of the load
module, marks the load module for exchange and then reloads the application. On Unix, Linux and Windows
systems, the program is replaced immediately. The administered applications can use a program like the one in
chapter . The figure below illustrates this example for LU6.1 and OSI TP without global "Several administration calls"
transaction management.

If you are using a UTM application on Windows systems, either instead of the administered or the administering
UTM application on Unix or Linux systems, or both, then programming and generation are the same. Note that port
number 102 cannot be used for UTM applications on Unix, Linux and Windows systems.

 /* Program unit TPADM sends data to applications UTMAPPL1 and UTMAPPL2 */

 INIT
 memcpy (buffer, ...) /* Edit data. */
 APRO DM KCPI=VGID1 KCPA=UTMAPPL1 /* Address job-receiving service */
 KCRN=TPADMIN /* TPADMIN in UTMAPPL1. */

 MPUT NE buffer /* Send data to UTMAPPL1. */
 KCRN=VGID1

 APRO DM KCPI=VGID2 KCPA=UTMAPPL2 /* Address job-receiving service */
 KCRN=TPADMIN /* TPADMIN in UTMAPPL2. */

 MPUT NE buffer /* Send data to UTMAPPL2. */
 KCRN=VGID2

 PEND KP KCRN=TPREC /* Wait for job receiver. */

openUTM V7.0. Administering Applications. User Guide.

 128

For OSI TP with global transaction management, additional statements are required in order to:

select the commit functional unit
(APRO... KCOF=C)

request UTMAPPL1 to initiate the end of the transaction and dialog
(CTRL PE, KCRN=VGID1)

request UTMAPPL2 to initiate the end of the transaction and dialog
(CTRL PE, KCRN=VGID1)

 /* Follow-up program TPREC receives confirmation from job-receiving */
 /* service */

 INIT
 KCRPI=VGIDx /* 1st message comes from JS */
 /* service with service ID VGIDx. */
 MGET NT KCRN=VGIDx /* Read response from JS service 1,*/
 KCRCCC=12Z KCRPI=VGIDy /* Further message from other JS */
 /* service (VGIDy) already waiting */
 if (OK) /* JS service 1 has initiated */
 { /* program exchange. */
 MGET NT KCRN=VGIDy /* Read response from JS service 2.*/
 KCRCCC=10Z KCRPI=SPACES /* No further messages waiting. */
 if (OK) /* JS service 2 has initiated */
 { /* program exchange . */
 MPUT NE /* Send message to administrator. */
 PEND FI /* Terminate global transaction. */
 } else error_routine();
 } else error_routine();

 error_routine () /* Error routine */
 { MPUT NE /* Notify administrator */
 PEND FR } /* roll back and terminate */
 /* global transaction. */

openUTM V7.0. Administering Applications. User Guide.

 129

1.

2.

Generation example

The example shows an LU6.1 generation; the administration application uses two-level addressing.

In the example the port numbers and computer names (BS20HOST, UnixHOST, UnixADMI) are specified in the
generation statements. See the openUTM manual “Generating Applications” under "Providing address information"
for further information.

Generation of the UTM administration application on Unix or Linux systems

BCAMAPPL ADMINAPP,LISTENER-PORT=1234,T-PROT=RFC1006,T-SEL-FORMAT=T

*** Connection to application on Unix or Linux system; the administrator
*** application is the job submitter.
SESCHA ADMAPPL1,PLU=Y,CONNECT=Y
LPAP UTMAPPL1,SESCHA=ADMAPPL1
LSES ADMAG1,LPAP=UTMAPPL1,...
CON APPLUnix,BCAMAPPL=ADMINAPP,PRONAM=UnixHOST -
 ,LISTENER-PORT=2345,LPAP=UTMAPPL1,...

*** Connection to application on the BS2000 system;
*** the administrator application is the job submitter.
SESCHA ADMAPPL2,PLU=Y,CONNECT=Y
LPAP UTMAPPL2,SESCHA=ADMAPPL2
LSES ADMAG2,LPAP=UTMAPPL2,...
CON APPLIBS2,BCAMAPPL=ADMINAPP,PRONAM=BS20HOST -
 ,LISTENER-PORT=102,LPAP=UTMAPPL2,...

*** LTAC for the remote administration program; two-level addressing
*** LTAC=RTAC is the TAC in the remote application.
LTAC TPADMIN

*** TACs for both administration programs
TAC TPADM,PROGRAM=...
TAC TPREC,PROGRAM=...

Generation of the administered UTM application on the BS2000 system

BCAMAPPL APPLIBS2,T-PROT=ISO

*** LU6 generation for the job receiver
SESCHA ADMINREC,PLU=N,CONNECT=N
LPAP UTMADMIN,SESCHA=ADMINREC,PERMIT=ADMIN
LSES ADMAN,LPAP=UTMADMIN,...
CON ADMINAPP,BCAMAPPL=APPLIBS2,PRONAM=UnixADMI,LPAP=UTMADMIN,...

TAC TPADMIN,PROGRAM=ADMINPRG,ADMIN=Y
PROGRAM ADMINPRG,...

openUTM V7.0. Administering Applications. User Guide.

 130

2.

3. Generation of the administered UTM application on Unix or Linux systems

BCAMAPPL APPLUnix,LISTENER-PORT=1234,T-PROT=RFC1006,T-SEL-FORMAT=T

*** LU6 generation for the job receiver
SESCHA ADMINREC,PLU=N,CONNECT=N
LPAP UTMADMIN,SESCHA=ADMINREC,PERMIT=ADMIN
LSES ADMAN,LPAP=UTMADMIN,...
CON ADMINAPP,BCAMAPPL=APPLUnix,PRONAM=UnixADMI -
 ,LISTENER-PORT=2345,LPAP=UTMADMIN,...

TAC TPADMIN,PROGRAM=ADMINPRG,ADMIN=Y
PROGRAM ADMINPRG,...

openUTM V7.0. Administering Applications. User Guide.

 131

8.2.3 Administration via a TS application

The application can be any TS application such as a CMX application (PTYPE=APPLI) or a socket USP application
(PTYPE=SOCKET), for example. However, you can also use a UTM application, which you generate as a TS
application. The administration application is linked to the administered UTM applications by means of an LTERM
/PTERM or TPOOL statement.

In all cases, the application can:

simultaneously administer several UTM applications

be started by the administered applications

How the application can be programmed depends on the type of TS application used. If you are using a UTM
application, you can also use DPUT to send time-driven jobs to the administered applications.

In order to carry out administration by means of a TS application, one of the following cases must apply:

The connection user ID must have administration authorization, e.g.:

LTERM ADMINLTM,KSET=ALLKEYS,RESTART=N, USER=ADMINUS

USER ADMINUS, PERMIT=ADMIN, RESTART=N

or

A genuine user ID with administration authorization must be signed on during the signon process for the TS
application.

Generation

For the generation of an administered UTM application on a BS2000 system, it should be possible to call the
command KDCSHUT and to call the administration program with the TAC TPADMIN.

To achieve this, the following statements will be required in the decentralized application for LTERM, TAC and
PROGRAM, irrespective of whether the central application is a socket, CMX or DCAM application:

*** LTERM, TAC and PROGRAM

LTERM ADMINLTM,KSET=ALLKEYS,RESTART=N
USER ADMINLTM, PERMIT=ADMIN,RESTART=N
TAC KDCSHUT, PROGRAM=KDCADM,ADMIN=Y
TAC TPADMIN,PROGRAM=ADMINPRG,ADMIN=Y,...
PROGRAM ADMINPRG,...
PROGRAM KDCADM

To address the central application you must write the following statements depending on which type of application
(DCAM or CMX) you are using. If you are using a UTM application, the same applies depending on whether the
application is linked via NEA or via TCP/IP.

openUTM V7.0. Administering Applications. User Guide.

 132

*** DCAM application which communicates via
*** NEA protocols with openUTM applications: on BS2000 systems

BCAMAPPL APPLIBS2,T-PROT=NEA
PTERM dcam-name,PTYPE=APPLI,LTERM=ADMINLTM,
BCAMAPPL=APPLIBS2,PRONAM=dcam-computer

*** CMX application on Unix or Linux system via TCP/IP-RFC1006

BCAMAPPL APPLUnix,T-PROT=RFC1006
PTERM t-selector,PTYPE=APPLI,LTERM=ADMINLTM,BCAMAPPL=APPLUnix,
 LISTENER-PORT=port-number, PRONAM=unix-computer

*** Socket application on Unix or Linux system

BCAMAPPL SOCKETBS,LISTENER-PORT=12000,T-PROT=SOCKET
PTERM SOCKPTRM,PTYPE=SOCKET,LTERM=ADMINLTM, BCAMAPPL=SOCKETBS,
 LISTENER-PORT=port-number, PRONAM=unix-computer

dcam-name and are the respective names of the DCAM application and computer on which the dcam-computer
DCAM application is running. is the T selector for the remote CMX application. is the name t-selector unix-computer
of the computer on which the CMX or socket application runs. is the port number at which the central port-number
CMX or socket application waits for connection setup requests.

openUTM V7.0. Administering Applications. User Guide.

 133

8.3 Central Administration using commands

Alongside the program interface, openUTM also provides the command interface for administration. However, the
command interface only provides a subset of the functionality available in the program interface.

You can use both synchronous and asynchronous commands for central administration. In either case, the central
administration program will have to:

make the command available in the prescribed syntax

send it to the administered UTM application in the form of a message.

The application being administered executes the command as if it had issued it itself. To be able to evaluate the
command output in the central application you will, however, need to observe the differences inherent in
synchronous and asynchronous methods.

Synchronous commands

If you use synchronous administration commands for central administration, the command output will be returned
automatically to the sender, i.e. to the administration program.

This means that any configuration model is suitable for central administration with synchronous commands. If you
are using a UPIC client for Windows systems, you can, for example, write a program using Microsoft Visual Studio
which allows you to enter the administration commands via a friendly Windows interface. The program is able to
filter openUTM’s response before issuing any output so that you only see the parameters that are of importance to
you. You can then implement the message interface to openUTM via a CPI-C program as described in section

.“Administration via UPIC clients”

Asynchronous commands

If you use asynchronous administration commands for central administration, the output is not returned
automatically to the sender. The destination for command output must therefore be generated with MAX DESTADM
in the decentralized applications.

If the central application is a TS application, then specify the LTERM name for the central application in MAX
DESTADM. However, please note that the central application receives this output asynchronously, i.e. it has to
determine the sender.
If you want to handle administration operations in the context of distributed processing, you must also use MAX
DESTADM=TAC to add a further decentralized asynchronous program which receives the output and forwards it
with FPUT to the administration application.

openUTM V7.0. Administering Applications. User Guide.

 134

8.4 Central Administration using programs

If you are using the program interface, you can split the tasks in one of two ways between the administration
application and the applications to be administered:

Decentralized administration programs:
You can use the program interface in such a way that a complete administration program exists within the
administered application which can autonomously determine the necessary parameters and evaluate the data
returned to it.

Central administration programs
You can use the program interface in the administered application purely as a message interface, i.e. it receives
all parameters from the administration application and returns the results of the call (return codes, data) without
verification.

openUTM V7.0. Administering Applications. User Guide.

 135

8.4.1 Decentralized administration programs

If the administered applications use complete administration programs as described in chapter "Writing your own
, the control of an administration service will essentially reside with the application that is administration programs"

being administered. The administration program must therefore:

interpret a message received from the administration application or - in the case of automatic administration, for
example - from an application-internal MSGTAC program

correctly supply all areas for the administration call

evaluate and respond to the return codes, i.e. it must notify the administration application in the event of errors
and, where appropriate, roll back the transaction

evaluate the returned data and decide what data is to be sent to the administration application.

It is advisable to write individual program units for the various administration tasks or, if you are using a complete
administration program, to address the program with different TACs depending on the task required. This will
ensure that the tasks is selected on the basis of the TAC and not on the basis of the message.

Portable administration programs

If you want to use your administration programs in different applications running on different platforms, you can
write the relevant programs in such a way that they can run both on Unix, Linux or Windows systems and BS2000
systems.

This task is simplified by the fact that the program interface has the same data structures on all platforms. You will,
however, need to note the following platform-specific differences:

There are certain fields and substructures which only have any meaning on one platform

When reading data, fields which are not relevant to the given platform are always populated with binary zeros.

When modifying or generating objects, the fields which are not relevant to the given platform must be
populated with binary zeros. For this reason, the program should first establish the platform on which it is
running. To do this it has to evaluate the field in the structure after calling system_type kc_system_par_str
KDCADMI with the following parameters:

opcode=KC_GET_OBJECT
subcode1=KC_APPLICATION_PAR
obj_type=KC_SYSTEM_PAR

Once it has determined which platform it is running on, the program must first reserve the fields that are valid
for all of the operating systems for the administration calls themselves. It then reserves the fields that are
needed for the relevant platform.

The sort order for characters differs between BS2000 systems and Unix, Linux and Windows systems: BS2000
systems generally use an EBCDIC code and Unix, Linux and Windows systems an ISO code.

Names on BS2000 applications only use uppercase letters, whereas Unix, Linux and Windows systems names
can use both lowercase and uppercase.

Unix, Linux or Windows systems normally use other character sets than BS2000 systems (ASCII/EBCDIC
problem).

The following example shows a portable administration program which replaces a load module, shared object or
DLL in the decentralized application. The program verifies which platform it is running on and uses the result to
effect a program-internal branch.

openUTM V7.0. Administering Applications. User Guide.

 136

On Unix, Linux and Windows systems, only the shared object/DLL is replaced, whereas BS2000 systems check
whether the load module is in a common memory pool and, therefore, whether the application in fact needs to be
replaced.

 #include <kcadminc.h> /* Include file for the administration */
 INIT
 ...
 MGET /* Read in name/date of the program unit */
 ... Analyze input
 KDCADMI opcode=KC_GET_OBJECT /* Query operating system */
 KDCADMI opcode=KC_GET_OBJECT
 /* Determine current version of load */
 /* module and check whether it is at all */
 /* possible to replace it. */

 if (BS2000) /* BS2000 routine */
 { KDCADMI opcode=KC_GET_OBJECT
 /* Query load mode and determine whether */
 /* program is marked for exchange . */
 KDCADMI opcode=KC_MODIFY_OBJECT
 /* Replace or mark load module if it is */
 /* in a common memory pool. */
 if (common memory pool)
 KDCADMI opcode=KC_CHANGE_APPLICATION
 /* Replace application */
 } /* End of the BS2000 routine */
 else /* Unix/Linux/Windows routine */
 KDCADMI opcode=KC_MODIFY_OBJECT
 /* Replace shared object/DLL */
 /* End of the Unix/Linux/Windows routine */
 MPUT /* Message to the initiator */
 PEND FI

The program can also be supplemented by means of dynamic generation (TAC, PROGRAM,...) as described in the
example chapter .in "Several administration calls"

openUTM V7.0. Administering Applications. User Guide.

 137

8.4.2 Central administration programs

You can use the program interface on the side of the applications to be administered as a dedicated message
interface. In this case, control of the administration functions lies entirely with the administration application. This
application supplies the four areas needed for each administration call with the data they require and uses MPUT NT
/NE to send it to the administered application.

The administered application merely converts the data supplied to the syntax required by the administration
interface and then calls it. This means that it checks neither the data supplied with MGET nor the codes and data
returned by the call. The diagram below outlines a program of this type.

 /**/
 /* Dialog program for the administered application */
 /* */
 /* The program has four buffers in which data is received: */
 /* parameter_area, identification_area, selection_area, data_area */
 /**/

 INIT

 MGET NT in parameter_area /* Fully supplied parameter area */
 /* for the administration interface */
 MGET NT in identification_area /* The identification area is */
 /* supplied as a function of the */
 /* opcode for the parameter area. */
 MGET NT in selection_area /* The data supplied to the selection */
 /* area depends on the operation and */
 /* may only have the length 0. */
 MGET NE in data_area /* Data is supplied where necessary; */
 /* otherwise the length 0 is supplied */

 KDCADMI (¶meter_area, /* The program calls KDCADMI without */
 &identification_area, /* checking the data. */
 &selection_area,
 &data_area);

 MPUT NT parameter_area /* Parameter area with the return */
 /* codes and other returned data */
 MPUT NE data_area /* Data area with returned data or */
 /* the length 0 if no data is */
 /* returned */

 PEND FI /* Terminate service; info is returned*/
 /* to the administration application */

openUTM V7.0. Administering Applications. User Guide.

 138

The administration application has to send a commensurate number of message segments. In the case of a UPIC
client, the result may look something like this:

 /**/
 /* UPIC program for the administration application */
 /* */
 /* The program sends four message segments */
 /**/

 Enable_UTM_UPIC

 Initialize_Conversation
 [Set_TP_Name] /* Set TAC if necessary */
 Set_Conversation_Security_Type /* Sign on as a UTM user */
 Set_Conversation_Security_User_ID
 Set_Conversation_Security_Password

 memcpy (...) /* Supply all data areas */
 ...
 memcpy (...)

 Send_Data parameter_area /* Send parameter area */
 Send_Data identification_area /* Send identification area */
 Send_Data selection_ara /* Send selection area */
 Send_Data data_area /* Send data area */

 Receive parameter_area /* Contains return codes/info */
 Receive data_area /* Data area containing the */
 /* requested information */

 Disable_UTM_UPIC

For details of how to generate this kind of UPIC client, see ."Administration via UPIC clients"

If the administration application is running on a different platform to the application being administered, the
characters in the areas supplied may be converted. No problems will arise as long as these areas only contain
printable characters, i.e. the identification, selection and data areas. In the parameter area (), which parameter_area
can also contain non-printable characters and numeric values, you will need to apply a conversion mechanism.

Define an interim parameter area in both applications which only contains printable characters.

The administration application converts the characters in the original parameter area into printable characters,
puts these in the interim parameter area and then sends this to the applications being administered.

The administered applications write the values received to the interim parameter area, convert them to the
correct numeric values and then copy these to the parameter area used for the administration call.

openUTM V7.0. Administering Applications. User Guide.

 139

1.

2.

3.

9 Automatic administration

You can use asynchronous programs or administration commands to administer an application automatically. This
can involve having parameters raised or lowered depending on load values or triggering responses to errors. For
control purposes you can, for example, use an MSGTAC program and/or time-controlled jobs.

This is how application control using the MSGTAC program proceeds:

An event occurs in the application and generates a message.

The message is passed on to the MSGTAC program.

MSGTAC analyses the message and then initiates the appropriate operation.

Such operations can, for instance, include calling the KDCADMI program interface, calling an administration
command or starting an asynchronous administration program (FPUT/DPUT), which executes further administration
tasks.

Instead of the MSGTAC program it is also possible to use a program to which a TAC is assigned that is defined as
an additional message destination (KDCDEF statement MSG-DEST).

If you are using WinAdmin or WebAdmin as your administration tool, you can also use it to execute scripts or start
programs when particular events occur, for instance when a threshold value is exceeded.

Another possible form of automatic administration is to have statistical data queried at regular intervals and to
trigger the appropriate responses.

Diagnostic activities are yet another potential application. For certain events you can, for example, activate test
mode, generate traces, create UTM dumps or have data supplied to the openSM2 event monitor.

openUTM V7.0. Administering Applications. User Guide.

 140

9.1 Control using the MSGTAC program

How you can automate the administration of an application using the MSGTAC program is illustrated using an
example in which the message triggers an automatic K041 Warning level xx for PAGEPOOL exceeded

response. In place of K041 you can also insert other messages such as K091 Due to resource bottleneck

 for control purposes....

For this example, the message destination MSGTAC must be defined for K041, and an MSGTAC program must be
written which processes this message and issues an FPUT output message to start an asynchronous program
PRGK041.

You will find two versions of PRGK041 illustrated below. In one example it carries out the administration operations
through the program interface and in the other it uses the command interface. The functions may also be realized
within the MSGTAC routine itself.

Structure of an MSGTAC program

The MSGTAC program can be set up along the following lines:

 /***************************** MSGTAC program ****************************/
 #include <kcmsg.h>

 INIT
 FGET message /* Read message */
 ...
 switch (msg-id)
 { case Kxx:...
 case K041:
 { FPUT data KCRN=PRGK041 /* Call program unit PRGK041 */
 break;
 ...
 case Kyy:..
 }
 PEND FI

The program PRGK041 controls the operations necessitated by the occurrence of K041. The diagram below
outlines what PRGK041 might look like if it uses the program interface and the command interface.

openUTM V7.0. Administering Applications. User Guide.

 141

Control via the program interface

The following asynchronous administration program is started with MSGTAC.

 /********** Program unit PRGK041 for KDCADMI program interface ***********/
 #include <kcadminc.h> /* Head file for administration */
 INIT

 FGET data /* Read data supplied by MSGTAC */

 KDCADMI opcode=KC_GET_OBJECT
 /* Administration call: UTM returns the */
 /* requested statistical data to the */
 /* program. */

 if {... } /* Analyze data and prepare operations */

 KDCADMI opcode=KC_MODIFY_OBJECT
 /* The appropriate parameter is modified. */
 /* Additional KDCADMI calls may be needed */
 /* to modify other parameters. */

 FPUT /* Message to administrator if necessary */

 PEND FI

You can have the application data read and analyzed within a program; any number of KDCADMI calls is permitted.
This means that a number of application parameters can be modified if this should be necessary as a result of the
current application data.

openUTM V7.0. Administering Applications. User Guide.

 142

Example: activating/deactivating automatic diagnostics

The following example is a response to the message

K119 OSI-TP error information...

An MSGTAC program such as the one outlined section intercepts K119 and in "Structure of an MSGTAC program"
uses FPUT to start the administration program. Depending on the information supplied in K119, this program
activates the OSI trace functions.

 #include <kcadminc.h> /* Header file for administration */
 ...
 INIT

 FGET /* Read data from MSGTAC */
 if {... } /* Analyze data */

 KDCADMI opcode=KC_MODIFY_OBJECT
 /* Activate OSI trace functions under */
 /* certain circumstances. */

 FPUT KCRN=admin-lterm /* Message to administrator: trace running */

 DPUT KCRN=TRACEOFF /* After a while, a further asynchronous */
 /* program (TRACEOFF) deactivates the */
 /* trace again. */

 PEND FI

You can also use this program structure, for example, to respond to the message . You K065 Net message ..

can follow the same pattern to write a program which creates a UTM dump in response to a message with
KDCADMI =KC_CREATE_DUMP.opcode

openUTM V7.0. Administering Applications. User Guide.

 143

9.2 Control via user-specific message destinations

For messages created by UTM, UTM provides four further freely available message destinations that can be used
to control administrative activities. These message destinations are referred to as USER-DEST-1, USER-DEST-2,
USER-DEST-3 and USER-DEST-4 and can be explicitly assigned the following objects:

a USER queue (the message queue of a user ID)

a TAC queue

an asynchronous TAC or

an LTERM partner that is not assigned to a UPIC client

These message destinations allow you to read messages in a TAC or USER queue, for example, via the KDCS
program interface using the DGET function. By means of this function and corresponding follow-up processing you
can design MSGTAC-like programs that respond specifically to a message.

By assigning a USER or TAC queue to a user-specific message destination you can, for example, output UTM
messages at the WinAdmin or WebAdmin administration workstation (see the openUTM manual ”Messages,
Debugging and Diagnostics” or the online help for WinAdmin/WebAdmin, keyword „message collector“).

The user-specific message destinations are configured by means of the generation statement MSG-DEST. You can
obtain specific information on a message destination by means of the KC_GET_OBJECT statement and the
KC_MSG_DEST_PAR object type.

You assign a message to a message destination by means of the KDCMMOD utility. The openUTM manual ”
Messages, Debugging and Diagnostics” describes which messages can be assigned to the user-specific message
destinations.

When a message occurs for which USER-DEST- is defined as the message destination, UTM creates an n
asynchronous job to this message destination.

If the asynchronous job is rejected because, for example, the assigned object is disabled, the message is lost to the
message destination. If there is another message for the message destination, openUTM tries again to create an
asynchronous job for this message destination.

If an asynchronous TAC is assigned to a message destination USER-DEST- , openUTM starts the program that is n
assigned to the TAC once for each message created. In contrast to the situation with MSGTAC, only one message
can ever be read by means of FGET in a program run. In the KB header, KDCMSGUS is defined as the user and
KDCMSGLT as the LTERM for this program unit run.

openUTM V7.0. Administering Applications. User Guide.

 144

10 Access rights and data access control

Administration authorization is defined in the UTM generation. It is not bound to a certain person (user ID) or to a
specific location (console). Administration can be carried out through any LTERM partner, regardless of whether
this is in the form of a terminal, UPIC Client, HTTP client or TS application. Furthermore, you can assign
administration authorization to partner applications of your UTM application, allowing you to administer each your
UTM applications from another application. In particular, you can administer a number of applications running on
different computers centrally from one application (see the).chapter "Central administration of several applications"

In addition to general security functions (access via user IDs and the lock/key code and access list concept),
openUTM also provides a special authorizations concept specially for administering a UTM application via the
program interface KDCADMI and via the administration commands.

Authorization level 1

Users, clients and partner applications can call administration services which merely query, collate and analyze the
information offered with regard to objects and application parameters (i.e. which only require access to the read
configuration data) any administration authorization (also referred to as administration privileges). This without
assumes that you have assigned the authorization level ADMIN=READ to the transaction codes via which these
administration services are called.

ADMIN=READ can only be specified in the following cases:

for the commands KDCINF, KDCINFA, KDCHELP and KDCHELPA

for transaction codes which start program runs in which the following calls are issued:

KC_GET_OBJECT

KC_ENCRYPT with =KC_READ_ACTIV_PUBLIC_KEY or subopcode1 subopcode1
=KC_READ_NEW_PUBLIC_KEY

KC_SYSLOG with =KC_INFOsubopcode1

In such cases, program units and transaction codes can be generated as follows:

BS2000 systems

PROGRAM ADMPROG,COMP=ILCS
TAC ADMTAC,PROGRAM=ADMPROG,ADMIN=READ

Unix, Linux and Windows systems

PROGRAM ADMPROG,COMP=C
TAC ADMTAC,PROGRAM=ADMPROG,ADMIN=READ

openUTM V7.0. Administering Applications. User Guide.

 145

Authorization level 2

Administration services which modify the configuration, the application data and object properties (i.e. which require
 access to the configuration data) can only ever be called by user IDs and partner applications write with

administration privileges (PERMIT=ADMIN). The transaction codes for these services must be configured with
ADMIN=YES.

In these cases, program units and transaction codes must be generated as follows:

BS2000 systems

PROGRAM ADMPROG,COMP=ILCS
TAC ADMTAC,PROGRAM=ADMPROG,ADMIN=Y

Unix, Linux and Windows systems

PROGRAM ADMPROG,COMP=C
TAC ADMTAC,PROGRAM=ADMPROG,ADMIN=Y

The following transaction codes must be generated with ADMIN=Y:

all administration commands, apart from KDCINF[A] and KDCHELP[A]

transaction codes which start program runs in which KDCADMI calls other than KC_GET_OBJECT,
KC_ENCRYPT with =KC_READ_ACTIV_PUBLIC_KEY or subopcode1 subopcode1
=KC_READ_NEW_PUBLIC_KEY or
KC_SYSLOG with =KC_INFO are issued:subopcode1

Other program units which call transaction codes with authorization level 2 must run under a user ID which has
administration privileges.

openUTM V7.0. Administering Applications. User Guide.

 146

Example

You can write an administration program which, if it is called by the transaction code ADMTAC1, merely queries
whether a printer is connected to the application. If the same program is called with the transaction code
ADMTAC2, the program unit again uses KC_GET_OBJECT to query whether the printer is connected to the
application. However, if the printer is not connected to the application, the program unit will then also request that a
connection be established to the printer (KC_MODIFY_OBJECT). ADMTAC1 can be called from any user ID and
from any partner application. ADMTAC2, however, can be called only from user IDs and partner applications that
have administration privileges.

The KDCDEF generation would consequently look like this:

BS2000 systems

PROGRAM ADMPROG,COMP=ILCS
TAC ADMTAC1,PROGRAM=ADMPROG,ADMIN=READ
TAC ADMTAC2,PROGRAM=ADMPROG,ADMIN=Y

Unix, Linux and Windows systems

PROGRAM ADMPROG,COMP=C
TAC ADMTAC1,PROGRAM=ADMPROG,ADMIN=READ
TAC ADMTAC2,PROGRAM=ADMPROG,ADMIN=Y

You can then allocate access authorizations in detail using the lock/key code and access list concept.

openUTM V7.0. Administering Applications. User Guide.

 147

10.1 Configuring the administrator connection

The connection via which an administrator performs the local administration of a UTM application can be generated
in different ways. It is possible to generate the connection via

a TPOOL statement

a PTERM and LTERM statement

Recommendation

The connection for the (main) administrator should be generated via a PTERM and an LTERM statement. On the
one hand, this type of connection offers better protection against unauthorized access than an open terminal pool.
On the other, an LTERM that is explicitly generated as an administrator workstation can be identified as privileged
using the following statement:

MAX PRIVILEGED-LTERM = lterm-name

In bottleneck situations, UTM treats a connection generated in this way as privileged in order to make it easier for
an administrator to access applications that are subject to high load.

openUTM V7.0. Administering Applications. User Guide.

 148

10.2 Granting administration privileges

Administration privileges in applications with user IDs

In applications with user IDs, transaction codes for authorization level 2 can only be called under user IDs and
partner applications to which administration privileges were assigned when they were entered in the configuration.
User IDs and partner applications that are to administer the local application must be generated as follows:

USER ADMUS,[PASS=C'.....',PROTECT-PW=(...,....,...)], PERMIT=ADMIN.....
LPAP ADMPA,SESCHA=...,PERMIT=ADMIN....
OSI-LPAP ADMPAO,ASS-NAMES=...,CONTWIN=...,PERMIT=ADMIN....

Administration functions can also be carried out via an OSI TP partner application, if the OSI-LPAP does not have
administration privileges. The application context of the OSI-LPAP must contain the abstract syntax UTMSEC in this
case, and the partner has to pass on a user ID that has administration authorization in the local application.

User IDs with administration privileges can also be dynamically linked into the application configuration.

Applications without user IDs

In applications which do not have user IDs, any user or client that is connected to the application via an LTERM
partner can execute administration commands and other administration TACs. Data access protection for these
services can then only be implemented by means of the lock/key code and access list concept. To do so you will
need to protect the administration commands with a lock code or an access list, and then only allocate a key set
with a suitable key code to clients and terminals (LTERM partners) via which it should be possible to administer
applications. Even in applications without user IDs, partner application can only execute administration functions
with authorization level 2 if they were generated with PERMIT=ADMIN.

openUTM V7.0. Administering Applications. User Guide.

 149

10.3 Generating administration commands

The openUTM administration commands you want to use when running the application must be specified during
KDCDEF generation or they must be entered dynamically into the configuration using WinAdmin, WebAdmin or an
administration program you have written yourself.

To do this you will need to define the administration program KDCADM with a PROGRAM statement and generate
the necessary commands as KDCADM transaction codes.

An exhaustive generation of KDCADM and of all administration commands is given below. Your KDCDEF
generation must only include the TAC statements for those administration commands that you want to use when
running the program. The administration command KDCSHUT must be generated in all cases.

REMARK Generate KDCADM for openUTM on BS2000 systems
PROGRAM KDCADM,COMP=ILCS
REMARK Generate KDCADM for openUTM on Unix, Linux and Windows systems:
PROGRAM KDCADM,COMP=C

REMARK Generate dialog TACs (commands) from KDCADM:

TAC KDCAPPL ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCBNDL ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCDIAG ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCHELP ,PROGRAM=KDCADM,ADMIN=READ "ADMIN=Y is also permitted"
TAC KDCINF ,PROGRAM=KDCADM,ADMIN=READ "ADMIN=Y is also permitted"
TAC KDCLOG ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCLPAP ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCLSES ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCLTAC ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCLTERM,PROGRAM=KDCADM,ADMIN=Y
TAC KDCPOOL ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCPROG ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCPTERM,PROGRAM=KDCADM,ADMIN=Y
TAC KDCSHUT ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCSLOG ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCSWTCH,PROGRAM=KDCADM,ADMIN=Y
TAC KDCTAC ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCTCL ,PROGRAM=KDCADM,ADMIN=Y
TAC KDCUSER ,PROGRAM=KDCADM,ADMIN=Y

TAC KDCMUX ,PROGRAM=KDCADM,ADMIN=Y "only on BS2000 systems"
TAC KDCSEND ,PROGRAM=KDCADM,ADMIN=Y "only on BS2000 systems"

REMARK Generate asynchronous TACs (commands) from KDCADM:

TAC KDCAPPLA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCBNDLA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCDIAGA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCHELPA,PROGRAM=KDCADM,ADMIN=READ,TYPE=A "ADMIN=Y is also permitted"
TAC KDCINFA ,PROGRAM=KDCADM,ADMIN=READ,TYPE=A "ADMIN=Y is also permitted"
TAC KDCLOGA ,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCLPAPA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCLSESA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCLTACA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCLTRMA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCPOOLA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCPROGA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A

openUTM V7.0. Administering Applications. User Guide.

 150

TAC KDCPTRMA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCSHUTA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCSLOGA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCSWCHA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCTACA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCTCLA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A
TAC KDCUSERA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A

TAC KDCMUXA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A "only on BS2000 systems"
TAC KDCSENDA,PROGRAM=KDCADM,ADMIN=Y,TYPE=A "only on BS2000 systems"

As with the ADMIN=READ generation above, the commands KDCINF[A] and KDCHELP[A] can be called from any
user ID and from any partner application. However, you can assign a lock code to these commands (with the
operand LOCK; e.g. LOCK=1). These commands can then only be called from user IDs and partner applications to
which a keyset with the associated keycode (keycode 1) is assigned.

The access list concept provides another way of controlling access to these commands. An access list is assigned
a key set containing a number of key/access codes, which can be for a specific group of commands, for example. If
an access list like this is assigned to a command, only one user can access this command when the key set of the
user’s user ID and the key set of the LTERM partner via which the user is logged in each contain at least one key
/access code that is also contained in the access list of the command.

You can generate the administration commands dynamically by generating the commands required using
KC_CREATE_OBJECT and KC_TAC.obj_type

openUTM V7.0. Administering Applications. User Guide.

 151

11 Program interface for administration - KDCADMI

This chapter describes the C/C++ program interface for administration. The COBOL program interface corresponds
largely to the C/C++ program interface. For this reason, the following interface description will also be useful for
reference if you are writing administration programs in COBOL. COBOL-specific issues that you will need to be
aware of when programming in this language are described in the appendix "Program interface for administration in

.COBOL"

The same C or COBOL data structures are passed to the interface in all of the supported platforms. The data fields
that are irrelevant for an operating system are set to binary zero.

The C data structures are defined on Unix, Linux and Windows systems in the header file and, on kcadminc.h
BS2000 systems, in the include element in the library SYSLIB.UTM.070.C.kcadminc.h

In this chapter you will find:

a general description of a KDCADMI function call and the data areas you must pass to openUTM in the call.

a description of the operations you can execute and the values of the parameters that need to be passed to
openUTM for these operations, as well as the values returned by openUTM, for every KDCADMI operation code.

The descriptions are ordered alphabetically according to the operation codes.

a description of the C data structures used to pass properties of the application objects and application
parameters to the program interface. This chapter begins by describing the data structures for application objects
and continues with descriptions of the data structures for application parameters.

The descriptions are arranged alphabetically by the names of the data structures.

a detailed description of the effect of the KDCADMI call in standalone UTM applications and UTM cluster
applications.

openUTM V7.0. Administering Applications. User Guide.

 152

11.1 Calling the KDCADMI functions

The UTM administration functions provided by the program interface for administration purposes are called using
the KDCADMI function. You can pass pointers to four different data areas to UTM when calling KDCADMI. They are:

the (parameter_area)parameter area

In the parameter area you can tell UTM which operation it is to execute. This means, for example, that you can
instruct UTM to return information on objects or operation parameters of the application, add an object to the
configuration, change the properties of objects or delete an object.
If the operation is to be carried out on a certain object or group of objects, then you must specify the object type
of the object(s) in the parameter area.
Once it has executed or initiated a task to carry out the operation, UTM stores the return code and the length of
the data returned in the parameter area. The return code informs you whether the call was successful or
unsuccessful.

the (identification_area)identification area

You require the identification area to specify the object names if, for example, an object is to be deleted from the
configuration, an object’s properties are to be changed or object properties are to be output. In this case, you will,
in the identification area, need to pass all data required by UTM to uniquely identify the objects to be
administered.

the (selection_area)selection area

In the selection area, you can pass selection criteria to UTM when querying information (see the
KC_GET_OBJECT operation). UTM will then only return information on those objects meeting the selection
criteria.
Example: information on all users currently signed onto the application.

the (data_area)data area

In the data area you can pass to UTM the information that it needs, for example the names and properties of new
objects if you are adding new objects to the configuration.

UTM then returns the requested information to the program in the data area, e.g. when outputting object
properties.

openUTM V7.0. Administering Applications. User Guide.

 153

11.1.1 The KDCADMI function call

A C program which issues KDCADMI calls must always contain an statement referring to the header file or #include
include element . In , the function KDCADMI is declared as follows:kcadminc.h kcadminc.h

void KDCADMI(struct kc_adm_parameter * , /* parameter_area */
 void * , /* identification_area */
 void * , /* selection_area */
 void *); /* data_area */

The KDCADMI function is called as follows:

#include <kcadminc.h>
KDCADMI(¶meter_area,
 &identification_area,
 &selection_area,
 &data_area);

where:

¶meter_area

is the address of the parameter area named .parameter_area

&identification_area

is the address of the identification area named .identification_area

&selection_area

is the address of the selection area named .selection_area

&data_area

is the address of the data area named .data_area

If one of the four areas is not needed for a particular call, then the null pointer must be passed as the address of
that area.

openUTM V7.0. Administering Applications. User Guide.

 154

11.1.2 Description of the data areas to be supplied

This section contains a general description of the parameters and data that can be passed to UTM when calling
KDCADMI.

More detailed information concerning how to assign data to the identification area, selection area, data area and
fields of the parameter area for individual operations can be found in .section "KDCADMI operation codes"

The following symbols have the following meanings:

--> The field is an input field. You can pass information to UTM using this field.

<-- The field is an output field. UTM returns information to the administration program in this field.

Parameter area

You can instruct UTM to perform a specific operation using the parameter area. The , and opcode subopcode1
 fields are provided for this purpose. In the field, you specify the object type of the target object.subopcode2 obj_type

After processing, UTM stores the return code and the length of the data returned in the parameter area. You can
determine if the call was successful or not from the return code.

The parameter area is defined as followed by the structure :kc_adm_parameter

struct kc_adm_parameter

int version;

KC_ADM_RETCODE retcode;

int version_data;

KC_ADM_OPCODE opcode;

KC_ADM_SUBOPCODE subopcode1;

KC_ADM_SUBOPCODE subopcode2;

KC_ADM_TYPE obj_type;

int obj_number;

int number_ret;

int id_lth;

int select_lth;

int data_lth;

int data_lth_ret;

Input fields in the structure (hereafter indicated using the -->character) that are not used must kc_adm_parameter
always be set to binary zero. The , and fields must contain data every time KDCADMI version version_data opcode
is called.

The fields in the data structure have the following meanings:

openUTM V7.0. Administering Applications. User Guide.

 155

-->version

Designates the version of the program interface used by the user program.

The version of the program interface indicates the variant of the program interface and the layout of the
parameter areas passed at call time. You must explicitly specify the version of the program interface on
each call of KDCADMI. So far, only KC_ADMI_VERSION_1 has been defined as a version.

If the variant of the program interface is modified in a subsequent version then the version of the program
interface is increased. If the extensions are compatible and you would like to continue to use the existing
program interface in the new openUTM version then you do not need to adapt your existing
administration programs and can continue to specify the version of the interface as
KC_ADMI_VERSION_1. If you want the administration program to use the new program interface then
you must adapt your programs and specify the program interface version of the current openUTM version
in .version

The interface is designed to be source-compatible across multiple openUTM versions.

<--retcode

In the field, UTM returns the code of the function call.retcode

There are general and function-specific return codes.
The general return codes can be returned by all functions. They are described in ."Return codes"
The function-specific return codes only occur in connection with certain program interface calls, and they
are listed in the relevant call descriptions.

If the entire length of data in the parameter area cannot be accessed, then the KDCS return code in the
return area of the communication area for the service processing the KDCADMI call is assigned '70Z', the
KCRCDC return code is assigned 'A100', and the service is aborted with PEND ER.

The field must be assigned the constant KC_RC_NIL before the function is called.retcode

-->version_data

Version of the data structures used.

The version of the data structures determines the layout of the data structures used. You must specify the
value of explicitly for each KDCADMI call. In openUTM V7.0, the constant version_data
KC_VERSION_DATA_11 should be used for .version_data

If the layout of the data structures is modified to remain object-compatible, KC_VERSION_DATA is not
increased and the program units can run in the new UTM version.

KC_VERSION_DATA (without suffix) always refers to the current version of the data structures.
Programs that want to benefit from the source compatibility of the interface should not use the
constant KC_VERSION_DATA, but for should always specify the version constant version_data
KC_VERSION_DATA_xx for the interface version for which the program was written.
KC_VERSION_DATA_11 is the version valid for openUTM V7.0, while
KC_VERSION_DATA_10 refers to the version valid for openUTM V6.5 for example.

i

openUTM V7.0. Administering Applications. User Guide.

 156

If the layout of the data structures changes in a way that is incompatible in an openUTM version, for
example if the data structures receive new fields and therefore become larger, then the version number of
the data structure is incremented. The constants KC_VERSION_DATA and KC_VERSION_DATA_10 are
defined in the same include file as the data structures. Because the interface is source-compatible,
program units must be only recompiled in this case.

-->opcode, subopcode1, subopcode2

In these fields you tell UTM which action to execute. The field must be assigned a value each opcode
time KDCADMI is called. This field determines which operation will be executed. In the and subopcode1

 fields, you can specify in more detail what action should be taken depending on the value of subopcode2
.opcode

The values you will need to use for to execute certain operations are summarized in the following opcode
table. The operation codes indicated by a (*) are socalled standard operations that are explained in more
detail in the section ."Data structures for object and parameter types"

Function Value of opcode

Replace the entire application program.
 BS2000 systems:

Replace application sections that have been marked for exchange in
the Common Memory Pool.

 Unix, Linux and Windows systems:
In subopcode1 you specify whether the next highest, next lowest or
the current version of the application program is to be loaded.

KC_CHANGE_APPLICATION

Create a UTM dump KC_CREATE_DUMP

Create a new object in the configuration KC_CREATE_OBJECT (*)

Create KDCDEF control statements online
(inverse KDCDEF)

KC_CREATE_STATEMENTS

Delete an object, i.e. remove it from the configuration KC_DELETE_OBJECT (*)

Generate, activate, delete or read RSA key pairs for data encryption ot
the communication with clients

KC_ENCRYPT

Query information on objects and application parameters.
You control the type and amount of detail of information returned
using and .subopcode1 subopcode2

KC_GET_OBJECT (*)

Only in UTM cluster applications:
Permit a new sign-on for all users or for an individual user still
recorded as signed on at a failed node application or who have/has a
service bound to the failed node
application,.
Release cluster user file lock after incorrectly terminated KDCDEF run.

KC_LOCK_MGMT

openUTM V7.0. Administering Applications. User Guide.

 157

Function Value of opcode

Modify object properties or application parameters KC_MODIFY_OBJECT
(*)

Only in UTM cluster applications:
Import TACs, TAC queues and open asynchronous services from a
terminated into a running node application.

KC_ONLINE_IMPORT

Roll back transaction in PTC state. KC_PTC_TA

Only on BS2000 systems:
Send a message to one dialog terminal or to all dialog terminals connected
to the application.

KC_SEND_MESSAGE

Terminate an application run.
Specify how the application is to be terminated (kill, normal termination) in

 and . subopcode1 subopcode2
In the case of UTM cluster applications, specify whether an individual node
application or the complete UTM cluster application is to be terminated.

KC_SHUTDOWN

Establish connections to printers for which messages have been queued. KC_SPOOLOUT

Carry out an operation on the system log file SYSLOG.
You specify which operation is to be executed using .subopcode1

KC_SYSLOG

Update the IP address of an individual or of all communication partners.
On BS2000 systems, the communication partners must be generated with T-
PROT=SOCKET.

KC_UPDATE_IPADDR

Switch to the next generation of the user log file(s) KC_USLOG

The information you may or must supply in the other fields of the parameter area and in the identification
area, selection area and data area are dependent on the passed. For each operation code (value opcode
of), contains a description of the operations that can be opcode section "Calling the KDCADMI functions"
carried out and of the information that the data area must contain to be passed to UTM in order to carry
out these operations. The list is ordered alphabetically according to the operation code.

-->obj_type

The field must contain either the type of the target object or the type of the application parameter obj_type
whose value is queried or is to be changed.

The object or parameter types that you can enter depend on which operation you require, and therefore
on the values in the , and fieldsopcode subopcode1 subopcode2

The two tables below contain the objects and parameter types that are supported for the standard
operations in UTM. Standard operations are:

Display

openUTM V7.0. Administering Applications. User Guide.

 158

Create

Modify

Delete

The column “opcode” in the table contains the operation codes for which each object type or parameter
type can be specified. The following abbreviations are used:

CRE for KC_CREATE_OBJECT (Create)

DEL for KC_DELETE_OBJECT (Delete)

GET for KC_GET_OBJECT (Show)

MOD for KC_MODIFY_OBJECT (Modify)

Object types

Object type Value of obj_type opcode

Abstract syntax for communication via OSI TP KC_ABSTRACT_SYNTAX GET

OSI TP access points for local application KC_ACCESS_POINT GET

Application context for communication via OSI

TP

KC_APPLICATION_CONTEXT GET

Names for the local application that were
generated with KDCDEF (in a BCAMAPPL
statement or in MAX APPLINAME)

KC_BCAMAPPL GET

Only on BS2000 systems:

Names of the Character Sets (CHAR-SET
Statement)

KC_CHARACTER_SET GET

Names and properties of a node application in a
UTM cluster application

KC_CLUSTER_NODE GET, MOD

Connections for distributed processing via LU6.1 KC_CON GET, CRE,
DEL

Database connection KC_DB_INFO GET, MOD

Only on BS2000 systems:
Edit options for screen output in line mode

KC_EDIT GET

Global secondary storage areas for KDCS
program units used to exchange data between
services (GSSB)

KC_GSSB GET

openUTM V7.0. Administering Applications. User Guide.

 159

Object type Value of obj_type opcode

Names and properties of the HTTP descriptors (HTTP-
DESCRIPTOR Statement)

KC_HTTP_DESCRIPTOR GET

Keysets for the application. Keysets determine the
access privileges of clients and users accessing
services and LTERM partners.

KC_KSET GET,
MOD,
CRE, DEL

Load modules of a UTM application on BS2000
systems or the shared objects/DLLs of a UTM
application on Unix, Linux or Windows systems

KC_LOAD_MODULE GET, MOD

LPAP partner for connecting partner applications for
distributed processing via LU6.1

KC_LPAP GET, MOD

Sessions for distributed processing via LU6.1 KC_LSES GET,
MOD,
CRE, DEL

Local transaction codes for services provided by
partner applications for distributed processing via LU6.
1 or OSI TP

KC_LTAC GET,
MOD,
CRE, DEL

LTERM partner for connecting clients and printers KC_LTERM CRE, DEL,
GET, MOD

User-defined message module KC_MESSAGE_MODULE GET

Only on BS2000 systems:

Multiplex connections 1
KC_MUX GET, MOD

Associations with partner applications for distributed
processing via OSI TP

KC_OSI_ASSOCIATION GET

Connections for distributed processing via OSI TP KC_OSI_CON GET, MOD

OSI-LPAP partner for connecting partner applications
for distributed processing via OSI TP

KC_OSI_LPAP GET, MOD

Transactions in PTC state KC_PTC GET

Program units of the UTM application and VORGANG
exits

KC_PROGRAM CRE, DEL,
GET

Clients and printers.
"Clients" can be: terminals, UPIC clients, TS
applications

KC_PTERM CRE, DEL,
GET, MOD

Temporary queues KC_QUEUE GET

Allocation of UTM function keys KC_SFUNC GET

openUTM V7.0. Administering Applications. User Guide.

 160

Object type Value of obj_type opcode

Properties of sign-on procedure KC_SIGNON GET

IP subnets KC_SUBNET GET

Transaction codes for local services and
TAC queues

KC_TAC CRE, DEL,
GET, MOD

TAC classes for the application KC_TACCLASS GET, MOD

LTERM pools for the application KC_TPOOL GET, MOD

Transfer syntax for communication via OSI TP KC_TRANSFER_SYNTAX GET

User IDs of the application, including queues KC_USER CRE, DEL,
GET, MOD

User IDs of the application including their queues
(optimized access for UTM cluster applications)

KC_USER_FIX,
KC_USER_DYN1,
KC_USER_DYN2

GET

openUTM V7.0. Administering Applications. User Guide.

 161

Parameter types

Parameter type Value of obj_type opcode

Current statistics values on the capacity utilization of a UTM
cluster application

KC_CLUSTER_CURR_PAR GET,
MOD

Properties of a UTM cluster application (e.g. name of the cluster
filebase, node application monitoring settings) as well as current
settings (e.g. number of started node applications)

KC_CLUSTER_PAR GET,
MOD

Current settings of the application parameters and statistics
concerning the application capacity utilization

KC_CURR_PAR GET,
MOD

Parameters for diagnosis and UTM Accounting KC_DIAG_AND_ACCOUNT_PAR GET,
MOD

Data for dynamic configuration:
Number of existing and reserved objects, i.e. the total number of
objects available in the individual object tables and the number
of objects that can still be configured dynamically

KC_DYN_PAR GET

Application name, KDCFILE name and maximum values for the
application, such as the size of the cache, size and number of
storage areas for KDCS program units, and the maximum
number of processes permitted for the application

KC_MAX_PAR GET,
MOD

Name, type and format of a user-specific message destination KC_MSG_DEST_PAR GET

Current page pool assignment KC_PAGEPOOL GET

General information on the generated temporary queues:
maximum number of queues, maximum number of messages for
a queue, behavior of full queues.

KC_QUEUE_PAR GET

System parameters:
Type and version of the operating system, name of the computer
and the basic application data (application name, application
with or without distributed processing, etc.)

KC_SYSTEM_PAR GET

Process parameters for the application:
Maximum and current number of application processes as well
as of the processes available for processing asynchronous jobs
and program unit runs with blocking calls.

KC_TASKS_PAR GET,
MOD

openUTM V7.0. Administering Applications. User Guide.

 162

Parameter type Value of
obj_type

opcode

Application timer KC_TIMER_PAR GET,
MOD

Global values for distributed processing, except for the timer defined for
distributed processing

KC_UTMD_PAR GET

Data structures for object and parameter types

For each of the object and parameter types associated with the standard operations, a data structure is
provided in the header file with which you can pass object properties and/or parameter values kcadminc.h
to UTM or get them from UTM. There are also corresponding data structures for some of the operations
that do not form part of the standard operations. The data structures are described in section "Data

. The names of the data structures are created as follows:structures used to pass information"

The data structure " _str" belongs to the object or parameter type " ". For example, the data typ TYP
structure belongs to KC_USER, and to KC_MAX_PAR.kc_user_str kc_max_par_str

A similar principle applies to non-standard operations. E.g. the data structure kc_application_par_str
belongs to the operation code KC_APPLICATION_PAR.

-->obj_number

Number of objects for which the required operation is to be carried out. In you specify the obj_number
number of objects about which UTM is to supply information when information is requested
(KC_GET_OBJECT).

<--number_ret

UTM returns the actual number of objects for which the operation was carried out in .number_ret

-->id_lth

In the field you must specify the length of the identification area passed in the id_lth identification_area
call.
If no identification area is passed, then =0 must be specified.id_lth

-->select_lth

In the field you must specify the length of the data structure that is passed to UTM in the select_lth
selection area . selection_area
If no selection area is passed, then =0 must be specified.select_lth

-->data_lth

In the field you must specify the length of the data area passed in the call or in which data_lth data_area
UTM shall return data.
If no data will be passed in the data area, then =0 must be specified. data_lth

<--data_lth_ret

UTM returns the actual length of the data returned in the data area in the field. data_lth_ret

openUTM V7.0. Administering Applications. User Guide.

 163

Identification area

The identification area is used to identify the target object for the administration operation. All identification_area
objects within a group of a certain object type must be uniquely identified by their .object_name

The following union is provided for passing the object name using the identification area.

union kc_id_area

char kc_name2[2];

char kc_name4[4];

char kc_name8[8];

char kc_name32[32];

struct kc_triple_str triple;

struct kc_long_triple_str long_triple;

struct kc_ptc_id_str ptc_id;

Whether or not an object in the identification area needs to be uniquely specified depends on the function called.

The object name must be specified as follows in order to uniquely identify it:

For the object types KC_CON an KC_PTERM, you must pass the triplet and name, processorname bcamappl-
as the object name to UTM using the union field of type . Here is the name long_triple kc_long_triple_str name

name of the object (for example the PTERM name), is the name of the computer on which the processor-name
object is located, and is the name of the local application via which the connection between the bcamappl-name
object and the application is established.

struct kc_long_triple_str

char p_name[8];

char pronam[64];

char bcamappl[8];

For the object type KC_MUX on BS2000 systems, you must pass the triplet and name, processor-name
as the object name to UTM using the union field of type . Here is the bcamappl-name triple kc_triple_str name

name of the object, is the name of the computer on which the object is located, and processor-name bcamappl-
 is the name of the local application via which the connection between the object and the application is name

established.

struct kc_triple_str

char p_name[8];

char pronam[8];

char bcamappl[8];

openUTM V7.0. Administering Applications. User Guide.

 164

For an LTERM pool (object type KC_TPOOL) you must pass the LTERM prefix, from which the names of the
LTERM partners in the LTERM pool can be created, as the object name. The LTERM prefix must be passed to
UTM using the union field.kc_name8

For the object type KC_TACCLASS you must pass the TAC class number as the object name using the
union field if the function call applies to a particular TAC class. Otherwise specify binary 0 to indicate kc_name2

that the call applies to all TAC classes.

For the object type KC_DB_INFO you must adopt the identification of the database () as the object name in db_id
the union element if the function call is to be valid for a particular database. is a number and kc_name2 db_id
represents the databases in the order in which they were generated in the KDCDEF run.

For load modules, shared objects, DLLs (object type KC_LOAD_MODULE) and program units (KC_PROGRAM),
pass the name specified at generation using the union fieldkc_name32 .

For the object type KC_SFUNC (UTM function keys) you must pass the short description of the function key as
the object name in the union element .kc_name4

For the function KC_PTC_TA (roll back a transaction in PTC state), you must fill the union element kc_ptc_id_str
with the values from the structure . You can get the content of by first calling ptc_ident ptc_ident
KC_GET_OBJECT with object type KC_PTC.

The data structure is defined as follows:kc_ptc_id_str

struct kc_ptc_id_str

char vg_indx[10];

char vg_nr[10];

char ta_nr_in_vg[5];

For the remaining object types, pass the object name specified at generation using the union field if kc_name8
the function call applies for a particular object. Otherwise specify binary 0 to indicate that the call applies to all
objects of this type.

If the identification area is not supported for a call, then you must set the area address to the null pointer. You must
then set =0 in the parameter area.id_lth

Selection area

In the selection area you can pass a data structure containing selection criteria to UTM when querying information
(operation code KC_GET_OBJECT). UTM then returns only the names and properties of the objects of the
specified object type which meet the selection criteria.
The selection criteria must be passed in the data structure defined in for that object type (). In kcadminc.h obj_type
the data structure you must set the search values for the fields to be used for selection.

Example

You would like to query information on which user IDs are currently signed on as users or clients. To do this,
you specify the value 'Y' in the field in the data structure in the selection area. connect_mode kc_user_str

openUTM V7.0. Administering Applications. User Guide.

 165

If several selection criteria are specified simultaneously, then only those objects meeting all of the selection criteria
will be returned. The remaining fields in the structure must be set to binary zero. The selection criteria that can be
used in a search can be found in the description of KC_GET_OBJECT starting from section "Selection area" in

 .chapter "KC_GET_OBJECT - Query information"

If you want to pass selection criteria, then when calling KDCADMI, you must pass the address of the selection area
and, in the field in the parameter area, specify the length of the data structure passed in the selection select_lth
area.

If the selection area is not used for a call, then you must set the area address to the null pointer. &selection_area
You must then set =0 in the parameter area.select_lth

Data area

The data area is used to pass object properties, parameter values and information to or from UTM. The structure of
the data depends on the operation code and on the type of the target object.

If data is to be passed in the data area during a KDCADMI call, then you must pass the address of the data area
and set the field of the parameter area to the length of the data structure passed in the data area.data_lth

If information is queried which is to be stored in the data area, then you must, when calling KDCADMI, pass the
address of the data area you have provided to store the return data and set the field of the parameter area data_lth
to the length of this data area.

If the data area is not used in a call, then you must pass the null pointer as the address of the area. You must then
set =0 in the parameter area.data_lth

The data area must not exceed 16 MB.

openUTM V7.0. Administering Applications. User Guide.

 166

11.1.3 Return codes

The KDCADMI return code consists of a main code and a subcode. The main code tells you whether the requested
function has been executed or whether the execution has been initiated in a task (return code KC_MC_OK), or
whether execution could not be carried out (return code not equal to KC_MC_OK). The subcode contains further
information pertaining to the main code returned if the subcode is not equal to KC_SC_NO_INFO.

The code is returned in the following data structure:

typedef struct
{ KC_MAINCODE mc;
 KC_SUBCODE sc;
} KC_ADM_RETCODE;

UTM returns the code in the field of the parameter area. If it is not possible to access the entire length of the retcode
parameter area or if the area is not oriented toward word boundaries, then UTM sets the return code KCRCCC=70Z
and the return code KCRCDC=A100 in the return code area of the communication area. The service is aborted with
PEND ER.

Both the main codes and the subcodes are defined as enumeration type () in the header file. KDCADMI enum
therefore returns a numeric constant.

In order to facilitate the diagnostics process when an error occurs, you can have the main codes and the subcodes
listed in the form of strings (e.g. "KC_MC_OK"). For this, in your program, you must define the symbolic name
KC_ADM_GEN_STRING using the #define statement before you include .kcadminc.h

#define KC_ADM_GEN_STRING
#include kcadminc.h

General return codes (independent of operation codes)

The following table lists the return codes that can be returned for any operation (i.e. for all operation codes)
executed using KDCADMI. Other return codes only arise in conjunction with certain operation codes. These return
codes are listed in the descriptions of the individual operation codes.

Main code = KC_MC_OK

The function was executed or a task was initiated to execute the function.

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_VERS_DATA_NOT_SUPPORTED

A version of the data structure which is not supported by UTM was specified in the field of the version_data
parameter area.

Subcode:

KC_SC_NO_INFO

openUTM V7.0. Administering Applications. User Guide.

 167

Main code = KC_MC_VERSION_NOT_SUPPORTED

A version of the program interface which is not supported by UTM was specified in the field of the version
parameter area.

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_AREA_INVALID

One of the data areas passed in a KDCADMI call cannot be accessed over its entire length because, for
example, the area address is invalid or the required length of the area is not allocated.

Subcodes:

KC_SC_ID_AREA

The identification area cannot be accessed over its entire length.

KC_SC_SEL_AREA

The selection area cannot be accessed over its entire length.

KC_SC_DATA_AREA

The data area cannot be accessed over its entire length,
or the address of the parameter area is within the data area.

Main code = KC_MC_NO_ADM_TAC

The transaction code that initiated the administration call does not have the privileges required to execute
the operation requested (administration privileges or ADM-READ privileges)

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_PAR_INVALID

An invalid value was specified or a field was not set in the parameter area.

Subcodes:

KC_SC_RETCODE

The field of the parameter area was not set to KC_RC_NIL.retcode

KC_SC_OPCODE

The operation code specified in the field of the parameter area is invalid.opcode

KC_SC_SUBOPCODE1

The operation modifier specified in the field of the parameter area is invalid.subopcode1

openUTM V7.0. Administering Applications. User Guide.

 168

KC_SC_SUBOPCODE2

The operation modifier specified in the field of the parameter area is invalid.subopcode2

KC_SC_TYPE

The object type specified in the field of the parameter area is invalid.obj_type

KC_SC_NUMBER

The number of objects specified in the field of the parameter area is invalid.obj_number

KC_SC_ID_LTH

The length specified in the field of the parameter area is invalid.id_lth

Possible reasons:

id_lth is not equal to the length of the name field for the object type.

id_lth > 0, although no identification area may be passed.

KC_SC_SELECT_LTH

The length specified in the field of the parameter area is invalid.select_lth

Possible reasons:

select_lth is not equal to the length of the data structure for the object type.

select_lth > 0, although selection is not allowed.

KC_SC_DATA_LTH

The length specified in the field of the parameter area is invalid.data_lth

Possible reasons:

data_lth is not equal to the length of the data structure for the object type or, for KC_GET_OBJECT, it is
smaller than * length of the data structure for the object obj_number
type.

data_lth > 0, but no data area was passed.

data_lth > 16 MB.

KC_SC_NUMBER_RET

The field of the parameter area was not set to binary zero. number_ret

KC_SC_DATA_LTH_RET

The field of the parameter area is not set to binary zero. data_lth_ret

openUTM V7.0. Administering Applications. User Guide.

 169

Main code = KC_MC_FUNCT_NOT_SUPPORTED

The operation requested is not supported by the operating system or by the version of the operating system
under which the application is running.
This return code is returned by UTM when, for example, an operation has been requested in a UTM
application on Unix, Linux or Windows systems that is only defined for UTM applications on BS2000
systems.

Subcode:

KC_SC_NO_INFO

openUTM V7.0. Administering Applications. User Guide.

 170

11.1.4 Supplying the fields of the data structure with data when passing data

The data structure fields used in the identification area, selection area and data area to pass data between UTM
and the administration programs are all of the type "char". The square brackets following the name of the field
contain the length of the field. If there are no square brackets, then the field is one byte long.

The following points should be observed when passing data between an administration program and UTM:

Names and keywords must be left-justified and any bytes left over to the right must be padded with spaces.
The data passed to UTM can only contain uppercase letters, except for object names.

Object names can also contain lowercase letters. The letters are not converted to uppercase. The requirements
specified in must be observed when creating new objects section “Format and uniqueness of object names”
using KC_CREATE_OBJECT.

Example: The () field is 8 bytes long. =APPLI would be stored as follows: APPLI ptype kc_pterm_str ptype bbb
where means blank.b

The numerical data returned by UTM is stored right-justified with leading spaces. Left- and right-justified
numerical data is accepted when data is passed from an administration program to UTM. Right-justified entries
with leading spaces or zeroes are accepted. Left-justified entries can be terminated by the null byte (\0, if the
field is sufficiently large) or padded with blanks.

Example: The field () is 10 bytes long. =155 can for example be passed conn_users kc_max_par_str conn_users
as follows:
' 155' or '0000000155' or '155\0' or '155 ' where means blankbbbbbbb bbbbbbb b

Fields in the data structures in which no values are passed must be supplied with binary zeroes.

openUTM V7.0. Administering Applications. User Guide.

 171

1.

2.

3.

4.

11.2 KDCADMI operation codes

In this section you will find an overview of the parameters you need to pass to UTM depending on the operation you
wish to execute. The descriptions are organized according to the operation codes passed in the field of the opcode
parameter area and are listed in alphabetical order.

Description format

The description of an operation code consists of four parts:

The first part offers a general outline of the actions that can be executed, a list of the requirements that must be
fulfilled so that UTM can execute the relevant action, and notes and special cases to consider when executing
the actions.

If changes are made to the configuration and the properties then information is provided concerning the period
during which the performed modifications will remain effective and whether these changes have a global or
local effect for UTM cluster applications.

If the administration function or a portion of the function described can also be executed by means of an
administration command (KDCADM transaction code), then the following symbol is used to indicate this
command:

The second part is a table containing a short description of which areas (parameter, identification, selection or
data area) require data for each action, and of the data that must be specified in these areas.

The third part consists of a schematic representation of the call, containing all optional and mandatory entries
and the information that is returned by UTM. Fields requiring data before the call is made are shaded gray in
the graphics. All fields in the parameter area that are not listed in the tables must be set to binary zero before
you call KDCADMI.

The symbol "—" in a table means that no data needs to be passed to UTM in this area.

The fourth part contains comments and notes on the graphic, i.e. regarding the entries that need to be made
and the information that is returned by UTM.

openUTM V7.0. Administering Applications. User Guide.

 172

11.2.1 KC_CHANGE_APPLICATION- Exchange application program

You can initiate the exchange of the entire application program during the application run using
KC_CHANGE_APPLICATION. In this way, you can exchange program units and add new program units to the
application program without having to terminate the application. See the openUTM manual “Using UTM
Applications” for more information on exchanging programs.

You can carry out the following operations using KC_CHANGE_APPLICATION:

Terminate a UTM application on a BS2000 system that was generated with load modules in all processes and
reload it.

You will need this function to exchange load modules in a common memory pool. During a reloading, the current
version of the load module i loaded that has been previously specified with a KC_MODIFY_OBJECT call for the
object type KC_LOAD_MODULE.

In addition, termination of the application program in all processes and a subsequent reload will unload all load
modules generated with the load mode set to ONCALL.

Only =KC_NEW and KC_SAME are possible. KC_SAME has the same effect as KC_NEWsubopcode1

An entire UTM application program on Unix, Linux or Windows systems can be exchanged (subopcode1
=KC_NEW) by the application program of the next highest file generation in the file generation directory filebase
/PROG (= base name of the application).filebase

You can also undo program exchange using KC_CHANGE_APPLICATION, meaning you can switch back to the
previously loaded application program (=KC_OLD) or you can reload the application program (subopcode1

=KC_SAME) without switching to another file generation.subopcode1

The following requirements must be met:

For UTM applications on a BS2000 system generated with load modules, you need to mark the parts of the
application that are in a common memory pool and are to be exchanged beforehand using
KC_MODIFY_OBJECT calls and the KC_LOAD_MODULE object type (see)."obj_type=KC_LOAD_MODULE"

When exchanging a UTM application program on Unix, Linux or Windows systems, the different versions of the
application program (including the version currently loaded) should be administered using the UTM tool
KDCPROG in the file generation directory /PROG. The file generation directory must have been created filebase
using KDCPROG (KDCPROG CREATE).

If the file generation directory /PROG does not exist, UTM will reload the application program filebase filebase
/utmwork (on Unix or Linux systems) or \utmwork (on Windows systems).filebase

The program exchange is described in the openUTM manual “Using UTM Applications”.

The following points should be noted when exchanging the application program:

The program units added to the new application program must have been defined at the time of the KDCDEF
generation or they must have been dynamically configured by means of administration functions.

No previously existing program units may be missing in the new application program. Jobs accepted for a
transaction code for which no program unit exists after program exchange will be terminated abnormally (PEND
ER) by UTM during execution.

openUTM V7.0. Administering Applications. User Guide.

 173

Procedure / period of validity / transaction logging / cluster:

The call initiates program exchange, meaning that a job is created to exchange the programs. The exchange itself
will not have been completed when control is returned to the program unit. Program exchange is not subject to
transaction logging - it cannot be undone in the same transaction by following it up with a RSET call.

Each process in the application program is exchanged individually. This is done by terminating the application
program running for this process and then loading the new application program. The application program is only
exchanged for one process at a time in order to avoid having to interrupt operations to implement program
exchange. While the application program is being exchanged for a given process, jobs from other processes are
also being processed concurrently. These jobs may then contain processes in which the old application program is
still running. This leads to a situation where jobs are processed by both the old and the new application programs
during the exchange phase.

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The call applies globally to the cluster, i.e. the application exchange is initiated in every running node application.

After the job has been processed, UTM sends you a UTM message informing you of the success or failure of the
program exchange procedure. UTM sends the UTM message K074 if program exchange was carried out
successfully. If UTM could not execute the program exchange, then it sends UTM message K075. If an error
occurred, then UTM message K078 is sent in addition to K074 or 075. UTM message K078 contains the cause of
the error as an insert.

KDCAPPL (), PROG operand"KDCAPPL - Change properties and limit values for an operation"

openUTM V7.0. Administering Applications. User Guide.

 174

Data to be supplied

Function of the call Data to be entered in the

parameter
 area 1

identification
area

selection

area

data area

In UTM application on Unix, Linux
and Windows systems with Shared
Objects/ DLLs:
Exchange the current application
program with the next highest version
of the application program

subopcode1:
KC_NEW

—— ——

——

(A pointer to a data
area to which UTM can
return data must be
passed in the call.)

In UTM application on Unix, Linux
and Windows systems with Shared
Objects/ DLLs:
Undo program exchange, i.e.
exchange the current application
program with the next lowest version
of the application program

subopcode1:
KC_OLD

—— ——

In UTM applications on Unix, Linux
and Windows systems with Shared
Objects/DLLs:
Reload application program from the
same file generation.

subopcode1:
KC_SAME

—— ——

In UTM applications on BS2000
systems with load modules:
Terminate the application program in
all processes and then restart it in
order to exchange parts of the
application in the common memory
pool. Static application parts can
therefore also be exchanged when
the application is linked before.

subopcode1:
KC_NEW /
KC_SAME

—— —— ——

1 The operation code KC_CHANGE_APPLICATION must be specified in the parameter area in all cases.

openUTM V7.0. Administering Applications. User Guide.

 175

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_11

opcode KC_CHANGE_APPLICATION

subopcode1 KC_NEW / KC_SAME / KC_OLD (Unix, Linux and Windows systems)

id_lth 0

select_lth 0

data_lth Length of the data area / 0

Identification area

—

Selection area

—

Data area

—

KDCADMI call

KDCADMI (¶meter_area, NULL, NULL, &data_area)

openUTM V7.0. Administering Applications. User Guide.

 176

Data returned by UTM

Parameter area

Field name Contents

retcode Return codes

data_lth_ret Actual length of the data in the data area

Data area

Data structure kc_change_application_str / —

subopcode1

You can use to set which type of program exchange is to be executed. The following types of subopcode1
exchanges can be carried out:

KC_NEW When exchanging a UTM application on a Unix, a Linux or a Windows system, UTM loads the
application program from the next highest file generation.

For a UTM application on a BS2000 system generated with load modules, UTM terminates the
application program successively in all processes and reloads it again immediately. The current
version of each of the load modules is loaded, meaning that the load modules in the common
memory pool marked in KC_MODIFY_OBJECT calls are exchanged.

Static application parts can therefore also be exchanged when the application is linked before.

KC_OLD When exchanging a UTM application on Unix, Linux or Windows systems, UTM loads the
application program from the next lowest file generation.

In this way, the old application program can be reloaded if errors are detected in the application
program after switching to a new file generation.

KC_SAME On Unix, Linux and Windows systems, openUTM loads the application program from the same
file generation.

On BS2000 systems, KC_SAME has the same effect as KC_NEW.

data_lth

in the field you specify the length of the data area provided to contain the data returned by UTM.data_lth

When exchanging a UTM application on Unix, Linux or Windows systems, you must specify >= sizeof (data_lth
).kc_change_application_str

You must pass a pointer to the data area in the function call.

When exchanging a UTM application program under a BS000 system generated with load modules, you must
set =0. UTM does not return any data. data_lth

openUTM V7.0. Administering Applications. User Guide.

 177

retcode

in the field UTM stores the return code of the call. In addition to the return codes listed in retcode section
, the following codes can also be returned when the application program has been exchanged:"Return codes"

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_NOT_CHANGEABLE

The application was started in the dialog. Program exchange is not possible.

KC_SC_FILE_ERROR (only on Unix, Linux and Windows systems)

An error occurred while accessing the file generation of the application program to be loaded. UTM
produced UTM message K043 with the DMS return code.

KC_SC_NOT_GEN (only on BS2000 systems)

The UTM application is gererated without load modules.

KC_SC_NO_GLOB_CHANG_POSSIBLE

Only in UTM cluster applications:
No global administration changes are possible since the generation of the node applications is not
consistent at present.

KC_SC_JFCT_RT_CODE_NOT_OK

Only for UTM cluster applications:
Internal UTM error
Please contact system support.

Main code = KC_MC_REJECTED_CURR

The call cannot be processed at the current time.

Subcode:

KC_SC_CHANGE_RUNNING

A program exchange is already being executed, meaning a program exchange started earlier is not yet
complete.

KC_SC_INVDEF_RUNNING

Only for UTM cluster applications:
An inverse KDCDEF is currently running, i.e. the job cannot be processed at present.

openUTM V7.0. Administering Applications. User Guide.

 178

Maincode = KC_MC_RECBUF_FULL

Subcode:

KC_SC_NO_INFO

Only for UTM cluster applications:
The buffer containing the restart data is full (see openUTM manual “Generating Applications”, KDCDEF
control statement MAX, RECBUF parameter).

data_lth_ret

In the field of the parameter area, UTM returns the actual length of the data in the data area.data_lth_ret

Data area

When exchanging a UTM application on Unix, Linux or Windows systems, UTM returns the data structure
 to the data area if a pointer to a data area was passed in the KDCADMI call.kc_change_application_str

struct kc_change_application_str

char program_fgg_new[4];

char program_fgg_old[4];

program_fgg_new

UTM returns the file generation number of the application program loaded as a result of
program exchange.

program_fgg_old

UTM returns the file generation number of the application program loaded before program
exchange was executed.

openUTM V7.0. Administering Applications. User Guide.

 179

11.2.2 KC_CREATE_DUMP - Create a UTM dump

KC_CREATE_DUMP allows you to create a UTM dump for diagnostic purposes (with REASON=DIAGDP) without
having to abort the application run.

The dump is created by the process that initiated the KDCADMI call.

Procedure / period of validity / transaction management / cluster

The call is not subject to transaction management. It has an immediate effect. The operations initiated by the call
will already have been completed when control is returned to the program unit.

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The call applies locally to the node, i.e. a UTM dump for diagnostic purposes is only generated in this node
application.

KDCDIAG (), DUMP operand"KDCDIAG - Switch diagnostic aids on and off"

Data to be supplied

Function of the call Data to be entered in the

parameter area identification area selection area data area

Create a UTM dump KC_CREATE_DUMP —— —— ——

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_11

opcode KC_CREATE_DUMP

id_lth 0

select_lth 0

data_lth 0

Identification area

—

Selection area

—

openUTM V7.0. Administering Applications. User Guide.

 180

Data area

—

KDCADMI call

KDCADMI (¶meter_area, NULL, NULL, NULL)

Data returned by UTM

Parameter area

Field name Contents

retcode Return codes

UTM only returns the codes listed in .section "Return codes"

openUTM V7.0. Administering Applications. User Guide.

 181

11.2.3 KC_CREATE_OBJECT - Add objects to the configuration

KC_CREATE_OBJECT allows you to add the following objects dynamically to the application configuration:

transport connections to remote LU6.1 applications (KC_CON)

key sets (KC_KSET)

LU6.1 sessions (KC_LSES)

transaction codes by means of which service programs are started in partner applications (KC_LTAC)

an LTERM partner to connect clients and printers (KC_LTERM)

application program units and VORGANG exits (KC_PROGRAM)

clients and printers (KC_PTERM)

transaction codes and TAC queues (KC_TAC)

user IDs, including their queues (KC_USER)

Exactly one object can be created per KC_CREATE_OBJECT call. Within any given program unit, however,
KC_CREATE_OBJECT can be called several times, i.e. several objects with the same type or with different object
types can be created.

You will find more detailed information on dynamically adding objects to the configuration in chapter "Changing the
.configuration dynamically"

Requirements for dynamically adding an object

During KDCDEF generation of the UTM application, RESERVE was used to reserve spaces in the table for the
object type; one of these spaces in the table is still empty. You can determine if there are still free spaces
available in the table for the corresponding object type using KC_GET_OBJECT and the KC_DYN_PAR
parameter type.

You can only add application program units and VORGANG exits dynamically if the application was generated
with load modules (BS2000 systems) or shared objects/DLLs (Unix, Linux and Windows systems). The program
unit or VORGANG exit must be created by a compiler for which a program unit has already been statically
configured (PROGRAM statement) during the KDCDEF generation.

Only on BS2000 systems: For ILCS-capable compilers, it is sufficient to statically generate a program unit with
COMP=ILCS.

Transaction codes for program units that use an X/Open program interface can only be added dynamically if at
least one transaction code for an X/Open program unit was configured during the KDCDEF generation.

User IDs can only be configured dynamically if the application was generated with user IDs.

Note for BS2000 systems:

User IDs with ID cards or can only be added dynamically if space in the table was reserved explicitly for user
IDs with ID cards during the KDCDEF generation, and if one of these table spaces is still free.

openUTM on Windows systems does not support any printers.i

If an object which can be dynamically generated in a (Unix, Linux and Windows UTM cluster application
systems) has to be deleted then you must always delete it using the administration functions. These
objects cannot be deleted simply by means of a regeneration.

i

openUTM V7.0. Administering Applications. User Guide.

 182

You can only dynamically enter user IDs with Kerberos authentication if table spaces for user IDs with
Kerberos authentication have been reserved explicitly and if one of these spaces is still free.

The following must be observed when adding new objects / cluster

Certain rules must be observed when adding objects that are related to each other. These rules are described in
. The following are examples of objects that are related to each chapter "Changing the configuration dynamically"

other:

transaction codes and the program units and VORGANG exits assigned to them

clients/printers and the associated LTERM partners and the connection user IDs or user IDs for the automatic
KDCSIGN

key sets referenced by user IDs, LTERM partners and transaction codes

Procedure / period of validity / transaction management / cluster

The call is subject to transaction management. Until the transaction has been completed, a dynamically created
object can only be accessed within the transaction itself. Applicationwide access is only possible after the
transaction has been completed. In particular, the object can only be manipulated by means of administration
functions after the transaction has been completed (this includes information queries). Within the same transaction,
the object can only be accessed when adding additional objects that are related to it.

The call’s effects extend beyond the end of the current application run. This means that objects added dynamically
are also part of the configuration for later application runs (as long as the objects are not deleted again).

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The call applies globally to the cluster, i.e. the objects are dynamically entered in the configuration in all the node
applications.

Data to be supplied

Function of the call Data to be entered in the

parameter area 1 identification
area

selection
area

data area

Add transport connections to the
remote LU6.1 application to the
configuration

obj_type:
KC_CON

—— —— Data structure kc_con_str
with the name and
properties of the partner
and the connection

Add key set to the configuration obj_type:
KC_KSET

—— —— Data structure kc_kset_str
with the name and
properties of the key set

openUTM V7.0. Administering Applications. User Guide.

 183

Function of the call Data to be entered in the

parameter area 1 identification
area

selection
area

data area

Add LU6.1 session to the
configuration

obj_type:
KC_LSES

—— —— Data structure kc_lses_str
with the name and
properties of the partners
involved

Add transaction code by means
of which service programs are
started in partner applications to
the configuration

obj_type:
KC_LTAC

—— —— Data structure kc_ltac_str
with the name and
properties of the LTAC and
the partner

Add an LTERM partner to the
configuration

obj_type:
KC_LTERM

—— —— Data structure kc_lterm_str
with the name and
properties of the LTERM
partner

Add a program unit or
VORGANG exit to the
configuration

obj_type:
KC_PROGRAM

—— —— Data structure
with the kc_program_str

name and properties of the
program unit or VORGANG
exit

Add a client/printer (PTERM) to
the configuration

obj_type:
KC_PTERM

—— —— Data structure
with the kc_pterm_str

name and properties of the
client/printer

Add a transaction code
or TAC queue to the
configuration

obj_type:
KC_TAC

—— —— Data structure kc_tac_str
with the name and
properties of the
transaction code or TAC
queue

Add a user ID (including queue)
to the configuration

obj_type:
KC_USER

—— —— Data structure kc_user_str
with the name and
properties of the user ID
and queue

1 The operation code KC_CREATE_OBJECT must be specified in the parameter area in all cases.

openUTM V7.0. Administering Applications. User Guide.

 184

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_11

opcode KC_CREATE_OBJECT

obj_type Object type

obj_number 1

id_lth 0

select_lth 0

data_lth Length of the data in the data area

Identification area

—

Selection area

—

Data area

Data structure of the object type

KDCADMI call

KDCADMI (¶meter_area, NULL, NULL, &data_area)

Data returned by UTM

Parameter area

Field name Contents

retcode Return codes

openUTM V7.0. Administering Applications. User Guide.

 185

obj_type

In the field you must specify the type of object to be created. You can specify the following object obj_type
types:

KC_CON, KC_KSET, KC_LSES, KC_LTAC, KC_LTERM, KC_PROGRAM, KC_PTERM, KC_TAC, KC_USER.

obj_number

Only one object can be created per call. Therefore you must set = 1.obj_number

data_lth

In the field you specify the length of the data structure you are passing to UTM in the data area.data_lth

Data area

You must pass a data structure in the data area containing the name of the new object and the properties to
be assigned to this object. A unique data structure is provided for each individual object type, and you must
place this data structure in the data area.

The tables on the following pages as of contain descriptions of the data structures as a "obj_type=KC_CON"
function of the type of the object to be created. The table shows you which fields in the relevant data structure
must be supplied with data.

The entries in the first column of the table have the following meanings:

o Supplying the field with data is optional

m Supplying the field with data is mandatory

(m) Supplying the field with data may be mandatory, depending on the data you have entered for the other
mandatory parameters or at the level of the operating system under which the UTM application is
running.

Fields in the data structures that you have not explicitly specified must be set to binary zero. UTM will use the
default values for these fields. You can find the default values listed in the descriptions of the data structures in

.section "Data structures used to pass information"

retcode

In the field UTM outputs the return codes of the call, see .retcode "Returncodes"

openUTM V7.0. Administering Applications. User Guide.

 186

11.2.3.1 obj_type=KC_CON

In order to create a new LU6.1 transport connection to a remote application, you must place the data structure
 in the data area.kc_con_str

The following table shows how the fields in the data structure are to be supplied with data.

Field name 1 Meaning

m co_name[8] Name of the partner application with which there is to be communication via
the logical connection. For the format of the name see the section "Format

.and uniqueness of object names"

BS2000 systems:
 can be either the BCAM name of a UTM partner application (in the co_name

case of a homogeneous link) or the name of a TRANSIT application (in the
case of a heterogeneous link).

Unix, Linux and Windows systems:
You must specify the T-selector which the partner application uses to sign on
to the transport system for .co_name
The first character must be a letter.

m o2 3 pronam_long[64]

Name of the partner system.

For you specify the name of the processor on which the pronam_long
partner application runs. This is the name of a Unix, Linux, co_name
Windows or BS2000 system.
The complete host name (FQDN) under which the host is known in the DNS
has to be specified. The name can be up to 64 characters long.
Instead of a 64 character FQDN name, a short local name (on BS2000
systems: BCAM name) of the partner computer may be used (max. 8
characters). In this case, it must be possible for the transport system to map
the local name to an FQDN name or an IP address using external additional
information (in BS2000 systems: FQDN file, in Unix, Linux or Windows
systems: hosts file).

o bcamappl[8] Specifies a name of the local application, as defined at generation in the
control statement MAX or BCAMAPPL. A BCAMAPPL name for which T-
PROT=SOCKET is generated must not be specified.

Default: If nothing is specified, the primary application name in MAX ...,
APPLINAME= applies.

openUTM V7.0. Administering Applications. User Guide.

 187

Field name 1 Meaning

m lpap[8] Name of the LPAP partner of the partner application to which the connection is to be set
up. The name of the LPAP partner by means of which the partner application obtains a
connection must have been defined by means of the LPAP statement at generation.

By creating a number of CON objects with the same LPAP name, parallel connections to
the partner application are configured. You must ensure that the parallel connections lead
to the same partner application (and).co_name pronam

o termn[2] Identifier for the type of the communication partner with a maximum length of 2
characters. is not queried by UTM; it is set by the user for evaluation purposes in termn
order, for example, to query or group terminal types. The identifier is entered in the termn
KB header for job-receiving services (i.e. for services started in the local application by a
partner application).

o3 listener_port[5] Port number of the partner application.

BS2000 systems:
A port number not equal 0 may only be specified, if the local application specified in the
bcamappl parameter was not generated with T-PROT=NEA.

o3 t_prot Only on Unix, Linux and Windows systems:
Contains the address format with which the partner application signs on to the transport
system. The address format is specified as follows:

'R' RFC1006, ISO transport protocol class 0 via TCP/IP and RFC1006 convergence
protocol.

o3 tsel_format Only on Unix, Linux and Windows systems:
Contains the format indicator of the T-selector of the partner address:

'T' TRANSDATA format

'E' EBCDIC character format

'A' ASCII character format

The significance of the address formats is described in the "PCMX documentation"
.(openUTM documentation)

1 All fields of the data structure that are not listed and all the fields that are not relevant to the operating system used are to be kc_con_str

set to binary zero. The data structure is described in full in chapter ."kc_con_str - LU6.1 connections"

2 Mandatory on BS2000 systems

3 Optional on Unix, Linux and Windows systems

openUTM V7.0. Administering Applications. User Guide.

 188

11.2.3.2 obj_type=KC_KSET

In order to create a new key set, you have to place the data structure in the data area. The following kc_kset_str
table shows how the fields in the data structure are to be supplied with data.

Field name 1 Meaning

m ks_name[8] Name of the key set.

o master Specifies whether the key set is a master key set. A master key set contains all the key
or access codes required to access the objects of the application (i.e. all key codes
between 1 and the maximum value defined at KDCDEF generation in MAX
KEYVALUE).

'Y' The key set is a master key set.

'N' The key set is not a master key set.

o keys[4000]

In this field you select the key or access codes to be assigned to this key set. Only
keys up to the maximum value generated (MAX KEYVALUE) can be selected.
For each key to be contained in the key set, the corresponding byte in the field must be
set to 1; all the fields that are not selected must contain the value 0. If the key 10 keys
is to be created, for example, keys[9] must contain the value 1 (note: the array begins
with an index of 0).
A recovery buffer size of at least 16,500 bytes is recommended for 4,000 keys (MAX
generation statement, RECBUF parameter).

1 All fields of the data structure that are not listed and all the fields that are not relevant to the operating system used are to be kc_kset_str

set to binary zero. The data structure is described in full chapter .in "kc_kset_str - Key sets of the application"

openUTM V7.0. Administering Applications. User Guide.

 189

11.2.3.3 obj_type=KC_LSES

In order to create a new LU6.1 session, you must place the data structure in the data area. The kc_lses_str
following table shows how the fields in the data structure are to be supplied with data.

Field name 1 Meaning

m ls_name[8]

This is the name of the session in the local application (local half-session name).

The specified name must be unique and may not be assigned to any other object of
name class 2. See also the .section "Format and uniqueness of object names"

m lpap[8] Name of the LPAP partner assigned to the partner application. is used for ls_name
communication with the partner application assigned to the LPAP partner in the lpap
local application.

o rses[8] This is the name that describes the session in the remote application (remote half-
session name). The name can be up to 8 characters long.

1 All fields of the data structure that are not listed and all the fields that are not relevant to the operating system used are to be kc_lses_str

set to binary zero. The data structure is described in full in chapter ."kc_lses_str - LU6.1 sessions"

openUTM V7.0. Administering Applications. User Guide.

 190

11.2.3.4 obj_type=KC_LTAC

In order to create a new transaction code by means of which service programs can be started in partner
applications, you must place the data structure in the data area. The following table shows how the kc_ltac_str
fields in the data structure are to be supplied with data.

Field name 1 Meaning

m lc_name[8] Name of a local transaction code for the remote service program.

o lpap[8] Specifies the partner application to which the service program belongs. containslpap

the name of the LPAP or OSI-LPAP partner assigned to the partner application,

or the name of a master LPAP partner.

If is not specified, the name of the partner application must be specified in the APRO lpap
function call (in the KCPA field).

o rtac[64] The name of the associated transaction code in the remote application

().recipient_TPSU_title

o rtac_lth[2] Specifies the length of the name . The number of relevant bytes is specified in . rtac rtac
Minimum value: '1', maximum value: '64'

o code_type Specifies which code type is used by UTM internally for the name:rtac

'I' INTEGER
The TAC name in is a positive integer between 0 and 67108863. rtac

 names of the code type INTEGER are only permitted for partner applications that rtac
are not UTM applications and that communicate via the OSI TP protocol.

'P' PRINTABLE-STRING
The TAC name in is specified as a string with a maximum length of 64 characters. rtac
A distinction is drawn between uppercase and lowercase.
A TAC name with the code type PRINTABLE-STRING can contain the following
characters:

A, B, C, . . . , Z

a, b, c, . . . , z

0, 1, 2, . . . , 9

the special characters ' - : ? = , + . () / (blank)

'T' T61-STRING
 contains a T61 string. For the code type T61-STRING, UTM supports all the rtac

characters of the code type PRINTABLE-STRING as well as the following special
characters:
$ > < & @ # % ; * _

openUTM V7.0. Administering Applications. User Guide.

 191

Field name 1 Meaning

o state Specifies whether or not is disabled for the remote service program after lc_name
the startup of the local application.

'Y' lc_name is not disabled. Jobs are accepted for the associated remote service.

'N' lc_name is disabled. Jobs are not accepted for the associated remote service.

o accesswait_sec[5]

Maximum time waited in seconds for a session to be occupied (possibly including
connection establishment) or for an association to be established after the remote
service is requested (the LTAC is called).

In the case of asynchronous jobs (LTAC with ='A'), a wait time 0 means ltac_type !=

the job is always entered in the local message queue for the partner application.
Dialog jobs are accepted.

A wait time =0 means that dialog jobs are rejected if no sessionaccesswait_sec
/association for which the local application is the contention winner has been
generated.
In the case of asynchronous jobs, the FPUT call is rejected with a return code if
there is no logical connection to the partner application.
If there is a logical connection to the partner application, the message is entered in
the local message queue.

Dialog jobs are rejected regardless of the value in if there is no accesswait_sec
logical connection to the partner application. The establishment of a connection is
initiated at the same time.

Minimum value: '0' (jobs are rejected)
Maximum value: '32767'

o replywait_sec[5] Maximum time in seconds waited by UTM for a reply from the remote service.
By limiting the wait time you can ensure that clients or users on the terminal do not
have to wait too long.

replywait_sec='0' means the wait time is not limited.

Minimum value: '0'
Maximum value: '32767'

o lock_code[4] Contains the lock code assigned to the remote service in the local application (data
access control). can contain a number between '0' and the maximum lock_code
value defined by means of the KEYVALUE operand of the KDCDEF statement MAX.
'0' means that the LTAC is not protected by a lock code.

If is specified, cannot be specified.lock_code access_list

openUTM V7.0. Administering Applications. User Guide.

 192

Field name 1 Meaning

o ltac_type Specifies whether the local application processes jobs in a dialog with the remote service or
whether asynchronous jobs are transferred to the partner service.

'D' Jobs to the partner service are processed in a dialog.

'A' The partner service is started asynchronously (by means of message queuing).

o ltacunit[4] Contains the number of accounting units calculated in the UTM accounting phase for each
 call.ltac

The accounting units are added to the accounting unit counter of the user ID that called the
.ltac

Minimum value: '0', maximum value: '4095'

o access_list[8] Describes a key set that specifies the access rights that a user of the local UTM application
must have in order to send a job to the remote service program. Whether the job is
executed in the remote application depends on the access rights defined there.
The key set must be created first or already have been defined at generation.

If is specified, cannot be specified. access_list lock_code

A user can only access the LTAC if the key set of the user, the key set of the LTERM
partner via which the user is signed on and the specified key set have at least one key code
in common.

1 All fields of the data structure that are not listed and all the fields that are not relevant to the operating system used are to be set kc_ltac_str

to binary zero. The data structure is described in full in chapter ."kc_ltac_str - Transaction codes of remote services (LTAC)"

openUTM V7.0. Administering Applications. User Guide.

 193

11.2.3.5 obj_type=KC_LTERM

To create a new LTERM partner you must place the data structure in the data area. You cannot create kc_lterm_str
LTERMs for bundles and groups.

The following table shows how the fields in the data structure are to be supplied with data.

Field name 1 Meaning

m lt_name[8] Name of the LTERM partner. The name may be up to 8 characters long.
The name may be entered in upper or lowercase letters. The name must be
unique within its name class. See section "Format and uniqueness of object

 for information on the format and uniqueness of the name. Names of names"
LTERM partners and transaction codes that have been deleted may not be used.

o kset[8] Only relevant for dialog partners (='D'): usage_type
Key set of the application to which the LTERM partner is to be assigned. The key
set must have been created dynamically first or defined at generation.
A client or client program can only start a service secured with a lock code or
access list if the corresponding key or access code for the lock code or access list
is contained both in the key set of the user ID under which the client or client
program signs on and in the key set of the associated LTERM partner.

Note
If you do not want to define any access protection for LTERM partners in an
application generated with user IDs (USER), then assign key sets to the LTERM
partners containing all of the key codes of the application (MASTER).

o locale_lang_id[2]
locale_terr_id[2]
locale_ccsname[8]

Only on BS2000 systems:
Specifies the language environment (locale) of the LTERM partner.

In you specify the language code of the language to be used when locale_lang_id
sending UTM messages to the LTERM partner. It is a maximum of 2 bytes long.

In you specify the territory code.locale_terr_id
This parameter specifies territorial particularities of the main language. It is a
maximum of 2 bytes long.

In you specify the CCS name of the expanded oded haracter locale_ccsname c c s
et. The CCS name can be up to 8 bytes long .It must belong to one of the
EBCDIC character sets defined on the BS2000 system, see XHCS User Giude.

o lock_code[4] Only relevant for dialog partners (='D'): usage_type
Lock code to be assigned to the LTERM partner (access security). The lock code
must lie within the range defined in the KEYVALUE operand of the MAX KDCDEF
command.

openUTM V7.0. Administering Applications. User Guide.

 194

Field name 1 Meaning

o state Specifies whether the LTERM partner is to be disabled or not after generation.

'Y' The LTERM partner is not to be disabled. (ON)

'N' The LTERM partner is to be disabled. (OFF)

o usage_type Specifies whether the LTERM partner is to be configured for connecting dialog partners or
for connecting printers:

'D' LTERM partner for connecting dialog partners.

'O' LTERM partner for connecting output media such as printers.

o user_gen[8]

Only relevant for dialog partners (='D'): usage_type
For LTERM partners of terminals:
User ID for which UTM will execute an automatic KDCSIGN when establishing the logical
connection. This user ID must have been entered in the configuration dynamically or
statically before the LTERM partner.
For LTERM partners of UPIC clients and TS applications:
The connection user ID must be created in the same transaction in which the LTERM
partner was created. See for more chapter "Changing the configuration dynamically"
information.

Default for LTERM partners of terminals:
No automatic KDCSIGN
Default for LTERM partners of UPIC clients (='UPIC-R') or TS applications (ptype ptype
='APPLI' or 'SOCKET'):
Connection user ID with the name of the LTERM partner.
If this user ID is not created explicitly in the same transaction as the LTERM partner, then
UTM creates this user ID implicitly. This user ID must not already exist, however.

Note:
The use of the automatic KDCSIGN on terminals restricts access protection.

o cterm[8] Only on BS2000, Unix and Linux systems:
Only relevant for LTERM partners used to connect printers (='O'). usage_type
Name of the printer control LTERM that is to administer the printer. The printer control
LTERM must have been dynamically or statically added to the configuration before the
LTERM partner (see).chapter "Changing the configuration dynamically"

Every printer assigned to this LTERM partner (KC_PTERM) must be assigned a printer ID (
) that is unique to this printer control LTERM.cid

openUTM V7.0. Administering Applications. User Guide.

 195

Field name 1 Meaning

o format_attr
format_name[7]

Only on BS2000 systems:
Only relevant if a terminal is to be assigned to the LTERM partner.
With the help of these fields you can assign an LTERM-specific start format to the
LTERM partner.
One requirement for assigning a start format is that a formatting system has been
generated (KDCDEF command FORMSYS). If the start format is a #Format, then a sign-
on service must also have been generated.

You must always specify a when defining a start format.format_name and a format_attr

In you specify the format code of the start format:format_attr

'A' for the format attribute ATTR (+Format).
'N' for the format attribute NOATTR (*Format).
'E' for the format attribute EXTEND (#Format).

See section "format_attr, format_name (only on BS2000 systems)" in chapter
 for descriptions of the format attributes."kc_lterm_str - LTERM partners"

In you specify the name of the start format. The name can be up to 7 format_name
characters long and may only contain alphanumeric characters.

o plev[5] Only on BS2000, Unix and Linux systems:
Only relevant for LTERM partners of output media (='O'). usage_type
In you specify the control value for the message queue of the LTERM partner. As plev
soon as the number of output jobs in the queue equals the value specified in , UTM plev
attempts automatically to establish a connection to the printer. If a printer pool is assigned
to the LTERM partner, then UTM establishes connections to all printers. UTM
automatically shuts the connection down as soon as the message queue is empty.

You may only specify in conjunction with ='Y'.plev qamsg

plev='0' means that no control value is defined.

Minimum value: '0' Maximum value: '32767'

openUTM V7.0. Administering Applications. User Guide.

 196

Field name 1 Meaning

o qamsg Specifies whether asynchronous jobs (FPUT and DPUT jobs) sent to the client/printer
assigned to this LTERM partner are to be temporarily stored in the message queue of the
LTERM partner, even if the client/printer is not connected to the application.

'Y' An asynchronous job is added to the message queue.
='Y' is not possible for ='N'.qamsg restart

'N' An asynchronous job is rejected if the corresponding client/printer
is not connected to the application.

o qlev[5]

Specifies the maximum number of asynchronous messages that may be temporarily stored
in the message queue of the LTERM partner at any one time. If the control value in is qlev
exceeded, then UTM rejects any further asynchronous jobs sent to this LTERM partner or to
the client/printer assigned to it.
Minimum value:'0' Maximum value:'32767'

o restart Is only relevant for dialog partners (LTERM partners with ='D').usage_type
In you specify how UTM will deal with asynchronous messages in the message restart
queue of the LTERM partner at the time when the connection is being established.

'Y' Asynchronous messages to the client remain queued.
In an application without user IDs, UTM executes an automatic service restart for this
LTERM partner.
In a UTM cluster application without user IDs, 'Y' is only permitted
if it was generated with CLUSTER USER-RESTART=YES.

'N' UTM deletes all asynchronous messages from the queue when the connection is
established.
If the job is a job complex, then a negative confirmation job is activated.
UTM does not execute an automatic restart for the LTERM partner in an application
without user IDs.

if ='Y' then ='Y' must be set.qamsg restart

openUTM V7.0. Administering Applications. User Guide.

 197

Field name 1 Meaning

o annoamsg Only on BS2000 systems:
Only relevant for the LTERM partner of a terminal.
In you specify if UTM is to announce an asynchronous message to the terminal annoamsg
before outputting:

'Y' Asynchronous messages are announced by a message appearing in the system line.

'N' Asynchronous messages are output immediately (without announcement).

o netprio Only on BS2000 systems:
Specifies the transport priority used for the transport connection between the application
and the client/printer.

'M' "Medium" transport priority

'L' "Low" transport priority

For native TCP/IP connections (= SOCKET) this field has no significance.t_prot

o kerberos_dialog Only on BS2000 systems:
Specifies whether a Kerberos dialog is performed on the establishment of a connection for
clients that support Kerberos and are connected with the application directly via via this
LTERM partner (not via OMNIS).

'Y' A Kerberos dialog is performed.

'N' No Kerberos dialog is performed.

1 All fields in the data structure that are not listed and all fields that are not relevant to the operating system you are using are kc_lterm_str

to be set to binary zero. The data structure is in chapter .described "kc_lterm_str - LTERM partners"

Clients/printers are assigned to LTERM partners (LTERM - PTERM) when clients/printers are being
added to the configuration, or with the aid of KC_MODIFY_OBJECT.

i

openUTM V7.0. Administering Applications. User Guide.

 198

11.2.3.6 obj_type=KC_PROGRAM

To add a new program unit or VORGANG exit to the configuration you must place the data structure kc_program_str
in the data area.

The table below shows you how to supply data to the fields in the data structure .kc_program_str

Field name 1 Meaning

m pr_name[32] Name of the program unit. The name may be up to 32 bytes long.
You must observe the conventions in section "Format and uniqueness of object

 when specifying a name. The name of a program unit that has been deleted names"
from the configuration cannot be used.
In UTM applications on BS2000 systems you specify the ENTRY or CSECT name of
the program unit.

(m) compiler Compiler or ILCS-capability of the compiler used to compile the program unit.

In UTM applications on BS2000 systems the specification is mandatory. compiler
For all program units that support ILCS you must specify 'I' for ILCS for the compiler.

In UTM applications on BS2000 systems the following settings are possible:
'I' for ILCS (Inter Language Communication Services)
'A' for the assembler compiler ASSEMB
'C' for the C compiler (UTM sets this to 'I')
'1' for the COBOL compiler (COB1)
'F' for the FORTRAN compiler (FOR1)
'X' for PASCAL-XT
'P' for PLI1
'S' for SPL4

In a UTM application on a Unix, Linux and Windows system the following values are
possible:
'C' for the C compiler
'+' for the C++ compiler
'2' for the COBOL compiler of Micro Focus
'3' for the NetCOBOL compiler from Fujitsu

m load_module[32]

Name of the load module (BS2000 systems) or of the shared object/DLL (Unix, Linux
and Windows systems) into which the program unit is linked.
The name can be up to 32 characters long.

BS2000 systems:
The load module must be statically configured using the KDCDEF control statement
LOAD-MODULE. It may not be statically linked to the application program.

Unix, Linux and Windows systems:
The shared object must/DLL be statically configured using the KDCDEF command
SHARED-OBJECT.

1 All fields in the data structure that are not listed and all fields that are not relevant to the operating system you are using kc_program_str

are to be set to binary zero. The data structure is described in full in chapter ."kc_program_str - Program units and VORGANG exits"

openUTM V7.0. Administering Applications. User Guide.

 199

11.2.3.7 obj_type=KC_PTERM

To add a printer or client (i.e. a terminal, an UPIC client or a TS application) to the configuration, you must place the
data structure in the data area in which you will pass the name, address and properties of the client or kc_pterm_str
printer to UTM. The table below shows you how to supply the fields of the structure with data.

Field name 1 Meaning

m pt_name[8]

Name of the client or printer. The name may be up to 8 characters long.
The symbolic name under which the client/printer is known to the transport system should be
specified in .pt_name
See for information on the format of the section "Format and uniqueness of object names"
name and its uniqueness. Names of objects that have been deleted and which belong to the
same name class may not be used.
If your application contains an LTERM pool with ='M' (multi), then the triplet (connect_mode

) must not be the same as any naming triplet in the LTERM pool pt_name, pronam,bcamappl
(= the triplet made up of the name of an LTERM partner in the pool, the processor name of
the pool client and the BCAMAPPL name of the application which is used to establish the
connection from the client). Otherwise, no other client will be able to connect via this LTERM
pool.

Special features of communication via the socket interface:
If the connection between the communication partner and the UTM application is to be
realized via the socket interface (SOCKET), and if the partner is to use a specific port
number when establishing the connection, you must supply the value PRT for nnnnn

 being the port number in the remote system, via which the partner will pt_name, nnnnn
establish the connection. If the partner is a UTM application, the port number cannot be
supplied, because UTM does not set the port number itself.
If it is only the local application that establishes the connection, and not the partner
application, the name is only required internally, e.g. for administration purposes.

openUTM on Windows systems does not support any printers.i

openUTM V7.0. Administering Applications. User Guide.

 200

Field name 1 Meaning

(m) pronam_long[64]

Name of the computer on which the client/printer is located.

The complete host name (FQDN) under which the host is known in the DNS has to
be specified. The name can be up to 64 characters long. Instead of a 64 character
FQDN name, a short local name (on BS2000 systems: BCAM name) of the partner
computer may be used (max. 8 characters). In this case, it must be possible for the
transport system to map the local name to an FQDN name or an IP address using
external additional information (in BS2000 systems: FQDN file, in Unix, Linux or
Windows systems: hosts file).

If ='*RSO' on BS2000 systems, then ='*RSO' must be specified.ptype pronam_long

If the connection to the partner is established through the socket interface (TCP-IP-
APPLI, ='T') you must specify the system’s symbolic address or the t_prot protocol
real host name in .pronam_long

On Unix, Linux and Windows systems may be specified only with pronam_long ptype
='UPIC-R', 'APPLI' or 'SOCKET'. openUTM uses the default value (blanks) for
terminals and printers.

o bcamappl[8] Name of the UTM application through which the connection between the UTM
application and the client/printer is to be established. The application name must
have been statically generated using a BCAMAPPL command or during the
KDCDEF generation by defining it in MAX APPLINAME.

If the connection to the communication partner is to be established vie the SOCKET
protocol, you must specify a BCAMAPPL name with ='T'.t_prot

Only on BS2000 systems:
When is not equal to 'APPLI', 'SOCKET' or 'UPIC-R', only the application name ptype
generated in MAX APPLINAME (default value) may be specified for .bcamappl

(m) ptype[8] Type of client/printer
You will find a list of possible types in chapter "kc_pterm_str - Clients and printers"
(section "BS2000 systems").
When ='APPLI', 'SOCKET' or 'UPIC-R', must be specified.ptype lterm

The specification of a is mandatory for UTM applications on BS2000 systems.ptype

It is not permissible to specify ='PRINTER' on Windows systems. ptype

o ptype_fotyp[8] Only relevant for printers (= 'PRINTER') on Unix and Linux systems.ptype
In you specify the type of the printer ().ptype_fotyp printertype

openUTM V7.0. Administering Applications. User Guide.

 201

Field name 1 Meaning

o ptype_class[40]

Only relevant for printers (= 'PRINTER') on Unix and Linux systems.ptype
In you specify the name of the printer group (printer class) to which the ptype_class
printer belongs. The printer group is determined during the generation on the Unix or
Linux system.

(m) lterm[8] Name of the LTERM partner to be assigned to this client/printer.
This parameter is optional for terminals and printers. An LTERM partner can be assigned
to them at a later time using the administration functions.
If the name of an LTERM partner is specified in , then it must have been statically or lterm
dynamically added to the configuration before the terminal/printer.

For UPIC clients and TS applications (= 'UPIC-R', 'APPLI' or 'SOCKET') is a ptype lterm
mandatory parameter. The LTERM partner specified must be created in the same
transaction as the client. See for more "Changing the configuration dynamically"
information.

o auto_connect Specifies if the connection to the client/printer is to be established automatically when the
application is started:

'Y' UTM is to try to establish a connection to the client/printer every time the application
is started.

'N' UTM is not to try automatically to establish the connection.

For UPIC clients, only ='N' is allowed.auto_connect

o state Specifies if the client/printer is to be disabled at first after being added.

'Y' The client/printer is not be disabled (ON).

'N' The client/printer is to be disabled (OFF).

o cid[8] Only relevant for printers on BS2000, Unix and Linux systems.
In you specify the printer ID (CID). The CID may contain a maximum of 8 characters. cid
The CID is required if the printer is to be administered using a printer control LTERM.
The printer control LTERM identifies the printer using the CID. The CID must be unique
to the printer control LTERM.

openUTM V7.0. Administering Applications. User Guide.

 202

Field name 1 Meaning

o map Only relevant for TS applications (= 'APPLI') or SOCKET-USP applicationsptype

In you specify whether or not UTM is to perform a code conversion (EBCDIC <-> ASCII) map
for the user messages exchanged between the communication partners. User messages are
transferred at the KDCS interface with the calls for message handling (MPUT/FPUT/DPUT)
in the message area.

'U' (USER)
UTM does not convert the data in the KDCS message area, i.e. the data of the message area
are exchanged between the communication partners without any changes.

'S', '1' , '2', '3', '4'
is only permitted for the following TS applications:

BS2000 systems: ='SOCKET'ptype

Unix, Linux and Windows systems: ='APPLI' or 'SOCKET'ptype

If you specify one of these values, UTM converts the user messages according to the code
tables provided for the code conversion, see the "Code conversion" section in the openUTM
manual "Generating Applications", i.e.:

Prior to sending, the code is converted from ASCII to EBCDIC on Unix, Linux and
Windows systems and from EBCDIC to ASCII on BS2000 systems.

After receival, the code is converted from EBCDIC to ASCII on Unix, Linux and Windows
systems and from ASCII to EBCDIC on BS2000 systems.

openUTM assumes that the messages contain only printable characters.In this case, the
specifications 'S' and 'S1' are synonymous.

For more information on code conversion, please refer to the openUTM manual
„Programming Applications with KDCS”; keyword „code conversion“.

o termn[2]

Code for the type of client/printer (terminal mnemonic). The code is a maximum of 2
characters long. Default values for can be found in the table in chapter termn "kc_pterm_str -

 (section "BS2000 systems" or "Unix, Linux and Windows systems").Clients and printers"

openUTM V7.0. Administering Applications. User Guide.

 203

Field name 1 Meaning

o protocol Only on BS2000 systems:
Specifies if the NEABT user utility protocol is to be used for connections to the client/printer.

'N' (NO): Do not use NEABT.

'S' (STATION): Use NEABT.

For clients connected through a multiplex connection, you must set = 'S'.protocol

For UPIC clients, RSO printers and TS applications connected via the socket interface, you
must set = 'N'. In these cases, = 'N' is ignored.protocol protocol

o usage_type Only on BS2000 systems:
Specifies whether a dialog partner or an output medium is to be configured. You can
specify the following:

'D' for a dialog partner
'O' for an output medium (printer, for example)

o listener_port[5]

You specify in the port number in the remote system at which the partner listener_port
application awaits requests for connection establishment from outside.
All port numbers are allowed.

On BS2000 systems, is only allowed in the case of ='APPLI' or listener_port ptype
'SOCKET'.
The specification is mandatory for ='SOCKET'.ptype
A port number not equal 0 may only be specified, if the local application specified in the

 parameter was not generated with T-PROT=NEA.bcamappl

On Unix, Linux and Windows systems, is only relevant for ='T' and 'R'.listener_port t_prot

o t_prot Only relevant for clients of the type 'APPLI', 'SOCKET' or 'UPIC-R' on Unix, Linux pttype=
and Windows systems. You specify the address format of the client’s transport address.
Possible values are:

'R' RFC1006, ISO transport protocol class 0 using TCP/IP and the
RFC1006 convergence protocol (APPLI, UPIC-R)

'T' Native TCP-IP transport protocol for communication via the socket interface (SOCKET)

openUTM V7.0. Administering Applications. User Guide.

 204

Field name 1 Meaning

o tsel_format

Only relevant for clients of the type 'APPLI', 'SOCKET' or 'UPIC-R' on Unix, Linux pttype=
and Windows systems. You specify the format of the T-selector for the client address.
Possible values are:

'T': TRANSDATA format
'E': EBCDIC character format
'A': ASCII character format

o idletime[5] May only be specified for dialog partners.
In you define the maximum duration in seconds which UTM waits for a response idletime
from the client after the end of a transaction or after a sign-off (KDCSIGN). If the time is
exceeded, the connection to the client is closed down. If the client is a terminal, message
K021 is issued before the connection is closed down. The value for idletime must not be
smaller than the timer value in . and .kc_timer_par_str termwait_in_ta_sec kc_timer_par_str

 ().pgwttime_sec see "kc_timer_par_str - Timer settings"

The purpose of this function is to improve data protection:
If a user forgets to sign off when interrupting or finishing work at a terminal, the connection is
automatically closed down when the idle time expires. This reduces the danger of
unauthorized access.

Maximum value: '32767'
Minimum value: '60'
The value 0 means wait without time limit.
In the case of values smaller then 60 but not equal to 0, the value 60 is used.

In the case of an invalid value, UTM sets to the lowest value allowed and issues the idletime
return code KC_MC_OK with the subcode KC_SC_ INVALID_IDLETIME.

openUTM V7.0. Administering Applications. User Guide.

 205

Field name 1 Meaning

o encryption_level Only relevant for UPIC clients and also for some terminal emulations on BS2000 systems.

In you define the lowest encryption level for communication with a client,encryption_level

whether the encryption of messages is demanded by default or not

which encryption level is demanded,

or whether the client is a “trusted” client.

Possible values are:

'N' (NONE)
UTM does demand data encryption.not
The client can only activate services for whose service TACs encryption was
generated (see in chapter kc_tac_str.encryption_level "kc_tac_str - Transaction

), if the client agrees encryption.codes of local services"

'3' (LEVEL 3)
UTM demands that messages are encrypted with encryption level 3. In other words,
the messages are encrypted with the AES-CBC algorithm and an RSA key with a key
length of 1024 bits is used for exchange of the AES key.

'4' (LEVEL 4)
UTM demands that messages are encrypted with encryption level 4. In other words,
the messages are encrypted with the AES-CBC algorithm and an RSA key with a key
length of 2048 bits is used for exchange of the AES key.

'5' (LEVEL 5)
UTM demands that messages are encrypted with encryption level 5. In other words,
the messages are encrypted with the AES-GCM algorithm. The Agreement of the
AES key is done with the Ephemeral Elliptic Curve Diffie-Hellman method (ECDHE)
and an RSA Key with key length of 2048 bits.

Level 5 is only supported in openUTM on Unix, Linux, and Windows systems.

Establishment of a connection to the client is rejected by UTM if the client does not
support at least the specified encryption level (3, 4 or 5).
Specifying =3 ... 5 is meaningful only if the encryption funcions encryption_level
are available on your system. Otherwise the client cannot connect.

'T' (TRUSTED)
The client is a trusted client.
Messages exchanged between the client and the application are not encrypted.
A “trusted client” can activate services for which the service TACs require encryption
(generated with ='2' or '5'; see kc_tac_str.encryption_level "kc_tac_str - Transaction

).codes of local services"
Select this setting only if the client is not generally accessible and communication
runs through a protected connection.

openUTM V7.0. Administering Applications. User Guide.

 206

The following applies for the individual client types with regard to the encryption level:

Encryption Levels 3 to 5 are meaningful for remote UPIC clients (PTYPE=UPIC-R).

Encryption Level 3 4 or 5 is replaced by TRUSTED by openUTM for local UPIC clients
(PTYPE=UPIC-L) of an application on Unix, Linux or Windows systems.

For HTTP clients which connect to the application via a transport system end point
(BCAMAPPL) that is generated with T-PROT=(..., SECURE) the encryption level is
always set to TRUSTED by UTM.

If 3 ... 5 is specified for a partner of another type, the value is replaced by NONE by
openUTM without issue of a message.

For data to be encrypted on a connection to the client the corresponding RSA keys must
be available.
If the application is generated with OPTION GEN-RSA-KEYS=NO, KDCDEF does not
create RSA keys, i.e. by default no RSA keys are available. It is however possible to
transfer RSA keys by means of KDCUPD or to create them with KC_ENCRYPT. These
keys can then be used by newly generated objects.

o usp_hdr This parameter is only significant for PTERMs with ='SOCKET'.ptype
It specifies the output messages for which UTM sets up a UTM socket protocol header on
this connection. The possible values are:

'A' UTM creates a UTM socket protocol header for all output messages (dialog,
asynchronous, K messages) and precedes the message with it.

'M' UTM creates a UTM socket protocol header for the output of K messages only and
precedes the message with this.

'N' UTM does not create a UTM socket protocol header for any output message.

1 All fields in the data structure that are not listed and all fields that are not relevant to the operating system you are using are kc_pterm_str

to be set to binary zero. The data structure is described in full in chapter ."kc_pterm_str - Clients and printers"

openUTM V7.0. Administering Applications. User Guide.

 207

11.2.3.8 obj_type=KC_TAC

To create a new transaction code or a TAC queue, you must place the data structure in the data area.kc_tac_str

The following fields are involved in the creation of a TAC queue:

tc_name, , , , , , and .admin qlev q_mode q_read_acl q_write_acl state type

None of the other fields are evaluated for TAC queues.

The table below shows how to supply data to the fields in the data structure .kc_tac_str

Field name 1 Meaning

m tc_name[8] Name of the transaction code (='A' or 'D') or the TAC queue (='Q'). The tac_type tac_type
name may be up to 8 characters long.
See for information on the format and section "Format and uniqueness of object names"
uniqueness of the name. Names of deleted objects that belong to the same name class
cannot be used.

(m) program[32] Name of the program unit to which the transaction code is to be assigned. The name can
be up to 32 characters long. The program unit must already exist in the configuration or it
must have been added before the transaction code.
This parameter is not permitted for TAC queues.

o lock_code[4]

Lock code (access security) to be assigned to the transaction code. The lock code is a
whole number. It must lie within the range defined in MAX KEYVALUE during the
KDCDEF generation.

Note
Jobs from a user/client will only be processed if both the key set of the user/client and the
key set of the LTERM partner via which the user/client is connected to the application
contain the keycode corresponding to the lock code of the service TAC.

openUTM V7.0. Administering Applications. User Guide.

 208

Field name 1 Meaning

o state Specifies whether or not the transaction code or the TAC queue is to be disabled initially
after generation.

'Y' A TAC is not disabled (ON).
Reading and writing are permitted for a TAC queue.

'N' A TAC is disabled (OFF).
If it is the TAC of a KDCS program unit of the type ='B' or 'N', the TAC is call_type
disabled as a service TAC (1st TAC of a service) but not as a follow-up TAC of a
service.
Reading is permitted for a TAC queue, but not writing.

'H' UTM does not accept any jobs for the TAC. The TAC is completely disabled (HALT).
If this TAC is called as a follow-up TAC, the service is terminated with PEND ER (74Z).
Asynchronous jobs that are already buffered in the message queue of the TAC are not
started. They remain in the message queue until the status of the TAC is reset to ON or
OFF.
A TAC queue is disabled for write and read accesses.

'K' 'K' can only be specified for asynchronous transaction codes that are also service TACs
(='B' or 'F') and for TAC queues. UTM accepts jobs for the transaction code. call_type
However, the jobs are not processed; they are merely written to the job queue of the
transaction code. They are processed when you change the status of the transaction
code to 'Y' or 'N'.
You can use ='K' to collect jobs that are not to be executed until the application is state
subject to a lighter load (e.g. at night).
In order to avoid overloading the page pool with too many buffered jobs, you should use
the parameter to limit the size of the job queue for the transaction code.qlev
Writing is permitted for a TAC queue, but not reading.

UTM always sets ='Y' for the administration commands KDCSHUT and KDCTAC, even state
if you have entered another value. This ensures that you can administer your application at
all times.

openUTM V7.0. Administering Applications. User Guide.

 209

Field name 1 Meaning

o tacclass[2]

Can only be specified if a TAC class was created during KDCDEF generation.
In you specify which TAC class is to be assigned to the transaction code. tacclass
You must observe the following points:

A dialog transaction code = 'D') can only be assigned a TAC class between 1 (tac_type
and 8 (1 <= <= 8).tacclass

An asynchronous transaction code (= 'A') can only be assigned a TAC class tac_type
between 9 and 16 (9 <= <= 16).tacclass

If your application is generated a TAC-PRIORITIES statement, all dialog TACs (without
='D') from program units that use blocking calls (such as the KDCS call PGWT) tac_type

must be assigned to the same dialog TAC class for which PGWT=YES must be set.
Accordingly, all asynchronous TACs that use blocking calls must also be assigned to the
asynchronous TAC class for which PGWT=YES is set.

If your application is generated a TAC-PRIORITIES statement, all dialog TACs from with
program units that use blocking calls can be assigned to any dialog TAC class. You only
need to set ='Y'. Similarly, this applies to asynchronous TACspgwt

Default (assuming that at least one TAC class exists):dialog TACs are not assigned a TAC
class, asynchronous TACs are assigned TAC class 16.

o admin Specifies which privileges a user or client must have to be able to call this transaction code or
a service containing this transaction code as the follow-up TAC. In the case of a TAC queue,
the authorization refers to write and read accesses. Possible values are:

'Y' This transaction code can only be called by a user with administration privileges. admin
='Y' must be assigned to transaction codes of administration programs that do more
than just read application data. In the case of a TAC queue, only a user with
administration authorization can read messages from this queue or write messages to
the queue.

'N' No administration authorization is required to call the transaction code or to access the
TAC queue. Program units that are started by means of a transaction code with admin
='N' may not issue KDCADMI calls.

'R' As in the case of ='N', no administration authorization is required in order to call admin
this transaction code or access the TAC queue. However, the associated program unit
can use all the functions of KDCADMI that have read access to the application data.

openUTM V7.0. Administering Applications. User Guide.

 210

Field name 1 Meaning

o call_type Specifies whether a service is started using the transaction code or if the transaction
code is a follow-up TAC in a service. The following can be specified:

'B' The TAC can be the first TAC as well as a follow-up TAC in a service (BOTH).

'F' The TAC can only be the first TAC in a service (FIRST).

'N' The TAC can only be a follow-up TAC in a service (NEXT).

o exit_name[32] Name of the VORGANG event exit to be assigned to this TAC. can only exit_name
be specified if = 'F' or 'B' has been set.call_type
The VORGANG exit specified in must already be contained in the exit_name
configuration as a program unit of the application (dynamically with object type
KC_PROGRAM or with the KDCDEF command PROGRAM).
If the program unit in is linked into a load module with the load mode set to program
ONCALL, then the VORGANG exit must be contained in the same load module.

o qlev[5] Only relevant for asynchronous TACs (= 'A') or TAC queues (='Q').tac_type tac_type
UTM only takes the jobs into account at the end of the transaction. The number of
messages specified in for a message queue may therefore be exceeded when qlev
several messages are created for the same queue in a single transaction.
If the number specified in is exceeded, how UTM responds depends on the qlev
setting for .q_mode

Minimum value: '0', Maximum value: '32767'

If a value > 32767 is specified for , then UTM will reset it to the default value qlev
without notification.

o tac_type Specifies whether jobs sent to this transaction code are to be processed
asynchronously or in dialog mode or whether a TAC queue is created:

'D' The transaction code is a dialog TAC

'A' The transaction code is an asynchronous TAC

'Q' A TAC queue is created.
A DPUT call can be used to write a message to a queue like this, and a DGET
queue can be used to read a message from it.

o real_time_sec[5]

Specifies the maximum amount of real time in seconds that a program unit run
started with this TAC may use. If the program unit runs for a longer time, then UTM
aborts the service.

 = '0' means there is no limit to the amount of real time that may be real_time_sec
used.

Minimum value: '0', Maximum value: '32767'

openUTM V7.0. Administering Applications. User Guide.

 211

Field name 1 Meaning

o cpu_time_msec[8]

Only on BS2000 systems:
Specifies the maximum amount of CPU time in milliseconds that a program unit run
started with this TAC may use. If the program unit runs for a longer time, then UTM
aborts the service.

 = '0' means there is no limit to the amount of CPU time that may be cpu_time_msec
used.

Minimum value: '0', Maximum value: '86400000'

The values from 1 to 999 are invalid and will be rounded up to 1000 by UTM.

o dbkey[8] Only on BS2000 systems:
Is only relevant if the program unit belonging to the transaction code sends database
calls and the database system is linked to UTM.

In you specify the database key that UTM passes to the database system when dbkey
a program unit makes a database call. The format of the key depends on the database
system used. The key can be up to 8 characters long.
At the present time, is only supported for UDS. dbkey

Setting ='UTM' causes the value of the start parameter DBKEY to be passed to dbkey
the database (see “Start parameters” in the openUTM manual “Using UTM
Applications”).

o runprio[3] Only on BS2000 systems:
Run priority of the process in the operating system in which the program unit belonging
to the transaction code is running.

 = '0' means that the transaction code is not assigned any special run priority.runprio

Minimum value: '30' (highest priority),
Maximum value: '255' (lowest priority)

o api UTM program interface used by the program unit belonging to the transaction code.

'K': KDCS
'X': X/Open interface XATMI
'C': X/Open interface CPI-C

openUTM V7.0. Administering Applications. User Guide.

 212

Field name 1 Meaning

o satadm Only on BS2000 systems:
Specifies if UTM SAT administration privileges are required to call the transaction code.

'Y' The transaction code may only be called by users and partner applications that have
UTM SAT administration privileges.

='Y' must be specified if the transaction code uses the UTM SAT administration satadm
functions.

'N' UTM SAT administration privileges are not required to call the transaction code.

o satsel Only on BS2000 systems:
Type of SAT logging for this transaction code.

'B' Both successful and unsuccessful events are to be logged (BOTH).

'S' Only successful events are to be logged (SUCC).

'F' Only unsuccessful events are to be logged (FAIL).

'N' No TAC-specific SAT logging is defined.

Logging can only take place if SAT logging is activated for the application. (See the
openUTM manual “Generating Applications” for more information on SAT logging.)

o tacunit[4]

Only relevant if the application uses accounting functions (see openUTM manual
“Generating Applications”; Accounting and KDCDEF statement ACCOUNT and openUTM
manual “Using UTM Applications”; SAT logging).

In , you enter the number of accounting units that will be charged to a user’s account tacunit
for calling this transaction code.
Only integers are allowed for .tacunit

Minimum value: '0', maximum value: '4095'

o pgwt Specify only if your application processes job to TAC classes using priority control, i.e. the
KDCDEF generation contains the TAC-PRIORITIES statement.

In you specify whether blocking calls (e.g. PGWT) can be run in a program unit pgwt,
started for this transaction code.

'Y' Blocking call can be run. Specify 'Y' only if you assign the TAC to a TAC class.

'N' Blocking calls are not allowed.

openUTM V7.0. Administering Applications. User Guide.

 213

Field name 1 Meaning

o encryption_level Only for service TACs (='F'or 'B'). call_type
In , you specify whether messages for this transaction code must be encryption_level
encrypted or not.

'2' (Level 2)
Input messages must be encrypted using the AES-CBC algorithm for access to the
transaction code.

'5' (Level 5) on Unix, Linux and Windows Systems
Input messages must be encrypted using the AES-GCM algorithm for access to the
transaction code.

If = '2' or '5' is specified, the client can only start a service using this encryption_level
transaction code, if one of the following conditions is met:

The client is a “trusted“ client (see or field kc_pterm_str kc_tpool_str
).encryption_level

The client has encrypted the input message to the transaction code with at least
the specified encryption level. If a “not trusted” client does not encrypt the input
message or does not encrypt it to the required level, no service is started.

If the transaction code is called without user data of if it is started via service
concatenation, the client must be able to encrypt data, because UTM encrypts all
dialog output messages it transmits and, in multi-step services, expects all input
messages received from a “not trusted” client also to be encrypted.

'N' (NONE)
No message encryption required.

o access_list[8] You use this to specify a key set that controls the access rights of users for this transaction
code. The key set must have been created dynamically beforehand or defined at
generation.

 must not be specified together with . access_list lock_code
A user can only access the transaction code if the key set of the user, the key set of the
LTERM partner by means of which the user is signed on and the specified key set have at
least one key code in common. If you specify neither nor , the access_list lock_code
transaction code is not protected, and any user can call it.

openUTM V7.0. Administering Applications. User Guide.

 214

Field name 1 Meaning

o q_mode Specifies how UTM responds when the maximum number of saved but not yet executed
jobs to this asynchronous TAC or to the TAC queue is reached. The possible values are:

'S' UTM rejects any further jobs.

'W' Only when ='Q':tac_type
UTM accepts further messages but deletes the oldest messages in the queue.

o q_read_acl[8]

Only when ='Q':tac_type
Specifies the rights (name of a key set) that a user requires in order to read and delete
messages from this queue .
A user only has read access to this TAC queue when the key set of the user and the key
set of the logical terminal via which the user is signed on contain at least one key code that
is also contained in the specified key set.
If does not contain a value, all users can read and delete messages from this q_read_acl
queue.

o q_write_acl[8] Only when ='Q':tac_type
Specifies the rights (name of a key set) that a user requires in order to write messages to
this queue .
A user only has write access to this TAC queue when the key set of the user and the key
set of the logical terminal via which the user is signed on contain at least one key code that
is also contained in the specified key set.
If does not contain a value, all users can write messages to this queue.q_write_acl

o dead_letter_q Specifies whether a queued message should be retained in the dead letter queue if it was
not processed correctly and it has not been redelivered.

'Y' Messages to this asynchronous TAC or this TAC queue which could not be
processed are backed up in the dead letter queue if they are not redelivered and (with
message complexes) no negative acknowledgement job has been defined.

'N' Messages to this asynchronous TAC or this TAC queue which could not be
processed are not backed up in the dead letter queue. This value must be specified
for all interactive TACs and for asynchronous TACs with CALL=NEXT, as well as for
KDCMSGTC and KDCDLETQ.

1 All fields in the data structure that are not listed and all fields that are not relevant to the operating system you are using are to kc_tac_str

be set to binary zero. The data structure is described in full in chapter ."kc_tac_str - Transaction codes of local services"

openUTM V7.0. Administering Applications. User Guide.

 215

11.2.3.9 obj_type=KC_USER

To create a new user ID you must place the data structure in the data area.kc_user_str

A permanent queue is available to every user ID. This queue is addressed using the name of the user ID. The
access of other users to this USER queue is controlled by means of the values in the and q_read_acl q_write_acl
fields. The maximum number of messages that can be buffered and the response of UTM when this value is
reached is determined by the values in the and fields.qlev q_mode

The table below shows you how to supply the fields of the data structure with data.

Field name 1 Meaning

m us_name[8]

Name of the user ID. It can be up to 8 characters long.
If the name of the user ID matches the name of an LTERM partner to which a UPIC client
or TS application, but no user ID, has been assigned, then no user may sign on to the
UTM application using this user ID. UTM then assigns this user ID exclusively to the client.
See for more information on the format section "Format and uniqueness of object names"
and uniqueness of the name. Names of objects of the same name class that have been
tagged for delayed delete with KC_DELAY cannot be used.

o kset[8] Key set of the user ID. The key set must have been created dynamically beforehand or
generated statically. The key set determines the access privileges of the user/client that
signs on to the application using this user ID.

o state Specifies if the user ID is to be disabled or not. No user/client can sign on to the
application using a disabled user ID. The user ID must be released (enabled) explicitly by
the administrator.

'Y': The user ID is not to be disabled (ON).
'N': The user ID is to be disabled (OFF).

openUTM V7.0. Administering Applications. User Guide.

 216

Field name 1 Meaning

o card_position[3]
card_string_lth[3]
card_string_type
card_string[200]

Only on BS2000 systems:
These fields are only relevant if access to the application for this user ID is only possible
using a magnetic stripe card. The fields specify which subfield of the identification
information on the magnetic stripe is to be checked and what information must be
contained therein.
Specifying excludes the possibility of specifying .card... principal

You must specify the following information in these fields:

card_position
Number of the byte on the magnetic stripe card where the information to be checked
begins. card_string_lth
Length of the identification information to be checked in bytes.
Maximum value: '100', Minimum value: '1'

card_position and must define a section of the field of identification card_string_lth
information within the area defined by the MAX
CARDLTH generation parameter.

card_string_type
Encoding format of the identification information to be checked:

'X' The identification information is passed as a hexadecimal string.

'C' The identification information is passed as a character string.

 card_string
Character string that must be contained in the section to be checked on the magnetic
stripe card. Only the length of the contents specified in card_string_lth is relevant if

 card_string_type = 'C'. For card_string_type = 'X', the length of the relevant data is equal
 to 2 .card_string_lth

The union is provided for passing identification information kc_string
().see "kc_user_str, kc_user_fix_str, kc_user_dyn1_str and kc_user_dyn2_str user IDs"

openUTM V7.0. Administering Applications. User Guide.

 217

Field name 1 Meaning

o password16

Password for this user ID.
The password can be up to 16 characters long. The password specified must correspond
to the complexity level specified in and . You must protect_pw_compl protect_pw16_lth
also specify how UTM is to interpret the data in using the field. password password_type
The password must consist of characters which are permitted in the UTM application, see
the openUTM manual “Generating Applications”, USER statement.
On BS2000 system, specifying excludes the possibility of specifying .password16 principal

The union is provided for passing the password.kc_pw16

union kc_pw16

char x[32]; /* for X'...' */

char c[16]; /* for C'...' */

In UTM applications on BS2000 systems you can specify the password either as a
character string or as a hexadecimal string. For a hexadecimal password (password_type
='X'), each half byte is displayed as a character. If you specify a password containing less
than 16 characters, then you must pad to the right with spaces (password16

= 'C'), or with the hexadecimal value for a space (='X').password_type password_type

In UTM applications running on Unix, Linux or Windows systems you must always pass
the password as a character string (field). If you specify a password password16.c
containing less than 16 characters, then you must pad to the right with password16.c
blanks.

You must specify if ='C' or 'X'.password16 password_type
You may not specify if = 'R' or 'N'. password16 password_type

If a user ID is to be created without a password, then you cannot specify anything in
 and . For , you must set it to '0' and for password16 password_type protect_pw_compl

 to '00' (default). protect_pw16_lth

openUTM V7.0. Administering Applications. User Guide.

 218

Field name 1 Meaning

o password_type In you must specify how the password in is to be interpreted. password_type password
The following entries are possible:

'C' The password in is interpreted as a character string.password

'X' The password in is interpreted as a hexadecimal password. Only allowed for password
user IDs in a UTM application on a BS2000 system.

'N' No password may be specified i0n .password

'R' The password generated is a random password. Before the user thus generated can
sign on, the administrator must explicitly reset the password.

o password_dark Specifies if a password is to be hidden when entered at a terminal.

'Y' After KDCSIGN, UTM requests the user in an interim dialog to enter the password in a
darkened field.

'N' The user conveys the password directly at KDCSIGN. The password is visible on the
screen during sign-on (default value).

You can also set ='Y' if you have not specified a password. If the user ID is password_dark
assigned a password later (with KC_MODIFY_OBJECT, for example), the password entry
will be darkened.

Note
In applications running on Unix, Linux or Windows systems, password entry is never
darkened.

openUTM V7.0. Administering Applications. User Guide.

 219

Field name 1 Meaning

o format_attr
format_name[7]

Only on BS2000 systems:
With the aid of this field you can assign the user ID a user-specific start string.
You must specify .format_name and format_attr

A requirement for assigning a start format is that a formatting system must have been
generated (KDCDEF command FORMSYS). If the start format is a #Format, then a sign-
on service must also have been generated.

In you specify the format key of the start format:format_attr

'A'
'N'
'E'

for the format attribute ATTR (+Format).
for the format attribute NOATTR (*Format).
for the format attribute EXTEND (#Format).

See "kc_user_str, kc_user_fix_str, kc_user_dyn1_str and kc_user_dyn2_str user IDs"
(format_attr, format_name) for the meaning of the format attributes.

In you specify the name of the start format. The name can be up to 7 format_name
characters long and may only contain alphanumeric characters.

o locale_lang_id[2]
locale_terr_id[2]
locale_ccsname[8]

Only on BS2000 systems:
Language environment (locale) of the user ID.
The language environment is relevant if messages and notifications from the application
are to be output in different languages. See the openUTM manual “Generating
Applications” for details of multilingual operation.

In you specify the language code of the language in which messages locale_lang_id
and notifications are to be passed. The code is a maximum of 2 bytes long.

In you specify the territorial code.locale_terr_id
It specifies territorial particularities of the language. It is a maximum of 2 bytes long.

In you specify the CCS name of the expanded character set (oded locale_ccsname c c
haracter et) to be used for outputting data. s
The CSS name can be up to 8 characters long and must belong to a EBCDIC character
set defined on the BS2000 system (see also the XHCS User Manual).

openUTM V7.0. Administering Applications. User Guide.

 220

Field name 1 Meaning

o protect_pw16_lth Specifies the minimum number of characters a password must contain to be accepted as
such by UTM (minimum length of the password). The password for a user ID can only be
deleted if ='00'.protect_pw16_lth

Maximum value: '16',
The minimum length is dependent on the complexity level specified in protect_pw_compl
. The minimum value for is: protect_pw16_lth
'0' for = '0'protect_pw_compl
'1' for = '1'protect_pw_compl
'2' for = '2'protect_pw_compl
'3' for = '3'protect_pw_compl

o protect_pw_compl Specifies the complexity level that the password for the user ID must meet.

'0' (NONE)
Any character string may be entered as the password.

'1' (MIN)
A maximum of 2 characters in a row may be identical in a password. The minimum
length of a password is one character.

'2' (MEDIUM)
A maximum of 2 characters in a row may be identical in a password. The password
must contain at least one letter and one number and be at least two characters long.

'3' (MAX)
A maximum of 2 characters in a row may be identical in a password. The password
must contain at least one letter, one number and one special character. The
minimum length is 3 characters. Special characters are all characters not between a-
z, A-Z, 0-9. The space key is not a special character.

openUTM V7.0. Administering Applications. User Guide.

 221

Field name 1 Meaning

o protect_pw_time[3]

Specifies the maximum number of days for which the password remains valid (period of
validity). If = '0' is specified, then the password is valid for an unlimited protect_pw_time
amount of time.

Minimum value: '0', Maximum value: '180'

o restart Specifies whether UTM saves service data for the user ID so that a service restart is
possible on the next sign-on using this user ID.

'Y':UTM saves service data
'N': UTM does not save any service data.

o permit Specifies the administration privileges for the user ID.

'A' (ADMIN)
The user ID is to be able to execute administration functions in the local
application.

'N' (NONE)
The user ID is not have any administration privileges.
In UTM applications on BS2000 systems, no UTM SAT administration functions
may be executed under this user ID.

'B' (BOTH)
Only on BS2000 systems: Both administration and UTM SAT administration
functions may be executed under this user ID.

'S' (SAT)
Only on BS2000 systems: The user ID has UTM SAT administration privileges.
Preselection functions may be executed.

o satsel Only on BS2000 systems:
Specifies the type of SAT logging for the user ID.

'B' Both successful and unsuccessful events are to be logged (BOTH).

'S' Only successful events are to be logged (SUCC).

'F' Only unsuccessful events are to be logged (FAIL).

'N' No user-specific SAT logging is defined (NONE).

Logging can only take place if SAT logging is activated for the application. (See the
openUTM manual “Generating Applications” and openUTM manual “Using UTM
Applications” for more information on SAT logging.)

openUTM V7.0. Administering Applications. User Guide.

 222

Field name 1 Meaning

o protect_pw_min_time[3]

Specifies the minimum term of validity in days for the password.

After changing the password, the user must not change it again before the
minimum term of validity is expired.
If a minimum term of 1 day is specified, the password cannot be changed again
before 00.00 hrs of the following day (local time of generation).

If the password is changed by the administrator or following a regeneration, the
user can always change the password, regardless of whether the minimum term of
validity is expired or not.

protect_pw_min_time must not be larger than (maximum term of protect_pw_time
validity).

Minimum value: '0'
Maximum value: '180'

o qlev[5] Specifies the maximum number of messages that can be stored temporarily in the
user’s message queue. If the threshold value is exceeded, what happens depends
on the value in the field.q_mode
When =0, no messages can be stored temporarily in the queue. qlev
When =32767, there is no limit on the length of the queue.qlev
Minimum value: 0, maximum value: 32767

o q_read_acl[8] Specifies the rights (name of a key set) that another user requires in order to be
able to read and delete messages from this USER queue.
Another user only has read access to this USER queue if the key set of the user’s
user ID and the key set of the logical terminal via which the user is signed on each
contain at least one key code that is also contained in the specified key set.
If does not contain a value, all users can read and delete messages q_read_acl
from this queue.

o q_write_acl[8] Specifies the rights (name of a key set) that another user requires in order to be
able to write messages to this USER queue.
Another user only has write access to this queue if the key set of the user ID and
the key set of the logical terminal via which the user is signed on each contain at
least one key code that is also contained in the specified key set.
If does not contain a value, all users can write messages to this queue.q_write_acl

openUTM V7.0. Administering Applications. User Guide.

 223

Field name 1 Meaning

o q_mode Specifies how UTM responds when the maximum number of not yet executed jobs in the
user’s queue is reached. The possible values are:

'S' UTM rejects any further jobs (default).

'W' UTM accepts further messages but deletes the oldest messages in the queue.

o principal[100]

Only on BS2000 systems:
Specifies that the user is to be authenticated via Kerberos.
Specifying excludes the possibility of specifying and .principal card password

 must be specified as an alphanumeric string in the form principal
 windowsaccount@NT-DNS-REALM-NAME.

: Domain account of the userwindowsaccount

: DNS name of the Active Directory domainNT-DNS-REALM-NAME

1 All fields in the data structure that are not listed and all fields that are not relevant to the operating system you are using are to kc_user_str

be set to binary zero. The data structure is described in full in chapter "kc_user_str, kc_user_fix_str, kc_user_dyn1_str and

.kc_user_dyn2_str user IDs"

openUTM V7.0. Administering Applications. User Guide.

 224

11.2.3.10 Returncodes

in the field UTM outputs the return code of the call. In addition to the return codes listed in retcode section "Return
, the following codes can also be returned. Some of these return codes may arise independently of the object codes"

type specified; others only occur for certain object types.

Main code = KC_MC_DATA_INVALID

A field in the data structure in the data area contains an invalid value.

Subcodes:

KC_SC_NOT_NULL

A field in the data structure that should contain a binary zero contains something else.

KC_SC_NO_INFO

A field in the data structure contains an invalid value.

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_NAME_MISSING

No name was specified for the object to be configured.

KC_SC_TAB_FULL

No more objects of the specified object type can be created because the table spaces reserved during
KDCDEF generation are already filled or because no table spaces for this object type have been reserved.
Please note that the table spaces occupied by objects deleted with delay are not released.

KC_SC_EXISTENT

An object with this object name class already exists with the object name specified (see section "Format and
). Please note that the names of deleted objects should not be reused.uniqueness of object names"

KC_SC_OBJ_DEL

The object to be configured was deleted with delay.

KC_SC_INVALID_NAME

The object name begins with 'KDC'.

KC_SC_NO_GLOB_CHANG_POSSIBLE

Only in UTM cluster applications:
No global administration changes are possible since the generation of the node applications is not
consistent at present.

KC_SC_GLOB_CRE_DEL_LOCKED

openUTM V7.0. Administering Applications. User Guide.

 225

Only in UTM cluster applications:
It is not possible to generate an object at present because the generation or deletion of an object or the
generation, deletion or activation of an RSA key pair has not yet been completed in a node application.

KC_SC_JCTL_RT_CODE_NOT_OK

Only in UTM cluster applications:
Internal UTM error.
Please contact system support.

Main code = KC_MC_REJECTED_CURR

The call cannot be processed at the present time.

Subcode:

KC_SC_INVDEF_RUNNING

An inverse KDCDEF is currently running or an inverse KDCDEF run is being prepared (asynchronous), see
KC_CREATE_STATEMENTS in chapter "KC_CREATE_STATEMENTS - Create KDCDEF control

.statements (inverse KDCDEF)"

Main code = KC_MC_RECBUF_FULL

The buffer containing restart information is full. The buffer size is set using the KDCDEF control statement
MAX, operand RECBUF.
See the openUTM manual “Generating Applications”.

Subcode:

KC_SC_NO_INFO

openUTM V7.0. Administering Applications. User Guide.

 226

Return codes for obj_type = KC_CON:

Maincode = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_PROCESSOR_MISSING (only on BS2000 systems)

A processor name was not specified in . It is mandatory to specify in UTM pronam_long pronam_long
applications on BS2000 systems.

KC_SC_PROCESSOR_NOT_ALLOWED

In a computer name has been specified that is longer than 8 characters and contains no full pronam_long
stops (‘.') which means it cannot be a DNS name.

KC_SC_LPAP_MISSING

No LPAP partner was specified.

KC_SC_LPAP_NOT_EXISTENT

The specified LPAP partner does not exist.

KC_SC_BCAMAPPL_NOT_EXISTENT

The application name specified in does not exist.bcamappl

KC_SC_TPROT_NOT_ALLOWED (only on Unix, Linux and Windows systems)

A BCAMAPPL is referenced with = .t_prot socket

KC_SC_INVALID_LISTENID (only on Unix, Linux and Windows systems)

The number specified in is impermissible.listener_port

KC_SC_LISTENER_PORT_MISSING (only on Unix, Linux and Windows systems)

No was specified.listener_port

KC_SC_INVALID_BCAMAPPL_PORT (only on Unix, Linux and Windows systems)

The specified port number is invalid.

openUTM V7.0. Administering Applications. User Guide.

 227

Return codes for obj_type = KC_KSET:

Maincode = KC_MC_REJECTED

The call was rejected by UTM.

Subcode:

KC_SC_INVALID_KEY_VALUE

An attempt was made to create more keys than are permitted by the maximum value generated in the
application.

Return codes for obj_type = KC_LSES:

Maincode = KC_MC_REJECTED

The call was rejected by UTM.

Subcode:

KC_SC_LPAP_MISSING
No LPAP partner was specified.

openUTM V7.0. Administering Applications. User Guide.

 228

Return codes for obj_type = KC_LTAC:

Maincode = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_INVALID_WAITTIME

A negative wait time was assigned to the parameter.waittime

KC_SC_INVALID_LTACUNIT

A value less than 0 or greater than 4095 was assigned to the parameter.ltacunit

KC_SC_INVALID_LOCK

The specified in the LTAC statement is less than 0 or greater than the permitted maximum value lockcode
(KDCDEF statement MAX, KEYVALUE operand).

KC_SC_NOT_ALLOWED

lock_code and cannot be specified together.access_list

KC_SC_INVALID_ACL

The specified key set does not exist.

KC_SC_INVALID_RTAC

When =INTEGER: The value for exceeds the max. permitted value.code recipient_TPSU_title
When =PRINTABLE-STRING: The RTAC name is incorrect.code

KC_SC_LPAP_NOT_EXISTENT

The specified LPAP, OSI-LPAP or master LPAP partner does not exist.

KC_SC_KSET_DEL

The key referenced via was deleted.access_list

KC_SC_NAME_TOO_LONG

The name assigned to the parameter is too long.rtac

KC_SC_NAME_TOO_SHORT

The name assigned to the parameter is too short.rtac

KC_SC_INVALID_CHAR_IN_STRING

The RTAC name is incorrect.

openUTM V7.0. Administering Applications. User Guide.

 229

Return codes for obj_type = KC_LTERM:

Main code = KC_MC_OK

The call was processed without errors.

Subcode:

KC_SC_INVALID_LEVEL

You have specified values in and/or that exceed the maximum value allowed. The value specified plev qlev
is replaced by the default value.

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_INVALID_NAME

The name specified for the object begins with "KDC". See section "Format and uniqueness of object names"
for information on object names.

KC_SC_NAME_EXISTENT

The name specified for the object to be created already exists as a TAC name.

KC_SC_INVALID_FORMAT

The format specified in is a #Format, but no sign-on service was generated (there is no TAC format_name
with the name KDCSGNTC).

KC_SC_NO_FORMAT_ALLOWED

A start format was specified in and but no formatting system was generated format_name format_attr
(KDCDEF control statement FORMSYS).

KC_SC_INVALID_FORMAT_USAGE

A start format was specified in , although ='O' has been specified.format_name format_attr usage_type

KC_SC_INVALID_PLEV_RESTART

plev > '0' and ='N' has been set.restart

KC_SC_INVALID_PLEV_QAMSG

plev > '0' and = 'N' has been set.qamsg

KC_SC_INVALID_PLEV_USAGE

plev > '0' and = 'D' has been set.usage_type

KC_SC_INVALID_RESTART_QAMSG

openUTM V7.0. Administering Applications. User Guide.

 230

restart = 'N' and = 'Y' have been set.qamsg

KC_SC_KSET_NOT_EXISTENT

No key set exists for the name specified in .kset

KC_SC_INVALID_USAGE_CTERM

The LTERM partner is to be assigned a printer control LTERM (specified in), although = cterm usage_type
'D' has been specified (dialog partner).

KC_SC_CTERM_NOT_EXISTENT

The name specified in (printer control LTERM) does not exist.cterm

KC_SC_CTERM_DEL

The LTERM partner belonging to the name specified in has been deleted.cterm

KC_SC_INVALID_CTERM_USAGE

The LTERM partner belonging to the name specified in is not a dialog partner (='D').cterm usage_type

KC_SC_INVALID_USER_USAGE

The LTERM partner is to be assigned a user ID (specified in); however, is set to 'O' user_gen usage_type
(printer).

KC_SC_USER_NOT_ALLOWED

A user ID is specified in the field, but the application was generated without user IDs.user_gen

KC_SC_KSET_DEL

The referenced key set was deleted.

KC_SC_USER_NOT_EXISTENT

The user ID specified in does not exist; the application was generated with user IDs.user_gen

KC_SC_USER_DEL

The user ID specified in has been deleted.user_gen

KC_SC_USER_NOT_ADMINISTRABLE

The user ID specified in cannot be administered because, for example, it is a user ID that was user_gen
created internally by UTM.

KC_SC_USER_ALREADY_EXISTS

The application was generated without user IDs.
A user ID created implicitly by UTM already exists with the name you have specified in (name of the lt_name
LTERM partner).

KC_SC_CTERM_IS_TPOOL

openUTM V7.0. Administering Applications. User Guide.

 231

The object specified in is an LTERM partner that belongs to an LTERM pool. It cannot be specified as cterm
a printer control LTERM.

KC_SC_CTERM_IS_MUX (only on BS2000 systems)

The object specified in is an LTERM partner that belongs to a multiplex connection. It cannot be cterm
specified as a printer control LTERM.

KC_SC_CTERM_IS_UTM_D

The name specified in belongs to an LPAP or OSI-LPAP partner for the purpose of connecting partner cterm
servers.

KC_SC_INVALID_LOCK

The lock code specified in does not lie in the range between 1 and the maximum value allowed lock_code
for the application (KDCDEF command MAX, KEYVALUE operand).

KC_SC_INVALID_BUNDLE_CTERM

The specified CTERM is a master or slave of an LTERM bundle.

KC_SC_PRINCIPAL_AND_KERBEROS

The value 'Y' in is not permitted if both MAX PRINCIPAL-LTH and MAX CARDLTH have kerberos _dialog
the value 0.

openUTM V7.0. Administering Applications. User Guide.

 232

Return codes for obj_type = KC_PROGRAM:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcode:

KC_SC_LMOD_MISSING

No load module / shared object / DLL was specified in .load_module

KC_SC_COMP_MISSING (only on BS2000 systems)

No compiler was specified in .compiler

KC_SC_LMOD_NOT_EXISTENT

The load module / shared object / DLL specified in does not exist.load_module

KC_SC_LMOD_NOT_CHANGEABLE

The load module / shared object / DLL specified in cannot be exchanged.load_module

KC_SC_NO_LMOD

The application was not generated with load modules / shared objects / DLLs. No program unit can be
added dynamically to the configuration using KC_CREATE_OBJECT.

KC_SC_COMP_NOT_GEN

The application does not contain a language connection module that corresponds to the compiler specified
in .compiler

KC_SC_KDCADM_ONCALL_LMOD

The default administration program KDCADM may not be created with the load mode set to ONCALL.

KC_SC_MFCOBOL_AND_NETCOBOL (only on Unix, Linux and Windows systems)

It is not permitted to use programs for MFCOBOL (Micro Focus COBOL) and NETCOBOL simultaneously in
a UTM application.

KC_SC_LANG_ENV_MISSING (only on Unix, Linux and Windows systems)

No language environment is available for MFCOBOL or NETCOBOL

openUTM V7.0. Administering Applications. User Guide.

 233

Return codes for obj_type = KC_PTERM:

Main code = KC_MC_OK

The call was processed without any errors.

Subcodes:

KC_SC_INVALID_USAGE_APPLI_UPIC

The values specified in and are not compatible. = 'UPIC-...' was specified with ptype usage_type ptype
 = 'O'. The value in was automatically set to 'D'.usage_type usage_type

KC_SC_INVALID_IDLETIME

The value of the parameter was changed because you entered a value between 1 and 59. UTM has idletime
set to the smallest valid value.idletime

KC_SC_INVALID_PROTOCOL

The values specified in and are not compatible. The following cases can arise:ptype protocol

ptype = 'UPIC-...' or '*RSO' and = 'S' were specified. The value in was automatically set protocol protocol
to 'N'.

ptype='*ANY' and ='N' were specified. The value in was automatically set to 'S'.protocol protocol

KC_SC_INVALID_USAGE_AND_PROT

The values specified in , and are not compatible. = 'UPIC-...' was specified ptype protocol usage_type ptype
with = 'O' and = 'S'. The value in was automatically set to 'D', the value in usage_type protocol usage_type

 was set to 'N'.protocol

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_PROCESSOR_MISSING (only on BS2000 systems)

No computer name was specified in . It is mandatory to specify in UTM pronam_long pronam_long
applications on BS2000 systems.

KC_SC_PTYPE_MISSING (only on BS2000 systems)

No partner type was specified in . It is mandatory to specify it for UTM applications on BS2000 ptype
systems.

KC_SC_PROCESSOR_NOT_ALLOWED

In a computer name has been specified that is longer than 8 characters and contains no full pronam_long
stops (‘.') which means it cannot be a DNS name,

openUTM V7.0. Administering Applications. User Guide.

 234

or - on Unix, Linux and Windows systems - a computer name has been specified in although pronam_long
='TTY', 'PRINTER' or 'UPIC-L' has been set.ptype

KC_SC_INVALID_NAME

The object name specified begins with "KDC". This name is reserved for UTM. See section "Format and
 for information on the format of object names.uniqueness of object names"

KC_SC_INVALID_STATUS_CONNECT

state = 'N' was specified together with = 'Y'.auto_connect

KC_SC_INVALID_PROTOCOL_USAGE

protocol = 'N' was specified together with = 'O', and was not assigned to 'RSO' or 'APPLI' usage_type ptype
or 'SOCKET'.

KC_SC_INVALID_CID_USAGE

A printer ID was specified in although = 'D' (on BS2000 systems) or ='tty' (on Unix, cid usage_type ptype
Linux and Windows systems) was specified.

KC_SC_BCAMAPPL_NOT_EXISTENT

The application name specified in does not exist.bcamappl

KC_SC_INVALID_BCAMAPPL_PORT (only on Unix, Linux and Windows systems)

Invalid listener port

KC_SC_INVALID_BCAMAPPL_PTYPE

The name specified in is not identical to the application name (APPLINAME) defined in the bcamappl
KDCDEF control statement MAX, although 'APPLI', 'SOCKET' or 'UPIC-R'.ptype !=

KC_SC_LTERM_NOT_EXISTENT

The LTERM partner specified in does not exist.lterm

KC_SC_PTYPE_NO_LTERM

ptype = 'APPLI', 'SOCKET' or 'UPIC-...' was specified, but no LTERM partner was specified in .lterm

KC_SC_INVALID_USAGE_LTERM

The value specified in is not compatible with the LTERM partner specified in .usage_type lterm

KC_SC_INVALID_BUNDLE_USAGE

usage_type='O' not permitted for bundle

KC_SC_INVALID_BUNDLE

usage_type='D' was specified and an LTERM partner was specified in that already has been assigned lterm
a client.

KC_SC_INVALID_GROUP_USAGE

openUTM V7.0. Administering Applications. User Guide.

 235

usage_type='O' not permitted for group

KC_SC_INVALID_PROV_BUNDLE

usage_type='D' was specified and an LTERM partner was specified in that already has been assigned lterm
a client in this transaction.

KC_SC_LTERM_DEL

The LTERM partner specified in has been deleted.lterm

KC_SC_CID_MISSING

No data was specified in :cid
The LTERM partner specified in is assigned a printer control LTERM (specified in). lterm cterm
A printer ID must then be specified for the printer.

KC_SC_INVALID_CID

The printer ID specified in already belongs to another printer that has been assigned to the same printer cid
control LTERM.

KC_SC_CTERM_DEL

The printer control LTERM of the LTERM partner specified in has been deleted.lterm

KC_SC_USRT_TAB_FULL

For = 'APPLI', 'SOCKET' or 'UPIC-...': UTM cannot create a connection user ID because all table ptype
spaces reserved for user IDs during generation have been used.

KC_SC_PROCESSOR_NOT_ALLOWED (only on Unix, Linux and Windows systems)

The name of a computer was specified in although = 'TTY', 'PRINTER' or 'UPIC-L' was pronam ptype
specified.

KC_SC_INVALID_MAP_PTYPE (only on Unix, Linux and Windows systems)

map 'U' was specified although 'APPLI' or 'SOCKET' was specified.!= ptype !=

KC_SC_INVALID_MAP_AND_PROT (only on BS2000 systems)

map 'U' was specified although ptype 'SOCKET' was specified.!= !=

KC_SC_INVALID_CONNECT_PTYPE (only on Unix, Linux and Windows systems)

auto_connect='Y' was specified together with = 'TTY' or 'UPIC-...'.ptype

KC_SC_INVALID_AUTOUSER_PTYPE

ptype = 'APPLI', 'SOCKET' or 'UPIC-...':
The connection user ID () defined for the LTERM partner specified in is not created in the user_gen lterm
same transaction.

KC_SC_INVALID_LTERM_PTYPE

openUTM V7.0. Administering Applications. User Guide.

 236

ptype= 'APPLI', 'SOCKET' or 'UPIC-...':
The LTERM partner specified in is not created in the same transaction.lterm

KC_SC_LTERM_IS_TPOOL

The LTERM partner specified in belongs to an LTERM pool.lterm

KC_SC_LTERM_IS_MUX (only on BS2000 systems)

The LTERM partner specified in belongs to a multiplex connection, i.e. it has been created implicitly by lterm
UTM for a multiplex connection.

KC_SC_LTERM_IS_UTM_D

The name specified in belongs to an LPAP or OSI-LPAP partner for connecting partner servers.lterm

KC_SC_LTERM_IS_MASTER

The specified LTERM is a master Lterm.

KC_SC_LTERM_IS_ALIAS

The specified LTERM is an alias Lterm.

KC_SC_INVALID_GROUP_PTYPE

The specified LTERM is a primary Lterm and the PTYPE is not APPLI or SOCKET.

KC_SC_INVALID_LTERM_SLAVE_PTYP

The specified LTERM is a slave Lterm and the PTYPE is not APPLI or SOCKET.
Only on BS2000 systems: Different PTYPEs within a bundle.

KC_SC_INVALID_APPLI_USER

ptype = 'APPLI', 'SOCKET' or 'UPIC-R':
For the LTERM partner specified in the field, no connection user ID has been specified, i.e. lterm user_gen
was not specified when the LTERM partner was added. A user ID with the name of the LTERM partner
exists, but it was not created in the same transaction as the client (see "Adding clients, printers and LTERM

).partners"

KC_SC_INVALID_LISTENID (only on BS2000 systems)

The number specified in is invalid.listener_port

KC_SC_PRONAM_NOT_RSO (only on BS2000 systems)

'RSO' was specified in but was not set to '*RSO'.ptype, pronam_long

KC_SC_PTYPE_NOT_RSO (only on BS2000 systems)

'RSO' was specified in , but was not set to '*RSO'.pronam_long ptype

KC_SC_INVALID_USAGE_APPLI_UPIC

ptype='APPLI', 'SOCKET' or 'UPIC-...' was specified with USAGE='O'.

openUTM V7.0. Administering Applications. User Guide.

 237

KC_SC_INVALID_IDLETIME_USAGE

idletime was specified for an output station.

KC_SC_INVALID_AUTOUSER_PTYPE

ptype ='APPLI', 'SOCKET' or 'UPIC-...' was specified, but the USER with the name of the specified LTERM
is not created by the same transaction.

KC_SC_PRINTER_NT_NOT_SUPPORTED (only on Windows systems)

ptype='PRINTER' was specified in the UTM application on Windows systems, however, openUTM on
Windows systems does not support printers.

KC_SC_INVALID_PTYPE_AND_PROT

The PTERM has not been generated with ='SOCKET' and the referenced BCAMAPPL has been ptype
generated with TCP/IP.

BS2000 systems: The PTERM has been generated with ='SOCKET' and the referenced BCAMAPPL ptype
has not been generated with TCP/IP.

KC_SC_INVALID_TPROT_AND_TPROT (only on Unix, Linux and Windows systems)

The PTERM referenced with ='SOCKET' and the referenced BCAMAPPL is not generated with TCP/IP.ptype

KC_SC_INVALID_USP_AND_PROT

A value not equal to NO is contained in the field, and the referenced BCAMAPPL does not have usp_hdr
TCP/IP.

KC_SC_TPROT_NOT_ALLOWED

Transport protocol not permitted.

KC_SC_KEY_NOT_GEN_CREA_IT

An encryption level for which no RSA key pair was created at generation was selected in the
 field. If a PTERM is to be created with this encryption level, you must first dynamically encryption_level

generate an RSA key pair with the desired encryption level. Note that this can take quite a long time for
encryption levels 3 and 4.

openUTM V7.0. Administering Applications. User Guide.

 238

Return codes for obj_type = KC_TAC:

Main code = KC_MC_OK

The call was processed without error.

Subcode:

KC_SC_INVALID_VALUE

One or more of the following values were invalid or were set automatically:

A number was specified in that is larger than the maximum number permitted. UTM replaced the qlev
value with the maximum value.

A time between '1' and '999' msec was specified in . The time was set to '1000'.cpu_time_msec

A time was specified in that is larger than the maximum value permitted. The value was cpu_time_msec
replaced with the maximum value.

A time was specified in that is larger than the maximum value permitted. The value was real_time_sec
replaced with the maximum value.

A priority between '1' and '29' was specified in . The value was set to '30'.runprio

A value was specified in that is larger than the maximum value allowed. The value was replaced tacunit
with the maximum value.

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_NOT_ALLOWED

The specification of and together is not permitted.lock_code access_list

KC_SC_PROGRAM_MISSING

No data was entered in .program

KC_SC_INVALID_TYPE

No queues are permitted in UTM-FF.

KC_SC_INVALID_NAME

You tried to generate an administration TAC without setting admin='Y' or the TAC name () begins tc_name
with "KDC". These names are reserved for UTM. See for section "Format and uniqueness of object names"
information on the format of object names.

KC_SC_TACUNIT_ILL

Invalid value for .tacunit

KC_SC_PROGRAM_NOT_EXISTENT

openUTM V7.0. Administering Applications. User Guide.

 239

The program unit specified in does not exist.program

KC_SC_INVALID_EXIT_PROGRAM

The VORGANG exit specified in belongs to a load module / shared object / DLL generated with exit_name
the load mode set to ONCALL. However, this load module does not contain the program unit specified in

.program

KC_SC_NAME_EXISTENT

The transaction code specified in is already defined as an LTERM partner. The names of tc_name
transaction codes and LTERM partners belong to the same name class (see section "Format and

).uniqueness of object names"

KC_SC_EXIT_NEXT_TAC

A VORGANG exit was specified in although the transaction code should have been configured exit_name
as a follow-up (next) TAC (='N').call_type

KC_SC_PROGRAM_DEL

The program unit specified in has been deleted.program

KC_SC_EXIT_NOT_EXISTENT

The VORGANG exit specified in does not exist.exit_name

KC_SC_INVALID_TCBENTRY

Specifying is not allowed.tcbentry

KC_SC_EXIT_DELETED

The VORGANG exit specified in has been deleted.exit_name

KC_SC_XOPEN_NOT_ALLOWED

A value not equal to 'K' (KDCS) was specified in and the application was generated without X/Open api
TACs. You can only dynamically configure a transaction code for a program unit that uses the X/Open
program interface functions if at least one transaction code of this type was statically generated with
KDCDEF.

KC_SC_INVALID_QMODE

q_mode='W' is only permitted for TAC queues.

KC_SC_INVALID_QMODE_QLEV

q_mode='W' but is not between 1 and 32766.qlev

KC_SC_INVALID_QMODE_FF

Invalid for UTM-FF.q_mode

KC_SC_KSET_DEL

The key set referenced via or was deleted.kset access_list

openUTM V7.0. Administering Applications. User Guide.

 240

KC_SC_READ_ACL_DEL

The key set referenced via was deleted.q_read_acl

KC_SC_WRITE_ACL_DEL

The key set referenced via was deleted.q_write_acl

KC_SC_INVALID_LOCK

The lock code specified in is not between 1 and the maximum value (KEYVALUE operand of the lock_code
MAX command) allowed for the application.

KC_SC_INVALID_TACCLASS

The data specified in and is incompatible:tacclass tac_type

tac_type='D' (dialog TAC) was specified and a value was specified in that is not between '1' and tacclass
'8'.

tac_type='A' (asynchronous TAC) was specified and a value was specified in that is not between tacclass
'9' and '16'.

KC_SC_NO_TACCLASS_GENERATED

Data was specified in the field, but the application was generated without TAC classes.tacclass

KC_SC_PGWT_TACCLASS

'Y' was specified in . That is not allowed if the TAC-PRIORITIES statement was issued, during the pgwt
KDCDEF generation.

KC_SC_PGWT_NO_PGWT_TASKS

'Y' was specified in , but MAX TASKS-IN-PGWT=0 (default) was specified in KDCDEF generation of pgwt
the application.

KC_SC_ILLEGAL_STATUS

'K' (Keep) was specified in , although ='D' (i.e. the transaction code is not an asynchronous state tac_type
TAC) and/or 'F'or 'B' (the transaction code is not defined as the first TAC of a service).call_type !=

KC_SC_PGWT_YES_NO_TACCLASS

You entered 'Y' for , although the application was generated without TAC classes.pgwt

KC_SC_CALLTYPE_N_ENCRYPT

encryption_level unequal 'N' was set, although the TAC is not a service TAC, i.e. 'N'.call_type=

KC_SC_INVALID_READ_ACL

The key set specified in does not exist.q_read_acl

KC_SC_INVALID_WRITE_ACL

The specified key specified in set does not exist.q_write_acl

openUTM V7.0. Administering Applications. User Guide.

 241

KC_SC_INVALID_ACL

The specified key set specified in does not exist.access_list

KC_SC_DLETQ_YES_NOT_ALLOWED

Invalid value for .dead_letter_q

openUTM V7.0. Administering Applications. User Guide.

 242

Return codes for obj_type = KC_USER:

Main code = KC_MC_OK

The call was processed without error.

Subcode:

KC_SC_INVALID_PROTECT_PW

The value specified in and/or in were larger than the maximum value protect_pw16_lth protect_pw_time
allowed. The value was set to the maximum value.

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_CARD_TAB_FULL

The table space reserved for CARD during KDCDEF generation is already occupied or no table spaces
were reserved for CARD.

KC_SC_NO_CARD_ALLOWED (only on Unix, Linux and Windows systems)

card... was specified even though no formatting has been generated.

KC_SC_INVALID_NAME

The user ID () specified begins with "KDC". These names are reserved for UTM. See us_name section
 for information on the format of the object names."Format and uniqueness of object names"

KC_SC_INVALID_FORMAT (only on BS2000 systems)

The start format specified in and is a #Format, but no sign-on service was format_name format_attr
generated (there exists no TAC with the name KDCSGNTC).

KC_SC_NO_FORMAT_ALLOWED (only on BS2000 systems)

A start format was specified in and , but no formatting system was generated format_name format_attr
(KDCDEF control statement FORMSYS).

KC_SC_COMPL_MISSING

The password specified in does not meet the complexity level required in .password protect_pw_- compl

KC_SC_KSET_NOT_EXISTENT

No key set exists for the name specified in .kset

KC_SC_INVALID_POSITION (only on BS2000 systems)

The value specified in is invalid.card_position

openUTM V7.0. Administering Applications. User Guide.

 243

KC_SC_MIN_LTH_WITHOUT_PASSWORD

No password was specified in although > '0' is set.password16 protect_pw16_lth

KC_SC_APPLICATION_WITHOUT_USER

You cannot create a user ID because the application was generated without user IDs.

KC_SC_INVALID_READ_ACL

The key set specified in does not exist.q_read_acl

KC_SC_INVALID_WRITE_ACL

The specified key specified in set does not exist.q_write_acl

KC_SC_INVALID_QMODE_QLEV

q_mode='W' but is not between 1 and 32766qlev

KC_SC_INVALID_QMODE_FF

Invalid for UTM-FFq_mode

KC_SC_KSET_DEL

The key set referenced via was deleted.kset

KC_SC_READ_ACL_DEL

The key set referenced via was deleted.q_read_acl

KC_SC_WRITE_ACL_DEL

The key set referenced via was deleted.q_write_acl

KC_SC_INVALID_PRINCIPAL (only on BS2000 systems)

A principal was specified and at the same time the CARD or PASSWORD parameter was specified.

KC_SC_INVALID_QLEV_FF

Invalid for UTM-FFqlev

KC_SC_PRINCIPAL_AND_PW (only on BS2000 systems)

It is not possible to generate a USER with both a principal and a password.

KC_SC_PRINCIPAL_AND_CARD (only on BS2000 systems)

It is not possible to generate a USER with both a principal and a chip card.

KC_SC_PRINCIPAL_TABLE_FULL (only on BS2000 systems)

The table space reserved for PRINCIPAL during KDCDEF generation is already occupied or no table
spaces were reserved for PRINCIPAL.

KC_SC_PRINCIPAL_TOO_LONG (only on BS2000 systems)

openUTM V7.0. Administering Applications. User Guide.

 244

The principal is longer than the value specified in MAX PRINCIPAL-LTH.

KC_SC_INVALID_CLUSTER_RESTART

Only for UTM cluster applications:
Invalid value for .restart

openUTM V7.0. Administering Applications. User Guide.

 245

11.2.4 KC_CREATE_STATEMENTS - Create KDCDEF control statements (inverse
KDCDEF)

KC_CREATE_STATEMENTS allows you to start an inverse KDCDEF run during the application run (online). The
inverse KDCDEF creates KDCDEF control statements from the configuration data. In this way, all changes resulting
from dynamically adding, modify and deleting objects can be carried over to a new generation.

The KDCDEF control statements created by the inverse KDCDEF represent a consistent state of the configuration
of the running application in the following sense:

The changes to the configuration data carried out by a transaction are always taken fully into account by an inverse
KDCDEF running simultaneously.

See also the section on inverse KDCDEF runs in the openUTM manual “Generating Applications”.

The inverse KDCDEF allows you to create the following KDCDEF control statements:

CON statements for transport connections to remote LU6.1 applications

KSET statements for all key sets

LSES statements for all LU6.1 sessions

LTAC statements for transaction codes by means of which service programs are started in partner applications.

LTERM statements for all LTERM partners that do not belong to an LTERM pool or a multiplex connection

PTERM statements for all clients and printers that have been explicitly added to the configuration

PROGRAM statements for all program units and VORGANG exits

TAC statements for all transaction codes and TAQ queues in the application

USER statements for all user IDs including their queues

The inverse KDCDEF creates a control statement for each object of the specified type that is contained in the
configuration, irrespective of whether these objects were loaded dynamically or not and whether their properties
have been modified or not. The inverse KDCDEF does not create control statements for objects deleted with
KC_DELETE_OBJECT.

You can find detailed information on the inverse KDCDEF in chapter "Generating konfiguration statements from the
. KDCFILE"

openUTM V7.0. Administering Applications. User Guide.

 246

Controlling the inverse KDCDEF run

The inverse KDCDEF differentiates between the following seven object groups

First group LTERM partners, clients, printers (object types: KC_LTERM, KC_PTERM)

Second group program units, transaction codes, TAC queues
(object types: KC_PROGRAM, KC_TAC)

Third group user IDs (object type: KC_USER)

Fourth group key sets (object type: KC_KSET)

Fifth group transaction codes via which the service programs are started in partner applications (object type:
KC_LTAC)

Sixth group transport connections to LU6.1 applications
(object type: KC_CON)

Seventh
group

LU6.1 sessions (object type: KC_LSES)

You can use the KC_CREATE_STATEMENTS call to create KDCDEF control statements for objects of one or more
of these groups.

You must specify the file in which UTM is to write the KDCDEF control statements in the
KC_CREATE_STATEMENTS call. You can have all control statements written into one file or you can specify a file
for each of the object groups. You may also specify in the call whether UTM is to create a new file or append the
data to an existing file.
On BS2000 systems, the control statements can also be written to an LMS library element instead of a file. The
procedure for library elements is similar to the procedure for files.

Execution of an inverse KDCDEF run

The time at which the inverse KDCDEF run is started and execution itself are dependent on the current state of the
application. The following two cases can occur:

The inverse KDCDEF run is started asynchronously if transactions that have write access to the configuration
data of the objects are running at the time of the KC_CREATE_STATEMENTS call. The inverse KDCDEF run is
only started after these transactions have been completed. In the case of new transactions that are intended to
change data in the object tables, the corresponding calls to change the configuration data of the application are
rejected until the inverse KDCDEF run is completed (i.e. until the asynchronous job is processed).

The following also applies in UTM cluster applications (Unix, Linux and Windows systems):
In all running node applications, an administration action which applies globally to the cluster results in this type
of transaction which may delay the start on the inverse KDCDEF. Conversely, the execution of a global
administration action at a running node may be delayed if an inverse KDCDEF is currently running there.

openUTM V7.0. Administering Applications. User Guide.

 247

The inverse KDCDEF run is started synchronously if transactions that have write access to the configuration no
data of the objects are running at the time of the KC_CREATE_STATEMENTS call. The run is already finished
when control returns to the administration program. This means that, at this point in time, all of the KDCDEF
control statements requested have been created and written to the files specified.

Results of the inverse KDCDEF runs

After a successful inverse KDCDEF run, the control statements requested are stored in the files specified in the call.
These files can be used as input for the UTM generation tool KDCDEF when regenerating the application. You must
pass each of the files to KDCDEF with the KDCDEF control statement OPTION DATA=filename. The files can be
edited and modified.
The same applies if the control statements on BS2000 systems are written to LMS library elements instead of to
files. However, whether or not elements can be edited depends on their type: only text-type elements can be
modified.

Transaction management / cluster

The KC_CREATE_STATEMENTS call only reads the data in the KDCFILE. For this reason, the call is not subject to
transaction management. The call cannot be undone in the same transaction using an RSET call.

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The call applies locally to the node, i.e. an inverse KDCDEF run for the generation of control statements from the
configuration data is only started in this node application. It is sufficient for the effect to be local to the node since
the same objects exist in every node application. An effect global to the cluster would simply generate identical
KDCDEF statements.

If node applications with different generations are running (during an online update), then the call is rejected since
the result would otherwise depend on the application at which the call was executed.

Data to be supplied

Function of the
call

Data to be entered in the

parameter area identificati
on area

selection
area

data area

Create KDCDEF
control statements
online

Operation code:
KC_CREATE_

STATEMENTS

—— —— Data structure with information on the type
of control statements to be created as well
as the names and write modes of the files

openUTM V7.0. Administering Applications. User Guide.

 248

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_11

opcode KC_CREATE_STATEMENTS

id_lth 0

select_lth 0

data_lth Length of data in the data area

Identification area

—

Selection area

—

Data area

Data structure kc_create_statements_str

KDCADMI call

KDCADMI (¶meter_area, NULL, NULL, &data_area)

Data returned by UTM

Parameter area

Field name Contents

retcode Return codes

openUTM V7.0. Administering Applications. User Guide.

 249

data_lth

In you specify the length of the data structure .data_lth kc_create_statements_str

Data area

In the data area you must specify whether or not UTM is to create the KDCDEF control statements for each of
the object groups. If UTM is to create control statements for an object group, you must also specify the file in
which UTM is to write the control statements and the write mode of the file. The header file kcadminc.h
contains the following data structure definition for passing information to UTM.

Definition of constants

#define KC_FILE_NAME_LTH 54
#define KC_ELEM_NAME_LTH 64
#define KC_VERSION_LTH 24
#define KC_TYPE_LTH 8

Definition of the index constant

typedef enum
{ KC_DEVICE_STMT = 0,
 KC_PROGRAM_STMT = 1,
 KC_USER_STMT = 2,
 KC_KSET_STMT = 3,
 KC_LTAC_STMT = 4,
 KC_CON_STMT = 5,
 KC_LSES_STMT = 6,
 KC_MAX_STMT_TYPE = 6,
 KC_DUMMY_STMT_TYPE = 7
} KC_INVDEF_TYPE;

Definition of the data structure

struct kc_create_statements_str
{ struct
 { char create_control_stmts;
 char file_name[KC_FILE_NAME_LTH];
 char file_mode;
 char lib_name[KC_FILE_NAME_LTH];
 char elem_name[KC_ELEM_NAME_LTH];
 char vers[KC_VERSION_LTH];
 char type[KC_TYPE_LTH];

 } type_list[(int)KC_MAX_STMT_TYPE + 1];
 char stmt_type;
 char file_error_code[4];
};

openUTM V7.0. Administering Applications. User Guide.

 250

The KC_INVDEF_TYPE index of the array specifies the group to which the objects belong:type_list

KC_DEVICE_STMT

stands for the first group, consisting of the LTERM partners, clients and printers. The KDCDEF
control statements LTERM and PTERM are created in this group.

KC_PROGRAM_STMT

stands for the second group, consisting of the program units, transaction codes and TAC
queues. The KDCDEF control statements PROGAM and TAC are created in this group.

KC_USER_STMT

stands for the third group, consisting of the UTM user IDs. The KDCDEF USER control
statements are created in this group.

KC_KSET_STMT

Stands for the 4th group, the KSETs. The KDCDEF control statements KSET are generated in
this group.

KC_LTAC_STMT

stands for the 5th group, the transaction codes by means of which service programs are started
in partner applications. The KDCDEF LTAC control statements are created in this group.

KC_CON_STMT

Stands for the 4th group, the transport connections to LU6.1 applications. The KDCDEF control
statements CON are generated in this group.

KC_LSES_STMT

stands for the 7th group, the LU6.1 sessions. The KDCDEF LSES control statements are
created in this group.

The fields in the data structures must be supplied with the following data:

create_control_stmts

You specify here whether or not KDCDEF control statements are to be created for the object
group belonging to KC_INVDEF_TYPE.

'Y' KDCDEF control statements are to be created for this object group.

'N' No KDCDEF control statements are to be created for this object group. You can also specify
the null byte ('\0') in place of the 'N'.

file_name The name of the file in which the KDCDEF control statements are to be written. The name may
be up to 54 characters long. It must conform to the file naming conventions of the operating
system under which the application is running.

On Unix, Linux and Windows systems, the file name can be specified as an absolute or relative
path name. A relative file name specification will write the KDCDEF control statements to a file
in the directory in which the application was started.

file_mode Write mode of the file in bor of the element in file_name elem_name

openUTM V7.0. Administering Applications. User Guide.

 251

'C' Create:
UTM is to create a new file with the name or a new element with the name file_name

.elem_name

On BS2000 systems, inverse KDCDEF generates an SAM file or an LMS library element. Here,
the following applies:

If a file of the same name already exists then it must be a SAM file. The existing SAM file is
then overwritten.

If an element of the same name already exists and if *HIGHEST-EXISTING or *UPPER-
LIMIT is specified for vers=C'<version> then an existing element of the specified version is
overwritten.

'E' Extend:
UTM is to append the KDCDEF control statements to an existing file or to an existing element.

If the file with the name does not exist, UTM will create it.file_name

If an LMS library is specified in on BS2000 systems then the library must already lib_name
exist. In this case, an existing element of the specified version is extended. If the element
does not yet exist in this version then it is created.

lib_name (only on BS2000 systems)

Name of the LMS library in which the KDCDEF control statements are to be stored. The name
can be up to 54 characters in length. It must comply with the conventions for file names on the
BS2000 system.

If the name is shorter than the field length then it must be padded with spaces.

It is not permissible to specify and at the same time.file_name lib_name

If is specified then it is also necessary to enter values for , and .lib_name elem_name vers type

elem_name (only on BS2000 systems)

Name of the LMS library element to which the KDCDEF control statements are to be written.
The name can be up to 64 characters in length. If the name is shorter than the field length then
it must be padded with spaces. The name must comply with the conventions for LMS element
names

vers (only on BS2000 systems)

Version of the LMS library element to which the KDCDEF control statements are to be written.
The version can be up to 24 characters in length and must comply with the conventions for LMS
version specifications. If the version is shorter than the field length then it must be padded with
spaces.

You can also enter the following character strings as the version:

*HIGHEST-EXISTING

The statements are written to the highest version of the specified element present in the library.

openUTM V7.0. Administering Applications. User Guide.

 252

*UPPER-LIMIT

The statements are written to the highest version of the specified element present in the library.

*UPPER-LIMIT

The statements are written to the highest possible version of the specified element. LMS
indicates this version by means of an "@".

*INCREMENT

A new version is created for the specified element. *INCREMENT may only be specified if
='C'.file_mode

These character strings may not be truncated!

type (only on BS2000 systems)

Type of the LMS library element to which the KDCDEF control statements are to be written. The
type can be up to 8 characters in length and must comply with the conventions for LMS type
specifications. If the type is shorter than the field length then it must be padded with spaces.

It is recommended to use the LMS type "S" for .type

stmt_type If a value other than KC_MC_OK is returned as the main code then the field contains stmt_type
the index from KC_INVDEF_TYPE, to which the error message refers.

file_error_code

If the subcode KC_SC_FILE_ERROR is returned when an error occurs then the field
 contains the DMS error code or (on BS2000 systems) the associated PLAM file_error_code

error code.

The array is processed in order starting with the first array element (index KC_DEVICE_STMT) and type_list
proceeding to the last array element (index KC_LSES_STMT) when UTM is called.

If UTM is to create KDCDEF control statements for all three object groups, then the create_control_stmts
 field must be set to 'Y', the field must be set to the file name and the field must be set file_name file_mode
to the write mode of the file in each array element.

If all of the control statements are to be written to file, then you should ensure that the correct write one
mode has been set.

You can set the write mode to 'C' or 'E' for the first entry of the file or the LMS library element. In the
following array elements, however, the write mode must be set to 'E'. Otherwise, the control statements just
created will be overwritten.

If UTM is not to create control statements for one of the object groups, then ='N' (or create_control_stmts
nothing at all) is to be specified in the corresponding array element.

KDCDEF does not check whether the specifications in , or comply with elem_name vers type
the LMS syntax rules. For further information on the syntax rules for the names of LMS
elements and a specification of version and type, see the manual "LMS SDF Format".

i

openUTM V7.0. Administering Applications. User Guide.

 253

retcode

In the field UTM outputs the return codes of the call. In addition to the codes listed in retcode section "Return
, the following return codes can also arise:codes"

Main code = KC_MC_OK

The call was processed without errors.

Subcode:

KC_SC_ASYN_INIT

The job was accepted; the inverse KDCDEF will be started asynchronously as soon as all transactions
that modify configuration data have terminated.

Main code = KC_MC_DATA_INVALID

Invalid or missing data in the data area.

Subcodes:

KC_SC_DATA_MISSING

No data was specified in the data structure passed in the data area.

KC_SC_NO_INFO

Invalid data was specified in the data structure passed in the data area.

KC_SC_FILE_LIBRARY_MISMATCH (only on BS2000 systems)

Both a file name () and an LMS library () have been specified.file_name lib_name

KC_SC_LMS_ELEMENT_MISSING (only on BS2000 systems)

An LMS library () was specified but no element name (lib_name elem_name).

KC_SC_LMS_VERSION_MISSING (only on BS2000 systems)

An LMS library () was specified but no element version ().lib_name vers

KC_SC_LMS_TYPE_MISSING (only on BS2000 systems)

An LMS library () was specified but no element type ().lib_name type

KC_SC_LMS_VERSION_MODE_MISMATCH (only on BS2000 systems)

*INCREMENT was specified as LMS version but is not 'C'.file_mode

Main code = KC_MC_MEMORY_INSUFF

There is not enough internal UTM memory available.

openUTM V7.0. Administering Applications. User Guide.

 254

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_REJECTED_CURR

The call cannot be processed at the present time.

Subcode:

KC_SC_INVDEF_RUNNING

An inverse KDCDEF is currently running or an inverse KDCDEF run is being prepared asynchronously,
i.e. the job cannot be processed at the present time.

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_NOT_GEN

KDCDEF control statements are to be generated for objects whose types were not generated, such as
USER commands for an application without user IDs.

KC_SC_FILE_ERROR

One of the files in which the KDCDEF control statements are to be written cannot be written to. A DMS
error code or (on BS2000 systems) a PLAM error code is returned in the field . This file_error_code
code provides ingormation about the error that has occurred

KC_SC_NO_INFO

The page pool used to temporarily store the parameters passed is full.

KC_SC_CLUSTER_CONF_INCONS

Only for UTM cluster applications:
The running node applications have different generations.

openUTM V7.0. Administering Applications. User Guide.

 255

11.2.5 KC_DELETE_OBJECT - Delete objects

KC_DELETE_OBJECT allows you to delete objects belonging to one of the following object types from the
configuration:

transport connections to remote LU6.1 applications (KC_CON)

key sets (KC_KSET)

LU6.1 sessions (KC_LSES)

transaction codes by means of which service programs can be started in partner applications (KC_LTAC)

LTERM partners used to connect clients and printers (KC_LTERM)

clients and printers (KC_PTERM)

application program units and VORGANG exits (KC_PROGRAM)

transaction codes and TAC queues (KC_TAC)

user IDs including their queues (KC_USER)

You can find more detailed information on dynamically deleting objects from the configuration in chapter "Changing
.the configuration dynamically"

Objects that you are not allowed to delete

LTERM partners that belong to an LTERM pool or multiplex connection

LTERM partners belonging to an LTERM group (group or primary LTERM) or to an LTERM bundle (master or
slave LTERM)

printer control LTERMs

the LTERM partner KDCMSGLT that UTM creates internally for the MSGTAC service

program units that belong to the START, SHUT, FORMAT or INPUT event exits

program units and VORGANG exits that are statically linked into the application program

the KDCMSGTC, KDCSGNTC, KDCBADTC transaction codes of the event services

transaction codes assigned to a transport system access point (BCAMAPPL) as SIGNON-TAC

the dead letter queue KDCDLETQ

statically linked programs with event exits

the KDCSHUT administration command of the KDCADM administration program

the KDCTXCOM and KDCTXRLB transaction codes reserved for XATMI

the KDCMSGUS user ID that UTM creates internally for the MSGTAC service

a user ID assigned to a terminal for automatic KDSIGN or to a UPIC, APPLI or SOCKET client as a connection
user ID

The following must be observed when deleting objects:

A program unit or a VORGANG exit may only be deleted after all the transaction codes belonging to them have
been deleted.

An LTERM partner may only be deleted if no more clients or printers are assigned to it.

A user ID may only be deleted if there are no more users or clients signed on under this user ID, i.e.:

openUTM V7.0. Administering Applications. User Guide.

 256

The user must not be signed on in a standalone application with
SIGNON MULTI-SIGNON=NO.

In a standalone application with SIGNON MULTI-SIGNON=YES,

a user with RESTART=YES must not be signed on,

a user with RESTART=NO must not be signed on via a terminal connection.

In a UTM cluster application with SIGNON MULTI-SIGNON=NO,

no genuine user may be signed on,

a connection user must not be signed on at the node application at which the administration 'Delete' call is
executed.

In a cluster application with SIGNON MULTI-SIGNON=YES,

no genuine user with RESTART=YES may be signed on,

a connection user must not be signed on at the node application at which the administration 'Delete' call is
executed,

a user with RESTART=NO may not be signed on via a terminal connection at the node application at which
the administration 'Delete' call is executed.

When a client/printer is deleted, it must not be connected to the application.

A logical connection for distributed processing by means of LU6.1 may not be deleted when it is not set up.

An LU6.1 session may only be deleted when it is not set up and is not in the P state (prepare to commit).

Effects of deletion during the application run

We distinguish two methods of deletion:

immediate delete (with =KC_IMMEDIATE). subopcode1
This method is only possible in conjunction with user IDs (KC_USER) and transport connections to LU6.1
applications (KC_CON). The immediate deletion of a user ID or a CON object causes the space in the object
table to be freed up and made available for further use immediately. Immediate deletion is only possible for users
IDs (KC_USER) and transport connections to LU6.1 applications (KC_CON). You can generate a new user ID
using the same name after the deletion.
Immediate deletion is only possible in standalone UTM applications.

delayed delete (with =KC_DELAY) subopcode1

Delayed deletion has the effect of a “permanent lock”. This process does not free up space in the object table.
The object’s name remains reserved, i.e. you cannot generate dynamically a new object using this name within
the same name class.
The delayed deletion of transport connections to LU6.1 applications (KC_CON) is not possible in standalone
UTM applications.

In UTM cluster applications, only delayed deletion is possible.
In UTM cluster applications, it is possible to delete objects with an update generation without having to terminate
the entire UTM cluster application. To implement this change in all the running node applications, it is necessary
to terminate the individual node applications one after the other and then start them with the new generation.

For details see openUTM manual “Using UTM Applications” subsection "Update generation in a cluster”.

The deletion of an object cannot be undone.

The inverse KDCDEF does not create KDCDEF control statements for deleted objects.

openUTM V7.0. Administering Applications. User Guide.

 257

The effects of the deletion of an object on unprocessed asynchronous jobs, asynchronous messages, open dialog
services etc. that relate to that object are described in .chapter "Changing the configuration dynamically"

Procedure / period of validity / transaction management / cluster

The call is subject to transaction management. The object is deleted from the configuration only after the program
unit run has ended (for PEND). The call can be rolled back with an RSET call that is executed in the same
transaction.

The deletion remains effective even after the UTM-S- and UTM-F applications have terminated; it cannot be undone.

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The call applies globally to the cluster, i.e. objects are deleted from the configuration in all the node applications.

openUTM V7.0. Administering Applications. User Guide.

 258

Data to be supplied

Function of the call Data to be entered in the

parameter area 1 identification area selection
area

data
area

Delete transport connections to
LU6.1 applications

subopcode1:
KC_DELAY or
KC_IMMEDIATE
(see section "Effects
of deletion during the

)application run"
: KC_CONobj_type

Name of the partner
application, name of the
computer, name of the local
application

—— ——

Delete a key set subopcode1:
KC_DELAY

: KC_KSETobj_type

Name of the key set —— ——

Delete an LU6.1 session subopcode1:
KC_DELAY

: KC_LSESobj_type

Local half-session name —— ——

Delete a transaction code by
means of which service programs
are started in partner applications

subopcode1:
KC_DELAY

: KC_LTACobj_type

Name of the transaction code —— ——

Delete an LTERM partner from the
configuration

subopcode1:
KC_DELAY

: KC_LTERMobj_type

Name of the LTERM partner —— ——

Delete a client or printer from the
configuration

subopcode1:
KC_DELAY

: KC_PTERMobj_type

Name of the client/printer,
computer name, BCAMAPPL
name

—— ——

Delete a program unit from the
configuration

subopcode1:
KC_DELAY

: obj_type
KC_PROGRAM

Program name —— ——

Delete a transaction code or TAC
queue from the configuration

subopcode1:
KC_DELAY

: KC_TACobj_type

TAC name —— ——

Delete a user ID including its
queue from the configuration

subopcode1:
KC_DELAY or
KC_IMMEDIATE
(see section "Effects
of deletion during the

)application run"
: KC_USERobj_type

User ID —— ——

openUTM V7.0. Administering Applications. User Guide.

 259

1 The operation code KC_DELETE_OBJECT must be specified in the parameter area in all cases.

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_11

opcode KC_DELETE_OBJECT

subopcode1 KC_DELAY / KC_IMMEDIATE

obj_type Object type

obj_number 1

id_lth Length of the object name in the identification area

select_lth 0

data_lth 0

Identification area

Object name

Selection area

—

Data area

—

KDCADMI call

KDCADMI (¶meter_area, &identification_area, NULL, NULL)

Data returned by UTM

Parameter area

Field name Contents

retcode Return codes

subopcode1

openUTM V7.0. Administering Applications. User Guide.

 260

In you specify the method of deletion.subopcode1

KC_DELAY

if an object is to be marked as deleted, i.e. it is to be permanently locked (delayed delete).
KC_DELAY in =KC_CON is not permitted in standalone openUTM applications.obj_type

KC_IMMEDIATE

is only allowed in standalone openUTM applications with =KC_USER and obj_type obj_type
=KC_CON.
You must specify KC_IMMEDIATE, if a user ID or LU6.1 connection is to be deleted immediately.

obj_type

In the field you must specify the type of object to be deleted. obj_type
You can specify the following object types:

KC_CON, KC_KSET, KC_LSES, KC_LTAC, KC_LTERM, KC_PROGRAM, KC_PTERM, KC_TAC (transaction
code including TAC queue) and KC_USER (user ID including associated queue)

obj_number

Only one object can be deleted per call. For this reason, = 1 must be specified.obj_number

id_lth

In the field you must specify the length of the object name that you are passing in the identification area id_lth
to UTM.

Identification area

In the identification area you must pass the name of the object to be deleted. The full name of the object must
be specified. You must enter the following data:

for =KC_CON: obj_type
in the data structure in the union ; the name of the partner application, the name kc_long_triple_str kc_id_area
of the computer on which the application can be found and the name of the local application (BCAMAPPL
name of the CON).

for =KC_KSET: obj_type
the name of the key set (in the union).kc_name8 kc_id_area

for =KC_LSES: obj_type
the name of the local half session (in the union).kc_name8 kc_id_area

for =KC_LTAC: obj_type
the name of the transaction code by means of which remote service programs are started (in the kc_name8
Union).kc_id_area

for =KC_PTERM:obj_type

in the data structure in the union the name of the client/printer, the name of the kc_long_triple_str kc_id_area;
computer on which it can be found and the name of the local application (i.e. the BCAMAPPL name of the
PTERM).

for =KC_PROGRAM: obj_type
the name of the program unit (in the union kc_name32 kc_id_area).

openUTM V7.0. Administering Applications. User Guide.

 261

for =KC_TAC: obj_type
the name of the transaction code or the TAC queue (in the union kc_name8 kc_id_area).

for =KC_USER: obj_type
the name of the user ID (in the union kc_name8 kc_id_area).

retcode

In the field UTM outputs the return codes of the call. In addition to the return codes listed in retcode section
, the following codes can also be returned. Some of these return codes may arise "Return codes"

independently of the object type specified; others only occur for certain object types.

Type-independent return codes:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcode:

KC_SC_INVALID_OBJECT

The object specified does not exist.

KC_SC_DELETE_NOT_ALLOWED

The object cannot be deleted, it has already been deleted or it has just been created (in the same
transaction).

KC_SC_JCTL_RT_CODE_NOT_OK

Only in UTM cluster applications:
An internal UTM error occurred during the global deletion of a object.
Please contact system support.

KC_SC_NO_GLOB_CHANG_POSSIBLE

Only in UTM cluster applications:
No global administration changes are possible since the generation of the node applications is not
consistent at present.

KC_SC_GLOB_CRE_DEL_LOCKED

Only in UTM cluster applications:
It is not possible to delete an object at present because the generation or deletion of an object or the
generation, deletion or activation of an RSA key pair has not yet been completed in a node application.

Main code = KC_MC_REJECTED_CURR

The call cannot be processed at the present time.

Subcode:

KC_SC_INVDEF_RUNNING

openUTM V7.0. Administering Applications. User Guide.

 262

An inverse KDCDEF is running, i.e. the job cannot be processed at the present time.

Main code = KC_MC_RECBUF_FULL

The buffer containing the restart information is full. (See the openUTM manual “Generating
Applications”, KDCDEF control statement MAX, parameter RECBUF).

Subcode:

KC_SC_NO_INFO

Return codes for obj_type = KC_CON:

Maincode = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_CONNECTED

The specified LU6.1 connection cannot be deleted because it is currently set up.

Maincode = KC_MC_PAR_INVALID

An invalid value has been entered or a field has not been set in the parameter area.

Subcode:

KC_SC_SUBOPCODE1

Only in UTM cluster applications:
The specified LU6.1 connection cannot be deleted, deletion with subcode KC_IMMEDIATE not
permitted.

openUTM V7.0. Administering Applications. User Guide.

 263

Return codes for obj_type = KC_KSET:

Maincode = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_KSET_NOT_ADMINISTRABLE

The KDCAPLKS key set cannot be deleted.

Return codes for obj_type = KC_LSES:

Maincode = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_CONNECTED

The LU6.1 session cannot be deleted because it is currently assigned to a connection.

KC_SC_PTC_STATE

The session has the transaction status P (prepare to commit). When it has this status it cannot be deleted.

KC_SC_NOT_ALLOWED

The session is currently occupied (not active).

Return codes for obj_type = KC_LTERM:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_LTERM_IS_MASTER

The LTERM partner cannot be deleted because it is the master of an LTERM bundle.

KC_SC_LT_DEL_GROUP_MASTER

The LTERM partner cannot be deleted because it is the primary LTERM of an LTERM group.

KC_SC_LT_DEL_SLAVE

The LTERM partner cannot be deleted because it is the slave of an LTERM bundle.

KC_SC_LT_DEL_ALIAS

The LTERM partner cannot be deleted because it is the group LTERM of an LTERM group.

openUTM V7.0. Administering Applications. User Guide.

 264

KC_SC_REF_PTERM_NOT_DELETED

The LTERM partner cannot be deleted because a client/printer assigned to the LTERM partner has not yet
been deleted.

KC_SC_LTERM_IS_CTERM

The LTERM partner specified is a printer control LTERM. It cannot be deleted.

KC_SC_OBJECT_TYPE_NOT_LTERM

The object specified cannot be deleted because:

it is an LTERM partner that belongs to an LTERM pool or multiplex connection

the name specified belongs to an LPAP or OSI-LPAP partner.

KC_SC_LTERM_NOT_ADMINISTRABLE

The LTERM partner specified cannot be administered (for example, the LTERM partner KDCMSGLT which
is created internally by UTM for the event service MSGTAC).

Return codes for obj_type = KC_PROGRAM:

Main code = KC_MC_REJECTED

The call was rejected by UTM. The object cannot be deleted.

Subcodes:

KC_SC_REF_TAC_NOT_DELETED

A transaction code belonging to the program unit specified has not yet been deleted.

KC_SC_PROGRAM_IS_STATIC

The program unit cannot be deleted from the configuration because it belongs to a load module with load
mode STATIC.

KC_SC_PROGRAM_IS_USER_EXIT

The object specified is an event exit that was statically configured with the KDCDEF control statement EXIT
(START, SHUT, FORMAT or INPUT exit).

openUTM V7.0. Administering Applications. User Guide.

 265

Return codes for obj_type = KC_PTERM:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_PTERM_CONNECTED

The client/printer specified cannot be deleted because it is currently connected to the application.

KC_SC_OBJECT_TYPE_NOT_PTERM

The object specified cannot be deleted because:

it is a client that is connected to the application through an LTERM pool, i.e. that was not configured explicitly

on a BS2000 system, the specified name was created during KDCDEF generation with a MUX statement
(multiplex connection)

the name specified belongs to an object that was configured for distributed processing through OSI TP or LU6.
1.

Return codes for obj_type = KC_TAC:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcode:

KC_SC_TAC_NOT_ADMINISTRABLE

The transaction code or the queue specified cannot be administered (KDCMSGTC, KDCBADTC,
KDCSGNTC, for example) or cannot be deleted (the transaction code KDCSHUT and the Dead Letter
Queue).

KC_SC_DELETE_NOT_ALLOWED

The specified transaction code cannot be deleted (for example, a transaction code assigned to a transport
access point as SIGNON-TAC)

openUTM V7.0. Administering Applications. User Guide.

 266

Return codes for obj_type = KC_USER (= KC_DELAY or KC_IMMEDIATE):subopcode1

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_USER_CONNECTED

A client/user with the user ID specified is currently signed on to the application.

KC_SC_APPLICATION_WITHOUT_USER

The application was generated without user IDs.

KC_SC_USER_NOT_ADMINISTRABLE

The user ID cannot be administered because it is, for example, the user ID KDCMSGUS that UTM creates
internally for the MSGTAC event service.

KC_SC_AUTO_SIGN_USER

The user ID cannot be deleted, because it is assigned to an LTERM partner for automatic KDSIGN or as a
connection user ID.

obj_type = KC_USER and = KC_IMMEDIATE:subopcode1

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_ASYN_SERVICE_RUNNING

The user ID currently cannot be deleted because there is still an asynchronous service running under this
user ID.

KC_SC_CLIENT_SIGNED

Immediate deletion of the user ID is currently not possible because a UPIC client, TS application or OSI TP
partner is still signed on with this user ID.

KC_SC_DEADLOCK

Deadlock locking user-specific long-term storage (ULS)

KC_SC_TIMEOUT

Timeout locking user-specific long-term storage (ULS)

KC_SC_OWNER_IN_TA

openUTM V7.0. Administering Applications. User Guide.

 267

User-specific long-term storage (ULS) cannot be locked because it is disabled by a transaction in which one
of the KDCS calls PEND KP or PGWT KP was issued.

KC_SC_PTC_STATE

There is a transaction in the state PTC (prepare to commit) for the user ID.

KC_SC_BOTTLENECK

Services are stacked for the user ID, and a memory bottleneck has occurred.

KC_SC_ALREADY_LOCKED

The assigned ULS is locked by another transaction.

KC_SC_NOT_ENOUGH_TASKS

The UTM application does not currently have enough free processes to be able to wait for the lock of user-
specific long-term storage (ULS) locked by a PTC transaction. Attempt to delete the user again later.

Maincode = KC_MC_PAR_INVALID

An invalid value has been entered or a field has not been set in the parameter area.

Subcode:

KC_SC_SUBOPCODE1

Only in UTM cluster applications:
Deletion with subcode KC_IMMEDIATE is not permitted.

openUTM V7.0. Administering Applications. User Guide.

 268

11.2.6 KC_ENCRYPT - Create, delete, read RSA key pairs

With KC_ENCRYPT, you can create a new application’s RSA key pair, replace an application’s RSA key pair by a
new pair, delete an RSA key pair or read the public key of an RSA key pair.

Prerequisites

You can only use this function, if the encryption functions are available for the application.

Encryption methods

openUTM offers encryption functions for passwords and user data (messages), in order to improve the security for
connections between openUTM server applications and UPIC clients.

You will find further information on encryption in the openUTM manuals “Concepts and Functions” and “Generating
Applications”.

Functional scope of KC_ENCRYPT

An RSA key pair that is valid for a specific encryption level is used for all client connections that use this encryption
level. For reasons of security, you should therefore replace the RSA key pairs of your UTM application by new key
pairs at regular intervals. With Encryption Level 5, the server's RSA key is only used to sign the server's Diffie-
Hellman public key so that the client can uniquely assign this key to the server. This procedure, longer use of the
RSA key is less critical.
For connections with Encryption Level 5, RSA keys with 2048 bits are also used, which corresponds to RSA keys of
Encryption Level 4.

For this purpose, KC_ENCRYPT offers the following functions:

Create a new RSA key pair

KC_ENCRYPT with =KC_CREATE_KEY makes UTM generate a new RSA key pair. However, UTM subopcode1
does not use this new key pair for encryption, before you activate it by dispatching a further KC_ENCRYPT call
(with =KC_ACTIVATE_KEY).subopcode1

You cannot create a new key pair unless the key pair last created with the same encryption level has already
been activated with =KC_ACTIVATE_KEY or has been deleted with subopcode1 subopcode1
=KC_DELETE_KEY, i.e. there must be no not yet activated key pair of the same encryption level for the
application.

Delete a key pair

You use KC_ENCRYPT with =KC_DELETE_KEY to delete a key pair that has not yet been subopcode1
activated. You use KC_ENCRYPT with = KC_DELETE_ACTIVE_KEY to delete an activated key subopcode1
pair.

You can delete activated key pairs of encryption level 4 only. Activated key pairs of encryption level 3 are always
needed by openUTM.

UTM applications on BS2000 systems also support encryption for connections with some terminal
emulations. However, these connections do not use the openUTM RSA key pair. Instead, a key pair
generated by VTSU-B is employed. Consequently, changing the RSA key pair of openUTM has no effect
whatsoever on encryption using VTSU-B.

i

openUTM V7.0. Administering Applications. User Guide.

 269

Activate a previously created RSA key pair

KC_ENCRYPT with =KC_ACTIVATE_KEY causes an RSA key pair currently being used to be subopcode1
replaced by a RSA key pair created using KC_ENCRYPT, i.e. the next time a connection is established to an
appropriately generated client, the public key of the new RSA key pair is transmitted to the client.

Read a public key

You can read the public key of an RSA key pair that was last created and that is not activated yet using
KC_ENCRYPT =KC_READ_NEW_PUBLIC_KEY. KC_ENCRYPT subopcode1 subopcode1
=KC_READ_ACTIV_PUBLIC_KEY allows you to read the public key of an currently active RSA key pair.

This function gives you added possibilities of increasing data security on your connection:

In order for a client to be able to verify whether the public key received via the connection to the UTM application
actually truly comes from that UTM application, you should read the public key, transfer it to the client using a
different way and deposit it there.

When the UTM application transmits the public key to the client the next time a connection is established, the
client can compare the transmitted key with the one already stored.

It is therefore advisable to transmit the public key of a newly created RSA key pair to all clients involved, i.e. all
clients that support message encryption.

Transaction management / duration of effectiveness / cluster

Creating, activating and deleting a RSA key pair is subject to transaction management. You can create or activate a
new key pair within a transaction. A new public key can only be read after the transaction is terminated.

The RSA key pair remains active until a new pair is created and activated or until the application is regenerated. In
the event of regeneration, UTM automatically generates a new RSA key pair if the OPTION GEN-RSA-KEYS=YES
statement is specified for the KDCDEF run (default setting).

The effect of the call persists beyond the current application run.

Reading the public key is not subject to transaction management.

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The call applies globally to the cluster, i.e.

if you use the KC_ENCRYPT function to generate a new key pair at a node application then this key pair is also
distributed to the other node applications so that all the node applications possess the same key pairs.

if you activate or delete a previously generated key pair at a node application then this action is replicated at all
the other node applications.

openUTM V7.0. Administering Applications. User Guide.

 270

Data to be supplied

Function of the call Data to be entered in the

parameter area 1 identificati
ons
area

selection
area

data area

Create RSA key pair subopcode1:
KC_CREATE_KEY

: subopcode2
encryption level

—— —— ——

Delete non-activated RSA
key pair

subopcode1:
KC_DELETE_KEY

: subopcode2
encryption level

—— —— ——

Delete activated RSA key
pair

subopcode1:
KC_DELETE_ACTIVE_KEY

: subopcode2
encryption level

—— —— ——

Activate RSA key pair subopcode1:
KC_ACTIVATE_KEY

: subopcode2
encryption level

—— —— ——

Public key of a not yet
activated RSA key pair

subopcode1:
KC_READ_NEW_PUBLIC_KEY

: subopcode2
encryption level

—— —— Pointer to a data
area into which
UTM can return the
public key.

Public key of the currently
active RSA key pair

subopcode1:
KC_READ_ACTIV_PUBLIC_KEY

: subopcode2
encryption level

—— —— Pointer to a data
area into which
UTM can return the
public key.

1 In all cases, the operation code KC_ENCRYPT must be specified in the parameter area.

openUTM V7.0. Administering Applications. User Guide.

 271

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_11

opcode KC_ENCRYPT

subopcode1 KC_CREATE_KEY / KC_ACTIVATE_KEY /
KC_DELETE_KEY/ KC_DELETE_ACTIVE_KEY /
KC_READ_NEW_PUBLIC_KEY / KC_READ_ACTIV_PUBLIC_KEY

subopcode2 KC_ENC_LEV_3 / KC_ENC_LEV_4

obj_number 0

id_lth 0

select_lth 0

data_lth length of data area / 0

Identification area

—

Selection area

—

Data area

—

KDCADMI call

KDCADMI (¶meter_area, NULL, NULL, NULL) or
KDCADMI (¶meter_area, NULL, NULL, &data_area)

openUTM V7.0. Administering Applications. User Guide.

 272

Data returned by UTM

Parameter area

Field name Field contents

retcode return code

data_lth_ret length of data returned/ 0

Data area

Data structure kc_encrypt_str / kc_encrypt_advanced_str / —

subopcode1

In the field , you must specify which action UTM is to execute. You can enter the following subopcode1
subcodes:

KC_CREATE_KEY

Generates a new RSA key pair.

KC_ACTIVATE_KEY

Activates a RSA key pair created with KC_ENCRYPT.

KC_DELETE_KEY

Deletes a not yet activated RSA key pair.

KC_DELETE_ACTIVE_KEY

An activated RSA key pair is to be deleted. Only activated keys of encryption level 4 can be
deleted.
This function is permitted only if the key pair has not been used by any object before deletion. It
can be used, for example, after application regeneration and a subsequent KDCUPD to delete
RSA keys that are no longer needed in the newly generated application.

KC_READ_NEW_PUBLIC_KEY

Reads the public key of a previously created and not yet activated RSA key pair.

KC_READ_ACTIV_PUBLIC_KEY

Reads the public key of the active RSA key pair.

subopcode2

In the field , you must indicate to which encryption level the action specified in applies:subopcode2 subopcode1

KC_ENC_LEV_3

The action applies for RSA keys with a key length of 1024 bits.

KC_ENC_LEV_4

The action applies for RSA keys with a key length of 2048 bits.

openUTM V7.0. Administering Applications. User Guide.

 273

data_lth

In the field you enter the following:data_lth,

with =KC_CREATE_KEY, KC_DELETE_KEY, KC_DELETE_ACTIVE_KEY or subopcode1
KC_ACTIVATE_KEY:

=0. When you call KDCADMI, you should pass the zero pointer to UTM for .data_lth &data_area

with =KC_READ_NEW_PUBLIC_KEY or KC_READ_ACTIV_PUBLIC_KEY:subopcode1
Length of the data area to which UTM is to return the public key of the RSA key pair. This data area must
have the length of data structure . For existing clients that work with kc_encrypt_advanced_str subopcode2
=KC_NO_SUBOPCODE, it must have the length of data structure .kc_encrypt_str
When you call KDCADMI, you must pass the pointer to the data area to UTM.

retcode

In the field UTM supplies the return code of the call. Beside the return codes listed in retcode, section "Return
, one of the following return codes can also occur:codes"

openUTM V7.0. Administering Applications. User Guide.

 274

Maincode = KC_MC_REJECTED

UTM rejected the call.

Subcode:

KC_SC_NO_ENCRYPTION

Encryption is not supported.

KC_SC_NEW_KEY_ALREADY_EXISTS

With = KC_CREATE_KEY:subopcode1
A new key pair has already been generated for this encryption level.

KC_SC_NO_NEW_KEY_EXISTS

With =KC_READ_NEW_PUBLIC_KEY, KC_ACTIVATE_KEY, KC_DELETE_KEY:subopcode1
There is no new key for the specified encryption level.

KC_SC_NO_ACTIV_KEY_EXISTS

With = KC_READ_ACTIV_PUBLIC_KEY, KC_DELETE_ACTIVE_KEY:subopcode1
There is no activated key for the specified encryption level.

KC_SC_IN_USE_DEL_NOT_ALLOWED

With =KC_DELETE_ACTIVE_KEY: subopcode1

The key pair for the specified encryption level may not be deleted because it is required by at least
one object.

It is not permitted to delete a key pair of encryption Level 3 (this key pair is always needed by UTM).

KC_SC_NO_GLOB_CHANG_POSSIBLE

Only in UTM cluster applications:
No global administration changes are possible since the generation of the node applications is not
consistent at present.
Action: Please try again later.

KC_SC_GLOB_CRE_DEL_LOCKED

Only in UTM cluster applications:
It is not possible to generate, delete or activate an RSA key pair at present because the generation or
deletion of an object or the generation, deletion or activation of an RSA key pair has not yet been
completed in a node application.
Action: Please try again later.

openUTM V7.0. Administering Applications. User Guide.

 275

Maincode = KC_MC_RECBUF_FULL

Subcode:

KC_SC_NO_INFO

The buffer containing the restart information is full. (See openUTM manual
“Generating
Applications”, KDCDEF control statement MAX, parameter RECBUF)

Maincode = KC_MC_REJECTED_CURR

The call cannot be processed at present.

Subcode:

KC_SC_INVDEF_RUNNING

Only in UTM cluster applications:
An inverse KDCDEF is currently running, i.e. the job cannot be processed at present.

data_lth_ret

data_lth_ret contains the data length returned to the data area by UTM.

With =KC_READ_NEW_PUBLIC_KEY and KC_READ_ACTIV_PUBLIC_KEY 0.subopcode1 data_lth_ret !=
If the value in is smaller than the data area available (), the contents of the data area is data_lth_ret data_lth
only defined in .data_lth_ret

In all other cases =0data_lth_ret

Data area

In the case where =KC_READ_NEW_PUBLIC_ KEY or. KC_READ_ACTIV_PUBLIC_KEY, UTM subopcode1
returns the data structure together with the public key of the specified encryption kc_encrypt_advanced_str
level. KC_READ_NEW_PUBLIC_KEY returns the key of the RSA key pair not yet activated.
KC_READ_ACTIV_PUBLIC_KEY returns the key of the activated RSA key pair.

The data structure is defined as follows:kc_encrypt_advanced_str

struct kc_encrypt_advanced_str

char buf_lth[4];

char en_buffer[2048];

char en_key_lth[4];

openUTM V7.0. Administering Applications. User Guide.

 276

The fields of the data structure have the following meanings:

buf_lth

en_buffer

en_key_lth

length of the data buffer used.en_buffer

contains the public key that was read.

length of the key (1024 or 2048).

openUTM V7.0. Administering Applications. User Guide.

 277

11.2.7 KC_GET_OBJECT - Query information

KC_GET_OBJECT allows you to query information on all objects in the configuration and to query the application
parameters.

Different kinds of information can be queried. You can control the type of information UTM shall return using the
 parameter.subopcode1

The following information can be returned by UTM:

A list of the names of objects of an object type (=KC_NAME or KC_NAME_NEXT).subopcode1

Properties, status and statistical information on the objects of an object type (=KC_ATTRIBUTES or subopcode1
KC_ATTRIBUTES_NEXT).

Properties are understood here to mean the parameters that have been set during the configuration of the
objects. UTM returns the current values of these parameters, so any modifications by means of administration
functions will be reflected in the data returned.

Status information describes the current status of an object, e.g. whether a connection is currently being set up
or a user is currently signed on.

Statistical information includes counter values and internally measured wait times. UTM returns the following
values, for example: the number of messages that the application has exchanged with a partner application of a
client since its start, the number of messages being stored temporarily in a partner-specific message queue or
the number of program unit runs that have been started using a transaction code.

The properties of an object and status and statistical information on an object are returned by UTM in the data
area in the data structure for the object type (see). If UTM "Data structures for describing object properties"
returns information on several objects, then UTM stores an array of data structures for the object type in the data
area.

Where the properties of an object are discussed in the following text, this refers to object properties, status and
statistical information.

The current settings for the application parameters
(= KC_APPLICATION_PAR)subopcode1

The values returned by UTM are dependent on the parameter type you have specified in . You can, for obj_type
example, choose between the maximum values of the application set during the KDCDEF generation, the
system parameters, the current timer settings or statistical information on the current application load. In point

 in this chapter is a list of the parameter types you may select from.obj_type

For each parameter type there is a data structure in which UTM returns the application parameters queried. The
data structures are described in ."Data structures used to describe the application parameters"

Controlling the output of object names and object properties

UTM returns the object names sorted alphabetically. Accordingly, the properties of the objects are also returned in
order of the object names. In you can specify if UTM is to return the names in ascending subopcode2
(KC_ASCENDING) or descending (KC_DESCENDING) alphabetical order.

Because the amount of information returned from a query of all objects of an object type can be very large, you
should limit the amount of information requested. You have the following options available to limit the amount of
information:

You can specify the point in the alphabetical list at which output is to start in the identification area. You can enter
any string for this purpose.

openUTM V7.0. Administering Applications. User Guide.

 278

If the string does not correspond to any object name of the object type specified, then UTM starts the output at
the next object in the list, meaning the next highest or next lowest object alphabetically, depending on what you
specified in .subopcode2

If the string in the identification area corresponds to an object name, then the starting point of the output is
dependent on :subopcode1

for =KC_NAME and KC_ATTRIBUTES, the output begins with this object.subopcode1

for =KC_NAME_NEXT and KC_ATTRIBUTES_NEXT, the output begins with the next object, subopcode1
meaning the next highest or next lowest object alphabetically, depending on what you specified in subopcode2
.

The list of names or properties output will extend at most to the last (for =KC_ASCENDING) or to the subopcode2
first (for = KC_DESCENDING) object in the alphabetically ordered list of objects.subopcode2

If the names or properties of the objects are to be read starting with the first object alphabetically of an object
type, then you must specify =KC_ASCENDING and set the identification area to binary zero.subopcode2

If the names or properties of the objects are to be read in alphabetically descending order starting with the last
object of an object type, then you must specify =KC_DESCENDING and pass the string X'FF...‘ in subopcode2
the identification area.

In the field of the parameter area you can specify the maximum number of objects for which UTM is obj_number
to return information.

In the selection area you can pass selection criteria to UTM.

UTM will then only return information on those objects meeting the specified selection criteria. A selection
criterion is an object property. You could then, for example, output all the names of clients/printers that are
currently connected to the application (=KC_PTERM). A list of all the selection criteria that you can obj_type
specify can be found in section in this chapter."Selection area"

Using selection criteria, you can target specific objects for selection and can therefore limit the amount of data
returned.
The use of selection criteria does, however, influence the performance of the call, especially if only object names
are queried. UTM must then read and check the properties for each object to see if each property satisfies its
selection criterion. This means that, in this case, a call using selection criteria results in much more work than a
call without selection criteria.

The following should be observed when querying information

When querying object names or object properties, information is also returned for objects that have been marked as
deleted. You can limit the output to those objects not deleted using the selection criterion ='N'. With the delete
selection criterion ='Y', you can also output all objects of the object type that have been deleted.delete

Note in the case of UTM cluster applications (Unix, Linux and Windows systems):

In UTM cluster applications, information is only supplied concerning the objects of the node application at which
the call is executed.

The specifications KC_NO_READ_GSSBFILE and KC_NO_READ_USERFILE in allow you to subopcode2
determine whether or not the cluster GSSB file or cluster user file are accessed on follow-up calls for objects of
type GSSB or USER. This makes it possible to improve performance when there are a large number of follow-up
calls.

If =KC_NO_READ_GSSBFILE or KC_NO_READ_USERFILE then the objects are always supplied subopcode2
in ascending order.

openUTM V7.0. Administering Applications. User Guide.

 279

This improved performance is coupled with a level of uncertainty regarding the information that is returned by the
follow-up calls. Since the data is not read again from the file, it may not be up-to-date.

Possible applications

You should consider the following points when using the subopcodes KC_... and KC_..._NEXT:

You should use KC_ATTRIBUTES or KC_NAME if you want to check whether or not an object with the object
name specified already exists. To do this, specify the object name you want in the identification area and enter

=1. The return code, with which you can determine whether an object exists (sub-return code = obj_number
KC_SC_SAME) or not (sub-return code = KC_SC_NEXT), is evaluated after the call.

You can use KC_ATTRIBUTES or KC_NAME as the "starting point" of a succession of queries if you want to
query the object names starting with a certain string but do not know if an object exists for this string.

For example, the string 'S ' (= blank) can be specified as the name if the objects are to be read starting bbbbbbb b
with the first object name that begins with an "S" (as long as it is ensured that the binary representation of
spaces is lexicographically smaller than the representation of letters and digits).

In a follow-up call in which you have specified in the identification area that the last object read in the previous
call is to be the new starting point (successive query), then KC_ATTRIBUTES and KC_NAME are not suitable for
use. For these parameter values the object name specified will be returned. If =1 was specified and obj_number
you are executing a successive query, then this same object will always be read.
In this case, you must specify KC_ATTRIBUTES_NEXT or KC_NAME_NEXT. The following object will then be
read as the first object.

You will find an example of a successive query of objects in chapter ."KC_GET_OBJECT - Query information"

KDCINF (chapter)"KDCINF - Request information on objects and application parameters"
Less information than with the program interface is returned with KDCINF, however.

openUTM V7.0. Administering Applications. User Guide.

 280

Data to be supplied

Function of the call Data to be entered in the

parameter area 1 identification
area

selection
area

data
area

Output the names of
all objects of a certain
object type

subopcode1:
KC_NAME_NEXT or
KC_NAME

: subopcode2
output in alphabetically
ascending or descending
order

: object type obj_type
: maximum obj_number

number of object names

Name of the
object with
/after which the
output of
names is to
begin

——

A pointer to a data
area for the data
returned by UTM
must be passed in
the call.

Output the names of
all objects of a certain
type with certain
properties Selection

criteria used
by UTM to limit
the amount of
data outputOutput properties and

statistical information
of objects of a certain
type with certain
properties

subopcode1:
KC_ATTRIBUTES_NEXT or
KC_ATTRIBUTES

: subopcode2
output in alphabetically
ascending or descending
order

: object type obj_type
: maximum obj_number

number of objects for which
UTM is to output properties.

Output properties and
statistical information
of objects of a certain
type

subopcode1:
KC_ATTRIBUTES_NEXT or
KC_ATTRIBUTES

: subopcode2
output in alphabetically
ascending or descending
order

: object type obj_type
: maximum obj_number

number of objects for which
the UTM properties and
statistical information are to
be output.

——

Output application
parameters

subopcode1:
KC_APPLICATION_PAR

: parameter typeobj_type
: 0obj_number

—— ——

1 The operation code KC_GET_OBJECT must be specified in the parameter area in all cases.

openUTM V7.0. Administering Applications. User Guide.

 281

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_11

opcode KC_GET_OBJECT

subopcode1 KC_NAME_NEXT / KC_NAME / KC_ATTRIBUTES_NEXT / KC_ATTRIBUTES

/ KC_APPLICATION_PAR

subopcode2 KC_ASCENDING / KC_DESCENDING / KC_READ_NO_GSSBFILE /

KC_READ_NO_USERFILE / binary zero

obj_type Object type / parameter type

obj_number Number of objects / 0

id_lth Length of the object name in the identification area / 0

select_lth Length of the data in the selection area / 0

data_lth Length of the data area

Identification area

Object name/ —

Selection area

Data structure of the object type with selection criteria / —

Data area

—

KDCADMI call

KDCADMI (¶meter_area, &identification_area, &selection_area, &data_area)
or

KDCADMI (¶meter_area, &identification_area, NULL, &data_area) or
KDCADMI (¶meter_area, NULL, NULL, &data_area)

openUTM V7.0. Administering Applications. User Guide.

 282

Data returned by UTM

Parameter area (starting from)"retcode"

Field name Contents

retcode Return code

number_ret Number of objects

data_lth_ret Length of the return data

Data area

Data structures of the object or parameter type / array of object names

subopcode1

In you specify the type of information to be returned by UTM. You can specify the following values:subopcode1

KC_NAME

UTM is to return the names of objects of the object type .obj_type

If the string specified in the identification area matches an object name, then the output is to
begin with the name of this object.

If the string in the identification area does not match an object name of the object type
specified, then UTM is to begin the output with the next object, i.e. with the next highest object
alphabetically for =KC_ASCENDING or the next lowest object alphabetically for subopcode2

= KC_DESCENDING.subopcode2

KC_NAME_NEXT

UTM is to return the names of objects of the object type .obj_type

The output is to begin with the object name following the string specified in the identification
area, i.e. with the next highest object alphabetically for =KC_ASCENDING or the subopcode2
next lowest object alphabetically for = KC_DESCENDING (see also point).subopcode2

KC_ATTRIBUTES

UTM is to return properties of objects of the object type .obj_type

If the string specified in the identification area matches an object name, then the output is to
begin with the properties of this object.

If the string in the identification area does not match an object name of the object type
specified, then UTM is to begin the output with the next object, i.e. with the next highest object
alphabetically for =KC_ASCENDING or the next lowest object alphabetically for subopcode2

= KC_DESCENDING.subopcode2

openUTM V7.0. Administering Applications. User Guide.

 283

KC_ATTRIBUTES_NEXT

UTM is to return properties of objects of the object type .obj_type

The output is to begin with the object whose name follows the name specified in the string, i.e.
with the next highest object alphabetically for =KC_ASCENDING or the next lowest subopcode2
object alphabetically for = KC_DESCENDING.subopcode2

KC_APPLICATION_PAR

UTM is to return the application parameters of the parameter type specified in .obj_type

subopcode2

The data you must specify in the field depends on the value specified in .subopcode2 subopcode1

For =KC_APPLICATION_PAR you must set to binary zero subopcode1 subopcode2
(KC_NO_SUBOPCODE).

For KC_NAME_NEXT, KC_NAME, KC_ATTRIBUTES_NEXT, and KC_ATTRIBUTES, you must specify
one of the two following values in :subopcode2

KC_ASCENDING,

UTM returns the information on the objects in alphabetically ascending order according to
object name, i.e. the next highest name alphabetically.

KC_DESCENDING

UTM returns the information on the objects in alphabetically descending order according to
object name, i.e. the next lowest name alphabetically.

KC_READ_NO_GSSBFILE

This value may only be specified in the case of follow-up calls in a UTM cluster application
with object type=KC_GSSB.
If KC_READ_NO_GSSBFILE is specified, then UTM does not access the cluster GSSB file
again but instead uses the data from the last call with KC_ASCENDING. This improves
performance when reading GSSBs, see note below.
UTM returns the information on the GSSBs in ascending object name order.

KC_READ_NO_USERFILE

This value may only be specified in the case of follow-up calls in a UTM cluster application
with object type=KC_USER.
If KC_READ_NO_USERFILE is specified, then UTM does not access the cluster user file
again but instead uses the data from the last call with KC_ASCENDING. This improves
performance when reading large numbers of user IDs, see note.

UTM returns the information on the user IDs in ascending object name order.

If, in UTM cluster applications, you read in GSSBs or user IDs with subopcode2
=KC_ASCENDING or =KC_DESCENDING then all the objects are read in locally subopcode2
from the cluster GSSB file or cluster user file and sorted. Each time you reread the GSSBs/user
IDs with this , all the GSSBs (max. 30000) or all the user IDs are again read in and subopcode2
sorted.

i

openUTM V7.0. Administering Applications. User Guide.

 284

obj_type

in the field you must specify the type of the objects or application parameters for which UTM is to obj_type
return information. The data you must specify in depends on the value specified in . obj_type subopcode1
Please consult the following table for the values allowed. The meanings of the object/parameter types are
described in chapter ."Description of the data areas to be supplied"

If you require a high performance level, only specify KC_ASCENDING for the first call and use
KC_READ_NO_GSSBFILE or KC_READ_NO_USERFILE for all follow-up calls. However, this
means that any changes made after the first call are not displayed.

openUTM V7.0. Administering Applications. User Guide.

 285

Object type / parameter type Permissible specifications for subopcode1 =

Object type:
KC_ABSTRACT_SYNTAX
KC_ACCESS_POINT
KC_APPLICATION_CONTEXT
KC_BCAMAPPL
KC_CON
KC_EDIT (only on BS2000 systems)
KC_GSSB
KC_KSET
KC_LOAD_MODULE
KC_LPAP
KC_LSES
KC_LTAC
KC_LTERM
KC_MESSAGE_MODULE
KC_MUX (only on BS2000 systems)
KC_OSI_ASSOCIATION
KC_OSI_CON
KC_OSI_LPAP
KC_PROGRAM
KC_PTERM
KC_QUEUE
KC_TAC
KC_TPOOL
KC_TRANSFER_SYNTAX
KC_USER
KC_USER_DYN1
KC_USER_DYN2
KC_USER_FIX

KC_ATTRIBUTES,
KC_ATTRIBUTES_NEXT,
KC_NAME,
KC_NAME_NEXT

Object type:

KC_CHARACTER_SET (on BS2000 Systems only)
KC_DB_INFO
KC_HTTP_DESCRIPTOR
KC_PTC
KC_SFUNC
KC_SUBNET
KC_TACCLASS

KC_ATTRIBUTES,
KC_ATTRIBUTES_NEXT

Object type:
KC_CLUSTER_NODE

KC_ATTRIBUTES

openUTM V7.0. Administering Applications. User Guide.

 286

Object type / parameter type Permissible specifications for subopcode1 =

Parameter type:
KC_CLUSTER_CURR_PAR
KC_CLUSTER_PAR
KC_CURR_PAR
KC_DIAG_AND_ACCOUNT_PAR
KC_DYN_PAR
KC_MAX_PAR
KC_MSG_DEST_PAR
KC_PAGEPOOL
KC_QUEUE_PAR
KC_SIGNON
KC_SYSTEM_PAR
KC_TASKS_PAR
KC_TIMER_PAR
KC_UTMD_PAR

KC_APPLICATION_PAR

In the case of =KC_USER, KC_USER_DYN1, KC_USER_DYN2 and KC_USER_FIX, please note the obj_type
following:

The data structures , , and are defined for kc_user_str kc_user_fix_str kc_user_dyn1_str kc_user_dyn2_str
the object types KC_USER, KC_USER_DYN1, KC_USER_DYN2 and KC_USER_FIX.

In stand-alone UTM applications, the data belonging to a user can always queried using kc_user_str
structure.

The fields present in the three data structures , and are kc_user_fix_str kc_user_dyn1_str kc_user_dyn2_str
also present in the data structure . This subdivision into three data structures was undertaken in kc_user_str
order to make it possible to access specific user information values and consequently improve
performance, in particular when reading user information in UTM cluster applications.

All the data relating to the cluster user file is located in the data structure . kc_user_dyn2_str
To read this data, openUTM must access the cluster user file. That is why, when reading user information
in UTM cluster applications, you should preferably use the new object types and only call
KC_USER_DYN2 if you currently need the data that this call returns.

Note the following for =OSI_ASSOCIATION:obj_type

For =KC_NAME and KC_NAME_NEXT, UTM returns the names of the OSI TP associations set subopcode1
during KDCDEF generation. The names consist of an association prefix specified in an OSI-LPAP
command and a serial number.
You can specify an association name in the identification area for these values of .subopcode1

For =KC_ATTRIBUTES and KC_ATTRIBUTES_NEXT, UTM only returns the properties of subopcode1
associations that belong to a particular partner application and that have been or are currently being
established. For this reason, you specify the partner application as a selection criterion when calling must
the OSI-LPAP partner. You pass the data structure containing the name of the OSI-kc_osi_association_str
LPAP partner in the selection area (see "kc_osi_association_str - Associations to OSI TP partner

).applications"

openUTM V7.0. Administering Applications. User Guide.

 287

The properties of an association are not stored internally under the association name, but under an
association ID assigned by UTM to an association as long as it is in existence. It is not possible to assign an
association ID to the name of an association. UTM therefore interprets the string specified in the
identification area (field in the union) as an association ID. UTM returns the kc_name8 kc_id_area
properties of the active associations to a partner application sorted according to the association IDs. It is not
possible to query the properties of an association name.

Note the following for =KC_HTTP_DESCRIPTOR:obj_type

subopcode2 must be set to KC_ASCENDING.

The identification area can be used.

The selection area must not be specified.

The output of the information on the HTTP descriptors is not sorted alphabetically according to the names
but in the order in which the statements are evaluated when an HTTP request arrives.

Note the following for =KC_CHARACTER_SET:obj_type

subopcode2 must be set to KC_ASCENDING.

The identification area can be used.

The selection area must not be specified.

The output of the Information on character sets is sorted alphabetically according to the names.

Note the following for =KC_SUBNET:obj_type

subopcode2 must contain binary zero (KC_NO_SUBOPCODE).

The identification area can be used.

The selection area may not be specified.

The output of the information on the subnets is not sorted according to the subnet names (), mapped_name
but takes place in the order in which the statements were specified during generation - separated according
to IPv4 and IPv6 subnets.

This corresponds to the order in which the SUBNET entries are evaluated when a connection is established
from outside.

obj_number

In you can specify the number of objects for which UTM is to return information. The following can obj_number
be specified:

For =KC_NAME,KC_NAME_NEXT, KC_ATTRIBUTES and KC_ATTRIBUTES_NEXT:subopcode1

obj_number specifies the maximum number of objects for which UTM is to return information.

If you specify =0, then UTM will return information on as many objects as will fit in the data area, obj_number
or less if there are no more objects of the object type available.

In the case of =KC_CLUSTER_NODE, please note the following: obj_type
If you specify an > 32, openUTM sets to 32.obj_number obj_number

For =KC_APPLICATION_PAR you must always specify =0.subopcode1 obj_number

id_lth

The data you must specify in the is dependent on the data contained in the field:id_lth subopcode1

openUTM V7.0. Administering Applications. User Guide.

 288

For =KC_NAME, KC_NAME_NEXT, KC_ATTRIBUTES and KC_ATTRIBUTES_NEXT:subopcode1

In you must specify the length of the data structure you have passed to UTM in the identification area.id_lth

For =KC_APPLICATION_PAR you must always set =0. The contents of the identification subopcode1 id_lth
area are irrelevant.

select_lth

In you must specify a value 0 if you want to pass selection criteria to UTM in the selection area.select_lth !=

For =KC_APPLICATION_PAR you may not pass any selection criteria to UTM and must therefore subopcode1
always set =0 in this case.select_lth

For = KC_ATTRIBUTES or KC_ATTRIBUTES_NEXT and = KC_OSI_ASSOCIATION, subopcode1 obj_type
you pass the data structure with the name of an OSI-LPAP partner in the must kc_osi_association_str
selection area. In this case, the length of the data structure is to be specified in kc_osi_association_str

.select_lth

For =KC_SUBNET and KC_HTTP_DESCRIPTOR, you must always specify =0.obj_type select_lth

data_lth

In you must specify the length of the data area that you are providing to UTM for returning the data_lth
information queried.

For = KC_NAME, KC_NAME_NEXT, KC_ATTRIBUTES and KC_ATTRIBUTES_NEXT, the subopcode1
following is true:

If you specify 0, then the data area provided for returning the number of objects requested obj_number !=
must be large enough. For =n (see .) you must specify in a minimum length of (n* obj_number data_lth
maximum length of the object name) or (n * length of the data structure of the object type in).obj_type

For =KC_APPLICATION_PAR, you must specify at least the length of the data structure of the subopcode1
parameter type set in .obj_type

Identification area

The data you must specify in the identification area is dependent on the data contained in the field subopcode1
and the value of :obj_type

For =KC_NAME,KC_NAME_NEXT, KC_ATTRIBUTES and KC_ATTRIBUTES_NEXT:subopcode1

You must pass a string to UTM in the identification area. The string specifies the object at which UTM is to
begin outputting information.

You can also pass binary zero or a string containing non-printable characters in the identification area. UTM
takes the string as it is and searches for the next highest (for =KC_ASCENDING) or next lowest subopcode2
(for = KC_DESCENDING) object name.subopcode2

You place a union (see section "Identification area" in chapter kc_id_area "Description of the data areas to
) in the identification area. The string must be passed in the union element that belongs to the be supplied"

object type specified in .obj_type

For =KC_PROGRAM and KC_LOAD_MODULE: obj_type
you pass the string in the element The name must be left-justified, and the rest of the field kc_name32.
must either be padded with blanks or end with the null byte (\0).
The string specified does not have to be an object name.

openUTM V7.0. Administering Applications. User Guide.

 289

For =KC_CON and KC_PTERM: obj_type
you must pass the string in the union element . A name triplet (object name, computer kc_long_triple_str
name, name of the local application) can be specified in . The object name and the kc_long_triple_str
name of the local application can be up to 8 characters long, the computer name up to 64 characters.
You can specify any string for each of the three names. The name does not need to exist. It is sufficient
just to specify a string for the object name, you do not need to specify the computer name and the name
of the local application. You may set these to binary zero.
When evaluating the strings in the identification area, UTM interprets the three names as a 80 character
long object name. The starting point of the output is determined accordingly.

For =KC_MUX: obj_type
you must pass the string in the union element . A name triplet (object name, computer name, kc_triple_str
name of the local application) can be specified in . Each of the names can be up to 8 kc_triple_str
characters long.
You can specify any string for each of the three names. The name does not need to exist. It is sufficient
just to specify a string for the object name, you do not need to specify the computer name and the name
of the local application. You may set these to binary zero.
When evaluating the strings in the identification area, UTM interprets the three names as a 24 character
long object name. The starting point of the output is determined accordingly.

With =KC_DB_INFOobj_type
you can specify a number to identify a database in the union element . This number kc_name2
represents the databases in the order in which they were generated in the KDCDEF run. If you specify a
different string, the call is rejected.

For =KC_SFUNC obj_type
you can specify a valid function key in the union element . If you use a different string, the call kc_name4
will be rejected.
The following options are valid:
on BS2000 systems: F1 to F20 and K1 to K14
on Unix, Linux and Windows systems: F1 to F20
If you do not make an entry in the identification area, UTM will return data on all function keys.
If you enter a valid function key, UTM will start output with that function key

For = KC_TACCLASS: obj_type
you can specify the values of an existing TAC class, a LOW VALUE or a HIGH VALUE in the union
element . If you specify any other string, the call will be rejected.kc_name2

For = KC_OSI_ASSOCIATION obj_type
you must pass the string in the union element . kc_name8
For =KC_NAME and KC_NAME_NEXT, subopcode1
UTM interprets the string as the name of an OSI TP association.
For = KC_ATTRIBUTES and KC_ATTRIBUTES_NEXT,subopcode1
UTM interprets the string as an association ID. See the description in point .obj_type

For =KC_CLUSTER_NODE obj_type
you must pass LOW VALUE, HIGH VALUE or empty fields in the identification area. Otherwise the call is
rejected. No specific node is addressed. Choose a value for that is large enough for information data_lth
to be passed to all the nodes.
For all other object types, the string must be passed in the union element . The string must be kc_name8
stored left-justified and the rest of the field is to be padded with blanks.
The string specified does not have to be an object name.

openUTM V7.0. Administering Applications. User Guide.

 290

If the identification area is used for =KC_SUBNET, the name specified there must be an object obj_type
name, i.e. it must correspond to a generated subnet name () as the information on the mapped_name
subnets is not sorted in alphabetical order when it is stored but in the order specified in the generation. If
no generated is specified, KC_MC_NO_ELT is returned as the return code with subcode mapped_name
KC_SC_NOT_EXISTENT.

If the identification area is used for =KC_HTTP_DESCRIPTOR, the name specified there must obj_type
be an object name, i.e. it must correspond to a generated HTTP descriptor name as the information on
the HTTP descriptors is not sorted in alphabetical order but in the order they are evaluated when an
HTTP request is received. If no generated name is specified, KC_MC_NO_ELT is returned as the return
code with subcode KC_SC_NOT_EXISTENT.

For =KC_APPLICATION_PAR the null pointer should be passed for the identification area.subopcode1

Selection area

In the selection area, if 0, then you must pass the data structure of the object type to UTM select_lth !=
together with the selection criteria. The rest of the fields in the data structure must be set to binary zero.
The data structures are described in . The name of section "Data structures for describing object properties"
each data structure is created as follows: data structure " belongs to the object type " ", so, for "typ _str TYP
example, the data structure belongs to KC_LTERM.kc_lterm_str

If = 0, the selection area, and therefore the selection criteria, are not evaluated.select_lth

A selection criterion is an object property. If selection criteria are specified, then UTM executes a selective
search of the objects. Only information on the objects meeting the selection criteria is returned. The selection
criteria you may specify for each object type is listed in the following text.

Possible selection criteria

obj_type=KC_CON: connections to LU6.1 partner applications

In the selection area you pass the data structure with the selection criteria. The following data kc_con_str
may be specified:

Field name Meaning

connect_mode='Y' UTM returns information on LU6.1 connections currently open.

pronam_long UTM returns information on LU6.1 connections to partner applications that are
running on a certain computer. You specify the name of the computer in

.pronam_long

delete delete='Y':
UTM returns information on LU6.1 connections that were deleted from the
configuration.

='N': delete
UTM returns information on LU6.1 connections that were not deleted from the
configuration.

You can also specify multiple selection criteria together, meaning you can specify multiple fields at the
same time.

obj_type=KC_LPAP: LPAP partner

openUTM V7.0. Administering Applications. User Guide.

 291

In the selection area, you pass the data structure with the selection criteria. The following kc_lpap_str
specifications are permitted:

Field name Meaning

master master contains the name of a master LPAP in an LPAP bundle.
UTM returns information on the slave LPAPs in this LPAP bundle.

openUTM V7.0. Administering Applications. User Guide.

 292

obj_type=KC_LSES: sessions to LU6.1 partner applications

In the selection area you pass the data structure with the selection criteria. The following data kc_lses_str
may be specified:

Field name Meaning

connect_mode='Y' UTM returns information on sessions for which a transport connection is currently
established.

lpap UTM returns information on sessions that are assigned to a certain LU6.1 partner
application. You specify the name of the LPAP partner assigned to this partner
application in .lpap

delete delete='Y':
UTM returns information on sessions that were deleted from the configuration.

='N': delete
UTM returns information on sessions that were not deleted from the configuration.

You can also specify multiple selection criteria, meaning you can specify multiple fields at the same time.

obj_type=KC_LTERM: LTERM partner

In the selection area, you pass the data structure with the selection criteria. The following kc_lterm_str
specifications are permitted:

Field name Meaning

master master contains the name of a master LTERM in an LTERM bundle:
UTM returns information on the slave LTERMs of the LTERM bundle for the specified
master LTERM.

 contains the name of a primary LTERM in an LTERM group:master
UTM returns information on the group LTERMs of the LTERM group for the specified
primary LTERM.

delete delete='Y':
UTM returns information on LTERMs that were deleted from the configuration.

='N': delete
UTM returns information on LTERMs that were not deleted from the configuration.

You can also specify both selection criteria, meaning you can specify both fields at the same time.

obj_type=KC_MUX: multiplex connections (only on BS2000 systems)

In the selection area you pass the data structure with the selection criteria. The following data kc_mux_str
may be specified:

Field name Meaning

connect_mode='Y' UTM returns information on multiplex connections for which a transport connection
to the message router is currently established.

pronam UTM returns information on multiplex connections that are defined for message
routers on a certain computer. You specify the name of the computer in .pronam

openUTM V7.0. Administering Applications. User Guide.

 293

You can also specify both selection criteria, meaning you can specify both fields at the same time.

obj_type=KC_OSI_ASSOCIATION: associations to OSI TP partner applications

For = KC_NAME and KC_NAME_NEXT, no selection criterion may be specified.subopcode1

For = KC_ATTRIBUTES and KC_ATTRIBUTES_NEXT, you pass the following selection subopcode1 must
criterion to UTM (see the description under point). To do this, pass the data structure obj_type

 in the selection area with the following data:kc_osi_association_str

Field name Meaning

osi_lpap UTM returns information on associations that are assigned to a certain OSI TP partner
application. You specify the name of the OSI-LPAP partner assigned to this partner
application in .osi_lpap

obj_type=KC_OSI_LPAP: Properties of OSI TP partner applications

In the selection area, you pass the data structure with the selection criteria. The following kc_osi_lpap_str
specifications are permitted:

Field name Meaning

master master contains the name of a master LPAP in an OSI-LPAP bundle:
UTM returns information on the slave LPAPs of the LPAP bundle for the specified master
LPAP.

obj_type=KC_PROGRAM: program units

In the selection area you pass the data structure with the selection criteria. The following kc_program_str
data may be specified:

Field name Meaning

load_module UTM returns information on program units and VORGANG exits that are linked into a
certain load module / shared object/DLL. You specify the name of the load module /
shared object /DLL in .load_module

delete delete='Y':UTM returns information on program units that have been deleted from the
configuration.

='N': UTM returns information on program units that have not been deleted from the delete
configuration.

You can also specify both selection criteria, meaning you can specify both fields at the same time.

openUTM V7.0. Administering Applications. User Guide.

 294

obj_type=KC_PTERM: clients and printers

In the selection area you pass the data structure with the selection criteria. The following data kc_pterm_str
may be specified:

Field name Meaning

lterm Is only useful for printers:
UTM is to return information on the printers in a printer pool. The printers in a printer
pool are assigned to the same LTERM partner.
The name of the LTERM partner is to be specified in .lterm

connect_mode='Y' UTM returns information on clients/printers that are currently connected to the
application.

pronam_long UTM returns information on clients and printers running on a certain computer or
which are connected to this computer. You specify the name of the computer in

.pronam_long

delete delete='Y':UTM returns information on clients and printers that have been deleted
from the configuration.

='N': UTM returns information on clients and printers that have not been delete
deleted from the configuration.

You may only specify the selection criterion alone. All other fields of the data structure must then be lterm
set to binary zero.
Either and or and can be specified together. connect_mode pronam_long pronam_long delete

 and cannot be set at the same time.connect_mode delete

obj_type=KC_USER, KC_USER_DYN1, KC_USER_DYN2, KC_USER_FIX:
user IDs

In the selection area you pass the data structure or with the selection criteria. kc_user_str kc_user_dyn1_str
The following data may be specified:

Field name Meaning

connect_mode='Y' UTM returns information on user IDs with which a user/client is currently signed on
to the application.

delete delete='Y':
UTM returns information on user IDs that have been deleted from the configuration.

='N': delete
UTM returns information on user IDs that have not been deleted from the
configuration.

The selection criteria must not be specified together, i.e. only one field may be set per call.

openUTM V7.0. Administering Applications. User Guide.

 295

obj_type=KC_LTAC or KC_TAC: transaction codes.

In the selection area you pass the data structure (KC_LTAC) or (KC_TAC) with the kc_ltac kc_tac_str
selection criteria. The following data may be specified:

Field name Meaning

delete delete='Y':UTM returns information on transaction codes that have been deleted from the
configuration.

='N': UTM returns information on transaction codes that have not been deleted from delete
the configuration.

retcode

in the field UTM outputs the return codes of the call. In addition to the return codes listed in retcode section
, the following return codes can also be returned."Return codes"

Main code = KC_MC_OK

The call was processed without error.

Subcodes:

KC_SC_SAME

subopcode1 = KC_NAME or KC_ATTRIBUTES was set, and an object exists that corresponds to the
object name specified in the identification area.
This object is passed in the data area as the first object.

KC_SC_NEXT

subopcode1 = KC_NAME_NEXT or KC_ATTRIBUTES_NEXT was set.
Or = KC_NAME or KC_ATTRIBUTES was set but no object exists that corresponds to the subopcode1
object name specified in the identification area. The next highest or next lowest object (depending on

) is passed in the data area as the first object.subopcode2

openUTM V7.0. Administering Applications. User Guide.

 296

Main code = KC_MC_LAST_ELT

The call was processed without error, but fewer objects were read than were queried, and the last object
has already been reached.

Subcodes:

KC_SC_SAME

subopcode1 = KC_NAME or KC_ATTRIBUTES was specified. An object corresponding to the object name
specified in the identification area exists.
UTM has written object names or properties to the data area, but for fewer objects than were requested in

 or (for = 0) for fewer objects than could fit in the space provided in the data area obj_number obj_number
passed. The last or first object, respectively, was reached beforehand.

KC_SC_NEXT

subopcode1 = KC_NAME_NEXT or KC_ATTRIBUTES_NEXT was set.
Or = KC_NAME or KC_ATTRIBUTES was set but no object exists that corresponds to the subopcode1
object name specified in the identification area. The next highest or next lowest object (depending on

) is passed in the data area as the first object.subopcode2
UTM has written object names or properties into the data area, but for fewer objects than were requested in

 or (for = 0) for fewer objects than could fit in the space provided in the data area obj_number obj_number
passed. The last or first object, respectively, was reached beforehand.

Main code = KC_MC_NO_ELT

subopcode1 = KC_NAME, KC_NAME_NEXT, KC_ATTRIBUTES or KC_ATTRI-BUTES_NEXT was
specified. There is no element or no next element corresponding to the object name specified.

Subcode:

KC_SC_NO_INFO

KC_SC_NOT_EXISTENT (only on Unix, Linux and Windows systems)

The object name specified in the identification area was not found in .obj_type

Main code = KC_MC_MEMORY_INSUFF

UTM cannot execute the function because that would require more internal storage space than UTM has
available.

Subcode:

KC_SC_NO_INFO

openUTM V7.0. Administering Applications. User Guide.

 297

Main code = KC_MC_REJECTED

The call was rejected by UTM because no object of the specified type exists.

Subcode:

KC_SC_NOT_GEN

If =KC_DB_INFO, then no database was generated during the KDCDEF generation.obj_type
If =KC_GSSB, then no global secondary storage areas exist at the present time.obj_type
If = KC_MESSAGE_MODULE, then the application was generated without the KDCDEF control obj_type
statement MESSAGE.
If = KC_UTMD_PAR, then the application was generated without the KDCDEF control statement obj_type
UTMD.
If =KC_TACCLASS, then no TAC class was created during the KDCDEF generation.obj_type
If =KC_SUBNET, then no IP subnet was generated.obj_type

KC_SC_NO_F_KEYS_GENERATED

You specified =KC_SFUNC, but no function keys were generated for the application. obj_type
(See the openUTM manual “Generating Applications”)

KC_SC_CCFG_FILE_READ_ERROR

Only in UTM cluster applications:
You have specified =KC_CLUSTER_PAR or KC_CLUSTER_NODE in order to obtain information obj_type
about a UTM cluster application. An error occurred while reading the cluster configuration file.

KC_SC_CCFG_INVAL_NODE_BUFF_LTH

Only in UTM cluster applications:
Internal UTM error.
Please contact system support.

KC_SC_CCFG_FILE_LOCK_ERROR

Only in UTM cluster applications:
The cluster configuration file is locked.

KC_SC_CCFG_RT_CODE_NOT_OK

Only in UTM cluster applications:
Internal UTM error.
Please contact system support.

KC_SC_CUSF_USER_NOT_FOUND

Only in UTM cluster applications:
Specified user does not exist.

openUTM V7.0. Administering Applications. User Guide.

 298

KC_SC_CUSF_RT_CODE_NOT_OK

Only in UTM cluster applications:
Internal UTM error.
Please contact system support.

Main code = KC_MC_NOT_EXISTENT

The object specified does not exist.

Subcode:

KC_SC_NO_INFO

obj_type=KC_DB_INFO, KC_SFUNC or KC_TACCLASS:
no valid database ID, function key or TAC class was specified in the identification area.

Main code = KC_MC_SEL_INVALID

Invalid data was specified in the selection area.

Subcode:

KC_SC_NO_INFO

number_ret

After a call with =KC_NAME, KC_NAME_NEXT, KC_ATTRIBUTES or KC_ATTRIBUTES_NEXT, subopcode1
 contains the number of objects for which UTM has returned information in the data area.number_ret

If no more objects corresponding to the string specified in the identification area exist, then UTM returns
=0 and =0 and sets the corresponding return code.number_ret data_lth_ret

After a call with =KC_APPLICATION_PAR, UTM always returns =0.subopcode1 number_ret

data_lth_ret

In UTM returns the length of the data that UTM has stored in the data area.data_lth_ret

The length of the data returned is:

for =KC_NAME, KC_NAME_NEXT: subopcode1
number of objects * length of the name field belonging to the object type

for = KC_ATTRIBUTES or KC_ATTRIBUTES_NEXT: subopcode1
number of objects * length of the data structure of the object type

for =KC_APPLICATION_PAR: subopcode1
length of the data structure of the parameter type

If no object or no more objects corresponding to the string specified in the identification area exist, then UTM
returns =0 and sets the corresponding return code.data_lth_ret

openUTM V7.0. Administering Applications. User Guide.

 299

Data area

in the data area UTM returns the information queried.

subopcode1=KC_NAME, KC_NAME_NEXT:

UTM returns an array of object names. The object names are ordered alphabetically in the array in
ascending (for =KC_ASCENDING) or descending (for =KC_DESCENDING) order.subopcode2 subopcode2

The length of the individual names corresponds to the length of the name field in the data structure of the
object type.

For =KC_CON and KC_PTERM, UTM returns an array of name structures with the following format:obj_type

struct kc_long_triple_str

char p_name[8];

char pronam[64];

char bcamappl[8];

For =KC_MUX, UTM returns an array of name structures with the following format:obj_type

struct kc_triple_str

char p_name[8];

char pronam[8];

char bcamappl[8];

The three fields of the data structure contain the following for each of the objects:

p_name

object name, i.e. the name of the connection, client, printer or multiplex connection

pronam

Name of the computer on which the object is located

bcamappl

Name of the local application via which the connection to this object has been established.

For =KC_NAME_NEXT the name array always begins with the object name that is the next subopcode1
highest or next lowest alphabetically, depending on the value of , with respect to the string subopcode2
specified in the identification area.
There are two cases for =KC_NAME:subopcode1

If an object name exists that corresponds to the string you have specified in the identification area, then the
name array begins with this object name. UTM returns the KC_SC_SAME return subcode.

If the string specified in the identification area does not correspond to an object name, then, just as with
=KC_NAME_NEXT, the name array begins with the object name that is the next highest or next subopcode1

lowest alphabetically, depending on the value of , with respect to the string specified in the subopcode2
identification area. UTM returns the KC_SC_NEXT return subcode.

openUTM V7.0. Administering Applications. User Guide.

 300

subopcode1= KC_ATTRIBUTES or KC_ATTRIBUTES_NEXT:

UTM places an array of data structures of the object type in the data area. Each data structure contains the
properties of an object. The data structures are placed one after the other and are put in ascending or
descending alphabetical order according to the object names, depending on the value of .subopcode2

The data structures are described in . The name of section "Data structures for describing object properties"
each data structure is created as follows: the data structure _str" belongs to the object type " ", so, "typ TYP
for example, the data structure belongs to KC_LTERM.kc_lterm_str

In the data structures, the fields that were not specified when the object was added to the configuration
contain the default values, blanks or '0'. Fields only relevant to other operating systems are set to binary
zero.

The object with which the array begins depends on the value of and on the name specified in subopcode1
the identification area.

For =KC_ATTRIBUTES_NEXT the array begins with the object that is the next highest or next subopcode1
lowest alphabetically, depending on the value of , with respect to the string specified in the subopcode2
identification area.

There are two cases for =ATTRIBUTES: subopcode1
If an object name exists that corresponds to the string you have specified in the identification area, then the
name array begins with this object name. UTM returns the KC_SC_SAME return subcode.

If the string specified in the identification area does not correspond to an object name, then, just as with
=KC_ATTRIBUTES_NEXT, the name array begins with the object name that is the next highest subopcode1

or next lowest alphabetically, depending on the value of , with respect to the string specified in subopcode2
the identification area. UTM returns the KC_SC_NEXT return subcode.

subopcode1= KC_APPLICATION_PAR:

UTM places the data structure of the parameter type specified in in the data area. UTM returns the obj_type
application parameters requested in the data structure.

The data structures are described in . section "Data structures used to describe the application parameters"
The name of each data structure is created as follows: the data structure " belongs to the object "typ _str

type " ", so, for example, the data structure belongs to KC_UKC_MAX_PAR.TYP kc_max_par_str

Example of a successive query with KC_ATTRIBUTES_NEXT

Task

All information on user IDs whose names begin with "S" is to be read. It is assumed in the following that such user
IDs exist.

Solution

openUTM V7.0. Administering Applications. User Guide.

 301

First KC_GET_OBJECT call:
(It is assumed that n objects are found by this call, i.e. that = .)n_ret n

Data to be entered in the parameter area:

version=KC_ADMI_VERSION_1
retcode=KC_RC_NIL
version_data=KC_VERSION_DATA_11
opcode=KC_GET_OBJECT
subopcode1=KC_ATTRIBUTES
subopcode2=KC_ASCENDING
obj_type=KC_USER
obj_number=n
id_lth=8
select_lth=0
data_lth=n * sizeof(struct kc_user_str)

Data to be entered in the identification area:

'S ' or 'S\0' (= blank, \0 = null byte in C)bbbbbbb b

Data to be entered in the selection area:

none

Data to be entered in the data area:

none

Data returned by UTM:

Data returned in the parameter area:

retcode= KC_MC_OK with subcode KC_SC_SAME or KC_SC_NEXT

number_ret=n_ret

data_lth_ret=n_ret*sizeof(struct kc_user_str)

Data returned in the data area:

n_ret * data structure with the properties of the user IDskc_user_str

If the last user ID returned still begins with "S", then another call must be made.

openUTM V7.0. Administering Applications. User Guide.

 302

Second KC_GET_OBJECT call:
(Data to be entered which differs from that in the first call is underlined)

Data to be entered in the parameter area:

version=KC_ADMI_VERSION_1
retcode=KC_RC_NIL
version_data=KC_VERSION_DATA_11
opcode=KC_GET_OBJECT
subopcode1= KC_ATTRIBUTES_NEXT
subopcode2=KC_ASCENDING
obj_type=KC_USER
obj_number=n
id_lth=8
select_lth=0
data_lth=n * sizeof(struct kc_user_str)

Data to be entered in the identification area:

Name of the last user ID returned by UTM in the first call

Data to be entered in the selection area:

none

Data to be entered in the data area:

none

Data returned by UTM:

Data returned in the parameter area:

retcode=KC_MC_OK with subcode KC_SC_NEXT 1

number_ret=n_ret (<= n)
data_lth_ret=n_ret * sizeof(struct kc_user_str)

Data returned in the data area:

n_ret * data structure with the data of the user IDskc_user_str

1 The return codes KC_MC_LAST_ELT (if less than n objects were found) and KC_MC_NO_ELT (if no further object was found) can also
occur.

The second call is repeated until all user IDs beginning with "S" have been read. Whether or not all user IDs
beginning with "S" have been read can be determined by evaluating the return data. This means that if the name of
the last user ID returned by UTM begins with "S", then the call must be repeated again. If it does not begin with "S"
or if in the last call, then all user IDs beginning with "S" have been read.number_ret != obj_number

openUTM V7.0. Administering Applications. User Guide.

 303

11.2.8 KC_LOCK_MGMT - Release locks in UTM cluster applications

On Unix, Linux and Windows Systems only.

You can use KC_LOCK_MGMT to:

Sign off all users or an individual user who are/is signed on at an abnormally terminated node application
(KDCOFF). Any service data for this user that is valid globally in the cluster is lost when you do this.

For this function, you use the sub-opcodes KC_SIGNOFF_ALL and KC_SIGNOFF_SINGLE.

For all users or an individual user who have/has a service bound to a terminated node application, you can mark
this service for abnormal termination and this way make it possible for the users or user to sign on again at
another node application. The bound service is terminated abnormally the next time the node application to
which it is bound is started.

For this function, you use the sub-opcodes KC_ABORT_BOUND_SERVICE,
KC_ABORT_ALL_BOUND_SERVICES and KC_ABORT_PTC_SERVICE.

Release a cluster user file lock set on an abnormally terminated KDCDEF run (subopcode KC_UNLOCK_USF).

Period of validity / transaction management /clusters

The call permanently modifies the cluster user file. The modification takes effect immediately and cannot be undone
by rolling back the transaction.

This function is only available for UTM cluster applications.

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_11

opcode KC_LOCK_MGMT

subopcode1 KC_ABORT_ALL_BOUND_SERVICES / KC_ABORT_BOUND_SERVICE /
KC_ABORT_PTC_SERVICE / KC_SIGNOFF_ALL / KC_SIGNOFF_SINGLE /
KC_UNLOCK_USF

id_lth 0

select_lth 0

data_lth Length of the data structure / 0

Identification area

—

openUTM V7.0. Administering Applications. User Guide.

 304

Selection area

—

Data area

Data structure / 0

KDCADMI-Aufruf

KDCADMI (¶meter_area, NULL, NULL, &data_area)

Data returned by UTM

Parameter area

Field name Content

retcode Return codes

subopcode1

In , you specify the action that openUTM is to perform. You can specify the following subcodes:subopcode1

KC_ABORT_ALL_BOUND_SERVICES

Marks all the services that are bound to a terminated node application for abnormal termination. This
allows the corresponding users to sign on at other node applications (KDCSIGN). The bound
services are terminated abnormally the next time the node application to which they are bound is
started.

KC_ABORT_BOUND_SERVICE

Marks a user service that is bound to a terminated node application for abnormal termination. This
allows the user to sign on at another node application (KDCSIGN). The bound service is terminated
abnormally the next time the node application to which it is bound is started.

KC_ABORT_PTC_SERVICE

Marks a user service that is bound to a terminated node application and has a transaction in PTC
state for abnormal termination. This allows the user to sign on at another node application
(KDCSIGN). The bound service is terminated abnormally the next time the node application to which
it is bound is started.

KC_SIGNOFF_ALL

Sign off all users who are signed on at an abnormally terminated node application so that these
users can sign on at another node application. Service data that is valid throughout the cluster for
these users is lost.

KC_SIGNOFF_SINGLE

Sign off a single user who is signed on at an abnormally terminated node application so that this
user can sign on at another node application. Service data that is valid throughout the cluster for this
user is lost

openUTM V7.0. Administering Applications. User Guide.

 305

KC_UNLOCK_USF

Releases the lock in the cluster user file after a KDCDEF run was terminated abnormally. It is only
necessary to issue the call with subopcode KC_UNLOCK_USF if a KDCDEF has terminated
abnormally and a subsequent KDCDEF run outputs message K516 with error code 8.

data_lth

In , enter the length of the data structure in the data area or 0.data_lth

Data area

In the data area, you must specify the data structure for all values excluding kc_lock_mgmt_str subopcode1
KC_UNLOCK_USF:

The data structure is defined as follows:kc_lock_mgmt_str

struct kc_lock_mgmt_str

char mg_name[8];

char mg_node[4];

The fields in the data structure have the following meanings:

mg_name

Only for subopcode1=KC_SIGNOFF_SINGLE:
Name of the user who is to be signed off.

If =KC_ABORT_BOUND_SERVICE:subopcode1
Name of the user with service which is bound to a terminated node application and is to be
marked for abnormal termination.

If =KC_ABORT_PTC_SERVICE: subopcode1
Name of the user with a service in the PTC state which is bound to a terminated node
application and is to be marked for abnormal termination.

Other values for : irrelevantsubopcode1
You do not need to specify the node number. openUTM identifies this.

mg_node

Only for subopcode1=KC_SIGNOFF_ALL:
Number of the node from which all the users are to be signed off.

If =KC_ABORT_ALL_BOUND_SERVICES:subopcode1

Number of the node that was terminated. All the service bound to this node should be marked for
abnormal termination.

Other values for : irrelevantsubopcode1

openUTM V7.0. Administering Applications. User Guide.

 306

retcode

openUTM indicates the return code from the call in the field. Alongside the return codes listed in retcode
, the following return codes may also occur:section "Return codes"

Maincode = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_CUSF_TRANSIENT_ERROR (only on BS2000 systems)

For each code1: subop
Temporary error when accessing the cluster user file; please repeat the call.

KC_SC_CUSF_RT_CODE_NOT_OK

For each : Internal UTM error.subopcode1
Please contact system support.

KC_SC_CUSF_INVALID_STATE

For = KC_SIGNOFF_ALL/KC_ABORT_ALL_BOUND_SERVICES: subopcode1
The specified node application has never been started or is currently running. The call can only be
executed in the node statuses FAIL or ABTERM.
For = KC_SIGNOFF_SINGLE: subopcode1
The node application at which the specified user is signed in is currently running.
If = KC_ABORT_BOUND_SERVICE/KC_ABORT_PTC_SERVICE: subopcode1
The node application to which the service of the specified user is bound is currently running.

KC_SC_CUSF_USER_HAS_NO_BND_SRV

For =KC_ABORT_BOUND_SERVICE: The user has no bound service.subopcode1

KC_SC_CUSF_USER_HAS_NO_PTC

For =KC_ABORT_PTC_SERVICE: The user has no node-bound service with a transaction subopcode1
in the PTC state.

KC_SC_CUSF_USER_HAS_PTC

For =KC_ABORT_BOUND_SERVICE: The user has a node-bound service with a subopcode1
transaction in the PTC state.

KC_SC_CUSF_USER_NOT_FOUND

For KC_SIGNOFF_SINGLE/KC_ABORT_BOUND_SERVICEsubopcode1=
/KC_ABORT_PTC_SERVICE: The user was not found.

KC_SC_CUSF_USER_NOT_SIGNED

For =KC_SIGNOFF_SINGLE: The user is not signed in at any node.subopcode1

openUTM V7.0. Administering Applications. User Guide.

 307

KC_SC_DATA_MISSING

mg_name is not binary zero and =KC_SIGNOFF_ALL, KC_ABORT_BOUND_SERVICE or subopcode1
KC_ABORT_ALL_BOUND_SERVICES.

KC_SC_NOT_NULL

mg_node is not binary zero and =KC_SIGNOFF_SINGLE, subopcode1
KC_ABORT_BOUND_SERVICE or KC_ABORT_PTC_SERVICE.

openUTM V7.0. Administering Applications. User Guide.

 308

11.2.9 KC_MODIFY_OBJECT - Modify object properties and application parameters

KC_MODIFY_OBJECT allows you to modify application parameters and object properties and perform other
operations on application objects. You can make the following modifications:

Actions for the application’s objects

establish or shut down connections to clients, printers, partner applications

initiate automatic connections to clients, printers, partner applications

disable and enable clients, printers, partner applications, user IDs, including their queues, transaction codes and
TAC queues

modify the assignment between client/printer and LTERM partner

modify the password for a user ID

change keys in key sets

alter the timer for monitoring idle states during a session, or deactivate monitoring

activate or deactivate the UTM BCAM trace for specific objects and users

replace an application program’s load modules or shared objects / DLLs

Exchange the master LTERMs of two LTERM bundles or add the LTERM to an LTERM group

Specify that queued messages are to be stored in the dead letter queue (TAC queue KDCDLETQ)

mark load modules on BS2000 systems which are loaded in common memory pools for exchange with
KC_CHANGE_APPLICATION

modify the maximum number of clients on BS2000 systems that can be connected concurrently to the application
through a multiplex connection

modify the computer name and filebase name of a node application

modify the database user ID and password

Actions for the application parameters

change the application timers

reset the statistics data

modify maximum values for the application

activate and deactivate diagnostic functions (e.g. BCAM trace)

define the number of processes (TASKS) that are to run for the application

set the maximum number of processes that asynchronous jobs or services with blocking function calls (e.g.
KDCS call PGWT) can process concurrently.

modify the timers for the reciprocal monitoring of the node applications

in UTM cluster applications, reset the statistics values for the utilization of the cluster page pool

Passing new object properties and application parameter values

Data structures for passing new object properties or application parameters are available in the header file
. Each object type and each parameter type has its own data structure. The name of the data structure kcadminc.h

matches that of the object type/parameter type (in lowercase) with the suffix “_str“ (,). objecttyp_str parametertyp_str

openUTM V7.0. Administering Applications. User Guide.

 309

The following description specifies the fields to which you must pass the new properties. You will find a complete
description of the data structures in .section "Data structures used to pass information"

The following points should be noted when modifying object properties or application program parameters

When modifying object properties, you can only modify the properties of one object with one KC_MODIFY_OBJECT
call.
You must specify the full object name in the identification area so that UTM can unambiguously identify the object.
Object names cannot be modified.

When modifying application parameters, you can modify all parameters belonging to the same parameter type, i.e.
which are contained in a single data structure, within a single call.

The transactional modifications specified in a KC_MODIFY_OBJECT call are either made in their entirety or not at
all. This does not apply for changes which are not subject to transaction management.

Period of validity / transaction management / cluster

The time at which a modification takes effect and the period for which it is applicable depend on the type of
modification. The type of modification also determines whether or not it is subject to transaction management.

The following applies in a UTM cluster application (Unix, Linux and Windows systems):
The call can initiate actions which either have an effect either globally in the cluster or locally in the node. Actions
with a global effect apply to all the node applications in the UTM cluster application irrespective of whether they are
currently active or not. Actions with a local effect only apply to the node applications at which they are performed.
Depending on the object, all its parameters apply either globally or locally or have a mixed global/local effect. The
change may continue to apply beyond the current application run or may apply only to the current run. Modifications
which have an impact on the UTM configuration always apply globally to the cluster to ensure that the generation
remains consistent. Global validity is indicated by a "G" in the KC_MODIFY_OBJECT operation code column. If no
"G" is present in the ID then the effect in a UTM cluster application is local to the node.
A detailed description of the scope of validity of the individual parameters of each object can be found in the
description of the data structures.

The following types of modification may occur:

IR/GIR

The modification is not subject to transaction management. It takes effect immediately (mmediate), and I
applies only to the current application/UTM cluster application run (un). A RSET call issued in the same R
transaction but after the modification rolls back the modification.

ID/GID

The modification is not subject to transaction management. It takes effect immediately (mmediate) and, I
regardless of the generation version (UTM-S or UTM-F), it applies beyond the current application/UTM cluster
application run (urable). A RSET call issued in the same transaction but after the modification rolls back the D
modification.

PR/GPR

The modification is subject to transaction management. It takes effect after the end of transaction (END) and P
it applies only to the current application/UTM cluster application run (un). It can be rolled back with a RSET R
call issued in the same transaction.

openUTM V7.0. Administering Applications. User Guide.

 310

P/GP

The modification is subject to transaction management. It takes effect after the end of transaction (END) and P
its duration depends on the generation version of the application. In the case of UTM-F, it only applies to the
current application run, with UTM-S, however, it goes beyond the current application run. It can be rolled back
within the same transaction with a RSET call.

PD/GPD

The modification is subject to transaction management. It takes effect after the end of transaction (END) and, P
independent of the generation version, its effect goes beyond the current application/UTM cluster application
run (urable). It can be rolled back within the same transaction with a RSET call.D

A/GA

This generates an announcement (nnouncement), which causes the desired modification (e.g. establishment A
of a connection/disconnection or exchange of application program) . When the job is executed depends on the
load on the application. You can only tell whether the job was executed successfully or not in an information
query issued later (e.g. using KC_GET_OBJECT). The job cannot be rolled back.

Note on period of validity in UTM cluster applications (Unix, Linux and Windows systems):

If the modification cannot be generated then the administrative modification continues to apply even when a
node application is started with a new generation, but persists no later than the end of the UTM cluster
application run. The UTM cluster application run begins with the start of the first node application and terminates
with the end of the last node application.

If the modification can be generated, then the generation value and not the administratively modified value
applies when a node application is started with a new generation.

The description of the possible modifications under section tells you to which modification type the "Data area"
various modifications belong. The abbreviations listed above are used.

You can also perform some of the modifications using the administration commands. The description
under section identifies the commands concerned."Data area"

Data to be supplied

Function of the call Data to be entered in the

parameter area1 identification
area

selection
area

data area

Modification of object
properties

obj_type:
object type

Name of
object

—— Data structure of the object
type with the new values of the
properties

Modification of
application parameters

obj_type:
parameter type

—— —— Data structure of the parameter
type with the new parameter
values

1 The operation code KC_MODIFY_OBJECT must always be specified in the parameter area.

openUTM V7.0. Administering Applications. User Guide.

 311

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_11

opcode KC_MODIFY_OBJECT

subopcode1 KC_NO_SUBOPCODE / KC_IMMEDIATE / KC_DELAY

obj_type Object type / parameter type

obj_number 1 / 0

id_lth Length of object name in identification area / 0

select_lth 0

data_lth Length of data structure in data area

Identification area

Object name / —

Selection area

—

Data area

Data structure of object type or parameter type / —

KDCADMI call

KDCADMI (¶meter_area, &identification_area, NULL, &data_area) or
KDCADMI (¶meter_area, NULL, NULL, &data_area) or

KDCADMI (¶meter_area, NULL, NULL, NULL)

Data returned by UTM

Parameter area

Field name Content

retcode Return codes

openUTM V7.0. Administering Applications. User Guide.

 312

subopcode1

With = KC_DB_INFO you must specify KC_IMMEDIATE in the field if the change to the obj_type subopcode1
database password is to take effect immediately. With KC_DELAY the change to the database password only
takes effect the next time the application is started. A change to the database user name only ever takes effect
the next time the application is started.

For all other values of you must specify KC_NO_SUBOPCODE in .obj_type subopcode1

obj_type

In the field you specify the type of object whose properties are to be modified or the type of obj_type
application parameters which are to be modified. The following modifications are permissible:

Object types

KC_CLUSTER_NODE
(only possible in a UTM cluster application)
Specify if you want to modify the computer names and/or filebase names of a node application.
You must, for example, specify KC_CLUSTER_NODE if you want to assign actual values for the computer
name of the node and the base name of the node application’s KDCFILE to a reserve node application (see
openUTM manual “Generating Applications” and openUTM manual “Using UTM Applications”).

KC_DB_INFO
Specify if you want to change the database password and/or the database user name for a XA database.

KC_KSET
Specify if you want to change keys in a key set.

KC_LOAD_MODULE
Specify if you want to replace load modules of a UTM application on BS2000 systems or shared objects
/DLLs of a UTM application on a Unix, Linux or a Windows system, i.e. if you want to load another version
of a load module/shared object/DLL.

KC_LPAP
Specify if you want to perform an operation for an LPAP partner of the application, i.e. if you want to modify
the logical properties of an LU6.1 partner application.

KC_LSES
Specify if you want to modify the properties of a session with an LU6.1 partner application.

KC_LTAC
Specify if you want to modify the local properties of a remote service, i.e. the properties of an LTAC.

KC_LTERM
Specify if you want to modify the properties of an LTERM partner.

KC_MUX (only on BS2000 systems)
Specify if you want to modify the properties of a multiplex connection.

KC_OSI_CON
Specify if you want to modify the properties of the connections to an OSI TP partner application.

KC_OSI_LPAP
Specify if you want to perform an operation for an OSI-LPAP partner, i.e. you want to modify the logical
properties of an OSI TP partner application.

KC_PTERM
Specify if you want to perform operations for terminals, printers, client applications or TS applications.

openUTM V7.0. Administering Applications. User Guide.

 313

KC_TAC
Specify if you want to modify the properties of a transaction code which is assigned to a local service or a
TAC queue.

KC_TACCLASS
Specify if you want to modify the maximum number of processes that can process jobs concurrently for a
certain TAC class.

KC_TPOOL
Specify if you want to modify the properties of the LTERM partner or the number of active LTERM partners
of an LTERM pool.

KC_USER
Specify if you want to modify the properties of a user ID or its queue.

Parameter types

KC_CLUSTER_CURR_PAR
Specify if you want to reset the statistics values of the cluster page pool in a UTM cluster application.

KC_CLUSTER_PAR
Specify if, for a UTM cluster application, you want to

modify the parameters which control the way the individual node applications interact to check their
availability.

modify the parameters which control node application accesses to the cluster configuration file and the
cluster administration journal.

KC_CURR_PAR
Specify if you want to reset application-specific statistical values.

KC_DIAG_AND_ACCOUNT_PAR
Specify if you want to activate or deactivate diagnostic functions or if you want to modify the UTM
accounting settings.

KC_MAX_PAR
Specify if you want to modify maximum values for applications (the MAX parameter) or, in UTM(BS2000)
applications, if you want to activate or deactivate the supply of data to openSM2.

KC_TASKS_PAR
Specify if you want to modify values relating to the number of application processes, i.e. the total number of
processes, maximum number of processes for executing asynchronous jobs etc.

KC_TIMER_PAR
Specify if you want to modify timer settings.

Point describes which modifications are possible for each object type and parameter type.Data area

obj_number

What you have to specify in the field is determined by what is entered in the field:obj_number obj_type

specify =1 when you specify an object type in (exception: KC_TACCLASS, see below).obj_number obj_type

specify =0 when you specify a parameter type in or if you want to reset values inobj_number obj_type
 = KC_TACCLASS for all TAC classes.obj_type

openUTM V7.0. Administering Applications. User Guide.

 314

id_lth

What you have to specify in the field is determined by what is specified in the field:id_lth obj_type

if you specify an object type in , you must specify the length of the data structure in which you obj_type id_lth
pass to UTM in the identification area.
Exception: If = KC_DB_INFO and KC_TACCLASS you must specify =2.obj_type id_lth

if you specify a parameter type in , you must set =0.obj_type id_lth

data_lth

In the field you specify the length of the data structure which you are passing to UTM in the data area.data_lth

data_lth=0 is not permitted.

Identification area

In the identification area you pass to UTM the name of the object whose properties you want to modify. This
means that:

If you specify an object type in , then, in the identification area, you must pass the complete name obj_type
of the object to UTM.

exceptions.

If = KC_TACCLASS and you reset values for all TAC classes then you must enter binary 0.obj_type

With = KC_DB_INFO you must specify a number to identify a database. This number obj_type
represents the databases in the order in which they were generated in the KDCDEF run and are returned
on the administration interface for KC_GET_OBJECT.

Section 7 specifies for each object type the information you must state in the identification area.

If you specify a parameter type in , then you do not need to pass any identification area to UTM. obj_type
UTM ignores any information specified in the identification area.

Data area

In the data area you pass the data structure of the object or parameter type specified in . Each obj_type
individual object or parameter type has its own data structure, which you must assign via the data area. You
must pass the new property or parameter values to UTM in the data structure. You must complete the
remaining fields of the data structure, i.e. the property or parameter value fields, which you do not wish to or
cannot modify with binary zero before the call.

In openUTM on Unix or Linux systems, it is not always necessary to pass data in the data area for = obj_type
KC_LOAD_MODULE since, when transferring shared objects without any version specification, the name of
the shared object in the identification area is sufficient.

The following tables as of describe the modifications that are permitted as a "obj_type=KC_CLUSTER_NODE"
function of object type/parameter type. You will be able to see from the description which properties
/parameters you are able to modify and how the fields are to be completed. All the data structures are
described in .section "Data structures used to pass information"

retcode

UTM writes the return code for the call to the field, see .retcode "Return codes"

openUTM V7.0. Administering Applications. User Guide.

 315

11.2.9.1 obj_type=KC_CLUSTER_NODE

The modifications relate to a node application in a UTM cluster application (Unix, Linux and Windows systems).

In the identification area, you must specify the internal number in the cluster (index of the entry for this node in
KC_GET_OBJECT for the object KC_CLUSTER_NODE) of the node application (field in union kc_name2

). In the data area, you must pass the data structure with the new property values. kc_id_area kc_cluster_node_str
You can only modify nodes that are not active.

Enter the following in the data structure :kc_cluster_node_str

Field name Meaning

hostname_long hostname_long contains the primary host name of the node on which this node application is
running.

can be up to 64 characters in length.hostname_long

filebase Base name of the KDCFILE, the user log file and the system log file SYSLOG for the node
application. When the node application is started, the UTM system files are expected under
the name specified here. This file structure must be accessible from all node applications.
The name is passed in the element of type :filebase kc_file_base

struct kc_file_base
char length[2];

char fb_name[42];

fb_name Base name

length Length of the base name

Please note the following when modifying the base name of a node application:

The base names of the individual node applications of a UTM cluster application must
differ from each other.

Specify the directory which contains the UTM system files for the node applications. The
name specified here must identify the same directory for all the nodes. It may be up to 27
characters in length.

virtual_host_long In UTM cluster applications, this has the same function as the HOSTNAME parameter in the
MAX generation statement. You may not specify MAX HOSTNAME in UTM cluster
applications.

Specifying permits the specification of the sender address for network virtual_host_long
connections established from this node application.

Period of validity / transaction management: type GID ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

The effect is permanent. The information is stored in the cluster configuration file. The modification takes effect
immediately and cannot be undone by rolling back the transaction.

openUTM V7.0. Administering Applications. User Guide.

 316

11.2.9.2 obj_type=KC_DB_INFO

The changes relate to a database.

In the identification area, you must specify a number to identify a database (field for the union kc_name2 kc_id_area
). This number represents the databases in the order in which they were generated in the KDCDEF run and are
returned on the administration interface for KC_GET_OBJECT.

In the data area, you must transfer the data structure with the new property values.kc_db_info_str

Possible modification

For an XA database, you can change the database password and the database user name.

Specify the following in the data structure :kc_db_info_str

Field name Meaning

db_userid In the field, specify the new user name for this database system. The change takes db_userid
effect the next time the UTM application is started.

db_password In the field, specify the new password for this database system. db_password
Depending on the entry in the change either takes effect immediately or the next time subcode1
the UTM application is started, see "KC_MODIFY_OBJECT - Modify object properties and

 .application parameters" (under point 'subopcode1')

Period of validity / transaction management: Type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 317

11.2.9.3 obj_type=KC_KSET

The changes apply to the keys (key/access codes) of a key set.

In the identification area you must specify the name of the key set (field of the union). In the kc_name8 kc_id_area
data area you must pass the data structure with the new property values.kc_kset_str

Possible modification

With the exception of the MASTER key set, you can change one or more keys in a key set. The key set must exist
in the configuration of the application.

Specify the following in the data structure:kc_kset_str

Field name Meaning

keys[4000] A key or access code is an integer between 1 and the value KEYVALUE, which was specified
in the MAX statement at KDCDEF generation.

 consist of 4000 field elements ([0] to [3999]). The contents of the field elements keys keys keys
are to be interpreted as follows:

keys[0]= '0': The key/access code 1 does not belong to this key set.
'1': The key/access code 1 belongs to this key set.

keys[n]= '0': The key/access code n+1 does not belong to this key set.
'1': The key/access code n+1 belongs to this key set.

If n+1 is greater than KEYVALUE, '1' must not be specified.

keys[3999]= '0': The key/access code 4000 does not belong to this key set.
'1': The key/access code 4000 belongs to this key set.

Period of validity/ transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 318

11.2.9.4 obj_type=KC_LOAD_MODULE

This operation relates to a load module (BS2000) or to a shared object or DLL (Unix, Linux and Windows systems).

You must pass the name of the load module/shared object to UTM in the identification area (field of kc_name32
union).kc_id_area

You must pass the data structure in the data area.kc_load_module_str

Possible modification

You can exchange a load module, a shared object or a DLL in an application program or mark a load module in the
common memory pool (BS2000 systems) for exchange.

The specified load module/shared object/DLL must exist in the application configuration, i.e. it must have been
statically generated with KDCDEF.

openUTM V7.0. Administering Applications. User Guide.

 319

Specify the following in the data structure :kc_load_module_str

Field name Meaning

version[24] Pass in the version of the load module or shared object to be loaded.version

The following only applies to BS2000 systems:
In UTM applications on BS2000 systems, you must always specify the version of the load
module to be loaded.
For load modules which are generated with LOAD-MODE=STARTUP the version number of the
old and the new load module may match.
For load modules which are generated with LOAD-MODE=ONCALL or which are located
completely or partially in a common memory pool the new version number must differ from the
old version number.

You can also specify *HIGHEST-EXISTING as the version. UTM then determines the highest
version available in the library and loads it. In this case, after a successful call, UTM returns the
highest element version determined in the field.version
If a load module is generated with LOAD-MODE=POOL, (POOL,STARTUP) or (POOL,
ONCALL) and with the version *HIGHEST-EXISITING, for *HIGHEST-EXISTING version only
can be specified. This kind of module can only be reloaded by an application exchange; the
highest available version is always loaded for a module generated in this way.
If the string *UPPER-LIMIT is specified in the field, UTM replaces this value with "@” in version
the output.

When the exchange is initiated, the library assigned to the load module during KDCDEF
generation (see also lib in , kc_load_module_str "kc_load_module_str - Load modules (BS2000

), an element with the systems) or shared objects/DLLs (Unix, Linux and Windows systems)"
name specified in the identification area and the version specified in must all be version
available. In UTM cluster applications, this applies for all node applications.

If this kind of load module is not available in the program library, the administration call is
rejected and the load module previously loaded remains loaded. In addition, the message K234
is output.

You cannot replace load modules that have the STATIC load mode (='S'). load_mode
Neither can load modules with the STARTUP load mode (='U') and which contain load_mode
TCB entries be replaced.

In UTM applications on Unix, Linux or Windows systems, you must specify the version if the
shared object/DLL is generated with ONCALL load mode (='O'). load_mode
In the case of shared objects/DLLs with STARTUP load mode (='U'), specifying the load_mode
version is optional if you are not using the version concept.

Period of validity/ transaction management: type GID ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 320

How exchange is made is determined by the load mode of the load module/shared object/DLL (field in load_mode
, see kc_load_module_str "kc_load_module_str - Load modules (BS2000 systems) or shared objects/DLLs (Unix,

):Linux and Windows systems)"

load_mode='U' (STARTUP)

The exchange is executed for each process before the next job is processed, without the current application
program being terminated. Several application processes can be replaced simultaneously. You cannot initiate
any further exchanges until program exchange has been completed by all application processes.

load_mode='O' (ONCALL)

The exchange is performed for each process only when a program unit from this load module/shared object/DLL
is next called in this process. Exchange can be performed simultaneously be several processes.

load_mode='P', 'T', 'C' (POOL, POOL/STARTUP, POOL/ONCALL, only on BS2000 systems)

A KC_MODIFY_OBJECT call does result in the exchange of the load module. Instead, the new version of not
the load module is marked.

You must explicitly request the exchange of the load module by calling KC_CHANGE_APPLICATION or by
restarting the application. By using several KC_MODIFY_OBJECT calls, you can mark several load modules
which are then replaced when KC_CHANGE_APPLICATION is next invoked. If no
KC_CHANGE_APPLICATION call is made in the same application run, the marked versions are then replaced
when next the application is started.

If you issue a KC_GET_OBJECT call between the KC_MODIFY_OBJECT call and the
KC_CHANGE_APPLICATION call, then the marked version is already output as the current version, even if it
has not yet been loaded. The KC_MODIFY_OBJECT call ensures that the new version of the load module is
entered in the UTM tables as the current version and the currently loaded version is entered as the preceding
version. You can tell from the field whether a program exchange with change_necessary
KC_CHANGE_APPLICATION is still necessary in order to load the specified version.

KDCPROG ()"KDCPROG - Replace load modules/shared objects/DLLs"

openUTM V7.0. Administering Applications. User Guide.

 321

11.2.9.5 obj_type=KC_LPAP

These operations relate to an LPAP partner, i.e. to the logical properties of an LU6.1 partner application or to the
connection to this partner application.

You must specify the name of the LPAP partner in the identification area (field of the union). kc_name8 kc_id_area
This is the name that was defined during KDCDEF generation in the LPAP statement for the partner application. In
the data area you must pass the data structure with the new values of the properties.kc_lpap_str

Possible modifications

Disable an LPAP partner or release a disabled LPAP partner.

It is no longer possible to establish a connection to the partner application through a disabled LPAP partner.

Specify the following in the data structure .kc_lpap_str

Field name Meaning

state='N' The LPAP partner is to be disabled. There must be no connection to the partner application in
existence at the time the partner is disabled. You must shut down existing connections before
disabling the partner with ='N' or ='Y'. connect_mode quiet_connect
It is not possible to shut down the connection and disable the LPAP partner in a single call as
shutting down the connection may take a relatively long time.

state='Y' The LPAP partner is to be released, i.e. any existing lock is to be cancelled.

Period of validity/ transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Activate or deactivate automatic connection setup.

Automatic connection setup means that, whenever the application starts, UTM attempts to establish a connection
to the partner application.

If automatic connection is defined in both applications (the local application and the partner application), the
connection between the two of them is established automatically as soon as they are both available.

Specify the following in the data structure :kc_lpap_str

Field name Meaning

auto_connect='Y' As of the next application start, UTM is to attempt to establish the connection to the
partner application automatically whenever it starts.

auto_connect='N' As of the next application start, the connection to the partner application is no
longer to be established automatically.

Period of validity/ transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 322

Change the period of time for which UTM monitors the idle state of a session to the partner application; i.e. if the
session is not occupied by a job, UTM waits for this period of time before shutting down the connection.

Specify the following in the data structure kc_lpap_str:

Field name Meaning

idletime_sec[5] Specify in the time in seconds for which UTM is to monitor the idle state of idletime_sec
a session with the partner application. = '0' means that the idle state is not idletime_sec
monitored.

Maximum value: '32767'
Minimum value: '60',
In the case of values that are smaller than 60 but not equal to 0 then the value 60 is
used.

Period of validity/ transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

The timer modification only takes effect when the session next reaches the idle state, but not before the end of
the program unit run (PEND) in which the call is processed.

Set up or shut down the connection to the partner application.

The connection can be shut down in two ways:

The connection can be shut down immediately, i.e. UTM shuts down the connection irrespective of whether or
not jobs are currently being processed via the connection ().connect_mode

You can set the connection to QUIET (). QUIET means that UTM shuts down the connection to quiet_connect
the partner application as soon as the sessions generated for the LPAP partner are no longer occupied by
jobs (dialog or asynchronous jobs).

However, no new dialog jobs are accepted for the LPAP partner. New asynchronous jobs are accepted, but
no longer sent; they remain in the output queue.

Field name Meaning

connect_mode='Y' UTM is to establish the connection to the partner application.

If the LPAP partner is disabled, it must be released in a separate transaction before
the connection is established (='Y').state

connect_mode='N' The connection to the partner application is to be shut down immediately.
If the connection is shut down with = 'N', it is possible that services connect_mode
or conversations may be aborted abnormally. It is better to shut down the
connection with = 'Y'.quiet_connect

Period of validity / transaction management: type A ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Field name Meaning

quiet_connect='Y' The property QUIET is set for the connection to the partner application.

The property QUIET can be reversed with ='Y'.connect_mode

openUTM V7.0. Administering Applications. User Guide.

 323

Period of validity / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

The fields and cannot be set simultaneously within a call. Moreover, connect_mode quiet_connect connect_mode
='Y' cannot be set simultaneously with ='N'. If a KC_MODIFY call with ='N' is transmitted for state connect_mode
a connection which has been set to QUIET, the connection is then shut down immediately.

connect_mode='N' “overwrites” ='Y'.quiet_connect

Activate or deactivate the BCAM trace for the connection to the partner application.

The precondition for LPAP-specific activation is that the BCAM trace is not generally activated, i.e. the trace is
either completely deactivated or is only explicitly activated for selected LTERM/LPAP partners or USERs.

The precondition for LPAP-specific deactivation is that the BCAM trace can be deactivated for a specific LPAP
partner only if the BCAM trace is not generally activated.

You will find information about the general activation and deactivation of the BCAM trace in the description of the
data structure starting from chapter kc_diag_and_account_par_str "kc_diag_and_account_par_str - Diagnostic

.and accounting parameters"

Field name Meaning

bcam_trace='Y' The BCAM trace is specifically activated for this LPAP partner. Events are logged on
all transport connection to the partner application assigned to this LPAP partner.
When the trace function is activated, each application process creates its own trace
file.

bcam_trace='N' The BCAM trace is explicitly deactivated for this LPAP partner.
The trace files are closed only when the trace function is deactivated generally (object
type KC_DIAG_AND_ACCOUNT_PAR; "obj_type=KC_DIAG_AND_ACCOUNT_PAR"
).

Period of validity / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Enables/disables the saving of asynchronous messages in the dead letter queue for this LPAP partner. This can
prevent the loss of messages for this LPAP partner in case of permanent errors.

Specify the following in the data structure :kc_lpap_str

Field name Meaning

dead_letter_q='Y' Asynchronous messages to this LPAP partner which could not be sent because of a
permanent error are saved in the dead letter queue, as long as (in case of message
complexes) no negative confirmation job was defined.

dead_letter_q='N' Asynchronous messages to this LPAP partner which could not be sent because of a
permanent error are not saved in the dead letter queue but deleted.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

If the LPAP is the master LPAP of a LPAP bundle then you can only modify the field.statei

openUTM V7.0. Administering Applications. User Guide.

 324

KDCLPAP () / KDCDIAG ("KDCLPAP - Administer connections to (OSI-)LPAP partners" "KDCDIAG -
) for the BCAM traceSwitch diagnostic aids on and off"

openUTM V7.0. Administering Applications. User Guide.

 325

11.2.9.6 obj_type=KC_LSES

This modification relates to a session for distributed processing using the LU6.1 protocol.

In the identification area you must pass the session name (LSES name from KDCDEF generation) to UTM (
 in the union).kc_name8 kc_id_area

In the data area you must pass the data structure with the new values of the properties.kc_lses_str

Possible modifications

Establish a transport connection to the partner application for the session.

Field name Meaning

connect_mode='Y'
con,
pronam,
bcamappl

A transport connection is to be established for the session.

If a specific transport connection is to be established for a session, then you must
unambiguously specify this transport connection in , , . To do this, con pronam bcamappl
you must specify the following information:

in , the name of the connection defined at creation or generation of the CON objectcon

in the name of the computer on which the partner application is runningpronam

in the name of the local UTM application (BCAMAPPL name) through which bcamapp
the connection to the partner application is established.

If you do not specify , , , then UTM establishes any of the transport con pronam bcamappl
connections configured dynamically or generated for the partner application with the
KDCDEF control statement CON.

A connection cannot be established if the associated LPAP partner is disabled (see
KC_LPAP ='N' chapter). state in "obj_type=KC_LPAP"
If the LPAP partner is disabled, it must be released with an explicit
KC_MODIFY_OBJECT call before the connection is established (KC_LPAP with state
='Y').

Period of validity / transaction management: type A ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 326

Shut down the transport connection that exists for the session.

You can instruct UTM to shut down the connection immediately or you can assign the property QUIET to the
connection. QUIET means that UTM shuts down the connection to the partner application as soon as the session
is no longer occupied by jobs (dialog or asynchronous jobs). No further new dialog jobs are accepted. New
asynchronous jobs are accepted, but no longer sent; they remain in the output queue.

Field name Meaning

connect_mode='N' The connection to the partner application that exists for the session is to be shut down
immediately.
Shutting down the connection with = 'N' takes immediate effect, with the connect_mode
result that services or conversations may be terminated abnormally. It is better to shut
down the connection with = 'Y'.quiet_connect

Period of validity / transaction management: type A ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Field name Meaning

quiet_connect='Y' Set the property QUIET for the connection to the partner application.
The property QUIET is cancelled with ='Y'.connect_mode

Period of validity / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

No other field in the data structure can be occupied at the same time as ='N'. In particular, connect_mode
 and cannot be set simultaneously.connect_mode quiet_connect

If a connection which has previously been set to QUIET is now set to ='N', the connection is shut connect_mode
down immediately. The property QUIET is overwritten by ='N'.connect_mode

 KDCLSES ()"KDCLSES - Establish/shut down connections for LU6.1 sessions"

openUTM V7.0. Administering Applications. User Guide.

 327

11.2.9.7 obj_type=KC_LTAC

This modification relates to an LTAC, i.e. to a local application transaction code for a service in a partner application.

You must pass the name of the LTAC to UTM in the identification area (in the union).kc_name8 kc_id_area

In the data area you must pass the data structure with the new values of the properties.kc_ltac_str

Possible modifications

You can modify the maximum time which UTM will wait to access a session when requesting a remote service.
To do this, specify the following in :kc_ltac_str

Field name Meaning

accesswait_sec[5] Specify in the time in seconds which UTM at most is to wait after the accesswait_sec
LTAC call to reserve a session or to establish an association.
When specifying the time, you should remember that the actual transport connection
to the partner application may still have to be established.

In asynchronous LTACs, 0 means that the job is always entered accesswait_sec !=
in the local message queue for the partner application.

Wait time =0 means:accesswait_sec
In dialog LTACs, the local service that is calling the remote service is immediately
continued with the appropriate return code if no session or association to the partner
application is free or if the local application is the “contention loser” (see kc_lpap_str

; field). "kc_lpap_str - Properties of LU6.1 partner applications" contwin
In asynchronous LTACs, the asynchronous job is rejected with a return code at the
FPUT call if no connection to the partner application exists. If there is a connection to
the partner application, the message is entered in the message queue.

Minimum value: '0'; maximum value: '32767'

Period of validity / transaction management: type GPR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

You can modify the maximum time which UTM will wait for a reply from a remote service. To do this, specify the
following in :kc_ltac_str

Field name Meaning

replywait_sec[5] Specify in the maximum time in seconds which UTM is to wait for a reply replywait_sec
from the remote service.
By limiting the waiting time, it can be ensured that users do not have to wait indefinitely
at the terminal.

 = '0' means: wait without a time limit. replywait_sec
Minimum value: '0'; maximum value: '32767'

Period of validity / transaction management: type GPR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 328

You can disable the LTAC or release it again. Disabling an LTAC means that no further jobs are accepted from
the local application for the remote service to which the LTAC is assigned. To do this, specify the following in

:kc_ltac_str

Field name Meaning

state='N' The LTAC is to be disabled, UTM is to accept no further jobs for the associated remote
service.

state='Y' The (disabled) LTAC is to be released, i.e. the lock is to be cancelled.

Period of validity / transaction management: type GPR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

 KDCLTAC ()"KDCLTAC - Change the properties of LTACs"

openUTM V7.0. Administering Applications. User Guide.

 329

11.2.9.8 obj_type=KC_LTERM

This modification relates to an LTERM partner.

You must pass the name of the LTERM partner to UTM in the identification area (in the union kc_name8 kc_id_area
).

In the data area you must pass the data structure with the new values of the properties.kc_lterm_str

Possible modifications

Disable the LTERM partner or release the disabled LTERM partner. LTERM partners in an LTERM pool cannot
be disabled or released with =KC_LTERM (see in this connection = KC_TPOOL; obj_type obj_type

)."obj_type=KC_TPOOL"

To disable or release an LTERM partner, specify the following in :kc_lterm_str

Field name Meaning

state='N' Disables the LTERM partner.

Disabling a dialog partner (='D') has the following effect:usage_type

A client connection request is performed. The connection is disabled and UTM message
K027 is output. With the exception of KDCOFF, no client/user jobs are performed.

Any existing connection is maintained. Any input with the exception of KDCOFF is
acknowledged with UTM message K027.
The lock does not take effect until a synchronization point (end of transaction) is reached
on this connection.
If the LTERM partner is disabled, KDCOFF BUT has the same effect as KDCOFF.

If the LTERM partner of a printer is disabled, the print jobs are retained in the message
queue. Print jobs initiated after a disable operation are not rejected; they are entered in the
message queue.

state='Y' Releases the LTERM partner, i.e. cancels a lock.

Period of validity / transaction management: Type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 330

Set up or shut down the connection to the client or printer assigned to this LTERM partner.

Field name Meaning

connect_mode='Y' The connection to the client/printer is to be set up.
='Y' is not permitted if the LTERM partner you have specified in the connect_mode

identification area belongs to an LTERM pool or is assigned to a UPIC client.

connect_mode='N' The connection to the client/printer is to be shut down immediately.
A connection shutdown initiated with = 'N' takes immediate effect, connect_mode
with the result that services may be terminated abnormally (PEND ER).
Using ='N', you can also shut down the connection to a client that is connect_mode
connected to the application via an LTERM pool, i.e. you can also specify in the
identification area the name of an LTERM partner that belongs to an LTERM pool.

Period of validity / transaction management: type A ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Only on BS2000 systems:
Assign a new start format to the LTERM partner or delete the start format of the LTERM partners.

You can assign a start format to each LTERM partner that has been configured for connecting terminals. In order
to modify the start format, you must always specify the format name and the format attribute of the new start
format.

A precondition for allocation of a start format is that a formatting system must have been generated (KDCDEF
statement FORMSYS). If the start format is a #format, then a signon service must also have been generated.

Field name Meaning

format_attr Format identifier for the new start format:

'A' for the format attribute ATTR. The format name at the KDCS program interface is
+ .format_name

'N' for the format attribute NOATTR. The format name at the KDCS program
interface is * .format_name

'E' for the format attribute EXTEND. The format name at the KDCS program
interface is # .format_name

The meanings of the format attributes are described in section "format_attr,
 .format_name (only on BS2000 systems)" in chapter "kc_lterm_str - LTERM partners"

format_name[7] Name of the start format. The name may be up to 7 characters long and may contain
only alphanumeric characters.

To delete the start format, enter blanks in and .format_attr format_name

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Activate the BCAM trace for the connections for this LTERM partner.

The BCAM trace function monitors all connection-related activity.

The precondition for LTERM-specific activation is:

openUTM V7.0. Administering Applications. User Guide.

 331

The BCAM trace is not generally activated for all LTERM and LPAP partners, i.e. the trace is either completely
deactivated or explicitly activated only for selected LTERM/LPAP partners and USERs.

The precondition for LTERM-specific deactivation is:

The BCAM trace can only be deactivated for specific LTERM partners if the BCAM trace is not generally
activated.

You will find information about general activation and deactivation of the BCAM trace in the description of the
data structure starting kc_diag_and_account_par_str from "kc_diag_and_account_par_str - Diagnostic and

.accounting parameters"

Field name Meaning

bcam_trace='Y' The BCAM trace is explicitly activated for this LTERM partner. All events on the
connection to the client/printer assigned to this LTERM partner are logged.
When the trace function is activated, each application process creates its own trace file.

bcam_trace='N' The BCAM trace is explicitly deactivated for this LTERM partner.
The trace files are closed only when the trace function is deactivated generally (object
type KC_DIAG_AND_ACCOUNT_PAR; "obj_type=KC_DIAG_AND_ACCOUNT_PAR"
).

Period of validity / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Exchange the master LTERMs of two LTERM bundles or add a group LTERM to a different LTERM group.

This function is only permitted in standalone UTM applications.

If the LTERM is the master LTERM of the LTERM bundle, you can replace all the slave LTERMs and the
associated PTERMs with a different master LTERM. In this event, a master LTERM of an LTERM bundle must
be specified in the parameter.master

If the LTERM is a group LTERM of an LTERM group, you can assign it to a different LTERM group. The primary
LTERM that you specify in the parameter must either be a normal LTERM, a primary LTERM of an master
LTERM group or a master LTERM of an LTERM bundle. A normal LTERM must fulfill the following conditions:

A PTERM with the PTYPE APPLI or SOCKET must be assigned to the LTERM.

The LTERM must not be a slave LTERM of an LTERM bundle.

The LTERM must have been generated with USAGE=D.

Specify the following in the data structure :kc_lterm_str

Field name Meaning

master[8] The name of a master LTERM in an LTERM bundle, the name of a primary LTERM in an
LTERM group or the name of the normal LTERM. The name can be up to 8 characters in
length and may only contain alphanumeric characters.

Period of applicability / transaction management: type PD ("KC_MODIFY_OBJECT - Modify object properties
) and application parameters"

openUTM V7.0. Administering Applications. User Guide.

 332

Some of the modifications can also be performed with KDCLTERM ("KDCLTERM - Change the properties
) or KDCDIAG ().of LTERM partners" "KDCDIAG - Switch diagnostic aids on and off"

openUTM V7.0. Administering Applications. User Guide.

 333

11.2.9.9 obj_type=KC_MUX (BS2000 systems)

This operation relates to a multiplex connection.

You must identify the multiplex connection unambiguously in the identification area. To do this, in the data structure
 of the union , pass the name of the multiplex connection, the name of the computer on kc_triple_str kc_id_area

which the associated message router is located, and the name of the UTM application through which the multiplex
connection is to be established.

In the data area you must pass the data structure with the new values of the properties.kc_mux_str

Possible modifications

Disable a multiplex connection or release a disabled multiplex connection.

No connection between the message router and the UTM application can be set up via a disabled multiplex
connection. Specify the following in the data structure :kc_mux_str

Field name Meaning

state='N' Disables a multiplex connection
There must be no current connection to the multiplex connection. You must shut down any
existing connections with ='N'. connect_mode
It is not possible to shut down the connection and disable a multiplex connection in a single
KC_MODIFY_OBJECT call as shutting down the connection can take some time.

state='Y' Releases a multiplex connection, i.e. cancels a lock.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Increase or reduce the maximum number of clients that can be connected concurrently via this multiplex
connection.

Field name Meaning

maxses[5] Specify in the maximum number of sessions that can exist between the message maxses
router and the application.

Minimum value:'1';
Maximum value:'65000' (theoretical value)

Period of validity / transaction management: type GPR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Activate or deactivate automatic connection setup to the multiplex connection.

In automatic connection setup, UTM attempts to establish a connection to the multiplex connection automatically
whenever the application starts.

Specify the following in the data structure .kc_mux_str

openUTM V7.0. Administering Applications. User Guide.

 334

Field name Meaning

auto_connect='Y' As of the next application start, UTM is to attempt to establish the connection to the
multiplex connection automatically.

auto_connect='N' As of the next application start, UTM is no longer to establish the connection the
multiplex connection automatically. It must then be established explicitly by the
administrator.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Set up or shut down the connection to the message router for the multiplex connection.

Specify the following in the data structure :kc_mux_str

Field name Meaning

connect_mode='Y' UTM is to establish the connection to the message router.
If a connection is to be established for a disabled multiplex connection, the multiplex
connection must be released before connection setup with its own
KC_MODIFY_OBJECT call (='Y'). = 'Y' cannot be set at the state connect_mode
same time as ='N' (disable multiplex connection).state

connect_mode='N' The connection to the message router is to be shut down immediately. A connection
shutdown initiated with = 'N' takes immediate effect, so it is possible connect_mode
for sessions to be terminated abnormally.

Period of validity / transaction management: Type A ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Activate or deactivate the BCAM trace for this multiplex connection. Specify the following in the data kc_mux_str
structure:

Field name Meaning

bcam_trace='Y' The BCAM trace is activated explicitly for this multiplex connection. All the events on
the connection to the message router assigned to this multiplex connection are
recorded.
When the trace function is created, every process of the application generates its own
trace file.

bcam_trace='N' The BCAM trace is deactivated explicitly for this multiplex connection.
The trace files are not closed until the trace is deactivated with general validity (object
type KC_DIAG_AND_ACCOUNT_PAR; "obj_type=KC_DIAG_AND_ACCOUNT_PAR"
).

Period of validity / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

KDCMUX () / KDCDIAG ("KDCMUX - Change properties of multiplex connections (BS2000 systems)"
) for the BCAM trace"KDCDIAG - Switch diagnostic aids on and off"

openUTM V7.0. Administering Applications. User Guide.

 335

11.2.9.10 obj_type=KC_OSI_CON

This operation relates to a connection for distributed processing via OSI TP.

In the identification area you must specify the name of the connection defined during KDCDEF generation in OSI-
CON (field of the union).kc_name8 kc_id_area

In the data area, you must specify the data structure with the new values of the properties.kc_osi_con_str

Possible modification

You can activate a replacement connection (connection set to inactive) to an OSI TP partner application. Specify
the following in the data structure :kc_osi_con_str

Field name Meaning

active='Y' UTM is to activate the replacement connection. Before UTM activates the replacement
connection, UTM deactivates the previously active connection. No association to the related
partner application may therefore be in existence when the replacement connection is activated.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

 KDCLPAP () operand OSI-CON"KDCLPAP - Administer connections to (OSI-)LPAP partners"

openUTM V7.0. Administering Applications. User Guide.

 336

11.2.9.11 obj_type=KC_OSI_LPAP

This operation relates to an OSI-LPAP partner, i.e. to the logical properties of an OSI TP partner application or to
the connection to this partner application.

In the identification area you must specify the name of the associated OSI-LPAP partner (field of the kc_name8
union). The name is defined during KDCDEF generation in the OSI-LPAP statement for the partner kc_id_area
application.

In the data area you must pass the data structure with the new values of the properties.kc_osi_lpap_str

Possible modifications

Disable an OSI-LPAP partner or release a disabled OSI-LPAP partner.

It is not possible to make a connection to the partner application via a disabled OSI-LPAP partner.

Specify the following in the data structure :kc_osi_lpap_str

Field name Meaning

state='N' The OSI-LPAP partner is to be disabled.
There must be no current connection to the partner application at the time of the disable
operation. You must shut down existing connections before disabling the partner, using a
separate call with ='0' or ='Y'. connect_number quiet_connect
You cannot shut down the connection and disable the OSI-LPAP partner in a single
transaction.

state='Y' The OSI-LPAP partner is to be released, i.e. there is a lock in existence which is to be
cancelled.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

If the OSI-LPAP is the master LPAP of an OSI-LPAP bundle, you can only modify the field.statei

openUTM V7.0. Administering Applications. User Guide.

 337

Increase or reduce the number of connections to the partner application which UTM automatically establishes
when the application starts.

In automatic connection setup, UTM attempts to establish the required number of connections to the partner
application whenever the application starts.

If automatic connection setup is defined in both applications (the local application and the partner application),
the connection between the two of them is established automatically as soon as both applications are available.

Specify the following in the data structure :kc_osi_lpap_str

Field name Meaning

auto_connect_number Specify in the number of connections to the partner auto_connect_number
application which UTM is to establish automatically when the application next
(and subsequently) starts.
The OSI-LPAP partner via which the partner application connects must not be
disabled.
If you specify = '0', automatic connection setup does not auto_connect_number
occur when the application next starts.
If a number is specified that is greater than the generated maximum number of
parallel connections (see field in), then, on the next associations kc_osi_lpap_str
start, UTM attempts to establish all generated parallel connections (= number in

). The value specified in must, however be associations auto_connect_number
less than or equal to '32767'.

Minimum value: '0'.
Maximum value: generated maximum number of parallel connections (

)associations

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 338

Increase or decrease the number of parallel connections that should currently exist between the UTM application
and the partner application; i.e. additional connections can be established or some of the existing connections
can be shut down. Setting up additional connections is only possible if the maximum number of parallel
connections to the partner application generated with KDCDEF has not already been established.

Specify the following in the data structure :kc_osi_lpap_str

Field name Meaning

connect_number Specify in the total number of connections to the partner application connect_number
that should exist. The effect of the call is thus determined by what is specified for

. Distinctions must be drawn between the following situations:connect_number

If you specify a number in which is less than the number of connect_number
parallel connections that are currently established, UTM shuts down connections to
the partner application until only connections are in existence. connect_number
To begin with, UTM shuts down any connections that are not currently reserved by
jobs. When this has been done, if there are still more connections open than the
number specified in , then UTM begins to also shut down connect_number
connections that are reserved by jobs.
Any currently active services or conversations are aborted when this happens.
If you specify = '0', UTM shuts down all connections to the partner connect_number
application.

If you specify a number in which is greater than the number of connect_number
parallel connections that are currently established, UTM attempts to establish
further connections to the partner application until a total of connect_number
connections are in existence. However, the maximum number of parallel
connections which UTM will establish to the partner application is that established
during KDCDEF generation for the OSI-LPAP partner belonging to the partner
application. This maximum number is returned when information is requested in the

 field of . associations kc_osi_lpap_str
In other words, if > , then UTM only establishes the connect_number associations
generated maximum number of connections.

If connections are to be established to a disabled OSI-LPAP partner, you must re-
enable this partner beforehand (see field). The OSI-LPAP partner must be state
released in a separate KC_MODIFY_OBJECT.

and cannot be specified together in a single connect_number quiet_connect
KC_MODIFY_OBJECT call. Likewise, must not be specified connect_number
together with ='N'.state

Minimum value: '0'
Maximum value: the number returned by UTM in ; a numeric value associations
greater than '32767' will be rejected.

Period of validity / transaction management: type A ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Shut down all parallel connections to the partner application.

You can instruct UTM to shut down all connections immediately or to assign the property QUIET to the
connections. QUIET means that UTM shuts down the connection to the partner application as soon as the

openUTM V7.0. Administering Applications. User Guide.

 339

partner application is no longer occupied by jobs (dialog or asynchronous jobs). No further new dialog jobs are
accepted. New asynchronous jobs are accepted, but no longer sent; they remain in the output queue.

Field name Meaning

connect_number='0' If you specify = '0', UTM shuts down all connections to the connect_number
partner application.
The connections are shut down even if there are active services or conversations
on the connection. These are aborted. It is thus better to shut down connections
with = 'Y'.quiet_connect

Period of validity / transaction management: type A ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Field name Meaning

quiet_connect='Y' The property QUIET is set for the connections to the partner
application.
The property QUIET can be reset with > '0'.connect_number

Period of validity / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

connect_number and cannot be set concurrently within a single KC_MODIFY_OBJECT call.quiet_connect

openUTM V7.0. Administering Applications. User Guide.

 340

Modify the period of time for which the idle state of the UTM application association to the partner application is
monitored. In other words, if the association is not occupied by a job, UTM waits for this period of time before
UTM shuts down the connection.

Specify the following in the data structure kc_osi_lpap_str:

Field name Meaning

idletime_sec[5] Specify in the time in seconds for which UTM is to monitor the idle state idletime_sec
of an association to the partner application.

 = '0' means that the idle state it not monitored.idletime_sec
Maximum value: '32767'
Minimum value: '0',
In the case of values that are smaller than 60 but not equal to 0 then the value 60 is
used.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

The modification of the timer takes effect when the association next reaches the idle state, but not before the end
of the program unit run (PEND) in which the call is processed.

Enables/disables the saving of asynchronous messages in the dead letter queue for this OSI-LPAP partner. This
can prevent the loss of messages for this LPAP partner in case of permanent errors.

Specify the following in the data structure :kc_osi_lpap_str

Field name Meaning

dead_letter_q='Y' Asynchronous messages to this OSI-LPAP partner which could not be sent because
of a permanent error are saved in the dead letter queue, as long as (in case of
message complexes) no negative confirmation job was defined.

dead_letter_q='N' Asynchronous messages to this OSI-LPAP partner which could not be sent because
of a permanent error are not saved in the dead letter queue but deleted.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

KDCLPAP ()"KDCLPAP - Administer connections to (OSI-)LPAP partners"

openUTM V7.0. Administering Applications. User Guide.

 341

11.2.9.12 obj_type=KC_PTERM

This operation relates to a client or printer for the application.

You must identify the client/printer unambiguously in the identification area. To do this, in the data structure
 of the union , pass the name of the client printer, the name of the computer on which it kc_long_triple_str kc_id_area

is located, and the name of the UTM application via which the connection is to be established.

In the data area you must pass the data structure with the new values of the properties.kc_pterm_str

Possible modifications

Change the client/printer assignment to the LTERM partner.

In this way you can modify the logical properties of the client/printer. In particular, you can use them to assign a
printer to a printer pool or to a printer control LTERM.
When the assignment is modified, neither the client/printer nor the LTERM partner to which the client/printer is
assigned may be connected to the application.

Restriction:

Reassignment of the LTERM partner is possible only for terminals and printers. For UPIC clients, TS applications
(APPLI/SOCKET) generated as dialog partners, and clients that connect to the application using an LTERM pool,
it is not possible to change the assignment to an LTERM partner defined at configuration.

When you assign a new LTERM partner to a terminal or printer, the LTERM partner must not be currently
assigned or have been previously assigned to a client/printer of another protocol type. Distinctions are drawn
here between the following four protocol types: terminals, TS applications, printers and RSO printers. It is not
possible, for example,

to assign an LTERM partner that is or was assigned to a UPIC client or to a TS application to a terminal,

to assign an LTERM partner on a BS2000 system that is or was assigned to a normal printer to an RSO
printer (and vice-versa).

Field name Meaning

lterm[8] Specify in the name of the LTERM partner that is to be assigned to this client/printer.lterm

This function is only permitted in standalone UTM applications.

The LTERM partner must exist in the application configuration.
It must not be an LTERM partner of an LTERM pool, a master or slave LTERM of an LTERM
bundle or a group or primary LTERM of an LTERM group.
The maximum length of the name is 8 characters.

For clients, the old assignment of this LTERM partner is implicitly cancelled.
Only printers that have been configured for output (='O') can be assigned to usage_type
LTERM partners. For printers, the old assignment of LTERM partner specified in is not lterm
cancelled if a printer was previously assigned to it. Both printers are combined into a printer
pool. Any required number of printers may belong to a printer pool.
If the LTERM partner is assigned to a printer control LTERM, the printer must have a printer
ID which is unique in the printer control LTERM area, otherwise the call is rejected.

 and cannot be specified together in a single call.connect_mode lterm

Period of validity / transaction management: type PD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 342

Activate or deactivate automatic connection setup to the client/printer.

With automatic connection setup, UTM attempts to establish the connection to the client/printer automatically.

Exception:

Automatic connection setup cannot be achieved to clients which are connected to the application via an LTERM
pool nor to UPIC clients. In both these cases, connection setup is always initiated by the client and not by the
UTM application.

Specify the following in the data structure :kc_pterm_str

Field name Meaning

auto_connect='Y' As of the next application start, UTM is to establish the connection to the client
/printer automatically, provided that the client/printer is available.
The client/printer must not be disabled (='N').state

auto_connect='N' As of the next application start, UTM is no longer to establish the connection to the
client/printer automatically.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Disable a client or printer or cancel an existing lock.

You can disable only those clients and printers that have been entered explicitly and statically in the
configuration, using a PTERM statement, or dynamically as an object of the type KC_PTERM. Clients which
connect via an LTERM pool or a multiplex connection cannot be disabled.

Specify the following in in order to disable or release a client/printer:kc_pterm_str

Field name Meaning

state='N' Disable the client/printer.
A lock on a client does not take effect until the client next attempts to establish a connection
to the UTM application. The connection request is then rejected by UTM. Any connection that
exists at the time of disable operation is maintained.

state='Y' The client/printer lock is to be cancelled.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 343

Set up or shut down t the connection to the client/printer.

Field name Meaning

connect_mode='Y' The connection to the client/printer is to be established.
Exception:

='Y' cannot be specified for clients which are connected to the connect_mode
application via an LTERM pool, nor for UPIC clients.
The client/printer must not be disabled. A disabled client/printer must be released
prior to setting up the connection (='Y'). Releasing the client/printer and setting state
up the connection cannot be performed in a single call.

connect_mode='N' The connection to the client/printer is to be shut down immediately.
A connection shutdown initiated with = 'N' takes immediate effect. If connect_mode
the connection is occupied by a job at that time, processing of the job is aborted.

connect_mode='R' Only on BS2000 systems:
May only be specified for clients which are connected to a UTM application on a
BS2000 system through a multiplex connection.

='R' (Release pending connections) instructs UTM to release a connect_mode
session in the DISCONNECT PENDING state once the timer has expired. The
session cannot be released if the timer has not yet expired.
See openUTM manual “Generating Applications” in relation to the DISCONNECT
PENDING state.

connect_mode and cannot be specified to together in a single call.lterm

Period of validity / transaction management: type A ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 344

Change the maximum period for which UTM will wait for an entry from the client after the end of a transaction or
after the sign-on. When the time is exceeded, the connection to the client is cleared down (only relevant in the
case of dialog partners).

Specify the following in the data structure:kc_pterm_str

Field name Meaning

idletime[5] In you specify the maximum period in seconds for which openUTM waits outside a idletime
transaction (i.e. after the end of a transaction or after signon) for an entry from the client.
When =0 is specified, openUTM waits for an unlimited period.idletime

Maximum value: '32767'
Minimum value: '60'
In the case of values that are smaller than 60 but not equal to 0 then the value 60 is used.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

The modification of the timer takes effect at the next end of transaction but not before the end of the program unit
run (PEND) in which the call is processed.

KDCPTERM () with the exception of "KDCPTERM - Change properties of clients and printers" idletime

openUTM V7.0. Administering Applications. User Guide.

 345

11.2.9.13 obj_type=KC_TAC

This operation relates to a local service transaction code (='A' or 'D') or a TAC queue (='Q').tac_type tac_type

In the identification area, you must pass the name of the transaction code or TAC queue (field of the kc_name8
union). In the data area, you must pass the data structure with the new values of the kc_id_area kc_tac_str
properties.

You can change the status and data access control for transaction codes and TAC queues. For transaction codes
you can also reset TAC-specific statistics values to 0. Statistics values cannot, however, be changed in a
KC_MODIFY_OBJECT call.

Possible modification

Modifying the status of a transaction code or TAC queue.

You can either disable a transaction code or TAC queue or enable a disabled transaction code or TAC queue
again.

The administration command KDCTAC cannot be disabled.

If you change the status of a transaction code in a call, the statistics values cannot be reset.

Specify the following in to disable or release the transaction code:kc_tac_str

Field name Meaning

state='N' The transaction code/TAC queue is to be disabled.
Lock means that UTM will accept no further jobs for this transaction code or TAC queue.

tac_type='A' or 'D':
The transaction code is disabled as a service TAC (1st TAC of a service). It is not
disabled as a follow-up TAC in a service (call type='B').
Asynchronous jobs which are in the transaction code’s message queue at the time of
disabling are still started.

tac_type='Q':
The TAC queue is disabled for write accesses; read accesses are possible.

You cannot use ='N' to disable transaction codes for which = 'N' is set.state call_type

state='H' The transaction code or TAC queue is to be completely disabled (Halt).

tac_type='A' or 'D':
The transaction code is disabled both as a service TAC and as a follow-up TAC in an
asynchronous or dialog service.
Asynchronous jobs which are in the transaction code’s message queue at the time of the
disable operation are not started. They remain in the queue until the transaction code is
released again or is set to ='N'.state

tac_type='Q':
The TAC queue is disabled for write and read accesses.

openUTM V7.0. Administering Applications. User Guide.

 346

Field name Meaning

state='K' This state may only be specified for asynchronous transaction codes (='A') that are tac_type
also service TACs (' ' 'F') and for TAC queues.call_type= B or
The transaction code or TAC queue is disabled.

tac_type='A':
Jobs for the transaction code are accepted, but they are not processed. They are merely
entered into its job queue. They are not processed until you change the status of the
transaction code to 'Y' or 'N'.

tac_type='Q':
The TAC queue is disabled for read accesses; write access is still possible.

You can use ='K' (Keep) to collect jobs that are not to be processed until such time as state
the load on the application is reduced (e.g. at night).

state='Y' The transaction code or TAC queue is to be released again. ='Y' resets both ='N', state state
'H' and ='K'.state= state

Period of validity / transaction management: type GID ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

If the transaction code KDCMSGTC is disabled, then all UTM messages having a UTM message destination
MSGTAC and which are still located in the page pool are deleted.

 KDCTAC ()"KDCTAC - Lock/release transaction codes and TAC queues"

openUTM V7.0. Administering Applications. User Guide.

 347

Resetting statistical information for the transaction code to 0.

You can reset the statistics values to 0 during a run by entering 0 in one of the following fields in . UTM kc_tac_str
will then reset all fields to 0. A value 0 is rejected.!=

Field name Meaning

used Number of program unit runs with this transaction code

number_errors Number of program unit runs which were terminated with errors.

db_counter Average number of database calls from program units started using this transaction
code.

tac_elap_msec Average runtime of program units started using this transaction code (elapsed time)

db_elap_msec Average time needed to process database calls with this TAC in the program units.

taccpu_msec Average CPU time in milliseconds needed to process this transaction code in the
program unit. The value corresponds to the CPU time used by UTM and by the
database system.

taccpu_micro_sec Average CPU time in microseconds taken to process this transaction code in the
program unit. This corresponds to the CPU time consumed by UTM plus the CPU
time required by the database system.

nbr_ta_commits Number of program unit runs for this TAC that have successfully concluded a
transaction.

number_errors_ex See .number_errors

You can either reset the statistics values for a specific transaction code or for all transaction codes in the
application. If you want to reset the values for a specific transaction code you must enter the name of the
transaction code in the identification area. In all other cases you must supply the identification area with binary
zero.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 348

You can modify the data access control for a transaction code. If the transaction code was protected up to now
by a lock code, you can remove the lock code and control data access by means of an access list. The reverse
also applies. Please note that a lock code and access list are mutually exclusive; only one type of data access
control is permitted at any one time.

Field name Meaning

lock_code[4] lock_code can be a number between '0' and the upper limit defined in the MAX statement
(KEYVALUE operand).
'0' removes data access control.

access_list[8] In you can specify an existing key set or fill the field with blanks. access_list
Blanks remove the data access control.

A user can only access the transaction code when the key set of the user and the key set of the LTERM partner
by means of which the user is signed on contain at least one key code that:

corresponds to the lock code or

is also contained in the key set specified in access_list

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

You can modify the data access control for a TAC queue. Specify the following in the data structure:kc_tac_str

Field name Meaning

q_read_acl[8] In you specify the name of an existing key set by means of which the queue q_read_acl
is protected against unauthorized reading and deletion.

You can also remove the protection by specifying blanks. In this case, all users can read
and delete messages from this queue.

q_write_acl[8] In you specify the name of an existing key set by means of which the queue q_write_acl
is protected against unauthorized write accesses.

You can also remove the protection by specifying blanks. In this case, all users can write
messages to this queue.

A user only has read (delete) access or write access to this TAC queue if the key set of the user and the key set
of the logical terminal by means of which the user is signed on each contain at least one key code that is also
contained in the specified key set.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 349

Specify that queued messages are to be stored in the dead letter queue (TAC queue KDCDLETQ). Specify the
following in the data structure :kc_tac_str

Field name Meaning

dead_letter_q='Y' Messages to this asynchronous TAC or this TAC queue which could not be
processed are backed up in the dead letter queue if they are not redelivered and
(with message complexes) no negative acknowledgement job has been defined.

='Y' is not permitted for KDCDLETQ, KDCMSGTC, all interactive TACs dead_letter_q
and asynchronous TACs with CALL=NEXT.

dead_letter_q='N' Messages to this asynchronous TAC or this TAC queue which could not be
processed are not backed up in the dead letter queue but deleted. This value must be
specified for all interactive TACs and for asynchronous TACs with CALL=NEXT, as
well as for KDCMSGTC and KDCDLETQ.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 350

11.2.9.14 obj_type=KC_TACCLASS

This operation relates to a UTM application TAC class.

In the identification area you must pass the number of the TAC class (field of the union). In kc_name2 kc_id_area
the data area you must pass the data structure with the new values of the properties.kc_tacclass_str

Possible modification

You can increase or decrease the number of processes which may simultaneously process jobs for transaction
codes of the TAC class. To do this, you can:

Specify the number of processes in absolute terms (), i.e.:tasks

you specify the number of processes which may simultaneously perform jobs for this TAC class. If the number
is specified in absolute terms, the number of processes is independent of the currently set total number of
processes in which the application program is running. This applies provided that the current total number of
process in the application is no less than the number of processes set for the TAC class. If this is case, the
number of processes is reduced accordingly.

Specify the number of processes in relative terms (), i.e.:tasks_free

you specify the number of processes which must remain free to process jobs for transaction codes of other
TAC classes. If the number is stated in relative terms, the number of processes for this TAC class is
determined by the currently set total number of application processes. If the total number of processes is
reduced, then the maximum number of processes which process jobs for the TAC class is also reduced
implicitly. Similarly, if the total number is increased, the number of processes for this TAC class is also
increased implicitly.

The number of processes of a TAC class can only be modified, if the application was generated without priority
control, i.e. if the KDCDEF generation does not contain a TAC-PRIORITIES statement.

For this modification, you must specify the following in the structure :kc_tacclass_str

Field name Meaning

tasks Specify in the maximum number of processes which may simultaneously perform jobs tasks
for transaction codes of the TAC class. A relative statement previously made by tasks_free
for this TAC class is deactivated.

Minimum value of :tasks
For dialog TAC classes (TAC classes 1-8), must be >= '1', as dialog services would tasks
otherwise be locked and users would have to wait at the terminal until the processes were
released again.
For asynchronous TAC classes (classes 9-16) may be >= '0'.tasks

Maximum value: see . table
If the value specified for is greater than the total number of processes for the tasks
application, then UTM automatically reduces the value to this number.

openUTM V7.0. Administering Applications. User Guide.

 351

Field name Meaning

tasks_free Specify the following in :tasks_free

for dialog TAC classes:
the minimum number of processes which are to be kept free to process jobs for other
TAC classes.
If the number of processes in becomes greater than the total number of tasks_free
processes available to the application program, then one process nevertheless remains
available to this TAC class to process its transaction codes.

for asynchronous TAC classes:
the minimum number of processes which are to be kept free to process transaction codes
of other asynchronous TAC classes.
If the number of processes in becomes greater than the total number of tasks_free
processes which may simultaneously be used for asynchronous processing, then no
further jobs are performed on transaction codes of this TAC class.

Minimum value: '0'
Maximum value: see .table

tasks and must not be specified together in a single KC_MODIFY_OBJECT call.tasks_free

The permitted maximum value for and is determined by the following factors:tasks tasks_free

whether or not program units with blocking calls (='Y') can run in the TAC class.pgwt

by the values for TASKS, TASKS-IN-PGWT and ASYNTASKS generated statically in the KDCDEF control
statement MAX.

The following table contains the maximum permitted values for and If you specify greater tasks tasks_free.
values, the KC_MODIFY_OBJECT call is rejected.

TAC class Content
of pgwt

Permitted maximum value
for tasks

Permitted maximum
value for tasks_free

1 - 8 (dialog TACs) 'N' TASKS *) TASKS - 1 *)

'Y' TASKS-IN-PGWT *) TASKS - 1 *)

9 - 16 (asynchronous TACs) 'N' ASYNTASKS *) ASYNTASKS *)

'Y' the smaller of the values:
ASYNTASKS, TASKS-IN-
PGWT*)

ASYNTASKS *)

*) As statically generated in the KDCDEF control statement MAX

Period of validity / transaction management: Type A ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

 KDCTCL ()"KDCTCL - Change number of processes of a TAC class"

Reset the statistical values “Average wait time of the jobs in the job queues” and “Number of wait situations”.
These two values can only be reset together.

The values can be reset either for the TAC class specified in the Id area or for all the TAC classes:

openUTM V7.0. Administering Applications. User Guide.

 352

If the values are to be reset for all TAC classes then binary zero must be specified in the Id area. In this case,
 and must not be modified.tasks tasks_free

If only a specific TAC class is to be modified then and can be specified avg_wait_time_msec nr_waits
together with and . tasks tasks_free

Specify the following in the data structure:kc_tacclass_str

Field name Meaning

avg_wait_time_msec[10] Contains the average wait time of the jobs in the job queues assigned to the
transaction codes of this TAC class. The unit of the value avg_wait_time_msec
is milliseconds.

If there is no process available for the TAC class, UTM accepts jobs for the TAC
class (with free processes that “cannot” process jobs to this TAC class) and
stores them temporarily in the KDCFILE.
This is always the case when there are jobs pending for TAC classes of a higher
priority (in the case of priority control) or when the number of processes is
limited and the maximum permitted number of processes is already processing
transaction codes of the TAC class (see ,).tasks tasks_free

The time between the acceptance of a job and the start of its processing is the
wait time displayed here.
You can reset this value to '0'.

nr_waits[10] Number of wait situations taken into account for the calculation of the value
.avg_wait_time_msec

You can reset this value to '0'.

nr_calls[10] Number of proram unit runs for this TAC class.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 353

11.2.9.15 obj_type=KC_TPOOL

This operation relates to an LTERM pool for the UTM application.

In the identification area you must pass the name of the LTERM pool (LTERM prefix). For this the field of kc_name8
the union is available.kc_id_area

In the data area you must pass the data structure with the new values of the properties.kc_tpool_str

Possible modification

You can increase or decrease the number of clients which may be connected concurrently via this LTERM pool, i.
e. you specify how many LTERM partners of the LTERM pool are to be released or disabled. One client can
connect to the application via each enabled LTERM partner in the LTERM pool. The number of LTERM partners
included in the LTERM pool, i.e. the maximum number of LTERM partners which can be permitted for this
LTERM pool, is defined during KDCDEF generation. Specify the following in the data structure :kc_tpool_str

Field name Meaning

state='N'
state_number=...

Of the total number of LTERM partners in this LTERM pool (see kc_tpool_str.
 in chapter), the number max_number "kc_tpool_str - LTERM pools for the application"

specified in is to be disabled. The number of permitted LTERM partners state_number
for this LTERM
pool is consequently:

 - .max_number state_number

If the entire LTERM pool is to be disabled, you must specify the value of max_number
in .state_number

If you want to release all the LTERM partners in the LTERM pool, specify
= '0'.state_number

Minimum value for : '0' state_number
Maximum value for : state_number
the maximum number returned in kc_tpool_str.max_number

state='Y'
state_number=...

Of the total number of LTERM partners, only the number specified in is state_number
to be permitted.

If all the LTERM partners in the LTERM pools are to be permitted, you must specify
the generated maximum value (in chapter kc_tpool_str.max_number "kc_tpool_str -

) in .LTERM pools for the application" state_number

You can disable the entire LTERM pool if you specify ='0'.state_number

Minimum value for : '0' state_number
Maximum value for : state_number
the maximum number returned in kc_tpool_str.max_number

The fields and must always be specified together.state state_number

If the number in exceeds the generated maximum number of LTERM partners, UTM automatically state_number
resets the value of to this maximum number.state_number

openUTM V7.0. Administering Applications. User Guide.

 354

Period of validity / transaction management: type GP ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Disabling LTERM partners in the LTERM pool has the following effect:

A connection setup request from a client via this LTERM pool is rejected by UTM as soon as the permitted
number of clients is reached which are connected to the application via this LTERM pool (all permitted
LTERM partners are occupied).

If, at the time at which the call is processed by UTM, the number of live connections to this LTERM pool
exceeds the number of permitted LTERM partners for the LTERM pool, all existing connections are initially
maintained.

The lock only comes into effect for new connection setup requests.

If terminal users sign off with KDCOFF BUT, they can sign on again with KDCSIGN, even if at that time more
clients than permitted are connected to the application through the LTERM pool. This is possible because the
connection remains in this case.

KDCPOOL ()"KDCPOOL - Administer LTERM pools"

You can change the maximum period for which UTM waits for an entry from the client after the end of a
transaction or after sign-on. If the time is exceeded, the connection to the client is cleared down. Specify the
following in the data structure:kc_tpool_str

Field name Meaning

idletime[5] In you specify the maximum time in seconds that openUTM waits for an entry from idletime
the client outside a transaction (i.e. after the end of a transaction or after sign-on).
When =0 is specified, openUTM waits for an unlimited period.idletime

Maximum value: '32767'
Minimum value: '60',
In the case of values that are smaller than 60 but not equal to 0 then the value 60 is used.

Period of validity / transaction management: type GP ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

The modification of the timer takes effect at the next end of transaction, but not before the end of the program
unit run (PEND) in which the call is processed.

openUTM V7.0. Administering Applications. User Guide.

 355

11.2.9.16 obj_type=KC_USER

This operation relates to a UTM application user ID and its queue.

In the identification area you must specify the name of the user ID (field of the union). In the kc_name8 kc_id_area
data area you must pass the data structure with the new values of the properties.kc_user_str

Possible modifications

Lock or release a user ID.

Neither users nor clients can then sign on to the application under a locked user ID. User IDs with administration
privileges cannot be locked.

Field name Meaning

state='N' The user ID is to be disabled.
If the user is signed on to the application at the time at which the user ID is disabled, the user
is not disconnected. The lock does not take effect until the user or client next attempts to sign
on to the application under this user ID.
Read and write accesses to the queue of a locked user ID are possible.

state='Y' The user ID is to be released, i.e. there is a lock in existence which is to be cancelled.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Change the key set assigned to the user ID. Specify the following in the data structure:kc_user_str

Field name Meaning

kset[8] In you specify the name of an existing key set that sets the access rights of the user ID in kset
the application. The name of a key set can be up to 8 characters long.

The user or client program can only access a service protected by means of a lock code or an
access list if:

the key set of the user ID and

the key set of the LTERM partner by means of which the terminal user or the client
program connects to the application

contain a key/access code that corresponds either to the lock code of the service or to at
least one key of the access list of the service.

If you want to cancel the assignment that has applied up to now, enter blanks.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Change or delete the password for a user ID.

When changing a password, you must take account of the level of complexity and minimum password length
defined when the user ID was created. You can ascertain the level of complexity and minimum length using
KC_GET_OBJECT (object type KC_USER). UTM reports the settings in the fields and protect_pw_compl

openUTM V7.0. Administering Applications. User Guide.

 356

 of the data structure . The levels of complexity and the criteria which must be protect_pw16_lth kc_user_str
fulfilled by a password of a certain level of complexity are described in chapter "kc_user_str, kc_user_fix_str,

.kc_user_dyn1_str and kc_user_dyn2_str user IDs"

You can only delete passwords if:

the minimum password length defined when the user ID was created () is equal to '0' andprotect_pw16_lth

no particular level of complexity is defined for the user (='0').protect_pw_compl

If a password with a limited period of validity has been defined for a user ID ('0', chapter protect_pw_time!=
), you cannot use the old "kc_user_str, kc_user_fix_str, kc_user_dyn1_str and kc_user_dyn2_str user IDs"

password as the new password when changing the password.

In applications generated with SIGNON GRACE=Y, you can choose one of the following options when changing
the password ():protect_pw_time_left

the generated period of validity is to apply to the new password (from the time the change is implemented) or

the password is to become invalid immediately and must be changed immediately the next time the user signs
on.

If a password with a limited period of validity is deleted, no period of validity applies. If a new password is issued
subsequently, the period of validity again takes effect.

When changing a password, you must specify both the new password and the password type. Specify the
following in the data structure :kc_user_str

Field name Meaning

password16 Specify the new password for this user ID in the field. You must also specify in the password16
 field how UTM is to interpret the value specified in .password_type password16

In the field you can prevent a password with a limited period of validity protect_pw_time_left
from becoming invalid immediately in applications generated with SIGNON GRACE=Y. If the
password is invalid, it is necessary to assign a new password at sign-on.
The password can be up to 16 characters long.
The union is available for passing the password (see).kc_pw "obj_type=KC_USER"

You can specify the password either as a character string or as a sequence of hexadecimal
characters.

On Unix, Linux and Windows systems, a hexadecimal specification is only permitted if an
already encrypted password is passed, i.e. the field contains the value 'Y' or 'A'.pw_encrypted

In the case of a hexadecimal password, each half byte is represented as a character. If you
specify a password which consists of less than 16 characters, must be padded to password16
the right with blanks
(password_type= 'C'), or with the hexadecimal value for blanks (password_type='X').

In order to delete a password, specify only blanks in or specify ‘N' in password16 password_type

openUTM V7.0. Administering Applications. User Guide.

 357

Field name Meaning

password_type In you must specify how the password in is to be interpreted.password_type password16
The following values are possible:

'C':The password in is to be interpreted as character string.password16

'X': The password in is to be interpreted as hexadecimal string. On Unix, password16
Linux and Windows systems, this is only permitted if an already encrypted password is
passed (='Y' or 'A').pw_encrypted

'N': No password. Nothing may be specified in . An existing password will be password16
deleted.

'R' : A random password is created.

The administrator has to define explicitly a new password before the user generated in
this way is able to sign on.

If you want to delete the password of a user ID, pass 'N' in password_type.
In this case, nothing further need be specified in password

pw_encrypted This field must be set to the value 'Y' or 'A' if the password is passed in encrypted format.
This may occur, for example, if the encrypted password results from a K159 message of a
standby application.

'N'': The password is passed in unencrypted format (default).

'Y'/'A': The password is passed in encrypted format. No complexity check is carried out.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Field name Meaning

protect_pw_time_left This only applies to applications generated with SIGNON GRACE=Y and for user
IDs whose passwords are generated with a limited period of validity.

In , you can specify whether the generated period of validity is protect_pw_time_left
to apply to the new password:

If you enter ='-1' (right or left-justified) the generated period of protect_pw_time_left
validity applies to the new password (from the time it was implemented).

'-1' only has effect together with and protect_pw_time_left= password16
. '-1' without a password is ignored.password_type protect_pw_time_left=

If you make no entries for the password immediately protect_pw_time_left
becomes invalid, because the period of validity is expired. The user must change
the password at the next sign-on.

A value other than '-1' is rejected.

openUTM V7.0. Administering Applications. User Guide.

 358

You can change write, read and delete authorization for a USER queue. Specify the following in the kc_user_str
data structure:

Field name Meaning

q_read_acl[8] In you specify the name of an existing key set by means of which the queue q_read_acl
is protected against other users who want to access the queue to read and delete
messages.

You can remove the protection by specifying blanks. In this case, all users can read and
delete messages from this queue.

q_write_acl[8] In you specify the name of an existing key set by means of which the queue q_write_acl
is protected against other users who want write access to it.

You can remove the protection by specifying blanks. In this case, all users can write
messages to this queue.

Another user () can have read (delete) or write access to the USER queue when both the key set of !=us_name
the user’s user ID and the key set of the LTERM partner by means of which the user is signed on contain at least
one key code of the or key set.q_read_acl q_write_acl

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 359

Only on BS2000 systems:
Assign a new start format to the user ID.

You can assign a specific start format to each user ID. This start format is automatically output after each
successful sign-on if no service is currently open for this user ID. In order to modify the start format, you must
always specify both the format name and the format attribute.

The precondition for assigning a start format is that a formatting system has been generated (KDCDEF
statement FORMSYS). If the start format is a #format, a sign-on service must also be generated.

Field name Meaning

format_attr Format identifier of the new start format:

'A' for the format attribute ATTR. The format name at the KDCS program interface is
.+format_name

'N' for the format attribute NOATTR. The format name at the KDCS program interface
.is *format_name

'E' for the format attribute EXTEND. The format name at the KDCS program interface
is .#format_name

The meanings of the format attributes are described in chapter "kc_user_str,
.kc_user_fix_str, kc_user_dyn1_str and kc_user_dyn2_str user IDs"

format_name[7] Name of the start format. The name can be up to 7 characters long and may contain
only alphanumeric characters.

If you want to delete the start format of a user ID, you must specify blanks in and .format_attr format_name

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Enable or disable the BCAM trace for this user ID.

To allow USER-specific enabling:

The BCAM trace must not be generally enabled for all connections, i.e. the trace is either completely disabled or
only explicitly enabled for certain selected LTERM and LPAP partners or USERs.

Specify the following in the data structure :kc_user_str

Field name Meaning

bcam_trace='Y' The BCAM trace is explicitly enabled for this USER. This is only possible

if the BCAM trace is disabled for all connections (see) kc_diag_and_account_par_str
or

if the BCAM trace has already been enabled for individual USERs.

bcam_trace='N' The BCAM trace is disabled for this USER.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 360

Some modifications can also be performed using KDCUSER () or "KDCUSER - Change user properties"
KDCDIAG ()."Switch diagnostic aids on and off"

openUTM V7.0. Administering Applications. User Guide.

 361

11.2.9.17 obj_type=KC_CLUSTER_CURR_PAR

In UTM cluster applications (Unix, Linux and Windows systems), it is necessary to reset the statistics values of the
cluster page pool.

You must enter the data structure via the data area.kc_cluster_curr_par_str

Possible modifications

The following table indicates the values you are able to reset.

Field name Meaning

max_cpgpool_size='0' Maximum utilization of the cluster page pool.
The counter is reset to 0.

avg_cpgpool_size='0' Average utilization of the cluster page pool.
The counter is reset to 0.

If you reset one of the two values then the other value is also implicitly reset.

Period of validity / transaction management: type GID ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Unless explicitly reset, the values continue to apply after the complete cluster application has terminated and are
not reset until the size of the cluster page pool is increased and the UTM cluster files are generated using KDCDE.

openUTM V7.0. Administering Applications. User Guide.

 362

11.2.9.18 obj_type=KC_CLUSTER_PAR

You want to modify the circular monitoring settings for the node applications in a UTM cluster application (Unix,
Linux and Windows systems) and/or the settings for node application access to the cluster configuration file and the
administration journal of the UTM cluster application (Unix, Linux and Windows systems).

To do this, you must enter the new property values in the the data structure via the data area.kc_cluster_par_str

Possible modification

The following table indicates the settings that you are able to modify.

Field name Meaning

check_alive_timer_sec In a UTM cluster application, every node application is monitored by another
node application (circular monitoring), i.e. each node application monitors the
availability of another node application and is itself monitored by a node
application. To do this, the monitoring node application sends messages to the
monitored node application at defined intervals (). If the check_alive_timer_sec
monitored application is available, it acknowledges the message.

 specifies the interval in seconds at which monitoring check_alive_timer_sec
messages are sent to the monitored node application.
openUTM also uses this timer in order to access the cluster configuration file
and the administration journal periodically in order to check for possible
updates.

Minimum value: ‘30''
Maximum value: ‘3600'

communication_retry communication_retry specifies how often a node application repeats an
attempt to send a monitoring message if the monitored node application does
not respond within the defined time.
If a value greater than zero is set for , then the target communication_retry
node application is only assumed to have failed if, additionally, no response to
the monitoring message is received after the final retry.

Minimum value: ‘0''
Maximum value: ‘10''

communication_reply_timer_sec communication_reply_timer_sec specifies the maximum time in seconds that
a node application waits for a response after sending a monitoring message.
If the monitored node application does not respond in the defined time, then it
is assumed to have failed (abnormal end of application) and the command
sequence defined in is executed (e.g. a restart).failure_cmd

Minimum value: ‘1'
Maximum value: '60'

openUTM V7.0. Administering Applications. User Guide.

 363

Field name Meaning

restart_timer_sec Maximum time in seconds that a node application requires for a warm start after a
failure.
If a value of 0 is specified, no timer is set for monitoring the restart of a failed node
application.

Minimum value: 0, i.e. restart of the application is not monitored.
Maximum value: 3600

file_lock_timer_sec
file_lock_retry

file_lock_timer_sec is the maximum time in seconds that a node application waits for
a lock to be assigned for accessing the cluster configuration file or the cluster
administration journal.

 specifies how often a node application repeats the request for a lock on file_lock_retry
the cluster configuration file or the cluster administration journal if the lock was not
assigned in the time specified in . file_lock_timer_sec
Note: Do not choose too small a value since a timeout when accessing the cluster
configuration file can lead to the abnormal termination of the application.

file_lock_timer_sec:
Minimum value: ‘10'
Maximum value: ‘60'

file_lock_retry:
Minimum value: ‘1'
Maximum value: ‘10'

deadlock_prevention='N'

deadlock_prevention='Y'

UTM does not perform any additional verifications for the GSSB, TLS and ULS data
areas in order to prevent deadlocks. If a deadlock occurs in one of these data areas
then it is resolved via a timeout.

UTM performs additional verifications for the GSSB, TLS and ULS data areas in order
to prevent deadlocks.
In productive operation it is advisable to set this parameter to 'Y' only if timeouts occur
frequently when accessing these data areas.

Period of validity / transaction management: type GID ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 364

11.2.9.19 obj_type=KC_CURR_PAR

The counters for application-specific statistical values are to be reset. For this you must assign the data structure
 to the data area.kc_curr_par_str

Furthermore, you can enable or disable data compression, see section ."Enabling/Disabling data compression"

Possible modifications

All the counters listed below can be set in one call. In order to reset the counters you must pass the value '0' to
UTM in the relevant field, unless there is a note to the contrary. You can reset the following counters or statistical
values:

Field name Specification

term_input_msgs='0' Number of messages which the application received from clients or partner
applications since the last reset.
The counter is reset to 0.

term_output_msgs='0' Number of messages which the application sent to clients, printers or partner
applications since the last reset.
The counter is reset to 0.

max_dial_ta_per_100sec='0' Maximum number of dialog transactions carried out within the space of 100
seconds.
The counter is reset to 0 ("kc_curr_par_str - Current values of the application

).parameters"

max_asyn_ta_per_100sec='0' Maximum number of asynchronous transactions carried out within the space of
100 seconds.
The counter is reset to to 0 ("kc_curr_par_str - Current values of the application

).parameters"

max_dial_step_per_100sec='0' Maximum number of dialog steps carried out within the space of 100 seconds.
The counter is reset to to 0 ("kc_curr_par_str - Current values of the application

).parameters"

max_pool_size='0' Maximum utilization of the page pool in percent since the last reset.
The counter is reset to 0.
If this value is reset then the value of is also implicitly reset to 0.avg_pool_size

avg_pool_size='0' Average utilization of the page pool in percent since the last reset of the counter.
The counter is reset to 0.
If this value is reset then the value of is also implicitly set to 0.max_pool_size

cache_hit_rate='0' Hit rate for pages in the cache memory since the counter was last reset (in
percent).
The counter is reset to 0.
If this value is reset then the values , and cache_wait_buffer nr_cache_rqs

 are also impicitly reset to 0.nr_cache_searches

openUTM V7.0. Administering Applications. User Guide.

 365

Field name Specification

cache_wait_buffer='0' Percentage of buffer requests in the cache, that led to a wait time.
The counter is reset to 0.
If this value is reset then the values , and cache_hit_rate nr_cache_rqs

 are also impicitly reset to 0.nr_cache_searches

abterm_services='0' Number of abnormally terminated services since the last reset.
The counter is reset to 0.

deadlocks='0' Number of known and resolved deadlocks of UTM resources since the last
reset.
The counter is reset to 0.

periodic_writes='0' Number of periodic writes since the last reset (periodic write = backup of all
relevant administration data in the UTM application).
The counter is reset to 0.

pages_pwrite='0' Number of UTM pages saved on average in a periodic write.
The counter is reset to 0.

logfile_writes='0' Number of requests to write log records to the user log file ((USLOG).
The counter is reset to 0.

maximum_jr='0' In distributed processing only:
Maximum number of remote job receiver services addressed in the local
application at the same time in relation to the generated value MAXJR (see

 in chapter kc_utmd_par_str "kc_utmd_par_str - Parameters for distributed
). This is a percent value. processing"

The counter is reset to the value of (curr_jr "kc_curr_par_str - Current values
).of the application parameters"

max_load='0' max_load specifies as a percentage the maximum load of the UTM application
registered since the start of the application or the last reset.
The value is reset to the value in (see curr_load "kc_curr_par_str - Current

).values of the application parameters"

max_wait_resources='0' max_wait_resources specifies the maximum conflict rate for user data locks
over the application run. The value is specified as an amount per thousand.
The counter is reset to 0.
If this value is reset then the values max_wait_system_resources,

 and are also impicitly reset to 0.nr_res_rqs_for_max nr_sys_res_rqs_for_max

max_wait_system_resources='0' max_wait_system_resources specifies the maximum conflict rate for system
resource locks (system locks) across the application run. The value is
specified as an amount per thousand.
The counter is reset to 0.
If this value is reset then the values max_wait_resources, nr_res_rqs_for_max
and are also implicitly reset to 0.nr_sys_res_rqs_for_max

openUTM V7.0. Administering Applications. User Guide.

 366

Field name Specification

nr_cache_rqs='0' Number of buffer requests taken into account to calculate the value
.cache_wait_buffer

The counter is reset to 0.
If this value is reset then the values and cache_hit_rate, cache_wait_buffer

 are also implicitly reset to 0.nr_cache_searches

nr_cache_searches='0' Number of search operations for UTM pages in the cache taken into account to
calculate the value .cache_hit_rate
The counter is reset to 0.
If this value is reset then the values and cache_hit_rate, cache_wait_buffer

 are also implicitly reset to 0.nr_cache_rqs

nr_res_rqs_for_max='0' Number of requests for transaction resources in the 100 second period during
which the maximum conflict rate was reached.max_wait_resources
The counter is reset to 0.
If this value is reset then the values max_wait_resources,

 and are also implicitly max_wait_system_resources nr_sys_res_rqs_for_max
reset to 0.

nr_sys_res_rqs_for_max='0' Number of requests for system resources in the 100 second period during which
the maximum conflict rate was reached.max_wait_system_resources
The counter is reset to 0.
If this value is reset then the values max_wait_resources,

 and are also implicitly reset to max_wait_system_resources nr_res_rqs_for_max
0.

avg_saved_pgs_by_compr='0' Average value for the UTM pages saved per data compression.
The counter is reset to 0.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

If you wish to reset the statistical values listed above yourself, you should set MAX STATISTICS-MSG
=NONE in KDCDEF generation. This stops UTM resetting the counters to 0 at hourly intervals and
creating the statistics message K081.

i

openUTM V7.0. Administering Applications. User Guide.

 367

Enabling/Disabling data compression

Field name Specification

data_compression='Y' Data compression is enabled. For this purpose data compression must be permitted by
means of UTM generation, see openUTM manual “Generating Applications”, MAX DATA-
COMPRESSION=

data_compression='N' Data compression is disabled.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 368

11.2.9.20 obj_type=KC_DIAG_AND_ACCOUNT_PAR

Diagnostic functions are to be activated or deactivated. You must pass the data structure
 in the data area.kc_diag_and_account_par_str

Possible modifications

Activate or deactivate the ADMI trace function. The ADMI trace function logs all calls of the KDCADMI program
interface.

Field name Meaning

admi_trace='Y' The ADMI trace function is enabled.

admi_trace='N' The ADMI trace function is disabled.
All ADMI trace files are closed and can be analyzed. For more information, see also
openUTM manual ”Messages, Debugging and Diagnostics”.

Period of validity / transaction management: Type IR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

It is also possible to enable the trace via the start parameters when the application is started, see openUTM
manual “Using UTM Applications”. The names of the trace files are also described there.

Activate or deactivate BCAM trace for all connections to the application, i.e. for all:

LTERM partners, LPAP partners

USER

MUX connections (only on BS2000 systems)

BCAM trace records all connection-related events.

Field name Meaning

bcam_trace='Y' The BTRACE function is activated for all connections.
When the BTRACE function is activated, each application process creates its own trace
file in which it records connection-related events.

bcam_trace='N' The BTRACE function is deactivated for all connections, even if it had previously only
been activated for specific LTERM, LPAP, MUX or USER.
If the BTRACE function is deactivated (for all LTERM, LPAP, MUX partners and
USERs), the trace files are closed and can be evaluated subsequently.
Trace file content and evaluation are described in the openUTM manual ”Messages,
Debugging and Diagnostics”.

You can also activate or deactivate the BCAM trace LTERM-, LPAP-, MUX or USER-specifically. Use the object
types KC_LTERM (), KC_LPAP (), KC_MUX ("obj_type=KC_LTERM" "obj_type=KC_LPAP" "obj_type=KC_MUX

) or KC_USER () for this purpose.(BS2000 systems)" "obj_type=KC_USER"

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

The BCAM trace can be activated by means of start parameters when the application is started.

openUTM V7.0. Administering Applications. User Guide.

 369

Control the CPI-C trace function. The CPI-C trace function logs calls at the X/Open interface CPI-C.

Field name Meaning

cpic_trace='T' The CPI-C trace function is enabled with the level TRACE. The content of the input and
output parameters is output for each CPI-C function call.
Only the first 16 bytes are output from the data buffers. The return codes of the KDCS
calls to which the CPI-C calls are mapped are output.

cpic_trace='B' The CPI-C trace function is enabled with the level BUFFER. This trace level includes the
TRACE level. However, the data buffers are logged in their full length.

cpic_trace='D' The CPI-C trace function is enabled with the level DUMP. This trace level includes the
TRACE level and also writes diagnostic information to the trace file.

cpic_trace='A' The CPI-C trace function is enabled with the level ALL. This trace level includes the
levels BUFFER, DUMP and TRACE.

cpic_trace='N' The CPI-C trace function is disabled (OFF).
All CPI-C trace files are closed and can be analyzed. For more information, see also
openUTM manual “Creating Applications with X/Open Interfaces”.

Period of validity / transaction management: Type IR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

It is also possible to enable the CPI-C trace via the start parameters when the application is started, see
openUTM manual “Using UTM Applications”. The names of the trace files are also described there.

openUTM V7.0. Administering Applications. User Guide.

 370

Activate or deactivate OSI trace functions for all application OSI connections.

The OSI trace functions record all events occurring during distributed processing through OSI TP. The events
recorded are restricted to certain record types, i.e. to events relating to certain components.

It is not possible to deactivate logging for individual record types. If the trace is to be deactivated for individual
record types, it must first be completely deactivated (='N') and then reactivated for those record types osi_trace
that are still to be logged (appropriate specified values in)osi_trace_records .

Field name Meaning

osi_trace='Y' The OSI trace function is activated for all record types.
When the OSI trace function is activated, each application process creates its own
trace file.

osi_trace='N' The OSI trace is deactivated for all record types.
All OSI trace files are closed and can be evaluated. See also openUTM manual ”
Messages, Debugging and Diagnostics”.

osi_trace_records[5] Activate the OSI trace function for certain record types.
Nothing further need be specified in the field to activate the OSI trace.osi_trace

Each field element of represents a record type: osi_trace_records
1st field, record type “SPI“
2nd field, record type “INT“
3rd field, record type “OSS“
4th field, record type “SERV“
5th field, record type “PROT“

The meaning of the record types is summarized in chapter
."kc_diag_and_account_par_str - Diagnostic and accounting parameters"

To activate trace functions for certain record types, specify ‘Y' in the appropriate
field elements.
The call activates logging for the specified record types in addition to any log files
that may already exist.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Tracing can be activated by means of start parameters when the application is started.

openUTM V7.0. Administering Applications. User Guide.

 371

Control the TX trace function. The TX trace function logs calls at the X/Open interface TX.

Field name Meaning

tx_trace='E' The TX trace function is enabled with the level ERROR. Only errors are logged.

tx_trace='I' The TX trace function is enabled with the level INTERFACE. The level INTERFACE
includes the level ERROR, and all TX calls are also logged.

tx_trace='F' The TX trace function is enabled with the level FULL. The FULL level includes the
INTERFACE level. All KDCS calls to which the TX calls are mapped are also logged.

tx_trace='D' The TX trace function is enabled with the level DEBUG. The level DEBUG includes the
level FULL, and diagnostic information is also logged.

tx_trace='N' The TX trace function is disabled.
All TX trace files are closed and can be analyzed. For more information, see also
openUTM manual “Creating Applications with X/Open Interfaces”.

Period of validity / transaction management: Type IR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

It is also possible to enable the TX trace via the start parameters when the application is started, see openUTM
manual “Using UTM Applications”. The names of the trace files are also described there.

openUTM V7.0. Administering Applications. User Guide.

 372

Control the XATMI trace function. The XATMI trace function logs calls at the X/Open interface XATMI.

Field name Meaning

xatmi_trace='E' The XATMI trace function is enabled with the level ERROR. Only errors are logged.

xatmi_trace='I' The XATMI trace function is enabled with the level INTERFACE. The level
INTERFACE includes the level ERROR, and all XATMI calls are also logged.

xatmi_trace='F' The XATMI trace function is enabled with the level FULL. The FULL level includes the
INTERFACE level. All KDCS calls to which the XATMI calls are mapped are also
logged.

xatmi_trace='D' The XATMI trace function is enabled with the level DEBUG. The level DEBUG includes
the level FULL, and diagnostic information is also logged.

xatmi_trace='N' The XATMI trace function is disabled.
All XATMI trace files are closed and can be analyzed. For more information, see also
openUTM manual “Creating Applications with X/Open Interfaces”.

Period of validity / transaction management: Type IR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

It is also possible to enable the XATMI trace via the start parameters when the application is started, see
openUTM manual “Using UTM Applications”. The names of the trace files are also described there.

openUTM V7.0. Administering Applications. User Guide.

 373

Activate and deactivate application test mode.

Test mode should only be activated to generate diagnostic documents. Internal UTM plausibility check routines
also run in test mode and internal TRACE data is recorded.

Field name Meaning

testmode='Y' Test mode is activated (ON).

testmode='N' Test mode is deactivated (OFF).

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Test mode can be activated by means of start parameters when the application is started.

openUTM V7.0. Administering Applications. User Guide.

 374

You can create a diagnostic dump for defined messages/events.

You can define an event for which, on its occurrence, UTM generates a diagnostic dump which contains an
event-dependent ID. The prerequisite for this is that test mode must be activated (='Y'). Test mode can testmode
be activated and the event defined in a KC_MODIFY_OBJECT call. You can also define the event when test
mode is not activated. However, the diagnostic dump is only written on the occurrence of the event when test
mode is activated.

You can specify the following events:

the output of a specific K or P message, possibly depending on the inserts in the message

the occurrence of a specific KDCS return code (KCRCCC or KCRCDC) in a program unit run

the occurrence of a specific SIGN status when a user signs on

The events are specified in in the data structure , which kc_diag_and_accout_par_str kc_dump_event_str
contains the data structure in addition to the fields and .kc_insert_str event_type event

Any message inserts which further restrict generation of the dump are defined in . You can specify kc_insert_str
up to three inserts. A dump is only generated if all the criteria for the message inserts specified in kc_insert_str
apply.

Data structure kc_dump_event_str

Field name Meaning

event_type[4] Type of event for which a UTM dump is to be generated:

MSG:K or P message
RCDC: Incompatible return code
RCCC: Compatible return code
SIGN: SIGNON status code
NONE: Explicit deactivation of an individual event

event[4] Message number, KDCS return code (CC or DC) or SIGNON status code, depending on
the event_type

Data structure kc_insert_str

Field name Meaning

value[64] value can be specified as follows, depending on :value_type

value_type=N: numeric, integers between 0 and 2 -131

=C: alphanumeric, maximum of 32 charactersvalue_type
=X: hexadecimal, maximum of 64 charactersvalue_type

UTM represents the string in a union of the type :kc_value
union kc_value

char x[64];

char c[32];

openUTM V7.0. Administering Applications. User Guide.

 375

Field name Meaning

value_type value_type specifies how the contents of the field are to be interpreted:value

N: numeric
C:alphanumeric
X:hexadecimal

comp[2] Specifies whether the system is to test for equality or inequality. The possible values are EQ
(equality) or NE (inequality)

In the case of messages K023, K043, K061 or K062, UTM creates a UTM dump only once, namely when the
message next occurs. The message dump function is then automatically deactivated.

In the case of all other UTM message numbers, a UTM dump is created each time the specified event occurs.
This is done until the event is explicitly reset.

In the case of KDCS return codes or SIGNON status codes, the function is automatically deactivated after the
message dump has been generated.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

 KDCDIAG ()"KDCDIAG - Switch diagnostic aids on and off"

openUTM V7.0. Administering Applications. User Guide.

 376

You can activate and deactivate the accounting and calculation phase of UTM Accounting.

See also the openUTM manual “Generating Applications” and the openUTM manual “Using UTM Applications”
for information on accounting in UTM.

Field name Meaning

account='Y' Only on BS2000 systems: Activate the accounting phase .
UTM Accounting is always deactivated after a BS2000 accounting failure, even if BS2000
accounting is still available. UTM accounting must then be reactivated with ='Y'.account

account='N' Deactivate the accounting phase (OFF).

calc='Y' Activate the calculation phase in UTM accounting (ON).

calc='N' Deactivate the calculation phase of UTM accounting (OFF).

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

After the application is started, the value set in ACCOUNT ACC= during KDCDEF generation applies.

Activate or deactivate the event monitor KDCMON

See the openUTM manual “Using UTM Applications” in relation to event monitor KDCMON and the UTM tools for
evaluating the measured values (KDCEVAL).

Field Meaning

kdcmon='Y' Activate KDCMON (ON)

kdcmon='N' Deactivate KDCMON (OFF)

Period of validity / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

KDCDIAG () / KDCAPPL ("KDCDIAG - Switch diagnostic aids on and off" "KDCAPPL - Change
)properties and limit values for an operation"

openUTM V7.0. Administering Applications. User Guide.

 377

Switch over the log files from the UTM application.

It is possible to switch over the log files for the application (SYSOUT and SYSLST or and) during stderr stdout
live operation. This allows you to avoid a disk bottleneck and permits evaluation and archiving of the log files
while the application is running.

Field name Meaning

sysprot_switch='Y' The log files are switched over.

Period of applicability / transaction management: type GA ("KC_MODIFY_OBJECT - Modify object properties
)and application parameters"

KDCAPPL ()"KDCAPPL - Change properties and limit values for an operation"

Only on BS2000 systems: Enable or disable STXIT logging

Field name Meaning

stxit_log='Y' Enables Stxit logging.

stxit_log='N' Disables Stxit logging.

If STXIT logging is enabled, multiple K099 messages are output to SYSOUT when an STXIT event occurs.

Period of applicability / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

KDCDIAG ()"KDCDIAG - Switch diagnostic aids on and off"

openUTM V7.0. Administering Applications. User Guide.

 378

Output debug information for the database connection.

You can specify the extent to which calls to the XA interface will be logged and the destination for such logging.

Field name Meaning

xa_debug='Y' Enables XA-DEBUG (ON).
Calls to the XA interface are logged.

xa_debug='A' Extended XA-DEBUG (ALL).
Specific data areas are output in addition to the calls to the XA interface.

xa_debug='N' Disables XA-DEBUG (OFF).

xa_debug_out='S' Output to SYSOUT/stderr.

xa_debug_out='F' Output to a file.

If you use only the field xa_debug without providing a value for xa_debug_out, any value you specified in the
start parameter when starting the UTM application will be used (see openUTM Manual “Using openUTM
Applications”). Otherwise, the log is written to SYSOUT/stderr.

Period of applicability / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
) application parameters"

KDCDIAG ()"KDCDIAG - Switch diagnostic aids on and off"

openUTM V7.0. Administering Applications. User Guide.

 379

11.2.9.21 obj_type=KC_MAX_PAR

Application parameters and maximum values for the application are to be modified. You must assign the data
structure in the data area.kc_max_par_str

Possible modifications

All the modifications described below can proceed in a single call.

You can modify application maximum values, which were defined in the MAX statement during KDCDEF
generation. These modifications may affect application performance (see also)."Performance check"

The following table shows which maximum values can be modified and the fields of the data structure
 to which you must pass the new maximum values.kc_max_par_str

Field name Meaning

bretrynr[5] Only on BS2000 systems:
Specify in how often UTM is to attempt to pass a message to the bretrynr
transport system (BCAM) if BCAM cannot immediately accept the message.
The selected value of should not be too high because the process bretrynr
attempting to the pass the message to BCAM is blocked for the duration of the
attempts.

For asynchronous messages to a dialog partner type of the ='APPLI' (TS ptype
application), is not relevant (see in chapter bretrynr bretrynr "kc_max_par_str -

)Maximum values for the application (MAX parameters)"

Minimum value: '1'
Maximum value: '32767'

cachesize_paging[3] Specify in the percentage of the cache which is to be written to cachesize_paging
the KDCFILE in the event of a bottleneck so that the cache memory can be used
for other data.
UTM replaces at least 8 UTM pages out to cache in a single paging, even if the
value of is smaller.cachesize_paging

Minimum value: '0', i.e. 8 UTM pages are swapped out to cache
Maximum value: '100' (%)

Cache size is defined in the MAX statement during KDCDEF generation and can
be ascertained, for example, by using KC_GET_OBJECT for obj_type
=KC_MAX_PAR ().cache_size_pages

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 380

Field name Meaning

conn_users[10] By using you can prevent the application from being overloaded by too conn_users
many active users. To do this, specify in the maximum number of users or conn_users
clients that can currently be signed on to the UTM application.

The following situation applies in applications generated with user IDs:

If the number specified for is greater than the number of generated conn_users
users, has no effect.conn_users

User IDs which have been generated with administration privileges can still sign on
to the UTM application after the maximum number of concurrent user IDs has been
reached.

The following situation applies in applications which are generated without user IDs:

The number of dialog partners which can concurrently be connected to the UTM
application is restricted by conn_users.

If the number specified for is greater than the number of generated conn_users
dialog LTERM partners, has no effect. Dialog LTERM partners are all conn_users
those LTERM partners entered with 'D', LTERM partners of the LTERM usage_type=
pool and the LTERM partners created internally by UTM for multiplex connections.

If the number of simultaneously active users is not to be restricted or if a restriction is to
be cancelled, specify = '0'.conn_users

Minimum value: '0' (i.e. no restriction)
Maximum value: '500000'
On Unix, Linux and Windows systems, the maximum value may not exceed the value
generated in the generation parameter MAX ... CONN-USERS.

Period of validity / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 381

You can define a new destination for the results of the KDCADM administration commands which were called by
KDCADM through asynchronous TACs.

Field name Meaning

destadm[8] Specify in the new recipient for the results of KDCADM administration calls which destadm
have been processed asynchronously (asynchronous KDCADM transaction codes). This
overwrites the old value of .destadm

You can specify the following for :destadm

the name of an LTERM partner

an asynchronous transaction code or

a TAC queue

If you specify blanks for no recipient is defined any longer. The results of the destadm
asynchronous KDCADM transaction code then are lost.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

You can change the number of failed attempts which UTM allows before UTM triggers the silent alarm.

Field name Meaning

signon_fail Specify in the number of unsuccessful sign-on attempts (security violations) from signon_fail
a client following in immediate succession after which a “silent alarm” (K094-UTM message)
is triggered.

Minimum value: '1'
Maximum value: '100'

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

You can activate or deactivate the supply of data to openSM2:

Field name Meaning

sm2='Y' UTM is to supply data to openSM2 for the purpose of monitoring performance data.
The supply of data can only be activated if it was not excluded at a general level during
KDCDEF generation (MAX statement operand SM2).

sm2='N' The supply of data to openSM2 is to be deactivated.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

Some of the modifications can also be performed with the administration command KDCAPPL ("KDCAPPL
).- Change properties and limit values for an operation"

openUTM V7.0. Administering Applications. User Guide.

 382

11.2.9.22 obj_type=KC_TASKS_PAR

The values relating to the number of application processes can to be modified, i.e. the total number of processes,
maximum number of processes for processing asynchronous jobs and for processing program units with blocking
calls and the number of processes reserved for UTM-internal jobs and dialog jobs that do not belong to a TAC class.

You must assign the data structure in the data area.kc_tasks_par_str

Possible modifications

All the modifications described below can be made in a single call.

Field name Meaning

mod_max_tasks[3] Change the total number of processes running.

In this field you specify the maximum number of processes that are running
for the application. is a target value for the current number of mod_max_tasks
processes.
The number of actually active processes that currently process jobs of the
application is stored in the field (see as of curr_tasks kc_tasks_par_str

). This can differ from "kc_tasks_par_str - Number of processes"
for a short period at the startup or termination of a process.mod_max_tasks

Maximum value: the maximum value () defined in MAX at KDCDEF tasks
generation
Minimum value: '1'

mod_max_asyntasks[3] Modify the maximum number of processes that can process asynchronous
jobs simultaneously.
Specify in the maximum number of processes that can mod_max_asyntasks
simultaneously be used for asynchronous processing.

The number specified here serves as a upper limit value.
The actual maximum number of processes that can be used concurrently for
asynchronous processing (see as of kc_tasks_par_str "kc_tasks_par_str -

, parameter) may be lower than Number of processes" curr_max_asyntasks
the value specified in , because the actual number is mod_max_asyntasks
limited by the number of processes of the application that are currently
running ().curr_tasks

Minimum value: '0'
Maximum value: the maximum value defined in MAX at KDCDEF generation (
asyntasks).

openUTM V7.0. Administering Applications. User Guide.

 383

Field name Meaning

mod_max_tasks_in_pgwt[3] Modifies the maximum number of processes which may simultaneously
process jobs for program units in which blocking calls are permitted.
Specify in the maximum number of processes in mod_max_tasks_in_pgwt
which program units that have blocking calls can run simultaneously.

The number specified here serves as a upper limit value.
The actual maximum number of processes processing program units with
blocking calls simultaneously (see as of kc_tasks_par_str "kc_tasks_par_str -

, parameter) may be lower Number of processes" curr_max_tasks_in_pgwt
than the value specified in because the actual mod_max_tasks_in_pgwt
number must be at least 1 below the number of currently running processes
of the application ().curr_tasks

mod_max_tasks_in_pgwt='0' is rejected if the application contains transaction
codes or TAC classes with ='Y'.pgwt

Minimum value: '0'
Maximum value: the maximum value defined in MAX during KDCDEF
generation (.tasks_in_pgwt)

mod_free_dial_tasks[3] This value can only be modified if a TAC-PRIORITIES statement was issued
during KDCDEF generation.

In , you enter the number of processes in the application mod_free_dial_tasks
reserved for UTM-internal jobs and for dialog jobs that do not belong to a
specific dialog TAC class.
This portion of the total percentage is then not available for processing jobs to
dialog TAC classes.

If >= after the process figures have mod_free_dial_tasks mod_max_tasks
been modified, an application process may still process jobs to dialog TAC
classes.

Minimum value: '0'
Maximum value: value in -1tasks

Period of validity / transaction management: type A ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

KDCAPPL ()"KDCAPPL - Change properties and limit values for an operation"

openUTM V7.0. Administering Applications. User Guide.

 384

11.2.9.23 obj_type=KC_TIMER_PAR

Application timer settings are to be modified. You must enter the data structure in the data area.kc_timer_par_str

Possible modifications

The following table shows which timers can be modified. You can modify as many of these timers as you wish in a
single call.

Field name Meaning

conrtime_min[5] Specify here the time in minutes after which UTM is to attempt to re-establish a lost
connection to a printer or a TS application. The precondition is that the connection
must previously have been established automatically by UTM (.kc_pterm_str

='Y' or . > 0).auto_connect kc_lterm_str plev

At ='0' UTM makes no attempt to re-establish a lost connection.conrtime_min

Maximum value: '32767'
Minimum value: '0'

pgwttime_sec[5] The maximum time in seconds which a program unit is to wait for the arrival of
messages after a blocking function call (e.g. PGWT).
During this waiting period, one process remains exclusively reserved by this
program unit.

Maximum value: '32767'
Minimum value: '60'

reswait_ta_sec[5] The maximum time in seconds which a program unit is to wait for a device currently
being used by another transaction.

reswait_ta_sec='0' means that the program unit does not wait. A program unit run
wishing to access a reserved device immediately receives an appropriate return
code.

Maximum value: '32767'
Minimum value: '0'

openUTM V7.0. Administering Applications. User Guide.

 385

Field name Meaning

reswait_pr_sec[5] The maximum time in seconds which UTM is to wait for a device currently being
used by another process. If this time is exceeded, the application terminates with a
UTM error message.
It should be noted that the value of must be as long as the longest reswait_pr_sec
(real time) processing time for the following cases:

In TS applications that are not SOCKET applications (clients with
PTYPE=APPLI) the devices are locked for the duration of a processing stage,
including a VORGANG exit at the beginning and/or end of the service.

At the end of the service, the devices are reserved for as long as the VORGANG
exit program is running.

Minimum value: '300', Maximum value: '32767'

If you specify a value of < 300, the call is rejected.

termwait_in_ta_sec[5] The maximum time in seconds in a multi-step transaction (i.e. in the PEND KP
program) which may elapse between an output to a dialog partner and the
subsequent dialog response.

If the time is exceeded, the transaction is rolled back. termwait_in_ta_sec
The devices reserved by the transaction are released. The connection to the partner
is shut down.

Maximum value: '32767'
Minimum value: '60'

logackwait_sec[5] Only on BS2000 systems:
The maximum time in seconds which UTM is to wait for a logical print confirmation
from the printer or a transport confirmation for an asynchronous message to another
application (created using the KDCS call FPUT).
If the confirmation does not arrive after this time, e.g. due to a printer being out of
paper, UTM shuts down the logical connection to the device.

Minimum value: '10'
Maximum value: '32767'

openUTM V7.0. Administering Applications. User Guide.

 386

Field name Meaning

The following timers are relevant only in the context of UTM applications with distributed processing via LU 6.1 or
OSI TP.

conctime1_sec[5] The time in seconds for monitoring the setup of a session (LU6.1) or association
(OSI TP). If the session or association is not established within the specified time,
UTM shuts down the transport connection to the partner application.

conctime1_sec='0' means:

for LU6.1 connections: session setup is not monitored (UTM will wait indefinitely).

for OSI TP connections: UTM waits up to 60 seconds for an association to be set
up.

Minimum value: '0'
Maximum value: '32767'

conctime2_sec[5] The maximum waiting time in seconds for a confirmation from the recipient when
transferring an asynchronous message. Once the time has expired, conctime2_sec
UTM shuts down the transport connection. The asynchronous job is not lost, but
remains in the local message queue.

conctime2_sec = '0' means that monitoring is not performed.

Minimum value: '0'
Maximum value: '32767'

ptctime_sec[5] This timer is relevant only in the context of distributed processing via LU6.1
connections. defines the maximum time in seconds which a local job- ptctime_sec
receiving service will wait in the PTC state (prepare to commit, transaction status P)
for a confirmation from the job-submitting service.
When the time expires, the connection to the job submitter is shut down, the
transaction in the job-receiving service is rolled back and the service terminated.
This may possibly result in a mismatch.
If KDCSHUT WARN or GRACE has already been issued for the application and the
value of is not 0, then the waiting time is chosen independently of ptc_time_sec

 in such a way that the transaction is rolled back before the application ptc_time_sec
is terminated in order to avoid abnormal termination of the application with ENDPET
if possible.

ptctime_sec = '0' means that UTM waits indefinitely for a confirmation.

Minimum value: '0'
Maximum value: '32767'

See also for further information."kc_timer_par_str - Timer settings"

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
)application parameters"

openUTM V7.0. Administering Applications. User Guide.

 387

The modifications do not take effect on timers which are already running; they only apply to timers started after the
modification.

Some of the modifications can also be performed with the administration command KDCAPPL ("KDCAPPL
).- Change properties and limit values for an operation"

openUTM V7.0. Administering Applications. User Guide.

 388

11.2.9.24 Return codes

In addition to the return codes listed in , the following codes can also occur. Some of these section "Return codes"
return codes may occur independently of the specified object type; others occur only for certain object types.

Type-independent return codes:

Main code = KC_MC_DATA_INVALID

Information is missing from the data structure in the data area or a field contains an invalid value.

Subcodes:

KC_SC_DATA_MISSING

Data is missing from the data structure. Possible causes:

The field to be modified was not specified.

Several fields must be specified together for the requested modification, and one of these values is
missing (e.g. =KC_TPOOL: and).obj_type state state_number

KC_SC_INVALID_MOD

A field in the data structure which can be modified was completed with an invalid value.

KC_SC_NOT_NULL

A field in the data structure which cannot be modified was not completed with binary zero.

Main code = KC_MC_REJECTED_CURR

The call cannot be processed at the present time.

Subcode:

KC_SC_INVDEF_RUNNING

An inverse KDCDEF is currently running and configuration data cannot be changed during the run.

Main code = KC_MC_NOT_EXISTENT

No object of the type specified in exists under the name or name triplet passed in the identification obj_type
area.

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_DELETED

The specified object has been deleted. Its properties cannot be modified.

Subcode:

KC_SC_NO_INFO

openUTM V7.0. Administering Applications. User Guide.

 389

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcode:

KC_SC_NOT_GEN

No explicitly generated object of the object type specified in exists. Implicitly generated objects obj_type
might, however, exist, e.g. user IDs for clients with ='APPLI'.ptype

KC_SC_JCTL_RT_CODE_NOT_OK

Only in UTM cluster applications:
An internal UTM error occurred during the global modification of an object.
Please contact system support.

KC_SC_NO_CLUSTER_APPLI

This action is only possible in a UTM cluster application.

KC_SC_NO_GLOB_CHANG_POSSIBLE

No global administration changes are possible since the generations of the node applications are not
consistent at present.

KC_SC_NOT_ALLOWED_IN_CLUSTER

The administration action is not permitted in a UTM cluster application.

Main code = KC_MC_RECBUF_FULL

The buffer with recovery information is full (see KDCDEF control statement MAX, operand RECBUF).

Subcode:

KC_SC_NO_INFO

openUTM V7.0. Administering Applications. User Guide.

 390

Return codes for obj_type=KC_CLUSTER_NODE:

Maincode = KC_MC_REJECTED

The call was rejected by UTM.

Subcode:

KC_SC_CCFG_NO_CLUSTER_APPLI

The specified application is not a UTM cluster application

KC_SC_CCFG_FILE_NOT_OPEN

Internal UTM error.
Please contact system support.

KC_SC_CCFG_RT_CODE_NOT_OK

Modification was not performed. Possible cause, e.g. timer expired.

KC_SC_CCFG_FILE_LOCK_ERROR

Cluster configuration file is locked.

KC_SC_CCFG_FILE_READ_ERROR

Error reading the cluster configuration file.

KC_SC_CCFG_FILE_WRITE_ERROR

Error writing the cluster configuration file.

KC_SC_CCFG_INVALID_BUFFER_LTH

Internal UTM error.
Please contact system support.

KC_SC_CCFG_INVALID_NODE_INDEX

Internal UTM error.
Please contact system support.

KC_SC_CCFG_INVALID_NODE_STATE

Invalid node application status.
Note: You may not make any modifications for a running node application.

KC_SC_CCFG_INVAL_FILEBASE_NAME

Base name of UTM cluster invalid.

KC_SC_CCFG_INVALID_HOSTNAME

The host name is invalid.

openUTM V7.0. Administering Applications. User Guide.

 391

Return codes for obj_type = KC_DB_INFO:

Maincode = KC_MC_REJECTED

The call was rejected by UTM.

Subcode:

KC_SC_NOT_GEN

No database is generated for the application.

KC_SC_INVALID_TYPE

The database selected in the identification area is not an XA database.

KC_SC_NO_INFO

Internal error in UTM when encoding the new password.

Maincode = KC_MC_NOT_EXISTENT

The object specified in the identification area does not exist.

Subcode:

KC_SC_NO_INFO

Return codes for obj_type=KC_KSET:

Maincode = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_NOT_ALLOWED

It is not permissible to modify the KDCAPLKS or MASTER key set.

openUTM V7.0. Administering Applications. User Guide.

 392

Return codes for obj_type=KC_LOAD_MODULE (program exchange):

Main code = KC_MC_REJECTED_CURR

The call cannot be processed at the present time.

Subcode:

KC_SC_CHANGE_RUNNING

A program exchange is running.

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_NOT_CHANGEABLE

The load module / shared object / DLL specified in the identification area is not interchangeable.
Possible reasons include, for example:

the load module has the load mode STATIC.

the load module contains TCB entries.

KC_SC_SAME_VERSION

load_mode 'U' (not STARTUP): !=

The currently loaded version of the load module was specified in .version

KC_SC_LMOD_NOT_EXISTENT (only on BS2000 systems)

No module with the specified version could be found in the library.

KC_SC_INVALID_VALUE (only on BS2000 systems)

The load module is generated with LOAD-MODE=POOL, (POOL,STARTUP) or (POOL,ONCALL) and with
version *HIGHEST-EXISTING, but in was specified a value not equal *HIGHEST-EXISTING.version

Return codes for obj_type=KC_LPAP:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_CONNECTED

state = 'N': There is a connection to the partner application. The partner application thus cannot be disabled.
Before the partner application is disabled, all connections to it must be shut down.

KC_SC_NOT_ALLOWED

openUTM V7.0. Administering Applications. User Guide.

 393

Possible causes:

you have attempted to establish a connection to a disabled partner application (= 'N') with state
 = 'Y', orconnect_mode

you have set = 'N' together with = 'Y', orstate connect_mode

you have specified and together, orconnect_mode quiet_connect

the value specified in is not permissible.bcam_trace

KC_SC_NOT_EXISTENT

The specified object does not exist.

openUTM V7.0. Administering Applications. User Guide.

 394

Return codes for obj_type=KC_LSES:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_NOT_ALLOWED

Possible causes:

The combination of the specified modifications is not permitted, i.e. both and connect_mode
 were set.quiet_connect

There is no connection to the partner application and it is not possible to establish one because the LPAP
partner of the partner application is disabled. The LPAP partner must first be enabled in a separate
transaction.

KC_SC_INVALID_CON

The connection specified by (, ,) is invalid. It does not exist or is intended for another con pronam bcamappl
partner application (LPAP partner).

KC_SC_CONNECTED

A connection to be established was specified in (, ,). However, the session already has con pronam bcamappl
another connection.

Maincode = KC_MC_NOT_EXISTENT

The specified object does not exist.

Subcode:

KC_SC_NO_INFO

No LU6.1 connection was created or generated.

Return codes for obj_type=KC_LTAC:

There are no type-specific return codes for KC_LTAC.

openUTM V7.0. Administering Applications. User Guide.

 395

Return codes for obj_type=KC_LTERM:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_POOL_LTERM

The LTERM partner specified in the identification area belongs to an LTERM pool. The requested
modification is not permissible for this LTERM partner.

KC_SC_NO_PTERM

connect_mode = 'Y' was set:
UTM cannot establish a connection because no client/printer is currently assigned to the LTERM partner or
the associated client/printer is disabled.

KC_SC_NOT_ALLOWED

Possible causes:

an attempt was made to define a start format for an LTERM partner with ='O'.usage_type

format_attr='E' (#format) was specified, but no sign-on service is defined.

an inadmissible value was specified in .bcam_trace

The replacement of two master LTERMs was rejected because one of the LTERMs is not a master
LTERM or the same master was specified for both. The replacement of two master LTERMs is not
permitted in a UTM cluster application.

KC_SC_NO_FORMAT_ALLOWED

Values specified in and (modifying the start format) are not permitted as no format_name format_attr
formatting system has been generated for the application.

KC_SC_INVALID_ALIAS

The primary LTERM is itself an alias LTERM.

KC_SC_INVALID_ALIAS_CTERM

The primary LTERM is a CTERM.

KC_SC_INVALID_ALIAS_BUNDLE

The primary LTERM is a slave LTERM in an LTERM bundle.

KC_SC_ALIAS_STATE_ILL

The primary LTERM has been generated with RESTART=NO or QAMSG=NO.

openUTM V7.0. Administering Applications. User Guide.

 396

Return codes for obj_type=KC_MUX (BS2000 systems):

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_CONNECTED

state='N': There is a connection to the multiplex connection. It therefore cannot be disabled.
 = 'Y': There is already a connection to the multiplex connection.connect_mode

KC_SC_NOT_ALLOWED

You have tried to establish a connection to a disabled multiplex connection, or the value specified in
is not permitted.bcam_trace

Return codes for obj_type=KC_OSI_CON:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcode:

KC_SC_CONNECTED

There is a connection to the partner application. It is only possible to switch to a replacement connection if
no active association to the partner application currently exists.

openUTM V7.0. Administering Applications. User Guide.

 397

Return codes for obj_type=KC_OSI_LPAP:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_CONNECTED

Specified value = 'N': a connection to the partner application exists. The OSI-LPAP partner of the state
partner application therefore cannot be disabled. All connections to the partner application must be shut
down before the disable operation.

KC_SC_NOT_ALLOWED

Possible causes:

you have attempted to establish a connection (>0) to a disabled partner application (OSI-connect_number
LPAP partner) or to a partner application for which no connection is set to active (see field kc_osi_con_str

)active

you have set = 'N' together with , orstate connect_number

you have set = 'N' together with , orstate quiet_connect

you have set together with .quiet_connect connect_number

openUTM V7.0. Administering Applications. User Guide.

 398

Return codes for obj_type=KC_PTERM:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_NOT_ALLOWED

Possible causes:

an attempt was made to establish a connection to a disabled client/printer, or

connect_mode = 'R' is not permitted for the client specified in the identification area, or

the fields and were specified together.lterm connect_mode

state = 'N' and = 'Y' were specified together.auto_connect

KC_SC_POOL_PTERM

The requested modification is not permitted for clients connected via an LTERM pool.

KC_SC_UPIC_PTERM

The requested modification is not permitted for clients with = 'UPIC-R' or 'UPIC-L' (on Unix, Linux and ptype
Windows systems).

KC_SC_TTY_PTERM (only on Unix, Linux and Windows systems)

The requested modification is not permitted for a terminal (='TTY').ptype

KC_SC_MUX_DIS_PENDING (only on BS2000 systems)

The specified client is connected to the application via a multiplex connection and the session is in the state
DISCONNECT PENDING.
An attempt was made either to establish or shut down the session ('Y' or 'N‘) or to release connect_mode=
the session explicitly while the timer was still running (='R').connect_mode

KC_SC_LTERM_NOT_EXISTENT

The client/printer assignment to the LTERM partner cannot be modified as the LTERM partner specified in
 does not exist.lterm

KC_SC_LTERM_DEL

The client/printer assignment to the LTERM partner cannot be modified as the LTERM partner specified in
 has been deleted.lterm

KC_SC_LTERM_NOT_ALLOWED

The client/printer assignment to the LTERM partner cannot be modified.
Possible causes:

The LTERM partner specified in belongs to an LTERM pool.lterm

openUTM V7.0. Administering Applications. User Guide.

 399

The specified LTERM partner has been configured for connection to a client with ='UPIC-...' and ptype
cannot be assigned to any other client.

KDCMSGLT was specified in . KDCMSGLT is generated internally by UTM for the event service lterm
MSGTAC. It cannot be assigned to any client/printer.

KC_SC_CONNECTED

The client/printer assignment to the LTERM partner cannot be modified.
Possible causes:

The client/printer which is to be assigned to the LTERM partner is currently connected to the application.

A client which is connected to the application is currently assigned to the LTERM partner.
The old assignment of the LTERM partner cannot be cancelled as one of the two clients is entered as a
dialog partner (='D').usage_type

KC_SC_OUT_PTERM_DIAL_LTERM

The name of an output medium (='O') was stated in the identification area, but the LTERM usage_type
partner specified in is configured as a dialog partner. lterm
An output medium cannot be assigned to a dialog LTERM partner.

KC_SC_DIAL_PTERM_TO_BUNDLE

The new client/printer assignment to the LTERM partner cannot be created.
The name of a dialog partner (='D') was passed in the identification area, but the LTERM partner usage_type
specified in belongs to a printer pool.lterm

KC_SC_PTYPE_APPLI

The new client/printer assignment to the LTERM partner cannot be created.
The name of a client having ='APPLI' or 'SOCKET' was specified in the identification area. ptype
The LTERM partner specified in is not suitable for this client because no user ID has been generated lterm
for the LTERM partner.

KC_SC_PTERM_WITHOUT_CID

The new client/printer assignment to the LTERM partner cannot be created.
The specified LTERM partner is assigned to a printer control LTERM, but no printer ID (CID) has been
defined for the specified printer.

KC_SC_CID_AMBIGUOUS

The new client/printer assignment to the LTERM partner cannot be created.
The specified LTERM partner is assigned to a printer control LTERM, but the printer ID defined for the
specified printer is not unambiguous at the level of the printer control LTERM.

KC_SC_NO_LTERM

connect_mode = 'Y' is not permitted: no LTERM partner is assigned to the specified client/printer, so no
connection can be established.

KC_SC_INVALID_PROTOCOL_USAGE

openUTM V7.0. Administering Applications. User Guide.

 400

PTYPE and protocol cannot be combined.

KC_SC_BUNDLE_NOT_ALLOWED

It is not possible to make the new assignment between the client and the LTERM partner because the
LTERM partner belongs to an LTERM bundle.

KC_SC_GROUP_NOT_ALLOWED

It is not possible to make the new assignment between the client and the LTERM partner because the
LTERM partner belongs to an LTERM group.

KC_SC_NOT_ALLOWED_IN_CLUSTER

This function is not permitted in a UTM cluster application, e.g. KDCSWTCH or replacement of two bundle
masters

openUTM V7.0. Administering Applications. User Guide.

 401

Return codes for obj_type=KC_TAC:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcode:

KC_SC_NOT_ALLOWED

Possible causes:

An attempt was made to modify and to reset statistics values at the same time.state

It is possible that an attempt was made to modify the and parameters. lock_code access_list
It is not permitted to modify if is generated.access_list lock_code

It is not permitted to modify in the case of the TACs KDCBADTC, KDCMSGTC and access_list
KDCSGNTC.

An attempt was made to disable KDCTAC.

A TAC generated with the NEXT property should be disabled with ='N'. This is not permissible. state
Disabling it has no effect.

In the case of a TAC that is of the type 'Q', an attempt was made to modify 'q_read_acl' or not
'q_write_acl'.

An attempt was made to set = 'Y' for an interactive or asynchronous TAC with dead_letter_q
CALL=NEXT or for a KDCDLETQ or KDCMSGTC TAC.

KC_SC_INVALID_READ_ACL

The key set specified in does not exist.q_read_acl

KC_SC_INVALID_WRITE_ACL

The key set specified in does not exist.q_write_acl

KC_SC_INVALID_ACL

The key set specified in does not exist.access_list

KC_SC_READ_ACL_DEL

The key set was deleted.

KC_SC_WRITE_ACL_DEL

The key set was deleted.

Return codes for obj_type=KC_TACCLASS:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

openUTM V7.0. Administering Applications. User Guide.

 402

KC_SC_NOT_ALLOWED

An invalid number of processes was specified in or .tasks tasks_free

Both and were specified.tasks tasks_free

KC_SC_NOT_CHANGEABLE

tasks and cannot be modified because the application was generated with priority control (TAC-tasks_free
PRIORITIES).

Return codes for obj_type =KC_TPOOL:

There are no type-specific return codes for KC_TPOOL.

openUTM V7.0. Administering Applications. User Guide.

 403

Return codes for obj_type=KC_USER:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_TOO_SIMPLE

The requested password change was not performed as the new password is not of the complexity level (
) defined for the user ID.protect_pw_compl

KC_SC_OLD_PW

The requested password change was not performed as the old password was specified in and password16
a limited period of validity is defined in the user ID for the password ('0'). The old protect_p-w_time!=
password cannot be specified as the new password for this user ID.

KC_SC_NOT_ALLOWED

The requested modification was not performed. Possible causes:

state='N': you have attempted to disable a user ID that has administration privileges (permit='A' or 'B').

you have attempted to modify a user ID which is assigned to a client having ='APPLI', 'SOCKET' or ptype
'UPIC-...'.

you have attempted to modify the user ID KDCMSGUS which UTM has generated internally for the event
exit MSGTAC.

you have specified ='E' (#format), but no sign-on service has been defined.format_attr

It is only permitted to enable or disable the BCAM trace if the BTRACE module is set to SELECT mode.

KC_SC_NO_FORMAT_ALLOWED

It is not permitted to specify information in and (modifying the start format), as no format_name format_attr
formatting system has been generated for the application.

KC_SC_INVALID_READ_ACL

The key set specified in does not exist.q_read_acl

KC_SC_INVALID_WRITE_ACL

The key set specified in does not exist.q_write_acl

KC_SC_READ_ACL_DEL

The referenced key set was deleted.

KC_SC_WRITE_ACL_DEL

The specified key set was deleted.

KC_SC_KSET_DEL

openUTM V7.0. Administering Applications. User Guide.

 404

The referenced key set was deleted.

KC_SC_KSET_NOT_EXISTENT

The specified key set does not exist.

KC_SC_INVALID_PRINCIPAL (only on BS2000 systems)

Error on sign-on with principal.

Return codes for obj_type=KC_CLUSTER_PAR:

Maincode = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_CCFG_NO_CLUSTER_APPLI

The application is not a UTM cluster application.

KC_SC_CCFG_RT_CODE_NOT_OK

Modification was not performed.
Internal UTM error.
Please contact system support.

KC_SC_CCFG_FILE_LOCK_ERROR

Cluster configuration file is locked.

KC_SC_CCFG_FILE_WRITE_ERROR

Error writing the cluster configuration file.

KC_SC_CCFG_FILE_READ_ERROR

Error reading the cluster configuration file.

KC_SC_INVALID_BUFFER_LTH

Internal UTM error.
Please contact system support.

KC_SC_CCFG_FILE_NOT_OPEN

Internal UTM error.
Please contact system support.

Return codes for obj_type=KC_DIAG_AND_ACCOUNT:

Main code = KC_MC_REJECTED

openUTM V7.0. Administering Applications. User Guide.

 405

The call was rejected by UTM.

Subcodes:

KC_SC_NOT_AVAILABLE

The event monitor KDCMON cannot be activated. It is not available.

KC_SC_KDCMON_ERROR

Possible causes:

The KDCMON sub system was not started

The KDCMON event monitor was not started or has been terminated in the meantime.

KC_SC_NOT_GEN

The OSI trace is to be activated although no objects have been generated for distributed processing through
OSI TP.

KC_SC_SYSPROT_SWITCH_RUNNING

A log file is currently in the process of being switched over to the next log file. It is therefore not possible to
execute a new switchover command.

KC_SC_TRCFILE_HANDLING_RUNNING

Trace files are currently being opened or closed, with the result that it is not possible to modify the trace
settings at present.

openUTM V7.0. Administering Applications. User Guide.

 406

Return codes for obj_type=KC_MAX_PAR:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_NOT_GEN

Data supply to openSM2 was not generated, i.e. it cannot be activated or deactivated.

KC_SC_NOT_AVAILABLE

openSM2 is currently unavailable.

KC_SC_NOT_ALLOWED

An invalid destination was specified when modifying (recipient of results from KDCADM destadm
asynchronous TACs). Possible causes:

an LTERM partner which has been disabled or deleted was specified in .destadm

a transaction code which has been disabled or deleted was specified in .destadm

a dialog TAC was specified in , but only an asynchronous TAC or an LTERM partner may be destadm
specified as the recipient.

an LTERM partner was specified in to which a client of the type UPIC_... is assigned.destadm

KC_SC_NOT_EXISTENT

Invalid information in . The specified name belongs neither to an LTERM partner nor to a destadm
transaction code.

Return codes for obj_type=KC_TASKS_PAR:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcode:

KC_SC_NOT_ALLOWED

The number of processes specified in , or mod_max_tasks mod_max_asyntasks mod_max_tasks_in_pgwt
is greater than the value generated in the KDCDEF statement MAX.

mod_max_tasks_in_pgwt='0' is not allowed, since the application allows blocking call, i.e. transaction
codes or TAC classes with ='Y' were generated.pgwt

openUTM V7.0. Administering Applications. User Guide.

 407

Return codes for obj_type=KC_TIMER_PAR:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcode:

KC_SC_NO_UTMD

An attempt was made to set a timer for distributed processing through LU6.1 or OSI TP, although no objects
have been generated for distributed processing.

openUTM V7.0. Administering Applications. User Guide.

 408

11.2.10 KC_ONLINE_IMPORT - Import application data online

In a UTM cluster application (Unix, Linux and Windows systems), following the normal termination of a node
application, another running node application can import messages to LTERMs, (OSI) LPAPs, asynchronous TACs,
TAC queues and open asynchronous services from the terminated node application provided that its KDCFILE
comes from the same generation run. The imported data is deleted in the terminated node application. Prior to
import, a check is performed to determine whether an online import is running. If it is, the new import is rejected.
Online import is only possible in UTM-S applications. Open asynchronous services are not imported if the service
contains database transactions with SESAM/SQL.

Execution / period of validity / transaction management / clusters

KC_ONLINE_IMPORT initiates the online import of the application data, i.e. an online import job is generated.
When control returns to the program unit, the online import has not yet been performed. Online imports are not
subject to transaction management. It cannot be rolled back by a subsequent RSET call in the same transaction.
Online import is performed by a process in the application.

When the job has been processed, UTM issues a message informing you of the success or failure of the online
import. If the import was successful but it was not possible to import all the data due to a temporary resource
bottleneck, another online import can be run to import the outstanding data into another node application or, once
the bottleneck has been cleared, into the same node application.

This function is only permitted in cluster operation. The online import operation is performed in the node application
in which the call is made.

openUTM V7.0. Administering Applications. User Guide.

 409

Parameter settings

Parameter area

Field name Contents

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_11

opcode KC_ONLINE_IMPORT

subopcode1 KC_ALL

id_lth 0

select_lth 0

data_lth Length of the data structure

Identification area

—

Selection area

—

Data area

Data structure

Data returned by UTM

Parameter area

Field name Content

retcode Return codes

openUTM V7.0. Administering Applications. User Guide.

 410

subopcode1

With =KC_ALL, you specify that all messages, i.e. messages to (OSI) LPAPs, asynchronous subopcode1
TACs, TAC queues and open asynchronous services are to be imported.

data_lth

In , you enter the length of the data structure in the data area.data_lth

Data area

Specify the data structure in the data area.kc_online_import_str

In , specify the number of the node from which the application data is to be imported.kc_online_import_str

The data structure is defined as follows.kc_online_import_str

struct kc_online_import_str

char import_node[4];

The field in the data structure has the following meaning:

import_node

Number of the node from which the application data is to be imported.

openUTM V7.0. Administering Applications. User Guide.

 411

retcode

openUTM indicates the return code from the call in the field. Alongside the return codes listed in retcode
, the following return codes may also occur:section "Return codes"

Maincode = KC_MC_REJECTED

The call was rejected by openUTM.

Subcode:

KC_ONLINE_IMPORT_RUNNING

An attempt has been made to start an online import while an online import is already running.

KC_SC_CCFG_INVALID_NODE_INDEX

The number of the node application from which the application data is to be imported is invalid. The
number is either the number of the local node application or a number that does not belong to the UTM
cluster application.

KC_SC_CCFG_INVALID_NODE_STATE

The node application from which the application data is to be imported has a status that is not valid for
online imports. An invalid status means that the node application

has either never been started, or

has been terminated abnormally, or

is not running

Maincode = KC_MC_NOT_EXISTENT

The number of the node application from which the import is to be performed lies outside of the valid
range of values from 1 to 32.

Subcode:

KC_SC_NO_INFO

openUTM V7.0. Administering Applications. User Guide.

 412

11.2.11 KC_PTC_TA - Roll back transaction in PTC state

KC_PTC_TA rolls back a transaction that is in the state PTC (prepare to commit).

The transaction’s identification data consists of a triad of elements: the service index, service number and
transaction number. You can obtain this data by first issuing a KC_GET_OBJECT call with operation code KC_PTC.

Execution / period of validity / transaction management / cluster

This call rolls back the local element of a distributed transaction.

The distributed transaction itself cannot be be rolled back using the administration capabilities. Only the local
element of such a transaction can be rolled back. This type of administrative rollback is a heuristic decision
concerning the result of the transaction and may in certain cases lead to inconsistencies in the distributed data

 if the distributed transaction is committed by the Commit Coordinator.stock

openUTM V7.0. Administering Applications. User Guide.

 413

Parameter settings

Parameter area

Field name Content

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_11

opcode KC_PTC_TA

subopcode1 KC_ROLLBACK

id_lth 25

select_lth 0

data_lth 0

Identification area

Triad with the transaction’s identification data

Selection area

—

Data area

—

Data returned by UTM

Parameter area

Field name Content

retcode Return codes

openUTM V7.0. Administering Applications. User Guide.

 414

subopcode1

With =KC_ROLLBACK, you specify that the transaction is to be rolled back.subopcode1

id_lth

You specify the length of the data structure in the field.kc_ptc_id_str id_lth

Identification area

In the identification area, you specify the data structure .kc_pct_id_str

kc_ptc_id_str must be filled with the values returned by the call KC_GET_OBJECT with operation code
KC_PTC in the structure . is present in the data structure , see ptc_ident ptc_ident kc_ptc_str "kc_ptc_str -

. The data structure is defined as follows.Transactions in PTC state" kc_ptc_id_str

struct kc_ptc_id_str

char vg_indx[10];

char vg_nr[10];

char ta_nr_in_vg[5];

vg_indx is the index of the service, the number of the service and the number of the vg_nr ta_nr_in_vg
transaction in the service.

openUTM V7.0. Administering Applications. User Guide.

 415

retcode

openUTM returns the return code for the call in the field. Alongside the return codes listed in retcode section
, the following return codes may also occur"Return codes"

Maincode = KC_MC_REJECTED

The call was rejected by openUTM.

Subcode:

KC_SC_NO_MORE_PTC

The transaction is no longer in the PTC state.

KC_SC_END_TA_ALREADY_INITIATED

The termination of the transaction has already been initiated. There may be the following reasons for
this:

Maincode = KC_MC_REJECTED

The call was rejected by openUTM.

Subcode:

The partner of the distributed transaction that determines the result of the transaction (Commit
Coordinator) has initiated the termination of the transaction

The termination of the transaction has been initiated by the administration functions.

KC_SC_PARTNER_CONNECTED

The connection has been established to the partner of the distributed transaction that determines the
result of the transaction (Commit Coordinator). This initiates termination of the transaction.

openUTM V7.0. Administering Applications. User Guide.

 416

11.2.12 KC_SEND_MESSAGE - Send message (BS2000 systems)

Using KC_SEND_MESSAGE, you can send a message to one or more or all active terminals of a UTM application
on a BS2000 system. The message text may be up to 74 characters in length and it is passed to UTM in the data
area. UTM then sends the message as UTM message K023 with the specified message as an insert. By default,
the message is output in the system line on the terminal. However, the message destination of message K023 can
also be changed. If the message destination PARTNER is selected for the UTM message K023 (see the openUTM
manual ”Messages, Debugging and Diagnostics”), you can also send the message to one or more or all connected
TS applications. The message only goes to dialog partners (LTERM with USAGE=D).

Using KC_SEND_MESSAGE, you can:

send a message to all terminals currently connected to the application. This also applies to terminals connected
to the application via an LTERM pool.

send a message to all TS applications connected to the UTM application, provided the message destination
PARTNER is generated for K023.

send a message to a certain terminal user or, provided the message destination PARTNER is generated, to a
specific TS application. In this case, you must specify in the identification area the name of the LTERM partner
via which the terminal is connected to the application. The precondition for delivery of the message is that the
terminal must be connected to the application at the time the KC_SEND_MESSAGE call is issued.

If you want to send a message to a certain user, you can ascertain the LTERM partner through which the user is
signed on to the application in the following manner:

First, using KC_GET_OBJECT, request information about the user ID under which the user has signed on to the
application (object type KC_USER).

UTM then returns the properties of the user ID in the data structure . If, at the time of the request, the kc_user_str
user is connected to the application, the field contains the name of the LTERM partner through which lterm_curr
the user is signed on. This is the name which you pass in the identification area when sending the message with
KC_SEND_MESSAGE.

Execution / transaction management

A KC_SEND_MESSAGE call is not subject to transaction management. It cannot be rolled back by an RSET in the
same transaction.

If you do not specify a recipient in the identification area and the parameter area to =0, UTM identifies all number
currently active LTERM partners entered with ='D' and sends them the message. The message will usage_type
already have been sent when control is returned to the program unit.

If you specify the name of an LTERM partner in the identification area and set the parameter area to =1, number
successful processing of the KC_SEND_MESSAGE call means that the message has been sent to this LTERM
partner. If the LTERM partner cannot currently be reached, UTM returns an appropriate return code.

KDCSEND ()"KDCSEND - Send a message to LTERM partners (BS2000 systems)"

openUTM V7.0. Administering Applications. User Guide.

 417

Data to be supplied

Function of the call Data to be entered in the

parameter area 1 identification area selection
area

data area

Send message to all active LTERM
partners

obj_number: 0

—— —— Message

Send message to one LTERM partner obj_number: 1 Name of LTERM
partner

—— Message

1 The operation code KC_SEND_MESSAGE must always be specified in the parameter area.

Parameter settings

Parameter area

Field name Content

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_11

opcode KC_SEND_MESSAGE

obj_number 1 / 0

id_lth Length of object name / 0

select_lth 0

data_lth Length of message

Identification area

Object name / —

Selection area

—

Data area

Message

KDCADMI call

KDCADMI (¶meter_area, &identification_area, NULL, &data_area) or
KDCADMI (¶meter_area, NULL, NULL, &data_area)

openUTM V7.0. Administering Applications. User Guide.

 418

Data returned by UTM

Parameter area

Field name Content

retcode Return codes

obj_number

Specify in whether the message is to be sent to all currently active LTERM partners or only to a obj_number
specific LTERM partner.

obj_number=0 means:
The message is to be sent to all active LTERM partners. The null pointer must be passed as the address of
the identification area.

obj_number=1 means:
The message is to be sent to only one LTERM partner. The name of the LTERM partner must be passed in
the identification area.

id_lth

The length of the identification area must be specified in , i.e.:id_lth

for =0 you must specify =0.obj_number id_lth

for =1 you must specify in the length of the object name which is passed in the obj_number id_lth
identification area.

data_lth

Length of the message to be sent. You must pass the message in the data area. The following must apply: 1
<= <= 74.data_lth

Identification area

How you have to complete the identification area depends on the value set for .obj_number

for = 0 you must pass the null pointer in the KC_SEND_MESSAGE call.obj_number

for = 1 you must specify in the identification area the union with the name of the obj_number kc_id_area
LTERM partner (field), to which the message is to be sent.kc_name8

Data area

The message which UTM is to send is to be passed in the data area. The message must be no more than 74
characters in length.

retcode

UTM writes the return codes for the call to the field.retcode

In addition to the return codes listed in , the following codes can also occur.section "Return codes"

openUTM V7.0. Administering Applications. User Guide.

 419

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_NOT_EXISTENT

The name specified in the identification area is unknown, no LTERM partner with this name exists.

KC_SC_NOT_ALLOWED

The operation is not allowed for the LTERM partner specified in the identification area or for the client
assigned to this LTERM partner.
Possible reasons for rejection are:

there is currently no connection to the client; the LTERM partner is not active

no client is currently assigned to the LTERM partner

the specified LTERM partner is not a dialog partner, i.e. it has been configured with ='O'usage_type

the client assigned to the specified LTERM partner has been deleted from the configuration.

KC_SC_DELETED

The specified LTERM partner no longer exists, it has been deleted from the application configuration.

openUTM V7.0. Administering Applications. User Guide.

 420

11.2.13 KC_SHUTDOWN - Terminate the application run

Using KC_SHUTDOWN you can terminate the current application run.

In UTM cluster applications (Unix, Linux and Windows systems), you can specify whether the application run is to
be terminated at all nodes or only at the node at which the call is issued.

The following options are open to you:

You can terminate the application run normally. UTM terminates the application run as soon as all running dialog
steps have terminated (KC_NORMAL).

You can schedule the application to terminate after a specified period (KC_WARN).

You can terminate the application run once all the UTM-D dialogs have been terminated and all the UTM-D
connections have been disconnected and at the latest, however, after a specified period (KC_GRACEFUL).

You can abort the application run, i.e. immediately terminate (KC_KILL).

See also the openUTM manual “Using UTM Applications” for more information on terminating a UTM application
run.

Please note the following when aborting the application:

Aborting the application (KC_KILL) cannot be handled as an asynchronous service: it is only permitted as a dialog.
A call containing =KC_KILL in an asynchronous service is rejected by UTM.subopcode1

Please note the following when shutting down applications involving distributed processing:

You should preferably terminate applications with distributed processing with KC_GRACEFUL, alternatively with
KC_WARN. When doing this, you should specify a time that is greater than the maximum period that a distributed
transaction remains in the state PTC (i.e. transaction status P). This reduces the probability of distributed
transactions still being in this state at the end of the application and of the application being terminated abnormally
with ENDPET.

The following generally applies:
An application involving distributed processing is not terminated normally if, at the time of the abort operation, there
are still services with transaction status P (’preliminary end of transaction’) or if confirmations have not yet been
received for asynchronous messages to a partner server. UTM then outputs UTM message K060 stating ENDPET
as the cause of the abort. No dumps are generated.

Execution / period of validity / transaction management / cluster

The KC_SHUTDOWN call is not subject to transaction management. It cannot be rolled back by an RSET call.

Aborting an application run (KC_KILL) takes immediate effect, there is no return to the program unit.

If the application is to be terminated (KC_NORMAL, KC_WARN and KC_GRACEFUL), the call originates a job, i.e.
actions leading to shutdown are initiated.

The shutdown sequence, i.e. how and when UTM terminates the application run is determined by the value
specified for in the parameter area. The shutdown sequence is described in section .subopcode1 subopcode1

openUTM V7.0. Administering Applications. User Guide.

 421

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The effect of the call may be either global to the cluster or local to the node, i.e. the current application run may be
terminated at all nodes or only at the node at which the call was issued.

KDCSHUT ()"KDCSHUT - Terminate an application run"

Data to be supplied

Function of the call Data to be entered in the

parameter area 1 identificatio
n area

selection
area

data area

Abort application run immediately
(only as dialog)

subopcode1:
KC_KILL

—— —— ——
or

kc_shutdown_str

Terminate application run normally subopcode1:
KC_NORMAL

—— —— ——
or

kc_shutdown_str

Terminate application run normally on
expiry of a timer

openUTM on a BS2000 system outputs
a standard UTM message to all active
users)

subopcode1:
KC_WARN

—— —— kc_shutdown_str

Terminate application run on a BS2000
system normally after expiration of a
message and send a UTM message to
all active users

subopcode1:
KC_WARN,

: subopcode2
KC_USER_MSG

—— —— kc_shutdown_str

Terminate the application run normally
after all UTM-D connections have been
cleared, and at the latest after the timer
has expired.

subopcode1:
KC_GRACEFUL

—— —— kc_shutdown_str

1 The operation code KC_SHUTDOWN must always be specified in the parameter area.

openUTM V7.0. Administering Applications. User Guide.

 422

Parameter settings

Parameter area

Field name Content

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_11

opcode KC_SHUTDOWN

subopcode1 KC_GRACEFUL / KC_KILL / KC_NORMAL / KC_WARN

subopcode2 KC_USER_MSG / —

id_lth 0

select_lth 0

data_lth Length of data in data area / 0

Identification area

—

Selection area

—

Data area

Data structure kc_shutdown_str / —

KDCADMI call

KDCADMI (¶meter_area, NULL, NULL, &data_area) or
KDCADMI (¶meter_area, NULL, NULL, NULL)

Data returned by UTM

Parameter area

Field name Content

retcode Return codes

openUTM V7.0. Administering Applications. User Guide.

 423

subopcode1

Specify in how UTM is to terminate the application. You can choose from the following options:subopcode1

KC_GRACEFUL

UTM prepares for the shutdown. The application is terminated as soon as all UTM-D dialogs
have terminated and all UTM D connections have been disconnected or, at the latest, when the
specified timer has expired. You must pass the value of the timer in the data area.

The application is always terminated after the specified timer has expired. If there are no UTM-D
connections, the application is immediately terminated normally.The following applies after the
KC_GRACEFUL call has been processed:

It is only possible for users with administration authorization to sign on. Signon attempts from
other users will be rejected.

It is only possible to call transaction codes for administration programs and the UTM user
commands other than KDCOUT. No other services will be started by UTM.

All active connections to LPAP and OSI-LPAP partners are set to QUIET.

KC_KILL The application run is aborted, i.e. it is terminated immediately. Open services are no longer
terminated. A UTM dump is created for all processes stating REASON=ASIS99.

KC_NORMAL

The application run is terminated normally.
Shutdown is initiated immediately. The following applies after the KC_SHUTDOWN call:

Users/clients can no longer sign on to the application.

No further jobs are accepted from partner servers. Users/clients which are already signed on
cannot start any new services.

New dialog inputs are no longer processed. If the new dialog input is part of a multi-step
transaction, the multi-step transaction is rolled back to the last synchronization point.

All logical connections to clients, printers and partner applications are shut down.Open
services can be further processed after the next application start.

KC_WARN

UTM prepares for shutdown. The application is terminated once the specified timer has expired.
You must pass the timer value in the data area. The following applies once the
KC_SHUTDOWN call has been processed:

Only users having administration privileges can sign on. Sign-on attempts by other users are
rejected

Only administration program transaction codes and UTM user commands other than
KDCOUT can still be called. UTM will no longer start any other services.

All active connections to LPAP and OSI-LPAP partners are set to QUIET.

openUTM V7.0. Administering Applications. User Guide.

 424

subopcode2

subopcode2 is only relevant if it specifies =KC_WARN. In any other case, nothing may be subopcode1
specified in .subopcode2

Specify = KC_USER_MSG if UTM is to send a message to all currently active users in subopcode2
preparation for shutdown. You must pass the message which UTM is to send in the data area.

The message is accepted in UTM applications on Unix, Linux and Windows systems, but no warning
messages are output.

If you do not specify with KC_WARN on BS2000, all active users are informed by a standard subopcode2
UTM message of the forthcoming shutdown and the time remaining until shutdown.

data_lth

Specify in the field, the length of the data area which you are passing to UTM.data_lth

for =KC_KILL, KC_NORMAL:subopcode1

No data is passed to/from UTM in the data area (='0'), or the length of the data structure data_lth
 which you pass in the data area.kc_shutdown_str

for = KC_GRACEFUL, KC_WARN:subopcode1

Specify in the field the length of the data structure which you are passing to UTM data_lth kc_shutdown_str
in the data area.

Data area

For =KC_WARN and =KC_GRACEFUL, you must pass the data structure subopcode1 subopcode1
 to UTM in the data area. must contain the size of the timer and, if kc_shutdown_str kc_shutdown_str

= KC_USER_MSG, the message to be sent as a warning to all terminal users.subopcode2

In the case of standalone UTM applications, values only need to be entered for KC_WARN and
KC_GRACEFUL in the data area. The field in is not evaluated.scope kc_shutdown_str

The following applies in UTM cluster applications: For each : In the data structure subopcode1
, you can use the field to control whether only the local node application is to be kc_shutdown_str scope

terminated or whether you want to terminate the entire UTM cluster application, i.e. all the node applications.
If you want to initiate a global shutdown of the UTM cluster application, you must enter ='G' in the data scope
structure . If you do not specify any data structure in the cluster then a local shutdown is kc_shutdown_str
performed.

The data structure has the following structure:kc_shutdown_str

struct kc_shutdown_str

char time_min[3];

char user_message[74];

char scope;

openUTM V7.0. Administering Applications. User Guide.

 425

time_min Specify in the time in minutes after which UTM is to terminate the application run normally.time_min

You should specify a time that is greater than the maximum period that a distributed transaction
remains in the state PTC (i.e. transaction status P).
In job receiver services, this is the time generated with MAX PTCTIME and in LU6.1 job submitter
services, it is the generated time of the WAITTIME operand in the employed LTAC.time2

Minimum value: '1'
Maximum value: '255'

The entry ='0' is rejected by UTM. If the application is to be terminated normally without any time_min
delay, you must specify =KC_NORMAL.subopcode1

Features specific to UTM applications on BS2000 systems

time_min is always output to active terminals together with the shutdown warning.

In large UTM applications on BS2000 systems (configurations with many clients), UTM requires a
certain amount of time to output the shutdown notice. The selected value of should thus time_min
not be too small.

In addition, you should define a sufficiently large value for (see in cpu_time_msec kc_tac_str
chapter) for the transaction code by means of "kc_tac_str - Transaction codes of local services"
which the program unit is started with this KC_SHUTDOWN call.

specifies the maximum CPU time which the program unit run may take up. If the cpu_time_msec
time selected is too short, the shutdown may be aborted.

user_message

Only relevant for =KC_USER_MESSAGE. If no was specified, this area is subopcode2 subopcode2
ignored.

Using you can pass your own message which UTM is to send to all terminal users as user_message
a warning before shutdown. Maximum message length is 74 characters.

openUTM on BS2000 systems

If you do not pass your own warning message in , UTM outputs UTM message user_message
K023 with the following inserts to all terminal users currently connected to the application:

'hour':'minutes':'seconds'

APPLICATION 'name' WILL BE TERMINATED IN 'minutes' MINUTES

openUTM on Unix, Linux and Windows systems

No warning messages are output on Unix, Linux and Windows systems.

scope Determines whether the local node application is terminated or the entire UTM cluster application, i.e.
all the node applications. is only evaluated for UTM cluster applications.scope

'L'

'G'

Only the local node application is terminated.

All the node applications in the cluster and thereforealso the entire UTM cluster application are
terminated.

openUTM V7.0. Administering Applications. User Guide.

 426

openUTM V7.0. Administering Applications. User Guide.

 427

retcode

UTM writes the return codes for the call to the field. In addition to the return codes listed in retcode section
, the following codes may also occur:"Return codes"

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcode:

KC_SC_NOT_ALLOWED

subopcode1 = KC_KILL has been used in an asynchronous service.

KC_SC_NO_GLOB_CHANG_POSSIBLE

The generation of the node applications is not currently consistent. You should first shut down the node
applications with an old generation..

Main code = KC_MC_DATA_INVALID

A field in the data structure in the data area contains an invalid value.

Subcode:

KC_SC_INVALID_MOD

Only for =KC_GRACEFUL and =KC_WARN: subopcode1 subopcode1
The application run was not terminated because the time specified in is invalid.time_min

Maincode = KC_MC_REJECTED_CURR

The call cannot be processed at present.

Subcode:

KC_SC_INVDEF_RUNNING

Only in UTM cluster applications:
An inverse KDCDEF is currently running, i.e. the job cannot be processed at present.

Maincode = KC_MC_RECBUF_FULL

Only in UTM cluster applications:

Subcode:

KC_SC_NO_INFO

The buffer containing the restart information is full (see openUTM manual “Generating Applications”,
KDCDEF control statement MAX, parameter RECBUF).

openUTM V7.0. Administering Applications. User Guide.

 428

11.2.14 KC_SPOOLOUT - Establish connections to printers

Using KC_SPOOLOUT you can establish connections to printers. You can:

establish connections to all printers for which there are print jobs in the associated message queue and to which
no connection yet exists.

establish a connection to the printers which are assigned to a certain LTERM partner. The name of the LTERM
partner must be passed in the identification area.

Execution / transaction management / cluster

The KC_SPOOLOUT call is not subject to transaction management. It cannot be rolled back by an RSET call.

Connection setup is triggered by the call, i.e. a job is merely initiated; this fact, however, gives no information as to
whether and when a connection will actually be established. You can subsequently ascertain the existence of the
connection with an information query (e.g. KC_GET_OBJECT with =KC_LTERM).obj_type

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The call applies locally to the node, i.e. the connections to the printers are only established in the node application
at which the call is issued.

Duration of a connection

Connections to printers for which no print level (PLEV) has been defined remain in existence until they are shut
down explicitly (see KC_MODIFY_OBJECT) or the application run is terminated. Connections to printers for which a
print level has been defined
(PLEV > 0) are shut down after printing.

Using KDCAPPL SPOOLOUT=ON () you "KDCAPPL - Change properties and limit values for an operation"
can establish connections to all printers for which print jobs exist.

Data to be supplied

Function of the call Data to be entered in the

parameter area 1 identification area selection
area

data
area

Establish a connection to a printer or to
the printers of a printer pool

obj_number: 1 Name of the LTERM
partner assigned to the
printer or printer pool

—— ——

Establish connections to all currently
unconnected printers for which there are
print jobs

obj_number: 0

—— —— ——

1 The operation code KC_SPOOLOUT must always be stated in the parameter area.

openUTM V7.0. Administering Applications. User Guide.

 429

Parameter settings

Parameter area

Field name Content

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_11

opcode KC_SPOOLOUT

obj_number 1 / 0

id_lth Length of object name in identification area / 0

select_lth 0

data_lth 0

Identification area

Object name / —

Selection area

—

Data area

—

KDCADMI call

KDCADMI (¶meter_area, &identification_area, NULL, NULL) or
KDCADMI (¶meter_area, NULL, NULL, NULL)

Data returned by UTM

Parameter area

Field name Content

retcode Return codes

openUTM V7.0. Administering Applications. User Guide.

 430

obj_number

The values specified in have the following meanings:obj_number

obj_number = 0:
UTM is to establish a connection to all printers to which connection currently exists and for which there are
print jobs.

obj_number = 1:
UTM is to establish a connection to the printer or printer pool assigned to a certain LTERM partner. You
must pass the name of the LTERM partner in the identification area.

id_lth

You must specify in the length of the object name which you are passing to UTM in the identification id_lth
area.

for = 0 you should specify = 0.obj_number id_lth

for = 1 you should specify in the length of the name which is passed in the identification obj_number id_lth
area.

Identification area

The information you must specify in the identification area is determined by :obj_number

obj_number = 0:
You may not specify any object name in the identification area. In the KDCADMI call you must pass the null
pointer.

obj_number = 1:
In the identification area, pass the name of the LTERM partner assigned to the printer or printer pool. To do
this, assign the union through the identification area and pass the name of the LTERM partner kc_id_area
in the field.kc_name8

openUTM V7.0. Administering Applications. User Guide.

 431

retcode

UTM writes the return codes for the call to the field. In addition to the return codes listed in retcode section
, the following codes may also occur:"Return codes"

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_NOT_EXISTENT

The LTERM partner specified in the identification area does not exist.

KC_SC_NOT_ALLOWED

The operation is not allowed for the stated LTERM partner.
Possible reasons are:

the LTERM partner is a dialog partner, i.e. it is not defined for printers ('O')usage_type !=

no printer/printer pool is currently assigned to the LTERM partner

the LTERM partner or the associated printer is currently disabled

the printer belonging to the LTERM partner has been deleted from the configuration

there are no messages for the specified printer, i.e. the LTERM partner’s message queue is empty.

KC_SC_DELETED

The specified LTERM partner has been deleted from the configuration.

openUTM V7.0. Administering Applications. User Guide.

 432

11.2.15 KC_SYSLOG - Administer the system log file

Using KC_SYSLOG you can administer the system log file SYSLOG during operation. The extent of the functions
available to you to administer SYSLOG is determined by whether SYSLOG was created as a simple file or as a file
generation group (BS2000 systems) or file generation directory (Unix, Linux and Windows systems). The
abbreviation FGG (ile eneration roup) is used hereafter to refer to both file generation directories and file F G G
generation groups.

See also the openUTM manual “Generating Applications” and the relevant openUTM manual “Using UTM
Applications” in relation to SYSLOG.

The following functions are available to you, irrespective of whether SYSLOG is maintained as a simple file or as an
FGG:

Write the content of the UTM-internal message buffer to SYSLOG.

This function is useful if the SYSLOG file, which was created as a simple file, is to be evaluated during operation.
All UTM messages with the destination SYSLOG that have been generated by UTM up to this time are then
taken into account in the evaluation.

If SYSLOG was created as an FGG, the following applies:
When SYSLOG switches over to the next file generation, UTM automatically writes the UTM message buffer to
the “old” SYSLOG file generation before switching.

Have information about the SYSLOG file displayed.

You can also use the following functions if SYSLOG was created as an FGG:

Activate and deactivate automatic SYSLOG size control.

Automatic size control means that UTM automatically switches SYSLOG over to the next file generation of the
SYSLOG FGG as soon as the size of the current SYSLOG file generation exceeds a certain control value.

Modify the control value for size monitoring.

Switch SYSLOG over to the next file generation of the SYSLOG FGG.

SYSLOG size control can even be activated if SYSLOG was not generated with KDCDEF.

Procedure when switching SYSLOG to another file generation

Before switching over to a new file generation, UTM writes the UTM messages still stored in the internal UTM
message buffer to the old file generation. All UTM messages generated before switching over are thus written to the
“old” SYSLOG. UTM ensures that UTM messages generated after the switch-over time (successful execution of the
KC_SYSLOG call) are no longer written to the “old” SYSLOG file generation.

The following should be noted in UTM applications on BS2000 systems:

It is possible that the old file generation may not be available immediately after switchover (i.e. successful
processing of the KC_SYSLOG call). The old file generation may still be kept open for a relatively long period by
UTM processes, e.g. because the processing of a program unit which was started before the switchover has not
yet been concluded and no UTM message with the UTM message destination SYSLOG has yet been written
from the associated process.

Using subopcode1=KC_INFO, you can enquire which SYSLOG file generations have already been closed by all
UTM processes. These are all file generations that have a generation number of less than lowest_open_gen
(see on).kc_syslog_str "KC_SYSLOG - Administer the system log file"

openUTM V7.0. Administering Applications. User Guide.

 433

Period of validity / transaction management / cluster

The call is not subject to transaction management. It takes immediate effect, and the operations initiated by the call
will already have been performed when control is returned to the program unit. The call cannot be rolled back.

Modifications to the SYSLOG file size threshold remain in effect until the end of the application run.

If the base of the SYSLOG FGG is within the valid range for the SYSLOG FGG (between the first and last file
generation), UTM initially logs in the base file generation in the next application run. If the base is outside the valid
range, UTM creates a new file generation for logging as of the next start. The base is specified in the data structure

 in the field.kc_syslog_str base_gen

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The call applies globally to the cluster, i.e. the system log file SYSLOG is administered for each node application.
The size monitoring persists beyond the current UTM cluster application run. Switching or writing of the buffer apply
only to the current UTM cluster application run, i.e. to all the node applications that are currently running.

KDCSLOG ()"KDCSLOG - Administer the SYSLOG file"

openUTM V7.0. Administering Applications. User Guide.

 434

Data to be supplied

Function of the call Data to be entered in the

parameter area 1 identification
area

selection
area

data area

Provide information about SYSLOG subopcode1:
KC_INFO

:data_lth
Length of the data
area for the return
from UTM

—— —— ——

(when the call
is made you
must pass the
pointer to a
data area for
the returns from
UTM (

.)kc_syslog_str)

Set or modify the control value for
automatic size control

subopcode1:
KC_CHANGE_SIZE

:data_lth
length of the data in
the data area

—— —— Data structure
 kc_syslog_str

with the new
control value

Switch SYSLOG over to the next file
generation of the FGG

subopcode1:
KC_SWITCH

: 0data_lth

—— —— ——

Modify the control value for automatic
size control and switch SYSLOG over to
the next file generation of the FGG

subopcode1:
KC_SWITCH_AND_
CHANGE

data_lth:
Length of the data in
the data area

—— —— Data structure
 kc_syslog_str

with the new
control value

Write UTM message buffer to SYSLOG subopcode1:
KC_WRITE_BUFFER

: 0data_lth

—— —— ——

1 The operation code KC_SYSLOG must always be specified in the parameter area.

openUTM V7.0. Administering Applications. User Guide.

 435

Parameter
settings

Parameter area

Field name Content

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_11

opcode KC_SYSLOG

subopcode1 KC_INFO / KC_CHANGE_SIZE / KC_SWITCH / KC_SWITCH_AND_CHANGE /
KC_WRITE_BUFFER

id_lth 0

select_lth 0

data_lth Length of the data structure / length of the data area / 0

Identification area

—

Selection area

—

Data area

Data structure kc_syslog_str / —

KDCADMI call

KDCADMI (¶meter_area, NULL, NULL, &data_area)
KDCADMI (¶meter_area, NULL, NULL, NULL)

openUTM V7.0. Administering Applications. User Guide.

 436

Data returned by UTM

Parameter area

Field name Content

retcode Return codes

data_lth_ret Length of the data supplied in the data area

Data area

Data structure kc_syslog_str

openUTM V7.0. Administering Applications. User Guide.

 437

subopcode1

You must specify the operation UTM is to perform in the field. You can specify the following subopcode1
subopcodes:

KC_WRITE_BUFFER

All UTM messages output with a SYSLOG message destination and which are still stored in the
UTM-internal message buffer are immediately written to the current SYSLOG file. If the buffer is
empty, the call has no effect.

KC_INFO Specify if UTM is to return information about the SYSLOG file or SYSLOG FGG. In this case, you
must specify in the field the length of the data area which you are making available to data_lth
UTM to pass the information. For the KDCADMI call you must pass the pointer to this data area.

You may specify the following values for only if SYSLOG was created as an FGG.subopcode1

KC_CHANGE_SIZE

Specify whether you want:

to modify the control value for automatic size control. You must pass the threshold in the data
area.

to activate automatic size control. To do this, pass a control value of > ‘0' in the data area.

to deactivate automatic size control. To do this, pass the control value ‘0' in the data area.

KC_SWITCH

Specify whether UTM is to switch the SYSLOG file over to the next file generation. If this file
generation does not yet exist, UTM creates it.

KC_SWITCH_AND_CHANGE

Corresponds to a combination of the functions of KC_CHANGE_SIZE and KC_SWITCH. Using
KC_SWITCH_AND_CHANGE you can switch

SYSLOG over to the next file generation and simultaneously modify the control value for
automatic size control. UTM ensures in this case that either both operations are performed
successfully or neither is performed; i.e. only if SYSLOG switching was successful does UTM set
the new control value.

If UTM cannot switch over to the following file generation, the control value is not modified. Size
control is suspended and UTM ignores the new control value. Size control can be reactivated only
by a subsequent successful switch-over attempt (repeated KC_SYSLOG call). If a new control
value was not specified, UTM carries over the “old” control value.

data_lth

Specify the following in the field.data_lth

openUTM V7.0. Administering Applications. User Guide.

 438

for =KC_INFO:subopcode1
the length of the data area to which UTM is to return the information. When calling KDCADMI, you must
pass the pointer to the data area to UTM.

for = KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE:subopcode1
the length of the data in the data area which you are passing to UTM. Pass the data structure kc_syslog_str
 with the new size control value in the data area.

for = KC_SWITCH or KC_WRITE_BUFFER:subopcode1
 =0.data_lth

When calling KDCADMI you must specify the null pointer for .&data_area

Data area

The information which you must specify in the data area is determined by subopcode1:

subopcode1=KC_WRITE_BUFFER or KC_SWITCH:
You must not pass any data to UTM in the data area.

subopcode1=KC_INFO:
You may not pass any data to UTM in the data area. You must, however, make a data area available to
UTM to which it can return the requested information.

subopcode1=KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE:
You must pass the data structure with the new control value to UTM in the data area.kc_syslog_str
Specify the control value in the field. The value is specified as the number of UTM size_control_utmpages

pages. Permitted values are between 0 and 2 -1 (specified as char). However, UTM automatically 31

replaces values of between ‘1' and ‘99' with ‘100'.
By using = '0' you deactivate automatic size control. You must complete the size_control_utmpages
remaining fields of with binary zeroes. is described in chapter kc_syslog_str kc_syslog_str "KC_SYSLOG -

. Administer the system log file"

retcode

UTM writes the return code for the call to the field. In addition to the return codes listed in retcode section
, the following codes may also occur: "Return codes"

openUTM V7.0. Administering Applications. User Guide.

 439

Main code = KC_MC_OK

The call was processed without errors.

Subcodes:

KC_SC_MIN_SIZE

For = KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE:subopcode1
While the size control value was indeed modified, the value specified in was too low size_control_utmpages
(< 100). The minimum control value of 100 UTM pages was thus set.

KC_SC_BUFFER_EMPTY

For = KC_WRITE_BUFFER:subopcode1
The UTM message buffer is empty and is thus not written to SYSLOG.

KC_SC_SWITCHED

The UTM message buffer could not be written to SYSLOG until SYSLOG had been switched to a new file
generation.

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_NO_FGG

The requested operation cannot be performed as SYSLOG was not created as an FGG.

KC_SC_NO_INFO

The operation cannot be performed.

KC_SC_NO_GLOB_CHANG_POSSIBLE

Only in UTM cluster applications:
No global administration changes are possible since the generation of the node applications is not
consistent at present.

openUTM V7.0. Administering Applications. User Guide.

 440

Main code = KC_MC_DATA_INVALID

A field in the data structure in the data area contains an invalid value.

Subcodes:

KC_SC_INVALID_MOD

For = KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE:subopcode1
The size control value specified in is invalid (number too high or no number or not size_control_utmpages
printable). The control value has thus not been modified.

KC_SC_DATA_MISSING

For = KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE: subopcode1
No size control value was specified in The control value has thus not been modified size_control_utmpages.
and (for KC_SWITCH_AND_CHANGE) SYSLOG has not been switched.

KC_SC_DATA_NOT_NULL

For = KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE:subopcode1
A field that cannot be set in the data structure , was not supplied with binary zeros.kc_syslog_str

Maincode = KC_MC_RECBUF_FULL

Subcode:

KC_SC_NO_INFO

The buffer containing the restart information is full (see openUTM manual “Generating Applications”,
KDCDEF control statement MAX, parameter RECBUF).

Maincode = KC_MC_REJECTED_CURR

The call cannot be processed at present.

Subcode:

KC_SC_INVDEF_RUNNING

Only in UTM cluster applications:
An inverse KDCDEF is currently running, i.e. the job cannot be processed at present.

data_lth_ret

data_lth_ret contains the lengths of the data which UTM returns to the data area.

for =KC_INFO returns the information about SYSLOG in the data area (). subopcode1 kc_syslog_str
 0 applies.data_lth_ret !=

If the length in is less than the data area provided (), the content of the data area is data_lth_ret data_lth
only defined in the length .data_lth_ret

for KC_INFO = 0 applies subopcode1 != data_lth_ret

openUTM V7.0. Administering Applications. User Guide.

 441

Data area

Where =KC_INFO, UTM returns the data structure with information about SYSLOG subopcode1 kc_syslog_str
to the application in the data area. The data structure has the following fields:

struct kc_syslog_str

char file_name[54];

char curr_size_utmpages[10];

char curr_size_kbyte[10];

char curr_size_percent[3];

char fgg;

char last_switch_ok;

char size_control_engaged;

char size_control_suspended;

char size_control_utmpages[10];

char size_control_kbyte[10];

char start_gen[4];

char curr_gen[4];

char lowest_open_gen[4];

char base_gen[4];

char first_valid_gen[4];

char last_valid_gen[4];

The data structure fields have the following meanings:

file_name

 Name of the current SYSLOG file or file generation in which logging is currently being
performed.

curr_size_utmpages

Contains the current size of the SYSLOG file or file generation in which logging is currently being
performed. The size is specified as the number of UTM pages occupied by the file or file
generation.

curr_size_kbyte

openUTM V7.0. Administering Applications. User Guide.

 442

Contains the current size of the SYSLOG file or file generation in which logging is currently being
performed. The size is specified in kbytes.

curr_size_percent

If automatic size control is activated, contains the percentage utilization of the curr_size_percent
SYSLOG file relative to the specified size control value. If size control has been suspended by
UTM or deactivated by means of administration functions, utilization of the SYSLOG file can
exceed 100%. In this case, UTM returns blanks in .curr_size_percent

If size control has not been defined (either by generation or by means of administration
functions), UTM fills with blanks.curr_size_percent

fgg Indicates whether SYSLOG was created as an FGG or as a simple file.

'Y' SYSLOG was created as an FGG.

'N' SYSLOG was created as a simple file

All the following items of information are only relevant if SYSLOG was created as an FGG. If SYSLOG was
created as a simple file, the following fields will not contain any relevant information.

last_switch_ok

States whether UTM’s last attempt to switch over to the next file generation executed without
errors. This relates only to switching attempts within the current application run. The following
values are possible:

'Y' The last switch attempt executed without errors.

'N' An error occurred during UTM’s last switch attempt.

UTM could not switch to the next file generation.

' ' (Blank) No switch attempt has yet been made in the current application run or SYSLOG was not
created as an FGG.

size_control_engaged

States whether automatic size control is activated. The following values are possible:

'Y' Size control is activated

'N' Size control is deactivated

size_control_suspended

States whether automatic size control has been suspended by UTM.

'Y' The last attempt to switch over to another file generation failed. Size control has, accordingly,
been suspended. UTM no longer attempts to switch over to the next file generation even if the
defined size control value is exceeded.

Remedy:
You can explicitly attempt to switch the SYSLOG. If switching proceeds without error, size
control is reactivated by UTM.

openUTM V7.0. Administering Applications. User Guide.

 443

'N' Size control is not suspended.

size_control_utmpages

Contains the control value set for automatic size control. The control value is output as the
number of UTM pages.

size_control_utmpages = '0' means that size control is deactivated.

For = KC_CHANGE_SIZE and KC_SWITCH_AND_CHANGE, pass the new size subopcode1
control value in .size_control_utmpages

Minimum value: '0'

Maximum value: 2 -1 (specified as char)31

If you specify = '0', automatic size control is deactivated. UTM size_control_utmpages
automatically replaces values between ‘1' and ‘99' with ‘100'.

size_control_kbyte

Contains the control value set for automatic size control. The control value is output in kilobytes.

For very large thresholds, the kilobyte value is not displayed (e.g. for 2 kb).31

size_control_kbyte = 0 means that the kilobyte value cannot be displayed because it is too high
or that high size control is deactivated.

start_gen Contains the number of the first SYSLOG file generation written by UTM in the current
application run.

curr_gen Number of the file generation in which UTM is currently logging data.

lowest_open_gen

Contains the number of the oldest SYSLOG file generation which is still kept open by an
application process.

base_gen Generation number of the defined base for the SYSLOG FGG.

first_valid_gen

Number of the first valid file generation of the SYSLOG FGG.

On BS2000 systems, this corresponds to the specification FIRST-GEN from the SHOW-FILE-
ATTRIBUTES command.

last_valid_gen

Generation number of the last valid file generation of the SYSLOG FGG.

On BS2000 systems, this corresponds to the specification LAST-GEN from the SHOW-FILE-
ATTRIBUTES command.

openUTM V7.0. Administering Applications. User Guide.

 444

11.2.16 KC_UPDATE_IPADDR - Update IP addresses

With KC_UPDATE_IPADDR, while the UTM application is running, you can update the IP addresses stored in the
application’s object tables using the IP addresses in the hostname database. The host name database that applies
to your system can be the hosts file (on Unix, Linux and Windows systems), the DNS (domain name service) or on
BS2000 systems the processor table and the socket host table.

The prerequisite for a comparison on BS2000 systems is that the SOCKET protocol type is generated for the
partner or partners.

UTM stores the IP addresses of the following communication partners in the UTM application:

Communication partners that use the socket interface (transport protocol SOCKET) to communicate with the
UTM application. These communication partners are generated as clients of the type SOCKET (partner type
KC_PTERM).

Only on Unix, Linux and Windows systems: Communication partners that use the transport protocol RFC1006 to
communicate with the application. These can be clients with type='APPLI' or 'UPIC-R' (KC_PTERM), LU6.1
partner applications (KC_CON) or OSI TP partner applications (KC_OSI_CON).

For further information on communication using the socket interface and the communication via RFC1006, see the
openUTM manual “Generating Applications”.

Each time the application is started, UTM reads the IP addresses of the communication partners from the name
service and stores them in the object tables.

If the IP addresses of the relevant communication partners change while the application is running, you can request
a dynamic update with KC_UPDATE_IPADDR.

With KC_UPDATE_IPADDR you can carry out the following operations:

update the IP address of a specific communication partner using the name service.

update the IP address of all communication partners using the name service.

In order to check, you can query the IP addresses stored for the communication partners in the UTM application
using KC_GET_OBJECT. UTM returns the IP address in the field of the data structure of the object type (ip_addr

, or).kc_con_str kc_osi_con_str kc_pterm_str

Execution / period of validity / transaction management / cluster

The job is not subject to transaction management. It takes immediate effect and the IP addresses will already be
updated on return to the program unit. The job cannot be undone.

The IP addresses updated with KC_UPDATE_IPADDR remain stored in the UTM application until the application is
terminated or until KC_UPDATE_IPADDR is next applied within the current application run.

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The call applies globally to the cluster, i.e. the IP address update is performed at all currently running node
applications.

openUTM V7.0. Administering Applications. User Guide.

 445

Data to be supplied

Function of the call Data to be entered in the

parameter

 area 1
identification
area

selection
area

data area

Update IP addresses of a
communication partner

subopcode1:
KC_PARTNER

: obj_type
partner types

: 1obj_number

Union kc_id_area
with the name or
triad of names of
the partner

—— Pointer to the data area
in which UTM returns
the data structure of the
object type with the new
IP address.

Update the IP addresses of all
communication partners concerned
with the database for the host
names

subopcode1:
KC_ALL

: obj_type
KC_NO_TYPE

: 0obj_number

—— —— ——

1 In all cases the operation code KC_UPDATE_IPADDR must be supplied in the parameter area.

Parameter settings

Parameter area

Field name Content

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_11

opcode KC_UPDATE_IPADDR

subopcode1 KC_PARTNER / KC_ALL

obj_type KC_CON / KC_OSI_CON / KC_PTERM / KC_NO_TYPE

obj_number 1 / 0

id_lth Length of the partner name / 0

select_lth 0

data_lth Length of the data area / 0

Identification area

Partner name / —

Selection area

openUTM V7.0. Administering Applications. User Guide.

 446

—

Data area

Data structure of the object type / —

KDCADMI call

KDCADMI (¶meter_area, &identification_area, NULL, &data_area)
or

KDCADMI (¶meter_area, NULL, NULL, NULL)

Data returned by UTM

Parameter area

Field name Content

retcode Return code

data_lth_ret Length of the date returned in the data area / 0

Data area

Data structure of the object type/ —

subopcode1

In the field you must specify:subopcode1

KC_PARTNER

if UTM is to update the IP address of a specific communication partner.
Pass the name of the partner in the identification area.

KC_ALL

if UTM is to update the IP addresses of all communication partners that communicate with the UTM application
using the appropriate protocol with the data in the host name database.
The appropriate protocol types are:

SOCKET

RFC1006 (Unix, Linux and Windows systems)

obj_type

In the field you must specify the object type of the communication partner.obj_type

With =KC_ALL you must specify =KC_NO_TYPE.subopcode1 obj_type

With =KC_PARTNER you can make any of the following entries:subopcode1

KC_PTERM

for partner applications configured as clients of the following type

openUTM V7.0. Administering Applications. User Guide.

 447

SOCKET (BS2000 systems)

APPLI, UPIC-R or SOCKET (Unix, Linux and Windows systems)

KC_CON

(Unix, Linux and Windows systems)
 for an LU6.1 partner application

KC_OSI_CON

(Unix, Linux and Windows systems)
 for an OSI TP partner application

obj_number

In you must specify the number of objects for which the IP address is to be updated.obj_number

for =KC_PARTNER you must enter =1subopcode1 obj_number

for =KC_ALLyou must enter =0. UTM will then update the IP address of all subopcode1 obj_number
communication partners with the relevant configuration.

id_lth

Which entries you must make in the field depends on the entry in the field :id_lth subopcode1

for =KC_PARTNER: subopcode1
you must enter the length of the data structure in which you pass to UTM in the identification area. id_lth

for =KC_ALL:subopcode1
you must set =0.id_lth

data_lth

In the field you enter the length of the data area. You must make the following entries:data_lth

for =KC_PARTNER:subopcode1
length of the data structure of the object type in .obj_type

for =KC_ALL:subopcode1
=0.data_lth

Identification area

Which data you must supply to the identification area depends on .subopcode1

for =KC_PARTNER: subopcode1
In the identification area, you must supply the union and the name of the communication kc_id_area
partner. The entry must identify the partner unambiguously.

for =KC_PTERM you must supply the name triad comprising client name (PTERM), the processor obj_type
name and the BCAMAPPL name in the structure of the union.kc_long_triple_str

for =KC_CON on Unix, Linux and Windows systems you must supply the name triad comprising obj_type
the application name, the processor name and the BCAMAPPL name in the structure of kc_long_triple_str
the union.

for =KC_OSI_CON on Unix, Linux and Windows systems you must enter the name of the obj_type
connection to the OSI TP partner application in the field of the union.kc_name8

openUTM V7.0. Administering Applications. User Guide.

 448

for =KC_ALL you must pass the null pointer. subopcode1

openUTM V7.0. Administering Applications. User Guide.

 449

Data area

What values you enter in the data area depends on :subopcode1

for =KC_PARTNER specify the data structure of the object type (, or subopcode1 kc_con_str kc_osi_con_str
).kc_pterm_str

for =KC_ALL you must pass the null pointer.subopcode1

retcode

In the field UTM supplies the return code of the call. Beside the return codes listed in retcode section "Return
, the follow return codes can also occur:codes"

Maincode = KC_MC_REJECTED

UTM rejected the call.

Subcodes:

KC_SC_TPROT_NOT_ALLOWED (only on Unix, Linux and Windows systems)

This transport protocol is not supported, i.e. no communication partners for communication via
SOCKET are generated in the application.
This return code can also occur when, although a communication partner is generated in the
application for communication via SOCKET (e.g. BCAMAPPL), KC_PARTNER is specified with the
object type KC_CON or KC_OSI_CON. On BS2000 systems it is only possible to specify the object
type KC_PTERM for KC_PARTNER.
This code is also returned if at least one communication partner and the associated BCAMAPPL with T-
PROT=SOCKET has not been generated in the application.

KC_SC_SOCKET_ERROR

It was not possible to update the IP address(es) due to an error in the communication interface (socket
call).

KC_SC_INVALID_NAME

The communication partner specified in the identification area does not exist or it does not use the
required transport protocol for communication with UTM.

KC_SC_NO_IPADDR_FOUND

subopcode1=KC_PARTNER:
No IP address was found for the specified communication partner in the name service.subopcode1
=KC_ALL:
UTM did not find an IP address for any of the communication partners of the specified object type in
the name service

KC_SC_AT_LEAST_ONE_OBJ_FAILED

The IP addresses have been compared using =KC_ALL. However, an error occurred with subopcode1
at least one object.

openUTM V7.0. Administering Applications. User Guide.

 450

This may possibly be caused by errors described in the previous return codes.
You will find information on the partner(s) on which an error occurred in message K154, which is by
default output to SYSLOG and SYSOUT.

KC_SC_NO_GLOB_CHANG_POSSIBLE

Only in UTM cluster applications:
No global administration is possible since the generation of the node applications is not consistent at
present.

Maincode = KC_MC_RECBUF_FULL

Subcode:

KC_SC_NO_INFO

The buffer containing the restart information is full (see openUTM manual “Generating Applications”,
KDCDEF control statement MAX, parameter RECBUF).

Maincode = KC_MC_REJECTED_CURR

The call cannot be processed at present.

Subcode:

KC_SC_INVDEF_RUNNING

Only in UTM cluster applications:
An inverse KDCDEF is currently running, i.e. the job cannot be processed at present.

data_lth_ret

data_lth_ret contains the length of the data returned by UTM in the data area.

for =KC_PARTNER: length of the data returned by UTM in the data areasubopcode1

for =KC_ALL: =0subopcode1 data_lth_ret

Data area

For =KC_PARTNER UTM returns the data structure of the object type (subopcode1 kc_con_str, kc_osi_con_str
or) in the data area with the following information:kc_pterm_str

If the new IP address of the communication partner is an IPv4 address, it is located in the field of ip_addr
the data structure and has a length of 15. The field contains V4.ip_v

If the new IP address of the communication partner is an IPv6 address, it is located in the field ip_addr_v6
of the data structure and has a length of 39. The field contains V6.ip_v

The other fields of the data structure do not contain any information.

openUTM V7.0. Administering Applications. User Guide.

 451

11.2.17 KC_USLOG - Administer the user log file

The user log file is managed as the file generation directory USLOG. Using KC_USLOG, you can close the current
user log file (file generation of USLOG) and simultaneously open a new user log file, which is the file generation
with the next generation number. The closed log file may then be put to any use you require.

Switching with dual USLOG

If the user log file of your application is operated with dual files (see the openUTM manual “Generating
Applications”), the KC_USLOG call acts on both files.

Period of validity of the change / cluster

Successful processing of the call means that UTM has successfully switched to the next file generation. UTM writes
all LPUT messages generated after the switch to the new log file. After switching, UTM also writes the LPUT
messages to the new USLOG file generation(s) until you again switch to the following file generation.

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The call applies globally to the cluster, i.e. the current user log file is closed and a new user log file is opened at all
currently running node applications.

 KDCLOG ()"KDCLOG - Change the user log file"

Data to be supplied

Function of the call Data to be entered in the

parameter

area 1
identification
area

selection
area

data
area

Switch the user log file over to the next file generation
of the FGG

subopcode1:
KC_SWITCH

: 0data_lth

—— —— ——

1 The operation code KC_USLOG must be specified in the parameter area.

openUTM V7.0. Administering Applications. User Guide.

 452

Parameter settings

Parameter area

Field name Content

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA_11

opcode KC_USLOG

subopcode1 KC_SWITCH

id_lth 0

select_lth 0

data_lth 0

Identification area

—

Selection area

—

Data area

—

KDCADMI call

KDCADMI (¶meter_area, NULL, NULL, NULL)

Data returned by UTM

Parameter area

Field name Content

retcode Return codes

retcode

UTM writes the return codes for the call to the field. In addition to the return codes listed in retcode section
, the following codes may also occur:"Return codes"

openUTM V7.0. Administering Applications. User Guide.

 453

Main code = KC_MC_REJECTED_CURR

The call cannot be processed at the present time.

Subcode:

KC_SC_LWRT_IN_PROGRESS

USLOG cannot be switched to the next file generation at the present time as UTM is currently writing
data to the USLOG.

KC_SC_INVDEF_RUNNING

Only in UTM cluster applications:
An inverse KDCDEF is currently running, i.e. the job cannot be processed at present.

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcode:

KC_SC_FILE_ERROR

It is not possible to switch USLOG to the next file generation due to a DMS error.

KC_SC_NO_GLOB_CHANG_POSSIBLE

Only in UTM cluster applications:
No global administration is possible since the generation of the node applications is not consistent at
present.

Maincode = KC_MC_RECBUF_FULL

Subcode:

KC_SC_NO_INFO

The buffer containing the restart information is full (see openUTM manual “Generating Applications”,
KDCDEF control statement MAX, parameter RECBUF).

openUTM V7.0. Administering Applications. User Guide.

 454

11.3 Data structures used to pass information

The data structures that you must place in the data area when calling KC_GET_OBJECT, KC_MODIFY_OBJECT
or KC_CREATE_OBJECT are described in this section.

For KC_GET_OBJECT UTM returns the object properties, application parameters and statistical data queried in
the format of these data structures. The data structures are defined in the header file.kcadminc.h

The data are passed to UTM in this format when changing object properties and application parameters
(KC_MODIFY_OBJECT) and when dynamically adding new objects to the configuration
(KC_CREATE_OBJECT).

The following two sections describe the data structures and the meanings of their constituent elements.
The section describes the structures used to pass information "Data structures for describing object properties"
about objects of the application.
The section describes the structures used to pass "Data structures used to describe the application parameters"
application parameters.

There are other data structures that do not belong to any object or parameter type in addition to those described in
these sections. You will need these for certain calls to pass data to UTM. These data structures are covered in the
descriptions of the corresponding operation codes.

Their names are created as follows: .operationscode_str

The following data structures belong to this group:

You need when passing data for a program exchange with kc_change_application_str
KC_CHANGE_APPLICATION ()."KC_CHANGE_APPLICATION- Exchange application program"

You need to pass data to UTM when requesting an inverse KDCDEF run with kc_create_statements_str
KC_CREATE_STATEMENTS ("KC_CREATE_STATEMENTS - Create KDCDEF control statements (inverse

).KDCDEF)"

You need or to read the public key of an RSA key pair with kc_encrypt_advanced_str kc_encrypt_str
KC_ENCRYPT ()."KC_ENCRYPT - Create, delete, read RSA key pairs"

You need to pass data to UTM when requesting a shutdown with KC_SHUTDOWN (kc_shutdown_str
)."KC_SHUTDOWN - Terminate the application run"

You need when administering the SYSLOG file with KC_SYSLOG (kc_syslog_str "KC_SYSLOG - Administer the
).system log file"

You need to import application data online with KC_ONLINE_IMPORT.kc_online_import_str

You need to release locks in UTM cluster applications using KC_LOCK_MGMT.kc_lock_mgmt_str

General information on the structure of the data structures

The fields in the data structures are not all of the data type "char”. The square brackets following the name of the
field contain the length of the field. If there are no square brackets, then the field is 1 byte long.

The following points must be observed when exchanging data between UTM and an administration program unit:

Names and keywords are left-justified and are padded to the right with blanks. The data passed to UTM must be
in uppercase letters, except for object names.

Example
The () field is 8 bytes long. =APPLI is stored as follows: 'APPLI ' (= blank).ptype kc_pterm_str ptype bbb b

openUTM V7.0. Administering Applications. User Guide.

 455

1.

2.

3.

Numeric data is stored right-justified by UTM and is returned with leading blanks. When data is passed from an
administration program to UTM, left- and right-justified data is accepted. Right-justified data is accepted with
leading blanks or zeros. Left-justified data can also be terminated by the null byte (\0) or padded with blanks.

Example
The () field is 10 bytes long. =155 is stored by UTM as follows: 'conn_users kc_max_par_str conn_users bbbbbbb
155' (= blank).b

When passing data to UTM, fields in the data structures in which no values are specified are to be supplied with
binary zero.

Description format

The data structures in are presented in tables. The tables have the following structure:kcadminc.h

mod Data structure kc_..._str Page

1. 2. 3.

The first column (shaded gray) specifies which parameters, i.e. field contents, you can modify with
KC_MODIFY_OBJECT. If the "mod" column does not contain data, then you cannot modify any parameters.

The abbreviations used in the first column have the following meanings:

- The parameter cannot be modified.

x()y

The value of the parameter can be modified.

The value in brackets () informs you of how long the modification is effective and in which way. y y
can take on one of the following values:
IR/GIR, ID/GID, PR/GPR, PD/GPD, P/GP, A/GA. See chapter "KC_MODIFY_OBJECT - Modify

 for the meaning of the abbreviations.object properties and application parameters"

The second column contains the fields of the data structure as they are defined in .kcadminc.h

The third column is only used for presenting very large data structures. This column lists the page where you
can find the description corresponding to the data structure field.

The meanings of the contents of the fields are described at the end of each table.

openUTM V7.0. Administering Applications. User Guide.

 456

11.3.1 Data structures for describing object properties

All data structures provided for passing object properties are described in this section. Each individual object type is
provided with a data structure of its own. You will find these data structures in the header file. The name kcadminc.h
of the data structure is created from the name of the object type and the " " suffix. The descriptions are listed in _str
alphabetically ascending order according to the names of the data structures.

Data structures can contain fields at the end. These are not listed here.filleri

openUTM V7.0. Administering Applications. User Guide.

 457

11.3.1.1 kc_abstract_syntax_str - Abstract syntax for communication via OSI TP

The data structure is defined for object type KC_ABSTRACT_SYNTAX. With kc_abstract_syntax_str
KC_GET_OBJECT, UTM returns the local name, the object identifier and the name of the allocated syntax for an
abstract syntax.

In communication using OSI TP, the abstract syntax specifies how the user data is to be encrypted before being
transferred to the communication partner.
Both communication partners must use the same abstract syntax.

Data structure kc_abstract_syntax_str

char abstract_syntax_name [8];

char object_id[10][8];

char transfer_syntax[8];

The fields in the data structure have the following meanings:

abstract_syntax_name

Contains the local name of the abstract syntax.

The local name must be specified in an MGET/MPUT or FGET/FPUT if data with this abstract syntax is to
be sent or received.

object_id

Contains the object identifier of the abstract syntax.

The object identifier consists of at least 2 and at most 10 components. These components are positive
integers between 0 and 67 108 863.

For each component of the object identifier, UTM returns a field element, i.e. the number of field elements
occupied in corresponds to the number of components. The other field elements contain binary object_id
zeros.

For further information on the object identifier see the openUTM manual “Generating Applications”.

transfer_syntax

Contains the local name of the transfer syntax allocated to the abstract syntax.

openUTM V7.0. Administering Applications. User Guide.

 458

11.3.1.2 kc_access_point_str - OSI TP access point

The data structure is defined for the object type KC_ACCESS_POINT. In the case of kc_access_point_str
KC_GET_OBJECT, UTM returns the name and address of a local OSI TP access point in .kc_access_point_str

A local OSI TP access point is statically generated using the KDCDEF control statement ACCESS-POINT.

Data structure kc_access_point_str

char ap_name[8];

char application_entity_qualifier[8];

union kc_selector presentation_selector;

union kc_selector session_selector;

char presentation_selector_type;

char presentation_selector_lth[2];

char presentation_selector_code;

char session_selector_type;

char session_selector_lth[2];

char session_selector_code;

char transport_selector[8];

char listener_id[5]; (only on Unix, Linux and Windows systems)

char listener_port[5]; (only on Unix, Linux and Windows systems)

char t_prot[6]; (only on Unix, Linux and Windows systems)

char tsel_format; (only on Unix, Linux and Windows systems)

The fields in the data structure have the following meanings:

ap_name

Name of the OSI TP access point. The OSI TP access point is uniquely identified within the local UTM
application by this name.

application_entity_qualifier

The application entity qualifier (AEQ) of the access point. The AEQ is required for addressing purposes
when communicating with heterogeneous communication partners. These communication partners
address the access point via the application process title (APT) of the local application and the AEQ of

the access point. The AEQ is a positive integer between 1 and 67108863 (= 2 -1). You will find more 26

information on the AEQ in the openUTM manual “Generating Applications”.

application_entity_qualifier='0' means that no AEQ is defined for the access point.

openUTM V7.0. Administering Applications. User Guide.

 459

presentation_selector

Contains the presentation selector for the address of the OSI TP access point.

presentation_selector is a field of type :kc_selector

union kc_selector

char x[32];

char c[16];

UTM generally returns the presentation selector as character string () in a machine-specific code format (c
='S'). The string is a maximum of 16 characters long. The presentation_selector_code

field is padded with blanks starting after the position specified in the presentation_selector
length field.presentation_selector_lth

In special cases the presentation selector is returned as a hexadecimal string (). Each half byte is x
represented by a character. For example, the hexadecimal number A2 is returned as the string 'A2 ' (2
characters). If the presentation selector is a hexadecimal number, then UTM returns up to 32 bytes.

You determine how to interpret the contents of the with the presentation_selector
fieldpresentation_selector_type .

If the address of the access point does not contain a presentation selector, then the presentation_selector
field contains only blanks. In this case, = 'N' and = presentation_selector_type presentation_selector_lth
'0'.

session_selector

Contains the session selector of the address of the OSI TP access point.

session_selector is a union of type).kc_selector (see presentation_selector

UTM generally returns the session selector as character string () in a machinespecific code format (c
='S'). The string is a maximum of 16 characters long. The field is session_selector_code session_selector

padded with blanks starting after the position specified in the length field.session_selector_lth

In special cases the session selector is returned as a hexadecimal string (). Each half byte is x
represented by a character. If the session selector is a hexadecimal number, then UTM returns up to 32
bytes in .session_selector

You determine how to interpret the contents of the with the fieldsession_selector session_selector_type .

If the address of the access point does not contain a presentation selector, then the field session_selector
contains only blanks. In this case, = 'N' and = '0'.session_selector_type session_selector_lth

presentation_selector_type

Specifies if the address of the access point contains a presentation selector and how to interpret the data
returned in .presentation_selector

openUTM V7.0. Administering Applications. User Guide.

 460

'N' N stands for *NONE. The address of the access point does not contain a presentation selector,
 contains only blanks and ='0'.presentation_selector presentation_selector_lth

'C' The data of the presentation selector in is to be interpreted as a character presentation_selector
string. A maximum of the first 16 bytes of contain data.presentation_selector

'X' The presentation selector in is a hexadecimal number.presentation_selector

presentation_selector_lth

Contains the length of the presentation selector (in bytes. If presentation_selector)
 ='0', then the address of the OSI TP access point does not contain any presentation_selector_lth

presentation components (contains blanks). Otherwise, the value of presentation_selector
 lies between '1' and '16'.presentation_selector_lth

If ='X', then the string length specified in is: 2 * presentation_selector_type presentation_selector
bytes.presentation_selector_lth

Example
The presentation selector of the access point is X'A2B019CE'. then contains the presentation_selector
string 'A2B019CE', ='X' and =' 4' (four hexadecimal presentation_selector_type presentation_selector_lth
numbers).

presentation_selector_code

Specifies how the presentation selector in is encoded.presentation_selector

UTM returns 'S' if the presentation selector is returned as a character string (= presentation_selector_type
'C').
'S' means: machine-specific code (default code: EBCDIC on BS2000 systems and ASCII on Unix, Linux
and Windows systems).

If = 'X' or 'N', then UTM returns a blank in the presentation_selector_type presentation_selector_code
field.

session_selector_type

Specifies if the address of the access point contains a session selector and how to interpret the data
returned in .session_selector

'N' N stands for *NONE. The address of the access point does not contain a session selector,
 contains only blanks and ='0'.session_selector session_selector_lth

'C' The data of the session selector in is to be interpreted as a character string. A session_selector
maximum of the first 16 bytes of contain data.session_selector

'X' The session selector in is a hexadecimal number.session_selector

session_selector_lth

Contains the length of the session selector (in bytes.session_selector)

openUTM V7.0. Administering Applications. User Guide.

 461

If ='0', then the address of the OSI TP access point does not contain any session session_selector_lth
components (contains blanks). session_selector
Otherwise, the value of lies between '1' and '16'.session_selector_lth

If ='X', then the string length specified in is: session_selector_type session_selector
2 * bytes.session_selector_lth

session_selector_code

Specifies how the session selector in is encoded.session_selector

UTM returns 'S' if the session selector will be returned as a character string (= 'C').session_selector_type
'S' means: machine-specific code (default code: EBCDIC on BS2000 systems and ASCII on Unix, Linux
and Windows systems).

If = 'X' or 'N', then UTM returns a blank in the field.session_selector_type session_selector_code

transport_selector

Contains the transport selector of the address of the OSI TP access point. always transport_selector
contains a valid value because each access point must be assigned a transport selector in the KDCDEF
generation. The transport selector is always to be interpreted as a character string and consists of 1 to 8
printable characters.

The value of is a local BCAM application name on BS2000 systems.transport_selector

listener_id (only on Unix, Linux and Windows systems)

Contains the listener ID of the access point. The listener ID is a positive integer between 0 and 32767.

The listener ID determines which connections are to be administered by the same net process. All
connections established via access points and BCAMAPPL names with the same listener ID will be
administered by a single net process.

An exception to this are the BCAMAPPL names for communication via the socket interface (SOCKET).
They form a number set of their own, i.e. access points with these BCAMAPPL names are not bundled in
a single net process, even if the listener ID is the same.

The following fields are only significant for access points of a UTM application under UNXI systems and Windows
systems. These fields contain the address components of the access point in the local system. See the openUTM
manual “Generating Applications” for more information.

listener_port

Contains the port number of the access point for establishing TCP IP connections.
The port number specified is the port number defined in the KDCDEF generation.

If = '0', then no listener port number was generated for this access point in the KDCDEF listener_port
generation.

t_prot

Contains the address format assigned to the access point during KDCDEF generation.

The address formats are specified as follows:

openUTM V7.0. Administering Applications. User Guide.

 462

'R' RFC1006, ISO transport protocol class 0 using TCP/IP and the convergence protocol RFC1006.

If t_prot contains only blanks, then no address format was defined in the KDCDEF generation.

tsel_format

Contains the format indicator of the T-selectors in the address of the access point.

'T' TRANSDATA format

'E' EBCDIC character format

'A' ASCII character format

If contains a blank, then no format indicator was defined in the KDCDEF generation.tsel_format

The meaning of the address format is described in the "PCMX documentation" (openUTM documentation)
.

openUTM V7.0. Administering Applications. User Guide.

 463

11.3.1.3 kc_application_context_str - Application context for communication via OSI TP

The data structure is defined for object type KC_APPLICATION_CONTEXT. In the case kc_application_context_str
of KC_GET_OBJECT, UTM returns the local name and the properties of an application context in this data structure.

The application context defined the rules governing data communication between the communication partners. It
specifies how the user data is coded for transfer (abstract syntax) and in which form the data is transferred (transfer
syntax).

The application context must be agreed with the partner. For further information on the application context see the
openUTM manual “Generating Applications”.

Data structure kc_application_context_str

char application_context_name [8];

char object_id[10][8];

char abstract_syntax[9][8];

The fields in the data structure have the following meanings:

application_context_name

Contains the name generated locally for the application context.

object_id

Contains the object identifier of the application context.

The object identifier consists of at least 2 and at most 10 components. The individual components are
positive integers between 0 and 67108863.

For each component of the object identifier, UTM returns a field element, i.e. the number of field elements
occupied in corresponds to the number of components. The other field elements contain binary object_id
zeros.

For further information on the object identifier see the openUTM manual “Generating Applications”

abstract_syntax

Contains the local names of the abstract syntax allocated to the application context. Up to 9 abstract
syntaxes can be allocated to one application context. For each abstract syntax, UTM returns a field
element, i.e. the number of occupied field elements in corresponds to the number of abstract_syntax
abstract syntaxes allocated to the application context. The remaining field elements are filled with binary
zeros.

Each application context is assigned at least one abstract syntax.

openUTM V7.0. Administering Applications. User Guide.

 464

11.3.1.4 kc_bcamappl_str - Names and addresses of the local application

The data structure is defined for the object type KC_BCAMAPPL. In the case of kc_bcamappl_str
KC_GET_OBJECT, UTM returns the names and properties of the local application in .kc_bcamappl_str

UTM informs about the properties of the local application that are assigned tithe application name as defined in
MAX APPLI or to the BCAMAPPL names of the application. BCAMAPPL names are also the application names that
are used for distributed processing with LU6.1 and for connecting to clients; they are generated with the KDCDEF
statement BCAMAPPL. The names assigned to the application are used to establish connections between the
communication partners and the application. Each name of the application is assigned its own address for
establishing a connection.

Data structure kc_bcamappl_str

char bc_name[8];

char t_prot[6];

char listener_id[5]; (only on Unix, Linux and Windows systems)

char listener_port[5];

char tsel_format; (only on Unix, Linux and Windows systems)

char signon_tac[8];

char secure_soc;

char user_auth;

The fields in the data structure have the following meanings:

bc_name

Contains the name of the local application whose properties UTM returns.

t_prot The meaning of the data returned in depends on the operating system under which the UTM t_prot
application is running.

BS2000 systems:

t_prot contains the transport protocol used for connections to partner applications established using
this application name.
Only the first field element of contains data. The rest contain blanks.t_prot

The transport protocol is specified as follows:

'N' NEA transport protocol

'I' ISO transport protocol

'R' ISO Transport protocol and RFC1006 convergence protocol via TCP/IP connections

'TA' TCP/IP protocol using HTTP or USP protocol

'TH' TCP/IP protocol using HTTP protocol

openUTM V7.0. Administering Applications. User Guide.

 465

'TU' TCP/IP protocol using USP protocol

Unix, Linux and Windows systems:

t_prot contains the address format assigned to the BCAMAPPL names during KDCDEF generation.

The address formats are specified as follows:

'R' ISO Transport protocol and RFC1006 convergence protocol via TCP/IP connections

'TA' TCP/IP protocol using HTTP or USP protocol

'TH' TCP/IP protocol using HTTP protocol

'TU' TCP/IP protocol using USP protocol

listener_id (only on Unix, Linux and Windows systems)

Contains the listener ID of the BCAMAPPL names. The listener ID is a positive integer between 0 and
32767.

The listener ID determines which connections are to be administered together by the same net
process. All connections established via access points and BCAMAPPL names with the same listener
ID will be administered by a single net process.

BCAMAPPL names with ='T' (SOCKET) form a separate set of numbers, i.e. no BCAMAPPL t_prot
names for communication via socket interface are bundled with BCAMAPPL names/access points for
other transport protocols in a single net process, even if the listener ID is the same.

listener_port

Only applies if ='T' or 'R' ('R' only on Unix, Linux and Windows systems).t_prot

listener_port contains the port number at which openUTM waits for connection requests from outside.
The port number specified at KDCDEF generation is passed. See also the openUTM manual
“Generating Applications”.

In UTM applications on BS2000 systems, is only used if ='T' is generated. In all listener_port t_prot
other cases ='0'.listener_port

In UTM applications on Unix, Linux and Windows systems, = '0' means that no listener listener_port
port number was generated.

tsel_format (only on Unix, Linux and Windows systems)

Contains the format indicator of the T-selector in the address.

'T' TRANSDATA format

'E' EBCDIC character format

'A' ASCII character format

If contains a blank, then no format indicator was defined in the KDCDEF generation.tsel_format

openUTM V7.0. Administering Applications. User Guide.

 466

The meanings of the address formats are described in the "PCMX documentation" (openUTM
.documentation)

signon_tac

signon_tac either contains the name of the transaction code of the sign-on service assigned to this
transport system access point or is empty (no sign-on service).

secure_soc

 'N' The secure socket layer is not used for communication over this application.

 'Y' The secure socket layer is used for communication over this application.

user_auth

 'N' *NONE is generated as the authentication mechanism for HTTP clients.

 'B' *BASIC is generated as the authentication mechanism for HTTP clients.

openUTM V7.0. Administering Applications. User Guide.

 467

11.3.1.5 kc_character_set_str - Names of character sets (for BS2000 systems only)

The data structure is defined for the object type KC_CHARACTER_SET. In the case of kc_character_set_str
KC_GET_OBJECT, UTM returns the names and mappings which are defined for the application in

.kc_character_set_str

Data structure kc_character_set_str

char cs_name[32];

char map;

The fields in the data structure have the following meanings:

cs_name

Contains the name of the character set.

map

Contains the number of the code conversion table to which the name in cs_name is mapped.

openUTM V7.0. Administering Applications. User Guide.

 468

11.3.1.6 kc_cluster_node_str - Node applications of a UTM cluster application

The data structure is defined for the parameter type KC_CLUSTER_NODE. In the case of kc_cluster_node_str
KC_GET_OBJECT, openUTM uses to return the properties of the individual node applications kc_cluster_node_str
(instances) in a UTM cluster application (Unix, Linux and Windows systems).

mod1 Data structure kc_cluster_node_str

- char node_indx[4];

x(GID) char hostname[8];

x(GID) struct kc_file_base filebase;

- char bcamappl[8];

- char port_nbr[8];

- struct kc_admi_date_time_model kdcdef_time;

- struct kc_admi_date_time_model startup_time;

- struct kc_admi_date_time_model shut_n_time;

- char start_type;

- char node_state;

- char monitored_node[4];

- char monitoring_node[4];

- struct kc_admi_date_time_model state_change_time;

x(GID) char virtual_host[8];

- node_name[8]

x(GID) char hostname_long[64];

x(GID) char virtual_host_long[64];

1 Field content can be modified with KC_MODIFY_OBJECT , see chapter "obj_type=KC_CLUSTER_NODE"

The fields in the data structure have the following meanings:

node_indx

Number (index) of the node application in the UTM cluster application. The number is assigned internally
in the cluster and is used for diagnostic purposes. The index uniquely identifies the node application
within the UTM cluster application.
The node index is determined on the basis of the sequence of CLUSTER-NODE statements in the
KDCDEF input: The node that is described by the first statement to occur has the index ‘1', the second '2'
etc.

openUTM V7.0. Administering Applications. User Guide.

 469

KC_MODIFY_OBJECT:
In order to modify the properties of a node application, you must pass the number of the node application
in the identification area. You may first need to determine the number by means of a KC_GET_OBJECT
call. You can only modify nodes that are not active.

hostname

Contains the primary host name of the node on which this node application is running.
The name returned in this field may be shortened to 8 characters. The complete computer name, up to 64
characters long, is returned in the field.hostname_long

KC_MODIFY_OBJECT:
Specify the primary name of the node on which the node application is to run.

The name can be up to 8 characters in length.

filebase

Base name of the KDCFILE, the user log file and the system log file SYSLOG for the node application.
When the node application is started, the UTM system files are expected under the name specified here.

The name is passed in the element of type :filebase kc_file_base

struct kc_file_base

char length[2];

char fb_name[42];

fb_name contains the base name and the length of the base name.length

KC_MODIFY_OBJECT:
You can modify the base name of the node application. When doing so, please note the following:

The base names of the individual node applications of a UTM cluster application must differ from each
other.

Specify the directory which contains the UTM system files of the node application. The name specified
here must identify the same directory for all the nodes. It may be up to 27 characters in length.

bcamappl

Name of the transport system endpoint (BCAMAPPL name) that is used for communication within the
cluster. It is defined in the CLUSTER statement during generation.

openUTM V7.0. Administering Applications. User Guide.

 470

port_nbr

Number of the listener port used for communication within the cluster. It is defined in the CLUSTER
statement during generation.

kdcdef_time

Time at which the KDCFILE of this node application was generated.

The date and time are returned in the element of type :kdcdef_time kc_admi_date_time_model

struct kc_admi_date_time_model

struct kc_admi_date_model admi_date;

struct kc_admi_time_model admi_time

where

struct kc_admi_date_model

char admi_day [2];

char admi_month [2];

char admi_year_4 [4];

char admi_julian_day [3];

char admi_daylight_saving_time

and

struct kc_admi_time_model

admi_hours [2];

admi_minutes [2];

admi_seconds [2]

startup_time

Time of the last start of this node application.

openUTM V7.0. Administering Applications. User Guide.

 471

The date and time of the start are returned in the element of type startup_time kc_admi_date_time_model
(see).kdcdef_time

shut_n_time

Time at which this node application was last terminated normally.

The date and time are returned in the element of type (see shut_n_time kc_admi_date_time_model
).kdcdef_time

openUTM V7.0. Administering Applications. User Guide.

 472

state_change_time;

Time of the last status change of this node application (see).node_state

The date and time are returned in the element of type state_change_time kc_admi_date_time_model
(see).kdcdef_time

start_type

Type of the last start of this node application:

'C' The last start of the application was a cold start following a normal termination of the application
(COLD).

'W' The last start of the application was a warm start following an abnormal termination of the
application (WARM).

'D' The node application was started for the first time after the generation run (DEF).

'U' The node application was started after a KDCUPD run (UPDATE).

node_state

State of the node application:

'G' (Generated)

The node application has not yet been started after the generation run.

'R' (Running)

The node application is currently running.

'T' (Terminated)

The node application is not running. It was terminated normally.

'A' (Abnormally terminated)

The node application is not running. It was terminated abnormally.

'F' (Failure)

The node application was identified as failed by its monitoring node application.

monitored_node

Number (index) of the node application which is monitored by this node application, i.e. whose availability
is cyclically checked.

monitoring_node

Number (index) of the node application which monitors the availability of this node application.

openUTM V7.0. Administering Applications. User Guide.

 473

virtual_host

By specifying HOSTNAME, it is possible to specify the sender address for network connections which are
established from this node application.

Blanks mean that the default sender address of the transport system is used when connections are
established. This function is required in a cluster if the relocatable IP address is to be used as the sender
address instead of the static IP address when establishing a connection.

The name returned in this field may be shortened to 8 characters. The complete computer name, up to 64
characters long, is returned in the field.virtual_host_long

node_name

Reference name of the node application.

Default: NODE nn
 = 01..32, where is determined by the sequence of the CLUSTER-NODE statements during nn nn

generation.

hostname_long

Contains the primary host name of the node on which this node application is running.

KC_MODIFY_OBJECT:
Specify the primary name of the node on which the node application is to run.

virtual_host_long

Specifying enables the sender address for network connections established from this virtual_host_long
node application to be specified.

Blanks mean that the default sender address of the transport system is used for establishing connections.
This function is required in a cluster if the relocatable IP address is to be used as the sender address
instead of the static IP address when establishing a connection.

openUTM V7.0. Administering Applications. User Guide.

 474

11.3.1.7 kc_con_str - LU6.1 connections

The data structure is defined for the object type KC_CON. In the case of KC_GET_OBJECT, UTM kc_con_str
returns the properties and the current status of partner applications and connections for distributed processing via
LU6.1 in .kc_con_str

Connections for distributed processing and their properties can be created and deleted dynamically
(KC_CREATE_OBJECT object type KC_CON, KC_DELETE_OBJECT =KC_IMMEDIATE or subopcode1
KC_DELAY, object type KC_CON, see also section "Effects of deletion during the application run" in chapter

)."KC_DELETE_OBJECT - Delete objects"

Data structure kc_con_str

char co_name[8];

char pronam[8];

char bcamappl[8];

char lpap[8];

char termn[2];

char listener_port[5]; (only on Unix, Linux and Windows systems)

char t_prot; (only on Unix, Linux and Windows systems)

char tsel_format; (only on Unix, Linux and Windows systems)

char state;

char auto_connect;

char connect_mode;

char contime_min[10];

char letters[10];

char conbad[5];

char ip_addr[15];

char co_deleted;

char ip_addr_v6[39];

char ip_v[2];

char pronam_long[64];

The fields in the data structure have the following meanings:

openUTM V7.0. Administering Applications. User Guide.

 475

co_name

Contains the name of the partner application that will be communicated with via the logical
connection. The name is up to 8 characters long.

pronam

Contains the name of the computer on which the partner application is located.co_name

If the real computer name is longer than 8 characters:

The field contains a symbolic local name assigned for this computer by the transport pronam
system.

If no connection was established yet, contains blanks.pronam

The complete name, up to 64 characters long, can be taken from the field.pronam_long

In a UTM application on BS2000 systems it is either the name of a Unix, Linux or Windows system,
or the name of a BS2000.

In a UTM application on Unix, Linux or Windows systems, contains the name of the partner pronam
computer that UTM uses to search for the IP address of the partner in the Name Service.

bcamappl

Contains the name of the local application via which the connection to the partner application will be
established. can be the application name defined in the KDCDEF control statement MAX bcamappl
(APPLINAME) or a BCAMAPPL name of the application. The name is a maximum of 8 characters
long. In order to be able to establish connections using this name, the local transport system must
be known.

lpap Specifies the partner application to which the logical connection will be established.
The name of the LPAP partner via which the partner application connects is specified.

termn Contains the code for the type of communication partner. The code is entered in the communication
area header for the job-receiving services, i.e. for services in the local application that are started by
a partner application. The code is defined by the user and serves to arrange the communication
partners in groups of certain types.
It is not evaluated by UTM.
The terminal code is two characters long.

listener_port (only on Unix, Linux and Windows systems)

Contains the port number of the transport address of the partner application.

If = '0', then no port number was specified when the CON object was created.listener_port

t_prot (only on Unix, Linux and Windows systems)

t_prot contains the address format with which the partner application signs on to the transport
system. The address formats are specified as follows:

openUTM V7.0. Administering Applications. User Guide.

 476

'R' RFC1006, ISO transport protocol class 0 using TCP/IP and the convergence protocol
RFC1006.

tsel_format (only on Unix, Linux and Windows systems)

Contains the format indicator of the T-selectors of the partner address generated by the TNS
generation tool.

'T' TRANSDATA format

'E' EBCDIC character format

'A' ASCII character format

The meanings of the address formats are described in the "PCMX documentation" (openUTM
.documentation)

state Specifies the status of the partner application or its LPAP partner:

'Y' The partner application is not disabled (ON). The connection to the partner application is or
can be established.

'N' The partner application is disabled (OFF). No logical connection to the partner application can
be created.

The lock must be explicitly removed by the administration in order for the application to be
able to work with the partner application (see under point in chapter kc_lpap_str.state state

)."kc_lpap_str - Properties of LU6.1 partner applications"

auto_connect

Specifies if the connection to the partner application is automatically established at the start of the
application:

'Y' When the application is started, UTM will attempt to establish the connection automatically, i.
e. if the partner application is available when the local application is started, then the
connection is established after starting.

'N' No automatic connection when starting.

connect_mode

Specifies the current status of the connection:

'Y' The connection is established.

'W' UTM is now attempting to establish the connection (waiting for connection)

'N' The connection is not established.

contime_min

Specifies how many minutes the connection to the partner application has existed until now.

letters Contains the number of input and output messages for the partner application since the last start of
the local application.

openUTM V7.0. Administering Applications. User Guide.

 477

conbad Specifies how often the connection has been lost since the last start of the local application.

ip_addr Returns the IP address used by UTM for this connection from the object table of the application if
the address is an IPv4 address.

BS2000 systems:

openUTM always returns blanks in the field.ip_addr

Unix, Linux and Windows systems:

An IPv6 address is returned in the field (see below).ip_addr_v6

UTM uses the address to set up connections to partner applications. UTM reads the IP address
from the name service when the application is started using the generated processor name (pronam
).

If the object tables do not contain an IPv4 address for the partner computer, UTM will return blanks
in .ip_addr

co_deleted

Indicates whether the transport connection was deleted from the configuration dynamically:

'Y' The transport connection is deleted.

'N' The transport connection is not deleted.

ip_addr_v6

Returns the IP address used by UTM for this connection from the object table of the application if
the address is an IPv6 address or an IPv4 address embedded in IPv6 format.

BS2000 systems:

openUTM always returns blanks in the field.ip_addr_v6

Unix, Linux and Windows systems:

An IPv4 address is returned in the field (see above).ip_addr

UTM uses the address in order to establish connections to the partner application.
UTM reads the IP address from the Name Service using the generated computer name () pronam
when the application is started.
If there is no IPv6 address in the object tables for the partner computer, UTM returns blanks in

.ip_addr_v6

ip_v Specifies whether the IP address used by UTM for this connection is an IPv4 or an IPv6 address:

Unix, Linux and Windows systems:

'V4' IPv4 Address.

'V6' IPv6 address or IPv4 address embedded in IPv6 format.

BS2000 systems:

openUTM always returns blanks in the field.ip_v

openUTM V7.0. Administering Applications. User Guide.

 478

pronam_long

Name of the computer on which the partner application is located.co_name

In a UTM application on BS2000 systems, this is either the name of a Unix, Linux or Windows
system, or of a BS2000 host. is always supplied.pronam_long

In a UTM application on Unix, Linux or Windows systems, contains the name of the pronam_long
partner computer by means of which UTM searches the IP address of the partner computer in the
name service.

openUTM V7.0. Administering Applications. User Guide.

 479

11.3.1.8 kc_db_info_str - Output database information

The data structure is defined for the object type KC_DB_INFO. If KC_GET_OBJECT is specified kc_db_info_str
then UTM returns information on the generated database connections in .kc_db_info_str

With KC_MODIFY_OBJECT, you can modify the database password and/or the database user.

Database connections are generated with the KDCDEF control statement DATABASE (BS2000 systems) or RMXA
(Unix, Linux and Windows systems).

mod1 Data structure kc_db_info_str

- char db_id[2];

- char db_type[8];

- char db_entry_name[8];

- char db_lib_info[54];

- char db_xaswitch[54];

x(GPD) char db_userid[30];

x(GPD) char db_password[30];

- char db_new_userid[30];

1 Field content can be modified with KC_MODIFY_OBJECT, see "obj_type=KC_DB_INFO"

The fields in the data structure have the following meanings:

db_id

Specifies the ID of the database. The ID is a digit which represents the databases in the order in which
they were generated. The ID is assigned internally by openUTM.

db_type

Specifies the type of database system:

'XA'
'UDS' (only on BS2000 systems)
'LEASY' (only on BS2000 systems)
'SESAM' (only on BS2000 systems)
'CIS' (only on BS2000 systems)
'DB' (only on BS2000 systems)

db_entry_name

In the case of a BS2000 database, the entry name of the BS2000 database is output. In the case of a
BS2000 database with =XA, the name of the XA switch generated with the ENTRY operand of db_type
the DATABASE statement is returned in . In a BS2000 system, this XA switch name is db_entry_name
also returned in the field.db_xaswitch

In the case of Unix, Linux and Windows systems, does not contain any relevant db_entry_name
information.

openUTM V7.0. Administering Applications. User Guide.

 480

db_lib_info

The meaning of this field is platform-specific.

On BS2000 systems, this field corresponds exactly to the LIB field in the KDCDEF statement
DATABASE, i.e. it outputs information on the library from which the connection module to the database
system was dynamically loaded. The field contains either the name of an object module library itself or
a LOGICAL-ID as used during IMON installation in the format "LOGICAL-ID(logical-id)".

On Unix, Linux and Windows systems, this field contains the internal name of the loaded XA switch, e.
g. "Oracle_XA".

db_xaswitch

The meaning of this field is platform-specific.

On BS2000 systems, the content of is returned in .db_entry_name db_xaswitch

On Unix, Linux and Windows systems, this field contains the name of the Resource Manager’s XA
switch. This name is defined in the XASWITCH parameter of the KDCDEF statement RMXA.

db_userid

For XA databases, with KC_GET_OBJECT UTM returns the user name generated for this database
system in the field.db_userid

For an XA database, the database user name in this field can also be changed using
KC_MODIFY_OBJECT. The change always takes effect the next time the application is started.

db_password

In the field, a new database password for an XA database can be assigned using db_password
KC_MODIFY_OBJECT.

For KC_GET_OBJECT, UTM always supplies blanks to this field.

db_new_userid

For XA databases, UTM returns the modified but not yet activated user name for this database system in
the field for KC_GET_OBJECT. The user name returned here is activated the next time db_new_userid
the application is started and transferred to the database system.

openUTM V7.0. Administering Applications. User Guide.

 481

11.3.1.9 kc_edit_str - EDIT profile options (BS2000 systems)

The data structure is defined for the object type KC_EDIT. With KC_GET_OBJECT, UTM returns kc_edit_str
information on EDIT profiles in .kc_edit_str

EDIT profiles are generated with the KDCDEF control statement EDIT. Screen functions and properties of the
screen output in line mode are summarized in EDIT profiles. Each EDIT profile is assigned a name in the KDCDEF
generation via which the corresponding set of edit options can be accessed from a program unit run.

A complete description of the edit options discussed in the following can be found in the TRANSDATA TIAM User
Guide. You will find more detailed information on working with EDIT profiles in the openUTM manual „Programming
Applications with KDCS”.

Data structure kc_edit_str

char ed_name[8];

char edit_mode;

char edit_bell;

char hcopy;

char hom;

char ihdr;

char locin;

char low;

char nolog;

char ohdr;

char saml;

char specin;

char ccsname[8];

The fields in the data structure have the following meanings:

ed_name

Contains the name of the EDIT profile whose edit options UTM will return. It is an alphanumeric name up
to seven characters long.

edit_mode

Specifies the mode in which the messages will be output:

'E' (extended line mode)
The messages are output in "extended line mode".

openUTM V7.0. Administering Applications. User Guide.

 482

'I' (info)
The message can be indicated in a special information line (system line) without important data
being overwritten at the terminal.

'L' (line mode)
The message is output in line mode. It can be structured using logical control characters. The
message is prepared by the system.

'P' (physical mode)
The message is physically input or output, i.e. without being prepared by the system.

'T' (transparent mode)
The output message is transmitted transparently.

edit_bell

Specifies if an acoustic alarm is to be triggered when the message is output on the terminal. The
contents of the field mean:

'Y' An acoustic alarm will be triggered.

'N' An acoustic alarm will not be triggered.

hcopy (ard)h copy
Specifies if an output message is also to be logged by a hardcopy printer connected to the terminal in
addition to the output on the terminal.

'Y' Logging of output messages on a hard-copy printer

'N' No logging

hom (ogeneous)hom
Specifies if the output message is output without structure, i.e. homogeneously output.

'Y' The message will be without structure

'N' The message will be structured. In this case, a logical line is considered to be the unit of output.

ihdr (nput ea e)i h d r
Specifies if the message header of the input message is to be passed to the program unit.

'Y' The message header of the input message will be passed.

'N' The message header will not be passed.

locin (al put parameter)loc in
Specifies if local attributes in the input message are passed to the user as logical control characters.

'Y' Local attributes in the input message are passed as logical control characters.

'N' Local attributes are removed and not passed.

low (er case)low
Specifies if the input message passed to the program unit may also contain lowercase letters.

openUTM V7.0. Administering Applications. User Guide.

 483

'Y' Lowercase letters in the input message are passed to the program unit.

'N' Lowercase letters are converted to uppercase before being passed to the program unit.

nolog (ical characters)no log
Specifies how non-printable characters will be handled by the system.

'Y' The logical control characters will not be evaluated. All characters that are smaller than X'40' in the
EBCDIC code will be replaced by substitute characters (SUB). Only printable characters will be
allowed through.

'N' All logical control characters are evaluated. Special physical control characters will be allowed
through. Other characters smaller than X'40' will be replaced by substitute characters (SUB).
Printable characters will be allowed through.

ohdr (utput ea e)o h d r
Specifies if the output message contains a message header. The length of the message header +1 will
be entered in binary in the first byte of the message.

'Y' The output message contains a message header.

'N' The output message does not contain a message header.

saml (e ine)sam l
Specifies if a line feed at the beginning of the message is to be suppressed. The contents of is only saml
significant for printers. The contents of the field have the following meaning:saml

'Y' No line feed is executed at the beginning of the message.

'N' The message starts at the beginning of the next line.

specin (ial put)spec in

Specifies which special options the edit profile contains for the input.

'C' (confidential)
The input data is darkened when displayed on the terminal.

'I' (ID card)
The next entry will be input via the ID reader.

'N' (normal)
Normal input from the terminal.

ccsname (oded haracter et)c c s name

Contains the name of the character set (CCS name) used to prepare a message (see also the XHCS
User Guide).

openUTM V7.0. Administering Applications. User Guide.

 484

11.3.1.10 kc_gssb_str - Global secondary storage areas of the application

The data structure is defined for the object type KC_GSSB. With KC_GET_OBJECT, UTM returns the kc_gssb_str
names of the global secondary storage areas (GSSB) currently exeisting in the application in . A global kc_gssb_str
secondary storage area is used by KDCS program units for passing data between services.

Data structure kc_gssb_str

char gs_name[8];

The field has the following meaning:

gs_name

Contains the name of the global secondary storage area.

openUTM V7.0. Administering Applications. User Guide.

 485

1.

11.3.1.11 kc_http_descriptor_str - HTTP descriptors of the application

The data structure is defined for the object type KC_HTTP_DESCRIPTOR. With kc_http_descriptor_str
KC_GET_OBJECT, UTM returns information on names and properties of HTTP descriptors of the application in

.kc_http_descriptor_str

Data structure kc_http_descriptor_str

char hd_name[8];

char bcamappl[8];

char tac[8];

char user_auth;

char convert_text;

char http_exit[32];

char path[254];

The fields in the data structure have the following meanings:

hd_name

Contains the name of the HTTP descriptor.

bcamappl

 Name of application, to which this HTTP descriptor applies. If the value is *ALL, this HTTP descriptor applies
to all HTTP Connections of the UTM application.

tac

 Name of the TAC that is called for HTTP requests with the path specified for this HTTP descriptor.

user_auth

Required authentication mechanism for HTTP clients. The following values are possible:

'B' The Basic authentication mechanism is used, where the client has to send UserId and password Base64
encoded in the Authorization Header of the request.

'N' No authentication information is required. UTM uses the connection user as the user, unless the client
provides authentication information on its own.

convert_text

Specifies whether UTM is to perform a code conversion for the message body of an HTTP message.

UTM performs a code conversion for the message body of a HTTP message only if

the content-type header of a HTTP request indicates a message of type "text" and

openUTM V7.0. Administering Applications. User Guide.

 486

2. the character set indicated in the content-type header can be matched to a generated character set of the
application

The code table defined with a CHAR-SET assigned in this way is used by UTM for code conversion.

'Y' UTM is to perform a code conversion. This value is only possible for BS2000 systems.

'N' UTM does not perform code conversion.

http_exit

 Name of the HTTP exit program that is to be called by UTM to reformat the input and output messages, or
*SYSTEM or *NONE

path

 Path of this HTTP descriptor. HTTP requests that contain this path or whose path begins with the string
specified here are processed according to the specifications in this HTTP descriptor.

openUTM V7.0. Administering Applications. User Guide.

 487

11.3.1.12 kc_kset_str - Key sets of the application

The data structure is defined for the object type KC_KSET. With KC_GET_OBJECT, UTM returns kc_kset_str
information on a key set in .kc_kset_str

The key or access codes of the application that were defined for data access control are grouped together in a
logical key set.

You can assign a key set to a user, an LTERM partner, an LTERM pool, an (OSI-)LPAP partner or an access list.
This controls access to TAC objects, for example. In this manner, the key set and the access privileges associated
with it are made available to the clients or the partner application after establishing the logical connection or to the
user after signing on to the application (see also the openUTM manual “Concepts und Functions”).

The key sets can be created with KC_CREATE_OBJECT, deleted with LKC_DELETE_OBJECT, or dynamically
modified with KC_MOFDIFY_OBJECT. Which key set is assigned to a client, a partner application or a user is
returned in the data structure of the object in the field.kset

KDCDEF implicitly creates the KDCAPLKS key set, which already contains all key codes.

mod1 Data structure kc_kset_str

- char ks_name[8];

- char master;

x(GPD) char keys[4000];

- char ks_deleted;

1 Field contents can be modified with KC_MODIFY_OBJECT, see "obj_type=KC_KSET"

The fields in the data structure have the following meanings:

ks_name

Contains the name of the key sets. It is specified in KSET when the key set is created with
KC_CREATE_OBJECT object type KC_KSET or at KDCDEF generation (KSET statement).

master

Specifies if the key set is a master key set. A master key set contains all key or access codes needed to
access the objects of the application, i.e. all key codes between 1 and the maximum specified in the
KDCDEF generation in MAX KEYVALUE.

'Y' The key set is a master key set.

'N' The key set is not a master key set (default).

keys Specifies the key or access codes that belong to the key set.

A key or access code is an integer between 1 and the KEYVALUE set during the KDCDEF generation in
the MAX statement. KEYVALUE is the largest possible key or access code of the application. KEYVALUE
can lie between 1 and 4000.

keys consists of 4000 field elements, [0] to [3999]. The contents of the field elements are keys keys
interpreted as follows:

openUTM V7.0. Administering Applications. User Guide.

 488

keys[0] =

'0': The key/access code 1 does not belong to this key set.
'1': The key/access code 1 belongs to this key set.

keys[n] =

'0': The key/access code n+1 does not belong to this key set.
'1': The key/access code n+1 belongs to this key set.

keys[3999] =

'0': The key/access code 4000 does not belong to this key set.
'1': The key/access code 4000 belongs to this key set.

ks_deleted

Indicates whether the key set was deleted from the configuration dynamically:

'Y' The key set is deleted.

'N' The key set is not deleted.

openUTM V7.0. Administering Applications. User Guide.

 489

11.3.1.13 kc_load_module_str - Load modules (BS2000 systems) or shared objects/DLLs (Unix, Linux and
Windows systems)

The data structure is defined for the object type KC_LOAD_MODULE. In the case of kc_load_module_str
KC_GET_OBJECT, UTM returns the following in :kc_load_module_str

BS2000 systems: Information on the load modules that were generated with the KDCDEF control statement
LOAD-MODULE.

Unix, Linux and Windows systems: Information on the shared objects or DLLs that were generated with the
KDCDEF control statement SHARED-OBJECT.

Using a KDCADMI call with the operation code KC_MODIFY_OBJECT and the object type KC_LOAD_MODULE,
you can replace individual load modules or shared objects or DLLs during the application run.

mod1 Data structure kc_load_module_str

- char lm_name[32];

x(GID) char version[24];

- char lib[54];

- char load_mode;

- char poolname[50]; (only on BS2000 systems)

- char version_prev[24];

- char changeable;

- char change_necessary; (only on BS2000 systems)

- char altlib; (only on BS2000 systems)

- char version_gen[24];

1 The contents of the field can be modified using KC_MODIFY_OBJECT; see "obj_type=KC_LOAD_MODULE"

The fields in the data structure have the following meanings:

lm_name

Contains the name of the load module or shared object or DLL.

version

UTM returns the version number of the load module, shared object or DLL currently loaded or is being
loaded in version. If the load module could not be found in the library, then version contains blanks.

Only on BS2000 systems:

*HIGHEST-EXISTING

In the case of KC_MODIFY_OBJECT, the highest version of the load module existing in the
library is loaded.

openUTM V7.0. Administering Applications. User Guide.

 490

*UPPER-LIMIT (or @)

With KC_MODIFY_OBJECT the load module is loaded which was last entered in this PLAM
library without an explicit version specification.

lib The contents of have the following meaning:lib

In UTM applications on BS2000 systems, UTM returns the program library from which the load
module will be loaded in .lib

In UTM applications running on Unix, Linux or Windows systems, contains the directory in which lib
the shared object /DLL is stored.

load_mode

Contains the load mode of the load module, shared object or DLL. The load mode determines when
and to where a load module/shared object/DLL will be loaded.

'U' (STARTUP)
The load module or shared object/DLL is loaded as an independent unit at the start of the
application.

Only on BS2000 systems:

When a load module is loaded, external references from all modules of the UTM application
that were already loaded, from all nonprivileged subsystems and from the class 4 storage are
resolved.

'O' (ONCALL)
The load module/shared object/DLL is loaded as an independent unit when one of its program
units or VORGANG exits are called for the first time.

Only on BS2000 systems:

When a load module is loaded, external references from all modules of the UTM application
that were already loaded, from all non-privileged subsystems and from the class 4 storage are
resolved.

If several processes are utilized at one time, then this load module must not be overwritten in
the library (LIB=...) during the application run.
Otherwise, different states of the load module may perhaps be executed in an application run.

'S' (STATIC, only on BS2000 systems)
The load module is statically bound in the application program. The load module cannot be
replaced during an application run.

'P' (POOL, only on BS2000 systems)
The load module is loaded into a common memory pool (see poolname) at the start of the
application. The load module consists only of one public slice (no private slice).

'T'

openUTM V7.0. Administering Applications. User Guide.

 491

(POOL/ STARTUP, only on BS2000 systems)
The public slice of the load module is loaded into a common memory pool (see poolname) at the
start of the application. The private slice belonging to the load module is loaded into the local
process memory after that (private slice with load mode STARTUP).

'C' (POOL/ONCALL, only on BS2000 systems)
The public slice of the load module is loaded into a common memory pool (see poolname) at the
start of the application. The private slice belonging to the load module is loaded into the local
process memory when the first program unit assigned to this load module is called (private slice
with load mode ONCALL).

poolname (only on BS2000 systems)

poolname is only specified if the load module or its public slice will be loaded into a common memory
pool (='P', 'T' or 'C'). then contains the name of the common memory pool. The load_mode poolname
name can be up to 50 characters long.

version_prev

Contains the previous version of the load module/shared object/DLL, i.e. the version that was loaded
before the last program change.
If the load module/shared object/DLL has not yet been replaced or is not replaceable, then

 contains blanks.version_prev

changeable

Specifies if the load module/shared object/DLL can be replaced.

'Y' The load module/shared object/DLL can be replaced during the application run.

'N' The load module/shared object/DLL cannot be replaced during the application run.

change_necessary (only on BS2000 systems)

change_necessary is only relevant for load modules that either lie completely within a common
memory pool or whose public slice lies in common memory pool.

 specifies if this load module has been marked for a program change.change_necessary

Load modules in the common memory pool must then be marked for a program change with
KC_MODIFY_OBJECT. The actual exchange must then be executed with
KC_CHANGE_APPLICATION.

'Y' The load module is marked for exchange. A program change using KC_CHANGE-
APPLICATION is necessary to replace the load module.

'N' The load module is not marked for exchange.

altlib (only on BS2000 systems)

Specifies if the load module will be loaded with the BLS autolink function.

'Y' Load with autolink

'N' Load without autolink

openUTM V7.0. Administering Applications. User Guide.

 492

version_gen

Contains the version with which the load module/shared object/DLL has been generated.

openUTM V7.0. Administering Applications. User Guide.

 493

11.3.1.14 kc_lpap_str - Properties of LU6.1 partner applications

The data structure is defined for the object type KC_LPAP. In the case of KC_GET_OBJECT, UTM kc_lpap_str
returns the properties of an LPAP partner in .kc_lpap_str

An LPAP partner is a logical connection point for an LU6.1 partner application. LPAP partners are defined during
the static generation with KDCDEF and are assigned to the LU6.1 partner applications. You can make the
assignment to a real partner application at generation or dynamically when creating a new CON object.

openUTM V7.0. Administering Applications. User Guide.

 494

mod1 Data structure kc_lpap_str

- char lp_name[8];

- char kset[8];

- char lnetname[8];

- char netprio; (only on BS2000 systems)

- char permit;

- char qlev[5];

- char rnetname[8];

x(GPD) char state;

x(GPD) char auto_connect;

- char contwin;

- char dpn[8];

x(GPD) char idletime_sec[5];

- char map; (only on Unix, Linux and Windows systems)

- char paccnt[2];

- char plu;

x(A) char connect_mode;

x(IR) char quiet_connect;

x(IR) char bcam_trace;

- char out_queue[5];

- char nbr_dputs[10];

- char master[8];

- char bundle;

- char out_queue_ex[10];

x(GPD) char dead_letter_q;

1 The contents of the field can be modified using KC_MODIFY_OBJECT; see "obj_type=KC_LPAP"

openUTM V7.0. Administering Applications. User Guide.

 495

The fields in the data structure have the following meanings:

lp_name Contains the name of the LPAP partners, i.e. the logical name of the partner application.
Through this name the local application initiates communication with the partner application.

 only has meaning in the local application.lp_name

kset Contains the name of the key set that is assigned to the partner application. The key set
specifies the access privileges of the partner application within the local application, meaning
that the partner application may only use the transaction codes that are either secured by a lock
code for which the key set contains the appropriate key or access code or that are not secured
by a lock code.

lnetname lnetname is only relevant for heterogeneous links.

lnetname contains the name of the local UTM application under which the local application is
known in the partner application.

netprio (only on BS2000 Systems)
Contains the transport priority used in the transport connection assigned to this LPAP partner.

'M' "Medium" transport priority

'L' "Low" transport priority

permit Specifies the privileges that the partner application has within the local application.

'A' (ADMIN)
The partner application has administration privileges, it may execute all administration
functions in the local application.

'N' (NONE)
The partner application does not have any administration privileges.

Only on BS2000 systems:

If the local application is a UTM application on a BS2000 system, then the partner
application is also not allowed to execute any UTM SAT administration functions.

'B' (BOTH, only on BS2000 systems)
The partner application may execute administration functions as well as UTM SAT
administration functions in the local application.

'S' (SAT, only on BS2000 systems)
The partner application has UTM SAT administration privileges. It may execute
preselection functions in the local application, i.e. it can enable or disable the SAT logging
for certain events.

qlev (ueue el)q lev
 specifies the maximum number of asynchronous messages that may be in the local qlev

message queue for the partner application. If this control value is exceeded, then any additional
asynchronous jobs sent to the partner application will be rejected (i.e. '40Z' will be returned for
any APRO-AM calls thereafter).

openUTM V7.0. Administering Applications. User Guide.

 496

rnetname rnetname is only relevant for heterogeneous links.

rnetname contains the VTAM name of the partner CICS application or IMS application.

state Contains the status of the LPAP partner:

'Y' The LPAP partner is not disabled. A connection to the partner application can be
established or there already is an established connection.

'N' The LPAP partner is disabled. No connections to the partner application can be established.

auto_connect Specifies if the connection to the partner application is automatically established when the local
application is started:

'N' The connection is not automatically established; it must be established by the administrator.

'Y' When the local application is started, UTM will automatically establish the connection to the
partner application as long as the partner application is available at that time.

If automatic connecting is defined in both applications (local application and partner application),
then the connection between the two is automatically established as soon as both applications
are available.

contwin (ention ner)cont win
Specifies if the partner application is the contention winner in the session connecting the local
application and the partner application. The contention winner administers the session and
controls how resources are allocated for jobs in the session.

In any case, jobs from the local application as well as from the partner application may be
started. In case of a conflict, such as when the local and the partner application want to start a
job at the same time, the job from the contention winner will be started in the session.

'Y' The partner application is the contention winner.

'N' The local application is the contention winner.

dpn (estination rocess ame)d p n
 is only meaningful for connections to IBM systems.dpn

dpn contains the name of the instance that processes asynchronous messages.

idletime_sec Contains the maximum time in seconds that a session to the partner application may be in the
idle state before UTM closes the connection to the partner application. The idle state means that
the session is not handling any jobs.

idletime_sec = '0' means that the idle state will not be monitored.

Minimum value: '60'
Maximum value: '32767'

map (only on Unix, Linux and Windows Systems)
Specifies whether UTM performs a code conversion (ASCII <-> EBCDIC) for user messages
without any formatting flags which are exchanged between the partner applications.

'U'

openUTM V7.0. Administering Applications. User Guide.

 497

(USER)
UTM does not convert user messages, i.e. the data in the message is transmitted
unchanged to the partner application.

'1', '2', '3', '4' (SYS1 | SYS2 | SYS3 | SYS4)

UTM converts the user messages according to the code tables provided for the code
conversion, i.e.:

Prior to sending, the code is converted from ASCII to EBCDIC.

After receival, the code is converted from EBCDIC to ASCII.

openUTM assumes that the messages contain only printable characters.

For more information on code conversion, please refer to the openUTM manual „Programming
Applications with KDCS”; keyword „code conversion".

paccnt (ing)pac Count
Contains the number of parts of a long message that the local application may receive without
having to acknowledge.

A pacing value in that is too large can lead to bottlenecks in the network. paccnt
If = '0', there is no limit to the number of parts of a message that can be received before paccnt
acknowledging.

plu (rimary ogical nit)p l u

Specifies if the partner application is responsible for establishing the session, i.e. if the partner
application is the ’primary logical unit’ (PLU).

'Y' The partner application is the ’primary logical unit’.

'N' The local application is the ’primary logical unit’.

connect_mode Specifies the status of the connection to the partner application.

'Y' The partner application is currently connected to the application.

'N' The partner application is not currently connected to the application.

'W' UTM is currently attempting to establish a connection to the partner application (WAIT).

quiet_connect Specifies if the QUIET property is set for the connection to the LPAP partner. QUIET means that
UTM closes the connection to the partner application as soon as the sessions generated for the
partner application do not contain any more jobs. No more new dialog jobs are accepted for the
partner application.

'Y' The QUIET property is set.

'N' The QUIET property is not set.

bcam_trace Specifies whether the BCAM trace is explicitly enabled or disabled for the LPAP partner of the
partner application. The trace function that monitors connectionspecific activity within a UTM

openUTM V7.0. Administering Applications. User Guide.

 498

application (for example, the BCAM trace function on BS2000 systems) is called the BCAM
trace. The BCAM trace can be enabled for all connections of the application (i.e. for all LPAP
and LTERM partners) or explicitly for certain LTERM or LPAP partners.

'Y' The BCAM trace was explicitly enabled for this LPAP partner.
If the BCAM trace was enabled for all connections of the UTM application, then 'N' will be
returned in . bcam_trace
You can determine if the BCAM trace is enabled for all connections by, for example, calling
KC_GET_OBJECT with the KC_DIAG_AND_ACCOUNT_PAR parameter type. Then

='Y' will be returned in .bcam_trace kc_diag_and_account_par_str

'N' The BCAM trace was not explicitly enabled for this LPAP partner.

You can enable or disable the BCAM trace during the application run.

out_queue The number of messages currently being stored temporarily in the local message queue of the
partner application and which must still be sent to the partner application.

If the number of messages is greater than 99999, then the number is not displayed in full. You
should therefore use the field since larger numbers can be entered in full here.out_queue_ex

nbr_dputs The number of pending time-driven jobs for this LPAP whose starting time has not yet been
reached.

master If the LPAP partner is a slave in an LU6.1 LPAP bundle then the master LPAP partner of the
bundle is returned in .master

bundle Specifies whether the LPAP partner belongs to an LPAP bundle.

'N' The LPAP partner does not belong to an LPAP bundle.

'M' The LPAP partner is the master of an LPAP bundle.

'S' The LPAP partner is a slave in an LPAP bundle.

out_queue_ex see out_queue

dead_letter_q specifies whether an asynchronous message to an LPAP partner is saved in the dead letter
queue if it could not be sent because of a permanent error.

'Y' Asynchronous messages to this LPAP partner which could not be sent because of a
permanent error are saved in the dead letter queue, as long as (in case of message
complexes) no negative confirmation job was defined.

'N' Asynchronous messages to this LPAP partner which could not be sent because of a
permanent error are not saved in the dead letter queue but deleted.

openUTM V7.0. Administering Applications. User Guide.

 499

11.3.1.15 kc_lses_str - LU6.1 sessions

The data structure is defined for the object type KC_LSES. In the case of KC_GET_OBJECT, UTM kc_lses_str
returns the properties of sessions to LU6.1 partners of the application in .kc_lses_str

Sessions to LU6.1 partners can be dynamically created with KC_CREATE_OBJECT, deleted with
KC_DELETE_OBJECT, or modified with KC_MODIFY_OBJECT.

A session is identified using the name specified in the LSES statement.

mod 1 Data structure kc_lses_str

- char ls_name[8];

- char lpap[8];

- char rses[8];

- char con[8];

- char pronam[8];

- char bcamappl[8];

x(A) char connect_mode;

x(IR) char quiet_connect;

- char lses_user[8];

- char ls_deleted;

- char ls_used;

- char ptc;

- char node_name[8];

- char pronam_long[64];

1 The contents of the field can be modified using KC_MODIFY_OBJECT; see "obj_type=KC_LSES"

The fields in the data structure have the following meanings:

ls_name (ocale ession)l s name

Contains the name of the session within the local application (local half-session name).

lpap Specifies to which partner application the session is assigned. contains the name of the LPAP partner lpap
via which the partner application is connected.

rses (emote sion name) Contains the name that the session has in the partner application r ses
(remote halfsession name).

con, pronam, bcamappl

openUTM V7.0. Administering Applications. User Guide.

 500

These parameters uniquely identify the transport connection that has been or will be established for this
session.

con
Contains the name of the transport connection to the partner application defined at dynamic creation
(KC_CREATE_OBJECT object type KC_CON) or during the KDCDEF generation in the CON statement.

pronam
The name of the computer on which the partner application is running.

bcamappl
Contains the name of the local UTM application (BCAMAPPL name) via which the connection to the
partner application will be established.

pronam

If the real computer name is longer than 8 characters:

The field contains a symbolic local name assigned for this computer by the transport system.pronam

If no connection was established yet, contains blanks.pronam

connect_mode

Specifies if a transport connection is established for the session.

'Y' A transport connection to the partner application is established for the session.

'N' No transport connection is established for the session at the present time.

quiet_connect

Specifies if the QUIET property is set for the connection. QUIET means that UTM closes the connection as
soon as the session contains no more jobs. No more new dialog jobs are accepted for the partner
application.

'Y' The QUIET property is set.

'N' The QUIET property is not set.

lses_user

Name of the job submitter currently using the session. specifies who started the job-submitting lses_user
service.
If the job-submitting service is running in the local application for a dialog job, then the user ID or LTERM
partner of the client that started the service is specified in .lses_user

If the job-receiving service is running in the local application for a dialog job, i.e. the local application is
processing the job, then the local session name () is output in .ls_name lses_user

If asynchronous messages are transmitted in the session, then the local session name () is output ls_name
in in this case, too.lses_user

ls_deleted

Indicates whether the LSES object was deleted from the configuration dynamically.

openUTM V7.0. Administering Applications. User Guide.

 501

'Y' The session is deleted.

'N' The session is not deleted.

ls_used

Indicates whether or not the session is being used.

'Y' The session is being used.

'N' The session is not being used.

ptc Indicates the state of the session.

'Y' The session is in the PTC state (prepare to commit).

'N' The session is not in the PTC state.

node_name

Only in UTM cluster applications: Reference name of the node application to which the session is assigned.

pronam_long

The name of the computer on which the partner application is running.

The names in the , and fields uniquely identify the transport connection that is con pronam_long bcamappl
or is to be established for this session.

openUTM V7.0. Administering Applications. User Guide.

 502

11.3.1.16 kc_ltac_str - Transaction codes of remote services (LTAC)

The data structure is defined for the object type KC_LTAC. In the case of KC_GET_OBJECT, UTM kc_ltac_str
returns the properties of transaction codes that are defined in the local application for remote service programs in

.kc_ltac_str

LTAC objects can be dynamically created with KC_CREATE_OBJECT, deleted with KC_DELETE_OBJECT, or
modified with KC_MODIFY_OBJECT.

mod 1 Data structure kc_ltac_str

- char lc_name[8];

- char lpap[8];

- union kc_rtac rtac;

- char rtac_lth[2];

- char code_type;

x(GPR) char state;

x(GPR) char accesswait_sec[5];

x(GPR) char replywait_sec[5];

- char lock_code[4];

- char ltac_type;

- char ltacunit[4];

- char used[10];

- char access_list[8];

- char deleted;

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see "obj_type=KC_LTAC"

The fields in the data structure have the following meanings:

lc_name

Contains the local transaction code that was defined for the remote service program (LTAC name).

lpap

Specifies to which partner application the service program belongs. contains the name of the LPAP lpap
or OSI-LPAP partner assigned to the partner application, or the name of a master LPAP partner.

If lpap contains blanks, then the LTAC is not assigned explicitly to any partner application. An assignment
must then be carried out via the KDCS call APRO.

rtac (remote tac)

openUTM V7.0. Administering Applications. User Guide.

 503

Name of the transaction code for the service or service program in the partner application (recipient
TPSU title; RTAC name). The name can be a string or a number. The name is returned in the following
data structure:

union kc_rtac

char name64[64];

char name8[8];

The field of the union in which the RTAC name is stored depends on the code type assigned to the RTAC
 name. The code type is returned in the code_type field.

rtac_lth

Specifies how long the name (recipient TPSU title) returned in is. The number of bytes used is rtac
specified in .rtac

Minimum value: '1'
Maximum value: '64'

code_type

Specifies which code type will be used internally by UTM for the RTAC name. Based on the code_type
you can determine in which field of the union the RTAC name is stored.

'I' (INTEGER)
The TAC name in is a positive integer between 0 and 67108863.rtac

The RTAC name will be returned in the field of the union (the first 8 bytes of the union name8 rtac
are right-justified).

RTAC names of code type INTEGER are only permitted for partner applications that are not UTM
applications and that communicate using the OSI TP protocol.

'P' (PRINTABLE-STRING)
The TAC name in is specified as a string. It is a maximum of 64 characters long. It is case rtac
sensitive.

A TAC name with the PRINTABLE-STRING code type can contain the following characters:

A, B, C, . . . , Z

a, b, c, . . . , z

0, 1, 2, . . . , 9

the special characters - : ? = , + . () / (blank)

The TAC name will be returned in the field of the union. The elements in name64 rtac kc_rtac.
 after the length specified in are filled with blanks.name64 rtac_lth

openUTM V7.0. Administering Applications. User Guide.

 504

'T' T61-STRING

rtac contains a T61 string. For the T61-STRING code type UTM supports all characters of the
PRINTABLE-STRING code type in addition to the following special characters:
$ > < & @ # % ; * _

The TAC name will be returned in the name64 field of the rtac union. The elements in kc_rtac.
 name64 after the length specified in rtac_lth are filled with blanks.

RTAC names for which the STANDARD code type was specified at dynamic creation or at KDCDEF
generation are stored internally, depending on the characters used, as a PRINTABLE-STRING or a T61-
STRING. For this reason, either PRINTABLE-STRING or T61-STRING is output for RTACs generated
with 'S' or STANDARD.

state Contains the status of the transaction codes in : lc_name

'Y' The transaction code is not disabled. Jobs for the corresponding remote service will be accepted.

'N' The transaction code is disabled. Jobs for the corresponding remote service will not be accepted.

accesswait_sec

The time to wait in seconds after a remote service (LTAC call) requests the appropriation of a session
(possibly including the establishing of the connection) or the maximum time to wait for an association to
be established.

A wait time 0 for asynchronous jobs (LTAC with ='A') means that the job will accesswait_sec != ltac_type
always be placed in the local message queue for the partner application. Dialog jobs are accepted.

A wait time =0 means:accesswait_sec
Dialog TACs will be rejected if no session or association to the partner application is generated for which
the local application is the "contention loser".
For asynchronous TACs, the asynchronous job will be rejected with a return code in the FPUT call if there
is no logical connection to the partner application. If a logical connection to the partner application exists,
then the message will be placed in the local message queue.

Dialog jobs are rejected, independent of the value in , if no logical connection to the accesswait_sec
partner exists. At the same time, a connection shutdown is initiated.

Minimum value: '0'
Maximum value: '32767'

replywait_sec

The maximum time in seconds that UTM will wait for an response from a remote service. By limiting the
wait time you can guarantee that the wait time for clients or users on the terminal will not be indefinite.

replywait_sec = '0' means: no wait time limit.

Minimum value: '0'
Maximum value: '32767'

openUTM V7.0. Administering Applications. User Guide.

 505

lock_code

Contains the lock code assigned to the remote service within the local application (access protection).
 can contain a number between '0' and '4000'. lock_code

In KC_CREATE_OBJECT, the maximum value that can be contained by is the maximum value lock_code
defined using the KEYVALUE operand of the KDCDEF statement MAX. '0' means that the LTAC is not
protected by a lock code.

When an LTAC object is created, only or can be specified (see below). If you lock_code access_list
modify an LTAC object, you can change the current value or remove the lock code by specifying '0'.

If neither nor is defined, is not protected and every user of the local lock_code access_list lc_name
application can start the remote service program.

ltac_type

Specifies if the local application with the remote service jobs processes in the dialog or if asynchronous
jobs will be passed to the partner service.

'D' Jobs sent to the partner service are processed in dialog mode.

'A' The partner service is started asynchronously (by means of message queuing).

used

Contains the number of jobs sent to the remote service since the start of the local application. used also
specifies how often the LTAC has been called within the current application run.

The counter is reset to 0 every time the application is started.

ltacunit

Contains the number of accounting units charged for each call in the accounting phase of UTM ltac
Accounting. The accounting units are added to the accounting unit counter of the user ID that called .ltac

For more information on accounting see also the openUTM manual “Generating Applications” and
openUTM manual “Using UTM Applications”.

access_list

Can contain the name of a key set that describes the access rights of users who are permissible for
.lc_name

When an LTAC object is created, only or can be specified (see above). When you lock_code access_list
modify an LTAC object, you can change the current entry or remove the key set by specifying 8 blanks.

If neither nor is defined, is not protected and any user of the local UTM lock_code access_list lc_name
application can start the remote service program.

deleted

Indicates whether was deleted from the configuration dynamically.lc_name

openUTM V7.0. Administering Applications. User Guide.

 506

'Y' lc_name is deleted.

'N' lc_name is not deleted.

openUTM V7.0. Administering Applications. User Guide.

 507

11.3.1.17 kc_lterm_str - LTERM partners

The data structure is defined for the object type KC_LTERM. In the case of KC_GET_OBJECT, UTM kc_lterm_str
returns the properties of LTERM partners and specifies to which client or printer the LTERM partner is presently
assigned in .kc_lterm_str

LTERM partners can be dynamically created with KC_CREATE_OBJECT, deleted with KC_DELETE_OBJECT or
modified with KC_MODIFY_OBJECT.

mod 1 Data structure kc_lterm_str

- char lt_name[8];

- char kset[8];

- char locale_lang_id[2]; (only on BS2000 systems)

- char locale_terr_id[2]; (only on BS2000 systems)

- char locale_ccsname[8]; (only on BS2000 systems)

- char lock_code[4];

x(GPD) char state;

- char usage_type;

- char user_gen[8];

- char cterm[8];

x(GPD)2 char format_attr; (only on BS2000 systems)

x(GPD)2 char format_name[7]; (only on BS2000 systems)

- char plev[5];

- char qamsg;

- char qlev[5];

- char restart;

- char annoamsg; (only on BS2000 systems)

- char netprio; (only on BS2000 systems)

x(PD) char master[8];

- char pterm[8];

- char pronam[8];

openUTM V7.0. Administering Applications. User Guide.

 508

mod 1 Data structure kc_lterm_str

- char bcamappl[8];

- char user_curr[8];

x(A) char connect_mode;

x(IR) char bcam_trace;

- char bundle;

- char pool;

- char out_queue[5];

- char incounter[10];

- char seccounter[5];

- char deleted;

- char nbr_dputs[10];

- char lt_group;

- char out_queue_ex[10];

- char kerberos_dialog (only on BS2000 systems)

- char pronam_long[64];

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see "obj_type=KC_LTERM"

2 When changing the start format with KC_MODIFY_OBJECT you must always enter data in and .format_name format_attr

The fields in the data structure have the following meanings:

multi_signon

Name of the LTERM partner; It can also be an LTERM partner that belongs to an LTERM pool.

The program units of the application communicate with the clients, printers and TS applications (no
server-server communication) that are assigned to the LTERM partner using this name.

kset Specifies which key set is assigned to this LTERM partner (access privileges). contains the name of kset
the key set.

The key set limits the access privileges of a client/user that connects via this LTERM partner. A client or
client program can only start a service protected by a lock code or an access list when the key or access
code corresponding to the lock code or the access list is contained both in the key set of the user ID
under which the client or client program signs on and in the key set of the associated LTERM partner.

locale_lang_id, locale_terr_id, locale_ccsname (only on BS2000 systems)

openUTM V7.0. Administering Applications. User Guide.

 509

These contain the three components of the locale assigned to the partner. The locale defines the
language environment of the client that is connected to the application via this LTERM partner. The
language environment is relevant if messages and UTM messages of the application are to be output in
different languages. The LTERM-specific language environment is set when outputting asynchronous
messages and in the first part of the sign-on service if the userspecific environment has not been set.

See the openUTM manual “Generating Applications” for more information on multilingual capabilities.

locale_lang_id
Contains the up to two characters long language code.

locale_terr_id
Contains an up to two characters long territory code.

locale_ccsname
(oded haracter et)c c s name
Contains the up to 8 characters long name of an extended character set
(CCS name; see also the XHCS User Guide).

lock_code

Contains the lock code assigned to the LTERM partner (access protection). Only users/clients who
possess the corresponding key code may connect via this LTERM partner.

The can contain a number between '0' and '4000'.lock_code
In KC_CREATE_OBJECT, the maximum value that can be contained by is the maximum lock_code
value defined using the KEYVALUE operand of the KDCDEF statement MAX.
'0' means that the LTERM partner is not protected by a lock code.

state

Specifies if the LTERM partner is currently disabled.

'Y' The LTERM partner is not disabled.

'N' The LTERM partner is disabled. No user/client can connect to the application at the present time
via this LTERM partner.

usage_type

Type of LTERM partner

'D' The LTERM partner is configured as a dialog partner. The client as well as the local application
can send messages via the connections between the client () and local application.pterm

'O' The LTERM partner is configured for an output medium (printer). Messages can only be sent from
the application to the client/printer ().pterm

user_gen

user_gen contains data if the LTERM partner was configured as a dialog partner (= 'D').usage_type

If the LTERM partner is assigned with a terminal, contains the user ID for which UTM is to user_gen
execute an automatic KDCSIGN (automatic sign-on) when the logical connection between the client and
the application is established (defined in).kc_lterm_str.user

openUTM V7.0. Administering Applications. User Guide.

 510

If the LTERM partner is assigned to a UPIC client or a TS application (='APPLI' or 'SOCKET'), ptype
then contains the connection user ID.user_gen

cterm

cterm only contains data if the LTERM partner (= 'O') is assigned to a printer control usage_type
LTERM. then contains the name of the printer control LTERM, which can be a maximum of 8 cterm
characters long.

A printer control LTERM is assigned one or more printers. Asynchronous jobs in the message queues of
the printers, the output of messages on the printers and the printer itself can be administered via the
printer control LTERM (see). chapter "Administering message queues and controlling printers"

format_attr, format_name (only on BS2000 systems)

These parameters are only relevant when the LTERM partner is assigned to a terminal.

format_attr and define the LTERM-specific start format. An LTERM-specific start format is format_name
only useful in applications without user IDs and in applications with their own sign-on service.

In applications without user IDs, the start format will be output on the terminal after establishing the
connection between the terminal and the application instead of the message K001 as long as no
LTERM-specific restart is being executed.

In applications generated with user IDs, the name of the start format can be queried during the first part
of the sign-on service (with SIGN ST).

format_attr
Contains the format code:

'A' (format attribute ATTR)
The start format is a format with user attributes. The properties of the format fields can be
changed by the KDCS program unit. The format name at the KDCS program interface is

.+format_name

'N' (format attribute NOATTR)
The start format is a format without user attributes. Neither field properties nor format properties
can be changed by the KDCS program units. The format name at the KDCS program interface is

.*format_name

'E' (format attribute EXTEND)
The start format is a format with expanded user attributes. The properties of the format fields as
well as global format properties can be changed by the KDCS program unit. The format name at
the KDCS program interface is .#format_name

format_name
Contains the name of the start format. The name can be up to 7 characters long and contains only
alphanumeric characters.

plev (rint el)p lev

If the LTERM partner is a dialog partner, then ='0' is always returned.plev

If the LTERM partner is assigned to an output medium (printer), then contains the control value for plev
the number of print jobs that are temporarily stored in the message queue of the LTERM partner. UTM

openUTM V7.0. Administering Applications. User Guide.

 511

collects the messages for the corresponding printer until the control value specified in is reached. plev
Then UTM attempts to establish the connection to the printer. The connection is closed when no more
messages for the printer are in the queue. The control value is specified when adding the LTERM
partner to the configuration.

plev ='0' means that no control value is defined and UTM can temporarily store any number of print jobs
in the queue without having to close the connection to the printer.

qamsg (ueue synchronous e sa e)q a m s g

Specifies whether asynchronous jobs are temporarily stored in the message queue of the LTERM
partner even if the client/printer of the LTERM partner is not connected to the application.

'Y' An asynchronous job is placed in the message queue of the LTERM partner even if no connection
to the client/printer exists.

 ='Y' is not possible for ='N'.qamsg restart

'N' An asynchronous job sent to this LTERM partner is rejected (return codes KCRCCC=44Z and
KCRCDC=K705) if the corresponding client/printer is not connected to the application.

qlev (ueue el)q lev

Contains the maximum number of asynchronous messages that UTM may temporarily store in the
message queue of the LTERM partner at one time. If this control value is exceeded, openUTM rejects
any further FPUT or DPUT calls for this LTERM partner with 40Z. The control value is specified when
adding the LTERM partner to the configuration.

restart

Only relevant if the LTERM partner is assigned to a client. specifies how UTM will handle restart
asynchronous messages that are in the message queue of the LTERM partner when shutting down a
connection to the client.

'Y' Asynchronous messages to this client remain in the queue when a connection is shut down. If no
user IDs (USER) were generated in the application, then UTM will execute an automatic restart
for these LTERM partners.

'N' UTM deletes all asynchronous messages that are temporarily stored in the message queue of the
LTERM partner when a connection is shut down. If the job is a job complex, then a negative
confirmation job is activated. If no user IDs (USER) were generated in this application, then UTM
will not execute an automatic restart for the LTERM partner.

annoamsg (unce synchronous e sa e, only on BS2000 systems))anno a m s g

Is only of relevance for LTERM partners assigned to a terminal.

annoamsg specifies if UTM will announce asynchronous messages on the terminal with a UTM
message in the system line before outputting.

'Y' UTM announces every asynchronous message to this terminal with the K012 UTM message in
the system line. The user must then explicitly request the asynchronous message with the
KDCOUT command.

'N'

openUTM V7.0. Administering Applications. User Guide.

 512

Asynchronous messages are output on the terminal immediately, i.e. without announcement.
KDCOUT is not permitted.

netprio Specifies the transport priority used on the transport connection between the application and the client
/printer.

'M' "Medium" transport priority

'L' "Low" transport priority

master

The meaning of this field varies according to the operation code. You can establish what type of LTERM
is involved from the parameter.lt_group

KC_GET_OBJECT

The associated master LTERM is returned here in the case of a slave LTERM of an LTERM bundle.

The associated primary LTERM is returned here in the case of an alias LTERM of an LTERM group.

KC_MODIFY_OBJECT

For connection bundles: Exchange of two master LTERMs. The LTERM specified in must be master
the master of an LTERM bundle. The master is specified with which the slaves are to be exchanged.

You can only use this functionality in standalone UTM applications.

For LTERM groups: Reassignment of a group LTERM to a different LTERM group. The LTERM that
you specify in must either be a normal LTERM, a primary LTERM of an LTERM group or a master
master LTERM of an LTERM bundle.

You can only use this functionality in standalone UTM applications.
A normal LTERM must fulfill the following conditions:

A PTERM with the PTYPE APPLI or SOCKET must be assigned to the LTERM.

The LTERM must not be a slave LTERM of an LTERM bundle.

The LTERM must have been generated with USAGE=D.

The primary LTERM of the group to which the LTERM is to be added is specified.
If the LTERM specified in is already a primary LTERM of an LTERM group, the LTERM master
specified for is added to its LTERM group. lt_name
If the LTERM specified in was not a primary LTERM, a new LTERM group is created. The master
LTERM specified in is added to the new LTERM group. lt_name
Primary LTERM is the LTERM specified in .master

pterm

Name of the client/printer (PTERM name) currently assigned to this LTERM partner. If the LTERM
partner is not currently assigned to a client/printer, then contains blanks. The assignments pterm
between the LTERM partner and the client/printer can be changed; see also in kc_pterm_str

 ."kc_pterm_str - Clients and printers"

pronam

Name of the computer on which the client can be found or to which the printer is connected.

openUTM V7.0. Administering Applications. User Guide.

 513

If the real computer name is longer than 8 characters:

The field contains a symbolic local name assigned for this computer by the transport system.pronam

If no connection was established yet, contains blanks.pronam

The complete name, up to 64 characters long, can be taken from the field.pronam_long

If the LTERM partner is not currently assigned a client/printer, the field contains blanks.

In UTM applications on BS2000 systems is unequal blanks if the LTERM partner is assigned a pronam
client or printer. The name in is identical to the name of the computer specified for the BCAM pronam
generation for this computer. If the LTERM partner is assigned to an RSO printer, then contains pronam
the value '*RSO'.

In UTM applications running on Unix, Linux or Windows systems, contains blanks if the LTERM pronam
partner is assigned to a local client or printer.

bcamappl

Name of the local UTM application (BCAMAPPL name) via which the connection to the client/printer will
be established.

If the LTERM partner is assigned to a terminal or printer, then always contains the name of bcamappl
the application that was specified for the KDCDEF generation in MAX APPLINAME.
If the LTERM partner is assigned to a UPIC client or a TS application, then contains the bcamappl
application name (BCAMAPPL name) assigned to the client when it was added.

user_curr

User ID of the user currently connected with the application through this LTERM partner. If there is
currently no connection, is padded with blanks.user_curr

If a connection to a terminal is established, but no user is as yet signed on, is also padded user_curr
with blanks.

If a connection to a UPIC client or to a TS application is established, we distinguish the following
situations:

The application is generated with SIGNON MULTI-SIGNON=YES (see in kc_signon_str.multi_signon
)"kc_signon_str - Properties of the sign-on process"

 contains the connection user ID () until a client signs on with a “true” user ID for user-curr user_gen
which ='Y'.kc_user_str.restart

The application is generated with SIGNON MULTI-SIGNON=NO.
contains the connection user ID () until a client signs on with a “true” user ID.user_curr user_gen

connect_mode

Specifies if the client or printer presently assigned to this LTERM partner is currently connected to the
application.

'Y' The client/printer is currently connected to the application.

'W' UTM is currently attempting to establish a connection to the client/printer.

'N' The client/printer is not currently connected to the application.

openUTM V7.0. Administering Applications. User Guide.

 514

bcam_trace

Specifies if the BCAM trace is explicitly enabled or disabled for this LTERM partner. The trace function
that monitors connection-specific activity within a UTM application (for example the BCAM trace function
on BS2000 systems) is called the BCAM trace. The BCAM trace can be enabled for all connections of
the application (i.e. for all LPAP and LTERM partners) or explicitly for certain LTERM or LPAP partners.

'Y' The BCAM trace was explicitly enabled for this LTERM partner.
If the BCAM trace was enabled for all connections of the UTM application, then 'N' will be returned
in .bcam_trace
You can determine if the BCAM trace is enabled for all connections by, for example, calling
KC_GET_OBJECT with the KC_DIAG_AND_ACCOUNT_PAR parameter type. Then bcam_trace
='Y' will be returned in .kc_diag_and_account_par_str

'N' The BCAM trace was not explicitly enabled for this LTERM partner.

You can enable or disable the BCAM trace during the application run.

bundle bundle is only relevant for LTERM partners that are assigned to a printer or an LTERM bundle. bundle
 specifies if the LTERM partner belongs to a printer pool or an LTERM bundle.

'Y' The printer is assigned to a printer pool.

'N' The printer is not assigned to a printer pool.

'M' The LTERM partner is a master of an LTERM bundle.

'S' The LTERM partner is a slave of an LTERM bundle.

pool Specifies if the LTERM partner belongs to an LTERM pool.

'Y' The LTERM partner is assigned to an LTERM pool.

'N' The LTERM partner is not assigned to an LTERM pool.

out_queue

The number of asynchronous messages presently in the message queue of the LTERM partner for
outputting.

If the number of messages is greater than 99999, then the number is not displayed in full. You should
therefore use the field since larger numbers can be entered in full here.out_queue_ex

incounter

The number of messages entered via this LTERM partner; if a printer is connected via this LTERM
partner, then the number of print confirmations from the printer is entered here.
The counter is reset to 0 at every start of the application.incounter

seccounter

The number of security violations by users and clients that were connected to the application via this
LTERM partner (for example, due to entering an unauthorized transaction code).
The counter is reset to 0 at every start of the application.

openUTM V7.0. Administering Applications. User Guide.

 515

deleted

Specifies whether or not the LTERM partner was dynamically deleted from the configuration.

'Y' The LTERM partner was deleted. No more clients or printers may be connected to the application
via this LTERM partner.

'N' The LTERM partner was not deleted.

nbr_dputs

Number of time-controlled jobs for this LTERM partner whose start time has not yet been reached

lt_group

Specifies whether the LTERM is a "normal" LTERM, part of an LTERM bundle or part of an LTERM
group.

' ' The LTERM is not part of an LTERM bundle or an LTERM group.

'P' The LTERM is the primary LTERM of an LTERM group.

'A' The LTERM is an alias LTERM of an LTERM group.

out_queue_ex

see out_queue.

kerberos_dialog (only on BS2000 systems)

Y When the connection is established, a Kerberos dialog is conducted for clients that support
Kerberos and are directly connected with the application via this LTERM partner (not via OMNIS).

N No Kerberos dialog is performed.

pronam_long

Name of the computer on which the client or the printer is located.

If no client/printer is currently assigned to the LTERM partner, the field is filled with blanks.

In UTM applications on BS2000 systems, is not blank if a client or printer is assigned to pronam_long
the LTERM partner. The name in is identical to the computer name specified for this pronam_long
computer during BCAM generation. If the LTERM partner is assigned to an RSO printer, pronam_long
 contains the value '*RSO'.

In UTM applications on Unix, Linux and Windows systems, contains blanks if the LTERM pronam_long
partner is assigned to a local client or printer.

openUTM V7.0. Administering Applications. User Guide.

 516

11.3.1.18 kc_message_module_str - User message modules

The data structure is defined for the object type KC_MESSAGE_MODULE. In the case of kc_message_module_str
KC_GET_OBJECT, UTM returns the properties of the user-defined UTM message module of the application in

.kc_message_module_str

In UTM applications on BS2000 systems, you can create several user-defined message modules that contain the
UTM messages in various languages for the purpose of internationalization of the application. A language code and
a territory code are assigned to each UTM message module to precisely define the language. The combination of
the language code and the territory code must be assigned to exactly one UTM message module of the application.
Through the "language and territory code" the user-defined UTM message modules are assigned to the users and
LTERM partners whose locale contains the same language and territory code.

In UTM applications running on Unix, Linux or Windows systems, you can create userdefined message modules.
UTM only returns the name of the message module. The other fields of the data structure are of no relevance.

User-defined UTM message modules are defined in the KDCDEF generation with a MESSAGE statement.

How a user-defined UTM message module is created is described in the openUTM manual ”Messages, Debugging
and Diagnostics”.

Data structure kc_message_module_str

char mm_name[8];

char lib[54]; (only on BS2000 systems)

char locale_lang_id[2]; (only on BS2000 systems)

char locale_terr_id[2]; (only on BS2000 systems)

char standard_module; (only on BS2000 systems)

The fields in the data structure have the following meanings:

mm_name

Contains the name of the UTM message module whose properties are returned by UTM.

lib (only on BS2000 systems)

Contains the name of the library that contains the UTM message module.

locale_lang_id, locale_terr_id (only on BS2000 systems)

Specifies the language environment for which the UTM message module will be used.

locale_lang_id
Contains the up to two characters long language code.

locale_terr_id
Contains an up to two characters long territory code.

The UTM messages of user-defined UTM message modules are used for the STATION, SYSLINE and
PARTNER message lines. The UTM message module used corresponds to the and locale_lang_id

 that is identical to the language and territory code of the locale of the respective user or locale_terr_id
LTERM partner.

openUTM V7.0. Administering Applications. User Guide.

 517

standard_module (only on BS2000 systems)

Specifies if the message module is the user-defined standard message module of the application.

The standard message module is the user-defined message module that is assigned to the language and
territory code of the standard language environment. The standard language environment is specified in
the KDCDEF generation in MAX LOCALE.
The standard message module is always used by UTM for messages in the SYSLST, SYSOUT and
CONSOLE message lines

'Y' The message module is the standard message module.

'N' The message module is not the standard message module.

openUTM V7.0. Administering Applications. User Guide.

 518

11.3.1.19 kc_mux_str - Multiplex connections (BS2000 systems)

The data structure is defined for the object type KC_MUX. In the case of KC_GET_OBJECT, UTM kc_mux_str
returns the names and properties of a multiplex connection via which a message router can connect to the
application in .kc_mux_str

Several terminal clients can be connected simultaneously to the UTM application via a multiplex connection.

mod 1 Data structure kc_mux_str

- char mx_name[8];

- char pronam[8];

- char bcamappl[8];

x(GPD) char auto_connect;

x(GPR) char maxses[5];

x(GPD) char state;

- char netprio;

x(A) char connect_mode;

- char actcon[5];

- char maxcon[5];

- char letters[10];

- char incnt[5];

- char wait_go[5];

- char shortage[5];

- char rtryo[5];

- char rtryi[5];

x(IR) char bcam_trace;

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see "obj_type=KC_MUX (BS2000 systems)"

The fields in the data structure have the following meanings:

mx_name

Contains the name of the multiplex connection.

pronam

The name of the computer containing the message router.

openUTM V7.0. Administering Applications. User Guide.

 519

The name in is identical to the name of the computer specified for the BCAM generation for this pronam
computer.

bcamappl

The name of the local UTM application (BCAMAPPL name) via which the connection to the message
router will be established, i.e. the message router must specify this application name as the partner
name when the connection to the UTM application is established.

If several multiplex connections (the same computer name is always in) with different pronam
BCAMAPPL names exist in the local application for a message router, then several parallel connections
can be established to the message router.

auto_connect

Specifies if the local application automatically establishes a transport connection to the message router
during the application start.

'N' The connection is not automatically established, it must be established by the administrator (see
).connect_mode

'Y' UTM attempts to establish the connection to the message router at the start of the local application.
If no connection can be made, for example because the message router is not available, then UTM
will repeat the attempt to establish the connection at the intervals specified in the conrtime_min
timer. The timer can be changed (see the data structure , field kc_timer_par_str conrtime_min

)."kc_timer_par_str - Timer settings"

maxses

Specifies the maximum number of simultaneously open sessions that can exist between the message
router and the application, i.e. contains the maximum number of clients that can be maxses
simultaneously connected to the application via the message router.

Minimum value: '1'
Maximum value: '65000' (theoretical value)

state Specifies whether the multiplex connection is currently disabled.

'Y' The multiplex connection is not disabled.

'N' The multiplex connection is disabled. No connection between the message router and the
application can be established at the present time.

netprio

Specifies the transport priority used on the transport connection between the application and the
message router.

'M' "Medium" transport priority

'L' "Low" transport priority

connect_mode

Specifies whether the message router is currently connected to the application.

openUTM V7.0. Administering Applications. User Guide.

 520

'Y' The message router is currently connected to the application.

'W' UTM is attempting to establish a connection to the message router.

'N' The message router is not currently connected to the application.

actcon

Contains the number of clients currently connected to the application via this multiplex connection.

maxcon

Contains the maximum value that has reached during the current application run. also actcon maxcon
specifies the maximum number of clients that were simultaneously connected to the application via this
multiplex connection during the previous application run.
The counter is reset to 0 at the start of the application.

letters Contains the number of messages replaced between the message router and the application since the
start of the application (input and output messages).

incnt Contains the number of input messages received from the application via this multiplex connection.
The counter is reset to 0 at the start of the application.

wait_go

Specifies how often BCAM needed to request the multiplex connection to resend a message because
BCAM was not able to accept this message before due to a BCAM bottleneck (WAIT FOR GO).
The counter is reset to 0 at the start of the application.

shortage

Contains the number of BCAM bottlenecks (shortages) for this multiplex connection since the start of the
application.

rtryo (e r ut)r t y o

Specifies how often the application needed to retry sending an output message to the message router
since the application start.

rtryi (e r n)r t y i

Specifies how often the application needed to retry reading a message from the message router since
the application start.
If a message from the message router is received by BCAM, then BCAM informs UTM that a message is
available. UTM then tries to read the message from BCAM.

 contains the number of failed attempts to read the message from BCAM before UTM was finally rtryi
able to read the message.

bcam_trace

Specifies whether the BCAM trace for this multiplex connection is explicitly activated or deactivated.

'Y' The BCAM is explicitly activated.

'N' The BCAM trace is not explicitly activated.

openUTM V7.0. Administering Applications. User Guide.

 521

There is only any point evaluating this field if the BCAM trace is activated explicitly for a number of
LTERM partners, LPAP partners or multiplex connections.

If the BCAM trace is activated or deactivated generally (), 'N' is returned kc_diag_and_account_par_str
for .bcam_trace

If the value of is to be modified, the following prerequisites apply to explicit activation:bcam_trace

The BCAM trace must be deactivated for everything ().kc_diag_and_account_par

The BCAM trace must be deactivated explicitly for this multiplex connection.

The prerequisite for explicit deactivation is that the BCAM trace is activated explicitly for a number of
LTERM partners, LPAP partners or multiplex connections.

openUTM V7.0. Administering Applications. User Guide.

 522

11.3.1.20 kc_osi_association_str - Associations to OSI TP partner applications

The data structure is defined for the object type KC_OSI_ASSOCIATION. In the case of kc_osi_association_str
KC_GET_OBJECT, UTM returns the properties of an association currently existing or being established for
distributed processing via OSI TP in .kc_osi_association_str

Data structure kc_osi_association_str

char association_id[8];

char osi_lpap[8];

char contwin;

char connect_state;

char contime_min[10];

char request_calls[10];

char indication_calls[10];

The fields in the data structure have the following meanings:

association_id

Contains the identification (ID) assigned to the association when the connection is established. It is only
unique as long as the association is established. If this association is closed, then the ID is released
and can be assigned to another association (established thereafter).

The association ID is an integer with a maximum of 8 digits.

osi_lpap

Specifies the partner application with which the association has been established. UTM returns the
name of the OSI-LPAP partner assigned to the partner application in .osi_lpap

contwin (contention winner)

Specifies if the local application for this association is the contention winner or the contention loser.

The contention winner takes over the administration of the association. Jobs can be started, however,
by the contention winner as well as by the contention loser. In case of a conflict, such as when both
communication partners want to start a job at the same time, the association from the job of the
contention winner will be used.

'Y' The local application is the contention winner.

'N' The local application is the contention loser.

connect_state

Specifies the status of the association.

'C' The association is established.

openUTM V7.0. Administering Applications. User Guide.

 523

'W' The association is being created. It is waiting for a "GO" from OSS.

'S' The association is being created and is in "STOP" state. It is waiting for a "GO" signal from OSS.

contime_min

Specifies the connect time of the existing connection in minutes.

request_calls

The number of request/response presentation calls to OSS since the creation of the association.

indication_calls

The number of indication/confirmation presentation calls to OSS since the creation of the association.

openUTM V7.0. Administering Applications. User Guide.

 524

11.3.1.21 kc_osi_con_str - OSI TP connections

The data structure is defined for the object type KC_OSI_CON. In the case of KC_GET_OBJECT, kc_osi_con_str
UTM returns the name and address of an OSI TP partner application and the status of the connection to the partner
application in .kc_osi_con_str

An OSI TP connection is created with the KDCDEF control statement OSI-CON.

mod1 Data structure kc_osi_con_str

- char oc_name[8];

- char osi_lpap[8];

- char local_access_point[8];

- union kc_selector presentation_selector;

- union kc_selector session_selector;

- char presentation_selector_type;

- char presentation_selector_lth[2];

- char presentation_selector_code;

- char session_selector_type;

- char session_selector_lth[2];

- char session_selector_code;

- char transport_selector[8];

- char network_selector[8];

x(GIR) char active;

- char map; (only on Unix, Linux and Windows systems)

- char listener_port[5];

- char t_prot; (only on Unix, Linux and Windows systems)

- char tsel_format; (only on Unix, Linux and Windows systems)

- char ip_addr[15]; (only on Unix, Linux and Windows systems)

- char ip_addr_V6[39]; (only on Unix, Linux and Windows systems)

- char ip_v[2]; (only on Unix, Linux and Windows systems)

- char network_selector_long[64];

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see "obj_type=KC_OSI_CON"

openUTM V7.0. Administering Applications. User Guide.

 525

The fields in the data structure have the following meanings:

oc_name

Contains the name of a connection that was generated with OSI-CON for the communication via the OSI
TP protocol. uniquely identifies the connection in the local UTM application.oc_name

osi_lpap

Specifies the partner application for which the connection is defined. contains the name of the osi_lpap
OSI-LPAP partner assigned to the partner application.

local_access_point

Contains the name of an OSI TP access point that is defined for the local application (KDCDEF statement
ACCESS-POINT). The connection to the partner application is established via this access point.

presentation_selector

Contains the presentation selector of the partner application. The presentation selector is a component of
the partner address.

presentation_selector is a field of type :kc_selector

union kc_selector

char x[32];

char c[16];

UTM generally returns the presentation selector as character string () in a machine-specific code format (c
='S'). The character string is a maximum of 16 characters long. The presentation_selector_code

field is padded with blanks starting after the position specified in the presentation_selector
length field.presentation_selector_lth

In special cases, the presentation selector is returned as a hexadecimal string (). Each half byte is x
represented by a character, for example the hexadecimal number A2 is returned as the string 'A2' (2
characters). If the presentation selector is a hexadecimal number, then UTM returns up to 32 bytes.

You determine how to interpret the contents of the with the presentation_selector
fieldpresentation_selector_type .

If the address of the access point does not contain a presentation selector, then the presentation_selector
field contains only blanks. In this case, = 'N' and = presentation_selector_type presentation_selector_lth
'0'.

session_selector

Contains the session selector of the partner application. The session selector is a component of the
partner address.

session_selector is a union of type).kc_selector (see presentation_selector

openUTM V7.0. Administering Applications. User Guide.

 526

UTM generally returns the session selector as character string () in machinespecific code (c
='S'). The character string is a maximum of session_selector_code

16 characters long. The field is padded with blanks starting after the position specified in session_selector
the length field.session_selector_lth

In special cases, the session selector is returned as a hexadecimal string (). Each half byte is x
represented by a character. If the session selector is a hexadecimal number, then UTM returns up to 32
bytes in .session_selector

You determine how to interpret the contents of the with the fieldsession_selector session_selector_type .

If the address of the access point does not contain a presentation selector, then the field session_selector
contains only blanks. In this case, = 'N' and = '0'.session_selector_type session_selector_lth

presentation_selector_type

Specifies if the address of the partner application contains a presentation selector and how to interpret
the data returned in .presentation_selector

'N' N stands for *NONE. The address of the partner application does not contain a presentation
selector, contains only blanks and ='0'.presentation_selector presentation_selector_lth

'C' The data of the presentation selector in is to be interpreted as a character presentation_selector
string. A maximum of the first 16 bytes of contain data.presentation_selector

'X' The presentation selector in is a hexadecimal number.presentation_selector

presentation_selector_lth

Contains the length of the presentation selector (in bytes. If presentation_selector)
 ='0', then the address of the partner application does not contain any presentation_selector_lth

presentation components (contains blanks). Otherwise, the value of presentation_selector
 lies between '1' and '16'.presentation_selector_lth

If ='X', then the string length specified in is: 2 * presentation_selector_type presentation_selector
bytes.presentation_selector_lth

Example
The presentation selector is X'A2B019CE'. then contains the string 'A2B019CE', presentation_selector

='X' and =' 4'.presentation_selector_type presentation_selector_lth

presentation_selector_code

Specifies how the presentation selector in is encoded.presentation_selector

UTM returns 'S' if the presentation selector will be returned as a character string (
 = 'C').presentation_selector_type

'S' means: machine-specific code (default code, EBCDIC on BS2000 systems and ASCII on Unix, Linux
and Windows systems).

If = 'X' or 'N', then UTM returns a blank in the presentation_selector_type presentation_selector_code
field.

openUTM V7.0. Administering Applications. User Guide.

 527

session_selector_type

Specifies if the address of the partner application contains a session selector and how to interpret the
data returned in .session_selector

'N' N stands for *NONE. The address of the partner application does not contain a session selector,
 contains only blanks and ='0'.session_selector session_selector_lth

'C' The data of the session selector in is to be interpreted as a character string. A session_selector
maximum of the first 16 bytes of contain data.session_selector

'X' The session selector in is a hexadecimal number.session_selector

session_selector_lth

Contains the length of the session selector (in bytes. If ='0', then session_selector) session_selector_lth
the address does not contain any session components (contains blanks). Otherwise, the session_selector
value of lies between '1' and '16'.session_selector_lth

session_selector_code

Specifies how the session selector in is encoded.session_selector

UTM returns 'S' if the session selector will be returned as a character string (= 'C').session_selector_type
'S' means: machine-specific code (default code, EBCDIC on BS2000 systems and ASCII on Unix, Linux
and Windows systems).

If = 'X' or 'N', then UTM returns a blank in the field.session_selector_type session_selector_code

transport_selector

Contains the transport selector of the address of the partner application. The transport selector is a
component of the partner address. always contains a valid value because each transport_selector
communication partner must be assigned a transport selector so that it is addressable within its system.
The transport selector is always to be interpreted as a character string and consists of 1 to 8 printable
characters.

network_selector

Network component (network selector) of the partner address.

BS2000 systems:

network_selector contains the name of the computer on which the partner application runs. This is the
name under which the computer is known to BCAM.

Unix, Linux or Windows systems:

network_selector contains the name of the partner computer by means of which UTM searches the IP
address of the partner computer in the name service.

If the real computer name is longer than 8 characters:

openUTM V7.0. Administering Applications. User Guide.

 528

The field contains a symbolic local name assigned for this computer by the transport network_selector
system.

The complete name, up to 64 characters long, can be taken from the field.network_selector_long

active Specifies if this connection is set to active or if the connection is a substitute

connection that is presently inactive. It is possible to generate several connections to a partner
application. Only one of these connections, however, may be active at any one time.

'Y' The connection is set to active.

'N' The connection is inactive.

openUTM V7.0. Administering Applications. User Guide.

 529

map (only on Unix, Linux and Windows systems)

Specifies whether UTM performs a code conversion (ASCII <-> EBCDIC) for user messages without any
formatting flags (abstract syntax UDT) which are exchanged between the partner applications.

'U' (USER)
UTM does not convert user messages, i.e. the data in the message is transmitted unchanged to
the partner application.

'1', '2', '3', '4' (SYS1 | SYS2 | SYS3 | SYS4)

UTM converts the user messages according to the code tables provided for the code conversion,
see section "Code conversion" in the openUTM manual “Generating Applications”, i.e.:

Prior to sending, the code is converted from ASCII to EBCDIC.

After receival, the code is converted from EBCDIC to ASCII.

openUTM assumes that the messages contain only printable characters.

For more information on code conversion, please refer to the openUTM manual „Programming
Applications with KDCS”; keyword „code conversion".

UTM returns the components of the transport address of the partner application in the following fields. See also the
openUTM manual “Generating Applications” for more information.

listener_port

Contains the port number of the address of the partner application.

If = '0', then no listener port number was generated in the KDCDEF generation.listener_port

t_prot (only on Unix, Linux and Windows systems)

Contains the address format of the transport address. The address format specifies the transport protocol
used for communication with the partner application.

'R' RFC1006, ISO transport protocol class 0 using TCP/IP and the convergence protocol RFC1006.

If contains a blank, then no address format was defined in the KDCDEF generation.t_prot

openUTM V7.0. Administering Applications. User Guide.

 530

tsel_format (only on Unix, Linux and Windows systems)

Specifies the format in which the T-selectors of the partner address is stored in the TS directory:

'T' TRANSDATA format

'E' EBCDIC character format

'A' ASCII character format

If contains a blank, then no format indicator was defined in the KDCDEF generation.tsel_format

The meanings of the address formats are described in the "PCMX documentation" (openUTM
.documentation)

ip_addr (only on Unix, Linux and Windows systems)

Returns the IP address used by UTM for this connection from the object table of the application if the
address is an IPv4 address.

UTM uses the address to establish connections to partner applications. UTM reads the IP address from
the host name database when the application is started using the generated processor name (

).networ_selector

An IPv6 address is returned in the field.ip_addr_v6

If there is no IPv4 address in the object tables for the client, UTM returns blanks in .ip_addr

ip_addr_v6 (only on Unix, Linux and Windows systems)

Returns the IP address used by UTM for this connection from the object table of the application if the
address is an IPv6 address or an IPv4 address embedded in IPv6 format.

An IPv4 address is returned in the field (see above).ip_addr

If there is no IPv6 address in the object tables for the client, UTM returns blanks in .ip_addr_v6

ip_v (only on Unix, Linux and Windows systems)

Specifies whether the IP address used by openUTM for this connection is an IPv4 or an IPv6 address:

'V4' IPv4 Address.

'V6' IPv6 address or IPv4 address embedded in IPv6 format.

network_selector_long

Network component (network selector) of the partner address.

BS2000 systems:

openUTM V7.0. Administering Applications. User Guide.

 531

network_selector_long contains the name of the computer on which the partner application runs. This is
the name under which the computer is known to BCAM.

Unix, Linux or Windows systems:

network_selector_long contains the name of the partner computer by means of which UTM searches the
IP address of the partner computer in the name service.

openUTM V7.0. Administering Applications. User Guide.

 532

11.3.1.22 kc_osi_lpap_str - Properties of OSI TP partner applications

The data structure is defined for the object type KC_OSI_LPAP. In the case of KC_GET_OBJECT, kc_osi_lpap_str
UTM returns the following in :kc_osi_lpap_str

The logical properties of an OSI TP partner application.
The logical properties of an OSI TP partner application are defined in the KDCDEF generation in which an OSI-
LPAP partner is created and assigned to this partner application.

The status of the connection to the partner application.

Statistical information on the connection load.

openUTM V7.0. Administering Applications. User Guide.

 533

mod 1 Data structure kc_osi_lpap_str

- char ol_name[8];

- char application_context[8];

- char application_entity_qualifier[8];

- char application_process_title[10][8];

- char association_names[8];

- char associations[5];

x(GPD) char auto_connect_number[5];

- char contwin[5];

- char kset[8];

x(GPD) char idletime_sec[5];

x(GPD) char state;

- char permit;

- char qlev[5];

- char termn[2];

x(A) char connect_number[5];

x(IR) char quiet_connect;

- char osi_con[8];

- char out_queue[5];

- char ass_kset[8];

- char nbr_dputs[10];

- char master[8];

- char bundle;

- char out_queue_ex[10];

x(GPD) char dead_letter_q;

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see "obj_type=KC_OSI_LPAP"

The fields in the data structure have the following meanings:

ol_name

openUTM V7.0. Administering Applications. User Guide.

 534

Contains the name of the OSI-LPAP partner of the partner application. The partner application will be
addressed by the program units of the local application using this name. The name consists of a
maximum of 8 alphanumeric characters.

application_context

Specifies which application context from the partner application will be used. For details on application
context, please refer to the openUTM manual “Generating Applications”, KDCDEF statement
APLLICATION-CONTEXT.

application_entity_qualifier

Contains the application entity qualifier of the partner application. The application entity qualifier is used
together with the application process title for addressing a partner application for a heterogeneous link.

The application entity qualifier is a positive integer between 1 and 67108863 (= 2 -1).26

You will find more information on the application entity qualifier in the openUTM manual “Generating
Applications”.

application_entity_qualifier='0' means that no AEQ is defined for the partner application.

application_process_title

Contains the application process title (APT) of the partner application. The APT is used together with the
application entity qualifier for addressing a partner application for a heterogeneous link.

An APT consists of at least two, but at most ten components. The individual components are positive
integers.

The position of the individual components as well as their number is relevant in an application process
title. For example, (1,2,3), (1,2,3,0,0) and (0,1,2,3,0) indicate different application process titles.

You will find more information on the application process title in the openUTM manual “Generating
Applications”.

UTM returns one field element per component of the APT, i.e. the number of field elements containing
data in corresponds to the number of components generated. The remaining application_process_title
field elements contain binary zero.

If no APT was generated for the partner application, then all field elements of application_process_title
contain binary zero.

association_names

Contains the prefix of the names that are assigned to the logical connections (associations) to the partner
application within the local application.

The name of the connection is composed of the value of as its prefix and a sequential association_names
number. The sequential number lies between 1 and the number of parallel connections (associations
field) generated. The entire name for a connection can be up to 8 characters long. The maximum length
of depends, therefore, on the number of parallel connections in .association_names associations

Example
 ='ASSOC' and = '10', then the connections to the partner application that association_names associations

are assigned to the OSI-LPAP partner have the following names: ASSOC01, ASSOC02, ..., ASSOC10.

associations

openUTM V7.0. Administering Applications. User Guide.

 535

Contains the maximum number of parallel connections to the partner application. The maximum possible
number of parallel connections to a partner application depends on the transport system used and on the
size of the name space of the UTM application (see the openUTM manual “Generating Applications”).

auto_connect_number

Contains the number of connections to the partner application that will be automatically established at
start of the local application as long as the partner application is available at this point in time. The
establishing of a connection at the start of the application can be requested by the local application as
well as by the partner application. In this manner, you can ensure that the connection is automatically
established as soon as both partners are available.

auto_connect_number = '0' means that the connection is not set up automatically.

Minimum value: '0'
Maximum value: maximum number of parallel connections ()associations

contwin

Contains the number of connections for which the local application is the contention winner. For the rest
of the connections (difference: associations - contwin), the local application is the contention loser.

The contention winner takes over the administration of the association. Jobs can be started, however, by
the contention winner as well as by the contention loser. In case of a conflict, such as when both
communication partners want to start a job at the same time, the association from the job of the

 contention winner will be used.

kset

Contains the name of the key set with the maximum access privileges of the OSI TP partner application in
the local application.

If the OSI TP partner passed a user ID when an association is established, the key set in kset becomes
 effective. The access privileges of the association correspond to the key codes contained both in kset and

in the key set of the user ID.

If the OSI TP partner application for the association does not pass a user ID to openUTM the access
privileges for the association form the subset of the key codes in and (minimum access kset ass_kset
privileges).

If the partner application is not assigned a key set, then contains blanks.kset

idletime_sec

Contains the maximum time in seconds that an association to the partner application may be in the idle
state before UTM closes the connection to the partner application. The idle state means that the session
is not handling any jobs.

 idletime_sec = '0' means that the idle state will not be monitored. The connection remains established
until an explicit request to close the connection is sent.

Minimum value: '60'
Maximum value: '32767'

state

Specifies if the OSI-LPAP partner is currently disabled.

openUTM V7.0. Administering Applications. User Guide.

 536

'Y' The OSI-LPAP partner is not disabled. Connections between the partner application and the local
application can be established or connections already exist.

'N' The OSI-LPAP partner is disabled. No connections between the partner application and the local
application can be established.

permit Specifies which privileges the partner application has within the local application.

'A' (ADMIN)
The partner application has administration privileges. It may execute all administration functions in
the local application.

'N' (NONE)
The partner application does not have any administration privileges.

Only on BS2000 systems:

If the local application is a UTM application on a BS2000 system, then the partner application is
also not allowed to execute any UTM SAT administration functions.

'B' (BOTH, only on BS2000 systems)
The partner application may execute administration functions and UTM SAT administration
functions in the local application.

'S' (SAT, only on BS2000 systems)
The partner application only has UTM SAT administration privileges. It may execute preselection
functions in the local application, i.e. it can enable or disable the SAT logging for certain events.

qlev (queue level)

qlev specifies the maximum number of asynchronous messages allowed in the message queue of the
OSI-LPAP partner. If this control value is exceeded, then any additional asynchronous jobs sent to this
OSI-LPAP partner will be rejected (i.e. '40Z' will be returned for any APRO-AM calls thereafter).

termn

Contains the code for the type of communication partner. The code is entered in the communication area
header of the job-receiving service that was started in the local application by the partner application. The
code is defined by the user and serves to divide the communication partners into groups of a certain type.
It is not evaluated by UTM. The code is a maximum of 2 characters long.

connect_number

Contains the number of parallel connections to the partner application that are currently established or
that are currently to be established.

connect_number = '0' means that no connection to the partner application currently exists or all existing
connections are to be disconnected.

openUTM V7.0. Administering Applications. User Guide.

 537

Minimum value: '0'
Maximum value: the number in associations

quiet_connect

Specifies if the QUIET property is set or is to be set for the partner application. QUIET means that UTM
closes all connections to the partner application as soon as they are not being used for dialog jobs or
asynchronous jobs. No more new dialog jobs are accepted for the partner application.

'Y' The QUIET property is set for the partner application.

'N' The QUIET property is not set.

osi_con

Contains the name of the transport connection via which communication with the partner application will
occur, i.e. all connections (associations) with the partner application are handled via this transport
connection. The name is assigned to the transport connection in the KDCDEF generation (OSI-CON
statement assigned to the OSI-LPAP partner). indicates the transport connection that is currently osi_con
set to active, i.e. that is not deactivated as a substitute connection (see the openUTM manual “Generating
Applications”).

out_queue

The number of messages in the message queue of the OSI-LPAP partners that still have to be sent to the
partner application.

If this number of messages is greater than 99999, then the number is not displayed in full. You should
therefore use the field since larger numbers can be entered in full here.out_queue_ex

ass_kset

Only applies if the application is generated with user IDs.
 contains the name of the key set specifying the minimum access privileges of the OSI TP ass_kset

partner which the partner application can use in the local application.

The key set specifies in becomes effective when the partner application does not pass a user ID ass_kset
to openUTM while an association is established (see also). describes the access privileges kset ass_kset
of the association user.

Default: no key set, i.e. the access privileges in always apply.kset

nbr_dputs

The number of pending time-driven jobs for this OSI-LPAP whose starting time has not yet been reached.

master

Associated OSI-LPAP if the OSI-LPAP is a slave OSI-LPAP in an OSI-LPAP bundle.

bundle

Specifies whether the OSI-LPAP belongs to an OSI-LPAP bundle.

openUTM V7.0. Administering Applications. User Guide.

 538

'N' The OSI-LPAP does not belong to an OSI-LPAP bundle.

'M' The OSI-LPAP is the master OSI-LPAP in an OSI-LPAP bundle. In this event, the following
applies:

Only the field can be modified with KC_MODIFY_OBJECT.state

Only the , , and fields are relevant ol_name application_context state bundle
withKC_GET_OBJECT.

'S' The OSI-LPAP is the slave OSI-LPAP in an OSI-LPAP bundle.

out_queue_ex

See .out_queue

dead_letter_q

specifies whether an asynchronous message to an OSI-LPAP partner is saved in the dead letter queue if
it could not be sent because of a permanent error.

'Y' Asynchronous messages to this OSI-LPAP partner which could not be sent because of a
permanent error are saved in the dead letter queue, as long as (in case of message complexes)
no negative confirmation job was defined.

'N' Asynchronous messages to this OSI-LPAP partner which could not be sent because of a
permanent error are not saved in the dead letter queue but deleted.

openUTM V7.0. Administering Applications. User Guide.

 539

11.3.1.23 kc_program_str - Program units and VORGANG exits

The data structure is defined for the object type KC_PROGRAM. In the case of KC_GET_OBJECT, kc_program_str
UTM returns information in on the program units and VORGANG exits of the UTM application.kc_program_str

Program units can be dynamically created with KC_CREATE_OBJECT and deleted with KC_DELETE_OBJECT.

Data structure kc_program_str

char pr_name[32];

char compiler;

char load_module[32];

char load_mode;

char poolname[50]; (only on BS2000 systems)

char lib[54];

char deleted;

The fields in the data structure have the following meanings:

pr_name

Contains the name of the program unit.

In UTM applications on BS2000 systems, UTM returns the ENTRY or CSECT name of the program unit.

compiler

Specifies the run time system or the compiler that has been assigned to the program unit in the
generation. The values returned by UTM depend on the operating system platform on which the program
unit is running.

In a UTM applications on BS2000 systems ='I' will be returned for all program units that support compiler
ILCS.

The following values are possible in a UTM application on BS2000 systems:

'I'
'A'
'C'
'1'
'F'
'X'
'P'
'S'

for ILCS (Inter Language Communication Services)
for the ASSEMB assembly compiler
for the C compiler (only for KC_CREATE_OBJECT call)
for the COBOL compiler COB1
for the FORTRAN compiler FOR1
for PASCAL-XT
for PLI1
for SPL4

The following values are possible for a UTM application on Unix, Linux or Windows systems:

openUTM V7.0. Administering Applications. User Guide.

 540

'C'
'2'
'3'
'+'

for the C compiler
for the COBOL compiler of Micro
Focus
for the NetCOBOL compiler of Fujitsu
for the C++ compiler

load_module

Contains the name of the load module (BS2000 systems) or shared object/DLL (Unix, Linux and Windows
systems) in which the program unit is bound. can be up to 32 characters long. load_module
If the program unit is not assigned to any load module or shared object/DLL, then UTM returns blanks.

load_mode

Contains the load mode of the program unit or of the load module/shared object/DLL in which the
program unit is bound. The load mode specifies when and to where the program unit or load module
/shared object/DLL will be loaded.

'U' (START P) U
The program unit or load module/shared object/DLL will be loaded as an independent unit at the
start of the application.

'O' (NCALL)O
The load module/shared object/DLL is loaded as an independent unit when one of its VORGANG
exits is called for the first time.

The following values can additionally be returned in for load modules of a UTM application on load_mode
a BS2000 system:

'S' (TATIC)S
The program unit or load module is statically bound in the application program.

'P' (OOL) P
The program unit or load module is loaded into a common memory pool (see) at the poolname
start of the application. The load module consists only of one public slice (no private slice).

'T' (POOL/ S ARTUP)T
The public slice of the load module is loaded into a common memory pool (see) at the poolname
start of the application. The private slice belonging to the load module is then loaded into the local
process storage area (private slice with load mode STARTUP).

'C' (POOL/ONCALL)
The public slice of the load module is loaded into a common memory pool (see poolname) at the
start of the application. The private slice belonging to the load module is then loaded into the local

openUTM V7.0. Administering Applications. User Guide.

 541

process storage area as soon as a program unit is called that is assigned to this load module
(private slice with load mode ONCALL).

poolname (only on BS2000 systems)

For load_mode='P', 'T' or 'C', poolname contains the name of the common memory pool in which the
program unit or the public slice of its load module was loaded at the start of the application.

For load_mode != 'P', 'T' or 'C', poolname contains blanks.

openUTM V7.0. Administering Applications. User Guide.

 542

lib

lib contains following:

In a UTM application on a BS2000 system generated without load modules, the object module library
from which the program unit was loaded or bound is returned.

In a UTM application on a BS2000 system generated with load modules, the program library from
which the load module was loaded is returned.

In a UTM application running on Unix, Linux or Windows systems generated with shared objects, the
directory in which the shared object/DLL is stored is returned.

deleted

Specifies in the case of KC_GET_OBJECT if the program unit was deleted from the configuration by the
dynamic administration.

'Y' The program unit was deleted. The name is disabled, meaning no new program unit with this
name may be added.

'N' The program unit was not deleted from the configuration.

openUTM V7.0. Administering Applications. User Guide.

 543

11.3.1.24 kc_ptc_str - Transactions in PTC state

The data structure is defined for the object type KC_PTC. If KC_GET_OBJECT is specified then kc_ptc_str
shows all the distributed transactions in the state PTC (prepare to commit) and for which there is no kc_ptc_str

connection (LU6.1 session or OSI-TP) to the Commit Coordinator. The Commit Coordinator is the partner
application that determines the result of the transaction.

 indicates the state of a transaction in which a partner has already initiated the end of the prepare to commit
transaction and is waiting for a communication partner’s decision on the transaction output. In this state, the local
transaction sets locks on application or database resources.

openUTM returns the following:

Information about the transaction

Job-submitter user ID of the distributed transaction.

Name of the partner (LPAP or OSI-LPAP partner)

Name of the session (in the case of LU6.1)

Data structure kc_ptc_str

struct kc_ptc_id_str ptc_ident;

char ptc_user[8];

char ptc_lpap[8];

char ptc_lses[8];

char ptc_user_type;

The fields in the data structure have the following meanings:

ptc_ident

Specifies information relating to the transaction in the element of type :ptc_ident kc_ptc_id_str

struct kc_ptc_id_str

char vg_indx[10];

char vg_nr[10];

char ta_nr_in_vg[5];

The PTC state can be caused by the establishment of a connection to the specified partner or by an
administrative rollback of the local element of the distributed transaction (e.g. with operation code
KC_PTC_TA and =KC_ROLLBACK, see).subopcode1 "KC_PTC_TA - Roll back transaction in PTC state"

i

Caution: An administrative rollback can lead to data inconsistencies and should only be performed in
exceptional cases.

!

openUTM V7.0. Administering Applications. User Guide.

 544

vg_indx is the index of the service, the number of the service and the number of the vg_nr ta_nr_in_vg
transaction in the service.

In the case of operation code KC_PTC_TA with =KC_ROLLBACK the structure must be subopcode1
passed in the identification area if you wish to reset the transaction.

ptc_user

Specifies the job submitter user ID of the distributed transaction.

In the case of OSI TP, the field contains the name of an OSI TP association.

In the case of LU6.1, the field can contain the name of a user (USER), an LU6.1 session (LSES) or 8
spaces:

If the field contains 8 spaces then the transaction is in the PTC state in an asynchronous LU6.1 job-
submitter service.

If the field contains the name of a user then the transaction is in the PTC state in the highest level LU6.
1 job-submitter dialog service.

If the content of the field is not the same as the content of the field then the transaction is in ptc_lses
the PTC state in an LU6.1 job-submitter service.

If the content of the field is the same as the content of the field then the transaction is in the ptc_lses
PTC state in an LU6.1 job-receiver service.

ptc_lpap

Specifies the LPAP or OSI-LPAP name of the partner that determines the result of the transaction
(Commit Coordinator).

ptc_lses

In the case of LU6.1 connections, specifies the session name of the partner that determines the outcome
of the transaction (Commit Coordinator).

In the case of a PTC transaction in the job receiver, has the same content as .ptc_lses ptc_user

In the case of OSI TP connections, the field contains spaces.

ptc_user_type

Type of entry in the field :ptc_user

U User

L LU6.1 session

O OSI TP Association

Blank If the field is emptyptc_user

openUTM V7.0. Administering Applications. User Guide.

 545

11.3.1.25 kc_pterm_str - Clients and printers

The data structure is defined for the object type KC_PTERM. In the case of KC_GET_OBJECT, UTM kc_pterm_str
returns the following information in :kc_pterm_str

The properties of clients and printers that were statically or dynamically added to the configuration of the
application.

The properties of clients that are presently connected to the application via an LTERM pool or multiplex
connection.

The properties and status of the connection to the corresponding client or printer.

Statistical information on the connection load and the demands on the application for the individual clients
/printers.

Clients and printers can be dynamically created with KC_CREATE_OBJECT, deleted with KC_DELETE_OBJECT
or modified with KC_MODIFY_OBJECT.

mod 1 Data structure kc_pterm_str see 2

- char pt_name[8]; pt_name

- char pronam[8]; pronam

- char bcamappl[8]; bcamappl

- char ptype[8]; ptype

- char ptype_fotyp[8]; PRINTER

- char ptype_class[40]; PRINTER

x(PD) char lterm[8]; lterm

x(GPD) char auto_connect; auto_connect

x(GPD) char state; state

- char cid[8]; cid

- char map; map

- char termn[2]; termn

- char protocol; (only on BS2000 systems) protocol

- char usage_type; (only on BS2000 systems) usage_type

- char listener_port[5]; listener_port

- char t_prot; t_prot

- char tsel_format; (only on Unix, Linux and Windows systems) tsel_format

openUTM V7.0. Administering Applications. User Guide.

 546

mod 1 Data structure kc_pterm_str see 2

x(A) char connect_mode; connect_mode

- char pool; pool

- char mux; (only on BS2000 systems) mux

- char contime_min[10]; contime_min

- char letters[10]; letters

- char conbad[5]; conbad

- char deleted; deleted

X(GPD) char idletime[5]; idletime

- char encryption_level; encryption_level

- char ip_addr[15]; ip_addr

- char curr_encryption; curr_encryption

- char t_mode; 3

- char usp_hdr; usp_hdr

- char ip_addr_v6[39]; ip_addr_v6

- char ip_v[2]; ip_v

- char pronam_long[64]; pronam_long

1 Field contents can be modified with KC_MODIFY_OBJECT; see ."obj_type=KC_PTERM"

2 The meaning of the fields is described on the pages indicated in this column.

3 UTM-internal field; the field contents is irrelevant and will not be discussed.

The fields in the data structure have the following meanings:

pt_name

Contains the name of the client or printer. The client/printer is known to the transport system (BCAM,
PCMX) under this (symbolic) name.

pronam

The name of the computer on which the client can be found or to which the printer is connected.

In UTM applications on BS2000 systems always contains data. For an RSO printer pronam pronam
contains the value '*RSO'.

openUTM V7.0. Administering Applications. User Guide.

 547

In UTM applications running on Unix, Linux or Windows systems contains blanks for a local client pronam
or printer.

If the real computer name is longer than 8 characters:

The field contains a symbolic local name assigned for this computer by the transport system.pronam

If no connection was established yet, contains blanks.pronam

The complete name, up to 64 characters long, can be taken from the field. pronam_long

bcamappl

Name of the local UTM application via which the connection to the client/printer will be established.

For terminals and printers always contains the name of the application that was specified for bcamappl
the KDCDEF generation in MAX APPLINAME.

For UPIC clients and TS applications always (even if no connection is presently established) bcamappl
contains the application name assigned to the client when it was added to the configuration.

Only on BS2000 systems:

For clients that are connected to the application via a multiplex connection, contains the bcamappl
application name assigned to the multiplex connection when it was added to the configuration as long
as the connection is established.

ptype

The type of client or printer.

BS2000 systems

For clients/printers that are connected to a UTM application on a BS2000 system, either the partner type
or the value '*ANY' or '*RSO' is returned. The partner types supported are listed in the following table:

ptype Type of client/printer termn field

*ANY The client was added to the configuration without an exact
specification of its device type. In this case, UTM uses the
device type of the client from the user service log when
establishing the connection. Only then will it be decided if the
partner type is supported or not.
Advantage of ='*ANY': ptype
You can add clients to the configuration without knowing their
type. In addition, the administration of the configuration is
made easier because even if the type is modified in the
configuration, for example, this client will still be able to
establish a connection to the application without you having
to change the configuration of the application.

If the terminal mnemonic was
not explicitly specified during
configuration, then the
standard terminal mnemonic
of the partner type is used
when establishing the
connection.
Otherwise, the value specified
during configuration is stored
here.

openUTM V7.0. Administering Applications. User Guide.

 548

ptype Type of client/printer termn field

T100 Teletype T100 C0

T1000 Teletype T1000 E1

T8103 8103 FD

T8110 8110 C2

T8121V12 Printer 8121 on 8112 F7

T8122V12 Printer 8122 on 8112 F8

T8124 Printer 8124 FC

T8151 DSS 8151 F1

T8152 DSS 8152 F2

T8160 DSS 8160 F4

T8162 DSS 8162 F6

T8167 DSS 8167 FB

T9748 1 DSS 9748 FE

T9749 DSS 9749 FE

T9750 1 DSS 9750 FE

T9751 DSS 9751 FE

T9752 DSS 9752 FF

T9753 DSS 9753 FE

T9754 DSS 9754 FI

T9755 2 DSS 9755 FG

T97562 DSS 9756 FG

T9763 DSS 9763 FH

T9770 DSS 9770 FK

T9770R DSS 9770R FK

T3270 DSS 3270 (IBM) FL

THCTX28 DSS X28 (TELETYPE) C5

openUTM V7.0. Administering Applications. User Guide.

 549

ptype Type of client/printer termn

field

TVDTX28 DSS X28 (VIDEO) C6

TPT80 Data station PT80 C4

T9001 9001 printer C7

T9002 9002 printer FA

T9003 9003 printer F9

T9004 9004 printer FD

T9001-3 9001-3 printer CA

T9001-89 9001-893 printer CB

T9011-18 9011-18 printer CC

T9011-19 9011-19 printer CD

T9012 9012 printer CE

T9013 9013 printer C9

T9021 9021 printer CH

T9022 9022 printer CF

T3287 3287 printer CG

*RSO Printer supported by RSO.
Instead of establishing a transport connection, UTM reserves the printer with
RSO and transmits the message to be printed to RSO.

RS

THOST Intelligent terminal A3

APPLI Transport system application that is not a socket application (e.g. : DCAM, CMX
or UTM application)

A1

UPIC-R UPIC client A5

SOCKET USP-Socket application A7

SOCKET HTTP Client A8

SOCKET Secure USP-Socket application A9

SOCKET HTTPS Client AA

1 T9748 and T9750 designate the same terminal type.

openUTM V7.0. Administering Applications. User Guide.

 550

2 T9755 and T9756 designate the same terminal type.

The VTSU versions that support the individual terminals can be obtained from the DCAM, FHS or TIAM
Manual.
If a terminal is not supported by VTSU, then UTM rejects a request for connection from this terminal. UTM
triggers the UTM messages K064 and K107.

Unix, Linux and Windows systems

In a UTM application on Unix, Linux or Windows systems, can contain the following values.ptype

ptype Type of client/printer termn field

TTY The client is a terminal.
Default value

F1

PRINTER ptype ='PRINTER' is only relevant on Unix and Linux system and is not
allowed under openUTM on Windows systems.
The significance of ='PRINTER' depends on the contents of the ptype

field.ptype_fotyp

F2

pt_name specifies the name of a printer to which the spool on Unix or Linux
systems will print.

ptype_fotyp and either contains blanks or the appropriate printer ptype_class
type or printer group of .pt_name

APPLI The client is a TS application that does not use the socket interface (e.g.
UTM, CMX, or DCAM application).

A1

UPIC-L The client is a local Client application with the UPIC carrier system. A5

UPIC-R The client is a remote Client application with the UPIC carrier system. A5

SOCKET USP-Socket application A7

SOCKET HTTP Client A8

SOCKET Secure USP-Socket application A9

SOCKET HTTPS Client AA

lterm

Name of the LTERM partner assigned to this client/printer.

auto_connect

Specifies if the connection to the client/printer will be automatically established at the start of the
application:

openUTM V7.0. Administering Applications. User Guide.

 551

'Y' When starting the application, UTM attempts to establish the connection automatically if the client
/printer is available when the local application is started.

'N' No automatic establishing of the connection when starting.

state

Specifies if the client or printer is currently disabled.

'Y' The client/printer is not disabled, i.e. as long as the LTERM partner assigned to this client/printer is
not disabled, connections between the client/printer and the local application can be established, or
there are already established connections.

'N' The client/printer is disabled. No connections between the client/printer and the local application
can be established.

cid (ontrol entification)c id

Only contains data if information about a printer is requested. contains the printer ID (CID) as long as cid
a CID was assigned to the printer when it was added to the configuration.

The CID has the following function:

Using the CID, the printer can be identified at the program interface for the purpose of printer control.

If the printer is assigned to a printer control LTERM, then the printer will be identified by the
administration from the printer control LTERM using the CID.

map

Specifies whether UTM performs a code conversion (ASCII <-> EBCDIC) for user messages without any
formatting flags which are exchanged between the partner applications.

User messages are passed in the message area on the KDCS interface in the message handling calls
(MPUT/FPUT/DPUT).

'U' (USER)
UTM does not convert user messages, i.e. the data in the message is transmitted unchanged to
the partner application.

'1', '2', '3', '4' (SYS1 | SYS2 | SYS3 | SYS4)

is only permitted for the following TS applications:

BS2000 systems: ='SOCKET'ptype

Unix, Linux and Windows systems: ='APPLI' or 'SOCKET'ptype

If you specify one of these values, UTM converts the user messages according to the code tables
provided for the code conversion, see the "Code conversion" section in the openUTM manual
"Generating Applications", i.e.:

Prior to sending, the code is converted from ASCII to EBCDIC on Unix, Linux and Windows
systems and from EBCDIC to ASCII on BS2000 systems.

After receival, the code is converted from EBCDIC to ASCII on Unix, Linux and Windows
systems and from ASCII to EBCDIC on BS2000 systems.

openUTM V7.0. Administering Applications. User Guide.

 552

openUTM assumes that the messages contain only printable characters.

For more information on code conversion, please refer to the openUTM manual „Programming
Applications with KDCS”; keyword „code conversion".

termn (minal emonic)ter mn

Contains the code for the type of communication partner. UTM KDCS program units provide the code in
the KCTERMN field of the communication area header.
The values that may contain can be obtained from the table for in termn ptype "kc_pterm_str - Clients

 (BS2000 systems) or in (Unix, Linux and Windows and printers" "kc_pterm_str - Clients and printers"
systems).

protocol (only on BS2000 systems)

Specifies if the NEABT user protocol service ("station protocol") will be used on connections between the
UTM application and the client/printer.

'N' The user protocol service will not be used between the UTM application and the client/printer.

protocol='N' will always be output for:

UPIC clients (='UPIC-R')ptype

TS applications (='APPLI' or 'SOCKET')ptype

printers access via RSO (='*RSO')ptype

Clients for which ='N' is specified cannot connect to the application over a multiplex protocol
connection.

'S' (STATION)
The user protocol service (NEABT) is used between the UTM application and the client/printer.

UTM uses the user protocol service NEABT, among others, to determine the type () of a ptype
client or printer if the type was not explicitly specified when the client/printer was added to the
configuration (added with ='*ANY').ptype

usage_type (only on BS2000 systems)

Specifies if the communication partner in is a dialog partner or purely an output medium.pt_name

'D' The client is a dialog partner. The client as well as the local application can send messages on the
connections between the client and the local application.
UPIC clients are always dialog partners (='UPIC-R').ptype

'O' The client/printer is used purely as an output medium. Messages can only be sent from the
application to the client/printer. ='O' is always output for printers.usage_type

listener_port

BS2000 systems: Only relevant if ='T'. t_prot

Unix, Linux and Windows systems: Only relevant if ='T' or 'R'.t_prot

openUTM V7.0. Administering Applications. User Guide.

 553

listener_port contains the port number of the partner application in the remote system in TCP/IP
connections. In the case of KC_GET_OBJECT, the port number defined when the client was generated
is returned.

If = '0', then no listener port number was generated.listener_port

t_prot

Contains the address format that the client uses to sign on to the transport system.

The following address formats are possible:

'T' native TCP/IP transport protocol TCP-IP for communication via the socket interface (SOCKET)

Only on Unix, Linux and Windows systems:

'R' RFC1006, ISO transport protocol class 0 using TCP/IP and the convergence protocol RFC1006.

If the client was not assigned an address format when added to the configuration, then the field t_prot
contains a blank.

tsel_format (only on Unix, Linux and Windows systems)

Contains the format indicator of the T-selector in the address of the client.

The following format indicators may occur:

'T' TRANSDATA format

'E' EBCDIC character format

'A' ASCII character format

The meanings of the address formats are described in the "PCMX documentation" (openUTM
.documentation)

If the client was not assigned a format indicator when added to the configuration, then the tsel_format
 field contains a blank.

connect_mode

Specifies the current status of the connection to the client:

'Y' The connection is established.

'W' UTM is currently attempting to establish the connection (waiting for connection).

'N' The connection is not established.

In UTM applications on BS2000 systems can also contain the following values for clientsconnect_mode
/printers that are connected to the application via a multiplex connection (= 'Y'):mux

'T' (timer)
The session with the client is in the DISCONNECT-PENDING state; the timer used for timing the
wait for the confirmation of the closing of the connection is running.

openUTM V7.0. Administering Applications. User Guide.

 554

'E' (expired)
The session is in the DISCONNECT-PENDING state and the timer used for timing the wait for the
confirmation of the closing of the connection has run down before the confirmation was received.
The session must be explicitly released (for example using KC_MODIFY_OBJECT and

 = 'R',see table in list item "Set up or shut down t the connection to the client/printer" connect_mode
in chapter)."obj_type=KC_PTERM"

pool

Specifies if the client is connected to the application via an LTERM pool.

'Y' The client is connected to the application via an LTERM pool.

'N' The client is not connected to the application via an LTERM pool.

mux (only on BS2000 systems)

Specifies if the client is connected to the application via a multiplex connection.

'Y' The client is connected to the application via a multiplex connection.

'N' The client is not connected to the application via a multiplex connection.

contime_min

Specifies how long the connection to the client/printer has already existed. The length of time is specified
in minutes.

letters

Contains the number of input and output messages for the client/printer since the last start of the local
application.

conbad

Specifies how often the connection to the client/printer has been lost since the last start of the application.

deleted

Specifies whether or not the client/printer has been deleted from the configuration.

'Y' The client/printer has been deleted. The name, however, is disabled, i.e. no new client/printer can
be added using this name.

'N' The client/printer has not been deleted.

idletime

Only relevant for dialog partners.

idletime contains the time in seconds, which UTM waits for a response from a client, after a transaction is
terminated or after sign-off. If the time is exceeded the connection to the client is closed down. If the
client is a terminal, the message K021 was issued before connection close-down.

0 means indefinite wait.

openUTM V7.0. Administering Applications. User Guide.

 555

encryption_level

Only relevant for UPIC clients and, on BS2000 systems, with some terminal emulations.
 specifies whether the UTM application demands by default for all messages on the encryption_level

connection to the client

to be encrypted or not,

which encryption level is demanded,

or whether the client is a “trusted” client.

The following values are possible:

'N' (NONE)
UTM does demand the messages exchanged between the client and the UTM application to not
be encrypted.
Services for which encryption was generated (see in chapter kc_tac_str.encryption_level

) can only be started by a client if the client "kc_tac_str - Transaction codes of local services"
explicitly selects encryption.
Passwords are transmitted encrypted if both partners support encryption.

'3' (LEVEL 3)
UTM demands the encryption of messages with encryption level 3. In other words, the messages
are encrypted with the AES-CBC algorithm and an RSA key with a key length of 1024 bits is used
for exchange of the AES key.
Connection establishment to the client is rejected by UTM if the client does not support at least this
encryption level.

'4' (LEVEL 4)
UTM demands the encryption of messages with encryption level 4. In other words, the messages
are encrypted with the AES-CBC algorithm and an RSA key with a key length of 2048 bits is used
for exchange of the AES key.
Connection establishment to the client is rejected by UTM if the client does not support at least this
encryption level.

 '5' (LEVEL 5) only for Unix, Linux and Windows systems
Key length is the same as for LEVEL 4. The Diffie-Hellman method based on Elliptic Curves is
used to agree the session key and input/output messages are encrypted with the AES-GCM
algorithm. The connection to the client is rejected by UTM if the client does not support at least this
encryption level.

'T' (TRUSTED)
The client is a “trusted” client.
Messages and passwords exchanged between the client and the application are not encrypted.
A “trusted” client can also start services for which the service TAC requires encryption (generated
with ='1' or '2'; see).kc_tac_str.encryption_level "kc_tac_str - Transaction codes of local services"
Connections that are established using a transport system endpoint (BCAMAPPL) that is
generated with T-PROT=(..., SECURE) are always classified as trusted by UTM.

ip_addr

Returns the partner IP address used by UTM for this connection if the address is an IPv4 address.

openUTM V7.0. Administering Applications. User Guide.

 556

On BS2000 systems, IP adresses are output only for partners where ='SOCKET' ,ptype

An IPv6 address is returned in the field (see)ip_addr_v6 "kc_pterm_str - Clients and printers"

In , UTM returns the IP address of the client computer. The address is stored in the object table ip_addr
of the application. UTM uses this address to establish the connection to the client. UTM reads the IP
address from the name service with the aid of the generated processor name () when the pronam
application is started.

If the object table does not contain an IPv4 address for the client, e.g. because the client does not use
the appropriate protocol, UTM returns blanks in .ip_addr

curr_encryption

Only relevant for UPIC clients and on BS2000 systems for some terminal emulations.
In , UTM returns the encryption level for an existing connection to a client which was curr_encryption
agreed between the UTM application and the client for this specific connection. For information on the
properties of encryption Levels 3 to 5 see also ."kc_pterm_str - Clients and printers"

'N' (NONE)
Messages exchanged on this connection are not encrypted. Passwords are transmitted encrypted
if both partners support encryption.

'3' (LEVEL 3)
All messages on the connection are encrypted. Encryption level 3 is used.

'4' (LEVEL 4)
All messages on the connection are encrypted. Encryption level 4 is used.

'5' (LEVEL 5) (only for Unix, Linux and Windows Systems)
All messages on the connection are encrypted. Encryption Level 5 is used.

' ' (Blank)There is currently no connection to this client.

usp_hdr

This is only relevant for socket partners.
It indicates for which output messages UTM sets up a UTM socket protocol header on this connection.
Possible values are:

'A' UTM creates a UTM socket protocol header for all output messages (dialog, asynchronous, K
messages) and precedes the message with it.

'M' UTM creates a UTM socket protocol header for the output of K messages and precedes the
message with it.

'N' UTM does not create a UTM socket protocol header for any output message.

ip_addr_v6

Returns the partner IP address used by UTM for this connection if the address is an IPv6 address or an
IPv4 address embedded in an IPv6 format.

On BS2000 systems, IP adresses are output only for partners where ='SOCKET' ,ptype

An IPv6 address is returned in the field (see)ip_addr_v6 "kc_pterm_str - Clients and printers"

openUTM V7.0. Administering Applications. User Guide.

 557

UTM returns the IP address of the client computer stored in the object table of the application in
. UTM uses this address to establish the connection to the client. UTM reads the IP address ip_addr_v6

from the Name Service using the generated computer name () when the application is started.pronam

If there is no IPv6 address in the object tables for the client, UTM returns blanks in .ip_addr_v6

ip_v

Specifies whether the IP address used by UTM for this connection is an IPv4 or an IPv6 address:

'V4' IPv4 Address.

'V6' IPv6 address or IPv4 address embedded in IPv6 format.

If no IP address can be returned, openUTM returns blanks.

pronam_long

Name of the computer on which the client or the printer is located.

In UTM applications on BS2000 systems, is always filled. The computer name in pronam_long
 is identical to the name specified during BCAM generation or in the RTF file for this pronam_long

computer. For an RSO printer contains the value '*RSO'.pronam_long

In UTM applications on Unix, Linux and Windows systems, contains blanks for a local pronam_long
client or a printer.

openUTM V7.0. Administering Applications. User Guide.

 558

11.3.1.26 kc_queue_str - Properties of temporary queues

The data structure is defined for the KC_QUEUE object type. In the case of KC_GET_OBJECT, UTM kc_queue_str
returns information in about the temporary queues that exist in the application.kc_queue_str

Data structure kc_queue_str

char qu_name[8];

char qlev[5];

char queue_length[8];

char q_mode;

The fields of the data structure have the following meanings:

qu_name

Name defined or assigned automatically by UTM when the queue was created with QCRE.

qlev

Contains the maximum number of messages that can be in the queue at any one time.

UTM does not take into account the messages created for the queue until the end of the transaction. The
number of messages defined in for a message queue can therefore be exceeded if several qlev
messages were created for the same queue in a single transaction.

qlev=32767 means there is no limit on the number of messages in the queue.

queue_length

Contains the number of messages in the queue that are currently being processed or waiting to be
processed.

q_mode

Indicates how UTM responds when the maximum number of messages permitted for the queue is
reached. Possible values are:

'S' (STD)
UTM rejects any further messages for this queue.

'W' (WRAP-AROUND)
UTM accepts any further messages. When a new message is entered, the oldest message in the
queue is deleted.

openUTM V7.0. Administering Applications. User Guide.

 559

11.3.1.27 kc_sfunc_str - Function keys

The data structure r is defined for object type KC_SFUNC. In , In the case of kc_sfunc_str kc_sfunc_str
KC_GET_OBJECT, UTM returns the short description of a function key generated in the application and specifies
which function is allocated to this function key.

A transaction code, a command, a KDCS return code can be assigned to a function key or it can be used for the
stacking of services.

For UPIC clients, only the parameter is evaluated.ret

Data structure kc_sfunc_str

char sf_name[4];

char tac[8];

char stack[8];

char ret[3];

char cmd[8];

The fields in the data structure have the following meanings:

sf_name

Contains the short description of the function key. Possible values are:

BS2000 systems: K1 to K14 and F1 to F24

Short messages containing only the value of the key are issued with the K keys.
K14 is used for ID card readers (see openUTM manual „Programming Applications with KDCS”, ID
card readers).

Unix, Linux and Windows systems: F1 to F20

You can transfer the value of the F key and an input message with the F keys.

tac Contains the name of the transaction code (service TAC) allocated to this function key.

If the function key is pressed when the service is not activated, the service belonging to the transaction
code is started.

If the function key is pressed while a service is running, then the function assigned to the function key
with or takes effect. If these two fields do not contain any values, the first MGET call returns ret stack
the code 19Z in the next program unit of the service.

stack This is used to stack services. contains the name of the dialog transaction code assigned to this stack
function key.

If the function key is pressed while a service is active, the current service is stacked and the service
with the transaction code in is started.stack

If the function key is pressed when no service is active the transaction code contained in the field tac
is started. If the field contains no value, pressing the function key causes the service to be started tac
that has the transaction code contained in .stack

openUTM V7.0. Administering Applications. User Guide.

 560

ret Contains a KDCS return code.

If this function key is pressed while a service is running, then the field KCRCCC in the communication
area will contain the return code after the MGET call.

If this key is pressed when a service is started and if does not contain a value, UTM issues tac
message K009 or starts the BADTACS program unit. This program unit contains the return code
assigned to the function key in the first MGET call in the field KCRCCC.

Possible values: 20Z <= <= 39Z.ret

If a UPIC client transmits the function key, on the field is evaluated.ret

cmd Name of a KDC command (e.g. KDCOFF or an administration command such as KDCINF) which is
activated when the function key is pressed.

If cmd contains a value, the fields , and contain blanks.tac ret stack

openUTM V7.0. Administering Applications. User Guide.

 561

11.3.1.28 kc_subnet_str - Information on subnets

The data structure is defined for object type KC_SUBNET. For KC_GET_OBJECT, UTM returns the kc_subnet_str
generation data for subnets.

data structure kc_subnet_str

char mapped_name[8];

char relevant_bits[3];

char ip_addr_format[2];

char ipv4_address[15];

char ipv6_address[39];

char bcamappl[8];

char resolve_names;

The fields in the data structure have the following meanings:

mapped_name

Contains the from the KDCDEF statement SUBNET.mapped_name

relevant_bits

Contains the number of bits relevant for the subnet mask.

ip_addr_format

Specifies the address format:

V4 The address is an IPv4 subnet address.

V6 The address is an IPv6 subnet address.

ipv4_address

For =V4 contains the IPv4 subnet address, otherwise blanks.ip_addr_format

ipv6_address

For =V6 contains the IPv6 subnet address, otherwise blanks.ip_addr_format

bcamappl

Contains the BCAMAPPL name from the KDCDEF statement SUBNET.

resolve_names

Specifies whether or not a name resolution via DNS is to take place after a connection is established. See
KDCDEF Statement SUBNET.

openUTM V7.0. Administering Applications. User Guide.

 562

11.3.1.29 kc_tac_str - Transaction codes of local services

The data structure is defined for the object type KC_TAC. In the case of KC_GET_OBJECT, UTM kc_tac_str
returns the following information in :kc_tac_str

properties of a transaction codes or a TAC queue

statistical information on the load on the service

the current state of the transaction code or TAC queue

Only the fields , , , , , and are of any significance to the tc_name admin qlev q_mode q_read_acl q_write_acl state
evaluation of the information of TAC queues (='Q').tac_type

Transaction codes can be created dynamically with KC_CREATE_OBJECT, deleted with KC_DELETE_OBJECT or
modified with KC_MODIFY_OBJECT

mod 1 Data structure kc_tac_str

- char tc_name[8];

- char program[32];

x(GPD) char lock_code[4];

x(GID) char state;

- char tacclass[2];

- char admin;

- char call_type;

- char exit_name[32];

- char qlev[5];

- char tac_type;

- char real_time_sec[5];

- char cpu_time_msec[8]; (only on BS2000 systems)

- char dbkey[8]; (only on BS2000 systems)

- char runprio[3]; (only on BS2000 systems)

- char api;

- char satadm; (only on BS2000 systems)

- char satsel; (only on BS2000 systems)

- char tacunit[4];

openUTM V7.0. Administering Applications. User Guide.

 563

mod 1 Data structure kc_tac_str

- char tcbentry[8]; (only on BS2000 systems)

- char in_queue[5];

x(GIR) char used[10];

x(GIR) char number_errors[5];

x(GIR) char db_counter[10];

x(GIR) char tac_elap_msec[10];

x(GIR) char db_elap_msec[10];

x(GIR) char taccpu_msec[10];

- char deleted;

- char pgwt;

- char encryption_level;

x(GPD) char access_list[8];

- char q_mode;

x(GPD) char q_read_acl[8];

x(GPD) char q_write_acl[8];

- char nbr_dputs[10];

- char nbr_ack_jobs[10];

x(GPD) char dead_letter_q;

x(GIR) char nbr_ta_commits[10];

x(GIR) char number_errors_ex[10];

- char in_queue_ex[10];

x(GIR) char taccpu_micro_sec[10];

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see "obj_type=KC_TAC"

The fields in the data structure have the following meanings:

tc_name

Contains the name of the transaction code or TAC queue whose properties UTM returns. The name is up
to 8 characters long.

openUTM V7.0. Administering Applications. User Guide.

 564

program

Contains the name of the program unit assigned to this transaction code.

For TAC queues, blanks are returned.

lock_code

Contains the lock code assigned to the transaction code (access protection). Only users/clients who
possess the corresponding key code may call this transaction code. The key code must be contained both
in the key set assigned to the user ID and in the key set assigned to the LTERM partner via which the user
/client is to connect to the application.

The can contain a number between '0' and '4000'. lock_code
In KC_CREATE_OBJECT, the maximum value that can be contained by is the maximum value lock_code
defined using the KEYVALUE operand of the KDCDEF statement MAX.
'0' means there is no lock code (i.e. the transaction code is not protected by a lock code).

If you want to change the lock code, a key set must not be entered in the field.access_list

This parameter is not permitted for TAC queues. In this case, blanks are returned.

state

Specifies whether the TAC or the TAC queue is enabled or disabled:

'Y' TACs: The transaction code is not disabled. It is available after the application has been
started. It is available until it is explicitly disabled or deleted.

TAC queues: Writing and reading is permitted.

'N' TACs: The transaction code is disabled. The lock ='N' means that UTM will not accept any state
more jobs for this TAC.
If the transaction code is a KDCS program unit with ='B', then the transaction code is call_type
disabled if it is a service TAC (first TAC of a service). If it is a follow-up TAC in a service,
however, it is not disabled. Follow-up TACs (='N') cannot be disabled with ='N'.call_type state

TAC queues: Reading is permitted, writing not.

'H' (HALT)
TACs: The transaction code is completely disabled. The corresponding program unit will not be
started anymore by UTM when it is called with this transaction code. For the transaction code
of a KDCS program unit, this means that it is disabled if it is a service TAC and if it is a follow-
up TAC in an asynchronous or dialog service.
If the transaction code is a service TAC no jobs are accepted for it.
If this TAC is called as a follow-up TAC, then the service is aborted (internal PEND ER with
74Z).

Asynchronous jobs that have already been placed in the message queue of the TAC for
temporary storage before the lock are not started. They remain in the queue until the TAC is
released or is set to ='N'.state

TAC queues: Neither reading nor writing is possible.

'K'

openUTM V7.0. Administering Applications. User Guide.

 565

(KEEP)
TACs: This value can only occur in conjunction with asynchronous transaction codes, that are
at the same time service TACs (='B'or 'F').call_type

UTM accepts jobs for this transaction code. However, instead of being processed, they are
simply entered in the job queue for that transaction code. They are processed when you
change the status of the transaction code to 'Y' or 'N'.

TAC queues: writing is permitted, but reading not.

You can disable or release a transaction code or a TAC queue while programs are running.

tacclass

Contains the TAC class assigned to the transaction code. contains a number between 1 and 16 tacclass
or blanks. The numbers signify:

1 - 8 dialog TAC classes

9 - 16

asynchronous TAC classes

If UTM returns blanks in , then the following is true: tacclass

No TAC classes were created during the KDCDEF generation or

the transaction code in is a dialog TAC (='D') that is not assigned to any TAC class.tc_name tac_type

admin

When ='A' or 'D', specifies the privileges a user or client requires in order to be able to call this tac_type
transaction code or a service that contains this transaction code as a follow-up TAC. When ='Q', tac_type

 indicates the authorization a user or client needs in order to access this TAC queue.admin

'Y' TACs: This transaction code can only be called by a user who has administration privileges.

TAC queues: Only a user with administration privileges can write messages to and read
messages from this queue.

'N' No administration privileges are required for this TAC or TAC queue.

'R' (READ)
No administration privileges are required for this TAC or TAC queue.

The program unit belonging to the transaction code can use all the functions of KDCADMI that
read the application data.

In addition, the access rights to the TAC (='A' or 'D') can be limited by means of a lock code or an tac_type
access list. If it is a TAC queue (='Q'), it is possible to restrict the access rights by means of the tac_type
parameters and/or .q_read_acl q_write_acl

call_type

Specifies if a service (for example the first TAC of a service) is being started with the transaction code or if
the transaction code is a follow-up TAC in a service.

openUTM V7.0. Administering Applications. User Guide.

 566

'B' (BOTH)
A service can be started with the TAC. The TAC can also be a follow-up TAC in a service,
however.

'F' (FIRST)
A service can be started with the transaction code.

'N' (NEXT)
The transaction code can only be a follow-up TAC in a service. It can only be disabled with

='H'.state

exit_name

Contains the name of the event exit VORGANG assigned to this TAC.

qlev (ueue el)q lev

For asynchronous transaction codes (='A') or queues (='Q'), specifies the maximum tac_type tac_type qlev
number of messages allowed in the message queue for this transaction code or in the TAC queues. If this
control value is exceeded, how openUTM responds depends on the value in the field.q_mode

UTM does not take into account the messages created for the queue until the end of the transaction. The
number of messages specified for a message queue in can therefore be exceeded if several qlev
messages are created for the same queue in a single transaction.

tac_type

Specifies if jobs sent to this transaction code will be processed in the dialog or asynchronously or whether
a TAC queue was generated.

'D' This transaction code is a dialog TAC, i.e. jobs sent to this transaction code will be processed
in the dialog with the job-submitter.

'A' This transaction code is an asynchronous transaction code. When calling this transaction code,
an asynchronous job is created that is temporarily stored in the message queue of the
transaction code. The job is processed separately from the job-submitter.

'Q' A TAC queue was generated.

A message can be written to such a queue with a DPUT call and read from the queue with a
DGET call.

real_time_sec

Contains the maximum amount of real time in seconds that a program unit may use if it is started via this
transaction code. If the program unit runs longer, then UTM aborts the service and outputs a UTM
message.

real_time_sec='0' means that the real time used by the program unit will not be monitored.

cpu_time_msec (only on BS2000 systems)

Contains the maximum CPU time in milliseconds that the program unit with this transaction code may use
while processing. If the program unit runs longer, then UTM aborts the service and outputs a UTM
message.

openUTM V7.0. Administering Applications. User Guide.

 567

The value '0' means that the time will not be monitored for the program unit started via this transaction
code.

dbkey (only on BS2000 systems)

dbkey is only relevant if the program unit belonging to the transaction code makes database calls and if
the database system is linked to UTM.

 contains the database key that UTM passes from the program unit to the database system in a dbkey
database call. The format of the key depends on the database system used. The key is a maximum of 8
characters long.

 is only supported for UDS at the present.dbkey

The value ='UTM' will result in the value of the start parameter DBKEY being passed to the dbkey
database (see the openUTM manual “Using UTM Applications on BS2000 Systems”; start parameters).

runprio (only on BS2000 systems)

Contains the run priority setting of the BS2000 system for the transaction code. This run priority will be
assigned to the UTM process in which the corresponding program unit runs. In this manner you can utilize
the scheduling mechanism of the BS2000 system for run-time control of UTM program unit runs. The run
priority does not have any influence, however, on the point in time at which UTM starts a program unit.

When a program unit is started, UTM attempts to set the run priority of the current process to the value in
. If the run priority generated is not compatible with the JOIN entries of the corresponding user ID, runprio

then the run priority of the current process is not changed. UTM outputs the corresponding K message. If
the maximum number of values allowed for the user ID and the job class are different, then the runprio
value most favorable for the user is allowed to be used. If there are no JOIN entries, then the run priority
specified in is used.runprio

After the end of a program unit run, UTM sets the run priority back to the original value unless the run
priority was changed again during the program unit run with the CHANGE TASK PRIORITY command. In
this case, the run priority that was set externally will be maintained after the end of the program unit run.

If ='0', then no specific run priority is generated for this transaction code.runprio

api (pplication rogramming nterface)a p i

Specifies which programming interface is used by the program unit belonging to the transaction code.

'K' KDCS

'C' CPI-C

'X' XATMI

satadm (only on BS2000 systems)

Specifies if UTM SAT administration privileges are required to call the transaction code.

'Y' The TAC may only be called by users, clients or partner applications that are permitted to carry
out administration operations on the SAT logging within the application (UTM SAT
administration privileges).

'N' The transaction code may also be called by users, clients and partner applications that do not
have UTM SAT administration privileges.

openUTM V7.0. Administering Applications. User Guide.

 568

satsel (only on BS2000 systems)

Specifies which events SAT will log during the corresponding program unit run (TAC-specific setting). One
requirement for logging is that SAT logging is enabled for the application (='Y'). See kc_max_par_str.sat
also the openUTM manual “Generating Applications” and openUTM manual “Using UTM Applications on
BS2000 Systems” for more information on SAT logging.

'B' (BOTH)
Both successful unsuccessful events are logged.and

'S' (SUCCESS)
Only successful events are logged.

'F' (FAIL)
Only unsuccessful events are logged.

'N' (NONE)
No TAC-specific type of SAT logging is defined.

tacunit

Contains the number of accounting units charged for each call of the transaction code in the accounting
phase of UTM Accounting.

The accounting units are added to the accounting unit counter of the user ID that called the transaction
code.

tcbentry (only on BS2000 systems)

Contains the name of the KDCDEF control statement TCBENTRY in which the TCB entries assigned to
this TAC are collected.

in_queue

Only contains data for asynchronous TACs.
Specifies how many asynchronous messages are temporarily stored in the message queue of the
transaction code that must still be processed by the corresponding program unit.

If this number of messages is greater than 99999, then the number is not displayed in full. You should
therefore use the field (see) since larger in_queue_ex "kc_tac_str - Transaction codes of local services"
numbers can be entered in full here.

used

Specifies the number of program unit runs processed in all with this transaction code since the used
 counter was last reset.

You can reset the counter to 0 using KC_MODIFY_OBJECT.
In UTM-S applications is automatically rest to 0 only in regenerations with KDCDEF and in each used
update generation with KDCDEF/KDCUPD. In UTM-F applications the counter is automatically reset used
to 0 when the application is started.

number_errors

openUTM V7.0. Administering Applications. User Guide.

 569

Specifies how many of the program unit runs started with this transaction code terminated with errors
since the counter was last reset to 0.number_errors

You can reset the counter to 0 using KC_MODIFY_OBJECT.
In UTM-S applications is automatically rest to 0 only in regenerations with KDCDEF and in number_errors
each update generation with KDCDEF/KDCUPD. In UTM-F applications the counter is number_errors
automatically reset to 0 when the application is started.

If the number of program unit runs is greater than 99999, then the number is not displayed in full. You
should therefore use the field (see) number_errors_ex "kc_tac_str - Transaction codes of local services"
since larger numbers can be entered in full here.

db_counter

Contains the average number of database calls from a program unit started using this transaction code
since the counter was last reset to binary 0.db_counter

db_counter is always 0 for database link via the XA interface.
You can reset the counter to 0 using KC_MODIFY_OBJECT.

tac_elap_msec

Contains the average runtime of the program units started using this transaction code since the
 counter was last reset (elapsed time); specified in milliseconds. You can reset the counter tac_elap_msec

to 0 using KC_MODIFY_OBJECT.

db_elap_msec

Contains the average time needed for processing database calls in program unit runs using this TAC;
specified in milliseconds. considers all database calls made since the counter was last db_elap_msec
reset.

db_elap_msec is always binary 0 for database link via the XA interface.
You can reset the counter to 0 using KC_MODIFY_OBJECT.

taccpu_msec

Contains the average CPU time in milliseconds needed to process this transaction code in the program
unit. The value corresponds to the CPU time needed by UTM plus the CPU time used by the database
system; specified in milliseconds. considers all program unit runs since the counter was last taccpu_msec
reset to 0.You can reset the counter to 0 using KC_MODIFY_OBJECT.

deleted

Specifies whether or not the transaction code or the TAC queue was deleted from the configuration.

'Y' The transaction code or the TAC queue was deleted but the name is disabled. You cannot
generate a new transaction code or a new TAC queue with this name.

'N' The transaction code or the TAC queue was not deleted.

pgwt

Only contains a value if your application processes jobs to the TAC classes using priority control, i.e. only
if the KDCDEF generation contains the TAC-PRIORITIES statement.

openUTM V7.0. Administering Applications. User Guide.

 570

pgwt specifies, whether blocking calls (e.g. PGWT) can be processed in a program unit run started for this
transaction.

'Y' Blocking calls are allowed.

'N' Blocking calls are not allowed.

encryption_level

Only relevant for service TACs (='F'or 'B')call_type
 specifies, whether messages for this transaction code must be encrypted or not.encryption_level

'N' (NONE)
Message encryption is not required. A client can start a service using this transaction code,
even if the client does not encrypt the input message. The output message to the client is only
encrypted if the relevant input message from the client was encrypted also.

'2' (Level 2)
The input message has to be encrypted using the AES algorithm in order to access this
transaction code.

 '5' (Level 5) only for Unix, Linux and Windows Systems
To access this transaction code, you must encrypt the input messages with the AES-GCM
algorithm.

If = '2' or '5' is specified, a client can only start a service through this encryption_level
transaction code if the client meets one of the following prerequisites:

The client is a “trusted” client (see or field). A kc_pterm_str kc_tpool_str encryption_level
“trusted” client can start a service through the transaction code, even if the input message is
not encrypted.

The client has encrypted the input message to the transaction code with at least the
specified encryption level. If a “not trusted” client does not encrypt the first input message or
does not encrypt it to the required level or if the client does not support encryption, no
service is started.

All output messages to a not trusted client are encrypted. If the transaction code is started
using service concatenation, the first input message from the client does not need to be
encrypted.

If the transaction code is called without user data or if it is started through service
concatenation, then the client must be able to encrypt data. openUTM encrypts all output
dialog messages to the client and expects all consequent input messages from a not trusted
client to be encrypted in multistep services.

access_list

Contains the name of a key set that describes the access rights of users to this transaction code.

It is not permitted to specify with TAC queues.access_list

access_list and must not have the same values.lock_code

openUTM V7.0. Administering Applications. User Guide.

 571

A user can only access the transaction code when the key set of the user, the key set of the LTERM
partner by means of which the user is signed on and the key set specified by means of contain access_list
at least one key code in common.

You can remove data access control by filling with blanks.access_list

If neither nor contains a value, any user can access the transaction code.access_list lock_code

q_mode (queue mode)

Defines how openUTM responds when a queue already contains the maximum number of messages and
the queue level has thus been reached.

'S' UTM rejects any further jobs.

'W' (only when ='Q')tac_type

UTM accepts further jobs but deletes the oldest messages in the queue.

q_read_acl (only when ='Q')tac_type

Indicates the rights (name of a key set) required by a user in order to be able to read and delete messages
from this queue.

A user can only have read access to this TAC queue if the key set of the user and the key set of the
logical terminal by means of which the user is signed on each contain at least one key code that is also
contained in the displayed key set.

If does not contain a value, all users can read and delete messages from this queue.q_read_acl

q_write_acl (only when ='Q')tac_type

Indicates the rights (name of a key set) required by a user in order to be able to write messages to this
queue.

A user can only have write access to this TAC queue if the key set of the user and the key set of the
logical terminal by means of which the user is signed on each contain at least one key code that is also
contained in the displayed key set.

If does not contain a value, all users can write messages to this queue.q_write_acl

nbr_dputs

Number of pending time-controlled jobs for this TAC whose start point has not yet been reached.

nbr_ack_jobs

Number of pending acknowledgment jobs for this TAC that have not yet been activated.

dead_letter_q

Specifies whether a queued message should be retained in the dead letter queue if it was not processed
correctly and it has not been redelivered.

'Y' Errored queued messages are backed up in the dead letter queue.

openUTM V7.0. Administering Applications. User Guide.

 572

dead_letter_q ='Y' is not permitted for KDCDLETQ, KDCMSGTC, all interactive TACs and
asynchronous TACs with CALL=NEXT.

'N' Errored queued messages are deleted if they are not redelivered.

nbr_ta_commits

Number of program unit runs for this TAC which have successfully completed a transaction.

You can reset the counter to 0 using KC_MODIFY_OBJECT.

number_errors_ex

See in .number_errors "kc_tac_str - Transaction codes of local services"

in_queue_ex

See in .in_queue "kc_tac_str - Transaction codes of local services"

taccpu_micro_sec

Contains the average CPU time in microseconds taken to process this transaction code in the program
unit. This corresponds to the CPU time consumed by UTM plus the CPU time required by the database
system.

 takes account of all program runs since the counter was last reset.You can use taccpu_micro_sec
KC_MODIFY_OBJECT to reset the counter to 0.

openUTM V7.0. Administering Applications. User Guide.

 573

11.3.1.30 kc_tacclass_str - TAC classes for the application

The data structure is defined for the object type KC_TACCLASS. In the case of KC_GET_OBJECT, kc_tacclass_str
UTM returns the following information in :kc_tacclass_str

properties of the TAC class

statistical information on how often and for how long jobs for the TAC class had to wait for processing

the current maximum number of processes that may simultaneously process jobs for the transaction code of the
TAC class if the application was generated without priority control (i.e. without the TAC-PRIORITIES statement).

mod 1 Data structure kc_tacclass_str

- char tacclass[2];

x(A)2 char tasks[3];

x(A)2 char tasks_free[3];

- char pgwt;

- char waiting_msgs[10];

x(GIR) char avg_wait_time_msec[10];

- char prio[3];

x(GIR) nr_calls[10];

x(GIR) nr_waits[10];

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see "obj_type=KC_TACCLASS"

2 These properties can only by modified if the application was generated without the TAC-PROPERTIES statement. Only one of these fields

may be specified in a KC_MODIFY_OBJECT call.

The fields in the data structure have the following meanings:

tacclass

Contains the number of the TAC class. A number between 1 and 16 is output for .tacclass

The TAC classes from 1 to 8 are dialog TAC classes.
The TAC classes from 9 to 16 are asynchronous TAC classes.

tasks Only relevant if priority control was not generated for the TAC class (KDCDEF generation without TAC-
PRIORITIES statement).

Specifies how many processes of the application may process TACs of the TAC class at the tacclass
same time (absolute number).

See also ."obj_type=KC_TACCLASS"

If the application is generated with priority control, contains a blank.tasks

tasks_free

openUTM V7.0. Administering Applications. User Guide.

 574

Only relevant if the application was generated without the TAC-PRIORITIES statement.

For dialog TAC classes contains the minimum number of processes of the application that tasks_free
must be kept free for processing transaction codes from other TAC classes. For asynchronous TAC
classes contains the minimum number of processes that must be kept free for processing tasks_free
transaction codes from other asynchronous TAC classes.

UTM returns '0' to if the value of was defined neither during KDCDEF generation tasks_free tasks_free
nor by means of administration functions, or if a value was defined for the last time the number of tasks
processes for the TAC class was modified.

See also ."obj_type=KC_TACCLASS"

If the application is generated with priority control, contains blanks.tasks_free

pgwt Specifies if program units that contain blocking calls, for example the KDCS call PGWT, are allowed to
run in this TAC class.

'Y' Blocking calls are allowed in this TAC class.

'N' Blocking calls are not allowed in this TAC class.

Program units containing blocking calls are allowed in at most one dialog TAC class and one
asynchronous TAC class.

waiting_msgs

Contains the number of jobs for transaction codes of this TAC class that are currently in temporary
storage in UTM and that have not yet been processed.

avg_wait_time_msec

Contains the average wait time of jobs in the job queue assigned to the transaction code of this TAC class.

If there is no process for the TAC class, UTM accepts jobs for the TAC class (using free processes that
are not “allowed” to process jobs to this TAC class) and temporarily stores them in the KDCFILE. This is
always the case when there are jobs for TAC classes with a higher priority level (with priority control) or (in
the case of process restriction) if the maximum number of processes that the TAC class is allowed to
process has already been reached (see ,).tasks tasks_free

The time between accepting a job and starting to process it is the wait time displayed here.

The value for is in milliseconds.avg_wait_time_msec

The value of can be reset to 0. If this value is reset then the values of and avg_wait_time_msec nr_calls
 is also implicitly reset.nr_waits

prio Contains the type of priority control generated for this TAC class.
The following values are possible:

'ABS' Absolute priorities:
A free process is always assigned to the TAC class with the highest priority, i.e. priority 1 to 9, if
jobs are waiting.The TAC class with the next lowest priority is not served until there are no more
jobs with the higher priority level waiting in the TAC class.

'REL'

openUTM V7.0. Administering Applications. User Guide.

 575

Relative priorities:
Free processes are more frequently allocated to higher TAC classes than to lower TAC classes if
jobs are waiting to be processed.

'EQ' Equal priorities:
If there are any jobs waiting, all TAC classes are served at an equal rate.

'NO' No priority control was generated.

nr_calls

Number of program unit runs for this TAC class.

You can reset the value to 0 using KC_MODIFY_OBJECT. If this value is reset then the values
 and are also implicitly reset.avg_wait_time_msec nr_waits

nr_waits

Number of wait situations taken into account to calculate the value .avg_wait_time_msec

You can reset the value to 0 using KC_MODIFY_OBJECT. If this value is reset then the values
 and are also implicitly reset.avg_wait_time_msec nr_calls

openUTM V7.0. Administering Applications. User Guide.

 576

11.3.1.31 kc_tpool_str - LTERM pools for the application

The data structure is defined for the object type KC_TPOOL. In the case of KC_GET_OBJECT, UTM kc_tpool_str
returns the following information on an LTERM pool in :kc_tpool_str

the number of LTERM partners currently permitted for the LTERM pool

the properties of the LTERM partners of the LTERM pool

the type of clients that may connect to the application via this LTERM pool

statistical data on the workload of the LTERM pool.

mod 1 Data structure kc_tpool_str

- char lterm[8];

- char pronam[8];

- char ptype[8];

- char bcamappl[8];

- char connect_mode;

- char max_number[10];

- char kset[8];

- char locale_lang_id[2]; (only on BS2000 systems)

- char locale_terr_id[2]; (only on BS2000 systems)

- char locale_ccsname[8]; (only on BS2000 systems)

- char lock_code[4];

x(GP)2 char state;

x(GP)2 char state_number[10];

- char format_attr; (only on BS2000 systems)

- char format_name[7]; (only on BS2000 systems)

- char qlev[5];

- char termn[2];

- char annoamsg; (only on BS2000 systems)

- char netprio; (only on BS2000 systems)

- char protocol; (only on BS2000 systems)

openUTM V7.0. Administering Applications. User Guide.

 577

mod 1 Data structure kc_tpool_str

- char actcon[10];

- char maxcon[10];

- char map;

x(GP) char idletime[5];

- char encryption_level;

- char user_kset[8];

- char usp_hdr;

- char kerberos_dialog; (only on BS2000 systems)

- char pronam_long[64];

- char resolve_names;

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see ."obj_type=KC_TPOOL"

2 Wth KC_MODIFY_OBJECT both fields must be specified together.

The fields in the data structure have the following meanings:

lterm

Contains the prefix for the names of the LTERM partners of the LTERM pools. The names of the LTERM
partners consists of this prefix and a sequential number. The sequence goes from 1 up to the value
returned in .max_number

Example

If ='1000' and ='LTRM', then the LTERM partners of the LTERM pool are named max_number lterm
LTRM0001, LTRM0002, ..., LTRM1000.

pronam

Specifies the computer on which the clients must be located in order to connect to the application via this
LTERM pool.

If a computer name with more than 8 characters has been generated for the LTERM-Pool, the complete
name, up to 64 characters long, can be taken from the field. In this case, the field pronam_long pronam
contains the first 8 characters of that name.

UTM returns either the symbolic name under which the computer is known to the local transport system or
the value '*ANY' for an open LTERM pool.

'*ANY' means:
Every client can sign on to the application via the LTERM pool if the client fulfills the following conditions:

Its terminal type matches the type specified in .ptype

openUTM V7.0. Administering Applications. User Guide.

 578

It was not explicitly added to the configuration (with the KDCDEF statement PTERM or dynamically with
object type KC_PTERM).

No other LTERM pool exists for the computer on which the client resides nor for its terminal type ().ptype

ptype

The type of clients that are allowed to connect to the application via this LTERM pool. You can determine
the meaning of the value returned by UTM in from ptype the tables for BS2000 Systems and for

 .Unix, Linux and Windows systems in chapter "kc_pterm_str - Clients and printers"

Only on BS2000 systems:

If ='*ANY', then it is an open LTERM pool. All clients resident on or connected to the computer ptype
specified in and for which the following statements are true can connect via this LTERM pool:pronam

The client is not entered explicitly in the configuration.

No LTERM pool exists for which the client type is set in for the computer in .ptype pronam

bcamappl

The name of the local UTM application (BCAMAPPL name) via which the connection between the client
and the UTM application will be established.

This name must be specified by the client when it wants to establish a connection to the local application.

connect_mode

Specifies if a client can connect to the UTM application via the LTERM pool more than once under the
same name.

'S' Each client can only connect once under the same name via the LTERM pool.

'M' An UPIC client (='UPIC-R' or 'UPIC-L') or a TS application (='APPLI' or 'SOCKET') that runs ptype
more than once on the same computer can connect to the UTM application via the LTERM pool more
than once under the same name. A new name does not have to be created for every connection.

The UPIC client or the TS application can connect to the LTERM pool as many times as there are
LTERM partners allowed for the LTERM pool. The name of the corresponding pool LTERM partner
will be set in this case to the name of the client or TS application, i.e. the partner will then be identified
in the application by the name triplet (name of the LTERM partner, and . The UPIC pronam bcamappl)
client or the TS application is not known in the UTM application under its local name or its application
name.

max_number

Specifies the maximum number of clients that may be simultaneously connected via this LTERM pool, i.e.
 specifies how many LTERM partners comprise this LTERM pool.max_number

kset Contains the name of the key set assigned to the LTERM pool. The key set determines which transaction
codes the clients that connect to the application via this LTERM pool may call. The clients may only start a
transaction code if the key set contains a key code that numerically matches the lock code of the
transaction code, or if the transaction code does not have access security, i.e. it does not possess a lock
code.

openUTM V7.0. Administering Applications. User Guide.

 579

If the LTERM pool is not assigned a key set, then contains blanks.kset

The following applies for ='UPIC-...', 'APPLI' or 'SOCKET':ptype

kset specifies the maximum number of access of a client which connects through this LTERM pool.

kset always comes into effect when the client passes a true user ID to UTM during session/conversation
establishment. The access privileges result from the set of key codes contained both in the key set of the
user ID an in .kset

If the client does not pass a true user ID to openUTM for the session/conversation, the access privileges
result from the subset of key codes in an (minimum access rights).kset user_kset

locale_lang_id, locale_terr_id, locale_ccsname (only on BS2000 systems)

These contain the three components of the locale assigned to the LTERM pool. The locale defines the
language environment of the clients that connect to the application via this LTERM pool (see also the
openUTM manual “Generating Applications”).

locale_lang_id
Contains the up to two characters long language code.

locale_terr_id
Contains an up to two characters long territory code.

locale_ccsname
(oded haracter et)c c s name
Contains the name (up to 8 characters) of an expanded character set (CCS name; see also the XHCS
User Guide).

lock_code

Contains the lock code assigned to the LTERM partners of the LTERM pool (access protection). Only users
/clients who possess the corresponding key code may connect via this LTERM pool.
The can contain a number between '0' and '4000'. '0' means that the LTERM pool is not lock_code
protected by a lock code.

state, state_number

The number of LTERM partners comprising this LTERM pool is set in the KDCDEF generation of the
LTERM pool (see). The number of LTERM partners via which clients can connect to the max_number
application can, however, be reset to a smaller value during operation by the administration. The rest of the
LTERM partners are disabled by this action. In the and fields UTM specifies how many state state_number
LTERM partners of the LTERM pool are currently permitted, i.e. not disabled. The number of LTERM
partners allowed determines how many clients can connect to the application via this LTERM pool at the
same time.

If contains the value 'Y', the pool is permitted for the number of communication partners specified in state
 (ON). If contains the value 'N', the pool is locked for the number of communication state_number state

partners specified in (OFF).state_number

If all LTERM partners of the LTERM pool are disabled, then contains the value 'Y' and state state_number
 the value '0'.

format_attr, format_name (only on BS2000 systems)

openUTM V7.0. Administering Applications. User Guide.

 580

These define the start format for users on terminals connected via this LTERM pool. After the connection
between the terminal and the application is established, the formats described in and format_attr

 will be output on the terminal as long as no terminal-specific restart is being executed.format_name

format_attr
Contains the format code:

'A' (format attribute ATTR)
The start format is a format with user attributes. The properties of the format fields can be changed by
the KDCS program unit. The format name at the KDCS program interface is .+format_name

'N' (format attribute NOATTR)
The start format is a format without user attributes. Neither the field nor the format properties can be
changed by the KDCS program units. The format name at the KDCS program interface is

.*format_name

'E' (format attribute EXTEND)
The start format is a format with expanded user attributes. The properties of the format fields as well
as global format properties can be changed by the KDCS program unit. The format name at the
KDCS program interface is .#format_name

format_name
Contains the name of the start format. The name can be up to 7 characters long and contains only
alphanumeric characters.

qlev (ueue el)q lev

Specifies the maximum number of asynchronous messages that may be temporarily stored in the message
queue of the LTERM partner belonging to this LTERM pool for processing at one time by UTM. If the
control value for an LTERM partner of the LTERM pool is exceeded, then UTM will reject any additional
asynchronous jobs sent to this LTERM partner. The control value is specified in the KDCDEF generation.

termn (minal emonic)ter mn

Contains the code for the type of client that can connect via this LTERM pool. When running, UTM KDCS
program units that were started via the LTERM pool provide the code in the KCTERMN field of the
communication area header. The code is a maximum of 2 characters long. The values that may termn
contain can be obtained from the table for in chapter (section ptype "kc_pterm_str - Clients and printers"
"BS2000 systems" or "Unix, Linux and Windows systems").

annoamsg (unce synchronous e sa e, only on BS2000 systems))anno a m s g

Specifies if UTM will announce asynchronous messages on the terminal with a UTM message in the
system line before output.

'Y' UTM announces every asynchronous message to this terminal with the UTM message K012 in the
system line. The user must then explicitly request the asynchronous message with the KDCOUT
command.

'N' Asynchronous messages are output on the terminal immediately, i.e. without announcement. For
 = 'N', the establishing of the connection to this LTERM pool via a multiplex connection will annoamsg

only be possible starting with OMNIS V7.0.

openUTM V7.0. Administering Applications. User Guide.

 581

netprio

Specifies the transport priority used on the transport connection between theapplication and the clients
connected via this LTERM pool.

'M' Medium transport priority

'L' Low transport priority

protocol (only on BS2000 systems)

Specifies whether the NEABT user service protocol will be used on connections between the UTM
application and a client that connects via this LTERM pool.

'N' The user protocol service will not be used between the UTM application and the client/printer.

For UPIC clients (='UPIC-R') and TS applications (='APPLI' or 'SOCKET'), ='N' will ptype ptype protocol
always be output.

No connections can be established via a multiplex connection to an LTERM pool for which protocol
='N' is set.

'S' (STATION)
The user protocol service (NEABT) is used between the UTM application and the client/printer. UTM
uses the NEABT user protocol service for LTERM pools with ='*ANY', for example to determine ptype
the type () of a client. In this case, NEABT is always used.ptype

actcon

Specifies how many clients are currently connected to the application via this LTERM pool.

maxcon

Contains the maximum number of clients that were simultaneously connected to the application via this
LTERM pool in the current application run.
The counter is reset to 0 at the start of the application.

map

Specifies whether UTM performs a code conversion (ASCII <-> EBCDIC) for user messages without any
formatting flags which are exchanged between the partner applications.

User messages are passed in the message area on the KDCS interface in the message handling calls
(MPUT/FPUT/DPUT).

'U' (USER)
UTM does not convert user messages, i.e. the data in the message is transmitted unchanged to the
partner application.

'1', '2', '3', '4' (SYS1 | SYS2 | SYS3 | SYS4)

is only permitted for the following TS applications:

BS2000 systems: ='SOCKET'ptype

Unix, Linux and Windows systems: ='APPLI' or 'SOCKET'ptype

openUTM V7.0. Administering Applications. User Guide.

 582

If you specify one of these values, UTM converts the user messages according to the code tables
provided for the code conversion, see the "Code conversion" section in the openUTM manual
"Generating Applications", i.e.:

Prior to sending, the code is converted from ASCII to EBCDIC on Unix, Linux and Windows
systems and from EBCDIC to ASCII on BS2000 systems.

After receival, the code is converted from EBCDIC to ASCII on Unix, Linux and Windows systems
and from ASCII to EBCDIC on BS2000 systems.

openUTM assumes that the messages contain only printable characters.

For more information on code conversion, please refer to the openUTM manual „Programming
Applications with KDCS”; keyword „code conversion".

idletime

idletime contains the time in seconds which UTM waits for a response from a client after a single-step
transaction is terminated or after sign-off (KDCSIGN). If the time is exceeded, the connection to the client
is closed down. If the client is a terminal, message K021 was issued before connection shutdown.

The value 0 means wait without time limit.

encryption_level

Only relevant for UPIC clients and, on BS2000 systems, for some terminal emulations.
 specifies whether, on the connection to the client that wants to connect to the application encryption_level

via the LTERM pool, the UTM application

wants to demand encryption of messages by default,

if it does, which encryption level must be used,

wants to know whether the clients are „trusted“ clients.

The following values are possible:

'N' (NONE)
UTM does want the messages to be encrypted. not
Services for which encryption was generated (see in chapter kc_tac_str.encryption_level "kc_tac_str -

) can only be started by a client connected through this pool if the Transaction codes of local services"
client agrees encryption when setting up the connection.
Passwords are transmitted encrypted if both partners support encryption.

'3' (LEVEL 3)
UTM demands by default the encryption of messages with encryption level 3. In other words, the
messages are encrypted with the AES-CBC algorithm and an RSA key with a key length of 1024 bits
is used for exchange of the AES key.
Connection establishment to the client is rejected by UTM if the client does not support at least this
encryption level.

'4' (LEVEL 4)
UTM demands by default the encryption of messages with encryption level 4. In other words, the
messages are encrypted with the AES-CBC algorithm and an RSA key with a key length of 2048 bits

openUTM V7.0. Administering Applications. User Guide.

 583

is used for exchange of the AES key.
Connection establishment to the client is rejected by UTM if the client does not support at least this
encryption level.

 '5' (LEVEL 5) only for Unix, Linux and Windows systems
The key length is the same LEVEL 4. The Diffie-Hellman method based on Elliptic Curves is used to
agree the session key and input/output messages are encrypted with the AES-GCM algorithm. The
connection to the client is rejected by UTM if the client does not support at least this encryption level.

'T' (TRUSTED)
The client is a “trusted” client. Messages and passwords exchanged between the client and the
application are not encrypted.
A “trusted” client can also start services for which the service TAC requires encryption (generated with

 = '2' or '5'; see chapter).kc_tac_str.encryption_level "kc_tac_str - Transaction codes of local services"
Connections that are established using a transport system endpoint (BCAMAPPL) that is generated
with T-PROT=(..., SECURE) are always classified as trusted by UTM.

user_kset

Only relevant with ='UPIC-...', 'APPLI' or 'SOCKET'.ptype

user_kset contains the name of the key set defining the minimum access privileges of the client in the local
application.

The key set specified in only comes into effect if the client has signed on under the connection user_kset
user ID (see also).kset

The access rights in always apply.kset

usp_hdr

Indicates the output messages for which UTM creates a UTM socket protocol header on this connection.
Possible values are:

'A' (ALL)
UTM creates a socket protocol header for all output messages (dialog, asynchronous, K messages)
and precedes the message with it (ALL).

'M' (MSG)
UTM creates a UTM socket protocol header for the output of K messages and precedes the message
with it (MSG).

'N' (NO)
UTM does not create a UTM socket protocol header for any output message (NO).

The values 'A' and 'M' can only occur for LTERM pools that are configured for communication via socket
connections (='SOCKET').ptype

kerberos_dialog (only on BS2000 systems)

'Y' When the connection is established ,a Kerberos dialog is conducted for clients that support Kerberos
and are connected directly to the application via this terminal pool (not via OMNIS).

'N' No Kerberos dialog is performed.

openUTM V7.0. Administering Applications. User Guide.

 584

For more detailed information, refer to the openUTM manual “Generating Applications”.

pronam_long

Specifies the computer on which the clients have to be located in order to be able to connect to the
application using this LTERM-Pool.

UTM returns either the symbolic name under which the computer is known to the local transport system or
the value '*ANY' for an open LTERM-Pool.

'*ANY' means that any client satisfying the following conditions can sign on to the application using the
LTERM-Pool:

Its type corresponds to the specification in .ptype

It has not been explicitly entered in the configuration (with the KDCDEF statement PTERM or
dynamically with the object type KC_PTERM).

No other LTERM-Pool exists for the computer on which the client is located and its terminal type ().ptype

resolve_names

 Specifies whether or not a name resolution via DNS is to take place after a connection is established. See
KDCDEF Statement SUBNET.

openUTM V7.0. Administering Applications. User Guide.

 585

11.3.1.32 kc_transfer_syntax_str - Transfer syntax for communication via OSI TP

The data structure is defined for object type KC_TRANSFER_SYNTAX. In the case of kc_transfer_syntax_str
KC_GET_OBJECT, UTM returns the local name and the object identifier of a transfer syntax in

.kc_transfer_syntax_str
During communication via OSI TP the transfer syntax specifies in which form the user data is transferred to the
communication partner. Both communication partners must use the same transfer syntax on a connection.

Data structure kc_transfer_syntax_str

char transfer_syntax_name[8];

char object_id[10][8];

The fields of the data structure have the following meanings:

transfer_syntax_name

Contains the name generated locally for the transfer syntax. It is at most 8 characters long.

object_id

Contains the object identifier of the transfer syntax.

The object identifier consists of at least 2 and at most 10 components. The individual components are
positive integers between 0 and 67108863.

For each component of the object identifier, UTM returns a field element, i.e. the number of occupied field
elements in corresponds to the number of components. The remaining field elements contain object_id
binary zeros.

For further information on the object identifier see the openUTM manual “Generating Applications”.

openUTM V7.0. Administering Applications. User Guide.

 586

11.3.1.33 kc_user_str, kc_user_fix_str, kc_user_dyn1_str and kc_user_dyn2_str user IDs

The data structures , , and are defined for the kc_user_str kc_user_fix_str kc_user_dyn1_str kc_user_dyn2_str
object types KC_USER, KC_USER_FIX, KC_USER_DYN1 and KC_USER_DYN2. The data structure kc_user_str
is subdivided into three substructures in order to improve performance when accessing user data in UTM cluster
applications. All the data in UTM cluster applications stored in the cluster user file is located in the data structure

.kc_user_dyn2_str

User IDs can be dynamically created with KC_CREATE_OBJECT, deleted with KC_DELETE_OBJECT or modified
with KC_MODIFY_OBJECT.

If you want to create user IDs or make modifications, you must use the structure . The other structures kc_user_str
are only intended for read operations with KC_GET_OBJECT.

In the case of KC_GET_OBJECT, UTM returns the following information concerning the user ID in kc_user_str,
and :kc_user_fix_str, kc_user_dyn1_str kc_user_dyn2_str,

The attributes assigned to this user ID, such as the type and method of authentication (password, magnetic
stripe card), start format, access privileges, administration privileges.

The number of jobs entered by this user ID and statistical data on the resources demanded while processing the
jobs.

The number of asynchronous jobs running under this user ID.

The number of users currently signed on with the application under this user ID and the time of the last sign-on
under this user ID.

The number of security violations by users/clients that have signed on using this user ID.

The properties of the associated USER queue

mod 1 Data structure kc_user_str Page 2

- char us_name[8]; us_name

x(GPD) char kset[8]; kset

x(GPD) char state; state

- char card_position[3]; (only on BS2000 systems) card_position

- char card_string_lth[3]; (only on BS2000 systems) card_string_lth

- char card_string_type; (only on BS2000 systems) card_string_type

- union kc_string card_string; (only on BS2000 systems) card_string

x(GPD) union kc_pw password; password

x(GPD) char password_type; password_type

- char password_dark; password_dark

- char card_id[32]; 3 (only on BS2000 systems) card_id

openUTM V7.0. Administering Applications. User Guide.

 587

mod 1 Data structure kc_user_str Page 2

x(GPD)4 char format_attr; (only on BS2000 systems) format_attr

x(GPD)3 char format_name[7]; (only on BS2000 systems) format_name

- char locale_lang_id[2]; (only on BS2000 systems) locale_lang_id

- char locale_terr_id[2]; (only on BS2000 systems) locale_terr_id

- char locale_ccsname[8]; (only on BS2000 systems) locale_ccsname

- char protect_pw_lth; protect_pw_lth

- char protect_pw_compl; protect_pw_compl

- char protect_pw_time[3]; protect_pw_time

- char restart; restart

- char permit; permit

- char satsel; (only on BS2000 systems) satsel

- char user_type; user_type

- char lterm_curr[8]; lterm_curr

- char connect_mode; connect_mode

- char in_service; in_service

- char number_tacs[10]; number_tacs

- char cputime_sec[10]; cputime_sec

- char seccounter[5]; seccounter

- char deleted; deleted

x char protect_pw_time_left[3]; protect_pw_time_left

- union kc_sign_date sign_time_date; sign_time_date

- char asyn_services[10]; asyn_services

- char clients_signed[10]; clients_signed

- char protect_pw_min_time[3]; protect_pw_min_time

- char qlev[5]; qlev

- char out_queue[5]; out_queue

openUTM V7.0. Administering Applications. User Guide.

 588

mod 1 Data structure kc_user_str Page 2

x(GPD) char q_read_acl[8]; q_read_acl

x(GPD) char q_write_acl[8]; q_write_acl

- char q_mode; q_mode

- char certificate[10]; (only on BS2000 systems) certificate

- char cert_auth[10]; (only on BS2000 systems) cert_auth

x char pw_encrypted; pw_encrypted

x(GIR) char bcam_trace; bcam_trace

- char principal[100]; (only on BS2000 systems) principal

- char node_last_excl_signon[4] node_last_excl_signon

- char exclusively_signed; exclusively_signed

- union kc_sign_date excl_sign_time_date; excl_sign_time_date

- char out_queue_ex[10]; out_queue_ex

- char ptc; ptc

- char bound_ptc; bound_ptc

- char bound_service; bound_service

-- char cputime_msec[10]; cputime_msec

x(GPD) union kc_pw16 password16; password16

x(GPD) char protect_pw16_lth[2]; protect_pw16_lth

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see ."obj_type=KC_USER"

2 The meaning of the fields is described on the pages indicated in this column.

3 By default, this is filled with blanks.

4 When you change the start format with KC_MODIFY_OBJECT you must enter values for .format_name and format_attr

openUTM V7.0. Administering Applications. User Guide.

 589

Data structure kc_user_fix_str see 1

char us_name[8]; us_name

char card_position[3]; (only on BS2000 systems) card_position

char card_string_lth[3]; (only on BS2000 systems) card_string_lth

char card_string_type; (only on BS2000 systems) card_string_type

union kc_string card_string; (only on BS2000 systems) card_string

char card_id[32]; (only on BS2000 systems)2 card_id

char restart; restart

char permit; permit

char satsel; (only on BS2000 systems) satsel

char user_type; user_type

char qlev[5]; qlev

char certificate[10]; (only on BS2000 systems) certificate

char cert_auth[10]; (only on BS2000 systems) cert_auth

char principal[100]; (only on BS2000 systems) principal

1 The meaning of the fields is described on the pages indicated in this column.

2 By default, this is filled with blanks.

openUTM V7.0. Administering Applications. User Guide.

 590

Data structure kc_user_dyn1_str see 1

char us_name[8]; us_name

char kset[8]; kset

char state; state

char format_attr; (only on BS2000 systems) format_attr

char format_name[7]; (only on BS2000 systems) format_name

char lterm_curr[8]; lterm_curr

char connect_mode; connect_mode

char in_service; in_service

char number_tacs[10]; number_tacs

char cputime_sec[10]; cputime_sec

char asyn_services[10]; asyn_services

char deleted; deleted

char out_queue[10]; out_queue

char q_read_acl[8]; q_read_acl

char q_write_acl[8]; q_write_acl

char q_mode; q_mode

char bcam_trace; bcam_trace

char clients_signed[10]; clients_signed

union kc_sign_date sign_time_date sign_time_date

char cputime_msec[10]; cputime_msec

1 The meaning of the fields is described on the pages indicated in this column.

openUTM V7.0. Administering Applications. User Guide.

 591

Data structure kc_user_dyn2_str see 1

char us_name[8]; us_name

union kc_pw password; password

char password_type; password_type

char password_dark; password_dark

char locale_lang_id[2]; (only on BS2000 systems) locale_lang_id

char locale_terr_id[2]; (only on BS2000 systems) locale_terr_id

char locale_ccsname[8]; (only on BS2000 systems) locale_ccsname

char protect_pw_lth; protect_pw_lth

char protect_pw_compl; protect_pw_compl

char protect_pw_time[3]; protect_pw_time

char protect_pw_time_left[3]; protect_pw_time_left

char protect_pw_min_time[3]; protect_pw_min_time

char pw_encrypted; (only on BS2000 systems) pw_encrypted

char seccounter[5]; seccounter

char exclusively_signed; exclusively_signed

union kc_sign_date excl_sign_time_date; excl_sign_time_date

char node_last_excl_signon[4] node_last_excl_signon

char ptc; ptc

char bound_ptc; bound_ptc

char bound_service; bound_service

union kc_pw16 password16; password16

char protect_pw16_lth[2]; protect_pw16_lth

1 The meaning of the fields is described on the pages indicated in this column.

openUTM V7.0. Administering Applications. User Guide.

 592

The fields in the data structures have the following meanings:

us_name

Contains the name of the UTM user ID. The user specifies the user ID when signing on, and a UPIC
client specifies the user ID when establishing a conversation with the application. can be up us_name
to 8 characters long.

kset

Contains the name of the key set assigned to the user ID. The key set determines the access
privileges of the user within the application. The user can only call a service if both the key set of the
user ID and the key set of the LTERM partner (by means of which the user connects to the
application) contain a key or access code that corresponds to the lock code or access list of the
requested service.

The name of a key set can be up to 8 characters long.

You can define a different key set in or remove the current key set by filling with blanks.kset kset

state

Specifies if the user ID is currently permitted to sign on or connect, or if it is disabled.

'Y' The user ID is allowed.

'N' The user ID is currently disabled; no user or client may sign on to or establish a connection to the
application with this user ID.

The user ID can be disabled or permitted to sign on or connect again while the program is running.
Disabling takes effect at the next sign-on attempt.

card_position
card_string_lth
card_string_type
card_string

Only on BS2000 systems: You can determine if access to the application requires a magnetic strip
card for this user ID using these fields. The fields specify which subfield of the identification
information on the magnetic stripe will be checked and what information must be stored in this
subfield.

Specifying excludes the possibility of specifying .card_xx principal

card_position
Specifies the number of the byte at which the identification information to be checked begins; for
example = '4' means that the 4th byte of identification information corresponds to the card_position
1st character of the section to be checked.

card_string_lth
Specifies how long the section of identification information to be checked is. The length is specified in
bytes.

openUTM V7.0. Administering Applications. User Guide.

 593

card_string_type
Specifies if the identification information to be checked is to be interpreted as a hexadecimal string or
as a character string.

'X' The identification information is a hexadecimal string.

'C' The identification information is a string of printable, alphanumeric characters.

'N' The user ID was configured without a magnetic strip card. In this case, and card_string_lth
 contain '0' and blanks are returned in .card_position card_string

card_string
The string that must be contained in the section to be checked on the magnetic stripe card in order for
the user with this user ID to successfully sign on to the application.
UTM returns the string in a union of type .kc_string

union kc_string

char x[200];

char c[100];

If the identification information is a hexadecimal string (='X'), then each half byte is card_string_type
represented by one character.
If ='C', then the contents of are irrelevant after the length specified in card_string_type card_string

.card_string_lth
If ='X', then the contents of are irrelevant after the length specified by 2 * card_string_type card_string

.card_string_lth

password

This parameter is no longer supported.

password_type

Specifies in a KC_GET_OBJECT call if a password was generated for the user ID.

'Y' A password was generated for the user ID.

'N' No password was generated for the user ID.

When changing a password with KC_MODIFY_OBJECT or when adding a new user ID, you specify
the code used for the password in .password_type

'C' The password is specified as a character string.

'X' The password is specified as a hexadecimal string.

On Unix, Linux and Windows systems, this specification is only permitted if the password is
already encrypted.

'N' No password is specified.

password_dark

openUTM V7.0. Administering Applications. User Guide.

 594

Specifies if the password must be hidden when entered at the terminal:

'Y' UTM places the user in an intermediate dialog after signing on (KDCSIGN) in which the
password is entered in a darkened field.

'N' The user has to pass the password to UTM with the user ID when signing on (KDCSIGN). The
password is not hidden when the user enters it.

For Unix and Linux systems only:

The entry specified in is ignored. The password is always non-displaying (“dark”). password_dark
Whether or not the password has to be entered in a non-displaying field at sign-on via dialog terminal
processes depends on the generation of the application. If the application is generated with
formatting, the password must be entered in a non-displaying field.

card_id (only on BS2000 systems)

Card identifier of the chip card.

The user must identify with a chipcard on sign-on.

In the case of operation code KC_GET_OBJECT, blanks are returned if the user has been generated
without a chip card.

format_attr
format_name

Only on BS2000 systems: These describe the user-specific start format. This start format is
automatically output to the terminal after every successful sign-on if there are no open services for
this user ID. If the user is still in a service after the access privileges have been successfully checked,
then the start format does not appear, and the last dialog screen will be output instead (automatic
restart).

format_attr
Contains the format code:

'A' (format attribute ATTR)
The start format is a format with user attributes. The properties of the format fields can be
changed by the KDCS program unit. The format name at the KDCS program interface is

 .+format_name

'N' (format attribute NOATTR)
The start format is a format without user attributes. Neither the field nor the format properties
can be changed by the KDCS program units. The format name at the KDCS program interface
is .*format_name

'E' (format attribute EXTEND)
The start format is a format with expanded user attributes. The properties of the format fields
as well as global format properties can be changed by the KDCS program unit. The format
name at the KDCS program interface is .#format_name

format_name
Contains the name of the start format. The name can be up to 7 characters long and contains only
alphanumeric characters.

openUTM V7.0. Administering Applications. User Guide.

 595

locale_lang_id
locale_terr_id
locale_ccsname

Only on BS2000 systems: These contain the three components of the locale assigned to the user ID.
The locale defines the language environment of the users/clients that connect to the application via
this user ID (see also the openUTM manual “Generating Applications”).

locale_lang_id
Contains the up to two characters long language code.

locale_terr_id
Contains an up to two characters long territory code.

locale_ccsname
(oded haracter et)c c s name
Contains the up to 8 characters long name of an extended character set (CCS name; see also the
XHCS User Guide).

protect_pw_lth

This parameter is no longer supported.

protect_pw_compl

Specifies the complexity level the password for the user ID must have.

'0' (NONE)
Any string can be specified as the password.

'1' (MIN)
A maximum of two characters in a row may be exactly the same in the password.

'2' (MEDIUM)
A maximum of two characters in a row may be exactly the same in the password. The
password must contain at least one letter and one number.

'3' (MAX)
A maximum of two characters in a row may be exactly the same in the password. The
password must contain at least one letter, one number and one special character. Special
characters are all characters not in a-z, A-Z, and 0-9. The space character is also a special
character.

protect_pw_time

Specifies the maximum number of days the password is valid (duration of validity).

The validity of the password runs out at the end of the last day of the duration of validity. If, for
example, a password is generated with a validity of one day, then the validity will run out at 24:00 hrs.
on the following day.

Shortly before the validity runs out, UTM requests the user to change the password with the K121
UTM message.

openUTM V7.0. Administering Applications. User Guide.

 596

If the validity runs out, the following applies:
If the grace sign-on is generated (='Y') the user can change the password when kc_signon_str.grace
next signing on.
If the grace sign-on is not generated, UTM will reject an attempt to sign on and issues message
K120. The administrator must then change the password.

protect_pw_time = '0' means that the password is valid indefinitely.

restart

Specifies whether UTM executes an automatic restart for this user ID.

'Y' UTM executes an automatic restart for users who sign on using this user ID.

UPIC client that are signed on to UTM under this user ID can initiate the restart of an open
service when a new connection is established by sending the KDCDISP command.

'N' UTM does not execute an automatic restart for users who sign on using this user ID.

If the application is generated with SIGNON MULTI-SIGNON=YES, several users/clients can
be signed on under this user ID at the same time. Only one of these users may be signed on
at the terminal. Any number of UPIC clients, TS applications and OSI-TP partners can be
signed on at the same time under this user ID, however.

permit

Specifies which privileges the user ID has within the local application.

'A' (ADMIN)
The user ID has administration privileges, i.e. all administration functions in the local
application may be executed by this user ID.

'N' (NONE)
The user ID does not have administration privileges.

If the local application is a UTM application on a BS2000 system, UTM SAT administration
functions are also not permitted to be executed under this user ID.

Only on BS2000 systems:

'B' (BOTH)
Administration functions and UTM SAT administration functions may be executed in the local
application under this user ID.

'S' (SAT)
The user ID has UTM SAT administration privileges. Preselection functions may be executed
under this user ID, i.e. the SAT logging can be enabled or disabled for certain events.

satsel (only on BS2000 systems)

Specifies which events SAT will log for this user ID. One requirement for logging is that SAT logging
is enabled for the application (='Y'). See also the openUTM manual “Generating kc_max_par_str.sat
Applications” and openUTM manual “Using UTM Applications on BS2000 Systems” for more
information on SAT logging.

openUTM V7.0. Administering Applications. User Guide.

 597

'B' (BOTH)
Both successful unsuccessful events are logged.and

'S' (SUCCESS)
Only successful events are logged.

'F' (FAIL)
Only unsuccessful events are logged.

'N' (NONE)
No user-defined type of SAT logging is defined.

user_type

Specifies the type of client for which the LTERM partner is created for user IDs that are assigned to
an LTERM partner.

'A' (APPLI)
The user ID is assigned to the LTERM partner of a TS application of the type APPLI (PTERM
with PTYPE=APPLI).

'S' The user ID is assigned to the LTERM partner of a socket application (PTERM with PTYPE=
SOCKET).

'U' (UPIC)
The user ID is assigned to the LTERM partner of a UPIC clients (PTERM with PTYPE=UPIC-R
or UPIC-L).

For all other user IDs a blank will be returned in .user_type

lterm_curr

The following cases must be distinguished:

The application is generated with SIGNON MULTI-SIGNON=NO (i.e. multiple sign-ons are not
allowed):

 contains the LTERM partner or the OSI-LPAP partner through which a user with this user lterm_curr
ID is signed on.
Exception: contains blanks if the sign-on is to start an asynchronous service via OSI TP.lterm_curr

The application is generated with SIGNON MULTI-SIGNON=YES
(multiple sign-ons are possible):

If a user with this user ID is connected to the application via a terminal, then contains lterm_curr
the name of the LTERM partner assigned to the terminal.

If the user ID is generated with ='Y', then contains the name of the LTERM or restart lterm_curr
OSI-LPAP partner through which a client with this user ID is connected.
Exception: signing on is handled via OSI TP and the functional unit “commit” was selected, or
signing on is handled via OSI TP to start an asynchronous service. In this case contains lterm_curr
blanks.

In all other cases contains blanks.lterm_curr

connect_mode

openUTM V7.0. Administering Applications. User Guide.

 598

Specifies whether a user or a client with this user ID is currently connected through the LTERM or
OSI-LPAP partner in ('Y') or not ('N').lterm_curr

in_service

Specifies whether a service is currently running under this user ID through the LTERM or OSI-LPAP
partner in .lterm_curr

'Y' A service is open which has reached at least one consistency point.

'N' Currently no service is running which has reached at least one consistency point.

number_tacs

Contains the number of program units executed under this user ID. In UTM-S applications, the value
of is reset to 0 in each regeneration with KDCDEF or in each update generation with number_tacs
KDCDEF/KDCUPD. In UTM-F applications, is reset to 0 each time the application is number_tacs
started.

cputime_sec

Contains the number of CPU used for processing jobs for this user ID since the last connection
establishment. However, the value returned in does not contain the CPU time used for cputime_sec
database calls.

seccounter

Contains the number of security breaches for this user ID (e.g. incorrect password, illegal transaction
code) since the application was last started.

deleted

Specifies whether the user ID was deleted from the configuration or not.

'Y' The user ID was deleted with a delay (KC_DELAY). However, the name is still disabled, i.e.
you cannot create a new user ID with this name.

'N' The user ID was not deleted.

protect_pw_time_left

For opcode KC_GET_OBJECT:
Specifies for how much longer the current password is valid. specifies the protect_pw_time_left
period in days.

The following values are also possible:

' ' (Blanks) No password was generated for this user ID or the password was deleted.

'000' The password expires on the current day.

'-1' A password with an indefinite term of validity was assigned to this user ID (protect_pw_time
='0').

'-2' The term of validity of the password has aready expired.

openUTM V7.0. Administering Applications. User Guide.

 599

For opcode KC_MODIFY_OBJECT:
Only relevant in applications generated with SIGNON GRACE=YES and for user IDs for which a
restricted password validity period has been generated.
In , you specify whether the generated period of validity is to apply to the new protect_pw_time_left
password. Any specification in this field is ignored unless there is also a specification for password
 and .password_type
If you specify =-1'(left or right-aligned) then the generated period of validity (starting protect_pw_time
from the time of the modification) applies for the new password.If you do not specify anything then the
new password is immediately invalid due to the expiry of the period of validity. The user must change
the password the next time he or she signs on.
Any value other than ‘-1' is rejected.

sign_time_date

Specifies when a user or client last signed on with UTM using this user ID.

UTM returns the date and time at which a user last signed on in the field of a union to the type cstring
.kc_sign _date

union kc_sign_date

char cstring[14];

struct cstr_str cstring_struct;

where

struct cstr_str

char year[4];

char month [2];

char day[2];

char hour[2];

char minute[2];

char sec[2];

The data is output in the format 'YYYYMMDDhhmmss', being the year, the month, the YYYY MM DD
day, the hour, the minute and the second.hh mm ss

If no user or client has as yet signed on with the application using this user ID, UTM returns
'00000000000000'.

asyn_services

Contains the number of asynchronous jobs currently running for this user ID.

clients_signed

Contains the number of communication partners currently signed on at the application under this user
ID.

openUTM V7.0. Administering Applications. User Guide.

 600

The value may be temporarily greater than 1 even in applications generated with SIGNON MULTI-
SIGNON=NO if an OSI TP communication partner is currently signed on under this user ID for the
generation of an asynchronous job.

protect_pw_min_time

Specifies the minimum term of validity of the password in days.
After the password has been changed, the user cannot change it again before this minimum period
has expired.
The user can always change the password after it has been previously changed by the administrator
or after a regeneration, regardless of whether or not the minimum term of validity has expired.

qlev (ueue evel) q l

Indicates the maximum number of messages that can be stored in the queue of the user. If the
threshold value is exceeded, the response of openUTM depends on the value in the field.q_mode

UTM ignores the messages created for the queue until the end of the transaction.
The number of messages for a message queue specified in can therefore be exceeded if several qlev
messages are created for the same queue in a single transaction.

If =0 is specified, no messages can be stored in the queue. If =32767 is specified, there is no qlev qlev
limit on the queue length.

out_queue

Indicates the number of messages in the user’s message queue.

For more detailed information, refer to the openUTM manual “Generating Applications”.

If the number of messages is greater than 99999, then the number is not displayed in full. You should
therefore use the field or the field from the data structure out_queue_ex out_queue kc_user_dyn1
since larger numbers can be entered in full here.

q_read_acl

Indicates the rights (name of a key set) required by another user in order to read and delete
messages from the user queue.
Another user can only have read access to this queue if the key set of the user’s user ID and the key
set of the LTERM partner by means of which the user is signed on each have at least one key code
that is also contained in the displayed key set.

If does not contain a value, all users can read and delete messages from this queue.q_read_acl

q_write_acl

Indicates the rights (name of a key set) that another user requires in order to write messages to this
user queue.
Another user can only have write access to this queue if the key set of the user’s user ID and the key
set of the LTERM partner by means of which the user is signed on each have at least one key code
that is also contained in the displayed key set.

If does not contain a value, all users can write messages to this queue.q_write_acl

q_mode (ueue ode) q m

openUTM V7.0. Administering Applications. User Guide.

 601

Indicates how UTM responds if the maximum number of as yet unexecuted jobs is reached in the
queue of the user (see). Possible value are:qlev

'S' UTM rejects any further messages.

'W' UTM accepts any further messages. However, when a new message is written to the
queue, the oldest message in the queue is deleted.

certificate (only on BS2000 systems)

This parameter is no longer supported.

cert_auth (only on BS2000 systems)

This parameter is no longer supported.

pw_encrypted

The field is only relevant for KC_MODIFY_OBJECT. contains always pw_encrypted pw_encrypted
blanks in the case of querying information with KC_GET_OBJECT.

When changing the password you specify in whether the password specified in pw_encrypted
 is already encrypted.password16

'N' The password is not encrypted (default).

'Y' / 'A'

The password is already encrypted. This may occur, for example, if the encrypted
password results from a K159 message of a standby application.

bcam_trace

Specifies whether the BCAM trace is explicitly enabled for this USER.

'Y' The BCAM trace is explicitly enabled for this USER.

'N' The BCAM trace is not explicitly enabled for this USER.

It only makes sense to evaluate the field using KC_GET_OBJECT if the BCAM trace is enabled for
individual USERs. If the BCAM trace is generally enabled (see) kc_diag_and_account_par_str

='N' is returned here for this user.bcam_trace

The BCAM trace can be explicitly enabled or disabled by calling KC_MODIFY_OBJECT. The BCAM
trace can then only be enabled for individual USERs

if it is disabled for all USERs (see) orkc_diag_and_account_par_str

if it has only been enabled for individual USERs up to now.

principal (only on BS2000 systems)

The user is authenticated using Kerberos. It is only possible to authenticate users using Kerberos if
the user signs in directly (not via OMNIS) at a terminal that supports Kerberos.

Specifying excludes the possibility of specifying and .principal card_xx password

openUTM V7.0. Administering Applications. User Guide.

 602

If a query is issued with KC_GET_OBJECT, the principal is displayed here if the user has been
generated with Kerberos authentication.

When calling KC_CREATE_OBJECT, you enter an alphanumeric string of the following form here:

windowsaccount@NT-DNS-REALM-NAME'

windowsaccount

Domain account of the user

NT-DNS-REALM-NAME

DNS name of the Active Directory domain. This name is a fixed value for every Active
Directory domain and was assigned when the Kerberos key was set up.

node_last_excl_signon

This field is only relevant for UTM cluster applications.
Number (index) of the node application that a user/client with this user ID was most recently
exclusively signed on to.

exclusively_signed

This field is only relevant for UTM cluster applications.
 specifies whether a user/client is currently signed on exclusively with this user ID.exclusively_signed

'Y' The user/client is currently signed on exclusively.

'N' No user/client is signed on exclusively with the user ID.

excl_sign_time_date

This field is only relevant for UTM cluster applications.
Date and time that this user most recently signed on exclusively.

UTM returns the date and time of the last sign-on in a union of type .kc_sign_date

union kc_sign_date

char cstring[14];

struct cstr_str cstring_struct;

where

struct cstr_str

char year[4];

char month [2];

char day[2];

char hour[2];

openUTM V7.0. Administering Applications. User Guide.

 603

char minute[2];

char sec[2];

The output has the form 'YYYYMMDDhhmmss'. Where is the year, the month, the YYYY MM DD
day, the hour, the minute and the second.hh mm ss

If no user or client has yet signed on exclusively with the user ID, openUTM returns
'00000000000000'.

out_queue_ex

see .out_queue

ptc

The user has an open service with a transaction in the PTC state

bound_ptc

The user has a node-bound service with a transaction in the PTC state (relevant only for UTM
cluster applications).

bound_service

The user had a node-bound service on the last sign-off (relevant only for UTM cluster applications).

cputime_msec

Indicates the number of CPU milliseconds used since the last establishment of a connection for the
processing of jobs for this user ID. However, the value returned in does not include cputime_msec
the CPU time used for database calls.

password16

password16 always contains blanks, even if a password is defined for the user ID, when information
is queried with KC_GET_OBJECT.

The field is only relevant for KC_MODIFY_OBJECT and KC_CREATE_OBJECT. You password16
can then pass the new password for the user ID in to UTM (see).password "obj_type=KC_USER"

On BS2000 systems, specifying excludes the possibility of specifying .password16 principal

protect_pw16_lth

Specifies the minimum number of characters a password for the user ID must have in order for it to
be accepted by UTM (minimum length of the password). The administrator can only delete the user’s
password if '00' is returned in .protect_pw16_lth

openUTM V7.0. Administering Applications. User Guide.

 604

11.3.2 Data structures used to describe the application parameters

All data structures that are provided for passing application parameters are described in the following section. Every
single parameter type is provided its own data structure in the header file. The name of the kcadminc.h
corresponding data structure is created from the name of the parameter type and the suffix " ". The descriptions _str
are listed in alphabetically ascending order according to the names of the data structures.

openUTM V7.0. Administering Applications. User Guide.

 605

11.3.2.1 kc_cluster_curr_par_str - Statistics values of a UTM cluster application

The data structure is defined for the object type KC_CLUSTER_CURR_PAR. In the case of kc_cluster_curr_par_str
KC_GET_OBJECT, UTM returns information on the utilization of the cluster page pool in .kc_cluster_curr_par_str

KC_MODIFY_OBJECT can be used to reset the counters to 0.

mod1 Data structure kc_cluster_curr_par_str

x(GID) char max_cpgpool_size[3];

- char curr_cpgpool_size[3];

x(GID) char avg_cpgpool_size[3];

- char node_reserved_cpgpool_pages[10];

1 The content of the field can be modified using KC_MODIFY_OBJECT; see "obj_type=KC_CLUSTER_CURR_PAR"

The fields in the data structure have the following meanings:

max_cpgpool_size

Specifies the maximum cluster page pool utilization in %.

The value continues to apply after the entire UTM application run. It is reset when the size of the cluster
page pool is increased and when the UTM cluster files are generated using KDCDEF.

KC_MODIFY_OBJECT:
Resets the value to 0. This also implicitly resets the value of to 0.avg_cpgpool_size

curr_cpgpool_size

Specifies the current cluster page pool utilization in %.

avg_cpgpool_size

Specifies the average cluster page pool utilization in %.

The value continues to apply after the entire UTM application run. It is reset when the size of the cluster
page pool is increased and when the UTM cluster files are generated using KDCDEF.

KC_MODIFY_OBJECT:
Resets the value to 0. This also implicitly resets the value of to 0.max_cpgpool_size

node_reserved_cpgpool_pages

Specifies the number of reserved pages for the current local node.

openUTM V7.0. Administering Applications. User Guide.

 606

11.3.2.2 kc_cluster_par_str - Global properties of a UTM cluster application

The data structure is defined for the parameter type KC_CLUSTER_PAR. In the case of kc_cluster_par_str
KC_GET_OBJECT, UTM uses to return the current settings for the properties of a UTM cluster kc_cluster_par_str
application together with current data (e.g. generation time, start time, number of active and generated node
applications).
You can use KC_MODIFY_OBJECT to modify the following:

Parameters which control the verification of the individual node applications

Parameters which control node application access to the cluster configuration file and the cluster administration
journal.

openUTM V7.0. Administering Applications. User Guide.

 607

mod 1 data structure kc_cluster_par_str

- struct kc_cluster_filebase cluster_filebase;

- struct kc_admi_date_time_model gen_time;

- char os_type[24];

- char bit_mode[8];

- char bcamappl[8];

- char port_nbr[8];

x(GID) char check_alive_timer_sec[8];

x(GID) char communication_retry[8];

x(GID) char communication_reply_timer_sec[8];

x(GID) char restart_timer_sec[8]:

x(GID) char file_lock_timer_sec[8];

x(GID) char file_lock_retry[8];

- char max_nbr_nodes[4];

- char curr_nbr_nodes[4];

- char nbr_active_nodes[4];

- char emergency_cmd [200];

- char failure_cmd [200];

- struct kc_admi_date_time_model last_kdcdef_time;

- struct kc_admi_date_time_model cluster_start_time;

- char abort_bound_service;

x(GID) char deadlock_prevention;

- char listener_id[5]; (only on Unix, Linux and Windows systems)

- char cpgpool[10];

- char cpgpool_warnlevel[2];

- char cpgpool_fs[2];

1 Field content can be modified with KC_MODIFY_OBJECT , see "obj_type=KC_CLUSTER_PAR"

openUTM V7.0. Administering Applications. User Guide.

 608

The fields in the data structure correspond to the configuration information in the KDCDEF kc_cluster_par_str
control statement CLUSTER, see openUTM manual “Generating Applications”.

The fields in the data structure have the following meanings:

cluster_filebase

Name prefix or directory (base name) of the cluster configuration file and other global administration files
of the UTM cluster application, e.g. the administration journal.

The name is passed in the element of type :cluster_filebase kc_cluster_filebase

struct kc_cluster_filebase

char length[2];

char fb_name[54];

fb_name contains the base name and the length of the base name.length

gen_time

Time at which the cluster configuration file was generated. The date and time are returned in the element
 of type .gen_time kc_admi_date_time_model

struct kc_admi_date_time_model

struct kc_admi_date_model admi_date;

struct kc_admi_time_model admi_time

where

struct kc_admi_date_model

char admi_day [2];

char admi_month [2];

char admi_year_4 [4];

char admi_julian_day [3];

char admi_daylight_saving_time

and

struct kc_admi_time_model

char admi_hours [2];

openUTM V7.0. Administering Applications. User Guide.

 609

char admi_minutes [2];

char admi_seconds [2]

os_type

System platform of the computer

bit_mode

Mode in which the operating system is running. The following values are returned:

'32 Bit' for 32-bit mode.

'64 Bit' for 64-bit mode.

bcamappl

Name of the transport system endpoint (BCAMAPPL name) that is used for communication within the
cluster.

port_nbr

Number of the listener port used for communication within the cluster.

check_alive_timer_sec

In a UTM cluster application, every node application is monitored by another node application (circular
monitoring), i.e. each node application monitors the availability of another node application and is itself
monitored by a node application. To do this, the monitoring node application sends messages to the
monitored node application at defined intervals (). If the monitored application is check_alive_timer_sec
available, it acknowledges the message.

 specifies the interval in seconds at which monitoring messages are sent to the check_alive_timer_sec
monitored node application.
This timer is also used for periodic access to the cluster configuration file and the cluster administration
journal.

KC_MODIFY_OBJECT:
You can modify the monitoring interval.

Minimum value: ‘30'
Maximum value: ‘3600'

communication_retry

Specifies how often a node application repeats an attempt to send a monitoring message if the monitored
node application does not respond within the time defined in . communication_reply_timer_sec
If the monitored node application does not respond to any of the retries in the defined time, then it is
assumed to have failed and the command sequence defined in is executed (e.g. a restart).failure_cmd

openUTM V7.0. Administering Applications. User Guide.

 610

KC_MODIFY_OBJECT:
You can modify the value of .communication_retry

Minimum value: ‘0'
Maximum value: ‘10'

communication_reply_timer_sec

Maximum time in seconds that a node application waits for a response after sending a monitoring
message.
If no response is received within this period then the monitored node application is assumed to have
failed (abnormal end of application) and the command sequence defined in is executed (e.g. failure_cmd
a restart).

If a value greater than zero is set for , then the target node application is only communication_retry
assumed to have failed if, additionally, no response to the monitoring message is received after the final
retry.

KC_MODIFY_OBJECT:
You can modify the settings for .communication_reply_timer_sec

Minimum value: '1'
Maximum value: '60'

restart_timer_sec

Maximum time in seconds that a node application requires for a warm start after a failure (abnormal
program termination).

The monitoring node application waits for the time specified here after calling the command sequence
specified under before sending another monitoring message to this node application. If the failure_cmd
monitoring node application does not receive a response to this message, it is assumed that the failed
node application can no longer be restarted as a result of a persistent problem. The command sequence
specified in is called for the failed node application.emergency_cmd

KC_MODIFY_OBJECT:
You can modify the value of .restart_timer_sec

Minimum value: ‘0', i.e. no time monitoring of restart.
Maximum value: '3600'

file_lock_timer_sec

Maximum time in seconds that a node application waits for a lock to be assigned for accessing the cluster
configuration file of the cluster administration journal. specifies how often a node file_lock_retry
application repeats the request for a lock on the cluster configuration file or the cluster administration
journal if the lock was not assigned in the time specified in .file_lock_timer_sec

KC_MODIFY_OBJECT:
Sets a new value for file_lock_timer_sec.

Minimum value: ‘10'
Maximum value: ‘60'

openUTM V7.0. Administering Applications. User Guide.

 611

file_lock_retry

Specifies how often a node application repeats the request for a lock on the cluster configuration file or
the cluster administration journal if the lock was not assigned in the time specified in .file_lock_timer_sec

KC_MODIFY_OBJECT:
You can modify the value of :file_lock_retry

Minimum value: ‘1'
Maximum value: ‘10'

max_nbr_nodes

Maximum possible number of node applications that can be generated in a UTM cluster application.

In an XCS cluster of BS2000 systems, a maximum of 16 of the 32 node applications that can be
generated can run at any one time.

curr_nbr_nodes

Number of node applications actually generated for this UTM cluster application (corresponds to the
number of CLUSTER-NODE statements in the KDCDEF generation of the UTM cluster application).

nbr_active_nodes

Number of node applications currently active (started) in the UTM cluster application.

emergency_cmd

Contains a command to be executed together with its arguments.
This command is called by UTM if a failed node application cannot be restarted and a value greater than
zero has been set for . I.e., the actions specified in have not resulted in the restart_timer_sec failure_cmd
failed node application being restarted (in time).

failure_cmd

Contains a command to be executed together with its arguments. This command is called by UTM if a
node application terminates abnormally or if failure of a node application is detected. The command in

 can, for example, be used to initiate the restart of a failed node application or to send an e-failure_cmd
mail to the system administrator.

last_kdcdef_time

Time of the last generation of a KDCFILE which has been used to start at least one node application.

The date and time are returned in the element of type (see last_kdcdef_time kc_admi_date_time_model
).gen_time

cluster_start_time

Time at which the first node application in the UTM cluster application was started.

The date and time of the start are returned in the element of type cluster_start_time
 (see).kc_admi_date_time_model gen_time

abort_bound_service

openUTM V7.0. Administering Applications. User Guide.

 612

'N' If when a user signs on, there is an open service for this user that is bound to another node
application, then the user can only sign on at the node application to which the open service is
bound. Sign-on attempts at any other node application are rejected.

'Y' If when a user signs on at a node application, there is an open service for this user that is bound to
another node application that has been terminated, then the user is able to sign on provided that
no transaction of the open service has the state PTC. No service restart is performed

The open service is terminated abnormally the next time the node application to which it is bound
is started.

deadlock_prevention

Specifies whether or not UTM is to perform additional checks of the GSSB, TLS and ULS data areas in
order to prevent deadlocks.

'N' UTM does not perform any additional checks of the GSSB, TLS and ULS data areas in order to
prevent deadlocks If a deadlock occurs in one of these data areas then this is resolved by means
of a timeout.

'Y' UTM performs additional checks of the GSSB, TLS and ULS data areas in order to prevent
deadlocks.

In productive operation, it is advisable to set this parameter to 'Y' only if timeouts occur frequently
when accessing these data areas.

listener_id (only on Unix, Linux and Windows systems)

This parameter is used to select a network process for internal cluster communication.

cpgpool

Size of the cluster page pool in 4K pages.

cpgpool_warnlevel

Percentage value specifying the cluster page pool utilization level at which a warning (message K041) is
output.

cpgpool_fs

Number of files over which the user data is distributed in the cluster page pool.

openUTM V7.0. Administering Applications. User Guide.

 613

11.3.2.3 kc_curr_par_str - Current values of the application parameters

The data structure is defined for the parameter type KC_CURR_PAR. In the case of kc_curr_par_str
KC_GET_OBJECT, UTM returns the current values of the parameter settings, data pertaining to the application run
and statistical information on the load of the application in (see also KDCINF, kc_curr_par_str
"type=STATISTICS" in chapter)."Output from KDCINF (examples)"

You can reset some of the counters used by UTM to generate statistical information with the aid of
KC_MODIFY_OBJECT if you need to (see also in chapter max_statistics_msg "kc_max_par_str - Maximum values

).for the application (MAX parameters)"

If MAX STATISTICS-MSG=NONE the counters in a UTM-S application are only reset the first time the application is
started and in UTM-F applications they are reset each time the application is started.

If MAX STATISTICS-MSG=FULL-HOUR then the counters are reset every full hour. As a result, the values
displayed in the initial period following a full hour may be too low.

openUTM V7.0. Administering Applications. User Guide.

 614

mod 1 Data structure kc_curr_par_str

- char appliname[8];

- char utm_version[8];

- char applimode;

- char start_date_year[4];

- char start_date_month[2];

- char start_date_day[2];

- char start_time_hour[2];

- char start_time_min[2];

- char start_time_sec[2];

- char curr_date_year[4];

- char curr_date_month[2];

- char curr_date_day[2];

- char curr_time_hour[2];

- char curr_time_min[2];

- char curr_time_sec[2];

x(GIR) char term_input_msgs[10];

x(GIR) char term_output_msgs[10];

- char curr_max_asyntasks[3];

- char curr_max_tasks_in_pgwt[3];

- char curr_tasks[3];

- char curr_asyntasks[3];

- char curr_tasks_in_pgwt[3];

- char tasks_waiting_in_pgwt[3];

- char connected_users[10];

- char *rvices[10];

- char open_asyn_services[10];

openUTM V7.0. Administering Applications. User Guide.

 615

mod 1 Data structure kc_curr_par_str

- char dial_ta_per_100sec[10];

- char asyn_ta_per_100sec[10];

- char dial_step_per_100sec[10];

x(GIR) char max_dial_ta_per_100sec[10];

x(GIR) char max_asyn_ta_per_100sec[10];

x(GIR) char max_dial_step_per_100sec[10];

x(GIR) char max_pool_size[3];

- char curr_pool_size[3];

x(GIR) char avg_pool_size[3];

x(GIR) char cache_hit_rate[3];

x(GIR) char cache_wait_buffer[3];

- char unproc_atacs[10];

- char unproc_prints[10];

- char wait_dputs[10];

x(GIR) char abterm_services[10];

- char wait_resources[4];

x(GIR) char deadlocks[10];

x(GIR) char periodic_writes[10];

x(GIR) char pages_pwrite[10];

x(GIR) char logfile_writes[10];

- char curr_jr[3];

x(GIR) char maximum_jr[3];

- char program_fgg[4];

- char uslog_fgg[4];

x(GIR) char max_mpgpool_size[3]; 2

- char curr_mpgpool_size[3]; 2

openUTM V7.0. Administering Applications. User Guide.

 616

mod 1 Data structure kc_curr_par_str

x(GIR) char avg_mpgpool_size[3]; 2

x(GIR) char max_load[3];

- char curr_load[3];

x(GIR) char max_wait_resources[4];

- char wait_system_resources[4];

x(GIR) char max_wait_system_resources[4];

x(GIR) char nr_cache_rqs[10];

x(GIR) char nr_cache_searches[10];

- char nr_res_rqs[10];

x(GIR) char nr_res_rqs_for_max[10];

- char nr_sys_res_rqs[10];

x(GIR) char nr_sys_res_rqs_for_max[10];

- char curr_system_tasks[3];

x(GID) char data_compression;

x(GIR) char avg_saved_pgs_by_compr[3];

- char gen_date_year[4];

- char gen_date_month[2];

- char gen_date_day[2];

- char gen_time_hour[2];

- char gen_time_min[2];

- char gen_time_sec[2];

1 The field contents can be modified with KC_MODIFY_OBJECT; see "obj_type=KC_CURR_PAR"

2 Internal UTM field; the contents of the field are irrelevant and will not be described in the following.

The fields in the data structure have the following meanings:

appliname

Name of the UTM application set in the KDCDEF generation in MAX APPLINAME.

openUTM V7.0. Administering Applications. User Guide.

 617

appliname is the name of the application that must be specified when establishing a connection from the
terminal.

utm_version

The openUTM version used including the update information, for example V07.0A00.

applimode

Specifies if the UTM application is a UTM-S or UTM-F application.

'S' The application is generated as a UTM-S application (secure).

'F' The application is generated as a UTM-F application (fast).

start_date_year, start_date_month, start_date_day

UTM-S application: date of the last cold start of the application
UTM-F application: date of the last start of the application

start_time_hour, start_time_min, start_time_sec

UTM-S application: time of the last cold start of the application
UTM-F application: time of the last start of the application

curr_date_year, curr_date_month, curr_date_day

The current date.

curr_time_hour, curr_time_min, curr_time_sec

The current time.

term_input_msgs

Total number of messages that the application has received from clients or partner applications since the
last time the counter was reset. term_input_msgs
UTM automatically resets the counter to 0 each time the application is started and on each full hour, if
MAX STATISTICS-MSG=FULL-HOUR (default value) was set during KDCDEF generation.
You can set to 0.term_input_msgs

term_output_msgs

Total number of messages that the application sent to clients, printers or partner applications since the
last time the counter was reset.term_output_msgs

UTM automatically resets the counter to 0 each time the application is started and on each full hour, if
MAX STATISTICS-MSG=FULL-HOUR (default value) was set during KDCDEF generation.

You can set to 0.term_output_msgs

curr_max_asyntasks

Current setting for the maximum number of processes that may be used for asynchronous processing.
 is dynamically adjusted by UTM if the total number of processes of the application or curr_max_asyntasks

openUTM V7.0. Administering Applications. User Guide.

 618

the maximum number of processes for asynchronous processing (kc_tasks_par_str.mod_max_asyntasks
 in chapter) is changed by the administration."kc_tasks_par_str - Number of processes"

curr_max_tasks_in_pgwt

Current setting for the maximum number of processes that may simultaneously process jobs from TAC
classes whose transaction codes are allowed to use blocking calls such as, for example, the KDCS call
PGWT (Program Wait). is dynamically adjusted by UTM if the total number of curr_max_tasks_in_pgwt
processes of the application or the number of processes

 (see chapter) is kc_tasks_par.mod_max_tasks_in_pgwt "kc_tasks_par_str - Number of processes"
changed.

curr_tasks

Contains the number of processes of the application currently running.

curr_asyntasks

Contains the number of processes currently processing asynchronous jobs.

curr_tasks_in_pgwt

Contains the number of processes currently processing jobs whose transaction codes are allowed to use
blocking function calls (for example PGWT).

tasks_waiting_in_pgwt

The current number of processes in the wait state due to blocking function calls (for example the KDCS
call PGWT).

connected_users

The number of users currently connected to the application.

open_dial_services

The number of dialog services currently open.
In a UTM cluster application, an open dialog service that is valid globally in the cluster is only counted if
the user is signed on.

open_asyn_services

The number of asynchronous services currently open.

dial_ta_per_100sec

The current number of dialog transactions executed in the last closed 100 second interval.

asyn_ta_per_100sec

The current number of asynchronous transactions executed in the last closed 100 second interval.

dial_step_per_100sec

The current number of dialog steps executed in the last closed 100 second interval.

max_dial_ta_per_100sec

openUTM V7.0. Administering Applications. User Guide.

 619

The maximum number of dialog transactions that were executed within a 100 second interval. The value
is specified for the current application run.
It can be reset with KC_MODIFY_OBJECT (see)."obj_type=KC_CURR_PAR"

max_asyn_ta_per_100sec

The maximum number of asynchronous transactions that were executed within a 100 second interval.
The value is specified for the current application run. It can be reset with KC_MODIFY_OBJECT (see

)."obj_type=KC_CURR_PAR"

max_dial_step_per_100sec

The maximum number of dialog steps that were executed within a 100 second interval. The value is
specified for the current application run. It can be reset with KC_MODIFY_OBJECT (see

)."obj_type=KC_CURR_PAR"

max_pool_size

The maximum amount of the page pool in use in percent. For UTM-S applications the maximum page
pool size since the most recent KDCDEF generation is returned, for UTM-F applications the size since
the last application start is returned. The value can be reset with KC_MODIFY_OBJECT (see

)."obj_type=KC_CURR_PAR"

curr_pool_size

The current amount of the page pool in use in percent.

avg_pool_size

For UTM-S applications the maximum page pool size since the most recent KDCDEF generation is
returned, for UTM-F applications the size since the last application start is returned. The value can be
reset with KC_MODIFY_OBJECT (see)."obj_type=KC_CURR_PAR"

cache_hit_rate

The hit rate when searching for a page in the cache. Specified in percent.The value refers to the current
application run. It can be reset with KC_MODIFY_OBJECT (see). If this "obj_type=KC_CURR_PAR"
value is reset then the values , and are also cache_wait_buffer nr_cache_rqs nr_cache_searches
implicitly reset to 0.

cache_wait_buffer

The percentage of queries from buffers in the cache that have resulted in a wait state. cache_wait_buffer
gives you the amount of buffer queries since the counter was last reset.
UTM automatically resets the counter to 0 each time application is started and on each hour, if MAX
STATISTICS-MSG=FULL-HOUR (default value) was generated in the KDCDEF generation.
You can reset the counter using KC_MODIFY_OBJECT (see). If this value is "obj_type=KC_CURR_PAR"
reset then the values , and are also implicitly reset to 0.cache_hit_rate nr_cache_rqs nr_cache_searches

unproc_atacs

The number of background jobs currently stored in UTM but not yet completely processed. This
corresponds to the number of messages temporarily stored at the present time in all of the message
queues of asynchronous services.

openUTM V7.0. Administering Applications. User Guide.

 620

unproc_prints

The number of messages temporarily stored at the present time in the message queues of all of the
printers.

wait_dputs

The number of time-driven jobs currently waiting (DPUTs).

abterm_services

The number of abnormally terminated services since the value was last reset.You can reset
 with KC_MODIFY_OBJECT.abterm_services

wait_resources

This value indicates the mean lock conflict rate for the GSSB, ULS and TLS memory areas during the last
closed 100 second interval as an amount per thousand, i.e. the total number of wait situations on lock
requests as a ratio of GSSB, ULS and TLS lock requests in the last closed 100 second interval multiplied
by 1000.

A higher value in can be caused by the following:wait_resources

processes with run times or wait times that are too long

resources that have been locked for too long, for example, due to many PEND KP or PGWT calls in
KDCS program units.

deadlocks

The number of deadlocks of UTM resources that have been recognized and resolved since the value was
last reset.

You can reset using KC_MODIFY_OBJECT.deadlocks

periodic_writes

The number of periodic writes since the last start of the application or since the value was last reset with
KC_MODIFY_OBJECT. (periodic write = the saving of all relevant administration data of the UTM
application.)

pages_pwrite

The number of UTM pages that are saved during a periodic write on the average. All periodic writes since
the value was last reset are registered. You can reset the value using KC_MODIFY_OBJECT. UTM
automatically resets to zero each time the application is started.pages_pwrite

logfile_writes

If a lock holder enters the status PEND KP then all "waiters" are informed and all further locks
are rejected immediately. I.e. the value of does not increase as a result.wait_resources

i

openUTM V7.0. Administering Applications. User Guide.

 621

The number of request to write log entries to the user log file (USLOG) since the value was last reset
UTM automatically resets the counter to 0 each time application is started and on each hour, if MAX
STATISTICS-MSG=FULL-HOUR (default value) was generated in the KDCDEF generation.

You can reset the counter using KC_MODIFY_OBJECT (see)."obj_type=KC_CURR_PAR"

curr_jr

Only for distributed processing:

The current number of simultaneously addressed job-receiving services relative to the generated value
MAXJR in percent.

(MAXJR = maximum number of remote job-receiving services that may be addressed simultaneously in
the local application; see in chapter kc_utmd_par_str "kc_utmd_par_str - Parameters for distributed

).processing"

maximum_jr

Only in the case of distributed processing:

The current number of simultaneously addressed job-receiving services in the local application relative to
the generated value MAXJR (see in chapter kc_utmd_par_str "kc_utmd_par_str - Parameters for

). Specified in percent.distributed processing"

maximum_jr returns all requests to the remote job-receiving service since the value was last reset. You
can reset to zero with KC_MODIFY_OBJECT.maximum_jr

program_fgg

On Unix, Linux and Windows systems: The number of file generations of the application program
currently loaded.

On BS2000 systems: 0

uslog_fgg

The number of file generations of the user log file (USLOG) currently being written to.

max_load

Indicates as a percentage the maximum load on the UTM application since the start of the application or
the last reset was registered.

The value in can be reset to the value in .max_load curr_load

curr_load

Indicates as a percentage the current load on the UTM application registered during the last closed 100
second intervall.

max_wait_resources

Maximum conflict rate for user data locks across the application run. The value is specified as an amount
per thousand.

You can reset this value with KC_MODIFY_OBJECT. If this value is reset then the values
, and are also implicitly reset max_wait_system_resources nr_res_rqs_for_max nr_sys_res_rqs_for_max

to 0.

openUTM V7.0. Administering Applications. User Guide.

 622

wait_system_resources

Average conflict rate in the last closed 100 second interval for the most heavily loaded system resource
during this interval. The output can refer to different system resources in different intervals. The value is
specified as an amount per thousand.

max_wait_system_resources

Maximum conflict rate for system resource requests (system locks) across the application run. The value
is specified as an amount per thousand.

You can reset this value with KC_MODIFY_OBJECT. If this value is reset then the values
 and are also implicitly reset to 0.max_wait_resources nr_res_rqs_for_max nr_sys_res_rqs_for_max

nr_cache_rqs

Number of buffer requests taken into account to calculate the value .cache_wait_buffer

You can reset the value using KC_MODIFY_OBJECT. If this value is reset then the values cache_hit_rate
, and are also implicitly reset to 0.cache_wait_buffer nr_cache_searches

nr_cache_searches

Number of search operations for UTM pages in the cache taken into account to calculate the value
.cache_hit_rate

You can reset the value using KC_MODIFY_OBJECT. If this value is reset then the values cache_hit_rate
, and are also implicitly reset to 0.cache_wait_buffer nr_cache_rqs

nr_res_rqs

Number of requests for transaction resources in the last closed 100 second interval taken into account to
calculate the value .wait_resources

nr_res_rqs_for_max

Number of requests for transaction resources in the 100 second interval during which the maximum
conflict rate was reached.max_wait_resources

You can reset the value using KC_MODIFY_OBJECT. If this value is reset then the values
, and are also implicitly reset max_wait_resources max_wait_system_resources nr_sys_res_rqs_for_max

to 0.

The values and are useful when assessing the relevance of a nr_res_rqs nr_res_rqs_for_max
high lock conflict rate, in particular with regard to losses due to lock conflicts.

Example:

nr_res_rqs=100, =5wait_resources
=10, =50.nr_res_rqs_for_max max_wait_resources

I.e. the maximum lock conflict rate of 50 was reached with 10 locks being requested in 100
seconds, 5 of which led to wait times due to conflicts. In addition, the current lock conflict
rate of 5 percent at 100 requested locks was also reached in100 seconds, with it again
being necessary to wait for 5 locks.

i

openUTM V7.0. Administering Applications. User Guide.

 623

nr_sys_res_rqs

Number of requests for system resources in the last closed 100 second interval taken into account to
calculate the value wait_system_resources

nr_sys_res_rqs_for_max

Number of requests for system resources in the 100 second interval during which the maximum conflict
rate was reached.max_wait_system_resources

You can reset the value using KC_MODIFY_OBJECT. If this value is reset then the values
, and are also implicitly reset to 0.max_wait_resources max_wait_system_resources nr_res_rqs_for_max

curr_system_tasks

Number of UTM system processes that are currently running.

data_compression

Specifies whether data compresion is currently enabled:

'Y' Data compresion is enabled.

'N' Data compresion is not enabled.

You can modify the value with KC_MODIFY_OBJECT if data compression is permitted by means of
generation (see and section "kc_max_par_str - Maximum values for the application (MAX parameters)"
openUTM manual “Generating Applications”, MAX DATA-COMPRESSION=).

A modification applies beyond the application run; in UTM cluster applications it applies for all node
applications.

avg_saved_pgs_by_compr

Average value for the UTM pages saved per data compression. The writing of areas in which UTM
performs no compression because, for example, the data length is less than one UTM page is not
included in this statistics value. Two digits to the left of the decimal point and one decimal digit of the
statistics value are displayed, i.e. a content of 010 corresponds to an average saving of 1.0 UTM pages.

The value can be reset with KC_MODIFY_OBJECT.

If no statistics values for data compression are available for the application, binary zero is output. This is
possible in the following situations.

Data compression is disabled.

The value was reset with KC_MODIFY_OBJECT.

No data compression was performed because the application uses "small" data areas in which it does
not make sense to use compression.

i

openUTM V7.0. Administering Applications. User Guide.

 624

gen_date_year
gen_date_month
gen_date_day

Date of the generation run of the application.

gen_time_hour
gen_time_min
gen_time_sec

Time of the generation run of the application.

If the value output for is less than 5 - which corresponds to 0.5 avg_saved_pgs_by_compr
saved UTM pages per compression attempt -, for performance reasons data compression
should be disabled for this application.

i

openUTM V7.0. Administering Applications. User Guide.

 625

11.3.2.4 kc_diag_and_account_par_str - Diagnostic and accounting parameters

The data structure is defined for the parameter type kc_diag_and_account_par_str
KC_DIAG_AND_ACCOUNT_PAR. contains the data structure, kc_diag_and_account_par_str kc_dump_event_str
which in turn contains .kc_insert_str

In the case of KC_GET_OBJECT, UTM returns following information in :kc_diag_and_account_par_str

which diagnostic functions are currently enabled

if the UTM accounting is currently enabled.

You can enable and disable different diagnostic functions, the UTM event monitor KDCMON and UTM Accounting
with KC_MODIFY_OBJECT and the KC_DIAG_AND_ACCOUNT_PAR parameter type.

mod 1 Data structure kc_diag_and_account_par_str

x(GIR) char account;

x(GIR) char calc;

x(IR) char kdcmon;

- char dump_msg_id[4];

x(GIR) char testmode;

x(GIR) char bcam_trace;

x(GIR) char osi_trace;

x(GIR) char osi_trace_records[5];

x(GA) char sysprot_switch;

x(GIR) struct kc_dump_event_str dump_event[3];

x(IR) char stxit_log; (only on BS2000 systems)

x(IR) char xa_debug;

x(IR) char xa_debug_out;

- curr_max_btrace_lth[5];

x(IR) char admi_trace;

x(IR) char cpic_trace;

x(IR) char tx_trace;

x(IR) char xatmi_trace;

openUTM V7.0. Administering Applications. User Guide.

 626

mod 1 Data structure kc_dump_event_str

x(GIR) char event_type[4];

x(GIR) char event[4];

x(GIR) struct kc_insert_str insert[3];

mod 1 Data structure kc_insert_str

x(GIR) char insert_index[2];

x(GIR) union kc_value value;

x(GIR) char value_type;

x(GIR) char comp[2];

1 Field contents can be modified with KC_MODIFY_OBJECT, see ."obj_type=KC_DIAG_AND_ACCOUNT_PAR"

The fields in the data structure have the following meanings:kc_diag_and_account_par_str

account

Specifies if the accounting phase of the UTM accounting is enabled.

'Y' The accounting phase is enabled (ON).

'N' The accounting phase is disabled (OFF).

The accounting phase can be enabled or disabled during the application run.

For more information on UTM accounting see also the openUTM manual “Generating Applications” and
the openUTM manual “Using UTM Applications”.

calc

Specifies if the calculation phase for the UTM accounting is enabled or disabled.

'Y' The calculation phase is enabled (ON).

'N' The calculation phase is disabled (OFF).

The calculation phase can be enabled or disabled during the application run.

kdcmon

Specifies if the UTM measurement monitor KDCMON is enabled.

'Y' KDCMON is enabled (ON).

You can evaluate the values measured by KDCMON with the UTM tool KDCEVAL. For details
on operating KDCMON please refer to the relevant openUTM manual “Using UTM
Applications”.

openUTM V7.0. Administering Applications. User Guide.

 627

'N' KDCMON is disabled (OFF).

KDCMON can be enabled or disabled during the application run.

dump_msg_id

This parameter is no longer supported, but is retained in the structure as a placeholder. Use the data
structure (see).kc_dump_event_str dump_event

testmode

Specifies if the test mode is enabled.
Test mode means that additional internal UTM routines are executed to conduct plausibility tests and to
record internal TRACE information.

'Y' The test mode is enabled (ON).

'N' The test mode is disabled (OFF).

The test mode can be enabled or disabled during the application run. For performance reasons test
mode should only be enabled when requested by Systems Support in order to create diagnostic
documentation.

bcam_trace

Specifies if the BCAM trace is enabled. BCAM trace is the trace function which monitors all connection-
specific activities within a UTM application (for example, the BCAM trace function on BS2000 systems).

'Y' The BCAM trace function is enabled (ON).

'S' The BCAM trace function was explicitly enabled (SELECT) for several LTERM, LPAP, MUX
partners (BS2000 systems) or USERs.
Only those activities on connections to the explicitly specified LTERM, LPAP or MUX partners
or user ids are logged.

'N' The BCAM trace function is disabled (OFF).

You can enable or disable the BCAM trace function during an application run.

osi_trace

Specifies if the OSI trace function is enabled.
The OSI trace is needed for diagnosing problems with OSI TP connections of the application.

'Y' The OSI trace function is enabled (ON). All record types are traced.

'N' The OSI trace function is disable (OFF).

'S' The OSI trace function is enabled for certain record types. Which record types will be traced
and which will not is specified in the field.osi_trace_records

osi_trace is only relevant if objects for distributed processing via OSI TP have been generated in the
application.

openUTM V7.0. Administering Applications. User Guide.

 628

You can enable and disable the OSI trace function during the application run. For performance reasons
the OSI trace should only be enabled when requested by Systems Support in order to create diagnostic
documentation.

osi_trace_records

Specifies which record types will be traced in the OSI trace.
Each field element in represents a record type:osi_trace_records

The 1st field represents the record type "SPI",
The 2nd field represents the record type "INT"
The 3rd field represents the record type "OSS"
The 4th field represents the record type "SERV"
The 5th field represents the record type "PROT"

The entries in the individual field elements have the following meanings:

'Y' The trace records will be recorded for the record type corresponding to the field element.

'N' The trace records will not be recorded for the record type corresponding to the field element.

The record types have the following meanings:

SPI Events on the XAP-TP system programming interface

INT Internal program flow in an XAP-TP routine

OSS Events occurring during the processing of OSS calls (OSI session service)

SERV Internal OSS trace records of type O_TR_SERV

PROT Internal OSS trace records of type O_TR_PROT

You can enable the OSI trace during the application run for certain record types.

It is not possible to disable the trace for individual record types.

However, you can use the parameter disable all record types and then reactivate osi_trace='N'
individual record types as required.

The contents of is relevant if objects for distributed processing via OSI TP were osi_trace_records
generated in the application.

sysprot_switch

Specifies whether the log files in the UTM application are to be switched over.

'Y' The log files are to be switched over.

'N' The log files are not to be switched over.

stxit_log (only on BS2000 systems)

Specifies whether STXIT logging is to be enabled or disabled.

'Y' STXIT logging is enabled.

openUTM V7.0. Administering Applications. User Guide.

 629

'N' STXIT logging is disabled.

You can enable or disable STXIT logging while the application is running.

xa_debug

Specifies whether debug information for the XA connection is to be output to the database.

'Y' XA-DEBUG is enabled.
Calls of the XA interface are logged.

'A' Extended XA-DEBUG is enabled (ALL).
Specific data areas are logged in addition to the calls of the XA interface.

'N' XA-DEBUG is disabled.

You can enable or disable XA-DEBUG while the application is running.

xa_debug_out

Controls the output destinations for XA-DEBUG.

'S' Output to SYSOUT/stderr, default value.

'F' Output to a file.

If you use only the field without providing a value for , any value you specified xa_debug xa_debug_out
in the start parameter .RMXA DEBUG= when starting the UTM application will be used (see openUTM
manual “Using UTM Applications”). Otherwise, the log is written to SYSOUT/stderr.

curr_max_btrace_lth

Specifies the maximum length of data that is recorded when the BCAM trace function is enabled. See
also the start parameter BTRACE.

admi_trace

Specifies whether the ADMI trace function (trace function for the KDCADMI administration program
interface) is enabled.
See also the start parameter ADMI-TRACE.

'Y' The ADMI trace function is enabled.

'N' The ADMI trace function is disabled.

You can enable or disable the ADMI trace function while the application is running.

cpic_trace

Specifies whether the CPI-C trace function (trace function for the X/Open interface CPI-C) is enabled.
See also the start parameter CPIC-TRACE.

'T' The CPI-C trace function is enabled with the level TRACE. For each function call, the content
of the input and output parameters is output. Only the first 16 bytes are output from the data
buffers. The return codes of the KDCS calls to which the CPI-C calls are mapped are output.

openUTM V7.0. Administering Applications. User Guide.

 630

'B' The CPI-C trace function is enabled with the level BUFFER. This trace level includes the
TRACE level. However, the data buffers are logged in their full length.

'D' The CPI-C trace function is enabled with the level DUMP. This trace level includes the TRACE
level and also writes diagnostic information to the trace file.

'A' The CPI-C trace function is enabled with the level ALL. This trace level includes the levels
BUFFER, DUMP and TRACE.

'N' The CPI-C trace function is disabled.

You can enable or disable the CPI-C trace function while the application is running.

tx_trace

Specifies whether the TX trace function (trace function for the X/Open interface TX) is enabled. See
also the start parameter TX-TRACE.

'E' The TX trace function is enabled with the level ERROR. Only errors are logged.

'I' The TX trace function is enabled with the level INTERFACE. This trace level includes the
ERROR level. TX calls are also logged.

'F' The TX trace function is enabled with the level FULL. This trace level includes the
INTERFACE level. All KDCS calls to which the TX calls are mapped are also logged.

'D' The TX trace function is enabled with the level DEBUG. This trace level includes the FULL
level and diagnostic information is also logged.

'N' The TX trace function is disabled.

You can enable or disable the TX trace function while the application is running.

xatmi_trace

Specifies whether the XATMI trace function (trace function for the X/Open interface XATMI) is enabled.
See also the start parameter XATMI-TRACE.

'E' The XATMI trace function is enabled with the level ERROR. Only errors are logged.

'I' The XATMI trace function is enabled with the level INTERFACE. This trace level includes the
ERROR level. XATMI calls are also logged.

'F' The XATMI trace function is enabled with the level FULL. This trace level includes the
INTERFACE level. All KDCS calls to which the XATMI calls are mapped are also logged.

'D' The XATMI trace function is enabled with the level DEBUG. This trace level includes the FULL
level and diagnostic information is also logged.

'N' The XATMI trace function is disabled.

You can enable or disable the XATMI trace function while the application is running.

dump_event

openUTM V7.0. Administering Applications. User Guide.

 631

In the data structure , an event is specified for which a UTM dump with an event-kc_dump_event_str
dependent designator is generated when the event occurs. The dump is created by the process in
which the event occurred. The application is not terminated. Test mode must be enabled in order to
create a UTM dump (='Y'). :testmode

For detailed information, refer to section ."KDCDIAG - Switch diagnostic aids on and off"

The data structure contains a message number, a KDCS return code (KDCRCCC or KDCRCDC) or a
SIGNON status code. If a message with this message number is generated or if this return code or
status code is returned, a corresponding UTM dump is generated.

Description of the fields in the structure :dump_event

event_type

Type of event for which a UTM dump is to be generated:

'MSG' UTM message

'RCDC' Incompatible KDCS return code

'RCCC' Compatible KDCS return code

'SIGN' SIGNON status code

'NONE' Explicit deactivation of an individual event for a message dump. This allows the commands
KDCDIAG DUMP-MESSAGE [1, 2 or 3] to be cancelled (see section "KDCDIAG - Switch
diagnostic aids on and off").

event

Message number, KDCS return code (KDCRCCC or KDCRCDC) or SIGNON status code, depending on
the event_type

event_type MSG

Four-digit internal message number, with leading "K" or "P", e.g. K009 or P001.

event_type RCDC

Incompatible KDCS return code: KCRCDC (4 bytes), e.g. "K301"

event_type RCCC

Three-digit compatible KDCS return code, e.g. "14Z"

event_type SIGN

SIGNON status code: KCRSIGN1 or KCRSIGN2 (3 bytes), e.g. "U01"

insert

The specifications in the data structure only make sense for the MSG. For kc_insert_str event_type
detailed information, refer to section ."KDCDIAG - Switch diagnostic aids on and off"

Description of the fields in the structure :insert

openUTM V7.0. Administering Applications. User Guide.

 632

insert_index

Number of the insert to be checked, e.g. "2" for the second insert in a message. You can specify a
maximum of three inserts per message (with the structures insert[0] through insert[2]).

You can find the sequence of the inserts in a UTM message in openUTM manual ”Messages, Debugging
and Diagnostics”

Possible values: 1 ... 20

To generate a message dump independently of the inserts, set all three values to "0".insert_index

value

Value against which the insert is to be checked.

UTM represents the string in a union of the type .kc_value

union kc_value

char x[64];

char c[32];

For permitted values, see .value_type

value_type

value_type specifies how the contents of the value field are to be interpreted:

N: numeric

C: alphanumeric

X: hexadecimal

comp

Specifies whether the system is to test for equality or inequality. The following values are possible:

EQ Checks for equality, default.

NE Checks for inequality.

openUTM V7.0. Administering Applications. User Guide.

 633

11.3.2.5 kc_dyn_par_str - Dynamic objects

The data structure is defined for the parameter type KC_DYN_PAR. In the case of kc_dyn_par_str
KC_GET_OBJECT, UTM returns information on objects that can be created dynamically in . UTM kc_dyn_par_str
specifies the following for the individual object types:

The total number of objects of the object type that can be contained in the configuration.

The number of objects of the object type that could still be added dynamically to the configuration with
KC_CREATE_OBJECT.

openUTM V7.0. Administering Applications. User Guide.

 634

Data structure kc_dyn_par_str

char lterm_total[10];

char lterm_free[10];

char pterm_total[10];

char pterm_free[10];

char program_total[10];

char program_free[10];

char tac_total[10];

char tac_free[10];

char user_total[10];

char user_free[10];

char card_total[10]; (only on BS2000 systems)

char card_free[10]; (only on BS2000 systems)

char kset_total[10];

char kset_free[10];

char ltac_total[10];

char ltac_free[10];

char queue_total[10];

char queue_free[10];

char con_total[10];

char con_free[10];

char lses_total[10];

char lses_free[10];

char princ_total[10]; (only on BS2000 systems)

char princ_free[10]; (only on BS2000 systems)

The fields in the data structure have the following meanings:

lterm_total

openUTM V7.0. Administering Applications. User Guide.

 635

Specifies the total number of LTERM partners that can be added to the table in the KDCFILE. lterm_total
is also the number of table spaces generated for LTERM partners.

The number consists of:

The number of statically added LTERM partners.

The number of dynamically added of LTERM partners (=KC_LTERM).obj_type

The number of LTERM partners of LTERM pools. The number corresponds to the sum of all NUMBER
operands of TPOOL commands specified for the KDCDEF generation.

The number of reserved table spaces still free, i.e. in which LTERM partners can still be added.

Deleted LTERM partners are also included in this number.

lterm_free

Contains the number of LTERM partners that you can still add dynamically to the configuration.

pterm_total

Specifies the total number of clients and printer that can be added to the table in the KDCFILE.
 is also the number of table spaces generated for objects of type KC_PTERM.pterm_total

The number consists of:

The number of statically added clients and printers, i.e. the number of PTERM commands in the
KDCDEF generation.

The number of dynamically added clients/printer (=KC_PTERM).obj_type

The number of connections collected in LTERM pools for clients. The number corresponds to the sum
of all NUMBER operands of TPOOL commands specified for the KDCDEF generation.

The number of reserved table spaces still free, i.e. in which clients and printers can still be added.

Deleted clients and printers are also contained in this number.

pterm_free

Contains the number of clients and printers that you can still add with KC_CREATE_OBJECT.

program_total

Specifies the total number of program units that can be added to the table in the KDCFILE. program_total
is also the number of table spaces generated for objects of type KC_PROGRAM.

The number consists of:

The number of statically added program units and VORGANG exits, i.e. the number of PROGRAM
commands in the KDCDEF generation.

The number of dynamically added program units and VORGANG-Exits (=KC_PROGRAM).obj_type

The number of reserved table spaces that are still free.

Deleted program units are also contained in this number.

program_free

Contains the number of program units and VORGANG exits that you can still add with
KC_CREATE_OBJECT.

openUTM V7.0. Administering Applications. User Guide.

 636

tac_total

Specifies the total number of transaction codes and TAC queues that can be added to the table in the
KDCFILE. is also the number of table spaces generated for objects of type KC_TAC.tac_total

The number consists of:

The number of statically added transaction codes and TAC queues, i.e. the number of TAC commands
in the KDCDEF generation.

The number of dynamically added transaction codes and TAC queues (=KC_TAC).obj_type

The number of reserved table spaces that are still free.

Deleted transaction codes and TAC queues are also contained in this number.

tac_free

Contains the number of transaction codes and TAC queues that you can still add with
KC_CREATE_OBJECT.

user_total

Specifies the total number of user IDs that can be added to the table in the KDCFILE. is also user_total
the number of table spaces generated for objects of type KC_USER.

The number consists of:

The number of statically and dynamically added user IDs (in an application generated with user IDs) or
the number of statically or dynamically added LTERM partners (in an application generated without
user IDs).

The number of clients existing with ='APPLI' (TS applications that are not socket applications), ptype
='UPIC-...' (UPIC clients) or ='SOCKET' (socket applications). For these clients UTM ptype ptype

creates internal user IDs with the name of the corresponding LTERM partner.

The number of reserved table spaces for user IDs that are still free (in an application generated with
user IDs) or
Number of reserved table spaces for LTERM partners that are still free (in an application generated
without user IDs).

Deleted user IDs are also contained in this number.

user_free

Contains the number of user IDs that you can still add dynamically with KC_CREATE_OBJECT.

card_total (only on BS2000 systems)

Indicates how many user IDs with ID cards can be entered in the table in the KDCFILE in total. card_total
consists of:

the number of statically or dynamically entered user IDs that have ID cards

the number of table spaces that are reserved for user IDs with ID cards and are still free.

card_free (only on BS2000 systems)

Contains the number of user IDs with identification cards that you can still add with
KC_CREATE_OBJECT.

openUTM V7.0. Administering Applications. User Guide.

 637

kset_total

Contains the total number of key sets that can be entered in the KSET table.

kset_free

Contains the current number of key sets that you can still enter in the KSET table by means of
KC_CREATE_OBJECT.

ltac_total

Contains the total number of LTACs that can be entered in the LTAC table.

ltac_free

Contains the current number of LTACs that you can still enter in the LTAC table by means of
KC_CREATE_OBJECT.

queue_total

Contains the total number of temporary queues that can be entered in the QUEUE table. This value was
specified at generation by means of the QUEUE statement.

queue_free

Contains the current number of temporary queues that you can still enter by means of the KDCS call
QCRE.

con_total

Contains the total number of LU6.1 transport connections that can be entered in the PTERM table.

con_free

Contains the current number of LU6.1 transport connections that you can still enter in the PTERM table
by means of KC_CREATE_OBJECT.

lses_total

Contains the total number of LU6.1 session that can be entered in the USER table.

lses_free

Contains the current number of LU6.1 sessions that you can still enter in the USER table by means of
KC_CREATE_OBJECT.

princ_total (only on BS2000 systems)

Contains the total number of USERs created with principal.

princ_free (only on BS2000 systems)

Contains the number of USERs with principal that can still be generated.

openUTM V7.0. Administering Applications. User Guide.

 638

11.3.2.6 kc_max_par_str - Maximum values for the application (MAX parameters)

The data structure is defined for the parameter type KC_MAX_PAR. In the case of kc_max_par_str
KC_GET_OBJECT, UTM returns following information in :kc_max_par_str

The basic properties of the application, for example the application name, function versions, the name of the
KDCFILE.

The maximum values for the parameters of the application, such as the size of the page pool, of the restart area
and of the KDCS storage areas, the maximum number of users, the maximum number of lock codes and key
codes of the application, the maximum time slice for time controlled asynchronous jobs, and the maximum
number of processes that can be utilized for the application.

Only on Unix, Linux and Windows systems: The resources that will be used by the application, for example
access keys for shared memory segments and semaphores.

openUTM V7.0. Administering Applications. User Guide.

 639

mod 1 Data structure kc_max_par_str see 2

- char adf_name[16]; 3

- char applimode; applimode

- char appliname[8]; appliname

- char asyntasks[3]; asyntasks

- char blksize[2]; blksize

x(GIR) char bretrynr[5]; (only on BS2000 systems) bretrynr

- char cacheshmkey[10]; (only on Unix, Linux and Windows systems) cacheshmkey

- char cachesize_pages[10]; cachesize_pages

x(GIR) char cachesize_paging[3]; cachesize_paging

- char cachesize_res; (only on BS2000 systems) cachesize_res

- char cardlth[3]; (only on BS2000 systems) cardlth

- char catid_a[4]; (only on BS2000 systems) catid_a

- char catid_b[4]; (only on BS2000 systems) catid_b

- union kc_clear_char clrch; clrch

- char clrch_type; clrch_type

x(IR) char conn_users[10]; conn_users

x(GPD) char destadm[8]; destadm

- char dputlimit1_day[3]; dputlimit1_day

- char dputlimit1_hour[2]; dputlimit1_hour

- char dputlimit1_min[2]; dputlimit1_min

- char dputlimit1_sec[2]; dputlimit1_sec

- char dputlimit2_day[3]; dputlimit2_day

- char dputlimit2_hour[2]; dputlimit2_hour

- char dputlimit2_min[2]; dputlimit2_min

- char dputlimit2_sec[2]; dputlimit2_sec

openUTM V7.0. Administering Applications. User Guide.

 640

mod 1 Data structure kc_max_par_str see 2

- char gssbs[10]; gssbs

- char hostname[8]; hostname

- char ipcshmkey[10]; (only on Unix, Linux and Windows systems) ipcshmkey

- char ipctrace[10]; (only on Unix, Linux and Windows systems) ipctrace

- char kaashmkey[10]; (only on Unix, Linux and Windows systems) kaashmkey

- char kb[10]; kb

- char kdcfile_name[42]; kdcfile_name

- char kdcfile_operation; kdcfile_operation

- char keyvalue[4]; keyvalue

- char locale_lang_id[2]; (only on BS2000 systems) locale_lang_id

- char locale_terr_id[2]; (only on BS2000 systems) locale_terr_id

- char locale_ccsname[8]; (only on BS2000 systems) locale_ccsname

- char lputbuf[4]; lputbuf

- char lputlth[10]; lputlth

- char lssbs[4]; lssbs

- char mp_wait_sec[5] mp_wait_sec

- char nb[10]; nb

- char net_access; (only on Unix, Linux and Windows systems) net_access

- char nrconv[2]; nrconv

- char osi_scratch_area[5]; osi_scratch_area

- char osishmkey[10]; (only on Unix, Linux and Windows systems) osishmkey

- char pgpool_pages[10]; pgpool_pages

- char pgpool_warnlevel1[2]; pgpool_warnlevel1

- char pgpool_warnlevel2[3]; pgpool_warnlevel2

- char pgpoolfs[5]; pgpoolfs

- char pisizelth[5]; (only on Unix and Linux systems) pisizelth

openUTM V7.0. Administering Applications. User Guide.

 641

mod 1 Data structure kc_max_par_str see 2

- char recbuf_pages[10]; recbuf_pages

- char recbuf_lth[10]; recbuf_lth

- char recbuffs[3]; recbuffs

- char reqnr[3]; (only on BS2000 systems) reqnr

- char seclev ;4

- char sat; (only on BS2000 systems) sat

- char semarray_startkey[10]; (only on Unix, Linux and Windows systems) semarray_startkey

- char semarray_number[4]; (only on Unix, Linux and Windows systems) semarray_number

- char semkey[10][10]; (only on Unix, Linux and Windows systems) semkey

- char signon_value[3]; signon_value

- char signon_restr; signon_restr

x (GIR) char signon_fail[3]; signon_fail

x (GIR) char sm2; sm2

- char spab[10]; spab

- char syslog_size[10]; syslog_size

- char tasks[3]; tasks

- char tasks_in_pgwt[3]; tasks_in_pgwt

- char tracerec[5]; tracerec

- char trmsglth[10]; trmsglth

- char uslog; uslog

- char vgmsize[3]; (only on BS2000 systems) vgmsize

- char xaptpshmkey[10]; (only on Unix, Linux and Windows systems) xaptpshmkey

- char mpgpool_pages[10]; 4

- char mpgpool_res; 4

openUTM V7.0. Administering Applications. User Guide.

 642

mod 1 Data structure kc_max_par_str see 2

- char rtimer; 4

- char spin_lock_asyn[10]; 4

- char spin_lock_cache[10]; 4

- char spin_lock_kaa[10]; 4

- char spin_lock_ipc[10]; 4

- char spin_lock_pcmm[10]; 4

- char xopen_cpic_dspl[5]; 4

- char xopen_cpic_lth[5]; 4

- char xopen_xatmi_dspl[5]; 4

- char xopen_xatmi_lth[5]; 4

- char xopen_tx_dspl[5]; 4

- char xopen_tx_lth[5]; 4

- char max_statistics_msg; max_statistics_msg

- char max_open_asyn_conv[10]; max_open_asyn_conv

- char dead_letter_q_alarm[10]; dead_letter_q_alarm

- char max_suspended_ta[3]; 4

- char atac_redelivery[3]; atac_redelivery

- char dget_redelivery[3]; dget_redelivery

- char principal_lth[3]; (only on BS2000 systems) principal_lth

- char privileged_lterm[8]; privileged_lterm

char cache_location; cache_location

char data_compression; data_compression

char hostname_long[64]; hostname_long

char move_bundle_msgs; move_bundle_msgs

1 Field contents of the field can be modified with KC_MODIFY_OBJECT; see "obj_type=KC_MAX_PAR"

openUTM V7.0. Administering Applications. User Guide.

 643

2 The meaning of the field is described on the page specified in this column.

3 Function from an earlier UTM version has been omitted; the field is filled with spaces by UTM.

4 UTM-internal field to support the diagnosis of certain error situations; the field content is irrelevant for a user and is therefore not described in

the following.

The fields in the data structure have the following meanings:

applimode

Specifies if the UTM application is a UTM-S or UTM-F application.

'S' The application was generated as a UTM-S application (Secure).

'F' The application was generated as a UTM-F application (Fast).

appliname

The name of the UTM application. This name is defined in MAX APPLINAME during the static
generation with the KDCDEF generation tool.

appliname is the name of the application that must be specified by terminals when establishing a
connection.

asyntasks

Contains the maximum number of processes of the application that may process jobs to asynchronous
transaction codes. is the upper limit for the current number of processes used for processing asyntasks
asynchronous jobs. The value can be set at the start of the application or it can be set dynamically by
the administration.

blksize

Specifies the size of a UTM page. The size is set during the KDCDEF generation to either 2K, 4K or 8K.
Possible values:

'2' The size of a UTM page is 2K.

'4' The size of a UTM page is 4K.

'8' The size of a UTM page is 8K.

bretrynr (only on BS2000 systems)

Contains the number of times UTM will attempt to pass a message to the transport system (BCAM)
when BCAM cannot immediately accept the message at the present time. If the value of is bretrynr
exceeded the connection to the dialog partner is closed down. The value of influences the bretrynr
performance of the application.

For asynchronous messages sent to a dialog partner with = 'APPLI' (TS applications that are not ptype
socket applications), >= 3 means that UTM will try to pass the message on to BCAM up to three bretrynr
times. If BCAM does not accept the message on the third try, then UTM will release the process for now,
but will not close the connection. After a 3 second wait UTM will try again up to three times to pass the

openUTM V7.0. Administering Applications. User Guide.

 644

message to BCAM. If the attempts fail again, then UTM waits another 3 seconds before trying another
three times, etc.

Minimum value: '1'
Maximum value: '32767' (theoretical value)

cacheshmkey (only on Unix, Linux and Windows systems)

Contains the access key for the shared memory segment that contains the global application buffer for
file accesses. is a global parameter for Unix, Linux and Windows systems. cacheshmkey cacheshmkey
is a decimal number.

cachesize_pages

Specifies the size of the cache in UTM pages. The size of a UTM page is returned in . All access blksize
to the page pool is carried out via the cache, i.e. all input and output to local secondary storage areas,
global secondary storage areas, terminalspecific long-term storage area, LPUT and FPUT messages,
MPUT messages, as well as some UTM administration data. A write to a KDCFILE is only executed if
there is no more space in the cache or if the transaction is terminated.

cachesize_paging

Specifies the percentage of the cache that will be written at one time to the KDCFILE when a bottleneck
occurs so that the storage space in the cache can be used for other data. The value of cachesize_paging
 influences the performance of your UTM application.

UTM removes at least 8 UTM pages from the cache when paging even if the value of cachesize_paging
 is less than this number of UTM pages.

Minimum value: '0', i.e. 8 UTM pages will be removed for storage elsewhere
Maximum value: '100' (%)

cachesize_res (only on BS2000 systems)

Specifies whether or not the cache is resident. The contents of the field are to be interpreted as follows:

'R' The cache is resident.

'N' The cache is pageable, i.e. not resident.

cardlth

The length in bytes of the identification information that UTM stores when an ID reader is used in
addition to the access privilege check done when signing on (KDCSIGN). The identification information
can be read in a program unit using the KDCS call INFO.

catid_a (only on BS2000 systems)

Contains the catalog ID (CAT-ID) assigned to your KDCFILE with the suffix A for the B2000 system.

catid_b (only on BS2000 systems)

The is only relevant if you maintain a redundant copy of the KDCFILE then contains the catid_b . catid_b
catalog ID (CAT-ID) assigned to your KDCFILE with the suffix B. If only one KDCFILE is used, then

 = . catid_b catid_a

openUTM V7.0. Administering Applications. User Guide.

 645

clrch (ea aracter)cl r ch

Contains the character with which the communication area (KB) and the standard primary working area
(SPAB) of the program units are overwritten at the end of a dialog step.

If no character was defined during generation, then contains blanks and ='N'. The clrch clrch_type
storage areas are not overwritten then at the end of a dialog step.

If a character was defined in the KDCDEF generation, then contains one character. If the character clrch
is hexadecimal, then each half byte is represented as one character.

clrch is returned in the form of the following union:

union kc_clear_char

char x[2];

char c;

The field contains data if is returned as a hexadecimal character.x clrch
The field contains data if is returned as an alphanumeric character.c clrch

You can determine how to interpret the data contained in using the field.clrch clrch_type

clrch_type

Specifies how the contents of the field are to be interpreted. The contents mean:clrch

'X' clrch contains a hexadecimal character.

'C' clrch contains a printable, alphanumeric character.

'N' clrch contains a hexadecimal character.

conn_users

The maximum number of users that may be signed on to the UTM application at the same time. Users
are understood as being the number of user IDs that may be signed on at the same time. If the
application is generated without user IDs, then the number of clients that can connect to the application
via LTERM partners is limited by .conn_users

User IDs generated with administration privileges can still sign on to the UTM application if the maximum
number of simultaneously active user IDs has already been reached.

conn_users='0' means that the number of simultaneously active users is unlimited.

Minimum value: '0'
Maximum value: '500000'
When performing modifications on Unix, Linux and Windows systems, no value greater than the value
defined during the generation may be specified (MAX CONN-USERS) .

destadm

Contains the receiver to which UTM sends the results of KDCADM administration calls that were
asynchronously processed (asynchronous transaction codes from KDCADM). The receiver can be an
LTERM partner or an asynchronous TAC or a TAC queue.

openUTM V7.0. Administering Applications. User Guide.

 646

If contains blanks, then no receiver is defined. The results of the asynchronous transaction destadm
codes from KDCADM are lost. In this case you are to define a receiver using, for example,
KC_MODIFY_OBJECT.

dputlimit1_day
dputlimit1_hour
dputlimit1_min
dputlimit1_sec

These parameters determine the upper limit of the time interval in which a time controlled job must be
executed. Time controlled jobs are created with the KDCS call DPUT. A program unit call and hence
also a DPUT call with an absolute time specification can be delayed to such an extent that the required
execution time of the DPUT has already elapsed. This time at which a time controlled job is to be
executed (specified in the DPUT call) must occur within the time span specified in the dputlimit1 after
time of the DPUT call. is specified as follows:dputlimit1

The number of days () + the number of hours () + the number of minutes (dputlimit1_day dputlimit1_hour
) + the number of seconds (). Therefore, the following is true:dputlimit1_min dputlimit1_sec

Execution time < time of the DPUT call + dputlimit1

dputlimit2_day
dputlimit2_hour
dputlimit2_min
dputlimit2_sec

These parameters determine the lower limit of the time interval in which a time controlled job (DPUT call)
must be executed. The time controlled job is to be executed (specified in the DPUT call) no earlier than
within the time span specified in the time of the DPUT call. is specified as dputlimit1 before dputlimit2
follows:

The number of days () + the number of hours () + the number of minutes (dputlimit2_day dputlimit2_hour
) + the number of seconds ().dputlimit2_min dputlimit2_sec

Therefore, the following is true:
Execution time > time of the DPUT call - dputlimit2

If the execution time specified lies between the limit specified in and the time of the call, then dputlimit2
the DPUT is immediately converted to an FPUT.

gssbs The maximum number of global secondary storage areas that may exist in the application at one time.

hostname

BS2000 systems:
Contains the name of the virtual host on which (from BCAMs point of view) the application is running.

Unix, Linux and Windows systems:
contains the name of the host that is specified as the sender address when a connection is hostname

established from the UTM application.

If this name is longer than 8 characters, the computer name, up to 64 characters long, can be taken from
the field. In this case, the field contains the first 8 characters of the long name.hostname_long hostname

ipcshmkey (only on Unix, Linux and Windows systems)

openUTM V7.0. Administering Applications. User Guide.

 647

Contains the access key for the shared memory segment used for interprocess communication between
the work processes on the one hand, and the external processes of the application on the other hand.
On Unix, Linux and Windows systems is a global parameter. is a decimal number.ipcshmkey ipcshmkey

ipctrace (only on Unix, Linux and Windows systems)

Contains the number of entries in the trace area of the IPC.
UTM writes the entries into the trace area of the IPC (shared memory segment for the interprocess
communication) if the UTM application is running in test mode (TESTMODE=ON). These entries contain
internal information for diagnostic purposes. One entry takes up 32 bytes. If the number of entries
contained in is exceeded, then UTM overwrites already existing entries, starting with the oldest ipctrace
entry.

kaashmkey (only on Unix, Linux and Windows systems)

Contains the access key for the shared memory segment in which the global application data is stored.
 is a global parameter on Unix, Linux and Windows systems. contains a decimal kaashmkey kaashmkey

number.

kb Contains the length of the communication area in bytes. The communication area header and the
communication area return area are not taken into consideration when determining this length.

kdcfile_name

Base name of the KDCFILE, USLOG user log file and the SYSLOG system log file (see also the
openUTM manual “Generating Applications”). must also be specified for the start of the kdcfile_name
application in the FILEBASE start parameter.

kdcfile_operation

Specifies if a redundant copy of the KDCFILE is maintained or not. The contents of are kdcfile_operation
interpreted as follows:

'D' A redundant copy of the KDCFILE is maintained. If the KDCFILE is split (see also the openUTM
manual “Generating Applications”, KDCFILE), then all KDCFILE files will be maintained together
with a redundant copy.

'S' Only one copy of the KDCFILE is maintained. If the KDCFILE was split, then only one copy of each
KDCFILE file is maintained.

keyvalue

Contains the number of the highest key code in the application and therefore the number of the highest
lock code that may be used for access protection for a transaction code or an LTERM partner.

 also specifies the maximum number of key codes per key set.keyvalue

locale_lang_id
locale_terr_id
locale_ccsname

Only on BS2000 systems: These contain the three components of the locale assigned to the UTM
application. The locale defines the standard language environment of the application. The standard
language environment is assigned to every user ID (KC_USER), every LTERM partner and every

openUTM V7.0. Administering Applications. User Guide.

 648

LTERM pool of the application as the standard setting for the language environment. The standard
setting is in effect as long as a locale is not defined for these objects (see also the openUTM manual
“Generating Applications”).

locale_lang_id
Contains the up to two characters long language code.

locale_terr_id
Contains an up to two characters long territorial code.

locale_ccsname
(oded haracter et)c c s name
Contains the up to 8 characters long name of an expanded character set (CCS name; see also the
XHCS User Guide).

lputbuf Contains the size of the buffer in which UTM temporarily stores the records created with the KDCS call
LPUT before it writes them to the user log file (USLOG). The buffer is stored in the page pool.

The LPUT statements created in the program units are temporarily stored in this buffer until it is full. Only
then will UTM copy the statements into the user log file. The user log file (USLOG) is only open during
this copy procedure.

lputlth Contains the maximum length of the user data in an LPUT record.

The length of an LPUT record consists of:
 + 84 bytes for the communication area header + 12 bytes for the length fields.lputlth

lssbs Contains the maximum number of LSSBs (local secondary storage areas) that can be created within a
service.

mp_wait_sec (emory ool)m p wait

Specifies the maximum number of seconds a UTM application program will wait to connect a process to
a common memory pool.

nb (KDCS message area)

Contains the maximum length of the message area for KDCS program units.

net_access (only on Unix, Linux and Windows systems)

This parameter is no longer supported.

nrconv (umbe of ersations)n r conv

The maximum number of services that a user may have on the stack at the same time. The value '0'
means that no services may be placed on the stack.

osi_scratch_area

The size of an internal UTM working area that UTM needs for dynamically storing data when the OSI TP
protocol is used. The number is specified in kilobytes.

In UTM applications on BS2000 systems this working area is automatically increased in size, if
necessary, during the application run.

openUTM V7.0. Administering Applications. User Guide.

 649

In UTM applications on Unix, Linux or Windows systems the size of the internal working area is constant
during the entire application run. If the size of the internal working area is determined to be insufficient
during operations, then the KDCDEF generation must be repeated using a higher value.

osishmkey (only on Unix, Linux and Windows systems)

Contains the access key for the shared memory segment used by OSS for the communication via OSI
TP. is a global parameter on Unix, Linux and Windows systems. is a decimal osishmkey osishmkey
number.

pgpool_pages

Specifies the size of the page pool as a number of UTM pages. The size of a UTM page is output in the
 field.blksize

pgpool_warnlevel1
pgpool_warnlevel2

Contains the number of warning levels used by UTM to warn of an impending overrun of the page pool.

pgpool_warnlevel1
Specifies how full the page pool must be before UTM outputs the first warning (UTM message K041).

 is a decimal number in percent.pgpool_warnlevel1

pgpool_warnlevel2
Specifies how full the page pool must be before UTM outputs the second warning. Asynchronous jobs
are rejected after the value for warning level 2 is exceeded. In this case, the user receives the UTM
message K041, and a program unit receives the corresponding return code. is a pgpool_warnlevel2
decimal number in percent.

pgpoolfs

Contains the number of files over which the page pool is divided. If = '0', then the page pool is pgpoolfs
stored in the main file of the KDCFILE, i.e. the page pool was not swapped out.

In the case of dual opeation of the KDCFILE the page pool in the second KDCFILE also consists of
 files.pgpoolfs

pisizelth (only on Unix and Linux systems)

This parameter is no longer supported.

recbuf_pages

Contains the size of the restart area per process. The size is specified as a number of UTM pages. The
size of a UTM page is output in the field.blksize

The data needed for the restart after a system error is written to the restart area. recbuf_pages
 influences the performance of the application: if this area is large, then the load placed on the running
application is lower; a restart after a system error takes longer, however. If the area is small, then the
load placed on the running application is higher, but a restart is faster.

recbuf_lth

openUTM V7.0. Administering Applications. User Guide.

 650

Contains the size of the buffer in bytes available per process of the application for temporarily storing
restart data. The data is needed to execute a restart after a transaction or system error.

recbuffs

Contains the number of files over which the restart area is divided.

If = '0', then the restart area is stored in the main file of the KDCFILE, i.e. the restart area was recbuffs
not swapped out.

In the case of dual opeation of the KDCFILE the restart area in the second KDCFILE also consists of
filesrecbuffs

reqnr (only on BS2000 systems)

Contains the maximum number of PAM read/write jobs that may be accepted at one time in a UTM
process for a file. contains the value set in the KDCDEF generation as long as this value is smaller reqnr
than the value of . If the value generated is larger, then the value of cachesize_pages cachesize_pages
is output for . reqnr

sat (ecurity udit rail, only on BS2000 systems) s a t

Specifies if SAT logging is enabled for the application.

The SAT logging can be enabled and disabled using the KDCMSAT transaction code (see the openUTM
manual “Using UTM Applications on BS2000 Systems”, UTM-SAT administration).

'Y' The SAT logging is enabled (ON).

'N' The SAT logging is disabled (OFF).
The only events logged are KDCMSAT transaction code accesses (except for KDCMSAT HELP).
All other events are not logged.

semarray_startkey
semarray_number

Only on Unix, Linux and Windows systems: Specifies the area for keys for the global application
semaphores. Semaphores are used for process synchronization. The keys are global parameters on
Unix, Linux and Windows systems.

semarray_startkey
Contains the number of the first semaphore key.

semarray_number
Contains the number of keys currently being used by the application.

UTM uses a key by adding 1 to the key each time, starting with the first key number.semarray_startkey

If there was no key area defined in the KDCDEF generation, then UTM returns the value '0' in
 and . In this case, UTM returns the semaphore key in the semarray_startkey semarray_number semkey

 field.

semkey (aphore only on Unix, Linux and Windows systems)sem key,

If UTM returns values in the and fields that are not equal to '0', semarray_startkey semarray_number
then contains '0'. If the and fields contain '0', then semkey semarray_startkey semarray_number semkey

openUTM V7.0. Administering Applications. User Guide.

 651

contains the key of the application for all semaphores that are global to the application (process
synchronization). The keys are global parameters on Unix, Linux and Windows systems. The keys are
specified as decimal numbers. A maximum of 10 keys are returned. If less than 10 keys were generated,
then the rest of the field contains '0'.

signon_value

Specifies the percentage of user IDs that may have a sign on service active at one time. UTM attempts
to obtain the necessary resources according to this number (see the section "kc_signon_str - Properties

).of the sign-on process"

signon_restr

Specifies if restrictions were generated for the sign-on procedure (see also the section "kc_signon_str -
):Properties of the sign-on process"

'R' Database calls and access to the global UTM storage area are not permitted during the first part of
the sign-on procedure (RESTRICTED).

'N' Database calls and access to global UTM storage are permitted during the first part of the sign-on
procedure.

signon_fail

Specifies the number of unsuccessful sign-on attempts repeated by a terminal user without interruption
after which UTM should trigger a "silent alarm". In the case of a silent alarm, UTM generates the
message K094, writes this to SYSLOG and possibly also outputs it at other message destinations
configured for this message.
See also the .section "kc_signon_str - Properties of the sign-on process"

Minimum value: '1'
Maximum value: '100'

sm2 Specifies if the UTM application sends performance data to openSM2 for monitoring.

'0' Performance monitoring using openSM2 is generally not permitted for the UTM application. This
means that the UTM application may not send any data to openSM2. The sending of data to
openSM2 cannot be enabled by the administration, either.

'N' The UTM application may send data to openSM2. The sending of data to openSM2 is currently
disabled, however. It can be enabled by the administration.

'Y' The UTM application may send data to openSM2. The sending of data to openSM2 is enabled. It
can be disabled by the administration.

spab Contains the maximum length of the standard primary working area (SPAB).

syslog_size

Contains the generated control value setting used by UTM for the automatic monitoring of the size of the
SYSLOG file. The automatic monitoring of the size of the SYSLOG is only possible if the SYSLOG was
created as a file generation group (FGG) or a file generation directory (see the openUTM manual “Using
UTM Applications”). UTM switches to the next file generation of the SYSLOG FGG when the size of the
file generation currently being written to reaches the control value.syslog_size

openUTM V7.0. Administering Applications. User Guide.

 652

syslog_size = '0' means that UTM does not monitor the size of the SYSLOG file. UTM writes all UTM
messages with a SYSLOG message line into this file generation.

syslog_size = '0' is always output when a redundant copy of the SYSLOG file is not maintained.

You can switch the logging to another file generation, change the control value or enable/disable the
monitoring of the size (see KC_SYSLOG or KDCSLOG "KC_SYSLOG - Administer the system log file"

)"KDCSLOG - Administer the SYSLOG file"

tasks The maximum number of processes that may be used for the application at one time. contains the tasks
maximum value set using KDCDEF (in MAX TASKS).
The number of processes that may process jobs of the application is reset at every start of the
application and can be adjusted according to the current demands during the application run (see
KDCAPPL and "KDCAPPL - Change properties and limit values for an operation"
KC_MODIFY_OBJECT). However, neither the number of processes "obj_type=KC_TASKS_PAR"
specified at the start nor the number set by the administration may exceed the value returned in tasks

tasks_in_pgwt

Specifies the maximum number of processes that may simultaneously process jobs with blocking calls
such as the KDCS call PGWT (Program Wait).

The current setting for the number of processes is returned in when an information kc_tasks_par_str
query with the KC_TASKS_PAR parameter type is sent.

The current number of processes is set at the start of the application and can be altered by the
administration when bottlenecks arise (see KDCAPPL "KDCAPPL - Change properties and limit values

 and KC_MODIFY_OBJECT). Neither the number of for an operation" "obj_type=KC_TASKS_PAR"
processes specified at the start nor the number set by the administration may exceed the value returned
here.

If ='0', no blocking calls are allowed.tasks_in_pgwt

tracerec (ords)trace rec

Contains the maximum number of entries in the TRACE area. UTM writes diagnostic information to this
area if TESTMODE=ON has been set.
Each entry is 64 bytes long on 32-bit platforms and 128 bytes on 64-bit pattforms.

trmsglth (ansfer e sa e eng)tr m s g l th

Contains the maximum length of the physical messages exchanged between clients, partner
applications or printers and the UTM application. Control characters, position data, etc., is included in
this length specification. The number is specified in bytes.

uslog Specifies if a redundant copy of the user log file is maintained for data security reasons.

'S' (SINGLE)
Only one copy of the user log file is maintained.

'D' (DOUBLE)
A redundant copy of the user log file is maintained as well.

For more information on the user log file consult the openUTM manual “Using UTM Applications”.

openUTM V7.0. Administering Applications. User Guide.

 653

vgmsize (only on BS2000 systems)

Contains the size of the buffer used for storing transaction and procedure information of an SQL
database system. This will also limit the size of a user’s portion of the page pool. is specified in vgmsize
KB.

xaptpshmkey (only on Unix, Linux and Windows systems)

Contains the access key for the shared memory segment used by XAPTP for the communication via
OSI TP.

xaptpshmkey is a global parameter on Unix, Linux and Windows systems.
 is a decimal number.xaptpshmkey

max_statistics_msg

Indicates whether or not the application generates statistics message K081 every hour (see the
openUTM manual ”Messages, Debugging and Diagnostics” for K081, and the openUTM manual
“Generating Applications” for MAX STATISTICS-MSG).

'Y' Statistics message K081 is generated every hour and written into the SYSLOG file.
When the message is issued, various application-specific statistics values are reset to zero.

'N' Statistics message K081 is not generated.
The application-specific statistics values can be reset with the administration functions, if necessary
(see KC_MODIFY_OBJECT, KC_CURR_PAR in chapter)."obj_type=KC_CURR_PAR"

max_open_asyn_conv

Contains the maximum number of asynchronous processes that can be active simultaneously.

dead_letter_q_alarm

Controls monitoring of the number of messages in the dead letter queue. Message K134 is output each
time the threshold is reached.
Monitoring is disabled if a threshold value of 0 is specified.

atac_redelivery

Contains the maximum number of repeated deliveries of a message to an asynchronous service when
the service is terminated abnormally.

dget_redelivery

Contains the maximum number of repeated deliveries of a message to a servicecontrolled queue when
rolling back the transaction.

principal_lth (only on BS2000 systems)

Contains the maximum length of a Kerberos principal in bytes (see openUTM manual “Generating
Applications”, MAX PRINCIPAL-LTH=).

privileged_lterm

openUTM V7.0. Administering Applications. User Guide.

 654

Contains the name of the privileged LTERM (see openUTM manual “Generating Applications”, MAX
PRIVILEGED-LTERM=).

cache_location

Returns the storage location of the UTM cache.

'P' The UTM cache is created in the program space.

For Unix, Linux, and Windows systems. the value 'P' is always returned here.

'D' On BS2000 systems, the UTM cache is created in one or more data spaces (see openUTM manual
“Generating Applications”, MAX CACHESIZE=).

data_compression

Specifies whether data compresion is permitted via generation:

'Y' Data compresion is permitted.

'N' Data compresion is not permitted

See openUTM manual “Generating Applications”, KDCDEF statement DATA-COMPRESSION=.

hostname_long

BS2000 systems:
 contains the name of the virtual host on which (from BCAMs point of view) the application hostame_long

is running.

Unix, Linux and Windows systems:
 contains the name of the host that is specified as the sender address when a connection hostname_long

is established from the UTM application.

move_bundle_msgs

Contains the value generated in parameter MOVE-BUNDLE-MSGS of the MAX statement:

'Y' If no connection to the partner application can be established, UTM moves waiting asynchronous
messages of a slave LTERM, slave LPAP or Slave OSI-LPAP to a different slave of the same
bundle.

'N' Waiting asynchronous messages on a slave are not moved.

openUTM V7.0. Administering Applications. User Guide.

 655

11.3.2.7 kc_msg_dest_par_str - Properties of the user-specific message destinations

The data structure is defined for the KC_MSG_DEST_PAR object type. This data kc_msg_dest_all_par_str
structure contains the four structures , , and in which, in the case user_dest_1 user_dest_2 user_dest_3 user_dest_4
of KC_GET_OBJECT, UTM provides the information on the four user-specific message destinations.

If a message destination is not generated, blanks are returned.

Data structure kc_msg_dest_all_par_str

struct kc_msg_dest_par_str user_dest_1;

struct kc_msg_dest_par_str user_dest_2;

struct kc_msg_dest_par_str user_dest_3;

struct kc_msg_dest_par_str user_dest_4;

where

Data structure kc_msg_dest_par_str

char md_name[8];

char md_type;

char md_format;

The fields of the data structure have the following meanings:

md_name

Contains the name of the user-specific message destination.

md_type

Specifies the type of the message destination in . Possible values are:name

'L' for an LTERM partner

'T' for a TAC or a TAC queue

'U' for a user ID or a USER queue

md_format

Indicates the format in which messages are passed to the message destination. Possible values are:

'F' (FILE)
The format corresponds to the data structures for the MSGTAC program (see the section "Control

).using the MSGTAC program"

'P' (PRINT)
The format corresponds to the output format of the UTM tool KDCPSYSL (see the openUTM
manual “Using UTM Applications”).

openUTM V7.0. Administering Applications. User Guide.

 656

openUTM V7.0. Administering Applications. User Guide.

 657

11.3.2.8 kc_pagepool_str - Current utilization of the page pool

The data structure is defined for the parameter type KC_PAGEPOOL. In the case of kc_pagepool_str
KC_GET_OBJECT, UTM returns information on the current utilization of the page pool in .kc_pagepool_str

Data structure kc_pagepool_str

char total_pages[10];

char free_pages[10];

char gssb_pages[10];

char lssb_pages[10];

char tls_pages[10];

char uls_pages[10];

char dial_conv_pages[10];

char tacclass_pages[10];

char fpmm_pages[10];

char fput_pages[10];

char msgtac_pages[10];

char lput_pages[10];

char phys_msg_pages[10];

char reset_msg_pages[10];

char log_rec_pages[10];

char other_pages[10];

The fields in the data structure have the following meanings:

total_pages

Total number of pages in the page pool.

free_pages

Number of free pages.

gssb_pages

Number of pages which are utilized for GSSBs.

lssb_pages

Number of pages which are utilized for LSSBs.

openUTM V7.0. Administering Applications. User Guide.

 658

tls_pages

Number of pages which are utilized for TLS areas.

uls_pages

Number of pages which are utilized for ULS areas.

dial_conv_pages

Number of pages which are utilized for service contexts by users.

tacclass_pages

Number of pages which are utilized for dialog input messages, and which are temporarily stored in TAC
Class Queues.

fpmm_pages

Number of pages which are required for managing asynchronous messages.

fput_pages

Number of pages which are utilized for asynchronous messages.

msgtac_pages

Number of pages which are utilized for MSGTAC messages.

lput_pages

Number of pages which are utilized for temporarily stored LPUT records.

phys_msg_pages

Number of pages which are utilized for output messages and which need to be temporarily stored
because they can only be transferred to the transport system in sections owing to their length.

reset_msg_pages

Number of pages which are utilized for reset messages.

log_rec_pages

Number of pages which are utilized for OSI TP log records.

other_pages

Number of other utilized pages.

In the case of UTM cluster applications, GSSB and ULS areas are stored in the global page pool of the
UTM cluster application. As KC_PAGEPOOL only displays the utilization of the local page pool, the
values for and are always zero in UTM cluster applications.gssb_pages uls_pages

i

openUTM V7.0. Administering Applications. User Guide.

 659

11.3.2.9 kc_queue_par_str - Properties of queue objects

The data structure is defined for the KC_QUEUE_PAR parameter type. In the case of kc_queue_par_str
KC_GET_OBJECT, UTM returns general information on temporary queues in .kc_queue_par_str

Data structure kc_queue_par_str

char qp_number[10];

char qlev[5];

char qmode;

The fields of the data structure have the following meanings:

qp_number

Generated maximum number of queue objects that can exist at any one time during an application run

qlev

Default value when a temporary queue is created:
The maximum number of messages that can be in a temporary queue at any one time

qmode

Default value when a temporary queue is created:
Response of UTM when the maximum permitted number of messages in the queue is exceeded.
Possible values are:

'S' (STD)
UTM rejects any further messages for this queue.

'W' (WRAPAROUND)
UTM accepts further messages. When a new message is entered, the oldest message in the
queue is deleted.

openUTM V7.0. Administering Applications. User Guide.

 660

11.3.2.10 kc_signon_str - Properties of the sign-on process

The data structure is defined for the object type KC_SIGNON. In the case of KC_GET_OBJECT, kc_signon_str
UTM returns the values of the parameters through which the communication partner is signed on to the application
in .kc_signon_str

Data structure kc_signon_str

char concurrent_terminal_signon[3];

char grace;

char pw_history[2];

char restricted;

char silent_alarm[3];

char upic;

char multi_signon;

char omit_upic_signoff;

The fields of the data structure have the following meanings:

concurrent_terminal_signon

Only relevant if a sign-on process is generated in your application.

concurrent_terminal_signon specifies in percent for how many of the generated users the sign-on
process which has been started for a sign-on via a terminal or a TS application (APPLI or SOCKET) can
be active at one time.

UTM tries to make available the required resources according to this value.

grace (Grace-Sign-On)

Specifies whether a user may still change the password when first signing on after the password has
expired (see).kc_user_str.protect_pw_time

'N' The user cannot change the password after it has expired. Only the administrator can do this.

'Y' The user can still change the password after it has expired.
The modification must be made within the sing-on before the user is entirely signed on.

If a sign-on service is activated, the password can be changed there using the KDCS call SIGN CP,
regardless of the client type. A sign-on service is always activated when a user signs on via a
connection for whose transport access point a sign-on service has been generated.

The table below shows how the individual client types behave when a password has expired and how
this behavior depends on whether a sign-on service is activated.

openUTM V7.0. Administering Applications. User Guide.

 661

Client type Behavior if the password has expired 1)

UPIC Regardless of whether a sign-on service is activated, the password can
be changed using the function

.Set_Conversation_Security_New_Password

BS2000 terminal If the password is blanked out, openUTM prompts the user to change the
password, regardless of whether a sign-on service is activated.

If the password is not blanked out, openUTM prompts the user to change
the password only if no sign-on service is activated.

Terminal on Unix,
Linux and Windows
systems

openUTM prompts the user to change the password, regardless of
whether a sign-on service is activated.

TS application The user can no longer change the password without activation of a sign-
on service.

1) The password can always be changed via the administration interface (e.g. KC_MODIFY_OBJECT, obj_type

=KC_USER). By default, passwords with limited periods of validity are immediately set to "expired" when changes are

made via the administration interface. If you want to prevent this, then you must explicitly request this in the

administration interface.

pw_history

Specifies for how many password changes per user UTM records a password history. pw_history
 contains the number of passwords of each user ID which UTM records.

If a user changes the password and if a limited validity period is generated for the password in the
USER statement, the new password must differ from the current password and from the last n
 passwords set for that user ID. is the number in .n pw_history

pw_history=0 means that UTM does not keep a password history.

The password history is only relevant when a password is changed by the user; the administrator can
change the password irrespective of the passwords contained in the history.

restricted

Specifies whether database calls and accessing global UTM Sorage areas are not allowed in the first
part of the sign-on.

'Y' Database calls and accessing global UTM storage areas are not allowed in the first part of the
sign-on.

'N' Database calls and accessing global UTM storage areas are allowed in the first part of the sign-
on.

silent_alarm

openUTM V7.0. Administering Applications. User Guide.

 662

Specifies after how many unsuccessful attempts of a terminal user to sign on UTM issues a silent
alarm. Silent alarm means that UTM issues message K094.
This value can be modified in the field in the data structure , see signon_fail kc_max_par_str

 ."kc_max_par_str - Maximum values for the application (MAX parameters)"

upic

Only relevant if an sign-on process was generated in your application.
 specifies whether the sign-on process is activated when an UPIC client wishes to start a upic

conversation.

'Y' If a sign-on process is generated for the transport system access point by means of which the
UPIC client has set up the connection, this is started before every conversation initiated by the
UPIC client.

'N' No sign-on process is started for UPIC clients.

multi_signon

Specifies whether several users can be signed on with the application under the same user ID at the
same time.

'Y' The following cases must be distinguished:

The user ID is generated with RESTART=NO:

Several users can be signed on with the application under the same user ID at the same time.
However, only one of the users may be signed on at the terminal.

The user ID is generated with RESTART=YES:

Several job-receiving services can only be active under the same user ID at the same time if
the job-receiving services are started via OSI TP connection and the “commit” function is
selected.

'N' No more than one user can be signed on with each user ID in the application, i.e. no more than
one dialog service may be active per user ID and, if a user is signed on with the application, then
no job-receiving service can be started for this specific user ID.

omit_upic_signoff

Specifies whether or not the user ID under which a UPIC client program has signed on continues to
be signed on after a UPIC conversation has finished.

'Y' The user ID continues to be signed on after the end of a UPIC conversation.
This user is only signed off again

if the connection is cleared or

if a UPIC client with another user ID wants to sign on via this connection.

multi_signon has no effect on user sign-on via an OSI TP connection for creating an
asynchronous job.

i

openUTM V7.0. Administering Applications. User Guide.

 663

If the UPIC client does not send another user ID then the original user ID continues to be signed
on, i.e. no sign-on service is started before the start of the new UPIC conversation.

In the case of applications without a user ID, a sign-on service may, if necessary, be started once
after the establishment of the connection and before the start of the first UPIC conversation.

Default in UTM cluster applications.

'N The user ID with which a UPIC client has signed on is signed off after the end of each UPIC
conversation.

Default in standalone UTM applications.

openUTM V7.0. Administering Applications. User Guide.

 664

11.3.2.11 kc_system_par_str - System parameters

The data structure is defined for the parameter type KC_SYSTEM_PAR. In the case of kc_system_par_str
KC_GET_OBJECT, UTM returns following information in :kc_system_par_str

The basic settings of the application, for example if the application is generated for server-server communication.

The openUTM version together with its update information.

The application name and functionality.

The operating system and the name, platform and operating mode of the computer on which the application runs.

Data structure kc_system_par_str

char appliname[8];

char utm_version[8];

char applimode;

char system_type;

char hostname[8];

char destadm[8];

char tacclasses;

char pgwt;

char kdcload; (only on BS2000 systems)

char load_module_gen;

char prog_change_running;

char inverse_kdcdef_state;

char utmd;

char osi_tp;

char certificate_gen; (only on BS2000 systems)

char os[24];

char bit_mode[8];

char cluster_appl;

char hostname_long[64];

openUTM V7.0. Administering Applications. User Guide.

 665

The fields in the data structure have the following meanings:

appliname

The name of the application specified in the KDCDEF generation in MAX APPLINAME.

utm_version

The openUTM version used, including the update information, for example V07.0A00.

applimode

Specifies if the UTM application is a UTM-S or UTM-F application.

'S' The application is generated as a UTM-S application (Secure).

'F' The application is generated as a UTM-F application (Fast).

system_type

The operating system of the computer on which the application runs.

'B' BS2000 systems

'X' Unix and Linux systems

'N' Windows systems

hostname

The name of the computer on which the application runs.

Note for Unix, Linux and Windows systems

If this name is longer than 8 characters, the computer name, up to 64 characters long, can be taken from
the field. In this case, the field contains the first 8 characters of the long name.hostname_long hostname

destadm

Contains the receiver to which UTM sends the results of KDCADM administration calls that were
processed asynchronously (KDCADM asynchronous transaction codes). may contain the destadm
following:

the name of an LTERM partner or

the transaction code of an asynchronous program unit.

If contains blanks, then no receiver is defined. The results of the KDCADM asynchronous destadm
transaction code are lost.

tacclasses

Specifies if the application was generated with TAC classes, i.e. if TAC classes were created during the
KDCDEF generation.

'Y' The application was generated with TAC classes.

openUTM V7.0. Administering Applications. User Guide.

 666

'N' The application was generated without TAC classes.

pgwt

Specifies whether program units containing blocking calls are allowed in the application (for example the
KDCS call PGWT).

'Y' Blocking calls are allowed, i.e. there is at least one transaction code or one TAC class with the
property ='Y' (see in and pgwt kc_tac_str.pgwt "kc_tac_str - Transaction codes of local services"

 in).kc_tacclass_str.pgwt "kc_tacclass_str - TAC classes for the application"

'N' Blocking calls are not allowed, i.e. the application contains neither transaction codes nor TAC
classes for which ='Y'.pgwt

kdcload (only on BS2000 systems)

This field always contains 'N'.
This field refers to functionality of UTM which is no longer supported.

load_module_gen

Specifies if the application was generated with load modules (BS2000 systems) or shared objects/DLLs
(Unix, Linux and Windows systems), i.e. if at least one LOAD-MODULE statement or SHARED-OBJECT
statement was specified for the KDCDEF generation.

'Y' The application was generated with LOAD-MODULE or SHARED-OBJECT statements.

'N' The application was not generated with LOAD-MODULE or SHARED-OBJECT statements.

prog_change_running

Specifies if UTM is currently executing a program change for the application.

'Y' A program change is currently being executed.

'N' No program change is currently being executed.

inverse_kdcdef_state

Specifies whether an inverse KDCDEF is currently running, i.e. if a KC_CREATE_STATEMENTS call is
being processed.

'N' No inverse KDCDEF is currently running.

'A' An inverse KDCDEF run is being prepared. It will be started asynchronously as soon as all
transactions that change configuration data have terminated.
Administration calls that change configuration data will be rejected.

'Y' An inverse KDCDEF is currently running.

utmd Specifies if the application is generated for distributed processing using a higher level communication
protocol (LU6.1 or OSI TP).

'Y' The application was generated for distributed processing.

openUTM V7.0. Administering Applications. User Guide.

 667

'N' The application was not generated for distributed processing.

osi_tp Specifies if the application is generated for distributed processing using OSI TP.

'Y' The application was generated with statements for OSI TP.

'N' The application was not generated with statements for OSI TP.

certificate_gen (only on BS2000 systems)

This parameter is no longer supported.

os Indicates the system platform of the computer, e.g. 'Windows Intel' or 'Solaris Sparc'.

bit_mode

Mode in which the operating system runs:

'32 bit' 32-bit mode

'64 bit' 64-bit mode

cluster_appl

Specifies whether the application belongs to a UTM cluster application.

'Y' The application is a node application in a UTM cluster application.

'N' The application is a standalone UTM application.

hostname_long

The name of the computer on which the application runs.

openUTM V7.0. Administering Applications. User Guide.

 668

11.3.2.12 kc_tasks_par_str - Number of processes

The data structure is defined for the parameter type KC_TASKS_PAR. In the case of kc_tasks_par_str
KC_GET_OBJECT, UTM returns all information on the processes of the application in :kc_tasks_par_str

The maximum and current settings for the number of processes of the application.

The maximum number of processes that may process asynchronous jobs at one time.

The number of processes that may run at one time that contain program units with blocking calls (for example
PGWT).

The number of processed reserved for processing internal UTM jobs and dialog jobs, that do not belong to a
dialog TAC class. This number is only returned if job processing is priority controlled in the application, i.e. if the
TAC-PROPERTIES statement was set during KDCDEF generation.

mod1 Data structure kc_tasks_par_str

- char tasks[3];

- char asyntasks[3];

- char tasks_in_pgwt[3];

x(A) char mod_max_tasks[3];

x(A) char mod_max_asyntasks[3];

x(A) char mod_max_tasks_in_pgwt[3];

- char curr_max_asyntasks[3];

- char curr_max_tasks_in_pgwt[3];

- char curr_tasks[3];

- char curr_asyntasks[3];

- char curr_tasks_in_pgwt[3];

x(A) char mod_free_dial_tasks[3];

- char gen_system_tasks[3];

- char curr_system_tasks[3];

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see "obj_type=KC_TASKS_PAR"

The fields in the data structure have the following meanings:

tasks

The control value generated for the maximum number of processes that may be used for the application.

The actual maximum number of processes that may process jobs of the application is determined at the
start of the application and can be adjusted according to the actual demand during the application run
(see). Neither the number of processes specified at the start nor the number set by the mod_max_tasks
administration may exceed the value in .tasks

openUTM V7.0. Administering Applications. User Guide.

 669

asyntasks

The control value generated for the maximum number of processes of the application that may be used
for asynchronous processing at one time. The desired maximum number of processes for processing
asynchronous jobs in the current application run can be set at the start of the application or by the
administration (see the field). This number may not exceed the value of .mod_max_asyntasks asyntasks

tasks_in_pgwt

The control value generated for the maximum number of processes in which program units with blocking
calls may run simultaneously (e.g. the KDCS call PGWT; Program Wait). The desired maximum number
of processes for the current application run can be set at the start of the application or by the
administration (see the field). This number must not exceed the value of mod_max_tasks_in_pgwt

.tasks_in_pgwt

mod_max_tasks

Contains the current setting for the maximum total number of processes that may be used for the
application at one time. contains the last setting of this number, which is either the mod_max_tasks
number set at the start of the application or the number set by the administration (e.g.
KC_MODIFY_OBJECT with KC_TASKS_PAR).

mod_max_tasks contains the set point for the current number of processes. The number of processes
that are actually active currently and that can process the current jobs of the application is stored in the

 field. This may differ temporarily from the value in when a process is started curr_tasks mod_max_tasks
or terminated, but only then.

Maximum value: tasks
Minimum value: '1'

mod_max_asyntasks

Currently set limit value for the maximum number of processes that may be used for asynchronous
processing. contains the last setting for the number of processes for asynchronous mod_max_asyntasks
processing that was set either at start of the application or by the administration (e.g.
KC_MODIFY_OBJECT with KC_TASKS_PAR).

The actual maximum number of processes that can be used at any one time for asynchronous processing
() can be lower than the value specified in because the actual curr_max_asyntasks mod_max_asyntasks
number is limited by the number of currently running processes of the application ().curr_tasks

mod_max_asyntasks corresponds to a current upper limit.

Minimum value: '0'
Maximum value: the number in asyntasks

mod_max_tasks_in_pgwt

Currently set limit value for the maximum number of processes in which program units with blocking calls
may run simultaneously (Program Wait; e.g. the KDCS call PGWT). contains mod_max_tasks_in_pgwt
the setting for number of processes that was set either at start of the application or by the administration
(e.g. KC_MODIFY_OBJECT with KC_TASKS_PAR).

openUTM V7.0. Administering Applications. User Guide.

 670

The actual maximum number of processes that process program units with blocking calls (
) at any one time can be lower than the value specified in curr_max_tasks_in_pgwt
 because the actual number must at least 1 less than the number of currently mod_max_tasks_in_pgwt

running processes of the application ().curr_tasks

mod_max_tasks_in_pgwt corresponds to a current upper limit.

Minimum value: '0'
Maximum value: the number in tasks_in_pgwt

curr_max_asyntasks

The current maximum number of processes that may be used for asynchronous processing at one time.
This number of processes is equal to whichever is lower of either the currently set maximum number of
processes that can be used concurrently for asynchronous processing () or the mod_max_asyntasks
number of currently running processes of the application (). is changed curr_tasks curr_max_asyntasks
dynamically by UTM when one of the two values or is changed. See also curr_tasks mod_max_asyntasks

."Possible measures"

curr_max_tasks_in_pgwt

Current setting for the maximum number of processes in which program units with blocking calls may run
simultaneously (KDCS call PGWT). This number of processes is equal to whichever is lower of either the
currently set maximum number of processes in which program units with blocking calls can run
concurrently () or the number of currently running processes of the application (mod_max_tasksk_in_pgwt

) minus one. is changed by UTM dynamically when one of the two values curr_tasks curr_max_asyntasks
 or _ is changed. See also .curr_tasks mod max_tasks_in_pgwt "Possible measures"

curr_tasks

Contains the number of processes of the application currently running. The value of usually curr_tasks
corresponds to the value of . The value of can, however, be temporarily larger mod_max_tasks curr_tasks
or smaller than It is smaller if a process has terminated abnormally and has not been mod_max_tasks.
automatically restarted yet. It can be larger if the set point for the number of processes in mod_max_tasks
was just recently lowered. contains the current value of the number of processes, curr_tasks

 contains the set point.mod_max_tasks

curr_asyntasks

Contains the number of processes currently processing asynchronous jobs.

curr_tasks_in_pgwt

Contains the number of processes currently processing program units with blocking calls (e.g. PGWT), i.
e. the number of processes currently waiting in Program Wait.

mod_free_dial_tasks

Only applies if the TAC-PRIORITIES statement was issued during the KDCDEF generation.

UTM returns the current setting for the number of processes reserved for processing internal UTM tasks
and jobs that are not assigned to a dialog TAC class in . This portion of the total mod_free_dial_tasks
number of processes is consequently not available for processing jobs to dialog TAC classes.

If the maximum number of application processes is reduced and this number is then smaller or equal to
, one process nevertheless processes jobs to dialog TAC classes.mod_free_dial_tasks

openUTM V7.0. Administering Applications. User Guide.

 671

Minimum value: '0'
Maximum value: value in -1tasks

If the application is generated without TAC-PRIORITIES, then UTM returns blanks in mod_free_dial_tasks
.

gen_system_tasks

Contains the maximum number of UTM system processes that can be started based on the current
configuration.

curr_system_tasks

Contains the number of currently running UTM system processes.

openUTM V7.0. Administering Applications. User Guide.

 672

11.3.2.13 kc_timer_par_str - Timer settings

The data structure is defined for the parameter type KC_TIMER_PAR. In the case of kc_timer_par_str
KC_GET_OBJECT, UTM returns the current settings for all timers of the UTM application in .kc_timer_par_str

The timers are set during the generation of the application and can be changed to adapt to the current situation
during the application run using the operation code KC_MODIFY_OBJECT or with the help of the administration
command KDCAPPL.

A change made to a timer only takes effect when the timer is reset for the first time after the change was made. The
change does not affect timers already running. The changes are only in effect during the current application run.

mod1 Data structure kc_timer_par_str

x(GIR) char conrtime_min[5];

x(GIR) char pgwttime_sec[5];

x(GIR) char reswait_ta_sec[5];

x(GIR) char reswait_pr_sec[5];

x(GIR) char termwait_in_ta_sec[5];

- char termwait_end_ta_sec[5];

x(GIR) char logackwait_sec[5]; (only on BS2000 systems)

x(GIR) char conctime1_sec[5];

x(GIR) char conctime2_sec[5];

x(GIR) char ptctime_sec[5];

- char qtime1[5];

- char qtime2[5];

1 The contents of the field can be modified with KC_MODIFY_OBJECT; see "obj_type=KC_TIMER_PAR"

The fields in the data structure have the following meanings:

conrtime_min

(nection equest)con r time
The time in minutes after which UTM is to attempt to re-establish a connection to a partner application, a
client or a printer if the connection has been lost. is used for connections to:conrtime

printers to which UTM automatically establishes a connection at the start of the application (
='Y' in ,) if this connection has not auto_connect kc_pterm_str "kc_pterm_str - Clients and printers"

previously been shut down by administration functions.

printers to which UTM establishes a connection as soon as the number of print jobs for this printer
exceeds the generated control value (LTERM partner with > 0). UTM will only attempt to re-plev
establish the connection if the number of print jobs that are still pending after the connection loss is
greater than or equal to the control value.

openUTM V7.0. Administering Applications. User Guide.

 673

If 0, UTM will also attempt to establish the connection to the printer even if conrtime_min !=

administration functions have previously been used to shut it down explicitly.

TS applications (='APPLI' or 'SOCKET' in) to which UTM automatically establishes ptype kc_pterm_str
a connection at the start of the application (='Y' in kc_pterm_str, auto_connect "kc_pterm_str - Clients

) if this connection has not previously been shut down by administration functions.and printers"

OSI TP or LU6.1 partner applications to which UTM automatically establishes a connection when an
application is started, if this connection has not previously been shut down by administration functions,
or by UTM because a timer expired ().idletime

message routers (MUX) on BS2000 systems to which UTM automatically establishes a connection at
the start of the application if it has not previously been shut down by administration functions.

If it is not possible to establish a connection to partners configured for automatic connection setup (at the
start of an application or pursuant to a connection request issued using administration functions), or if
such a connection is lost, then UTM will attempt to re-establish the connection, depending on the reason
the connection was lost, in intervals of .conrtime_min

If ='0', then UTM will not attempt to re-establish a logical connection.conrtime_min

Maximum value: '32767'
Minimum value: '0'

pgwttime_sec

The maximum amount of time in seconds that a program unit may wait for messages after a blocking
function call. Blocking function calls are calls in which control is only returned to the program unit after the
answer has been received (for example the KDCS call PGWT).

A process of the UTM application remains exclusively reserved for this program unit during this wait time.

Maximum value: '32767'
Minimum value: '60'

reswait_ta_sec

The maximum amount of time in seconds that a program unit may wait for a resource locked by another
transaction: for example global secondary storage areas, user-specific long-term storage areas, terminal-
specific long-term storage areas.

If the resource is not available after this time, then the application program will receive the appropriate
return code KCRCCC.

The wait time specified in is not significant if the lock is held by a multi-step transaction reswait_ta_sec
that is waiting for an input message (after a PEND KP or PGWT KP). In this case, all program units
accessing the locked resource will immediately (without waiting for the time specified in) reswait_ta_sec
receive the return code KCRCCC.

reswait_ta_sec='0' means that the program unit will not wait. A program unit run that attempts to access a
locked resource will immediately receive the appropriate return code.

Maximum value: '32767'
Minimum value: '0'

openUTM V7.0. Administering Applications. User Guide.

 674

reswait_pr_sec

The maximum amount of time in seconds that may be waited for a resource locked by another process. If
this time is exceeded, then the application is terminated with an error message (see
KC_MODIFY_OBJECT, =KC_TIMER_PAR as of).obj_type "obj_type=KC_TIMER_PAR"

Maximum value: '32767'
Minimum value: '300'

term wait_in_ta_sec

The maximum amount of time in seconds that may pass between an output to a dialog partner and the
reception of the dialog answer for multi-step transactions (i.e. in the PEND KP program). If the time

 is exceeded, then the transaction is rolled back. The resources reserved by the termwait_in_ta_sec
transaction are released. The connection to the partner is closed.

Maximum value: '32767'
Minimum value: '60'

termwait_end_ta_sec

Does not contain a valid value. The time in seconds that UTM will wait for an input from the dialog partner
after a transaction terminates or after signing on (KDCSIGN). This value is defined on a partner-specific
basis as of openUTP V5.0. You will receive further information on this timer when you call
KC_GET_OBJECT with KC_PTERM or KC_TPOOL (field in obj_type idletime "kc_pterm_str - Clients and

 and).printers" "kc_tpool_str - LTERM pools for the application"

logackwait_sec (only on BS2000 systems)

The maximum amount of time in seconds that UTM is to wait for a logical print confirmation from the
printer or for a transport confirmation for an asynchronous message sent to another application (created
with the KDCS call FPUT).
If the confirmation is not received after this time, for example because the printer is out of paper, then
UTM closes the logical connection to the device.

Minimum value: '10'
Maximum value: '32767'

The following timers are only used for UTM applications with distributed processing via LU6.1 or OSI TP.

conctime1_sec

(nection ontrol) con c time
The time in seconds that the establishing of a connection to a session (LU6.1) or association (OSI TP) is
to be monitored. If the session or association is not established within the specified time, then UTM
closes the transport connection to the partner application. This prevents a transport connection from
being disabled due to an unsuccessful attempt to establish a connection to a session or association. This
can occur when a message needed to establish the connection becomes lost.

conctime1_sec='0' means that session setup is not monitored in the case of LU6.1 connections (UTM
waits indefinitely). In the case of OSI TP connections, UTM waits for up to 60 seconds for an association
to be set up.

Minimum value: '0'
Maximum value: '32767'

openUTM V7.0. Administering Applications. User Guide.

 675

conctime2_sec

The maximum wait time in seconds that will be waited for the confirmation from the receiver when
sending an asynchronous message. After the time in runs out, UTM closes the transport conctime2_sec
connection. The asynchronous job is not lost, and it remains in the local message queue. Monitoring this
time prevents a connection from not being used because a confirmation was lost and also prevents UTM
from not being informed by the transport system of the loss of a connection.

conctime2_sec = '0' means that the connection will not be monitored.

Minimum value: 0
Maximum value: 32767

ptctime_sec

This parameter is only significant for distributed processing via LU6.1 connections. specifies ptctime_sec
the maximum time in seconds that a job-receiving service in the PTC (prepare to commit, transaction
status P) state will wait for confirmation from the job-submitting service. After this time is up, the
connection to the jobsubmitter is closed, the transaction in the job-receiving service is rolled back and the
service is terminated. This can eventually lead to a mismatch.

If KDCSHUT WARN or GRACE has already been issued for the application and the value of ptc_time_sec
is not 0, then the waiting time is chosen independently of in such a way that the transaction ptc_time_sec
is rolled back before the application is terminated in order to avoid abnormal termination of the application
with with ENDPET if possible.

ptctime_sec = '0' means that there is no limit to the time that will be waited for confirmation.

Minimum value: 0
Maximum value: 32767

qtime1

Indicates the maximum time in seconds that a dialog service may wait for the receipt of messages for
USER, TAC or temporary queues.

qtime2

Indicates the maximum time in seconds that an asynchronous service may wait for the receipt of
messages for USER, TAC or temporary queues.

openUTM V7.0. Administering Applications. User Guide.

 676

11.3.2.14 kc_utmd_par_str - Parameters for distributed processing

The data structure is defined for the parameter type KC_UTMD_PAR. In the case of kc_utmd_par_str
KC_GET_OBJECT, UTM returns the basic settings for distributed processing via LU6.1 and OSI TP in
kc_utmd_par_str.

Data structure kc_utmd_par_str

char application_process_title[10][8];

char maxjr[3];

char rset;

The fields in the data structure have the following meanings:

application_process_title

Only of relevance for distributed processing via OSI TP.
contains the application process title of the local application (see the openUTM application_process_title

manual “Generating Applications”).

An application process title consists of at least two, but at most 10 components.
Each individual component is a positive integer and is a maximum of 8 characters long.

UTM returns one field element per component of the application process title, i.e. the number of field
elements in that contain data corresponds to the number of components application_process_title
generated. The rest of the field elements are set to binary zero.

If no application process title was generated, then all field elements of are set to application_process_title
binary zero.

maxjr (maximum number of job receivers)

Specifies the maximum number of remote job-receiving services that may be addressed at one time
within the local application.

This value, in percent, corresponds to the total number of sessions and associations generated (=100%).
The value must be between 0 and 200.

A value greater than 100 means that openUTM APRO calls for addressing remote services are accepted,
even if no session or association is (yet) free for this job at this time.

rset

Specifies how rolling back a local transaction will affect the distributed transaction when distributed
processing is utilized.

A local transaction can be rolled back by a RSET call from a program unit or by rolling back a database
transaction that is involved in the local transaction.

 can contain one of the following values:rset

'G' (GLOBAL)
After rolling back the local transaction the program unit must be terminated in such a manner that
UTM rolls back the distributed transaction.

openUTM V7.0. Administering Applications. User Guide.

 677

'L' (LOCAL)
Rolling back a local transaction has no influence on the distributed transaction.

The distributed data can become inconsistent when some of the local transactions involved in a
distributed transaction are rolled back and others continue as before. If ='L', then global data rset
consistency is not guaranteed by the system components involved. This task then becomes the
responsibility of the application program units. They must decide in which situations the distributed
transaction can be sensibly terminated and in which situations they must be rolled back.

openUTM V7.0. Administering Applications. User Guide.

 678

12 Administration commands - KDCADM

This chapter describes the openUTM administration commands which call up the basic administration functions.
These administration commands are transaction codes in the administration program KDCADM which are supplied
together with openUTM. Before you can make use of these administration commands you must add entries for both
KDCADM and the administration commands to the configuration file during the KDCDEF generation phase. The
table below lists all the administration commands.

There are two versions of each administration command:

a command to initiate processing interactively.

a command for administration by means of message queuing (asynchronous processing).

There follows a description of the dialog-based administration commands. This description is arranged in ascending
alphabetical order of command names. The associated commands for administration via message queuing have
the same operands and the same input format. Command input differs only in terms of the actual command name
entered.

With dialog-based administration procedures, openUTM returns the result of command processing to the job
submitter (a user at a terminal, UPIC client, TS application or a partner application).

In the case of asynchronous commands, all results are sent to a fixed receiver (DESTADM) in the form of
asynchronous messages. The receiver can either be:

an LTERM partner (Exception: UPIC LTERM partner are not permitted)

an asynchronous TAC

a TAC queue (TYPE=Q)

The receiver is defined during KDCDEF generation in MAX DESTADM= and can be modified via the administration
program interface, chapter . If no receiver is defined, the result is lost. If a TAC is see "obj_type=KC_MAX_PAR"
defined but unable to receive the result, e.g. in the case of a disabled asynchronous TAC, UTM does not execute
the administration command and writes message K076 to the system log file SYSLOG and to SYSOUT (on BS2000
systems) or (on Unix, Linux and Windows systems). stderr

openUTM V7.0. Administering Applications. User Guide.

 679

List of administration commands

Dialog commands Asynchronous commands

KDCAPPL - Change properties and limit values for an operation KDCAPPLA

KDCBNDL - Replace Master LTERM KDCBNDLA

KDCDIAG - Switch diagnostic aids on and off KDCDIAGA

KDCHELP - Query the syntax of administration commands KDCHELPA

KDCINF - Request information on objects and application parameters KDCINFA

KDCLOG - Change the user log file KDCLOGA

KDCLPAP - Administer connections to (OSI-)LPAP partners KDCLPAPA

KDCLSES - Establish/shut down connections for LU6.1 sessions KDCLSESA

KDCLTAC - Change the properties of LTACs KDCLTACA

KDCLTERM - Change the properties of LTERM partners KDCLTRMA

KDCMUX - Change properties of multiplex connections (BS2000 systems) KDCMUXA

KDCPOOL - Administer LTERM pools KDCPOOLA

KDCPROG - Replace load modules/shared objects/DLLs KDCPROGA

KDCPTERM - Change properties of clients and printers KDCPTRMA

KDCSEND - Send a message to LTERM partners (BS2000 systems) KDCSENDA

KDCSHUT - Terminate an application run KDCSHUTA

KDCSLOG - Administer the SYSLOG file KDCSLOGA

KDCSWTCH - Change the assignment of clients and printers to LTERM partners KDCSWCHA

KDCTAC - Lock/release transaction codes and TAC queues KDCTACA

KDCTCL - Change number of processes of a TAC class KDCTCLA

KDCUSER - Change user properties KDCUSERA

KDCADM commands

openUTM V7.0. Administering Applications. User Guide.

 680

Command format

command-name operand1,operand2,...

There are position operands and keyword operands.

Position operands are entries without a keyword and an “=” sign and must appear in the specified sequence.
You can write keyword operands, e.g. PTERM= in any sequence. The operands must be separated by ptermname
commas.

If an optional operand is not set, the default value of this operand applies.

If an optional operand is not set for a command used for modifying the configuration then the value defined during
generation or the value previously set by the administrator continues to apply.

After processing a command, openUTM returns an output which indicates the result. However, this does not mean
in any case that the action was performed successfully.

You can use the information functions to establish whether or not openUTM was able to perform an action
successfully, e.g. in the case of the command KDCINF.

openUTM V7.0. Administering Applications. User Guide.

 681

12.1 KDCAPPL - Change properties and limit values for an operation

KDCAPPL allows you to perform the following actions:

Change the timer settings and maximum values that you have generated in the KDCDEF control statement MAX.

Define the number of processes (TASKS) that can be involved in an application simultaneously. If you wish to
reduce the current number of processes, you should refer to the information provided in chapter "Possible

.measures"

Define the maximum number of processes that are permitted to process asynchronous services or services with
blocking function calls (e.g. the KDCS call PGWT) simultaneously. The maximum possible number of these
processes depends on the total number of processes in the application and on the maximum number of
processes defined in the KDCDEF statement MAX that are entitled to process services of this kind.

Control cache memory paging.

Switch the accounting and calculation phase of the UTM accounting procedure on and off

Enable and disable data compression

Establish a connection to all printers for which messages are present.

Exchange the entire application program during live operation. This enables you, without terminating the
application, to change program units and to take new program units that you have included dynamically in the
configuration and add them to the application program.

In standalone UTM applications on BS2000 systems, load modules whose versions have previously been
modified with KDCPROG are therefore also swapped in the Common Memory Pool.

Switch over the system log files for the application (SYSOUT and SYSLST or stderr and stdout) during live
operation. This avoids a hard disc bottleneck, since it allows log files to be evaluated and files which are no
longer required to be deleted or archived.

In addition, you can also enable or disable provision of data to the openSM2 software monitor for the application.

Period of validity of the changes

The changes made with KDCAPPL last for no longer than the duration of the current application run.

Exception:

A program exchange (PROGRAM operand) remains effective beyond the end of the current application run, i.e.
when the application is next started, the most recently loaded version of the application program is reloaded. In the
case of a restart, UTM attempts to load the new application program even if a previous attempt to initiate a program
exchange (in the previous application run) was unsuccessful.

Effect in cluster operation

The effect on cluster applications is described in the sections devoted to the individual operands since some of the
changes made with KDCAPPL apply locally to the node whereas others take effect globally in the cluster. Changes
made locally in a node apply at the most for the duration of the current node application run.

Changes made globally in the cluster apply at the most for the duration of the current UTM cluster application run.

openUTM V7.0. Administering Applications. User Guide.

 682

KDCAPPL [, OUNT={ ON | OFF }]ACC

 [CHE=%_utm_pages]CA

 [,CALC={ ON | OFF }]

 [, ON IME=con_control_time_sec]C CT

 [, ONR IME=con_request_time_min]C T

 [,DATA-COMPRESSION={ ON | OFF }]

 [, AX SYN=number_tasks]M A

 [, AX ONN SERS=number_users]M -C -U

 [, G T IME=wait_time_sec]P W T

 [, RAM={NEW | OLD | SAME}]PROG

 [, TC IME=wait_time_sec]P T

 [, ESWAIT R=wait_time_sec]R -P

 [, ESWAIT A=wait_time_sec]R -T

 [, POOL UT=ON]S O

 [,SYSPROT=NEW]

 [, ASKS=number_tasks]T

 [, ASKS N GWT=number_tasks]T -I -P

 [, ERM AIT=wait_time_sec]T W

 [,SM2={ ON | OFF }]

For administration using message queuing you must specify KDCAPPLA.

ACCOUNT= enables and disables the UTM accounting phase.

In UTM cluster applications, the operand applies globally in the cluster.

On BS2000 systems enabling the accounting phase only becomes effective if record type
UTMA is enabled on BS2000 Accounting. The command KDCAPPL ACC=ON is not rejected if
record type UTMA is not enabled, since openUTM only detects this when writing an accounting
record.

The value set in the KDCDEF control statement in ACCOUNT ACC= applies when the
application is started.

For further details on UTM Accounting see also the openUTM manual “Using UTM
Applications”.

Note for BS2000 systems

With KDCAPPL ACC=ON it is also possible to reenable the accounting phase in openUTM
after BS2000 Accounting has failed, if BS2000 Accounting is available again.

openUTM V7.0. Administering Applications. User Guide.

 683

In RAV (accounting procedure for computer centers) you can specify which tariffs are to be
charged for specific periods of time when evaluating the accounting records.

CACHE=%_utm_pages

Defines the maximum percentage of pages in cache memory that can be stored on KDCFILE
when bottlenecks develop.

In UTM cluster applications, the operand applies globally in the cluster.

CACHE allows you to adjust the percentage defined during KDCDEF generation in the MAX
statement for the duration of the current application run. UTM swaps out at least 8 UTM pages
in a paging operation, even a smaller value is calculated.

Minimum value: 0 (in this case, 8 pages are swapped out)
Maximum value: 100

CALC= Enables the calculation phase of UTM Accounting.

In UTM cluster applications, the operand applies globally in the cluster.

ON Enables the calculation phase.
On BS2000 systems the calculation phase is enabled when the accounting record type UTMK
is enabled on BS2000 Accounting.

OFF Disables the calculation phase again.

When the application is started, the value set in ACCOUNT ACC= in the KDCDEF control
statement applies.

For further details on UTM Accounting see also the openUTM manual “Using UTM
Applications”.

CONCTIME=con_control_time_sec

(nection ontrol) Con C Time
Time taken in seconds to monitor the setup of a session (LU6.1) or an association (OSI TP). If
the session or association is not established within the specified period of time, UTM shuts
down the connection. This prevents a transport connection from remaining disabled due to a
failure to establish a session or association.

In UTM cluster applications, the operand applies globally in the cluster.

CONCTIME=0 means

session setup is not monitored in the case of LU6.1 session

in the case of OSI TP connections, UTM waits up to 60 seconds for an association to be set
up.

If a value < 100 was specified at generation for in the CACHESIZE operand number
of the MAX statement, rounding errors can occur at that output of of a %_utm_pages
subsequent KDCAPPL command.

i

openUTM V7.0. Administering Applications. User Guide.

 684

Maximum value: 32767
Minimum value: 0

CONRTIME=con_request_time_min

(nection equest) con r time
Time in minutes for which UTM should continue attempting to re-establish a connection to a
partner server or to a client or printer after a connection has been lost.

In UTM cluster applications, the operand applies globally in the cluster.

CONRTIME relates to connections to the following partners:

Printers to which UTM automatically establish a connection when the application starts up.
This assumes that the connection had not already been established by means of system
administration functions.

Printers to which UTM establishes a connection as soon as the number of print jobs for the
current printer exceeds the generated control value (LTERM partner with > 0). UTM plev
only attempts to re-establish a connection if the number of print jobs left after the lost
connection is greater than or equal to the control value.
If in such a case CONRTIME 0, UTM attempts to establish a connection to the printer if !=

the connection was previously shut down explicitly by means of system administration
functions.

TS applications which connect to the UTM application via LTERM partners (entered with
='APPLI' or 'SOCKET') and to which UTM automatically establishes a connection when ptype

the application is started, unless this connection has already been cleared by the
administrator.

Partner applications to which UTM automatically establishes a connection at the start,
unless such a connection has already been established by the administrator or shut down
by UTM due to a timeout ().idletime

Message routers (MUX) on BS2000 systems, to which UTM should automatically establish a
connection when the application is started if this connection has not already been cleared
down previously by administration.

If no connection is established between partners configured with automatic connection setup
(when an application is started or when an administration function requests a connection), UTM
attempts to establish a new connection, or to re-establish the connection at the intervals
specified in CONRTIME.

If CONRTIME=0, UTM makes no attempt to re-establish a connection.

Maximum value: 32767
Minimum value: 0

DATA-COMPRESSION

Enables or disables data compression. Any modification applies beyond the end of an
application.

openUTM V7.0. Administering Applications. User Guide.

 685

The UTM pages saved per compression can be queried by means of KDCINF STAT command
(see section "type=STATISTICS" in chapter), the program "Output from KDCINF (examples)"
interface (see chapter), or "kc_curr_par_str - Current values of the application parameters"
WinAdmin/WebAdmin.

In UTM cluster applications, the operand applies globally in the cluster.

ON Switches data compression on.
Data compression can be enabled using administration facilities only if it is permitted by means
of generation (see openUTM manual “Generating Applications”, KDCDEF statement MAX
DATA-COMPRESSION=).

OFF Switches data compression off.

MAXASYN=number_tasks

Specifies the maximum number of processes in the application that are allowed to accept jobs
for asynchronous transaction codes at the same time (see KC_MODIFY_OBJECT, obj_type
=KC_TASKS_PAR as of chapter , parameter)."obj_type=KC_MAX_PAR" mod_max_asyntasks

In UTM cluster applications, the operand applies locally in the node.

MAX-CONN-USERS=number_users

Defines the maximum number of users who can have connections to a UTM application at the
same time. This restriction enables you to prevent your application from becoming overloaded.

In UTM cluster applications, the operand applies locally in the node.

openUTM checks the number of active users when another user signs on, and rejects the
connection attempt if the number of users defined in are already signed on. This number_users
restriction does not apply to user IDs with administration privileges.

If, at the time of your KDCAPPL call, more than users are working on the number_users
system, none of these users are forced to quit their application. However, no further
connections will be permitted until the number of connected users falls to less than

.number_users

If an application has been generated without user IDs, restricts the number of number_users
dialog partners who can be connected to the application simultaneously. If a number is
specified for which is greater than the number of generated dialog LTERM number_users
partners, has no effect. Dialog LTERM partners are all the LTERM partners number_users
generated with USAGE=D, LTERM partners of the LTERM pools and - with BS2000 - the
LTERM partners UTM generates internally for multiplex connections.

number_users = 0 means that there is no restriction on the number of users or dialog partners
working on the system.

Maximum value:

BS2000 systems: 500000

Unix, Linux and Windows systems: The value that was specified in the KDCDEF statement
MAX CONN-USERS

Minimum value: 0 (no restriction).

openUTM V7.0. Administering Applications. User Guide.

 686

PGWTTIME=wait_time_sec

Changes the maximum time in seconds defined during generation for which a program unit can
wait for messages to arrive after a blocking function call; it also displays the currently set value
for this wait time. The wait time is generated in the KDCDEF statement MAX with the operand
PGWTTIME. Blocking function calls are calls where control is not returned until a response has
been received by the program unit (e.g. the KDCS call PGWT).

In UTM cluster applications, the operand applies globally in the cluster.

During this wait time, a process in the UTM application is reserved exclusively for this program
unit.

Maximum value: 32767
Minimum value: 60

PROGRAM=

Exchanges the entire application program during live operation (see the corresponding
openUTM manual “Using UTM Applications”).

Requirements for exchanging a program using KDCAPPL PROGRAM=

In the new application program, none of the earlier program units must be missing. UTM will
terminate with errors (PEND ER) any jobs accepted for a transaction code for which no
program unit exists after the program has been exchanged.

You should not initiate a program exchange until all previously entered UTM administration
calls have been duly processed.
In particular, a program exchange should not be initiated until any program exchange
already initiated has been fully processed, i.e. until the program exchange is complete for all
processes in the application.

On BS2000 systems, a prerequisite for program exchange is that the application must have
been generated with at least one LOAD-MODULE statement.

In order to be able to exchange a UTM application program on Unix, Linux or Windows
systems while the system is running, the various versions of the application program
(including the currently loaded program) should be administered in the file generation
directory PROG using the UTM tool KDCPROG. The file generation directory must have
been created with KDCPROG and it must be in the directory of your application. filebase
You can use PROG=OLD or NEW to switch to the previous or next file generation.
Program exchange is described in the openUTM manual “Using UTM Applications on Unix,
Linux and Windows Systems”

In UTM cluster applications, the operand applies globally in the cluster for all the node
applications that are currently running.

Other KDCAPPL operands have no effect in conjunction with PROGRAM. KDCAPPL
PROGRAM= is rejected if a program is being exchanged at the time this call is submitted.

Only the values NEW and SAME are allowed on BS2000 systems. Both values have the same
effect.

NEW The entire application program is to be exchanged.

openUTM V7.0. Administering Applications. User Guide.

 687

BS2000 systems

KDCAPPL PROGRAM=NEW is not permitted if the application has been started in interactive
mode.

In a UTM application on a BS2000 system the application program is unloaded in all processes
and then re-loaded. When this is done, the current versions of the load modules are loaded. If
a load module is generated with *HIGHEST-EXISTING, then the highest version of the load
module existing in the library is loaded.

Program units in common memory pools are also exchanged at the same time. The version of
load modules to be loaded during a program exchange must be declared in advance with
KDCPROG. Before the program is exchanged, several such load modules in the common
memory pool can be earmarked for exchange by several KDCPROG calls.

In a standalone UTM application, it is possible to mark multiple load modules in the Common
Memory Pool for exchange by means of multiple KDCPROG calls prior to exchange.

Termination of the application program followed by a reboot also causes all load modules
generated with load mode ONCALL to be unloaded from the application.

This means that static parts of the application can also be exchanged when the application is
linked before.

In a UTM cluster application, application program exchange is initiated automatically as soon
as the version of a load module in a Common Memory Pool is modified (via KDCPROG).

Unix, Linux and Windows systems

In a UTM application on Unix, Linux and Windows systems, openUTM loads the application
program from the next highest file generation present in the file generation directory filebase
/PROG (Unix and Linux systems) or PROG (Windows systems) if the UTM tool filebase
KDCPROG is used to administer the different versions of the application program (including the
one that is currently loaded) in the PROG file generation directory.
If you have not created a file generation directory, then KDCAPPL PROG=NEW reloads the
application program (that is located in the base directory .utmwork) filebase

SAME On Unix, Linux and Windows systems, openUTM loads the application program from the same
file generation as is located in the file generation directory /PROG (Unix and Linux filebase
systems) or \PROG (Windows systems) if the different versions of the application filebase
program (including the currently loaded program) are administered using the UTM tool
KDCPROG in the PROG file generation directory.

If you have not created a file generation directory, then KDCAPPL PROG=SAME reloads the
application program () that is located in the base directory .utmwork filebase

On BS2000 systems, SAME has the same effect as NEW.

OLD (Only on Unix, Linux and Windows systems)
openUTM loads the application program from the next lowest file generation present in the file
generation directory /PROG (Unix and Linux systems) or PROG (Windows filebase filebase
systems) if the UTM tool KDCPROG is used to administer the different versions of the
application program (including the one that is currently loaded) in the PROG file generation
directory.
This means, for example, that you can switch back to the original application program if errors

openUTM V7.0. Administering Applications. User Guide.

 688

are detected during operation with the new application program.
If you have not created a file generation directory, then KDCAPPL PROG=OLD reloads the
application program (that is located in the base directory .utmwork) filebase

openUTM will not accept a new program exchange until the exchange has been completed for
all the processes.

If errors occur in the first process when the new application program is started then openUTM
issues the message K075 and loads the original application program again.

When the exchange of the application program has been terminated for all the processes,
openUTM issues message K074.

On Unix, Linux and Windows systems, you can query the generation of the currently loaded
application program, for example with KDCINF SYSP.

PTCTIME=wait_time_sec

Only for applications with distributed processing:
is the maximum time in seconds which a local job-receiving service can wait for wait_time_sec

confirmation from the job-submitting service in PTC mode (prepare to commit, transaction
status P). After this period has elapsed, the connection to the job submitter is shut down, the
transaction is rolled back in the local job-receiving service and the service is terminated. This
occasionally gives rise to a mismatch.

If KDCSHUT WARN or GRACE has already been issued for the application and the value of
PTCTIME is not 0, then the waiting time is chosen independently of PTCTIME in such a way
that the transaction is rolled back before the application is terminated in order to avoid
abnormal termination of the application with ENDPET, if possible.

In UTM cluster applications, the operand applies globally in the cluster.

The value 0 indicates that the system can wait for an unrestricted length of time for a
confirmation.

Maximum value: 32767
Minimum value: 0

RESWAIT-PR=wait_time_sec

The maximum time in seconds that one process can wait for resources that are being used by
another process. If this period of time is exceeded, the application terminates with an error
message.

In UTM cluster applications, the operand applies globally in the cluster .

If you specify RESWAIT-PR, please note that the value for must be at least as wait_time_sec
long as the longest processing time (real time) required for the following cases:

In the case of transport system applications that are not SOCKET applications (clients with
PTYPE=APPLI), the resources can remain locked for the duration of one processing step,
including the VORGANG exit at the start and/or end of the process.

At the end of the process, the resources are locked until the VORGANG exit program stops
running.

openUTM V7.0. Administering Applications. User Guide.

 689

Maximum value: 32767
Minimum value: 300

RESWAIT-TA=wait_time_sec

Maximum time in seconds for which a program unit is to wait for a resource that is being used
by another transaction: GSSBs, ULSs, TLSs.
If the resource does not become available after this time has elapsed, the an appropriate
KCRCCC return code is sent to the application program.

In UTM cluster applications, the operand applies globally in the cluster.

The wait time specified in is meaningless if the lock is effected by a multi-step wait_time_sec
transaction which is waiting for an input message after a PEND KP or a PGWT KP call. In this
event, all program units with access to the locked resource immediately receive a KCRCCC
return code (without wait time).wait_time_sec

RESWAIT-TA= 0 indicates that the process is not to wait. Any program unit run which attempts
to access the locked resource immediately receives a KCRCCC return code. The real wait time
depends on the precision with which the information exchange wait times are set in the
operating system.

Maximum value: 32767
Minimum value: 0

SPOOLOUT=ON

Causes UTM to establish a connection to all printers for which messages exist at the time of
the call and which are not yet connected to the application. This enables you to output all
messages to those printers to which it is possible to establish a connection (e.g. before
terminating the application).

In UTM cluster applications, the operand applies locally in the node.

SYSPROT=NEW

The log files of the application are switched over.

In UTM cluster applications, the operand applies globally in the cluster for all the node
applications that are currently running. The names of the new log files are formed as follows:

BS2000 systems:

SYSOUT: O. prefix. YYMMDD.HHMMSS.TSN
SYSLST: L.prefix. YYMMDD.HHMMSS.TSN

Only SYSLST is switched over if the application is started interactively.

prefix Prefix which you entered for the start parameter SYSPROT when the UTM
application was started (see openUTM manual “Using UTM Applications on BS2000
Systems”).

Default value in standalone UTM applications:
Name of the application as defined in MAX APPLINAME during KDCDEF generation.

openUTM V7.0. Administering Applications. User Guide.

 690

Default value in UTM cluster applications:
Name of the application defined in MAX APPLINAME during the KDCDEF
generation, followed by a dot and the computer name from the CLUSTER-NODE
statement for the relevant node.

YYMMDD

Date at which the file was switched over.

HHMMSS

Time at which the file was switched over.

TSN TSN of the task

Unix, Linux and Windows systems:

stdout: . prefix out.YY-MM-DD.HHMMSS
stderr: prefix.err.YY-MM-DD.HHMMSS

prefix The prefix you specified for the start parameter SYSPROT when starting the UTM
application (see openUTM manual “Using UTM Applications on Unix, Linux and
Windows Systems”).

Default: utmp

YY-MM-DD

Date at which the file was switched over.

HHMMSS

Time at which the file was switched over.

TASKS=number_tasks

Specifies the current number of processes in the application. UTM switches processes on or off
accordingly (see KC_MODIFY_OBJECT, =KC_TASKS_PAR as of chapter obj_type

, parameter)."obj_type=KC_MAX_PAR" mod_max_tasks

In UTM cluster applications, the operand applies locally in the node.

Maximum value:
The maximum value for TASKS defined during generation (KDCDEF control statement MAX...,
TASKS=...)

Minimum value:

If MAX TASKS-IN-PGWT=0: 1

If MAX TASKS-IN-PGWT>0:
TASKS WAITING IN PGWT +1, but at least 2
(TASKS WAITING IN PGWT can be queried with KDCINF SYSP).

A certain amount of time is required for starting and terminating the UTM processes. After
entering KDCAPPL TASKS= you should therefore first wait for the result of the call, then use

openUTM V7.0. Administering Applications. User Guide.

 691

KDCINF SYSPARM to check it before issuing any more KDCAPPL TASKS= calls. Failure to do
so can lead to start errors.

TASKS-IN-PGWT=number_tasks

Defines the number of processes in the UTM application that are allowed to process program
units in which blocking calls (e.g. the KDCS call PGWT) are permitted (see
KC_MODIFY_OBJECT, =KC_TASKS_PAR as of chapter , obj_type "obj_type=KC_MAX_PAR"

 parameter).mod_max_tasks_in_pgwt

In UTM cluster applications, the operand applies locally in the node.

The command is rejected if you enter TASKS-IN-PGWT=0, although MAX TASKS-IN-PGWT
>0 was generated.

TERMWAIT=wait_time_sec

Maximum time in seconds allowed to elapse in a multi-step transaction (i.e. in the PEND KP
program) between output to a dialog partner (terminal, UPIC client, TS application or job-
submitting service in a partner application) and the ensuing dialog response. If this time
exceeds the transaction is rolled back. The connection to the dialog partner is wait_time_sec
shut down.

In UTM cluster applications, the operand applies globally in the cluster.

Maximum value: 32767
Minimum value: 60

SM2=

Switches the data supply to openSM2 on and off. It is only possible to supply data to openSM2
if the generation parameters permit openSM2 event logging to be switched on (KDCDEF
statement MAX, operand SM2=ON or OFF). If SM2=NO is generated, the administrator will not
be able to switch on the data supply to openSM2.

The following applies in UTM cluster applications:
The operand applies globally to the cluster. If a node application is started with a new
generation then the value from the new generation applies for this node application as well as
for all other newly starting node applications.

ON openUTM supplies data to openSM2.

OFF openUTM does not supply data to openSM2.

openUTM V7.0. Administering Applications. User Guide.

 692

1.

2.

Output from KDCAPPL

The new and old values of the parameter are always displayed (with the exception of KDCAPPL PROG=).

 NEW OLD
TERMWAIT
RESWAIT-PR
RESWAIT-TA
CONRTIME
CURR TASKS
MAXASYN
TASKS-IN-PGWT
CACHE
ACCOUNT
CALC
SM2
MAX-CONN-USERS
PGWTTIME
CONCTIME (1.)
PTCTIME (1.)
PROGRAM FGG (2.)

The lines for PTCTIME and CONCTIME are only output via LU6.1 or OSI TP for an application with distributed
processing.

The line for PROGRAM FGG is only output if in a UTM application on a Unix, Linux or Windows system the
entire application program is to be exchanged by means of KDCPROG. In such cases, the new generation
number of the application program is output under NEW and the old generation number is output under OLD.
Once all the processes in the program have been exchanged, UTM issues message K074.

openUTM V7.0. Administering Applications. User Guide.

 693

12.2 KDCBNDL - Replace Master LTERM

KDCBNDL allows you to exchange the Master LTERMs of two LTERM bundles (see openUTM manual “Generating
Applications”). All the slave LTERMs and the associated PTERMs of the first LTERM bundle are assigned to the
second master LTERM and vice versa.

This command is only permitted in standalone UTM applications.

Period of applicability of the change

The change remains effective after the application has terminated.

KDCBNDL master-lterm1, master-lterm2

You must specify KDCBNDLA for administration via message queuing.

master-lterm1 Name of the first master LTERM.

master-lterm2 Name of the second master LTERM.

Output from KDCBNDL

The following messages are displayed at the administrator terminal:

If the command was executed successfully:

COMMAND ACCEPTED - 'master-lterm1' AND 'master-lterm2' SWITCHED

If the command could not be executed:

COMMAND REJECTED

If an LTERM was specified for or that is not a master LTERM:master-lterm1 master-lterm2

COMMAND REJECTED - 'lterm' NO MASTER-LTERM

openUTM V7.0. Administering Applications. User Guide.

 694

12.3 KDCDIAG - Switch diagnostic aids on and off

KDCDIAG allows you to switch UTM functions on and off which will support you during error diagnosis. The
following functions can be called:

Switch test mode on or off.

Create a UTM dump during live operation for diagnostic purposes.

Cause openUTM to generate a dump when a specific event occurs.

Switch UTM event monitor KDCMON on or off.

Switch the BCAM trace function on or off. This function traces all connection-related activities in the application.
The BCAM trace function can only be switched on for individual, explicitly specified communication partners.

Switch the OSS trace function on or off. The OSS trace helps with the diagnosis of problems affecting OSI TP
connections.

Output debug information for the database connection.

Switch over log files for the UTM application.

Effect in cluster operation

The effect on UTM cluster applications is described in the sections devoted to the individual operands since some
of the changes made with KDCDIAG apply locally to the node whereas others take effect globally in the cluster.
Changes made locally in a node apply at the most for the duration of the current application run. Changes made
globally in the cluster apply at the most for the duration of the current cluster application run.

openUTM V7.0. Administering Applications. User Guide.

 695

Period of validity of the changes

Every change remains effective for the duration of the application run or until it is reset.

KDCDIAG [UMP= ES]D Y

 [,{ UMP ESSAGE | UMP ESSAGE{1|2|3} }=D -M D -M

 { (MSG, msg-nr) | (SIGN, sign) | (RCCC, rccc) |

 (RCDC, rcdc) | *NONE }]

 [,INSERT1= (insert-nr, value, { EQ | NE })]

 [,INSERT2= (insert-nr, value, { EQ | NE })]

 [,INSERT3= (insert-nr, value, { EQ | NE })]

 [,KDC = { ON | OFF }]MON

 [, EST ODE={ ON | OFF }]T M

 [, RACE= { ON | OFF } [,BT

 { LTERM ={ ltermname | (ltermname_1,...,ltermname_10) } |

 LPAP = { lpapname | (lpapname_1,...,lpapname_10) } |

 USER = { username | (username_1,...,username_10) } |

 MUX = (mux-name, proname, bcamappl) 1

 }]

 [, RACE= { ON | (SPI,INT,OSS,SERV,PROT) | OFF }]OT

 [, XIT- OG={ ON | OFF }]ST L 1

 [,XA-DEBUG={ YES | ALL | OFF}]

 [,XA-DEBUG-OUT={ SYSOUT | FILE}]

1 Only on BS2000 systems

For administration using message queuing you must specify KDCDIAGA.

DUMP=YES

Requests a UTM dump during live operation. The UTM dump (taken from only one process in the
application) is created with the reason "REASON=DIAGDP".

In UTM cluster applications, the operand applies locally in the node.

DUMP-MESSAGE=[1...3]

Here, you specify an event that forces openUTM to create a UTM dump if it occurs. The
command KDCDIAG DUMP-MESSAGE= is only evaluated when test mode is enabled
(TESTMODE=ON).

In UTM cluster applications, the operand applies globally in the cluster .

The dump is created by the process in which the error occurs. The application is not terminated.

openUTM V7.0. Administering Applications. User Guide.

 696

The parameters DUMP-MESSAGE1, DUMP-MESSAGE2 and DUMP-MESSAGE3 allow you to
define up to three different events for which a message dump is to be generated if they occur.
The specification DUMP-MESSAGE is synonymous with DUMP-MESSAGE1.

For each KDCDIAG demand, you can specify a maximum of one DUMP-MESSAGE[i] parameter.

You can specify the following events:

the output of a message number with the format K or Pnnn nnn

the occurrence of a specific KDCS return code (CC or DC)

the occurrence of a specific SIGNON status code

The dump ID is dependent on the event:

In the case of K or P messages, it has the prefix "ME" followed by the message number, e.g.
MEP012.

In a primary KDCS return code, it has the prefix "CC-", followed by the return code, e.g. CC-
71Z.

In a secondary KDCS return code, it has the prefix "DC", followed by the return code, e.g.
DCK303.

In a SIGNON status code, it has the prefix "SG-", followed by the status, e.g. SG-U01.

MSG, msg-no

Specify UTM message number in the form K or P for . A dump is generated each nnn nnn msg-no
time the specified message number occurs until such time as the message number is reset.

The message numbers , , and are exceptions in this regard, as only one K023 K043 K061 K062

dump is generated for each of them, after which the message dump is automatically disabled.

SIGN, sign

Specify a SIGNON status code (3 characters) for , e.g. U04, where KCRSIGN1 must have sign
the value U, I, A or R. If this code occurs when a user signs on then the process in which the
SIGNON status occurred generates a UTM dump with the ID SG-U04. This happens irrespective
of whether a signon service has been generated in the application or not. The message dump for
this event is then automatically deactivated.

RCCC, rccc
RCDC, rcdc

Specify a KDCS return code (KCRCCC, e.g. "40Z") for and an incompatible KDCS return rccc
code (KCRCDC, e.g. "KD10") for . If this return code occurs on a KDCS call then the process rcdc
in which the return code occurred generates a UTM dump with the ID CC-40Z or DCKD10. The
message dump for this event is then automatically deactivated.

For all KDCS return codes >= 70Z and the associated incompatible KDCS return codes for which
a PENDER dump is never generated (e.g. 70Z/K316), no dump is generated either.

*NONE Explicit deactivation of an event for a message dump.

INSERT1...INSERT3=(insert-no, value, {EQ | NE})

openUTM V7.0. Administering Applications. User Guide.

 697

Here you can specify up to three inserts as additional conditions for the message in order msg-no
to further restrict the generation of a dump. INSERTx is only evaluated if DUMP-MESSAGE[i] is
also specified.

A message dump is only generated if all the criteria specified in INSERT1 ... INSERT3 are met.

You will find the sequence of the inserts of a message in the relevant, system-specific openUTM
manual ”Messages, Debugging and Diagnostics”.

insert-no
Number of the insert to be checked, e.g. "2" for the second insert in a message.

value
Value against which the insert is to be checked. The following specifications are possible:

nnn: numeric, value range 0...2 -131

[C]'aaa': alphanumeric, maximum length 32 bytes

X'xxx': hexadecimal, maximum length 32 bytes

EQ | NE
Specifies whether the system is to test for equality or inequality.
Default: EQ

KDCMON=

Switches the UTM event monitor on or off.

In UTM cluster applications, the operand applies locally in the node.

ON Switches on the UTM event monitor.
The KCDMON event monitor is described in the corresponding openUTM manual “Using UTM
Applications”.

OFF Switches the UTM event monitor back off.

TESTMODE= Switches the test mode on and off.

In UTM cluster applications, the operand applies globally in the cluster.

ON Test mode is switched on. This means that additional internal UTM routines conduct plausibility
checks and that internal TRACE information is recorded. Trace information is written in the KTA
module and - with OSI TP applications - also in the XAPTP module. Trace mode should only
be switched on in order to generate diagnostic documents.

OFF Switch test mode off.

Default: displays the current setting.

BTRACE= Switches the BCAM trace function of UTM on and off. The BCAM trace function of UTM traces all
connection-specific activities occurring in a UTM application.
When the trace function (hereafter referred to as the BTRACE function) is switched on, every
process in the application creates its own trace file in which it records all connection-specific
events.
If the BTRACE function is switched off, the trace files are closed and can then be evaluated. For

openUTM V7.0. Administering Applications. User Guide.

 698

information about the contents and evaluation of trace files, please refer to the description in the
openUTM manual ”Messages, Debugging and Diagnostics”.

The BTRACE function can be switched on using the start parameter BTRACE when the
application is started.

You can switch on the BTRACE function for all connections in an application or on a partner-
specific basis for connections to specified LTERM and LPAP partners.

ON The BTRACE function is usually switched on; it logs events relating to all connections to any
given communication partner in the application (clients and partner applications in a distributed
processing environment based on LU6.1).

In UTM cluster applications, the specification of BTRACE=ON without any other parameters
applies globally in the cluster.

ON, LPAP=lpapname|(lpapname_1,...,lpapname_10)

In UTM cluster applications, the operand applies locally in the node.

or

ON, LTERM=ltermname|(ltermname_1,...,ltermname_10)

In UTM cluster applications, the operand applies locally in the node.

or

ON, USER=username|(username_1,...,username_10)

In UTM cluster applications, the operand applies globally in the cluster.

or

ON, MUX=(mux_name,proname,bcamappl) (only on BS2000 systems)

In UTM cluster applications, the operand applies locally in the node.

The BTRACE function is switched on a partner-specific basis and all events relating to
connections with specified partners or users or the MUX partners are logged.

The following specifications must be made:

For the names of LPAP partnerslpapname_...

For the names of LTERM partners that are assigned to clientsltermname_...

For ... the names of users whose events are to be recorded or not recorded username_
irrespective of the connection used. This is particularly useful when using TPOOLs.

Only on BS2000 systems: For MUX the name and processor of the MUX partner and the
transport system access point via which the MUX partner connects to the application.

The BTRACE function can only be switched on explicitly for connections with certain partner
applications, clients or users if it is not already switched on for all connections in that application.

If you wish to switch on the BTRACE functions for a few partner applications and a few clients,
call the KDCDIAG command repeatedly:

openUTM V7.0. Administering Applications. User Guide.

 699

KDCDIAG BTRACE=ON,LPAP=...

KDCDIAG BTRACE=ON,LTERM=...

KDCDIAG BTRACE=ON,USER=...

KDCDIAG BTRACE=ON,MUX=... (only on BS2000 systems)

OFF The BTRACE function is switched off on all of the application’s connections, even if it was
originally switched on a partner-specific basis.

In UTM cluster applications, the specification of BTRACE=OFF without any other parameters
applies globally in the cluster.

OFF, LPAP=lpapname|(lpapname_1,...,lpapname_10)

In UTM cluster applications, the operand applies locally in the node.

or

OFF, LTERM=ltermname|(ltermname_1,...,ltermname_10)

In UTM cluster applications, the operand applies locally in the node.

or

OFF, USER=username|(username_1,...,username_10)

In UTM cluster applications, the operand applies globally in the cluster.

or

OFF, MUX=(mux_name,proname,bcamappl) (only on BS2000 systems)

In UTM cluster applications, the operand applies locally in the node.

This switches off the BTRACE function for connections to the partner applications specified in
 or to the clients specified in or to lpapname_1,...,lpapname_10 ltermname_1,...,ltermname_10

the users specified in or the MUX partner. username_1,...,username_10
The BTRACE function can only be switched off on a partner-specific basis if it had been switched
on explicitly for connections to those partners (with BTRACE=ON, LPAP=... or LTERM=... or
MUX=...).bzw. MUX=...

OTRACE= Switching the OSS trace function on and off.
The OSS trace is only required for the diagnosis of problems with OSI TP connections to the
application. The OSS trace function can also be switched on or off when the application is started
by appropriate entries in the start parameters [.UTM] START ... OTRACE=.

In UTM cluster applications, the operand applies globally in the cluster .

Trace records of the types SPI, INT, OSS, SERV and PROT are logged.

ON Switches on the OSS trace function for all types of record.
When the OSS trace function is switched on, every process in the application creates its own
trace file.

(SPI, INT, OSS, SERV, PROT)

openUTM V7.0. Administering Applications. User Guide.

 700

Switches the OSS trace function on. The trace records for the specified type are logged. The
types can be entered in any sequence.

SPI
Logs the XAP-TP System Programming Interface.

INT
Logs the internal process in the XAP-TP module.

OSS
Logs the OSS calls.

SERV
Logs the internal OSS trace records of type =O_TR_SERV.

PROT
Logs the internal OSS trace records of type =O_TR_PROT.

OFF Switches off the OSS trace function; the trace files are closed and can be evaluated. For further
details, please refer to the openUTM manual ”Messages, Debugging and Diagnostics” and the
OSS manual.

STXIT-LOG= Only on BS2000 systems: Enable/disable extended STXIT logging in the event of STXIT handling
problems. Several K099 messages are issued to SYSOUT when a STXIT event occurs.

In UTM cluster applications, the operand applies locally in the node.

ON Enables STXIT logging.

OFF Disables STXIT logging.

XA-DEBUG= Specifies whether debug information for the XA database connection is to be output.

In UTM cluster applications, the operand applies locally in the node.

YES XA-DEBUG is enabled, and calls to the XA interface are logged.

ALL Extended XA-DEBUG: specific data areas are output in addition to the calls to the XA interface.

OFF Disables XA-DEBUG.

XA-DEBUG-OUT=

Controls the output destinations for XA-DEBUG.

In UTM cluster applications, the operand applies locally in the node.

SYSOUT The log is written to SYSOUT/stderr, default.

FILE The log is written to a file.

If you specify only XA-DEBUG in the KDCDIAG command, without entering a value for XA-
DEBUG-OUT then this may lead to a modification of the value which you specified in the start
parameter when starting the UTM application (see openUTM manual “Using UTM Applications”).
Otherwise log entries are written to SYSOUT/stderr.

i

openUTM V7.0. Administering Applications. User Guide.

 701

Output from KDCDIAG

If KDCDIAG DUMP=YES then the message “DIAGNOSTIC DUMP CREATED” is issued. With the other operands,
UTM displays the new and old settings for diagnostic aids on the administrator terminal:

STATUS NEW OLD
TESTMODE ON|OFF ON|OFF
KDCMON ON|OFF ON|OFF
OSS-TRACE ON|OFF ON|OFF
 SPI INT OSS SERV PROT SPI INT OSS SERV PROT
BTRACE ON S|ON A|OFF ON S|ON A|OFF
LTERM/LPAP/USER BTRACE
 NEW OLD
ltermname ON|OFF ON|OFF
lpapname ON|OFF ON|OFF

username ON|OFF ON|OFF
STXIT-LOG ON|OFF ON|OFF
XA-DEBUG YES|ALL|OFF YES|ALL|OFF
XA-DEBUG-OUT SYSOUT|FILE SYSOUT|FILE

Explanation of the output

TESTMODE The line for TESTMODE is always displayed, regardless of whether or not the KDCDIAG
call contains the TESTMODE operand.

KDCMON The line for KDCMON is always displayed, regardless of whether the KDCDIAG call
contains the KDCMON operand or not.

BTRACE The line for BTRACE is always displayed. With BTRACE (ON) (switched on), the display
also shows whether the trace function is switched on for all connections in the application
(ON A, A=all) or just for connections to a few communication partners (ON S, S=select).

OSS-TRACE The line for OSS-TRACE is always displayed if the OTRACE operand was specified in the
KDCDIAG call.

LTERM/LPAP/USER

Is only displayed if the BCAM trace function is/was explicitly switched on for connections to
particular communication partners (LPAP, LTERM or MUX partners) or for users.
The current and old BTRACE status is displayed for individual communication partners or
users for whom the BTRACE function was switched on.

It only makes sense to change the two operands XA-DEBUG and XA-DEBUG-OUT in a UTM application
in which a database connection has been generated over the XA interface.

i

openUTM V7.0. Administering Applications. User Guide.

 702

12.4 KDCHELP - Query the syntax of administration commands

KDCHELP provides you with information about the syntax of the administration commands.

KDCHELP [command]

For administration using message queuing, you must enter KDCHELPA.

command For enter the name of the administration command for which openUTM is to specify the command,
syntax.

openUTM supplies the names of all KDCADM dialog commands together with a brief description of
the functions of the individual commands if you enter:

KDCHELP (i.e. no entry made for) command
or

(i.e. KDCHELP is entered for) KDCHELP KDCHELP command
or

(= invalid name)KDCHELP XXX XXX

Valid entries for are:command

KDCAPPL

KDCBNDL

KDCDIAG

KDCHELP

KDCINF

KDCLOG

KDCLPAP

KDCLSES

KDCLTAC

KDCLTERM KDCPOOL

KDCPROG

KDCPTERM

KDCSHUT

KDCSLOG

KDCSWTCH

KDCTAC

KDCTCL

KDCUSER

For UTM applications on BS2000 systems you can also enter the following names for :command
KDCMUX

KDCSEND

openUTM V7.0. Administering Applications. User Guide.

 703

12.5 KDCINF - Request information on objects and application parameters

KDCINF allows you to query the names and properties of objects in an application as well as the application
parameters generated and statistical information about the utilization level of the application. The parameter type
allows you to define which information you require.

Effect in UTM cluster applications:

The information that is output always refers only to the local node application at which the job was executed.

Restricting the scope of information output

You can use a KDCINF call to query the properties of objects of a given type. The operands CONT, LIST and
PRONAM define the scope of information that UTM is to output. You should define explicitly those objects about
which you want UTM to provide information and define the scope of information for each object:

In LIST you can explicitly define the names of the objects about which UTM is to provide information.

By entering LIST=KDCNAMES you can restrict the output to a list of names of all objects of a given type. No
other properties will then be displayed.

LIST=KDCCON causes UTM to display only the properties of objects in a given type which are active at the
current time, i.e. properties of clients, printers or partner systems to which there is a connection, or of users who
are working on the system at the current time.

CONT determines the object with which the list is to start. These lists are arranged alphabetically in order of
object name. In CONT you enter a name. This can be any name - it does not have to be the name of an existing
object. If the name you specify is the name of an object, the output list will start with that object. If there is no
object with the name specified in CONT, the list will start with the object name that immediately follows the
specified name in alphabetical order. No information is then provided about objects whose names come before
the name specified in CONT when viewed in alphabetical order.

With PRONAM you can restrict the output of object properties and names to objects located on a specific
computer.

It is advisable in many cases to restrict KDCINF output, for example in large applications and for the output of
information to a terminal. Full output of all information relating to one type of object is often so extensive that it can
extend over many screen pages when output to the administrator’s terminal. It is then not possible to retain a clear
overview. With large applications, generation of complete lists takes UTM a great deal of time. For this reason,
when dealing with larger applications, you should avoid requesting complete lists about objects of a given type, or
lists of all objects and application parameters. In other words, avoid queries which take the following forms:

KDCINF ..,LIST=KDCALL,OUT=KDCPRINT or

KDCINF ..,LIST=KDCALL,OUT=KDCBOTH

Information output

The OUT operand allows you to define the location to which UTM is to output the requested information. You can
also display information directly on the administrator terminal, send the information to a printer or transfer it directly
to a program unit (asynchronous TAC) which will further process it.

For some objects, such as TAC, the output line of KDCINF does not provide sufficient space to display all the
numeric values in their full length, for instance the value of the IN-Q field. When these values are too large to be

openUTM V7.0. Administering Applications. User Guide.

 704

displayed with KDCINF, they are truncated meaningfully and displayed in floating point presentation. In other words
the leftmost digits are displayed, followed by an exponent e. The approximate actual value of the field is then
obtained from the leading digits multiplied by 10 "to the power of" e.

Example:

When KDCINF TAC is output, four digits are available for the IN-Q field. If the number of messages which still
needs to be processed by the TAC is greater than 9,999, the truncated presentation is used. A value of 11,235
is displayed as 11e3, i.e. the actual value lies in the range between 11,000 and 11,999.

Calculation of mean values

The mean values displayed with KDCINF are calculated as an arithmetic mean for the first 32767 values. After this,
the new value is weighted with 1/32767. The previous mean value is weighted with 32767/32768. Slight
inaccuracies caused by rounding may occur in the calculation of the mean values. This is particularly the case, if the
new value differs considerably from the mean value.

You will find examples of output and an explanation of the information that is output in the following description of
operands (see chapter)."Output from KDCINF (examples)"

Special features of terminal output:
If the requested output does not fit on one screen, UTM displays a continuation command at the bottom of the
screen (on the last line) which can be used to continue output from that position.

If you wish to page through the list using continuation commands, proceed as follows:

on BS2000 systems:
only overwrite one character in the specified command and press the <DUE> key.

on Unix, Linux and Windows systems:
enter the continuation command as displayed.

openUTM V7.0. Administering Applications. User Guide.

 705

12.5.1 KDCINF - Syntax description

KDCINF type

 [, IST={ | (name_1,...,name_10) | KDCALL | KDCCON }]L KDCNAMES

 [,OUT={ | KDCPRINT | KDCBOTH | ltermname | tacname }]KDCDISP

 [,CONT={ name | (name,proname) | (name,proname,bcamname) }]

 [, NAM=proname]PRO

 [,LPAP=lpapname] (only for type = LSES)

 [,OSI-LPAP=osilpapname] (only for type = OSI-ASSOCIATIONS)

Only on BS2000 systems

[, PTIONO =MONITORING] (only for type = MUX)

For administration using message queuing, you must enter KDCINFA.

type Type of objects or application parameters about which UTM is to provide information. For you type
can enter the following values:

ALL
ETKS
ERM LT

PAGEPOOL
POOL

PROG
ERMPT

ISTICSSTAT
YS S LOG

ARMSYSP

TAC
TACCLASS

AC- ROGT P
SERU

To query information about objects in a distributed processing environment you can enter the
following values for :type

CON
LPAP
LSES
LTAC

OSI-ASSOCIATIONS
OSI-CON
OSI-LPAP

In UTM applications on BS2000 systems you can also enter the following for :type

LOAD- ULEMOD MUX

In UTM applications on Unix, Linux or Windows systems you can also enter the following for
:type

SHARED-OBJECT

These entries for have the following meanings:type

ALL Calls for all information about all objects, statistics and application parameters.

The result of KDCINF ALL is always output to the standard system printer (the default printer in
the operating system). Control of output using the OUT operand is possible: entries for OUT not
are ignored.

openUTM V7.0. Administering Applications. User Guide.

 706

For the LIST operand, only the operand values KDCNAMES (default) and KDCALL are
considered.

In the combination ALL and LIST=KDCNAMES, the names of all objects are output but no
application parameters and no statistical information are displayed.

In the combination ALL and LIST=KDCALL, all application parameters, statistical information and
the properties of all objects are displayed.

In UTM applications on BS2000 systems , no information is displayed about load modules in
response to KDCINF ALL, LIST=KDCALL.

In KDCINF ALL, data relating to the CONT, OUT and PRONAM operands has no effect.

KSET Informs you about the key sets in the application. You can output information about a specific key
set (use of LIST=kset_name) at an administrator terminal. If you wish to obtain information about
several or all key sets, this information is always output to the standard system printer.
Data relating to the OUT operand has no effect.

Exception

If a value greater than 255 was entered for the KEYVALUE operand in the MAX statement during
KDCDEF generation, you query any information about key sets with the KDCINF call (cannot type
 = KSET). In this case, the KDCINF command is rejected and the message ”KEYVALUE > 255
NOT SUPPORTED“ is displayed.
However, you can create your own administration program for querying this information with the
help of the administration program interface (KC_GET_OBJECT call with object type KC_KSET).

LOAD-MODULE (only on BS2000 systems)

Informs you about load modules. The scope of output can be controlled using the CONT and LIST
operands. For LIST, you are only allowed to enter KDCNAMES or an individual load module
name. With LIST=KDCNAMES a list of all load module names is issued.
You are provided with information about a specific load module if you enter the name of that load
module in LIST.

When you enter the name of a load module in LIST, the entry is interpreted as a program name in
CONT. This entry in CONT determines the program unit name with which the list of program units
in the load module should begin.

LTERM Informs you about LTERM partners, i.e. about the logical names and properties of clients and
printers. The scope of this output can be controlled using operands CONT and LIST.

If an LTERM partner is assigned to a printer pool (several printers, i.e. PTERMs), then you can
display the list of printers assigned to the LTERM (PTERMs) with the following command:

KDCINF LTERM, LIST=ltermname

If the specified LTERM is the primary LTERM of an LTERM group, the primary and group
LTERMs of the LTERM group are output (see openUTM manual “Generating Applications”). The
sequence is as follows:

The first line contains the primary LTERM.

The subsequent lines contain the group LTERMs.

openUTM V7.0. Administering Applications. User Guide.

 707

If the specified LTERM is both the master LTERM of an LTERM bundle and the primary LTERM of
an LTERM group, all master, primary, slave and group LTERMs are output. The sequence is as
follows:

The first line contains the master/primary LTERM.

This is followed by all the group LTERMs.

The subsequent lines contain the all the slave LTERMs. The first slave LTERM listed is the one
to which the messages are delivered.

The call KDCINF LTERM, LIST= outputs the master and slave LTERMs of an master-lterm
LTERM bundle. Output is the same as with the KDCINF LTERM, LIST=KDCALL call:

The first line contains the master LTERM.

The subsequent lines contain the slave LTERMs.

MUX (only on BS2000 systems)

Informs you about the properties and current status of multiplex connections. If MUX is entered
together with the operand OPTION=MONITORING, UTM also supplies event values for the
multiplex connections.
However, OPTION=MONITORING has no effect if you enter LIST= KDCNAMES.

PAGEPOOL Informs you about the current utilization of the page pool.

Only the OUT operand is valid in conjunction with PAGEPOOL.
Specifications for the LIST, CONT, and PRONAM operands are ignored by openUTM.

POOL Informs you about LTERM pools. The scope of output can be controlled with the operands CONT
and LIST.

PROG This is only permitted if the application was generated using load modules/shared objects (the
LOAD-MODULE statement (BS2000 systems) and the SHARED-OBJECT statement (Unix, Linux
and Windows systems). openUTM informs you about the program units in the application.
In each program unit, the name of the relevant load module/shared object/DLL is displayed
together with its load mode and a statement about how readily it can be replaced.
The scope of output can be controlled using the operands CONT and LIST.

PTERM Informs you about the physical properties of clients and printers. The scope of output can be
controlled using the operands CONT, LIST and PRONAM.

SHARED-OBJECT (only on Unix, Linux and Windows systems)

This is only permitted if the application is generated using SHARED-OBJECT statements.
openUTM informs you about shared objects/DLLs.

The scope of output can be controlled using the operands CONT and LIST. With LIST, the only
entries permitted are KDCNAMES or an individual shared object name/DLL name. When
LIST=KDCNAMES is entered, a list of all share object names or DLL names is issued.

STATISTICS Displays general statistical information.
Together with STATISTICS, only the operand OUT has any effect. Entries for the operands LIST,
CONT and PRONAM are ignored by openUTM.

openUTM V7.0. Administering Applications. User Guide.

 708

Some statistical data is written to the system log file SYSLOG once an hour via the K081
message and subsequently reset to 0. For this to be possible, the application must have been
generated with MAX STATISTICS-MSG=FULL-HOUR .The statistical values supplied by
openUTM and their period of validity are described as of section type=STATISTICS in chapter

."Output from KDCINF (examples)"

SYSLOG Informs you about the SYSLOG file for the UTM application. Together with SYSLOG only the OUT
operand has any effect. Entries for the operands LIST, CONT and PRONAM are ignored by
openUTM.
KDCINF SYSLOG acts like KDCSLOG INFO (see chapter "KDCSLOG - Administer the SYSLOG

).file"

SYSPARM Informs you about application parameters (system parameters) and timer settings which were
defined during generation in the MAX statement and which can be changed using the
administration functions. Using SYSPARM you can, for example, check parameter values which
were changed using KDCAPPL.
Together with SYSPARM, only the operand OUT has any effect. Entries for the operands LIST,
CONT and PRONAM are ignored by openUTM.

TAC Informs you about transaction codes or TAC queues in the application.
The scope of output can be controlled with the help of operands CONT and LIST.

TAC-PROG This is only permitted if the application was generated using load modules/shared objects (the
LOAD-MODULE statement (BS2000 systems) or the SHARED-OBJECT statement (Unix, Linux
and Windows systems) respectively.
openUTM informs you about which program units are assigned to the transaction codes and the
load modules/shared objects/DLLs to which the program units are assigned. The transaction
codes are specified in the LIST operand.

TACCLASS Informs you about TAC classes in the application.
openUTM displays how many messages in each TAC class are waiting to be processed, how long
the average wait time is for each TAC class and whether priority control is generated for a TAC
class. If priority control is not generated for a TAC class, i.e. the TAC-PROPERTIES statement
was not issued during KDCDEF generation, openUTM displays how many processes are
assigned to each TAC class.

USER Informs you about the user IDs in the application.
openUTM informs you about security violations for the user ID, CPU time used since the user
signed on, and the LTERM partner used to sign on the user ID.

The scope of output can be controlled using the operands CONT and LIST.

The following values are only useful for applications that use distributed processing:

CON Only for distributed processing using the LU6.1 log.
openUTM informs you about connections that were created with KC_CREATE_OBJECT for the
object type KC_CON or generated using the KDCDEF control statement CON. openUTM displays
names, generated properties, current status and statistical values relating to the level of capacity
utilization for the connection. The scope of output can be controlled using the operands CONT,
LIST and PRONAM.

openUTM V7.0. Administering Applications. User Guide.

 709

LPAP Only for distributed processing using the LU6.1 log.
openUTM informs you about the names and properties of the LPAP partners. Depending on the
entries in LIST, open UTM will either display the names only, or these names together with the
properties of the LPAP partners. The scope of output can be controlled using the operands CONT
and LIST.

You can issue the call KDCINF LPAP, LIST= to output the master and slave LPAPs of master-lpap
an LU6.1-LPAP bundle (see openUTM manual “Generating Applications”). The output has exactly
the same form as for the call KDCINF LPAP, LIST=KDCALL:

The first line contains the master LPAP.

The following lines contain the slave LPAPs.

LSES Only for distributed processing using the LU6.1 log.
openUTM informs you about local sessions that were created with KC_CREATE_OBJECT for the
object type KC_LSES or generated using the KDCDEF control statement LSES. If you specify
LSES together with the operand LPAP= (KDCINF LSES,LPAP=), openUTM lpapname lpapname
restricts output to information about sessions generated for the LPAP partner specified in

 . The scope of output can also be controlled with the aid of the operands CONT and lpapname
LIST.

LTAC Informs you about the names and properties assigned to remote service programs within local
applications (LTAC properties).
The scope of output can be controlled with the aid of the operands CONT and LIST.

OSI-CON Only for distributed processing using the OSI TP log.
openUTM informs you about names generated with the KDCDEF control statement OSI-CON for
logical connections to partner applications.
Depending on the entries in LIST, the properties generated in OSI-CON for related connections
are displayed.
The scope of output can be restricted with the help of the operands CONT and LIST.

OSI-LPAP Only for distributed processing using the OSI TP log.
openUTM informs you about OSI-LPAP partners that were generated for the OSI TP partner
applications in the local application. Depending on the specifications made for the LIST operand,
openUTM will either display the names only, or these names together with the logical properties of
their partner applications.
The scope of output can be controlled with the aid of the operands CONT and LIST.

The KDCINF OSI-LPAP, LIST= call outputs the master and slave LPAPs of an master-lpap-name
OSI-LPAP bundle (see openUTM manual “Generating Applications”). The output is the same as
for the call KDCINF OSI-LPAP, LIST=KDCALL:

The first line contains the master LPAP.

The subsequent lines contain the slave LPAPs.

OSI-ASSOCIATIONS

Only with distributed processing using the OSI TP log.
openUTM informs you about OSI TP associations. Information about the job submitter assigning
an association together with statistical information.

openUTM V7.0. Administering Applications. User Guide.

 710

KDCINF...,L=KDCNAMES
outputs the name of generated OSI associations.

KDCINF...,L=KDCALL,OSI-LPAP=osilpapname
only outputs the currently associated OSI associations, sorted by the association ID assigned by
XAPTP.
The operand OSI-LPAP= is mandatory!osilpapname

KDCINF...,L=(OSI-LPAP=osilpapname name_1...name_10),
In this case, the association ID assigned by XAPTP must be entered for rather than the name_n
OSI association name generated.
The operand OSI-LPAP= is mandatory!osilpapname
The scope of output can be controlled with the help of operands CONT and LIST.

openUTM restricts itself to information about OSI associations that have been set up in
connection with the specified OSI-LPAP partners.

The following operands control output

LPAP=lpapname

is only permitted for = LSES:type
This operand restricts output of session properties to sessions that were generated for a partner
application specified in .lpapname

OPTION=MONITORING (only on BS2000 systems)

is only permitted for = MUX and only works where LIST KDCNAMES. openUTM informs type !=

you about event values in multiplex connections.

With KDCINF ALL, these event values are not issued at the same time as the other values.

CONT= Continue/start the output list at a specific point. List output occurs in alphabetical order of object
names. CONT= causes the output list to start with the object and to contain only name name
objects whose name occurs following the one specified in in alphabetical order.name

With UTM applications on BS2000 systems, the operand CONT, when specified in conjunction
with LIST= , only takes effect if the name of a program unit is entered for LOAD-name type
MODULE and for .name

In UTM applications running on Unix, Linux or Windows systems the operand CONT has no
effect if specified together with LIST=(,...,).name_1 name_10

name The list starts with the object For specify the name of an object in the application. name. name,
You can enter any one of the following names:

for = KSET: KSET name of a key set.type

for = LTERM: logical name of a client/printer (name of an LTERM partner)type

for =PTERM: (PTERM-)name of a client or printertype

for =POOL: the LTERM prefix defined for an LTERM pooltype

for = PROG: name of a program unittype

openUTM V7.0. Administering Applications. User Guide.

 711

for =TAC: TAC name of a local transaction code/queuetype

for = USER: user ID (USER name)type

for = CON/OSI-CON: a logical connection name generated in a CON or OSI-CON type
statement

for = LPAP/OSI-LPAP: name of an LPAP or OSI-LPAP partnertype

for = LTAC: local TAC name of a remote service programtype

for =OSI-ASSOCIATION: association ID, assigned to the association when establishing type
an OSI TP connection

In UTM applications on BS2000 systems you can also enter the following names:

for = LOAD-MODULE: name of a load module or a program unittype

for = MUX: name of a multiplex connectiontype

(name,proname)

The list should begin with the object . is the name of the processor on (name,proname) proname
which the object is located. There is no point entering unless = PTERM / name proname type
CON / MUX objects of the same name exist, as a result of which unique identification is only
possible using the different processor names.

(name,proname,bcamappl)

The list should start with the object (, ,). is the name of the name proname bcamappl bcamappl
transport access point that is used by the object (,) to connect to the application. name proname
It is only of use to specify if objects with =PTERM / CON / MUX exist with the bcamappl type
same name and processor and unique identification is therefore only possible if the name of the
transport access point is different.

Output starts with the object to which the local transport access point name (name,proname)
indicated in is assigned.bcamappl

LIST= Controls the type and scope of information.

KDCNAMES

Outputs a list of names of all objects of the type specified in . LIST=KDCNAMES has no type
effect on =PAGEPOOL, STATISTICS, SYSLOG, SYSPARM, TACCLASS.type

(name_1,..., name_10)

The properties of objects with the names are displayed. You can specify a name_1,..., name_10
maximum of 10 names. Parentheses are not required if only one name is specified.

KDCCON

Only appropriate for = PTERM, USER, LSES and CON.type

Also for UTM applications on BS2000 systems and for =MUX.type

Only the properties of objects currently connected to the application are displayed in response
to this command.

openUTM V7.0. Administering Applications. User Guide.

 712

Exceptions with type=USER:
If the application is generated with SIGNON MULTI-SIGNON=NO, then the user IDs through
which only OSI TP partners are signed on to start asynchronous services are not displayed.

If the application is generated with SIGNON MULTI-SIGNON=YES, then the following user IDs
are not displayed:

user IDs with RESTART=NO that are not signed on through a terminal

user IDs through which only OSI TP partners are signed on that have selected the functional
unit “COMMIT” or that intend to start an asynchronous service.

KDCALL The properties of all objects of the type specified in are displayed.type

Default: KDCNAMES

OSI-LPAP=osilpapname

Only permitted for = OSI-ASSOCIATIONS. The operand restricts the output of information type
to the OSI associations that have been established for the specified OSI-LPAP partner.

The operand must be specified for:
KDCINF OSI-ASSOCIATION...,L=(name_1...name_10)
KDCINF OSI-ASSOCIATION...,L=KDCALL

OUT= Indicates where UTM is to output the information requested.

KDCDISP Output to the administrator terminal, i.e. the terminal at which KDCINF was entered.

KDCPRINT On Unix and Linux systems, the shell script is used for output. admlp is located in admlp

 and calls the command. Users can modify or create their own $UTMPATH/shsc lp admlp

script with the name and store it under a separate directory. This directory must then be admlp

included in the path variable (prior to).$PATH $UTMPATH/shsc

Windows systems do not as yet support output to a printer from the UTM application, i.e. no file
is generated or printed out.

KDCBOTH Output to the administrator terminal and (Unix and Linux systems) to the standard system
printer.

On Unix and Linux systems, the shell script is used for output (see above).admlp

ltermname Output to the printer with the logical name .ltermname

tacname Name of the transaction code to which UTM is to transfer the result of the information query.
The transaction code must be assigned to a program unit which runs in an asynchronous
service.

Default: KDCDISP

PRONAM=proname

Only effective for = PTERM, CON and MUX. type
openUTM only supplies information about the clients and partner applications running on or
connected to the computer .proname

openUTM V7.0. Administering Applications. User Guide.

 713

Default value for openUTM for systems: Blanks for local devices

openUTM V7.0. Administering Applications. User Guide.

 714

12.5.2 Output from KDCINF

Output is listed by . The display shows all properties (LIST KDCNAMES). type !=

When you enter KDCINF ALL,LIST=KDCALL, with the exception of information about load modules and shared
objects, all the items listed in the following section are output in succession.

type=CON

The output depends on whether a short or a long host name is assigned to a CON object. In the case of a long host
name, the information on a CON object is output in two screen lines.

CON PRONAM LPAP BCAMAPPL STA CONNECT CTIME LETTERS CONB
con proname lpap applname ON|OFF Y|N|W A minutes number number
CON PRONAM LPAP BCAMAPPL STA CONNECT CTIME LETTERS CONB
con long.processor.name
 lpap applname ON|OFF Y|N|W A minutes number number

Explanation of the output

CON The name for the logical connections to the partner application created with lpap
KC_CREATE_OBJECT for the object type KC_CON or generated with the KDCDEF control
statement CON.

PRONAM Name of the computer on which the partner application runs.

LPAP Logical name of the partner application for which the logical connection was generated.

BCAMAPPL Name of the local UTM application (BCAMAPPL name) via which the connection to the partner
application is established.

STA Status of the partner application:

ON:
The partner application is not disabled. A connection can be established with it, or a connection
already exists.
OFF:
The partner application is disabled. A connection cannot be established.

CONNECT Several items of information are supplied here.

1st column:
The partner application is connected to the application at this time (Y) or not (N), or UTM is
attempting to establish a connection (W = waiting for a connection).

2nd column:
openUTM will establish the connection to the partner application automatically (A) when the
application starts, or UTM will not attempt to establish an automatic connection when the
application starts (no output).

CTIME Duration of connection time in minutes.

LETTERS

openUTM V7.0. Administering Applications. User Guide.

 715

Number of messages that have been exchanged via the connection since the application started, i.
e. the number sent or received by the local application.
Every time the application starts, the counter is reset to 0.

CONB Indicates how often the connection has failed since the application started. The CONB counter is
reset to 0 every time the application starts.

openUTM V7.0. Administering Applications. User Guide.

 716

type=KSET

The output illustrated below is only produced if a value <= 255 is specified in the MAX statement for the KEYVALUE
operand during KDCDEF generation, i.e. if the application does not permit key codes with a number > 255.

KSET:kset

0 1 2 3 4 5 6 . . . 18 19

0 x x

20 x x x

40 x x

60

80 x

100

120

.

.

.

240

Explanation of the output

KSET Name of the key set

In the first line of the output, all key codes between 1 and 19 in the key set are displayed. Line two contains all key
codes with numbers between 20 and 39 etc.

The last line displays key codes with numbers between 240 and 259.

The output illustrated here signifies that key set contains key codes 1, 4, 23, 25, 26, 42, 58 and 80.kset

openUTM V7.0. Administering Applications. User Guide.

 717

type=LOAD-MODULE (BS2000 systems)

LOAD-MODULE lmodname
VERSION (GENERATED) generated element version
VERSION (PREVIOUS) previous element version
VERSION (CURRENT) current element version
LIBRARY name of program library
LOAD MODE STATIC| STARTUP| ONCALL| POOL| POOL/STARTUP| POOL/ONCALL
CHANGEABLE YES| NO
AUTOLINK YES| NO
PROGRAM LIST
program1 program2
program3 program4

Explanation of the output

LOAD-MODULE

Name of the load module up to 32 characters in length.

VERSION (GENERATED)

Generated version of the load module

VERSION (PREVIOUS)

Preceding version of the load module

VERSION (CURRENT)

Currently loaded version of the load module

LIBRARY Name for the program library of up to 54 characters loaded from the load module

LOAD MODE Load mode for the load module; the following modes are possible:

STATIC Load mode for the load module; the following modes are possible:

STARTUP The load module is loaded dynamically as an independent unit whenever the application starts.

ONCALL The load module is loaded dynamically as an independent unit when a program unit or
VORGANG exit assigned to the load module(s) is called for the first time.

POOL The load module is loaded into the common memory pool whenever the application starts. The
load module does not contain a private slice.

POOL/STARTUP

The public slice of the load module is loaded into the common memory pool when the application
starts. The private slice belonging to the load module is then loaded into the local process
memory.

POOL/ONCALL

openUTM V7.0. Administering Applications. User Guide.

 718

The public slice of the load module is loaded into the common memory pool when the application
starts. The private slice belonging to the load module is loaded into the local process memory
when the first program unit assigned to this load module is called.

CHANGEABLE

Display showing whether or not the load module can be replaced during live operation.

AUTOLINK Indicates whether the load module was loaded with the BLS autolink function.

PROGRAM LIST

List of names of all program units and data areas (AREAs) assigned to the load module. The list
also contains the names of all deleted objects.

openUTM V7.0. Administering Applications. User Guide.

 719

type=LPAP

 LPAP KSET STATUS OUT-Q IDLETIME MASTER BUNDLE
 lpap kset ON|OFF Q number seconds master M|Y|N

Explanation of the output

LPAP Logical name of the partner application in the local application (name of the LPAP partner)

KSET Key set assigned to the partner application. The key set defines access rights to the partner
application for the local application.

STA Status of the partner application:

1st column:
ON
The partner application is not disabled. A connection can be established or a connection already
exists.
OFF
The partner application is disabled. No connection can be established.

2nd column:
Q (QUIET)
No more dialog jobs will be accepted for the partner application.

OUT-Q Number of messages in the message queue that still have to be sent to the partner application.

IDLETIME Time until the disconnection of an unused connection (session) between the partner application and
the local application.

MASTER If the LPAP partner forms part of an LU6.1-LPAP bundle then the name of the master LU6.1-LPAP of
the bundle is displayed

BUNDLE Specifies whether the LPAP partner belongs to an LU6.1-LPAP bundle.

M
The LPAP partner is the master LU6.1 LPAP of an LPAP bundle.

Y
The LPAP partner is a slave LU6.1 LPAP of an LPAP bundle.

N
The LPAP partner does not belong to an LU6.1-LPAP bundle.

openUTM V7.0. Administering Applications. User Guide.

 720

type=LSES

The output depends on whether a short or a long host name is assigned to a LSES object. In the case of a long
host name, the information on a LSES object is output in two screen lines.

LSES RSES LPAP CON PRONAM BCAMAPPL AG/USER
lses rses lpap con proname applname user

LSES PRONAM CON BCAMAPPL RSES LPAP AG/USER
lses long.processor.name
 con applname rses lpap user

Explanation of the output

LSES Name of the LU6.1 session in the local application

RSES Name of the session in the partner application

LPAP Logical name of the partner application for which the session is generated.

CON, PRONAM, BCAMAPPL

Uniquely identifies the logical connection which was established for the session.

con is the name created with KC_CREATE_OBJECT for the object type KC_CON or generated with the
KDCDEF control statement CON for the logical connections to partner application .lpap

proname is the name of the computer on which the partner application is running.lpap

applname is the name of the local UTM application (BCAMAPPL name), via which the connection to the
partner application was established.

AG/USER

Name of the job submitter for whom the session is reserved. indicates who started the job-user
submitting service.

If the job-submitting service is running in the local application then the user ID or LTERM partner which
started the service is entered against .user

If the job-submitting service is running in the partner application (the local application is processing the
job) or if asynchronous messages are transferred to the session, the local session name (LSES name) is
issued for , i.e. the outputs for LSES and AG/USER are identical.user

openUTM V7.0. Administering Applications. User Guide.

 721

type=LTAC

 LTAC LOCK STATUS RTAC CODE LPAP ACCESSWAIT REPLYWAIT USED D
 ltac number ON|OFF rtac I|P|T lpap seconds seconds number D

Explanation of the output

LTAC Local TAC name for the service program in the partner application

LOCK Lock code assigned to the remote service in the local application (access protection); a number
between 1 and 4000.

STATUS The transaction code LTAC is disabled (OFF) or not disabled (ON).

RTAC Name of the transaction code/service program in the partner application

CODE Indicates which code type is used internally by UTM for the RTAC name.

I Integer code type

P PRINTABLE-STRING code type

T T61 string code type

LPAP Logical name of the partner application in the local application (name of the LPAP partner).

ACCESSWAIT

Length of time openUTM waits for a session to be occupied (can include the time to establish a
connection) when the remote service program starts;
time shown in seconds.
If the LTAC is an asynchronous TAC then a wait time 0 signifies that the job is always entered !=

in the message queue for the partner application.
The time is defined for KDCDEF generation and can be adjusted by administration (e.g. with the
KDCAPPL TAC).

REPLYWAIT Maximum length of time which UTM waits for a response from the remote service. The time is
defined for KDCDEF generation and can be adjusted by administration (e.g. KDCAPPL TAC).

USED Number of jobs issued to this LTAC since the application started.
The counter is reset to 0 every time the application starts.

D Specifies whether the LTAC has been deletetd via dynamic administration or not (no entry).

openUTM V7.0. Administering Applications. User Guide.

 722

type=LTERM

LTERM PTERM USER KSET LOCK USAGE STATUS OUT-Q INCNT SECCNT D
lterm pterm user kset lock D|O ON|OFF number number number D
 B|M|S|
 P|G|A

Explanation of the output

LTERM Name of the LTERM partner; logical name of the assigned client/printer.

PTERM Name of the client or printer (PTERM name) to which this LTERM partner is assigned.

USER User ID of the user currently connected to the application through this LTERM partner. If there is
currently no connection, then contains blanks.user_curr

If a connection exists:
If no user has as yet been signed on at a terminal, also contains blanks.user_curr

In applications with MULTI-SIGNON=YES:
If a genuine user ID with RESTART=YES is signed on to an LTERM partner of a client of the type
UPIC/APPLI/SOCKET, contains that user ID, otherwise it contains the connection user (user_curr

).user_gen

In applications with MULTI-SIGNON=NO:
If a genuine user ID is signed on to an LTERM partner of a client of the type UPIC/APPLI
/SOCKET, contains that user ID, otherwise it contains the connection user ().user_curr user_gen

KSET Key set assigned to the LTERM partner (access rights).

LOCK Lock code assigned to the LTERM partner (access protection).

USAGE Type of LTERM partner

1st value:
D: A client is assigned to the LTERM partner or
O: A printer is assigned to the LTERM partner

2nd value:
B: A printer bundle is assigned to the LTERM partner.
M: The LTERM is a master LTERM of an LTERM bundle.
S: The LTERM is a slave LTERM of an LTERM bundle.

3rd value:
P: The LTERM partner belongs to an LTERM pool
G: The LTERM is the primary LTERM of an LTERM group.
A: The LTERM is an alias LTERM of an LTERM group.

STATUS The LTERM partner is disabled (OFF) or not disabled (ON).

OUT-Q Number of messages that still have to be output for the LTERM partner.

openUTM V7.0. Administering Applications. User Guide.

 723

STATUS Number of messages entered via this LTERM partner; if a printer is connected to the LTERM partner,
the number of print job confirmations is entered here.

The INCNT counter is reset to 0 every time the application starts.

SECCNT Number of security violations on this LTERM partner since the start of the application (e.g.
unauthorized codes entered).
The SECCNT counter is reset to 0 every time the application starts.

D Indicates whether the LTERM partner was deleted by dynamic administration (D) or not (no entry).

type=MUX (BS2000 systems)

MUX PRONAM BCAMAPPL STATUS CONNECT MAXSES ACTCON MAXCON
mux1 proname applname ON Y A number number number
 OFF N
 W

Explanation of the output

MUX Name of the multiplex connection

PRONAM Name of the processor on which the message router runs.

BCAMAPPL Name of the local application (BCAMAPPL name) through which the multiplex connection is
established.

STATUS The multiplex connection is disabled (OFF) or not disabled (ON).

CONNECT Here, several items of information are provided.

1st value:
The multiplex connection is connected to the application (Y) or the multiplex connection is not
connected to the application (N) or openUTM is attempting to establish a connection to the
multiplex connection (W = waiting for connection)

2nd value:
When the application starts, openUTM automatically tries to establish a connection to the multiplex
connection (A) or not (no entry)

MAXSES Number of terminals that can be connected to the application at the same time using this multiplex
connection.

ACTCON Number of terminals that are at present connected to the application using this multiplex
connection.

MAXCON Maximum number of terminals that were connected to the application at the same time using this
MUX connection.
The MAXCON counter is reset to 0 every time the application starts.

openUTM V7.0. Administering Applications. User Guide.

 724

MUX,OPTION=MONITORING (BS2000 systems)

MUX PRONAM BCAMAPPL LETTERS INCNT WAIT SHORT RTRYO RTRYI
mux1 proname applname number number number number number number

Explanation of the output

MUX Name of the multiplex connection.

PRONAM Name of the processor on which the message router is running.

BCAMAPPL Name of the local application (BCAMAPPL name) via which connection to the multiplex connection
is established.

LETTERS Number of the input and output messages for this multiplex connection since the application
started.
The counter is reset to 0 every time the application starts.

INCNT Number of input messages received through this multiplex connection.
The INCNT counter is reset to 0 every time the application starts.

WAIT Number of requests since the application started that were passed from BCAM to the multiplex
connection requiring the resending of a message which it was previously not possible to accept
because of a BCAM shortage (WAIT FOR GO) from BCAM.

SHORT Number of BCAM shortages for this multiplex connection since the start of the application.

RTRYO Number of tries to send an output message again since the start of the application (retry out).

RTRYI Number of tries to read an input message again since the start of the application (retry in).

openUTM V7.0. Administering Applications. User Guide.

 725

type=OSI-ASSOCIATIONS

ASSOC-ID OSI-LPAP OSI-CON CONTWIN CON-STATE CONTIME REQ-CALLS IND-CALLS
assoc-id osi-lpap osi-con Y|N CONNECTED| minutes number number
 WAIT-GO|
 STOP

Explanation of the output

ASSOC-ID ID assigned to the association when it was established. This is only unique while the
association remains established. If the association is terminated, the ID is released and can
be assigned to another established association.

OSI-LPAP Logical name of the partner application (name of the OSI-LPAP partner) for which the
association was generated.

OSI-CON The OSI-CON name generated with the KDCDEF control statement for the logical connection
to the partner application . If no connection is established, blanks are output at this osi-lpap
point.

CONTWIN Indicates whether the local application for this association is the contention winner or the
contention loser.

CON-STATE Indicates the status of the association.

CONNECTED The association is established.

WAIT-GO The association is being established. It is waiting for a “GO” from OSS.

STOP The association is being established. The OSS call a_assrs has run up to “STOP”.

CONTIME Indicates the length of time in minutes for which the connection has existed.

REQ-CALLS Number of request/response presentation calls to OSS since the association was established.

IND-CALLS Number of indication/confirmation presentation calls to OSS since the association was
established.

openUTM V7.0. Administering Applications. User Guide.

 726

type=OSI-CON

The output depends on whether a short or a long host name is assigned to an OSI-CON object. In the case of a
long host name, the information on an OSI-CON object is output in two screen lines.

OSI-CON N-SEL T-SEL ACC-PNT OSI-LPAP ACTIVE
osi-con proname applname access-point osi-lpap Y|N
OSI-CON N-SEL T-SEL ACC-PNT OSI-LPAP ACTIVE
osi-con long.processor.name
 applname access-point osi-lpap Y|N

Explanation of the output

OSI-CON Name of the logical connection to the partner application osi-lpap .

OSI-LPAP Logical name of the partner application in the local application (name of the OSI-LPAP partner) for
which the connection was generated.

T-SEL Application name of the partner application in the local system (transport selector).

N-SEL Logical name of the computer on which the partner application is running (network selector).

ACC-PNT Name of the local access point via which the connection is established.osi-con

ACTIVE Y
Connection can be used, i.e. messages for the specified OSI-LPAP partner are sent osi-con
through and received by this connection.

N
The connection cannot be used. It is reserved as a replacement connection.osi-con

openUTM V7.0. Administering Applications. User Guide.

 727

type=OSI-LPAP

OSI-LPAP KSET STA Q OUT-Q IDLET OSI-CON ASSOC CONN AUTOC BU
osi-lpap kset ON|OFF Q number seconds osi-con number number number M|S

Explanation of the output

OSI-LPAP Logical name of the partner application in the local application (name of the OSI-LPAP partner).

KSET Key set assigned to the OSI-PAP partner. The key set defines access rights to the partner
application for the local application.

STATUS Status of the partner application:

ON
The OSI-LPAP partner is not disabled. A connection to the partner application can be
established or a connection already exists.
OFF
The OSI-LPAP partner is disabled. A connection cannot be established to the partner
application.

Q (Quiet): No more dialog jobs will be accepted for the OSI-LPAP partner.

OUT-Q Number of messages in the message queue which still have to be sent to the partner
application.

IDLETIME Time to monitor the idle state of sessions between the partner application and the local
application.

OSI-CON The OSI-CsON name generated with the KDCDEF control statement for the logical connection
to the partner application.

ASSOC Maximum number of parallel connections (associations) to the OSI-LPAP partner that can exist
at the same time. The number is defined during KDCDEF generation in the OSI-LPAP
statement.

CONNECT Number of connections to the OSI-LPAP partner existing at the present time or currently being
set up.

AUTOCON Number of connections to the OSI-LPAP partner which UTM should establish automatically
when the application starts.

BU (bundle) Specifies whether the OSI-LPAP partner belongs to an OSI-LPAP bundle.

M
The OSI-LPAP partner is the master LPAP of the OSI-LPAP bundle.

S
The OSI-LPAP partner is a slave LPAP of the OSI-LPAP bundle.

openUTM V7.0. Administering Applications. User Guide.

 728

type=PAGEPOOL

PAGEPOOL INFORMATION
percent % PAGES FOR GSSB percent % PAGES FOR LSSB
percent % PAGES FOR TLS percent % PAGES FOR ULS
percent % PAGES FOR DIALOG SERVICES percent % PAGES FOR TAC-CLASSES
percent % PAGES FOR FPUT-MANAGEMENT percent % PAGES FOR ASYN MESSAGES
percent % PAGES FOR MSGTAC MESSAGES percent % PAGES FOR LPUT
percent % PAGES FOR PHYS. MESSAGES percent % PAGES FOR RESET MESSAGES
percent % PAGES FOR OSI TP LOG RECORDS percent % OTHER PAGES
percent % FREE PAGES

Explanation of the output

PAGES FOR GSSB

Number of pages, in percent, which are utilized for GSSBs.

PAGES FOR LSSB

Number of pages, in percent, which are utilized for LSSBs.

PAGES FOR TLS

Number of pages, in percent, which are utilized for TLS areas.

PAGES FOR ULS

Number of pages, in percent, which are utilized for ULS areas.

PAGES FOR DIALOG SERVICES

Number of pages, in percent, which are utilized for service contexts by users.

PAGES FOR TAC-CLASSES

Number of pages, in percent, which are utilized for dialog input messages, and which are
temporarily stored in TAC Class Queues.

PAGES FOR FPUT-MANAGEMENT

Number of pages, in percent, which are utilized for managing asynchronous messages.

PAGES FOR ASYN MESSAGES

Number of pages, in percent, which are utilized for asynchronous messages.

PAGES FOR MSGTAC MESSAGES

Number of pages, in percent, which are utilized for MSGTAC messages.

PAGES FOR LPUT

Number of pages, in percent, which are utilized for temporarily stored LPUT records.

openUTM V7.0. Administering Applications. User Guide.

 729

PAGES FOR PHYS. MESSAGES

Number of pages, in percent, which are utilized for output messages and which need to be
temporarily stored because they can only be transferred to the transport system in sections owing to
their length.

PAGES FOR RESET MESSAGES

Number of pages, in percent, which are utilized for reset messages.

PAGES FOR OSI TP LOG RECORDS

Number of pages, in percent, which are utilized for OSI TP log records.

OTHER PAGES

Number of other utilized pages, in percent.

FREE PAGES

Number of free pages, in percent.

In the case of UTM cluster applications, GSSB and ULS areas are stored in the global page pool of the
UTM cluster application. As KDCINF PAGEPOOL only displays the utilization of the local page pool, the
values for GSSB and ULS are always zero in UTM cluster applications.

i

openUTM V7.0. Administering Applications. User Guide.

 730

type=POOL

The output depends on whether a short or a long host name is assigned to a LTERM pool object. In the case of a
long host name, the information on a LTERM pool object is output in two screen lines.

POOL PRONAM BCAMAPPL PTYPE STATIONS STA=ON ACTCON MAXCON KSET LOCK
ltprefix proname applname ptype number number number number kset lock
POOL PRONAM BCAMAPPL PTYPE STATIONS STA=ON ACTCON MAXCON KSET LOCK
ltprefix long.processor.name
 applname ptype number number number number kset lock

Explanation of the output

POOL LTERM prefix of the LTERM pool. The names of the LTERM partners assigned to the pool
comprise and a serial number between 1 and the maximum number of clients allowed to ltprefix
connect to the LTERM pool at the same time.

PRONAM Only clients located on computer can establish connections to the application using the proname
LTERM pool.

In the case of applications on Unix, Linux or Windows systems, blanks are entered for if proname
the LTERM pool is defined for locally connected clients.

BCAMAPPL Name of the local application (BCAMAPPL name) through which the connections to this LTERM
pool were established (see KDCDEF statement TPOOL operand BCAMAPPL).

PTYPE Physical type of client allowed to connect to the application through this LTERM pool.

STATIONS Maximum number of clients allowed to connect to the application at the same time using this
LTERM pool.

STA=ON Number of clients currently allowed in the LTERM pool.

ACTCON Number of clients connected to the application at the present time through this pool.

MAXCON Maximum number of clients connected to the application during the current application run using
this LTERM pool.
The counter is reset to 0 every time the application starts.

KSET Key set assigned to the LTERM pool, and therefore to all clients connected to the application by
this LTERM pool (access rights).

LOCK Lock code assigned to the LTERM pool (access protection).

openUTM V7.0. Administering Applications. User Guide.

 731

type=PROG

For KDCINF PROG,L=KDCALL,CONT=programname

Output for UTM applications on BS2000 systems

PROGRAM LOAD-MODULE L-MODE CHN D

program1
program2

load module1
load module2

load mode
load mode

YES | NO
YES | NO

D

Output for UTM applications on Unix, Linux and Windows systems

PROGRAM SHARED-OBJECT L-MODE CHN D

program1
program2

shared object1
shared object2

load mode
load mode

YES | NO
YES | NO

D

Explanation of the output

PROGRAM

Name of the program unit as specified during generation in the PROGRAM statement; up to 32
characters in length.

LOAD-MODULE

Name of the load module on BS2000 systems to which this program unit is assigned; up to 32
characters in length.

SHARED-OBJECT

Name of the shared object/DLL on Unix, Linux and Windows systems to which this program unit is
assigned; up to 32 characters in length.

L-MODE

Load mode of the load module/shared object/DLL to which this program unit is assigned. Key to
terms:

STATIC
The load module/shared object/DLL is incorporated as a static element in the application program.

STARTUP
The load module/shared object/DLL is loaded dynamically as an independent unit whenever the
application is started.

ONCALL
The load module/shared object/DLL is loaded as an independent unit whenever a program unit or
VORGANG exit assigned to the load module/shared/DLL is called for the first time.

openUTM V7.0. Administering Applications. User Guide.

 732

Only on BS2000 systems:

POOL
The load module is loaded into the common memory pool whenever the application starts. The load
module does not contain a private slice.

POOL/STARTUP
The public slice of the load module is loaded into the common memory pool whenever the
application starts. The private slice belonging to the load module is then loaded into the local
process memory.

POOL/ONCALL
The public slice of the load module is loaded into the common memory pool whenever the
application starts. The private slice belonging to the load module is loaded into the local process
memory when the first program unit assigned to this load module is called.

CHANGEABLE

Displays whether or not the load module/shared object/DLL to which this program unit is assigned
can be exchanged.

D

Indicates whether the program was deleted from the configuration by means of system
administration functions (D) or not (no entry).

openUTM V7.0. Administering Applications. User Guide.

 733

type=PTERM

The output depends on whether a short or a long host name is assigned to a PTERM object. In the case of a long
host name, the information on a PTERM object is output in two screen lines.

PTERM PRONAM LTERM BCAMAPPL PTYP STA CONNECT CTIME LETTERS CONB D
pterm proname lterm applname ptype ON|OFF Y|N|W A|P M minutes number number D
 T|E
pterm long.processor.name
 lterm applname ptype ON|OFF Y|N|W A|P M minutes number number D
 T|E

Explanation of the output

PTERM Name of the client or printer (PTERM name).

PRONAM Name of the computer on which the client/printer is located.

In UTM applications on Unix, Linux or Windows systems blanks are output for local clients/printers.

LTERM Name of the LTERM partner (logical name) to which this client/printer is assigned.

BCAMAPPL Name of the local UTM application (BCAMAPPL name) via which the connection to the client
/printer is established.

PTYP Type of client/printer (for the meaning of the output, see chapter "kc_pterm_str - Clients and
 (BS2000 systems or Unix, Linux and Windows systems)printers"

STA The client/printer is disabled (OFF) or not disabled (ON).

CONNECT Several items of information are provided here.

1st column:

Y/N/W:
The client/printer is at present connected to the application (Y) or not (N), or UTM is now
attempting to establish a connection (W = waiting for connection)

T/E:
Only output for terminals connected to a UTM application on a BS2000 system by a multiplex
connection.
T: (timer) The session is in DISCONNECT-PENDING mode; the timer is running, waiting for
confirmation that a connection is being established.
E: (expired) The session is in DISCONNECT-PENDING mode and the timer waiting for
confirmation has run out before confirmation was received.

In both cases, the session can be released with KDCPTERM.

2nd column:

A: automatic connection is established when the application starts or

P: the client is connected to the application by an LTERM pool.

If neither of these properties applies, there is no output at this point.

openUTM V7.0. Administering Applications. User Guide.

 734

3rd column (only for UTM applications on BS2000 systems):

The client is connected to the application by a multiplex connection (M) or not (no entry).

CTIME Duration of the existing connection in minutes.

LETTERS Number of input and output messages for the client or output messages to the printer since the
application started.
The counter is reset to 0 every time the application starts.

CONB Number of connection failures between client/printer and application since the application started.
The CONB counter is reset to 0 every time the application starts.

In UTM applications on BS2000 systems, the CONB counter also counts incrementally if a UPIC
client first shuts down its connection to the UTM application and then establishes a new connection
using the same PTERM name.

D Indicates whether the client/printer was deleted (D) or not (no entry) from the configuration by
means of system administration functions.

openUTM V7.0. Administering Applications. User Guide.

 735

type=SHARED-OBJECT (Unix, Linux and Windows systems)

For KDCINF SHARED-OBJECT, L= , CONT=shared-object-name programname

SHARED-OBJECT shared object name
VERSION (PREVIOUS) old version
VERSION (CURRENT) new version
LIBRARY name of program directory
LOAD MODE STATIC|STARTUP|ONCALL
CHANGEABLE YES|NO
PROGRAM LIST
program1 program2
program3 program4

Explanation of the output

SHARED-OBJECT

Name of the shared object/DLL; up to 32 characters in length

VERSION (PREVIOUS)

Previous version of the shared object/DLL.

VERSION (CURRENT)

Currently loaded version of the shared object/DLL.

LIBRARY Name for the program library of up to 54 characters loaded from the shared object/DLL.

LOAD MODE Load mode for the shared object/DLL. Key to the terms used:

STATIC The shared object/DLL is incorporated as a static element in the application program.

STARTUP The shared object/DLL is loaded dynamically as an independent unit whenever the application
starts.

ONCALL The shared object/DLL is loaded as an independent unit whenever a program unit or VORGANG
exit assigned to the same shared object/DLL(s) is called for the first time.

CHANGEABLE

Displays whether or not the shared object/DLL can be replaced during run time.

PROGRAM LIST

List of the names of all program units and data areas (AREAs) assigned to the shared object/DLL.

openUTM V7.0. Administering Applications. User Guide.

 736

type=STATISTICS

 name APPLINAME version VERSION OF UTM
yy-mm-dd GEN APPLICATION DATE hh:mm:ss GEN APPLICATION TIME
yy-mm-dd START APPLICATION DATE hh:mm:ss START APPLICATION TIME
yy-mm-dd CURRENT DATE hh:mm:ss CURRENT TIME
 number TERMINAL INPUT MESSAGES number TERMINAL OUTPUT MESSAGES
 number CURRENT TASKS number CONNECTED USERS
 number OPEN DIALOG SERVICES number OPEN ASYN SERVICES
 percent % CURRENT LOAD percent % MAXIMUM LOAD
 number DIALOG TAS PER SECOND number ASYN TAS PER SECOND
 number DIALOG STEPS PER SECOND percent % MAXIMUM POOL SIZE
 percent % ACTUAL POOL SIZE percent % AVERAGE POOL SIZE
 percent % CACHE HIT RATE number NR CACHE SEARCHES
 percent % CACHE WAITS FOR BUFFER number NR CACHE REQUESTS
 number UNPROCESSED ATACS number UNPROCESSED PRINTS
 number WAITING DPUTS number ABNORMAL TERMINATED SERVS
 number LOGFILE WRITES number UTM-DEADLOCKS
 number PERIODIC WRITES number PAGES PER PERIODIC WRITE
 percent % WAITS FOR RESOURCES number NR RESOURCE REQUESTS
 percent % MAX WAITS FOR RESOURCES number NR RES REQUESTS FOR MAX
 percent % WAITS FOR SYSTEM RES number NR SYSTEM RES REQUESTS
 percent % MAX WAITS FOR SYSTEM RES number NR SYSTEM RES REQ FOR MAX
 percent % ACTUAL JR percent % MAXIMUM JR
 number AVG COMPRESS PAGES SAVED

Explanation of the output

APPLINAME

Name of the application that was defined during KDCDEF generation for MAX APPLINAME.

VERSION OF UTM

openUTM version used with correction status

GEN APPLICATION DATE

Date of the generation run of the application

GEN APPLICATION TIME

Time of the generation run of the application

START APPLICATION DATE

Day of the last cold start of the application (UTM-S application);
day of the last start of the application (UTM-F application)

START APPLICATION TIME

Time of the last cold start of the application (UTM-S application);
Time of the last start of the application (UTM-F application)

CURRENT DATE

openUTM V7.0. Administering Applications. User Guide.

 737

Current date

CURRENTN TIME

Current time

TERMINAL INPUT MESSAGES

Total number of messages received by the application from clients or partner applications during the
last full hour.

TERMINAL OUTPUT MESSAGES

Total number of messages sent by the application to clients, printers or partners during the last full
hour.

CURRENT TASKS

Current number of processes in the application.

CONNECTED USERS

Number of users connected to the application at the present time.

OPEN DIALOG SERVICES

Number of dialog services open at the present time.

OPEN ASYN SERVICES

Number of asynchronous services open at the present time.

CURRENT LOAD

Current load of the application during the last completed period of 100 seconds as a percentage.

The value in this field indicates the current load of the processes of the application in processing
jobs. If the value is very high, additional processes should be started for the application.

MAXIMUM LOAD

Maximum load of the UTM application since startup or since the last time the value was reset as a
percentage.

DIALOG TAS PER SECOND

Number of dialog transactions per second being executed at the present time.

ASYN TAS PER SECOND

Number of asynchronous transactions per second being executed at the present time.

DIALOG STEPS PER SECOND

Number of dialog steps per second being executed at the present time.

MAXIMUM POOL SIZE

Maximum allocation of page pool space in percent. In UTM-S applications, the value is set to 0 when
the application is generated for the first time with KDCDEF or updated with KDCDEF/KDCUPD. With
UTM-F applications, the value is set to 0 each time the application is started.

openUTM V7.0. Administering Applications. User Guide.

 738

ACTUAL POOL SIZE

Allocation of page pool space in percent at the present time.

AVERAGE POOL SIZE

Average allocation of page pool space in percent. In UTM-S applications, the value is set to 0 when
the application is generated for the first time with KDCDEF or updated with KDCDEF/KDCUPD. With
UTM-F applications, the value is set to 0 each time the application is started.
For this value to be meaningful, many dialog steps must already have been processed.

CACHE HIT RATE

Hit rate for a page search in cache memory. Figure quoted in percent. CACHE HIT RATE is reset to
0 before every application start.

NR CACHE SEARCHES

Number of search operations for UTM pages in the cache taken into account to calculate the value
of CACHE HIT RATE.

CACHE WAITS FOR BUFFER

Buffer calls in cache that have resulted in a wait time. Figure quoted in percent.
CACHE WAITS FOR BUFFER is reset to 0 after every full hour.

NR CACHE REQUESTS

Number of buffer requests taken into account to calculate the value of CACHE WAITS FOR
BUFFER.

UNPROCESSED ATACS

Number of messages for asynchronous services currently stored in openUTM that have not been
completely processed.

UNPROCESSED PRINTS

Number of messages currently queued for the printers.

WAITING DPUTS

Number of time-driven jobs currently waiting (DPUTs)

ABNORMAL TERMINATED SERVS

Number of abnormally terminated services. In UTM-S applications, the value is set to 0 when the
application is generated for the first time with KDCDEF or updated with KDCDEF/KDCUPD. With
UTM-F applications, the value is set to 0 each time the application is started.

LOGFILE WRITES

Number of calls written to the user log file (USLOG). The LOGFILE WRITES counter is reset to 0
after every full hour.

UTM-DEADLOCKS

Number of recognized and resolved deadlocks affecting UTM resources. In UTM-S applications, the
value is set to 0 when the application is generated for the first time with KDCDEF or updated with

openUTM V7.0. Administering Applications. User Guide.

 739

KDCDEF/KDCUPD. With UTM-F applications, the value is set to 0 each time the application is
started.

PERIODIC WRITES

Number of periodic writes since the last application start.
(Periodic write = backup of all log-related administration data on the UTM application).

PAGES PER PERIODIC WRITE

Average number of UTM pages backed up during a periodic write.
The counter is reset to 0 every time the application starts.

WAITS FOR RESOURCES

This value indicates the average lock conflict rate for the GSSB, ULS and TLS memory areas during
the last 100 second interval as an amount per thousand, i.e. the total number of wait situations on
lock requests as a ratio of GSSB, ULS and TLS lock requests in the last 100 second interval
multiplied by 1000.

A high value for WAITS FOR RESOURCES can have the following causes:

Processes with excessively long run times or wait times,

Resource disabled for too long, e.g. frequent PEND KP or PGWT calls to KDCS program units.

NR RESOURCE REQUESTS

Number of requests for transaction resources during the last 100 second interval taken into account
to calculate the value of WAITS FOR RESOURCES.

MAX WAITS FOR RESOURCES

Maximum conflict rate for user data locks across the application run. The value is specified as a
percentage

NR RES REQUESTS FOR MAX

Number of requests for transaction resources in the 100 second interval in which the maximum
conflict rate MAX WAITS FOR RESOURCES was reached.

WAITS FOR SYSTEM RES

Average conflict rate in the last 100 second interval for the most heavily loaded system resource.
The output in different intervals can refer to different system resources. The value is specified as a
percentage.

NR SYSTEM RES REQUESTS

Number of requests for system resources during the last 100 second interval taken into account to
calculate the value of WAITS FOR SYSTEM RES.

If a lock holder enters the status PEND KP then all "Waiters" are informed and all further
locks are rejected immediately. I.e. the value of WAITS FOR RESOURCES does not
increase as a result.

i

openUTM V7.0. Administering Applications. User Guide.

 740

MAX WAITS FOR SYSTEM RES

Maximum conflict rate for requests for system resources (system locks) across the application run.
The value is specified as a percentage.

NR SYSTEM RES REQ FOR MAX

Number of requests for system resources in the 100 second interval in which the maximum conflict
rate MAX WAITS FOR SYSTEM RES was reached.

ACTUAR JR

Only for distributed processing:
Current number of simultaneously addressed job-receiving services relative to generation value
MAXJR, figure quoted in percent.
(MAXJR = maximum number of job-receiving services that can be addressed simultaneously in the
local application; this corresponds to the number of simultaneously active APRO calls.)

MAXIMUM JR

Only for distributed processing:
Maximum number of simultaneously addressed remote job-receiving services relative to generation
value MAXJR (KDCDEF control statement UTMD). In UTM-S applications, the value is set to 0 when
the application is generated for the first time with KDCDEF or updated with KDCDEF/KDCUPD. With
UTM-F applications, the value is set to 0 each time the application is started.

The figure is quoted in percent.

AVG COMPRESS PAGES SAVED

Average value for the UTM pages saved per data compression. The writing of data areas in which
UTM performs no compression because, for example, the data length is less than one UTM page is
not included in this statistics value.

If no statistics value for data compression is available, the string "- - -" is output instead of a numeric
value. This is possible in the following situations.

Data compression is disabled.

The value was reset, e.g. with KC_MODIFY_OBJECT or by means of WinAdmin or WebAdmin.

No data compression was performed because the application uses "small" data areas in which it
does not make sense to use compression.

If the value output for AVG COMPRESS PAGES SAVED is less than 0.5, for performance
reasons data compression should be disabled for this application.

i

openUTM V7.0. Administering Applications. User Guide.

 741

Lifetime of statistical data output for STATISTICS

The following statistical data is updated when the application is started or on each full hour (applies to UTM-F
applications as well if MAX STATISTIC-MSG=FULL-HOUR was generated). The following table shows when UTM
resets the counter to 0 for a UTM-S application. In UTM-F applications, all counters are reset to 0 at every
application start.

You can reset some of the statistical values to 0 through the program interface to administration (see chapter
)."obj_type=KC_CURR_PAR"

Reset time Counter(s) reset

At every application start CACHE HIT RATE
PAGES PER PERIODIC WRITE
PERIODIC WRITES

For regeneration with KDCDEF and change generation with KDCDEF
/KDCUPD

AVERAGE POOL SIZE
MAXIMUM JR
MAXIMUM POOL SIZE
WAITS FOR RESOURCES

When the application starts and after every full hour (also in UTM-F
applications if MAX STATISTIC-MSG= FULL-HOUR was generated)

CACHE WAITS FOR BUFFER
LOGFILE WRITES
UTM_DEADLOCKS
ABNORMAL TERMINATED CONVS
TERMINAL INPUT MESSAGES
TERMINAL OUTPUT MESSAGES

The following statistical values are written to the system log file SYSLOG at hourly intervals and at every normal
termination of the application (message K081) provided that the application has been generated with MAX
STATISTICS-MSG=FULL-HOUR:

CACHE HIT RATE
CACHE WAITS FOR BUFFER
CONNECTED USERS
LOGFILE WRITES
TERMINAL INPUT MESSAGES
TERMINAL OUTPUT MESSAGES
UNPROCESSED ATACS

openUTM V7.0. Administering Applications. User Guide.

 742

type=SYSLOG

The information in the output is identical to the output from KDCSLOG INFO (see chapter "KDCSLOG - Administer
).the SYSLOG file"

type=SYSPARM

appliname APPLINAME version VERSION OF UTM
 ON|OFF ACCOUNT ON|OFF CALC FOR ACCOUNTING
 ON|OFF SM2 ON|OFF KDCMON
 ON|OFF TESTMODE percent % MAX CACHE PAGING RATE
 number PROGRAM FGG seconds TERMWAIT
 number USLOG FGG seconds RESWAIT-TA
 number MAX TASKS seconds RESWAIT-PR
 number CURRENT TASKS seconds CONRTIME
 number MAXASYN TASKS seconds LOGACKWAIT
 number CURRENT MAXASYN TASKS number CURRENT MAX TASKS IN PGWT
 seconds PTCTIME seconds CONCTIME
 seconds PGWTTIME number TASKS WAITING IN PGWT
 YES|NO PROGRAM EXCHANGE IS RUNNING number MAX TASKS IN PGWT
 YES|NO CLUSTER-APPLICATION PS|DS CACHE LOCATION
 ON|OFF DATA COMPRESSION (GEN)

Explanation of the output

APPLINAME Name of the application defined in MAX APPLINAME during KDCDEF generation.

VERSION OF UTM

openUTM version used, including the correction status and generation variant of the
application (UTM-S or UTM-F).

ACCOUNT The accounting phase for the accounting function is switched on (ON) or switched off
(OFF).
Can be switched on and off during runtime (e.g. with KDCAPPL).

CALC FOR ACCOUNTING

The calculation phase of the accounting function is switched on (ON) or switched off (OFF).
Can be switched on during runtime (e.g. with KDCAPPL).

SM2 Data supply to openSM2 is switched on (ON) or switched off (OFF) for the application.
Can be switched on and off during runtime (e.g. with KDCAPPL).

KDCMON The event monitor KDCMON is switched on (ON) or switched off (OFF).
Can be switched on and off during runtime (e.g. with KDCDIAG).

TESTMODE Test mode is switched on (ON) or switched off (OFF).
This can be switched on and off during runtime (e.g. with KDCDIAG).

MAX CACHE PAGING RATE

openUTM V7.0. Administering Applications. User Guide.

 743

Current value for CACHE. The pageing rate indicates the maximum number of pages in
cache memory (in percent) to be written to KDCFILE when shortages occur.
This value can be changed, e.g. with KDCAPPL CACHE.

PROGRAM FGG

Generation number of the currently loaded application program.

For UTM applications on BS2000 systems, the value 0 is always output for PROGRAM
FGG.

For UTM applications running on Unix, Linux or Windows systems that were not started
from the file generation directory PROG, the value 0 is output for PROGRAM FGG.

TERMWAIT Current value representing the maximum length of time in seconds that can elapse in a
multi-step transaction (PEND KP is called in the KDCS program unit) between an output to
the terminal and the next entry made by the user (the time the terminal user takes to think).

USLOG FGG Number of the file generation for the user log file to which the user is writing at the present
time.

RESWAIT-TA Current value representing the maximum time in seconds that the system can wait for
another locked resource (GSSB, ULS,TLS).

MAX TASKS Maximum number of processes allowed in this application (see the chapter
data structure, parameter). "kc_tasks_par_str" tasks

RESWAIT-PR Current value representing the maximum time in seconds that the system can wait for a
resource locked by another process (GSSB, ULS, TLS).

CURRENT TASKS

Number of processes in the application at the present time (see the chapter
 "kc_tasks_par_str" data structure , curr_tasks parameter).

CONRTIME Current value representing the time in minutes after a connection failure after which UTM
should attempt (cyclically) to re-establish the connection.

MAXASYN TASKS

Maximum number of processes in the application that can be used at the same time for
asynchronous processing (see the chapter data structure, "kc_tasks_par_str" asyntasks
parameter).

LOGACKWAIT

Maximum time in seconds for which UTM applications on BS2000 systems can wait for a
printout or transport confirmation message.
For UTM applications running on Unix, Linux or Windows systems, this output is irrelevant.

CURRENT MAXASYN TASKS

Maximum number of processes that can be used at the same time for asynchronous
processing (see the chapter data structure, "kc_tasks_par_str" curr_max_asyntasks
parameter).

openUTM V7.0. Administering Applications. User Guide.

 744

This value is adjusted automatically whenever:

the value is explicitly changed by means of system administration functions (e.g. by
KDCAPPL ASYNTASKS=).

the number of processes in the application (CURRENT TASKS) is changed (e.g. by
KDCAPPL TASKS=). When the number of CURRENT TASKS is reduced, the number of
CURRENT MAXASYN TASKS is also reduced as soon as CURRENT TASKS is <
CURRENT MAXASYN TASKS.
If the number of CURRENT TASKS is increased at a later point, the value for CURRENT
MAXASYN TASKS is increased again automatically by UTM.

CURRENT MAX TASKS IN PGWT

Maximum number of processes currently in the application that are permitted to accept
program units with blocking calls (see the chapter data structure, "kc_tasks_par_str"

parameter).curr_max_tasks_in_pgwt

This value is changed automatically whenever:

the value is explicitly changed by means of system administration functions (e.g. by
KDCAPPL TASKS-IN-PGWT=).

the number of processes in the application (CURRENT TASKS) is changed by
administration (e.g. by KDCAPPL TASKS=). When the number of CURRENT TASKS is
reduced, the number of CURRENT MAX TASKS IN PGWT is also reduced as soon as
CURRENT TASKS is <= CURRENT MAX TASKS IN PGWT.
If the number of CURRENT TASKS is increased at a later point, the value for CURRENT
MAX TASKS IN PGWT is increased again automatically by openUTM.

PTCTIME Only for distributed processing:
Maximum time in seconds for which a local job-receiving service can wait in PTC mode
(prepare to commit, transaction status P) for confirmation from the job-submitting service.
The value 0 signifies that the system can wait for confirmation for an unlimited period of time.

CONCTIME Only for distributed processing:
Time in seconds for monitoring the establishment of a session (LU6.1) or an association
(OSI TP). If the session or association is not established within the specified time limit,
openUTM terminates the transport connection. This prevents a transport connection from
remaining disabled due to failure to establish a session or an association. CONCTIME=0
means that session setup is not monitored in the case of LU6.1 connections (UTM waits
indefinitely). In the case of OSI TP connections, UTM waits up to 60 seconds for an
association to be set up.

PGWTTIME Maximum time in seconds that a blocking function call can wait, e.g. the KDCS call PGWT.

TASKS WAITING IN PGWT

Number of current processes that can be in wait state at the same time due to blocking
function calls (e.g. KDCS call PGWT).

PROGRAM EXCHANGE IS RUNNING

openUTM V7.0. Administering Applications. User Guide.

 745

Specifies whether openUTM is currently exchanging a program for the application.

MAX TASKS IN PGWT

Maximum number of processes in the application that can simultaneously process program
units with blocking function calls (e.g. KDCS call PGWT) (see the chapter "kc_tasks_par_str"
data structure, parameter).tasks_in_pgwt

CLUSTER-APPLICATION

Specifies whether the application is a UTM cluster application or a standalone UTM
application.

CACHE LOCATION

Specifies whether the UTM cache lies in the program space (PS) or in one or more data
spaces (DS).

PS is always displayed for Unix, Linux, and Windows systems.

DATA-COMPRESSION (GEN)

Specifies whether data compression is permitted (ON) or not (OFF) for the application. The
value displayed here matches the generation value for the application (see openUTM
manual “Generating Applications”, MAX DATA-COMPRESSION=). If ON is displayed here,
data compression can be enabled or disabled using administration facilities, e.g. with
KDCAPPL.

openUTM V7.0. Administering Applications. User Guide.

 746

type=TAC

TAC LOCK STAT TCL IN-Q USED ERROR DBCNT TACELAP DBELAP TACCPU D
tac number ON number number number number number msec msec mcsec D
 OFF type
 HLT
 KP

Explanation of the output

TAC TAC name

LOCK Lock code which provides access protection for the transaction code; a number between 1 and 4000.

STAT Status of the transaction code:
The TAC is enabled (ON), disabled (OFF), completely disabled (HLT) or blocked (KP). Blocked
means that the TAC is disabled, but jobs are accepted for the TAC and placed in the job queue.

TCL TAC class and type (D | A | Q) of the transaction code or TAC queue.

IN-Q Number of messages that still have to be processed by the program unit started by the TAC name.

USED Total number of program unit runs processed with this transaction code (only for asynchronous
TACs). In UTM-S applications, the value is set to 0 when the application is generated for the first
time with KDCDEF or updated with KDCDEF/KDCUPD. With UTM-F applications, the value is set to
0 each time the application is started.

ERROR Number of program unit runs which were started by this transaction code and abnormally terminated.
In UTM-S applications, the value is set to 0 when the application is generated for the first time with
KDCDEF or updated with KDCDEF/KDCUPD. With UTM-F applications, the value is set to 0 each
time the application is started.

DBCNT Average number of database calls from program units which were started with this TAC name.

With database connections via the XA interface DBNCT is always 0.

TACELAP Average run time of the program unit which was started with this TAC (elapsed time); figure quoted
in milliseconds.

DBELAP Average time for processing the database calls in the program unit runs.
With this TAC; figure quoted in milliseconds.

With database connections via the XA interface DBNCT is always 0.

TACCPU Average CPU time in microseconds used for processing this transaction code in the program unit.
This corresponds to the CPU time used by openUTM plus the CPU time used by the database
system.

D Indicates whether the transaction code was deleted (D) or not (no entry) from the configuration by
means of system administration functions.

openUTM V7.0. Administering Applications. User Guide.

 747

The statistical values output for type = USED, ERROR, DBCNT, TACELAP, DBELAP and TACCPU are reset to 0
every time KDCDEF performs a new generation and every time KDCDEF/KDCUPD generates a change in UTM-S
applications. With UTM-F applications, the values are set to 0 each time the application is started.

type=TAC-PROG

Output for UTM applications on BS2000 systems

TAC PROGRAM LOAD-MODULE
tac1 program1 load-module1
tac2 program2 load-module2
tac3 program3 load-module3

Output for UTM applications on Unix, Linux and Windows systems

TAC PROGRAM SHARED-OBJECT
tac1 program1 shared-object1
tac2 program2 shared-object2
tac3 program3 shared-object3

Explanation of the output

TAC Name of the transaction code

PROGRAM Name of the program unit to which this transaction code is assigned

LOAD-MODULE

On BS2000 systems: Name of the load module containing the program unit (PROGRAM)

SHARED-OBJECT

On Unix, Linux and Windows systems: Name of the shared object/DLL containing the program unit
(PROGRAM)

openUTM V7.0. Administering Applications. User Guide.

 748

type=TACCLASS

TACCLASS TASKS WT MSGS AVG-WAIT-TIME PGWT PRIO* NR WAITS
 1 number number msec YES|NO prio number number
 :
 8 number number msec YES|NO prio number number
 9 number number msec YES|NO prio number number
 :
 16 number number msec YES|NO prio number number

*prio = ABS | REL | EQ | NO

Explanation of the output

TASKS Maximum number of processes currently allowed to process jobs for transaction codes in this TAC
class.

WT MSGS Number of messages currently stored in openUTM for transaction codes in this TAC class that have
not yet been processed.

AVG-WAIT-TIME

Average wait time for jobs in this TAC class in milliseconds. The wait time is calculated from the time
openUTM accepts the job to the start of actual processing. AVG-WAIT-TIME=0 signifies that all jobs
are being processed immediately.

Wait times can, for instance, arise if not all processes in the application may process jobs for the
TAC class and if openUTM consequently has to store jobs temporarily in the job queue.

PGWT Specifies whether program units with blocking calls, e.g. the KDCS call PGWT, are allowed to run in
this TAC class.

If the application was generated with priority control (TAC-PRIORITIES statement), then the column
PGWT contains NO for all TAC classes.

PRIO If the application was generated with priority control, then the column PRIO contains the type of
priority defined for the TAC classes (ABS, REL, EQ). If the application was generated without the
TAC-PRIORITIES statement, the PRIO column contains NO for all TAC classes.

NR Number of program unit runs for this TAC class.

WAITS Number of wait situations taken into account to calculate the value AVG-WAIT-TIME.

openUTM V7.0. Administering Applications. User Guide.

 749

type=USER

 USER KSET STATUS OSERV NR.TACS CPUTIME SECCNT LTERM D
 user1 kset1 ON|OFF Y|N number msec number lterm1 D

Explanation of the output

USER Name of the user ID

KSET Key set assigned to this user ID (access rights)

STATUS User ID is disabled (OFF) or not disabled (ON).

OSERV Y signifies that the user is currently processing a service and that this service has reached at least
one synchronization point.
N signifies that the user is not currently processing a service which has not already reached one
synchronization point.

NR.TACS Number of program unit runs entered under this user ID. In UTM-S applications, the value is set to 0
when the application is generated for the first time with KDCDEF or updated with KDCDEF
/KDCUPD. With UTM-F applications, the value is set to 0 each time the application is started.

CPUTIME Number of CPU milliseconds used up by the user for processing these jobs (does not include the
CPU time for the database calls). The value is reset to 0 after the user has signed off (KDCOFF) or
after the connection has been cleared.

SECCNT Number of security violations for this user ID (e.g. incorrect password entered) since the start of the
application. This number is reset to 0 each time the application is started.

LTERM The following cases must be distinguished:

Applications with MULTI-SIGNON=NO (i.e. multiple sign-ons are not permitted):
LTERM or OSI-LPAP partner by means of which a user is signed on with this user ID.
Exception: LTERM contains blanks when signing on to start an asynchronous service was via OSI
TP.

Applications with MULTI-SIGNON=YES (multiple sign-ons permitted):
If a user with the user ID is connected to the application via a terminal, LTERM contains the name
of the LTERM partner assigned to the terminal.

If the user ID is generated with RESTART=YES, LTERM contains the name of the LTERM or OSI-
LPAP partner via which a client with this user ID is signed on.

Exceptions: Signing on took place by means of OSI TP, and the functional unit “Commit” was
selected, or signing on was via OSI TP to start an asynchronous service. In this case, LTERM
contains blanks.

In all other cases, LTERM contains blanks.

D Indicates whether the user ID was deleted (D) or not (no entry) from the configuration by means of
system administration functions.

openUTM V7.0. Administering Applications. User Guide.

 750

The password for the user ID is not output.

openUTM V7.0. Administering Applications. User Guide.

 751

12.6 KDCLOG - Change the user log file

The user log file USLOG is maintained as the file generation directory USLOG. KDCLOG allows you to close the
current user log file (file generation) during live operation and open a new user log file at the same time. This is the
file generation with the next generation number in the sequence. The closed log file can then be used in any way
you choose. KDCLOG acts on both files if a dual user log file is being used. For further information about the user
log file USLOG, please refer to the openUTM manual “Using UTM Applications”.

Effect in UTM cluster applications

KDCLOG has a global effect in UTM cluster applications, i.e. it applies to all running node applications.

Period of validity of the change

The application writes to the new USLOG file generation(s) until KDCLOG is used to switch to the next file
generation.

After the application ends, you can also change to the next file generation using operating system commands (see
the openUTM manual “Using UTM Applications”).

KDCLOG

For administration using message queuing you must enter KDCLOGA.

KDCLOG has no operands

Output from KDCLOG

The message

"COMMAND ACCEPTED"

is displayed on the administrator terminal.

openUTM V7.0. Administering Applications. User Guide.

 752

1.

2.

12.7 KDCLPAP - Administer connections to (OSI-)LPAP partners

KDCLPAP allows you to perform the following actions:

arrange for connections to be established

shut down connections

disable connections or release disabled connections

define partner applications for which UTM is automatically to establish connections at every application start

define the number of parallel connections to OSI TP partner applications

activate replacement connections to OSI TP partner applications - these replacement connections must have
been generated with KDCDEF

change the time for monitoring the idle time modes of sessions and associations

Connections are specified using the name of the LPAP or OSI-LPAP partner to which they are assigned.
Replacement connections are identified by the replacement connection name defined in the KDCDEF control
statement OSI-CON.

Special issues relating to the establishment and termination of connections

KDCLPAP...,ACT=CON or (CON,number) merely initiates the establishment of a connection. Successful execution
of this command does not therefore mean that the connections have in fact been established or that it is possible to
establish them (there may be errors in the transport system). You should therefore use KDCINF to check whether a
UTM connection can genuinely be established, with the following entry, for example:

KDCINF OSI-LPAP, LIST=(osi-lpapname_1,...osi-lpapname_10) for OSI-LPAP partners

KDCINF CON, LIST=KDCCON for LPAP partners

If you wish to establish a connection to a disabled LPAP or OSI-LPAP partner (STATUS=OFF) you must make two
KDCLPAP calls:

One KDCLPAP call to re-enable the (OSI-)LPAP partner, e.g.:
KDCLPAP [OSI-]LPAP=lpapname,STATUS=ON

One KDCLPAP call to ensure that the connection is established, e.g.:
KDCLPAP [OSI-]LPAP=lpapname,ACTION=CON

In conjunction with ACTION=CON STATUS=ON, KDCLPAP will not be processed.and

If you wish to reduce the number of parallel connections to an OSI-LPAP partner, call KDCLPAP with ACTION=
(CON,number). To do this, you should enter the number of connections you wish to retain in the field.number

Effect in UTM cluster applications

The effect in UTM cluster applications is described in the sections devoted to the individual operands since some of
the changes made with KDCLPAP apply locally to the node whereas others take effect globally in the cluster.

openUTM V7.0. Administering Applications. User Guide.

 753

Period of validity of the change

The period of validity of these changes depends on the type of change and is therefore specified in the description
of these operands.

KDCLPAP { LPAP ={ lpapname | (lpapname_1,...,lpapname_10) } |

 OSI-LPAP={ osi-lpapname | (osi-lpapname_1,..,osi-lpapname_10) }|

 OSI-CON = osi-conname }

 [, ION={ ON| (ON,number) | IS | ON | (ON,number) | ACT C C D AC AC

 CON | UIET }] NA Q

 [,IDLETIME=time_sec]

 [, TUS={ ON| OFF }]STA

For administration using message queuing you must enter KDCLPAPA.

LPAP = (lpapname_1,...,lpapname_10)

Connections to the partner applications to which the LPAP partners lpapname_1,...,lpapname_10
 are assigned are to be administered. For enter the logical names of lpapname_1,...,lpapname_10,
partner applications generated by the KDCDEF control statement LPAP for distributed processing
by LU6.1.

You can enter a maximum of 10 LPAP names for each KDCLPAP call, i.e. you can administer the
connections to a maximum of 10 LPAP partners. If you only enter one LPAP name, you do not
need to key in the parentheses.

OSI-LPAP = (osi-lpapname_1,...,osi-lpapname_10)

The connections to the partner applications to which the OSI-LPAP partners osi-lpapname_1,...,osi-
 are assigned are to be administered. For enter lpapname_10 osi-lpapname_1,...,osi-lpapname_10

the logical names of partner applications generated by the KDCDEF control statement OSI-LPAP
for distributed processing via OSI TP.

You can enter a maximum of 10 OSI-LPAP names for each KDCLPAP call, i.e. you can administer
the connections to a maximum of 10 OSI-LPAP partners. If you only enter one OSI-LPAP name,
you do not need to key in the parentheses.
If the specified OSI-LPAP is the master LPAP of an OSI-LPAP bundle, it only makes sense to
specify STATUS=ON/OFF.

OSI-CON=osi-conname

KDCLPAP OSI-CON=osi-conname activates a log connection to an OSI TP partner (OSI-LPAP).

The log connection must have been generated statically with the KDCDEF control osi-con
statement OSI-CON. For enter the name generated in OSI-CON. osi-conname is,
You can query the names of all log connections generated for an OSI-LPAP partner with KDCINF

.OSI-LPAP

When you enter the command, no connections are permitted to the OSI-LPAP partner to which the
log connection was assigned for generation.
Before UTM activates the log connection, UTM first deactivates the most recent active connection
to the OSI-LPAP partner.

openUTM V7.0. Administering Applications. User Guide.

 754

The log connection remains active until the end of the application run or until the next time a log
connection is selected for the same OSI-LPAP, or until the connection is deactivated.

Entering other operands has no effect. Assignment to the OSI-LPAP partner takes place implicitly
using .osi-conname

ACTION= ACTION allows you to arrange for connections which were specified in LPAP or OSI-LPAP to be
established and shut down. You can define whether or not UTM should automatically establish
connections to specified partner applications when the application starts.

CON openUTM arranges for connections to be established to the specified partner applications. All
parallel connections generated in the KDCDEF control statement OSI-LPAP for OSI TP partners
specified in OSI-LPAP are to be established.

In UTM cluster applications, the operand applies locally in the node.

Successful execution of this command does not mean that the required connections have in fact
been established. You can use a KDCINF query to find out whether or not a connection has been
established successfully.

If a connection is to be established for a disabled LPAP or OSI-LPAP partner, the partner must be
re-enabled with its own KDCLPAP call before the connection is established.

(CON,number)

An entry for is only useful for connections to OSI-LPAP partners. For an LU6.1 partner number
specified in LPAP, (CON,) acts like CON and the entry for is ignored.number number

In UTM cluster applications, the operand applies locally in the node.

For OSI-LPAP partners, represents the number of parallel connections to the partner number
application that are to be established to each of the specified OSI TP partners after the KDCLPAP
call. This makes the effect of the call dependent on the entry for . A distinction must be number
drawn between the following cases:

If for one of the OSI-LPAP partners specified in OSI-LPAP is greater than the number of number
parallel connections currently established, openUTM tries to establish the correct number of
connections, i.e. the same number of connections to OSI-LPAP partners as specified in . number
The maximum number of parallel connections to one OSI-LPAP partner is defined for KDCDEF
generation in the OSI-LPAP statement.
If the value for exceeds the generated maximum number of specified OSI-LPAP number
partners, openUTM only establishes the generated maximum number of connections for this
partner.
Successful execution of this command does not mean that the required connections have been
established. You can use a KDCINF query to find out whether or not a connection has been
established successfully. If a connection is to be established for a disabled OSI-LPAP partner,
the partner must be re-enabled first.

If is less than the number of parallel connections currently established to a OSI-LPAP number
partner, UTM shuts down connections to the OSI-LPAP partner until only the number of
connections specified in are still in existence. number
(CON,0) has the same effect as ACTION=DIS. UTM immediately shuts down all connections for
the specified OSI-LPAP partner.

openUTM V7.0. Administering Applications. User Guide.

 755

Minimum value of : 0 number
Maximum value of : Number of parallel connections generated.number

DIS Connections to the partners specified in LPAP are shut down immediately.
All existing parallel connections to the partners specified in OSI-LPAP are shut down.

In UTM cluster applications, the operand applies locally in the node.

ACON (automatic connection)
For the next start and for subsequent starts of this application, UTM is automatically to establish
connections to the partner applications specified in LPAP or OSI-LPAP. In the case of OSI TP
partners, parallel connections should be established up to the number specified in the appropriate
OSI-LPAP statement during KDCDEF generation.

In UTM cluster applications, the operand applies globally in the cluster.

(ACON,number)

Entering is only meaningful for connections to OSI-LPAP partners. number
In all subsequent starts of the application, UTM should establish connections to the partners
specified in OSI-LPAP automatically (automatic connection). The value for defines the number
number of parallel connections that are to be established to the specified OSI TP partners.

In UTM cluster applications, the operand applies globally in the cluster.

The maximum number of parallel connections to a partner is defined in the OSI-LPAP statement for
KDCDEF generation.
If the value in exceeds the generated maximum number for one of the specified OSI-LPAP number
partners, UTM only establishes the statically generated number of connections for this partner.

For an LU6.1 partner specified in LPAP, (ACON,number) has the same effect as ACON; the entry
for is ignored.number

Minimum value of number: 0
Maximum value of number: Number of generated parallel connections.

NACON (no automatic connection)
If the ACON property is entered for these connections during generation or by means of system
administration functions, it is to be deleted, i.e. openUTM should no longer establish automatic
connections to the partner applications specified in LPAP or OSI-LPAP with effect from the next
application start.
The entry ACTION=NACON extends beyond the duration of the current application run.

In UTM cluster applications, the operand applies globally in the cluster.

QUIET The connections specified in LPAP or OSI-LPAP are shut down. For OSI-LPAP partners, all parallel
connections are shut down.

In UTM cluster applications, the operand applies locally in the node.

Termination of a connection with DIS has the effect of shutting down all connections
immediately. This may cause services to be terminated abnormally. It would be better to
use ACTION=QUIET.

i

openUTM V7.0. Administering Applications. User Guide.

 756

With QUIET, connections are not shut down until the sessions or associations generated for the
specified LPAP- or OSI-LPAP partners are no longer assigned by dialog or asynchronous jobs.
However, no further dialog jobs are accepted for the specified (OSI-)LPAP partners.
The QUIET property can be reset with ACTION=CON.

IDLETIME=time_sec

Time for monitoring the idle state of the sessions or associations generated for the specified LPAP
or OSI-LPAP partners.

In UTM cluster applications, the operand applies globally in the cluster.

A change made to IDLETIME remains effective for a defined session or association if it reaches the
idle mode next time this command is entered (during establishment of the connection or after
completion of the job).
If the session or association is not assigned by a job during the period of time specified in , time_sec
openUTM shuts down the connection. is defined in seconds.time_sec

IDLETIME=0 prevents monitoring of the idle state.

Maximum value: 32767
Minimum value: 60
In the case of values that arre smaller than 60 but not equal to 0, the value 60 is used.

STATUS= Disables or re-enables LPAP or OSI-LPAP partners.

In UTM cluster applications, the operand applies globally in the cluster.

OFF Disables LPAP or OSI-LPAP partners; openUTM does not establish any further connections to this
partner application until the LPAP or OSI-LPAP partner is released once again.

No logical connections to the related partner application can be established when an LPAP or OSI-
LPAP partner is disabled.

ON Approve LPAP or OSI-LPAP partner again.
This change applies throughout the entire application run.

openUTM V7.0. Administering Applications. User Guide.

 757

Output from KDCLPAP

New and old properties are output at the administrator terminal (NEW, OLD).

The following output is produced when is entered:KDCLPAP LPAP=...

LPAP STATUS CONNECTION IDLETIME
 NEW OLD NEW OLD NEW OLD
lpapname ON ON CON A Q CON A Q sec sec
 OFF OFF DIS DIS
 W W

The following output is produced when is entered:KDCLPAP OSI-LPAP=...

OSI-LPAP STATUS CONNECTED IDLETIME AUTOCON
 NEW OLD NEW OLD NEW OLD NEW OLD
osi-lpap ON Q ON Q number number sec sec number number
 OFF OFF

The following output is produced when is entered:KDCLPAP OSI-CON=...

OSI-LPAP OSI-CON
 NEW OLD
osi-lpap1 osi-con1 osi-con2

openUTM V7.0. Administering Applications. User Guide.

 758

Explanation of the output

AUTOCON Number of connections to the OSI-LPAP partner that UTM should establish automatically when
an application starts.

CONNECTED Number of parallel connections currently established to the OSI-LPAP partner.

CONNECTION 1st column:
Connection to the LPAP partner is established (CON), shut down (DIS), or UTM is currently
trying to establish a connection (W = waiting for connection).

2nd column:
A (automatic) indicates that openUTM will try to establish the connection automatically when the
application starts.
Q (quiet) indicates that the connection will be shut down and that no further dialog jobs will be
accepted for this partner application.

IDLETIME Monitoring time for the idle state of a session or association on the connection

OSI-CON The name generated with the KDCDEF control statement OSI-CON for the logical connection to
the partner application.

 is the name of the connection that was active before the changeover; is the osi-con1 osi-con2
name of the existing replacement connection.

STATUS A connection to the partner application exists or can be established (ON), or cannot be
established (OFF).
Q (QUIET) indicates that no further dialog jobs will be accepted for the OSI-LPAP partner and
that the connection will be shut down.

openUTM V7.0. Administering Applications. User Guide.

 759

12.8 KDCLSES - Establish/shut down connections for LU6.1 sessions

With KDCLSES you can arrange for a transport connection to a session to be established or shut down.

Effect in UTM cluster application

In UTM cluster applications, KDCLSES applies locally in the node.

KDCLSES LSES=lsesname

, ION={ ON| IS | UIET } ACT C D Q

BS2000 systems:
[, =remote_applname, NAM=proname, =applname] CON PRO BCAMAPPL

Unix, Linux and Windows systems:
[, =remote_applname [, =proname], =applname] CON PRONAM BCAMAPPL

For administration using message queuing you must enter KDCLSESA.

LSES=lsesname

Indicates the name of the session requiring administration (local halfsession name). For , lsesname
enter a name which was assigned by means of KC_CREATE_OBJECT for the object type KC_LSES
during KDCDEF generation of an LSES statement.

ACTION= Controls the establishment and termination of a session.

CON A transport connection is to be established for the session . With the operands CON, lsesname
PRONAM and BCAMAPPL you can specify precisely which transport connection is to be established
for the session. If you do not enter a transport connection for CON, PRONAM and BCAMAPPL, UTM
tries to establish one of the transport connections generated for the relevant LPAP partner
(KC_CREATE_OBJECT for the object type KC_CON or KDCDEF control statement CON).
If openUTM is not able to establish the connection specified in CON, PRONAM and BCAMAPPL, it
tries to establish another of the connections generated for the relevant LPAP partner.

DIS The connection currently established for the session is shut down immediately.

QUIET Connection to the partner application is shut down if the session is no longer assigned by a job.

CON=remote_applname, PRONAM=proname, BCAMAPPL=applname

Entry of this operand is only meaningful for ACTION=CON.

With these operands you can specify the precise transport connection to be established. Your
entries must uniquely identify the transport connection. To do so, you must if necessary enter all
three operands and make the following entries:

remote_applname
Name of the connection generated for the partner application (remote halfsession name assigned
dynamically to the partner application by means of KC_CREATE_OBJECT for the object type
KC_CON or with the KDCDEF statement CON).

openUTM V7.0. Administering Applications. User Guide.

 760

proname
Name of the computer on which the partner application is running.
This parameter is mandatory on BS2000 systems.

applname
Name of the local application (BCAMAPPL name) via which the connection is established. For

, enter the name that was defined for this application dynamically or in the CON statement applname
during KDCDEF generation.

Output from KDCLSES

The new and old properties (NEW, OLD) of the specified session are output to the administrator terminal.

The output depends on whether a short or a long host name is assigned to a LSES object. In the case of a long
host name, the information on a LSES object is output in two screen lines.

LSES PRONAM CON BCAMAPPL CONNECTION
 NEW OLD
lsesname proname remote_applname applname CON|DIS A|Q CON|DIS A|Q
lsesname long.processor.name
 remote_applname applname CON|DIS A|Q CON|DIS A|Q

Explanation of the output

CONNECTION

1st column:
The connection has been established (CON) or shut down (DIS).

2nd column:
A (automatic) indicates that openUTM will try to establish a connection automatically when the
application starts.
Q (quiet) indicates that the connection will be shut down and that no further dialog jobs will be
accepted for this session.

openUTM V7.0. Administering Applications. User Guide.

 761

12.9 KDCLTAC - Change the properties of LTACs

The properties of LTACs can be changed with the aid of KDCLTAC. LTACs are the local TAC names for services in
partner applications for distributed processing.

Effect in UTM cluster application

In UTM cluster applications, KDCLTAC applies globally to the cluster.

Period of validity of the changes

The changes only apply for the duration of the current application run.

KDCLTAC LTAC={ ltacname | (ltacname_1,...,ltacname_10) }

 [, TUS={ ON| OFF }]STA

 [, AIT IME=(accesswait_sec[,replywait_sec])]W T

For administration using message queuing you must enter KDCLTACA.

LTAC=(ltacname_1,...,ltacname_10)

Names of the LTACs to be administered. For enter the names of ltacname_1,...,ltacname_10,
LTACs created dynamically by means of KC_CREATE_OBJECT for the object type KC_LTAC or
using the KDCDEF control statement LTAC.

For each call from KDCLTAC you can enter a maximum of 10 LTAC names.
If you only enter one LTAC name you do not need to key in the parentheses.

STATUS = Disable LTACs or lift the blocks

OFF The specified LTACs are disabled and no more jobs are accepted for this LTAC.

ON The lock is lifted: jobs for the specified LTACs are accepted once again.

WAITTIME

Replaces the wait times specified by the generation or administration and replaces them by values
specified in and .accesswait_sec replywait_sec

accesswait_sec

Maximum time in seconds that the system should wait for a session to be reserved (possibly
including the establishment of a connection) or for the establishment of an association.

A wait time of 0 for asynchronous TACs indicates that the job is always entered accesswait_sec !=
in the message queue for the partner application.

A wait time of =0 indicates the following: accesswait_sec
In dialog TACs, the service continues in the local application immediately with an appropriate return
code if no session or association is available or because the local application is a contention loser
(see the KDCDEF control statement SESCHA, LPAP or OSI-LPAP, operand CONTWIN).

openUTM V7.0. Administering Applications. User Guide.

 762

With asynchronous TACs, the asynchronous job is rejected with a return code at the FPUT call
stage if no logical connection to the partner application exists. If there is a logical connection to the
partner application, the message is entered in the output queue.

replywait_sec

Maximum time in seconds that UTM can wait for an answer from the remote service of the partner
application.
Restricting the wait time helps to ensure that the wait time for users on the terminal cannot go on
indefinitely.

replywait_sec=0 indicates that the system will wait for unrestricted periods of time.

Minimum value: WAITTIME = (0.0) (see above for meaning)
Maximum value: WAITTIME = (32767.32767)

Output from KDCLTAC

The new and old properties of the specified LTACs are output to the administrator terminal.

LTAC STATUS ACCESSWAIT REPLYWAIT
 NEW OLD NEW OLD NEW OLD
ltacname ON|OFF ON|OFF seconds seconds seconds seconds

Explanation of the output

LTAC TAC name of the remote services

STATUS LTAC disabled (OFF) or not (ON)

ACCESSWAIT Wait time until a session or association is reserved.

REPLYWAIT Wait time for a response to the service program in the partner application

openUTM V7.0. Administering Applications. User Guide.

 763

12.10 KDCLTERM - Change the properties of LTERM partners

KDCLTERM allows you to change the properties of LTERM partners for clients, printers and LTERM pools. You can
disable and enable the LTERM partners and shut down or establish connections to clients and printers.

Effect in UTM cluster applications

The effect in UTM cluster applications is described in the sections devoted to the individual operands since some of
the changes made with KDCLTERM apply locally to the node whereas others take effect globally in the cluster.

Period of validity of the change

All changes remain in force after the application has terminated.

KDCLTERM ERM={ ltermname | (ltermname_1,ltermname_2,...,ltermname_10) }LT

 [, ION={ ON| IS }]ACT C D

 [, TUS={ ON| OFF }]STA

 [,PRIMARY=primary-lterm]

For administration using message queuing you must enter KDCLTRMA.

LTERM=(ltermname_1,...,ltermname_10)

Name of the LTERM partner to be administered.
For each call from KDCLTERM you can enter a maximum of 10 LTERM names. If you only enter one
LTERM partner LTAC name you do not need to key in the parentheses.ltermname

For you can also enter the names of LTERM partners assigned to an ltermname_1,...,ltermname_10
LTERM pool. To do this, enter the full name of this LTERM partner, i.e. the LTERM prefix of the
LTERM pool and the serial number.
However, you cannot disable the LTERM partners assigned to LTERM pools, nor can you establish
any connections to them. In other words, the only entry you can make for them is ACTION=DIS
(connection shutdown).

ACTION= Establishes or shuts down connections to the LTERM partners

In UTM cluster applications, the operand applies locally in the node.

CON This causes connections to be established to the specified LTERM partners.
For LTERM partners in an LTERM pool, ACTION=CON is not permitted.
In UTM applications running on Unix, Linux or Windows systems this function is only available for
printers, andTS applications.

DIS Connections to the specified LTERM partners are shut down (DISabled).

Connections are shut down immediately, which means that processes cannot be terminated.

STATUS= Disable or enable the LTERM partner.

In UTM cluster applications, the operand applies globally in the cluster.

openUTM V7.0. Administering Applications. User Guide.

 764

ON Enable the LTERM partner

OFF Disable the specified LTERM partner.

The block operates as follows:

A connection request is executed. The connection is established and the following message is
issued:

K027 LTERM partner ltermname disabled - inform administrator or enter

KDCOFF

An existing connection remains established. Every input with the exception of KDCOFF is
acknowledged with the following message:

K027 LTERM partner ltermname disabled - inform administrator or enter

KDCOFF

The block does not take effect until this connection has reached a synchronization point (end of
transaction).

KDCOFF BUT operates for disabled LTERM partners like KDCOFF.

LTERM partner in an LTERM pool cannot be disabled.

PRIMARY=primary-lterm

Name of a normal LTERM or a primary LTERM of an LTERM group (seeopenUTM manual
“Generating Applications”).

The PRIMARY operand is only permitted in standalone UTM applications.

The LTERM must be an alias LTERM of an LTERM group. Specifying PRIMARY= causes it to
become an alias LTERM of the LTERM group with the primary LTERM .primary-lterm

If is already the primary LTERM of an LTERM group, the LTERM is assigned to this primary-lterm
group. If no alias LTERMs have previously been assigned to , and new LTERM group is primary-lterm
now created with the as the primary LTERM and as the alias primary-lterm ltermname (LTERM=)
LTERM.

If is a normal LTERM, it must meet the following conditions:primary-lterm

A PTERM with the PTYPE APPLI or SOCKET must be assigned to it.

It must not be a slave LTERM of an LTERM bundle.

It must have been generated with USAGE=D.

Output from KDCLTERM

The new and old properties of the LTERM partner (NEW, OLD) are displayed on the administrator terminal. The
output 'POOL LTERM' indicates that the client is connected by means of an LTERM pool.

LTERM STATUS CONNECTION
 NEW OLD NEW OLD
ltermname ON|OFF ON|OFF CON|DIS|W CON|DIS|W [POOL LTERM]

openUTM V7.0. Administering Applications. User Guide.

 765

Explanation of the output

LTERM Name of the LTERM partner

STATUS The LTERM partner is disabled (OFF) or not disabled (ON).

CONNECTION

Connection to the LTERM partner is established (CON) or shut down (DIS), or openUTM is currently
trying to establish a connection (W = waiting for a connection).

openUTM V7.0. Administering Applications. User Guide.

 766

1.

2.

12.11 KDCMUX - Change properties of multiplex connections (BS2000 systems)

KDCMUX allows you to change the properties of multiplex connections. You can:

disable or re-enable multiplex connections

activate or deactivate multiplex connections

make specifications regarding the establishment of a connection when the application starts.

Things to note when establishing a connection

KDCMUX...,ACTION=CON merely initiates the establishment of a connection. Successful execution of this
command does not therefore mean that the connections are actually established or even that they can, in fact, be
established successfully (e.g. a connection attempt may fail due to a fault in the transport system). You should
therefore use KDCINF to check whether openUTM has actually been able to establish a connection. For example:

KDCINF MUX,LIST=(muxname_1,muxname_2,...,muxname_10)

If a connection is to be established for a disabled multiplex connection (STATUS=OFF), you must make two calls
with KDCMUX.

KDCMUX to re-enable the multiplex connection, e.g.:

KDCMUX MUX=muxname,STATUS=ON

KDCMUX call to arrange for a connection to be established, e.g.:

KDCMUX MUX=muxname,ACTION=CON

Period of validity of the change

The period for which these changes remain valid depends on the type of change and is therefore specified in the
description of each operand.

KDCMUX MUX={ muxname | (muxname_1,muxname_2,...,muxname_10) }

 [, ION={ ON| IS | ON | CON }]ACT C D AC NA

 [, =applname]BCAMAPPL

 [, =number_sessions]MAXSES

 , NAM=pronamePRO

 [, TUS={ ON| OFF }]STA

For administration using message queuing you must enter KDCMUXA.

openUTM V7.0. Administering Applications. User Guide.

 767

MUX=(muxname_1,muxname_2,...,muxname_10)

Name of the multiplex connection to be administered.
For , names must be entered that have been defined with MUX muxname_1,...,muxname_10
statements during KDCDEF generation.
For each KDCMUX call you can enter a maximum of 10 names. If you only enter one name you do
not need to key in the parentheses.

ACTION= ACTION allows you to initiate the establishment and shutdown of connections to the specified
multiplex connections. You can specify whether or not openUTM is to establish connections to the
specified multiplex connections automatically in subsequent application starts.

CON (connection)
openUTM initiates the establishment of connections to the specified multiplex connections.

KDCINF allows you to check whether or not the connection was established successfully.

DIS (disconnection)

Connections to the specified multiplex connections are shut down. The connection is shut down
with immediate effect: this means that not even open services can be completed.

ACON (automatic connection)
At subsequent application starts, openUTM is to activate the multiplex connections automatically, i.
e. it is to establish the connections automatically.

ACTION=ACON takes effect until automatic connection establishment is explicitly reset by means
of system administration functions (NACON action).

NACON (no automatic connection)
If the ACON property is entered for the specified multiplex connections during generation by the
administration function, it is to be deleted. In other words connections to the specified multiplex
connections should no longer be established automatically during subsequent application starts.

BCAMAPPL=applname

Name of the local application through which connections are established to the multiplex
connections. For the application name assigned to the multiplex connections in the MUX applname,
statements during KDCDEF generation should be specified, i.e. the name which the message
router must pass to UTM in order for a connection to be established.
Default value:

If you do not enter BCAMAPPL, the name generated in the APPLINAME operand in the KDCDEF
control statement MAX is assumed.

MAXSES=number_sessions

number_sessions defines the maximum number of terminals through which each of these multiplex
connections can be connected at the same time.

This change only applies to the current application run.

openUTM V7.0. Administering Applications. User Guide.

 768

Minimum value: 1
Maximum value: 65000

PRONAM=proname

Name of the processor running the message router to which the multiplex connection is assigned.

STATUS= The specified multiplex connections are disabled or released again.

ON Releases (enables) the multiplex connections (with immediate effect).

OFF Releases (enables) the multiplex connections (with immediate effect).

Disables multiplex connections. No connection to any of the specified multiplex connections should
exist at the point in time when they are disabled.
If such a connection does exist, openUTM will not disable it. The value ON is issued in the output
from KDCMUX (see chapter " ") for STATUS NEW and STATUS OLD.Output from KDCMUX

Output from KDCMUX

The new and old properties of the multiplex connections (NEW, OLD) currently being administered are displayed on
the administrator terminal.

MUX PRONAM BCAMAPPL STATUS CONNECTION MAXSES
 NEW OLD NEW OLD NEW OLD
muxname proname applname ON|OFF ON|OFF AC|D|W AC|D|W number number

Explanation of the output

MUX Name of the multiplex connection

PRONAM Name of the processor on which the message router is running

BCAMAPPL Name of the UTM application which was assigned to the multiplex connection for KDCDEF
generation.

STATUS The multiplex connection is disabled (OFF) or not disabled (ON).

CONNECTION

1st column:
The multiplex connection is connected to the application (C) or not (D), or openUTM is currently
trying to establish a connection to the multiplex connection (W = waiting for a connection).

2nd column:
Every time the application starts, openUTM will try to establish a connection automatically (A) or
not (no entry).

MAXSES Maximum number of terminals that can be connected to the application via this multiplex
connection at the same time.

openUTM V7.0. Administering Applications. User Guide.

 769

12.12 KDCPOOL - Administer LTERM pools

KDCPOOL allows you to redefine the number of enabled and/or disabled clients for an LTERM pool.

Effect in UTM cluster applications

In UTM cluster applications, KDCPOOL applies globally to the cluster.

Period of validity of the change

The change remains in force after the application has terminated.

KDCPOOL ERM=ltermprefixLT

[,STATUS=({ ON| OFF }, number_clients)]

For administration using message queuing you must enter KDCPOOLA.

LTERM=ltermprefix

LTERM prefix of the LTERM pool, as generated in the KDCDEF control statement TPOOL. If you
enter , the LTERM pool to be administered is identified uniquely.ltermprefix

STATUS=

Defines the number of clients able to connect via the LTERM pool at the same time. The maximum
number of clients able to connect via the LTERM pool at the same time is defined during KDCDEF
generation (NUMBER in the control statement TPOOL). Using the administration function you can
reduce this number or increase a number that has previously been reduced back to the maximum
number.

(ON,number_clients)

number_clients defines the number of approved LTERM partners for the LTERM pool.

(OFF,number_clients)

number_clients defines the number of disabled LTERM partners in the LTERM pool, i.e. the
maximum number of LTERM partners defined during KDCDEF generation is reduced by

.number_clients

Locks assigned to LTERM partners in an LTERM pool operate as follows:

UTM rejects a connection request from a client if the permissible number of LTERM partners for
that LTERM pool has already been reserved by other clients.

If, at the time the command is processed, more connections to the LTERM pool exist than the
permissible number of LTERM partners, then all existing connections are initially retained.
The lock only takes effect after the connection has been shut down if a client has placed a new
communication request.
If terminal users sign off with KDCOFF BUI they can sign back on with KDCSIGN even if, at this
time, more than the permissible number of LTERM partners in the LTERM pool are still reserved.

openUTM V7.0. Administering Applications. User Guide.

 770

Minimum value of : 0number_clients

Maximum value of : number_clients
The maximum number of clients specified for KDCDEF generation which can connect at the same
time through this LTERM pool. If, when clients are approved (ON,) is number_clients number_clients
greater than the maximum value, UTM automatically reduces the value for to the number_clients
maximum value.

Output from KDCPOOL

The new and old number of clients enabled for the LTERM pool is output to the administrator terminal in the
following form.
The output depends on whether a short or a long host name is assigned to a LTERM pool object. In the case of a
long host name, the information on a LTERM pool object is output in two screen lines.

POOL PRONAM BCAMAPPL PTYPE STA=ON
 NEW OLD
ltermprefix proname applname ptype number number
ltermprefix long.processor.name
 applname ptype number number

Explanation of output

POOL LTERM prefix generated for the LTERM pool

PRONAM Name of the computer to which the LTERM pool was assigned

BCAMAPPL Name of the UTM application assigned to the LTERM pool during KDCDEF generation

STA=ON Number of LTERM partners approved for the LTERM pool before the command was processed
(OLD) and the number of LTERM partners currently approved for the LTERM pool (NEW).

openUTM V7.0. Administering Applications. User Guide.

 771

12.13 KDCPROG - Replace load modules/shared objects/DLLs

KDCPROG allows you to use the BLS interface to replace load modules in a UTM application on a BS2000 system,
or to replace shared objects in a UTM application on Unix, Linux and Windows systems if you are working with the
function “Program exchange with shared objects”. See also the openUTM manual “Generating Applications” and the
corresponding openUTM manual “Using UTM Applications”.

On Windows systems, shared objects are realized using DLLs. Details pertaining to handling the DLLs are also
described in the openUTM manual “Using UTM Applications on Unix, Linux and Windows Systems”.

Requirements for program exchange using KDCPROG

You can replace or reload sections of an application program if they satisfy the following parameters:

The program sections to be replaced must have been generated as separate load modules/shared objects/DLLs.

Every load module or shared object/DLL to be replaced must have been generated statically using a LOAD-
MODULE statement (BS2000 systems) or a SHARED OBJECTS statement (Unix, Linux and Windows systems).

The load modules/shared objects/DLLs must not have been statically linked to the application program.

On BS2000 systems, the load modules to be replaced must not have been loaded in system memory (class 4
memory), nor in a global common memory pool (generated with SCOPE=GLOBAL).

To enable openUTM to process the command, a load module/shared object/DLL must exist with the specified name
and version defined in in the program library or directory that was assigned to it during KDCDEF generation:version

LOAD-MODULE statement, operand LIB (BS2000) or

SHARED-OBJECT statement, operand DIRECTORY (Unix, Linux and Windows systems).

BS2000 systems

If no load module with the specified name and version exists in this program library, the administration command is
rejected and the previously loaded load module remains loaded. In addition, the message K234 is output.

Unix, Linux and Windows systems

If shared object/DLL with the version an defined in exists in the specified directory, the previously loaded version
shared object/DLL will be unloaded and a message issued.

If you then call KDCPROG again, you can load the load module/shared/DLL object by specifying a version of the
load module/shared object that already exists in the library in , or by placing the missing load module/shared version
object/DLL with the specified version in the program library/program directory.

How to implement a program exchange

The way a program exchange is implemented depends on the generated load mode of the load module/shared
object/DLL.

You generate the load mode in the LOAD-MODULE statement (BS2000 systems) or in the SHARED-OBJECT
statement (Unix, Linux and Windows systems), in both cases in the LOAD-MODE operand.

openUTM V7.0. Administering Applications. User Guide.

 772

LOAD-MODE=STARTUP
(The load module/shared object/DLL is loaded as a separate unit when the application starts.)
This exchange operation is performed for each process not later than after the next job is processed, without first
terminating the current application program. Several processes in the application can be terminated
simultaneously. Until the program exchange has been completed for all processes in the application, you are not
allowed to initiate any further exchanges with KDCPROG.

The KDCPROG call merely initiates a program exchange. The actual process of program exchange can take
some considerable time. openUTM informs you of the success or failure of the program exchange operation with
messages to SYSOUT and SYSLOG (BS2000 systems) or and (Unix, Linux and Windows systems).stdout stderr

LOAD-MODE=ONCALL
(Loaded whenever a program unit is called up out of the load module/shared object/DLL for the first time.)
Exchange is performed for every process even if a program unit from this load module/shared object is called
next time in the same process. At any given time, several processes in the application can be replaced
simultaneously.

LOAD-MODE=(POOL, POOL/STARTUP, POOL/ONCALL, only on BS2000 systems) (The public slice of the
load module is loaded into a common memory pool.)
Program exchange operation is not initiated by the KDCPROG call. KDCPROG only causes the new version to
be flagged. The new version of the load module is not loaded into the common memory pool until the following
exchange of the entire application program with KDCAPPL PROG=NEW. In this event, another KDCPROG call
can follow immediately after the call from KDCPROG.
You can flag several load modules using several KDCPROG calls which are then replaced in response to the
next KDCAPPL PROG=NEW. If no KDCAPPL PROG=NEW follows in the same application run, the flagged
versions are replaced after the next application start.

Effect in UTM cluster applications on Unix, Linux and Windows Systems:

In UTM cluster applications, KDCPROG applies globally to the cluster. Program exchange is performed in all
running node applications.

Period of validity for a program exchange

The change remains in force after the end of the application.

KDCPROG VERSION={ version | *HIGHEST-EXISTING | *UPPER-LIMIT }

BS2000 systems:

 , LOAD-MODULE=lmodname

Unix, Linux and Windows systems:

 , SHARED-OBJECT=shared-object-name

For administration using message queuing you must enter KDCPROGA.

openUTM V7.0. Administering Applications. User Guide.

 773

VERSION=version

Version of the load module/shared object/DLL which has to be loaded. The value for must version
not exceed 24 characters in length.

BS2000 systems

In UTM applications on BS2000 systems you must always specify the next version of the
load module to be loaded.

For load modules which are generated with LOAD-MODE=STARTUP the version number of
the old and the new load module may match.

For load modules which are generated with LOAD-MODE=ONCALL or which are located
completely or partially in a common memory pool the new version number must differ from
the old version number.

When the exchange is initiated, the library to which the load module was assigned for
KDCDEF generation (see also KDCDEF statement LOAD-MODULE...,LIB=) must contain an
element with the name and the version specified in .lmodname version

If VERSION=*HIGHEST-EXISTING is specified, then the highest version of the load module
existing in the library is detected and loaded.

If VERSION=@ or *UPPER-LIMIT is specified, then the load module is loaded which was
last entered in this PLAM library without an explicit version specification. If you work with
explicit versions in LMS, you cannot use @ or *UPPER-LIMIT as the load module version.

If a load module is generated with LOAD-MODE=POOL, (POOL,STARTUP) or (POOL,
ONCALL) and with the version *HIGHEST-EXISTING, *HIGHEST-EXISTING can be only
specified as the version. This kind of module can only be reloaded by an application
exchange; the highest available version is always loaded for a module generated in this way.

You cannot replace load modules that have been linked statically to the application program
(load mode STATIC).
Similarly, load modules which have the STARTUP load mode and contain TCB entries can
also not be replaced.

Unix, Linux and Windows systems

In UTM applications running on Unix, Linux or Windows systems you must enter the version
name if the shared object was generated with the ONCALL load mode.

Entering the version name is optional for shared objects/DLLs with the STARTUP load mode
if you are not using the version concept.

LOAD-MODULE=lmodname (only on BS2000 systems)

Name of the load module to be replaced. This can be the name of an OM or an LLM. The load
module (with this name) must have been configured for KDCDEF generation with a LOAD-MODULE
statement. You can only enter one name for each KDCPROG call.
The name must not be more than 32 characters long.

SHARED-OBJECT=shared-object-name (only on Unix, Linux and Windows systems)

Name of the shared object/DLL to be replaced. The name must have been generated with a
SHARED-OBJECT statement. For each KDCPROG call you can only specify one name.
The name must not be more than 32 characters long.

openUTM V7.0. Administering Applications. User Guide.

 774

Output from KDCPROG

After a KDCPROG call is placed, the following information is output to the administrator terminal:

Output for UTM applications on BS2000 systems

LOAD-MODULE lmodname
VERSION (GENERATED) generated element version
VERSION (PREVIOUS) old element version
VERSION (CURRENT) new element version
LIBRARY name of program library
LOAD MODE STARTUP | ONCALL | POOL | POOL/STARTUP | POOL/ONCALL

Output for UTM applications running on Unix, Linux or Windows systems

SHARED-OBJECT shared object name
VERSION (PREVIOUS) old version
VERSION (CURRENT) new version
DIRECTORY name of program directory
LOAD MODE STARTUP | ONCALL

Explanation of the output

LOAD-MODULE

Name of the load module on BS2000 systems

SHARED-OBJECT

Name of the shared objects/DLL on Unix, Linux and Windows systems

VERSION (GENERATED)

Generated version of the load module

VERSION (PREVIOUS)

Previously loaded version of the load module/shared object/DLL

VERSION (CURRENT)

Version of the load module/shared object which is to be loaded

LIBRARY

 Name of the program library from which the load module (BS2000 systems) is loaded.

DIRECTORY

Name of the directory from which the shared object/DLL is loaded (Unix, Linux and Windows
systems).

LOAD MODE Load mode for the load module/shared object/DLL:

openUTM V7.0. Administering Applications. User Guide.

 775

STARTUP
The load module/shared object/DLL is loaded as a separate unit when the application starts.

ONCALL
The load module/shared object/DLL is loaded whenever a program unit is called from the load
module for the first time.

Only on BS2000 systems:

POOL
The load module is loaded into the common memory pool when the application starts. The load
module does not contain a private slice.

POOL/STARTUP
The public slice of the load module is loaded into the common memory pool when the application
starts. The private slice belonging to the load module is then loaded into the local process memory.

POOL/ONCALL
The public slice of the load module is loaded into the common memory pool when the application
starts. The private slice belonging to the load module is loaded into the local process memory when
the first program unit assigned to this load module is called.

Program exchange messages with KDCPROG

Once the exchange of application units generated by a STARTUP (and POOL with BS2000 systems) load mode is
complete, the following message is output to SYSOUT and SYSLOG (BS2000 system) or and (Unix, stdout stderr
Linux or Windows system):

K074 Program exchange completed ...

If errors occur when application units generated with STARTUP (and POOL with BS2000 systems) load mode are
being replaced, the following message is output to SYSLST and SYSLOG (BS2000 system) or and stdout stderr
(Unix, Linux or Windows system):

K075 Program exchange aborted by task/process ..

If errors occur during exchange on BS2000 systems, message K078 together with the error cause is output to
SYSOUT.

openUTM V7.0. Administering Applications. User Guide.

 776

12.14 KDCPTERM - Change properties of clients and printers

KDCPTERM allows you to change the properties of clients and printers.

You can perform the following actions:

Disable or re-enable clients and printers.

Establish and shut down logical connections to clients and printers. In particular, you can establish or shut down
connections to individual printers in a printer pool.

Initiate or prevent the automatic establishment of connections to clients and printers when the application starts.

Only on BS2000 systems: If terminals are connected to the application via a multiplex connection, you can
release sessions that are in DISCONNECT-PENDING mode.

Things to note when establishing and shutting down connections

With KDCPTERM you can initiate immediate connections or the automatic establishment of a connection for each
subsequent application start for the following objects (ACTION=CON or ACON):

On BS2000 systems: Printers, terminals and transport system applications of the type APPLI or SOCKET.
Calls from connections to UTM clients with the UPIC carrier system (PTYPE=UPIC-R) are rejected.
The initiative for establishing a connection always lies with the UTM client.

On Unix, Linux and Windows systems: Printers (PTYPE=PRINTER) and transport system applications of the
type PTYPE=APPLI or SOCKET.
Calls from connections to UPIC clients (PTYPE=UPIC-R/-L) and to terminals (PTYPE=TTY) are rejected. The
establishment of connections to these clients can only be initiated by the clients themselves.

No connections can be established with KDCPTERM to clients which connect to the application by means of an
LTERM pool.

If there is a request for connection to be established with a client for which the actions CON and ACON are not
permitted, the KDCPTERM call is rejected.

In response to a successful call from KDCPTERM with the action CON, UTM initiates the establishment of a
connection to the specified clients and printers. Successful execution of this command does not mean that the
connections have actually been established or even, indeed, that they can be established. To find out whether the
connections are actually possible, you must enter a specific query (e.g. with KDCINF).

Termination of a connection with ACTION=DIS causes the connection to a client or printer to be shut down
immediately. Neither can open services be terminated.

Things to note when disabling clients or printers

A lock operates as follows:

Every connection request from a client is rejected.

Existing connections are retained.
The lock only comes into effect when a client next attempts to establish a logical connection.

Calls from a connection to a disabled client or printer are rejected.

Asynchronous messages to disabled clients or printers are stored in the buffer memory or the KDCFILE and can
give rise to a shortage or resources!

openUTM V7.0. Administering Applications. User Guide.

 777

Effect in UTM cluster applications

The effect in UTM cluster applications is described in the sections devoted to the individual operands since some of
the changes made with KDCPTERM apply locally to the node whereas others take effect globally in the cluster.

Period of validity of changes

The period during which the changes remain effective is dependent on the type of change and is therefore specified
in the operand descriptions.

KDCPTERM ERM={ ptermname | (ptermname_1,ptermname_2,...,ptermname_10) }PT

[,BCAMAPPL=applname]

[, TUS={ ON| OFF }]STA

BS2000 systems:

 , NAM=pronamePRO

[, ION={ ON| IS | EL | ON | CON }]ACT C D R AC NA

Unix, Linux and Windows systems:

[, NAM=proname]PRO

[, ION={ ON| IS | ON | CON }]ACT C D AC NA

For administration using message queuing you must enter the KDCPTRMA administration command.

PTERM=(ptermname_1,...,ptermname_10)

Name of the clients and printers to be administered. You can enter a maximum of 10 names for
each KDCPTERM call.
If only one name is entered you do not need to key in the parentheses.

All names on the list must belong to clients and printers located on the same computer.

BCAMAPPL=applname

Only applicable to client applications of the PTYPE=APPLI/SOCKET or PTYPE=UPIC-R/L type.

For , enter the name of the local UTM application with which the connections between the applname
UTM application and client applications are established.

Default: The application name specified in MAX APPLINAME for KDCDEF generation is accepted.

STATUS=

Disables a client or printer or allows disabled clients and printers to be used again (i.e. to be re-
enabled).

In UTM cluster applications, the operand applies globally in the cluster.

ON The clients/printers are released for use again.ptermname_1,...,ptermname_10

openUTM V7.0. Administering Applications. User Guide.

 778

OFF The clients/printers are to be disabled.ptermname_1,...,ptermname_10

Enabling and disabling in this manner extend beyond the end of the current application.

PRONAM=proname

Name of the processor on which the clients/printers
 are located. At this point, enter the name of the processor that (ptermname_1,...,ptermname_10)

was specified when the clients/printers were specified in the configuration.

For clients and printer in a UTM application on BS2000 systems, entering is mandatory.proname

In a UTM application running on a Unix, Linux or Windows system you do not enter if the proname
specified clients and printers are connected locally.

ACTION= Defines which action openUTM is to perform.

CON openUTM should establish logical connections to the clients and printers ptermname_1,...,
.ptermname_10

In UTM cluster applications, the operand applies locally in the node.

ACTION=CON is permitted for:not

UPIC clients

clients connected to the application by an LTERM pool

terminals connected to the openUTM application on BS2000 systems by a multiplex connection

terminals in a UTM application on a Unix, Linux or Windows system (PTYPE=TTY)

DIS openUTM is to shut down logical connections to the clients and printers ptermname_1,...,
.ptermname_10

In UTM cluster applications, the operand applies locally in the node.

In openUTM on BS2000 systems, ACTION=DIS is rejected if a terminal connection is to be shut
down which is connected to the UTM application by a multiplex connection and which exists for a
session in DISCONNECT-PENDING mode. The KDCPTERM call is rejected. The logical
connection must be shut down with ACTION=REL.
You can check whether or not a session is in DISCONNECT-PENDING mode with KDCINF
PTERM.

REL (only on BS2000 systems)

ACTION=REL is only permitted if the clients specified in are ptermname_1,...,ptermname_10
connected to the application by a multiplex connection.

A session is released with ACTION=REL. The logical connection to the client is shut down.
Entry of ACTION=REL is only permitted if the session is in DISCONNECT-PENDING mode and if
its timer has run out (approx. 10 minutes).

ACON (automatic connection)
During subsequent application starts, UTM should automatically establish logical connections to

.ptermname_1,...,ptermname_10

In UTM cluster applications, the operand applies globally in the cluster.

openUTM V7.0. Administering Applications. User Guide.

 779

ACTION=ACON is permitted for:not

UPIC clients

clients connected to the application via an LTERM pool

terminals on a UTM application on a Unix, Linux or Windows system with PTYPE=TTY.

NACON (no automatic connection)
Renders the ACON entry ineffective, i.e. openUTM does not establish any logical connections to

 during subsequent application starts.ptermname_1,...,ptermname_10

In UTM cluster applications, the operand applies globally in the cluster.

Output from KDCPTERM

The new and old properties of specified physical clients and printers (NEW, OLD) are displayed on the administrator
terminal.

The output depends on whether a short or a long host name is assigned to a PTERM. In the case of a long host
name, the information on a PTERM is output in two screen lines.

PTERM PRONAM BCAMAPPL STATUS CONNECTION
 NEW OLD NEW OLD
pterm1 proname applname ON|OFF ON|OFF C|D|W A M C|D|W A M [POOL PTERM]
 T|E T|E
pterm1 long.processor.name
 applname ON|OFF ON|OFF C|D|W A M C|D|W A M [POOL PTERM]
 T|E T|E

Explanation of the output

PTERM

Name of the client/printer

PRONAM

Name of the processor on which the client/printer is located

BCAMAPPL

Name of the local UTM application through which connections are established to the client/printer

STATUS

The client/printer is disabled (OFF) or not disabled (ON)

CONNECTION

1st column:

C/D/W Client/printer is currently connected to the application (C) or is not connected (D), or
openUTM is trying to establish a connection (W = waiting for a connection)

openUTM V7.0. Administering Applications. User Guide.

 780

T/E

Is only output for terminals which use a multiplex connection to connect with a UTM
application on a BS2000 system.
T: (timer)
The session is in DISCONNECT-PENDING mode; the timer isrunning, waiting on
confirmation that a connection has beenestablished
E: (expired)
The session is in DISCONNECT-PENDING mode and has timedout waiting for
confirmation.

2nd column:
A: Connection established automatically when the application starts

3rd column (only for UTM applications on BS2000 systems):
The client is connected (M) or not (no entry) to the application via a multiplex connection.

POOL PTERM

This is output if the client is connected via LTERM pool.

openUTM V7.0. Administering Applications. User Guide.

 781

12.15 KDCSEND - Send a message to LTERM partners (BS2000 systems)

KDCSEND allows you to send messages to one, several or all active terminals of a UTM application on BS2000
systems. openUTM then sends message K023 with the specified messages as an insert. This is output by default in
the system line on the terminal. However, the message destination of message K023 can be changed. If the
message destination PARTNER is selected for the UTM message K023, you can send the message to one, several
or all connected TS applications. The message goes only go to dialog partners (LTERM with USAGE=D).

KDCSEND MSG='message'

[ERM={ ltermname | (ltermname_1 ltermname_10) | }] ,LT ,..., KDCALL

For administration using message queuing you must enter KDCSENDA.

MSG='message'

For enter the message to be sent. It should be enclosed in single quotes and must not be message,
longer than 74 characters. Write double quotes within the message text (i.e. do not use single inverted
commas as part of your message text).
If a terminal is assigned to the LTERM partner, the message is displayed in the system line.

LTERM= Specifies the LTERM partner to which the message should be sent.

(ltermname_1,...,ltermname_10)

Name of the LTERM partner to which the message is to be sent. You can enter a total of up to 10
names. If you only enter one name, you do not need to key in the parentheses.

KDCALL

This message should be sent to all active LTERM partners, i.e. to all clients connected by a logical
connection at the present time.

Default: KDCALL

Output from KDCSEND

The message is displayed on the administrator terminal.message

openUTM V7.0. Administering Applications. User Guide.

 782

12.16 KDCSHUT - Terminate an application run

KDCSHUT allows you to terminate a UTM application. You have the following options:

In UTM cluster applications, you can specify whether the application run is to be terminated at all nodes or only at
the node at which the call is issued.

You have the following options:

You can terminate the application run normally. UTM terminates the application run as soon as all running dialog
steps have been completed (NORMAL).

You can schedule the application to terminate after a specified period (WARN).

You can terminate the application once all the UTM-D dialogs have been terminated and all the UTM-D
connections have been disconnected and at the latest, however, after a specified period (GRACE).

You can kill the application, i.e. perform an immediate abnormal termination (KILL).

You should note the following if you kill an application:

You cannot kill the application by means of an asynchronous service, i.e. the asynchronous transaction code
KDCSHUTA KILL has no effect.

You should note the following when shutting down applications with distributed processing:

You should preferably terminate applications with distributed processing with KDCSHUT GRACE or alternatively
with a warning (KDCSHUT WARN).
The use of KDCSHUT GRACE or WARN reduces the probability that services will be killed and distributed
transactions will remain in transaction status P (preliminary end of transaction).

An application with distributed processing is not terminated normally if, at shutdown time, there are still services
with transaction status P (prepare to commit) or if acknowledgments are still outstanding for asynchronous
messages to a partner server. In such cases, openUTM issues message K060 with ENDPET as the reason for
termination. No dumps are generated.

Consequently, for KDCSHUT WARN or GRACE, you should specify a time that is greater than the maximum
period that a distributed transaction remains in the state PTC (i.e. transaction status P). This reduces the
probability of distributed transactions still being in this state at the end of the application and of the application
being terminated abnormally with ENDPET.

For further information about shutting down/terminating a UTM application, please refer to the openUTM manual
“Using UTM Applications”..

KDCSHUT { RACE [, IME=time_min] | ILL | ORMAL | G T K N

 ARN [, IME=time_min] }W T

 [,SCOPE= { LOCAL | GLOBAL }]

For administration using message queuing you must enter KDCSHUTA.

openUTM V7.0. Administering Applications. User Guide.

 783

GRACE All the active LPAP and OSI-LPAP connections are set to QUIET. The application is terminated as
soon as all the UTM-D connections have been disconnected or, at the latest, when the defined
time has expired.

On BS2000 systems, at all active terminals, a note in the system line indicates the impending
shutdown of the application. This is accompanied by an indication of the time remaining before
shutdown (see TIME operand).

The application run is terminated, i.e. it is shut down immediately. Open services will not be
terminated first. A UTM dump with the dump code='ASIS99' is created by all processes.

NORMAL Termination of the application is initiated immediately. No more users can sign on to the
application and users cannot start any new services. No new dialog entries are processed. If the
new dialog entry is a multi-step transaction, the multi-step transaction is rolled back to the last
synchronization point. All logical connections to clients and printers are shut down.
Users can continue working on open services after the next application start.

WARN All active connections from LPAPs and OSI-LPAPs are set to QUIET.

On BS2000 systems, at all active terminals, a note in the system line indicates the impending
shutdown of the application. This is accompanied by an indication of the time remaining before
shutdown (see TIME operand).

TIME=time_min

Only works together with WARN and GRACEFUL.

Meaning for GRACE:
 is the maximum time in minutes after which the application will be terminated.time_min

Meaning with WARN:
 is the time in minutes after which the application is terminated.time_min

Maximum: 255 minutes
Minimum: 1 minute

openUTM rejects the entry TIME=0.

Note for BS2000 systems

After KDCSHUT GRACE has been entered, only users with administration
authorizations may sign-on. It is then only possible to start services whose service TAC
belongs to an administration program unit. All UTM user commands with the exception
of KDCOUT are still executed.

i

After KDCSHUT WARN has been entered, only users with administration authorizations
may sign-on. It is then only possible to start services whose service TAC belongs to an
administration program unit. All UTM user commands with the exception of KDCOUT
are still executed.

i

openUTM V7.0. Administering Applications. User Guide.

 784

At all active terminals, a note in the system line indicates the impending shutdown of the
application. This is accompanied by an indication of the time remaining before shutdown. If a
very large number of terminals are active (configurations with many terminals) then it takes a
certain amount of time to issue the shutdown notification. You should therefore not choose too
short a value for TIME.

During KDCDEF generation, TAC KDCSHUT was assigned the maximum CPU time required
by KDCSHUT to perform a shutdown.
Select a sufficiently long period of time for applications involving numerous terminals. If this
period of time is not long enough, openUTM terminates the process and issues the message
K017.

SCOPE= Specifies the scope of application of the command.
This parameter is only relevant for UTM cluster applications.

LOCAL The command only applies to local node applications.
Default value.

GLOBAL The command applies to all the node applications in the UTM cluster application.
SCOPE=GLOBAL is rejected if the running node applications have not all been generated in the
same way. This may occur, for example, if an update generation of the KDCFILE is performed
without fully shutting down the UTM cluster application.

Output from KDCSHUT

The message "COMMAND ACCEPTED" is displayed on the administrator terminal. UTM displays the actual
termination of the application in the following manner:

BS2000 systems: The end of the application is only displayed on the console. The display appears as soon as
the last process in the UTM application has finished.

Unix and Linux systems: The end of the application is logged by the process after and .utmmain stdout stderr

Windows systems: The end of the application is logged in and by the process . If the stdout stderr utmmain
application is started as a service, messages are also entered in the event logfile of the Windows system.

openUTM V7.0. Administering Applications. User Guide.

 785

12.17 KDCSLOG - Administer the SYSLOG file

With KDCSLOG you can administer the system log file SYSLOG during runtime. You can perform the following
activities:

Switch automatic size monitoring of the SYSLOG on and off.

Define or change the control value for size monitoring.

Switch the SYSLOG file to the next file generation of the SYSLOG-FGG.

Write the contents of the internal UTM message buffer to the SYSLOG file.

Call for information about the properties of the SYSLOG file.

Effect in UTM cluster applications on Unix, Linux and Windows systems

The call applies globally to the cluster, i.e. the system log file SYSLOG is administered for each node application.
Size monitoring extends beyond the current UTM cluster application run. Switching or writing of the buffer apply
only to the current UTM cluster application run, i.e. to all the node applications that are currently running.

Period of validity of the change

The most recent control value set for size monitoring is also set after the next application start.

If the SYSLOG-FGG basis falls within the valid range of the SYSLOG-FGG (between the first and last file
generations), openUTM first logs the basic file generation in the next application run. If the basis falls outside the
valid range, openUTM opens a new file generation for the log.

KDCSLOG { INFO | WRITE | SIZE=fg_size | SWITCH [, SIZE=fg_size] }

For administration using message queuing you must enter KDCSLOGA.

INFO Information about the SYSLOG file or SYSLOG-FGG is displayed. For a description of the output,
see the section following the operand description.

WRITE All messages issued to message destination SYSLOG and still stored in buffer memory are
written to the current SYSLOG file immediately.

This function is useful if the SYSLOG file, opened as a simple file, is to be evaluated in run mode.
All messages generated by openUTM up to this time which have SYSLOG as their destination
are covered by this evaluation.

However, to evaluate SYSLOG in run mode, it is better to open SYSLOG as an FGG. This
enables you, before starting an evaluation, to switch over file generation with KDCSLOG SWITCH
and to log all messages generated by openUTM up to this time. In other words, openUTM writes
the message buffer to the “old” SYSLOG file automatically before it switches over.
However, the evaluation does not cover any of the messages generated after the switch time.

SIZE=fg_size The KDCSLOG SIZE=fg_size command is only executed if SYSLOG was opened as an FGG.

fg_size redefines the control value for automatic size monitoring of the SYSLOG file. For , fg_size
enter the desired control value representing a number of UTM pages (e.g. SIZE=100 defines a
control value of 100 times the size of a UTM page).

openUTM V7.0. Administering Applications. User Guide.

 786

fg_size >= 0 must be entered. If < 0 is entered, openUTM refuses to execute the fg_size
command.

=0 you can switch off automatic size monitoring. With > 0, automatic size With fg_size fg_size
monitoring is switched back on. Entries for between 1 and 99 are automatically replaced fg_size
by 100. Values greater than 100 are accepted without changes as control values.

Minimum value: 100

Maximum value: (2 -1)31

SWITCH Is only executed if SYSLOG was opened as an FGG.
KDCSLOG SWITCH prompts openUTM to switch the SYSLOG file to the next file generation.

openUTM guarantees that no more messages are written to the old SYSLOG file generation once
this command has been executed successfully.

Before switching to a new file generation, openUTM continues writing messages stored in the
internal message buffer to the old file generation.

Please note the following points in UTM applications on BS2000 systems:

Successful execution of a KDCSLOG SWITCH command by openUTM does not mean that
you have immediate access to the new file generation. The old file generation can be kept
open for an extended period of time by UTM processes, for example because the processing
of a program unit started before the switch has not been completed and because no message
with SYSLOG as its destination has yet been written by the relevant process.

You can use KDCSLOG INFO as a query to find out which SYSLOG file generations have
already been closed by all UTM processes, i.e. all file generations less than LOWEST-OPEN-
GEN (see description of output in section "Output from KDCSLOG INFO" in chapter "Output

).from KDCSLOG INFO"

SWITCH,SIZE=fg_size

Is only executed if the SYSLOG was opened as an FGG.

With KDCSLOG SWITCH,SIZE= you can switch the SYSLOG to a new file generation fg_size
and, at the same time, redefine the control value for automatic size monitoring of the subsequent
file generations. To this end, openUTM guarantees either that both actions are performed
successfully, or that neither is. In other words, openUTM only sets the new control value if the
SYSLOG switch operation was successful.

If openUTM is not able to switch to the next file generation, the control value does not change.
Size monitoring is suspended and openUTM ignores the value specified for Size fg_size.
monitoring cannot be reset until after a subsequent successful switch attempt (KDCSLOG
SWITCH). If is not specified at this time, openUTM adopts the “old” value of as its fg_size fg_size
control value.

For further information about the function, restrictions and possible values of see the fg_size,
description of the operands SWITCH and SIZE=fg_size.

openUTM V7.0. Administering Applications. User Guide.

 787

Output from KDCSLOG INFO

SYSLOG FILE NAME filename
FILE GENERATION GROUP fgg
LAST SWITCH last-switch
SIZE CONTROL control
CURRENT SYSLOG SIZE csp UTM PAGE(S) = csk KB
SIZE CONTROL VALUE scp UTM PAGE(S) = sck KB
SYSLOG FILE rel% FILLED
FILE GENERATIONS OF APPL START-GEN start-gen
 LOWEST-OPEN-GEN low-gen
 CURRENT-GEN curr-gen
FILE GENERATIONS BASE-GEN basis-gen
 FIRST-GEN first-gen
 LAST-GEN last-gen

Explanation of the output

SYSLOG FILE NAME

Name of the current SYSLOG file. If the SYSLOG was opened as an FGG, the generation number
of the current file generation is displayed with it.

FILE GENERATION GROUP

Shows whether the SYSLOG was opened as an FGG or as a simple file.

YES
The SYSLOG was opened as an FGG.

NO
The SYSLOG was opened as a simple file.

LAST SWITCH

Only output if the SYSLOG was opened as an FGG.
LAST SWITCH indicates whether the last attempt by openUTM to switch to the next file generation
executed without errors. The following values are possible:

SUCCESSFUL
The last switch attempt executed without errors.

FAILED
When openUTM last attempted to switch, an error occurred.
openUTM was unable to switch to the next file generation.

NONE
No switch attempt was made in the current application.

SIZE CONTROL

Only issued if the SYSLOG was opened as an FGG.
SIZE CONTROL indicates whether the automatic size monitoring function is switched on. The
following values are possible:

openUTM V7.0. Administering Applications. User Guide.

 788

ON
Size monitoring is switched on

OFF
Size monitoring is switched off

SUSPENDED
The last attempt to switch to another file generation failed (for LAST SWITCH, the word FAILED is
displayed). For this reason, size monitoring is suspended.
Measure: you can try to switch SYSLOG again using KDCSLOG SWITCH. If the switch operation
executes without errors, size monitoring is activated again automatically by openUTM.

CURRENT SYSLOG SIZE

Present size of the SYSLOG file/current file generation; issued in number of UTM pages () and in csp
kilobytes ().csk

All the following information is only issued if the SYSLOG was opened as an FGG.

SIZE CONTROL VALUE

Set size control value of the automatic size monitoring operation. The control value is issued in
numbers of UTM pages () and in kilobytes (). The kilobyte value is not displayed for very large scp sck

control values (e.g. for 2 KB). 31

If 0 is output as the SIZE CONTROL VALUE, size monitoring is switched off.

SYSLOG FILE % FILLED

Is output if the automatic size monitoring function is switched on. The value indicates the percentage
of the SYSLOG file already used up relative to the defined size control value (SIZE CONTROL
VALUE). If size monitoring has been suspended by openUTM, the SYSLOG file can actually be filled
by more than 100%. When this occurs, the message SYSLOG FILE “>100% FILLED” is output.

START-GEN

Generation number of the first SYSLOG file generation written by openUTM in the current
application run.

LOWEST-OPEN-GEN

Generation number of the oldest SYSLOG file generation still kept open by a process in the
application.

CURRENT-GEN

Generation number of the file generation in which openUTM is currently keeping a log.

BASE-GEN

Generation number of the defined basis of the SYSLOG FGG.

FIRST-GEN

Generation number of the first valid file generation of the SYSLOG FGG.

On BS2000 systems, this is the same as the FIRST-GEN from the SHOW-FILE-ATTRIBUTES
command.

openUTM V7.0. Administering Applications. User Guide.

 789

1.

2.

3.

1.

2.

1.

2.

3.

LAST-GEN

Generation number of the last valid file generation of SYSLOG-FGG.

On BS2000 systems, this is the same as the LAST-GEN from the SHOW-FILE-ATTRIBUTES
command.

Output from KDCSLOG WRITE

If openUTM is able to write the message buffer properly to the SYSLOG, openUTM issues the following
message:

**** SYSLOG BUFFER WRITTEN ****

If the message buffer for command processing is empty, the following message is issued:

**** SYSLOG BUFFER IS EMPTY ****

If openUTM is not able to write the message buffer properly to the SYSLOG, the following message is issued:

**** SYSLOG BUFFER NOT WRITTEN ****

Output from KDCSLOG SIZE=fg_size

When >= 0 is displayed, if the SYSLOG for the application was opened as an FGG, then the following fg_size
form of text is issued:

 NEW OLD
SIZE 100 0 COMMAND ACCEPTED - MINIMUM SIZE TAKEN

The additional text COMMAND ACCEPTED- MINIMUM SIZE TAKEN is only issued if a value of between 1 and
99 is entered for .fg_size

If the SYSLOG is not opened as an FGG, the following message is issued:

COMMAND REJECTED - SYSLOG FILE IS NO FGG

Output from KDCSLOG SWITCH

If openUTM was able to switch the SYSLOG successfully, the following message is issued:

*** SYSLOG SWITCH ACCEPTED ***

If the SYSLOG was not opened as an FGG, the following message is issued:

*** SYSLOG SWITCH REJECTED - SYSLOG FILE IS NO FGG ***

If an error occurs during the switch operation, openUTM issues the following message:

*** SYSLOG SWITCH REJECTED ***

openUTM V7.0. Administering Applications. User Guide.

 790

12.18 KDCSWTCH - Change the assignment of clients and printers to LTERM
partners

KDCSWTCH allows you to redefine the assignment of clients and printers (PTERM) to LTERM partners.

KDCSWTCH is only permitted in standalone UTM applications.

KDCSWTCH has the following effect:

the existing assignment of a client/printer to an LTERM partner is cancelled and

the client/printer is assigned to the specified LTERM partner.

This function can only be performed when no logical connection exists between the client/printer and the UTM
application.

With KDCSWTCH you can, for example, assign another printer to a printer pool. In a printer pool, several physical
printers are assigned to one LTERM partner.

If on the other hand you wish to assign an LTERM partner to a printer to which, in turn, a printer control LTERM is
assigned (CTERM), then the control identification (CID) of that printer must be unique within the printer control
LTERM range.

Restriction

Reassignment of the LTERM partner is possible only for terminals and printers. The assignment to an LTERM
partner specified on configuration cannot be changed

for UPIC clients

for TS applications (APPLI/SOCKET) generated as interactive partners

for clients that connect to the application via an LTERM pool

for LTERMs that belong to an LTERM bundle or an LTERM group

If you assign a new LTERM partner to a terminal or printer, the LTERM partner may not be assigned to a terminal
/printer of another protocol type (either currently or in the past). Distinctions are drawn here between the following 4
protocol types: terminals, TS applications, printers and RSO printers.

KDCSWTCH is therefore rejected if:

the client specified in is a UPIC client or a TS dialog application (PTYPE=UPIC-R/L or PTYPE=APPLIptermname
/SOCKET) or

the LTERM partner specified in was previously assigned to a UPIC client or a TS dialog application or ltermname
if

the LTERM partner specified in is assigned to an LTERM pool or if.ltermname

the printer specified in is an RSO printer (PTYPE=RSO) and the LTERM partner specified in ptermname
 was previously assigned to a normal printer.ltermname

the LTERM partner specified in belongs to an LTERM group or an LTERM bundle.ltermname

openUTM on Windows systems does not support any printers.i

openUTM V7.0. Administering Applications. User Guide.

 791

Period of validity of the change

These changes remain in force after the end of the application.

BS2000 systems:

KDCSWTCH ltermname,ptermname,proname [,applname]

Unix, Linux and Windows systems:

KDCSWTCH ltermname,ptermname [,proname [,applname]]

For administration using message queuing you must enter KDCSWCHA.

ltermname

Name of the LTERM partner to which the client or printer should be assigned. The LTERM partner must
exist in the configuration of the UTM application.

ptermname, proname, applname

Uniquely identifies the client/printer.

ptermname

Name of the client or printer (PTERM name)

proname

Name of the processor on which the client is running or to which the client or printer is connected.

The entry is mandatory in UTM applications on BS2000 systems.proname

In UTM applications on Unix, Linux or Windows systems, only has to be entered if the client or proname
printer is not connected locally.

Default value in openUTM on Unix, Linux or Windows systems:
Blanks for local clients/printer.

applname

This entry is only meaningful for UPIC clients and TS applications.

For , please enter the name of the UTM application which was assigned to the client when it was applname
entered in the configuration.

The entry is mandatory if the BCAMAPPL name assigned to the client does not match the applname
name of the UTM application defined for KDCDEF generation in MAX APPLINAME. If is not applname
entered, the command is rejected with this message:

BCAMAPPL-NAME ' 'applname INVALID OR NOT DEFINED

Default:
Name of the application defined in the KDCDEF control statement MAX in the APPLINAME operand.

openUTM V7.0. Administering Applications. User Guide.

 792

Output from KDCSWTCH

The new and old assignments between client/printer and LTERM are displayed on the administrator terminal.

The output depends on whether a short or a long host name is assigned to a PTERM. In the case of a long host
name, the information on a PTERM is output in two screen lines.

The following section shows you the outputs for the calls with a short and with a long host name.

KDCSWTCH ltermname1,ptermname1,proname1,applname1

Here the LTERM partner is assigned to the client .lterm1 pterm1

KDCSWTCH lterm2,pterm1,proname1,app11
PTERM | PRONAM | BCAMAPPL | NEW LTERM || OLD LTERM
---------+----------+----------+-----------++----------
pterm1 | proname1 | appl1 | lterm2 || lterm1
---------+----------+----------+-----------++----------
pterm2 | proname2 | appl2 | || lterm2

KDCSWTCH lterm2,pterm1,long.processor.name1,appl1
PTERM | PRONAM | BCAMAPPL | NEW LTERM || OLD LTERM
---------+----------+----------+-----------++----------
pterm1 | long.processor.name1
 | appl1 | lterm2 || lterm1
---------+----------+----------+-----------++----------
pterm2 | proname2 | appl2 | || lterm2

Explanation of the output

openUTM outputs the old and new assignment for the client entered in the KDCSWTCH call (here ptermname
), and for the client assigned to the LTERM partner before the KDCSWTCH call (here).pterm1 lterm2 pterm2

Before the KDCSWTCH call, LTERM partner was assigned to client and client was assigned lterm1 pterm1 pterm2
to LTERM partner (see column headed OLD LTERM). Both assignments are cancelled by the KDCSWTCH lterm2
call.

PTERM Name of the client or printer

PRONAM Name of the processor on which the client/printer is located

BCAMAPPL Name of the local UTM application through which connection to the client/printer is established

NEW LTERM Name of the LTERM partner to which the client/printer was assigned by the KDCSWTCH call

If and are clients (i.e. not printers), then the old assignments linking LTERM partners to pterm1 pterm2
PTERMs are cancelled.

If and are printers, the old assignment of to is not cancelled. A printer pool pterm1 pterm2 lterm2 pterm2
is then always created at this point, i.e. both printers are assigned to the LTERM partner .lterm2

i

openUTM V7.0. Administering Applications. User Guide.

 793

ltermname1

Name of the LTERM partner which was assigned to the client/printer with the KDCSWTCH call

ltermname2

Name of the LTERM partner which was assigned to the client/printer before the KDCSWTCH call.

OLD LTERM Name of the LTERM partner to which the client/printer was previously assigned.

Example: Combining printers to form printer pools

Printers and are to be combined to form a printer pool. The LTERM partner of the printer pools is to pterm1 pterm2
be .lt-bundle

Assignment before the KDCSWTCH call:
Printer is already assigned to the LTERM partner The printer is assigned to the LTERM pterm2 lt-bundle. pterm1
partner .lt-print

Call:

KDCSWTCH lt-bundle,pterm1,proname1,appl1

Output:

PTERM | PRONAM | BCAMAPPL | NEW LTERM || OLD LTERM
---------+----------+----------+-----------++----------
pterm1 | proname1 | appl1 | lt-bundle || lt-print
---------+----------+----------+-----------++----------
pterm2 | proname2 | appl2 | lt-bundle || lt-bundle

openUTM V7.0. Administering Applications. User Guide.

 794

12.19 KDCTAC - Lock/release transaction codes and TAC queues

KDCTAC allows you to lock transaction codes and TAC queues and remove locks that were set during generation
or by means of administration functions.
With the exception of the KDCTAC transaction code, this function can be applied to all transaction codes and TAC
queues in the application.

Effect in UTM cluster applications

In UTM cluster applications, KDCTAC applies globally to the cluster.

Period of validity of the change

The event-driven service KDCMSGTC is locked only for the duration of the current application run.
For all other TACs the change remains in force beyond the end of the application.

TAC={ tacname | (tacname_1,tacname_2,...,tacname_10) }KDCTAC

 , TUS={ OFF | ALT | EEP | ON }STA H K

For administration using message queuing you must enter KDCTACA.

TAC=(tacname_1,...,tacname_10)

Name of the transaction code or TAC queue to be administered. You can enter a maximum of 10
transaction codes or TAC queues per call. If you only enter one TAC name you do not need to enter
the parentheses.

The list must not contain the transaction code KDCTAC.

STATUS=

Transaction codes or TAC queues are to be locked.tacname_1,...,tacname_10

OFF Transaction codes:
With STATUS=OFF you can only lock service TACs, i.e. TACs configured with CALL=FIRST or
CALL=BOTH. Locking with OFF causes UTM to stop accepting jobs for this TAC with immediate
effect. If a TAC configured with CALL=BOTH is disabled, it can still be called as a follow-up TAC in a
service.

TAC queues:
The TAC queues are locked for write access; read access is possible.

HALT Transaction codes or TAC queues are to be locked completely.tacname_1,...,tacname_10
Transaction codes:

A complete lock on a TAC means that, with immediate effect, no more program unit runs can be
started for this TAC. This in turn means that no further jobs are accepted for the TAC and, over and
above this, it is disabled as a follow-up TAC in an asynchronous or dialog service.

If a completely disabled TAC is called as a follow-up TAC, the service is terminated with PEND ER
(74Z). Asynchronous jobs already queued in the TAC message queues are not started. They remain
in the message queue until the TAC is released again (STATUS=ON) or set to STATUS=OFF.

openUTM V7.0. Administering Applications. User Guide.

 795

TAC queues:
The TAC queues are locked for read and write access.

KEEP May only be specified for TAC queues and asynchronous transaction codes that are also service
TACs (CALL=FIRST/BOTH).

Transaction codes:
The transaction code is disabled. Jobs for this transaction code are accepted, but they are not
processed. The jobs are simply placed in the job queue for the transaction code. They are not
processed until you change the transaction code status to ON.

You can use the status KEEP to collect jobs that are to be processed at a later time at which the
degree of utilization of the application is lower (e.g. at night).

In order to avoid an overload of the page pool due to too many jobs being temporarily stored, you
should limit the size of the job queue of the transaction code. For this you must set the parameter
QLEV appropriately when you generate the transaction code.

TAC queues:
The TAC queues are locked for read access; write access is possible.

ON The transaction codes or TAC queues are released. Any locks set during tacname_1,...,tacname_10
generation or by means of administration functions are cancelled.

Output from KDCTAC

The new and old properties of the transaction codes are output to the administrator terminal.

TAC STATUS

NEW OLD

tacname_1

tacname_2

ON|OFF|HLT|KP

ON|OFF|HLT|KP

ON|OFF|HLT|KP

ON|OFF|HLT|KP

openUTM V7.0. Administering Applications. User Guide.

 796

12.20 KDCTCL - Change number of processes of a TAC class

With KDCTCL you can:

get information on the current settings for the TAC classes. To do this, enter KDCTCL without the operands
TASKS and TASKSFREE.

change the maximum number of processes that can process TACs of a TAC class at the same time. You can
only change this value if the KDCDEF generation of your application does not contain the TAC-PRIORTIES
statement.

The number of processes that you can allow for individual TAC classes is limited by the maximum number of
processes defined in the MAX statement during the KDCDEF generation (operands TASKS, ASYNTASKS and
TASKS-IN-PGWT).
If you enter a higher number of processes, KDCTCL is rejected.

After the KDCTCL, the actual number of processes set for processing TACs of a TAC class may be smaller than
the value set with KDCTCL. The actual number of processes depends on the current number of processes for
the entire application (set with the start parameter TASKS or by administration, e.g. using KDCAPPL).

You can define the maximum number of processes for a TAC class in one of two ways: either by entering the
number of processes allowed to process TACs in one TAC class at the same time (TASKS operand); or by entering
the minimum number of processes in the application that are to be kept available for processing the TACs in other
TAC classes (TASKSFREE operand). The following section explains the difference between TASKS and
TASKSFREE:

When you use TASKS, the maximum number of processes available to the specified TAC class is independent
of the number of processes currently available for the entire application program. This means that the number of
processes in the TAC class remains constant even if the number of processes in the entire application is
reduced. This applies until such time as the number of processes in the TAC class and the number in the entire
application are identical.

The use of the TASKS operand can (in extreme cases) cause processes in one TAC class to hinder those in all
other TAC classes.

When you use TASKSFREE, the maximum number of processes available to the specified TAC class depends,
in the dynamic context, on the number of processes currently available for the entire application program. The
reserve number specified in TASKSFREE is always kept free for processes in other TAC classes.

The maximum number of processes for one TAC class is then obtained in the following manner:

Dialog TAC classes (1 - 8): current number of all processes available for dialog TACs in the entire application
program (TASKS), less the number in TASKSFREE, but at least one process

Asynchronous TAC classes (9 -16): current number of all processes available for asynchronous TACs in the
entire application program (TASKS), less the number in TASKSFREE.

Effect in UTM cluster applications

In UTM cluster applications, KDCTCL applies locally in the node.

It only makes sense to call the command KDCTCL, if jobs are processed in your application using a
“limited number of processes for TAC classes”, i.e. no TAC-PRIORITIES statement is generated (see the
openUTM manual “Generating Applications”).

i

openUTM V7.0. Administering Applications. User Guide.

 797

Period of validity of the change

This change does not remain in force beyond the end of the application. The available number of processes is
determined by the most recent KDCTCL call entered.

ASS=tacclassKDCTCL CL

 [,{ ASKS=number_tasks | ASKS REE=number_tasks }]T T F

For administration using message queuing you must enter KDCTCLA.

CLASS=tacclass

Number of the TAC class for which the number of processes should be changed. For you tacclass
can enter a number between 1 and 16 (1 <= <= 16).tacclass

TASKS=number_tasks

May only be specified if no priority control is generated for the application, i.e. if the application is
generated without TAC-PRIORITIES.

Specifies how many processes in the application are allowed to process TACs in TAC class tacclass
at the same time.
With TASKS you define the absolute number of processes for a TAC class.

Minimum value of : number_tasks
For dialog TACs (class 1-8) must be >= 1. Otherwise dialog services would be locked number_tasks
and the users on the terminal would have to wait until services were released again.

For asynchronous TACs (class 9-16), must be =0.number_tasks

Maximum value of : number_tasks
The permitted maximum value for depends on the following factors:number_tasks

On whether the TAC class was generated with PGWT=YES or with PGWT=NO.
PGWT=YES means that the program units in the TAC class can run with lock calls (e.g. KDCS
call PGWT).

On the values for TASKS, TASKS-IN-PGWT and ASYNTASKS generated statically in the
KDCDEF control statement MAX.

See the following table for the permitted value ranges for TASKS.

openUTM V7.0. Administering Applications. User Guide.

 798

TAC class PGWT= Permitted maximum value

1 - 8 (dialog TACs) NO TASKS *)

YES TASKS-IN-PGWT *)

9 - 16 (asynchronous TACs) NO ASYNTASKS *)

YES The smaller of the values:
ASYNTASKS and *)
TASKS-IN-PGWT *)

*) As generated statically in the KDCDEF control statement MAX

TASKSFREE=number_tasks

May only be specified if no priority control is generated for the application, i.e. if the application is
generated without TAC-PRIORITIES.

In TASKSFREE you specify how many processes of the application are to be reserved for
processing other TAC classes than the one specified.

If is greater than the number of processes available to the entire application program, number_tasks
the following occurs:

if is a dialog TAC class, one process remains available for processing its TACs;tacclass

if is an asynchronous TAC class, the number of processes available to it = 0.tacclass

Minimum value of : 0number_tasks

Maximum value of : number_tasks
The permitted maximum value for depends on the statically generated values for number_tasks
TASKS and ASYNTASKS in the KDCDEF control statement MAX.

See the following table for the permitted value ranges for TASKSFREE.

TAC class PGWT= Permitted maximum value

1 - 8 (dialog TACs) NO TASKS - 1 *)

YES TASKS - 1 *)

9 - 16
(asynchronous
TACs)

NO ASYNTASKS *)

YES ASYNTASKS *)

*) As statically generated in the KDCDEF control statement MAX

openUTM V7.0. Administering Applications. User Guide.

 799

Output from KDCTCL

If you enter KDCTCL without TASKS or TASKSFREE, you are only shown the currently set values. Otherwise, the
output for the specified TAC class shows you the new and old process numbers. Output is displayed on the
administrator terminal.

TACCLASS TASKS TASKS-FREE
 NEW OLD NEW OLD
tac-class number number number number

Explanation of the output

TACCLASS Number of the TAC class

TASKS Absolute number of processes available for processing the TACs in this TAC class. If you
called KDCTCL ... TASKSFREE=, the following value is displayed:

Process number currently set for the application - TASKFREE

TASKS-FREE Number of processes kept free for other TAC classes. If you entered KDCTCL ... TASKS=,
the output of TASKS-FREE is always 0 to show that you made an absolute entry for this
TAC class.

Example

The following table illustrates the impact of various changes to the number of processes:

Dialog TACs Asynchronous TACs

Action CURRENT
TASKS

TASKS
FREE

TASKS CURRENT
TASKS

TASKS
FREE

TASKS

Initial status 4 0 3 3 0 3

Change TASKS-FREE 0 --> 2 4 2 2 3 2 1

Change CURRENT TASKS
reduced by 2

2 2 1 1 2 0

CURRENT-TASKS
This represents the maximum number of processes that can currently be used at the same time for the application
(dialog TACs) or the maximum number of processes that can currently process asynchronous jobs at the same time
(asynchronous TACs).

TASKS
Designates the appropriate maximum number of processes for the specified TAC class.

TASKS-FREE
Designates the number of processes reserved for the other TAC class.

openUTM V7.0. Administering Applications. User Guide.

 800

12.21 KDCUSER - Change user properties

With KDCUSER you can:

disable or release user IDs for the application

define, change or delete passwords for user IDs.

Effect in UTM cluster applications

In UTM cluster applications, KDCUSER applies globally to the cluster.

Period of validity of the change

Changes remain valid beyond the end of the application.

KDCUSER SER={ username | (username_1,username_2,...,username_10) }U

 [,PASS=password]

 [, TUS={ ON| OFF }]STA

For administration using message queuing you must enter KDCUSERA.

USER=(user1,user2,...)

Names of the user IDs to be administered. You can enter a maximum of 10 names per call. If you only
enter one name you do not need to key in the parentheses.

PASS=password

Issue, change or delete password for the user ID.

The password can be up to 16 characters in length. If the specified password is shorter than 16
characters openUTM fills the balance with blanks.

You can enter the password as a hexadecimal string (32 half bytes) in the form X'.....' or as a character
string C'....'.

Example:
Hexadecimal string: X'F1F2F3F4F5F6F7F8F9F0'
Character string: 'ABCDEFGHIJKLMNOP'

You delete a password by entering PASS=C' ' (blank). If you enter 16 binary zero characters
(X'00000000000000000000000000000000') you will not change the password.

You can only delete the password if

the minimum length defined for the password when the user ID is entered is 0

no complexity level is defined for the user ID (NONE).

If a password with a restricted period of validity is generated for a user ID, you cannot enter the old
password as the new password when changing the password.
If the application has been generated with SIGNON GRACE=NO, the generated period of validity from
the time of the change also applies to the new password.

openUTM V7.0. Administering Applications. User Guide.

 801

If a password with a restricted period of validity is deleted, no period of validity applies. If a new
password is issued after this, the period of validity is restored.

STATUS=

ON Releases the user ID

OFF Disables the user ID. This lock takes effect when the user next attempts to sign on. This function does
not work for the administrator.

Output from KDCUSER

The old and the new status of the administered user IDs are displayed at the administrator terminal along with an
indication of the password having been changed, where applicable.

USER STATUS
 NEW OLD
user1 ON|OFF ON|OFF PASSWORD CHANGED

openUTM V7.0. Administering Applications. User Guide.

 802

1.

2.

13 Administering message queues and controlling printers

There are two ways to administer message queues and control printer outputs:

using the KDCS program interface with the DADM (delayed free message inistration) and PADM (printer adm
inistration) functionsadm

using WinAdmin or WebAdmin, which provides you with DADM and PADM functionality in a graphical user
interface

The following sections describe how to use the DADM and PADM functions. The requirements and conditions
specified here also apply to administration with WinAdmin or WebAdmin.

DADM enables you to administer jobs and messages buffered in local message queues and waiting for processing.
With the exception of the dead letter queue, the message queues in openUTM are recipient-specific, i.e. all
asynchronous jobs in any one queue are intended for the same recipient. Recipients can, for example, be:
asynchronous TACs in your own or in a remote application (background jobs are located in these queues), LTERM
partners for terminals, TS applications or printers (output jobs are buffered in these queues), user IDs and
temporary queues. The dead letter queue is a TAC queue containing messages to various recipients that have not
been processed correctly. For further information on message queues, see the section “Administering message

 and the detailed information in the openUTM manual “Concepts und Functions”.queues (DADM)”

With PADM you can control the output of asynchronous messages to printers, i.e. you can influence print output
and administer the printers yourself. In order to administer a printer and control print output using PADM functions,
the printer must be assigned to a printer control LTERM (see "Authorizations concept (BS2000, Unix and Linux

).systems)"

You can use DADM to execute the following functions:

to output information about jobs and messages in buffer storage in a message queue

to prioritize a job or message in a queue to ensure that it is processed before all other asynchronous jobs in the
queue

to cancel a job or message, i.e. to delete it from the queue.

Move messages from the dead letter queue in order to process them.

PADM allows a program unit to execute the following functions to control printer output:

switch a special confirmation mode on and off which entails confirming every print job before the next output job
can be processed.
In UTM cluster applications, this action applies globally to the cluster.

repeat print jobs, e.g. after a successful sample printout. For this, the confirmation mode has to be switched on.
In UTM cluster applications, this action applies locally in the node.

output a list of print jobs which still have to be confirmed.
In UTM cluster applications, this action applies locally in the node.

With PADM, a program unit can also execute the following print administration functions:

disable and re-enable a printer.
In UTM cluster applications, this action applies globally to the cluster.

establish or shut down a connection to a printer.
In UTM cluster applications, this action applies locally in the node.

openUTM V7.0. Administering Applications. User Guide.

 803

change the assignment of printers to LTERM partners, e.g. if one printer fails, the LTERM partner of this printer
and the attached message queue can be assigned to another printer which then processes the print jobs waiting
in this queue.
This function is only permitted in standalone UTM applications.

group printers into pools. To do this, you assign several printers to one LTERM partner. The message queue of
the LTERM partner is then processed jointly by all the printers in the pool. For further information about printer
pools, also see openUTM manual “Generating Applications”.
This function is only permitted in standalone UTM applications; in UTM cluster applications, printer pools can
only be generated statically.

output information to a printer.

UTM administration privileges are not always mandatory for administering printers with PADM calls. Refer to
 for an explanation of the authorization level you require “Authorizations concept (BS2000, Unix and Linux systems)”

to start program units with DADM and PADM calls.

The sample program units KDCDADM and KDCPADM are supplied with openUTM: these units use the functions of
DADM and PADM. You can use these program units to administer asynchronous jobs and to control print jobs and
printers without having to write program units yourself. The following description uses to refer to the corresponding
functions of KDCDADM and KDCPADM:

If you create your own program units using PADM and DADM, you have the option of designing your own
user interface in the program unit, e.g. data input using formats on BS2000 systems.

The DADM and PADM calls are described in the openUTM manual „Programming Applications with KDCS”. The
KDCDADM and KDCPADM program units are described in the section “UTM program units for DADM and PADM

.functions”

Before you can use sample programs KDCDADM and KDCPADM or your own program units with PADM or DADM
calls, you must first record the program units in the configuration of the application, either statically or dynamically,
and assign transaction codes to them.

openUTM on Windows systems does not support printers. The KDCS call PADM and the program unit
KDCPADM are available, however, they are irrelevant for UTM applications running on Windows
systems. Administration privileges are required for actions taken using DADM or KDCDACDM.

i

openUTM V7.0. Administering Applications. User Guide.

 804

13.1 Authorization concept (BS2000, Unix and Linux systems)

PADM and DADM are not functions of the program interface for administration. For this reason, services which use
PADM and DADM have a different authorizations concept. This authorizations concept enables them to administer
their own output jobs to the “local” printers without administration privileges. Users can also perform administration
of the “local” printers without any special privileges.

To do this, you must create printer control LTERMs for the printers and assign them to the printers that are to be
administered “locally”, i.e. by a user/client without administration privileges. The related printers and their queues
can then be administered by every user or client who signs on using the printer control LTERM.

Administration privileges are required for the following administration tasks:

Administration of background jobs and output jobs for terminals or remote TS applications.

Administration of output jobs and printers using any LTERM partner.
A user who has UTM administration privileges can administer all printers on all printer control LTERMs and all
asynchronous jobs irrespective of which LTERM partner was used to initiate the services.

Administration of service-controlled queues (USER, TAC and temporary queues).

Printer control LTERM - administration of “local printers”

A printer control LTERM is an LTERM partner that is entered as a dialog partner (=D). A client or a terminal usage
user can log into an application via this LTERM partner. From the terminal or client, the printers and queues
assigned to the printer control LTERM can be administered.

Printers are assigned to the printer control LTERM as follows:
An LTERM partner configured as an output medium is assigned to each printer (='O'). openUTM “sends” all usage
output jobs for this printer to the LTERM partner of that printer, i.e. openUTM writes the output job to the message
queue of the LTERM partner - the queue for the printer concerned. You can also assign several printers (a printer
pool) to an LTERM partner. All these printers then work with the same queue.

You assign the LTERM printer partners to the printer control LTERM.

To do this, when creating the LTERM partners in CTERM/ (CTERM= ontrol inal) you must kc_lterm_str.cterm C TERM
specify the printer control LTERM to which the relevant printer is assigned. In CTERM/ . you enter kc_lterm_str cterm
the name of the printer control LTERM (name of the LTERM partners).

You can assign individual printers and even printer pools to one printer control LTERM. You must define a printer ID
for each printer to which a printer control LTERM is assigned. This printer ID must be unique in the printer control
LTERM range because the printer control LTERM uses this printer ID to address the printers directly. You must pay
particular attention to the unique nature of each printer ID in printer pools. You must also define a separate printer
ID for each of the printers in the pool. These printer IDs must be assigned to the correct printers when they are
entered in the configuration.

The provides an example of a configuration with KDCDEF.figure

In order to restrict access to the printer control LTERM to a defined number of people, you can assign a lock code
to the printer control LTERM. Similarly, you can also protect the PADM and DADM program units by means of lock
codes or access lists. This enables you to define which administration functions can be performed by users/clients.
In any event, you should assign all keycodes for the print administration and printer control program units to the
printer control LTERM (for details of the lock code/keycode concept, see the openUTM manual “Concepts und
Functions”).

openUTM V7.0. Administering Applications. User Guide.

 805

A user/client can start services via a printer control LTERM which:

administer associated printers by means of PADM calls

administer output jobs sent to the printer (DADM calls)

control print jobs on these printers.

You will need to write program units which use the DADM and PADM functions and which should be started from a
printer control LTERM as dialog programs and you must assign dialog TACs to them.

Entering a printer control LTERM and the associated printers

openUTM V7.0. Administering Applications. User Guide.

 806

1.

2.

3.

13.2 Administering message queues (DADM)

You can use DADM to administer two different types of message queues. These are:

UTM-controlled queues

The asynchronous jobs created by a program unit are delivered to the recipient at the specified time. For
messages to TACs, the associated program unit is started by openUTM.

Service-controlled queues

In these queues, processing is controlled not by UTM but by the program unit itself.

There are three types of service-controlled queues available:

USER queues

A permanent queue is available to every user of an openUTM application under the user’s user ID. The
queue is accessible via the user ID. USER queues offer you the opportunity to send asynchronous
messages to a UPIC user, for example.

TAC queues

Permanent queues with fixed names are created by generating TACs of the type 'Q'. In this way, queues can
be implemented in remote UTM applications, for example, that are addressed by the local UTM application
by means of an LTAC name.

The dead letter queue KDCDLETQ is a TAC queue that is always available for backing up messages which
could not be processed.

Temporary queues

Temporary queues can be created and deleted dynamically. The name of one of these queues can be
created by the program unit or implicitly by openUTM. Temporary queues permit communication between
two services, for example: A service sets up the queue and sends a message to the queue; another service
reads the message and then deletes the queue.

The maximum possible number of temporary queues is specified with the generation statement QUEUE.

The KDCS calls QCRE and QREL are available to you to create and delete temporary queues. These calls
are described in the openUTM manual „Programming Applications with KDCS”.

You can administer messages in a queue using DADM at the KDCS program interface. FPUT and DPUT allow you
to create background jobs, output jobs and messages for service-controlled queues. The actual function performed
in each case by DADM depends on the operation modifier which you pass to UTM in the field of the kcom
parameter area. The following operation modifiers are available:

DADM RQ (ead ueue) for reading information about the messages in a message queuer q

DADM UI (ser nformation) for reading user information about a message. User information is written by the job u i
submitter and passed to the specified reception area when the message is created.

DADM CS (hange equence) changes the sequence of messages in a queue. This function enables you to c s
move a message from any position in the queue to the front of the queue. This message is then processed
before any of the other messages in the queue.

DADM DL (e ete) and DADM DA (elete ll) for deleting an individual message or all messages in a queue.d l d a

When deleting job complexes with DADM DL, you can activate negative confirmation jobs. A job complex is an
asynchronous job with a positive and/or negative confirmation job (see openUTM manual „Programming
Applications with KDCS”, the MCOM call).

openUTM V7.0. Administering Applications. User Guide.

 807

When you delete messages using DADM DA, the messages are deleted with the following messages. A delete
call like this is only executed:

in the case of UTM-controlled queues, when there is no job being processed for the specified destination

in the case of service-controlled queues, when no messages are currently being read

DADM MV (o e) and DADM MA (ove ll) for moving one or all of the messages stored in the dead letter M v M a
queue. The messages can be assigned to their original message queues or to any destination of the same type
(asynchronous TAC / TAC queue, LPAP partner, OSI-LPAP partner).

To enable openUTM to process a DADM message, you must uniquely identify the message queue and the
message in the queue.

Identifying the message queue

The message queues in openUTM are recipient-specific, i.e. either openUTM or the program unit itself administers
a separate message queue for each recipient of jobs or messages. A UTM-controlled message queue to be
administered is uniquely identified when you specify the name of the recipient when making a DADM call. In the
case of UTM-controlled queues, you specify, for example:

in the case of output jobs, the name of the LTERM partner to which the terminal, the printer or the TS application
is assigned

in the case of background jobs, the name of the asynchronous TAC to which the job is directed

In the case of service-controlled queues, the name and the type of the queue are required for the purpose of
identification.

You pass the name of the recipient for DADM RQ/DL/DA in the field of the KB parameter area and the type in kclt
the field.kcqtyp

Identifying messages in a message queue

For every message, openUTM establishes a separate identification, also known as a job ID or DPUT-ID. This
enables you to administer each message individually.

After a message has been processed by the recipient, or after a message has been deleted by the administration
function, the job ID is released and can immediately be reassigned to another message by UTM. For this reason, in
the case of DADM UI/CS/DL calls requesting unique identification of the message to be administered, it is also
necessary to enter the time the message was created. This is the only way of preventing the wrong message from
being cancelled by DADM DL.

In the case of DADM calls, you must pass a job ID and the time the message was created in the KB parameter
area. You can determine both items of data using DADM RQ and use them in subsequent DADM calls.

If the messages (FPUT and DPUT messages) buffered in the KDCFILE are transferred to a new
KDCFILE with the UTM tool KDCUPD, they are then assigned job IDs.new

i

openUTM V7.0. Administering Applications. User Guide.

 808

13.2.1 Displaying information on messages in a queue - DADM RQ

With the DADM RQ call, openUTM supplies information about the messages in a queue. For every message,
openUTM provides the job ID, the user ID of the job submitter, the origination time of the message and, in the case
of time-controlled messages (DPUT messages), the earliest execution time. It also informs you whether a positive
or negative confirmation job exists.

For a DADM RQ call, you enter the name of the recipient in the field of the KB parameter area whose message kclt
queue is to be read. In the case of service-controlled queues, the type is also required in the field.kcqtyp

You can also output information about all the messages in a message queue or restrict the information output to just
one message in the queue.

In the field of the parameter area, you enter the job ID of the message for which openUTM is to provide kcrn
information. If you write any blanks in openUTM informs you about the first message in the message queue for kcrn,
the recipient .kclt

The procedure for reading information about all messages in a message queue is as follows:

In the first DADM RQ for a recipient, instead of a job ID you enter blanks in the field of the parameter area.kcrn

UTM returns information about the first message in the message queue of the recipient. If at least one other
message exists for the same recipient, openUTM writes the job ID of the next message in the queue to the kcrmf
field of the KB return area.

You call DADM RQ once again and write the job ID which openUTM returned in the field to the field of kcrmf kcrn
the KB parameter area.

UTM provides information about the second message and returns the job ID of the next message in the queue if
another message exists.

This means that the message queue can be processed sequentially. When the information about the last message
in the queue is read, UTM returns blanks to the field.kcrmf

A data structure exists for information returned from DADM RQ which you can place over the message area. The C
data structure is called and is part of the header file . The corresponding COBOL data structure is kc_dadm kcdad.h
called KCDADC.

See section "KDCDADM INFORM" in chapter "INFORM - Display information about message queues and
.messages"

openUTM V7.0. Administering Applications. User Guide.

 809

13.2.2 Reading user information about a message - DADM UI

In many cases, the information about messages provided by openUTM (see section "DADM RQ" in chapter
) is not sufficient to enable the administrator to "Displaying information on messages in a queue - DADM RQ"

uniquely identify a message. For this reason, the job submitter can store additional information when creating a
message using the DPUT call: this information is known as User information is written with the user information.
DPUT NI call or, in the case of confirmation jobs in job complexes, with DPUT +I or DPUT -I (see the openUTM
manual „Programming Applications with KDCS”).

This user information is not passed to the recipient of the message. However, it is linked to the job ID of the
message and can only be read with DADM UI.

When a call is received from DADM UI, you must pass the job ID and the time the message was created in the KB
parameter area. Both items of data can be determined in advance with DADM RQ.

You cannot read the user information relating to confirmation jobs in job complexes until the confirmation job has
been activated.

See sections "KDCDADM INFORM", "LIST=LONG" in chapter "INFORM - Display information about
.message queues and messages"

openUTM V7.0. Administering Applications. User Guide.

 810

13.2.3 Prioritizing messages in the queue - DADM CS

The DADM CS call is advisable if, at a given point in time, several messages are in the processing queue for the
same recipient. Using DADM CS, the specified message, identified by its job ID and the time it was created, is
moved to first position in the message queue. You can determine the job ID and the time of the message’s creation
using
DADM RQ.

Please note that you can only prioritize time-driven messages if the “earliest execution time” specified by DPUT at
the time of the message’s creation has already elapsed. Otherwise, UTM rejects the DADM-CS call (return code
40Z).

 See section "KDCDADM NEXT" in chapter ."NEXT - Prioritize messages in the message queue"

openUTM V7.0. Administering Applications. User Guide.

 811

1.

2.

3.

13.2.4 Deleting messages from a queue - DADM DA/DL

DADM DA allows you to delete all messages to a given recipient which have not been processed at the time of the
DADM DA call. In the case of service-controlled queues, messages that are currently being read cannot be deleted.
If a service-controlled queue is deleted dynamically (KC_DELETE_OBJECT or QREL RL), the messages in this
queue are lost. Messages already processed by the recipient are not deleted. With DADM DA calls you have to
specify the name of the recipient in the field of the KB parameter area.kclt

With DADM DL you delete one specific message. To identify this message you have to enter the job ID and the time
when the message was created. Both these items of data can be determined using DADM RQ.

If the specified message has already been processed by the recipient, the DADM DL call is rejected by openUTM
(return code 40Z).

In particular, you cannot use DADM DA/DL to delete any print output which has already been started. To do this,
you must follow the procedure described below:

Terminate the connection to the printer on which the job is being processed (PADM CS). openUTM also
terminates the link to the printer if you disable the printer using PADM CS.

Delete the print job (DADM DL).

Restore the connection to the printer (PADM CS; see chapter)."Changing the printer status - PADM CS"

If confirmation jobs are assigned to the message being deleted (DPUT jobs in job complexes) you can specify with
DADM DL whether the negative confirmation job is to be activated when the message is deleted or whether the
confirmation jobs are to be deleted together with the main job (field in the KB parameter area).kcmod

For information about job complexes and confirmation jobs, see the openUTM manual „Programming Applications
with KDCS”.

 See section "KDCDADM DELETE" in chapter ."DELETE - Delete messages from the message queue"

openUTM V7.0. Administering Applications. User Guide.

 812

13.2.5 Move messages from the dead letter queue - DADM MA/MV

The dead letter queue is made up of messages which could not be processed and which have not been redelivered.
In order to process these messages after any errors have been corrected, they must be assigned either to their
original destination or to a new destination.

DADM MA allows you to move multiple messages stored in the dead letter queue. The messages can be assigned
to their original message queues or to a new destination of the same type (asynchronous TAC / TAC queue, LPAP
partner, OSI-LPAP partner). If you specify a new destination, only the messages with the appropriate original
destination (i.e. same type) are moved.

DADM MV allows you to move a single message from the dead letter queue. You must specify the job ID and the
time at which the message was generated in order to identify the message.

To identify the destination, specify:

the TAC if the recipient of the messages with original destination TAC or TAC queue is to be an asynchronous
program,

the name of a TAC queue if the recipient of the messages with original destination TAC or TAC queue is to be a
service-controlled queue,

the name of an LPAP partner (but not a master LU61-LPAP) if the recipient of the messages with original
destination LPAP is to be an LPAP partner,

the name of an OSI-LPAP partner (but not a master OSI-LPAP) if the recipient of the messages with original
destination OSI-LPAP is to be an OSI-LPAP partner,

blanks if the messages are to be assigned to their original destination again.

If DADM MA is specified with KCLT=blank, messages whose destination no longer exists remain in the dead letter
queue. You can assign these messages to asynchronous transaction codes or TAC queues as new destinations.

When moving messages from the dead letter queue, any QLEV that is defined and the STATUS of the recipient
queue are ignored. This means that when moving messages, it is possible for the queue level to be exceeded and
for messages to be sent to locked TACs.

 KDCDADM MOVE in "MOVE - Move messages from the dead letter queue"

The original destination of a message in the dead letter queue is available from the return information of
the DADM RQ call.

i

openUTM V7.0. Administering Applications. User Guide.

 813

13.3 Administering printers and control print output (PADM)

You can use the KDCS call PADM to create program units which control the output of asynchronous messages on
the printer and which administer printers. PADM functions are only able to administer printers which are assigned to
a printer control LTERM.

Identifying printers during administration with PADM calls

Program units which are to control print output and administer printers must identify the printers uniquely. In order to
be independent of the printer name, you must define a printer ID for every printer assigned to a printer control
LTERM. The printer IDs are defined when the printers are entered in the configuration. The printer IDs must be
unique in the printer control LTERM range.

A printer is rendered uniquely identifiable throughout an application by the name of the printer control LTERM to
which it belongs and by virtue of its printer ID. Viewed in terms of the administration performed by the printer control
LTERM, the printer ID provides adequate identification of the printer, e.g. when confirming printer output.

If you wish to control the print output of a printer, you do not need to send the printer ID of that printer to the
program unit. It can be determined within a program unit with the help of PADM AI/PI calls.

openUTM V7.0. Administering Applications. User Guide.

 814

13.3.1 Administering printers with PADM

openUTM provides the PADM call for printer administration functions. The actual function executed by PADM
depends on the operation modifier which you pass to openUTM in the field of the parameter area. The kcom
following operation modifiers are available:

PADM PI (printer information) to read information about the printers assigned to a printer control LTERM

PADM CA (change address) to assign a printer to a different LTERM partner

PADM CS (change state) to change the printer status, i.e. disabling and re-enabling a printer, terminating or re-
establishing a connection to a printer.

openUTM V7.0. Administering Applications. User Guide.

 815

13.3.1.1 Querying information about a printer PADM PI

The call PADM PI returns the following information about every printer in a printer control LTERM (list not
exhaustive):

printer ID of the printer

name of the related LTERM partner

status of the printer, i.e. openUTM informs you whether or not the printer is currently disabled and if it is
connected to the application or not

number of print jobs in the printer queue

number of time-driven print jobs in the printer queue and their earliest output time

You can output this information, e.g. to the printer control LTERM.

You can output information about a specific printer. To do this, you must enter its printer ID in the field of the kcrn
parameter area. If you enter blanks in , openUTM informs you about the first printer.kcrn

You can also output information about all printers belonging to a printer control LTERM using the following
procedure:

At the first PADM PI, enter blanks in the field of the parameter area in order to read the information about kcrn
the first printer.

openUTM returns various items of information including the printer ID of the first printer. If at least one more
printer is associated with this printer control LTERM, UTM writes the printer ID of the next printer in the kcrmf
field of the KB return area.

Call PADM PI again and write the printer ID which openUTM previously returned to in of the KB kcrmf kcrn
parameter area.

openUTM supplies information to the second printer and returns the printer ID of the next printer, provided that
another printer exists etc.

When reading the information for the last printer, openUTM returns blanks to the field.kcrmf

A data structure exists for the information returned by PADM PI which you can place over the message area. The C
data structure is called and is part of the header file the COBOL data structure is called KCPADC.kc_padm kcpad.h:

See sections "KDCPADM INFORM", "LIST=PRINTERS" in "INFORM - Display information about printers
.for a printer control LTERM"

openUTM V7.0. Administering Applications. User Guide.

 816

1.

2.

3.

13.3.1.2 Changing the printer status - PADM CS

Using the PADM CS call you can perform the actions described in the following list. You define which action is to be
performed in the field of the parameter area.kcact

Disable a printer (=OFF) or re-enable a printer which was previously disabled (=ON).kcact kcact

In UTM cluster applications, both actions apply globally to the cluster.

Establish (=CON) or terminate (=DIS) a connection to a printer.kcact kcact

Output jobs to printers are always written to the message queue of the associated LTERM partner. If the printer is
disabled or not connected, the data is buffered until the printer is re-enabled or the connection is re-established, or
until you assign the LTERM partner to another printer, one which is not disabled, and connect this one to the
system.

When a printer is disabled, the connection to it is established automatically and must be re-established explicitly
after it has been released.

You cannot establish a connection to a disabled printer. To reconnect a disabled printer, proceed as follows:

Re-enable the printer. To do this, call PADM CS with =ON.kcact

Use PADM PI to confirm that openUTM has re-enabled the printer.

Call PADM CS with =CON to re-establish the connection.kcact

The first PADM call must not be performed in the same transaction as the other two.

See section "KDCPADM STATE" in chapter ."STATE - Change the status of a printer"

openUTM V7.0. Administering Applications. User Guide.

 817

13.3.1.3 Assigning a printer to another LTERM partner - PADM CA

You can use PADM CA to change the assignment of printers to LTERM partners. Enter the name of the new
LTERM partner in the field of the parameter area. The new LTERM partner to which the printer is to be kcadrlt
assigned must already feature in the configuration of the application, and the printer connection must be defined in
it (=O). A printer can already be assigned to the LTERM partner. This old assignment is not cancelled.usage

This function is only permitted in standalone UTM applications

With this function you can generate printer pools during the application run by assigning several printers to one
LTERM partner. All printers in the printer pool then process the queue for the LTERM partner.

However, if one printer fails, you can assign the LTERM partner for that printer to another printer together with the
failed printer’s message queue. The new printer then processes the output jobs.

If a procedure which changes the assignment is started by a user or client on an LTERM printer control unit not
authorized by administration then not only the LTERM partner but also the printer must lie in the responsibility area
of the printer control LTERM. In other words, this printer control LTERM must be assigned to the LTERM partner,
and the printer must previously have had an LTERM partner assigned to this printer control LTERM.

PADM CA is only permitted if the printer is not connected to the application. You can check this in advance using
the PADM PI call. Owing to the fact that PADM CA is subject to transaction management, i.e. the fact that it is not
executed until the end of a transaction, a connection to a printer may have been established from another service in
the intervening period. For this reason, in a follow-up transaction, you should use PADM PI to check whether the
action has indeed been executed.

See section "KDCPADM SWITCH" in chapter "SWITCH - Change the assignment of printers to LTERM
.partners"

openUTM V7.0. Administering Applications. User Guide.

 818

13.3.2 Print control with PADM

Usually, print jobs are issued “without” print control, i.e. it is UTM that controls the output of messages to printers.
Print output takes place in automatic mode in such cases. Automatic mode is set after the first time the application
is started.

Print output “with” print control means that it is the user who has to control the output of messages. Print control can
be performed in the following ways:

procedures with PADM calls which are started by a printer control LTERM

procedures with PADM calls which run under UTM administration privileges, e.g. the event service MSGTAC.

In UTM cluster applications, the change of mode (with/without print control) applies globally to the cluster.

openUTM provides a special confirmation procedure for print control. In order to use this procedure you must switch
from automatic mode to confirmation mode. The following section describes the difference between automatic mode
and confirmation mode.

Automatic mode - print output without print control

In automatic mode, openUTM controls the output from the printer. Output then proceeds as follows:

openUTM sends the first message in the queue to the printer and receives a positive or negative print confirmation
from the printer.

If openUTM receives a positive print confirmation message, it deletes the message from the queue and sends the
next message to the printer etc.

If openUTM receives a negative print confirmation message from the printer, it issues message K046. This
message is not normally assigned to any specific UTM message destination. You can define a message destination
for the message: the openUTM manual ”Messages, Debugging and Diagnostics” describes how to do this and
indicates the destination to which you should assign the message.

The message destination for K046 can, for example, be the event service MSGTAC. Using the MSGTAC routine,
which you have to create yourself (see the openUTM manual „Programming Applications with KDCS”), you can
then respond to the error situation. The MSGTAC can, for example, switch on the confirmation mode. See also
chapter ."Administering message queues and controlling printers"

Confirmation mode - output with print control

In confirmation mode, print output must be controlled by program units using PADM calls. Print outputs in
confirmation mode proceed as follows:

openUTM sends a message to the printer. Once the message has been completed with a positive print
confirmation, openUTM waits for confirmation, after which it performs a message termination procedure. The user
/client can enter confirmation on the printer control LTERM or, for example, using the MSGTAC routine. For the
MSGTAC routine, openUTM generates message K045 in response to a positive print confirmation message.

To confirm printer output, a procedure must be initiated using a PADM call which informs openUTM whether the
print job should be repeated or whether it can now move on to print the next message.

With PADM AI, you can call up information about print jobs which you have to confirm. Users/clients on the printer
control LTERM can therefore inform themselves about these messages and can also obtain information using the
MSGTAC routine.

openUTM V7.0. Administering Applications. User Guide.

 819

In confirmation mode, openUTM issues message K045 in response to a positive print confirmation message. You
can assign message destination MSGTAC to this message: in this case, openUTM passes the message to the
MSGTAC routine. The MSGTAC routine can then inform the printer control LTERM about the requested
confirmation message.

Errors during print output (negative print confirmation messages) are handled in automatic mode.

Print control functions

openUTM provides print control functions with the PADM call. The actual function performed by PADM depends on
the operation modifier which you send to openUTM in the field of the parameter area. The following operation kcom
modifiers are available:

PADM AC for switching on the confirmation mode

PADM AT for switching off the confirmation mode. Automatic mode is reset.

PADM PR for repeating a print output. The printer message is repeated on the same printer

PADM OK for confirming print outputs

PADM AI for calling up a list of print outputs to be confirmed with information

openUTM V7.0. Administering Applications. User Guide.

 820

13.3.2.1 Activating/deactivating confirmation mode - PADM AC/AT

With PADM AC you can activate confirmation mode for one printer in the printer control LTERM or for all printers in
a printer control LTERM. The print control function no longer runs automatically when in confirmation mode.
openUTM does not delete the associated print job from the queue until a PADM OK call is stored for this printer.

PADM AT switches off the confirmation mode. Print output once again runs in automatic mode.

In UTM cluster applications, the change of confirmation mode applies globally to the cluster.

If PADM AT/AC is to operate on a specific printer, then you must specify the printer ID of that printer in the kcrn
field. If the call is to apply for all printers in the printer control LTERM, you must enter blanks in .kcrn

Confirmation mode remains activated or deactivated beyond the termination of the current application.

When deactivating the confirmation mode, please note that any print output started while still in confirmation mode
but not actually confirmed before the function was deactivated will still have to be confirmed in automatic mode. In
other words, openUTM does not deal with subsequent print jobs for a given printer until a PADM OK has been
issued.

See section "KDCPADM MODE" in ."MODE - Change the confirmation mode for a printer"

openUTM V7.0. Administering Applications. User Guide.

 821

13.3.2.2 Confirming or repeating print output - PADM OK/PR

This function can only be used if confirmation mode is activated.
A print output job is confirmed with the call PADM OK. openUTM deletes the corresponding asynchronous job from
the printer queue and can then deal with the next print job.

PADM PR repeats print output, for instance after a sample print run. The print job is not deleted from the queue. It
remains at the front of the queue and is processed again.

See section "KDCPADM PRINT" in chapter ."PRINT - Confirm / repeat print job"

openUTM V7.0. Administering Applications. User Guide.

 822

13.3.2.3 Querying information about print jobs to be confirmed - PADM AI

PADM AI provides information about print jobs to be confirmed. If there are no print jobs requiring confirmation,
PADM AI simply returns blanks.

openUTM returns the following information about every print job:

printer ID

job ID of the asynchronous job

user ID of the job submitter

time the job was placed

the target time for time-driven jobs

positive and/or negative confirmation job

If you wish to query the print jobs requiring confirmation for all printers in the printer control LTERM, you must
proceed as follows: when the first PADM/AI/PI call reaches the program unit, instead of a printer ID, send blanks in
the field of the parameter area. openUTM then returns the printer ID of the first printer in the message area kcrn
(together with other information). The printer ID of the next printer then appears in the field. You then pass the kcrmf
contents of field to field in the next PADM AI call etc. For the last printer, openUTM passes blanks in the kcrmf kcrn

 fieldkcrmf

See section "KDCPADM INFORM, LIST=ACK" in chapter "INFORM - Display information about printers
.for a printer control LTERM"

openUTM V7.0. Administering Applications. User Guide.

 823

13.3.3 Handling of errors during print output

Errors during print output are handled in the same way whether or not they have print control. This section
describes which UTM features you can use to respond to printer malfunctions.

Hardware errors
The following action can be taken in response to hardware errors:

The terminal assigned to the printer control LTERM is defective. When this happens, a different terminal can be
assigned to the printer control LTERM by means of administration functions - such as with the administration
command KDCSWTCH.

A printer is defective. When this happens, a different printer can be assigned to the LTERM partner of the printer,
and therefore to its message queue, for example using the KDCSWTCH command or by a procedure using the
PADM CA call. If the LTERM partner is assigned to a printer control LTERM, then always ensure that the printer
ID of the “new” printer is unique in the printer control LTERM area.

Formatting error on BS2000 systems
If errors occur when a logical message is being converted to a physical message (by VSTU), or to a formatted
message (by FHS), UTM deletes the message and generates a dump. If the message is the main job in a complex
of jobs, the negative confirmation job is started.

Error handling using MSGTAC routines

Targeted error handling is possible using the event service MSGTAC. Since the UTM program unit is authorized to
perform administration work, it is capable of administering all printers in the application and of performing the print
control function for all printers.

When errors occur, openUTM issues message K046. You can assign message destination MSGTAC to this
message (see the openUTM manual ”Messages, Debugging and Diagnostics”). When this message appears, the
MSGTAC routine is run. The MSGTAC routine can contain PADM calls. For example, it can:

activate confirmation mode and then confirm or arrange for repetition of the print outputs from the printer control
LTERM

assign the LTERM partner of the printer, i.e. the queue for that printer, to a different printer

inform a specific user/client about the error.

openUTM issues message K046 in response to the following errors:

negative print confirmation message received from printer

repetition of printer output

not possible to establish a connection to the printer.

openUTM V7.0. Administering Applications. User Guide.

 824

13.4 UTM program units for DADM and PADM functions

openUTM is supplied with the KDCS program units KDCDADM and KDCPADM. These provide you with all the
services you will need for DADM and PADM calls without requiring you to generate your own program units for the
administration of message queues and printers and for print control functions.

KDCDADM provides the functions of DADM for the administration of messages.

KDCPADM provides the functions of PADM for the administration of printers and for the control of message
output to printers.

The ISP syntax tables required for KDCDADM and KDCPADM are present in KDCDAISP.

Procedures in which the program units KDCDADM and KDCPADM run function as interactive transactions in a
dialog step. KDCDADM and KDCPADM expect to receive input in line mode: formatted input is rejected. The output
generated by KDCDADM and KDCPADM are also issued in line mode.
KDCDADM and KDCPADM issue messages in English.

KDCDADM, KDCPADM and KDCDAISP are supplied as compiled objects or object modules. To enable you to use
the program units together with the ISP syntax description, you must link them to your application program and
record the program units and transaction codes used to boot the program units in the configuration of your
application.

In openUTM on BS2000 systems the object modules are stored in the LMS library SYSLIB.UTM.070.EXAMPLE.

In openUTM on Unix and Linux systems you will find these objects in the library under the path libsample utmpath
./sample/sys

In openUTM on Windows systems you will find these objects in the library .utmpath\sys\libwork.lib

openUTM V7.0. Administering Applications. User Guide.

 825

13.4.1 Generating KDCDADM and KDCPADM

The program units KDCDADM and KDCPADM must either be configured statically with KDCDEF or entered
dynamically in the configuration. To enable you to use the functions of KDCDADM and KDCPADM you must assign
dialog transaction codes to these program units. You can select any TAC name of your choice. In the following
example, KDCDADM is assigned the transaction code and KDCPADM is assigned the transaction code tacdadm

.tacpadm

Example of KDCDEF generation:

on BS2000 systems:

PROGRAM KDCDADM,COMP=ILCS
PROGRAM KDCPADM,COMP=ILCS
TAC TACDADM,PROGRAM=KDCDADM,CALL=FIRST,TYPE=D
TAC TACPADM,PROGRAM=KDCPADM,CALL=FIRST,TYPE=D

on Unix, Linux and Windows systems:

PROGRAM KDCDADM,COMP=C
PROGRAM KDCPADM,COMP=C
TAC tacdadm,PROGRAM=KDCDADM,CALL=FIRST,TYPE=D
TAC tacpadm,PROGRAM=KDCPADM,CALL=FIRST,TYPE=D

For KDCDEF generation in this application, you must also note the following:
The length of the standard primary working area specified in MAX SPAB= must be sufficient to accept the KDCS
parameter area.

openUTM V7.0. Administering Applications. User Guide.

 826

13.4.2 KDCDADM - Administer messages

The program unit KDCDADM makes it possible to administer messages in message queues. KDCDADM comprises
three functions. You call up each of these functions by entering the transaction code which you assigned to program
unit KDCDADM (called from now on), together with a few operands. This next section describes which tacdadm
operands these should be.

KDCDADM covers the following functions:

cancelling messages, i.e. deleting them from the message queue (DELETE)

displaying information about messages in a message queue (INFORM)

prioritizing a message, i.e. moving it to the front of the message queue (NEXT)

moving messages from the dead letter queue (MOVE)

If you enter , openUTM informs you about the syntax of KDCDADM calls together with a brief tacdadm HELP

description of the functions.

openUTM V7.0. Administering Applications. User Guide.

 827

13.4.2.1 DELETE - Delete messages from the message queue

If you enter together with the operand DELETE, you can delete messages from a message queue.tacdadm

You can:

Delete a specific message.
To do this, you must provide unique identification for the message queue and the message. You identify the
message queue, depending on the type, by means of the TAC name, the name of the LTERM partner, the user
ID or the name of the temporary queue. You identify the message by means of its job ID and the time when the
message was created. You can determine both of these items of data using the INFORM.tacdadm

Delete all messages currently buffered in a message queue. This would delete all messages which are not yet
being processed by the recipient (TAC, LTERM partner, user ID, temporary queue).

tacdadm DELETE

 ,DESTINATION=destination

 [,DEST-TYPE = { LTERM | TAC | USER | QUEUE }]

 ,DPUTID={ ALL | dput-id,GENTIME=time [,CHAINMSG= {ACT | DEL}] }

DELETE Delete one message or all messages waiting in a message Queue.

DESTINATION=destination

Specifies the message queue of the recipient containing the message to be canceled. For
 you must specify the name of a TAC, an LTERM partner, a user ID or the name of a destination

temporary queue.

DEST-TYPE= Specifies the type of the recipient (). Possible entries are:destination

LTERM The recipient is an LTERM partner.

TAC The recipient is a TAC or a TAC queue.

USER The recipient is the queue of a user ID.

QUEUE The recipient is a temporary queue.

DPUTID= In DPUTID you specify which message is to be deleted.

ALL All messages to the recipient named in are to be deleted.destination

dputid One message in the queue is to be deleted. For you must then specify the job ID for the dputid
message which is to be deleted.

GENTIME=time

You only have to enter this if you wish to delete one specific message from a queue (for
DPUTID=) dputid
In this case, for you must indicate the time at which the message was generated. Enter time time
 in the form (ddd,hh,mm,ss) where is the number of the day of the year, is the time in ddd hh
hours, the time in minutes and the time in seconds. openUTM requires for unique mm ss time
identification of which message is to be deleted.

openUTM V7.0. Administering Applications. User Guide.

 828

 CHAINMSG= Indicates whether the negative confirmation job should be activated or not when deleting a job
complex (DPUT job with confirmation jobs).

ACT The negative confirmation job is activated if it exists.

DEL The negative confirmation job is also deleted.

Default: ACT

Result

openUTM sends a message to the LTERM partner/LPAP partner through which the command was called. From the
message you can identify whether the job was accepted or rejected. To find out whether openUTM was able to
successfully execute the job, you must follow up with a KDCDADM INFORM query.

openUTM V7.0. Administering Applications. User Guide.

 829

13.4.2.2 INFORM - Display information about message queues and messages

With INFORM you can display information about message queues. UTM always provides the following tacdadm
items of information about individual messages in the queue:

the job ID which you require, for example, when deleting a message

the user ID with which the message was generated

the time at which the message was generated

with time-driven messages, the start time as of which the message should be processed

information as to whether a positive or negative confirmation job belongs to the message.

In detailed information mode (LIST=LONG), openUTM also provides user information written with DPUT NI.

The lists containing the information returned by openUTM can be very extensive in some instances. For this reason,
you have the options of:

rerouting the output to a printer (OUT)

restricting the output by specifying the job ID of the message at which the output list should start. The lists should
be in ascending order of job ID. When you enter a job ID in CONT, the list starts with this message. No
information is then provided about messages whose job ID occurs earlier in the alphabetic list.

tacdadm ORMINF

 , INATION=destinationDEST

 [,CONT=dputid]

 [,DEST-TYPE = { LTERM | TAC | USER | QUEUE }]

 [,LIST={ | ONG }]SHORT L

 [,OUT={ | ltermname }]KDCDISP

INFORM Summary list of which messages in a message queue are to be Output.

DESTINATION=destination

Name of the recipient of a message about which openUTM is to provide information.
 specifies the message queue. For you must specify the name of a destination destination

TAC, an LTERM partner, a user ID or the name of a temporary queue.

DEST-TYPE= Specifies the type of the recipient ().Possible entries are:destination

LTERM or TAC The recipient is a TAC, a TAC queue or an LTERM partner.

USER The recipient is the queue of a user ID.

QUEUE The recipient is a temporary queue.

CONT=dputid Controls the scope of output. For you can enter the job ID of the message with which dputid
the list of information is to start. The list only contains information about messages whose
job ID occurs later in the alphabet than and about the message with the job ID dputid
specified in .dputid

openUTM V7.0. Administering Applications. User Guide.

 830

LIST= Specifies the scope of information which openUTM is to output.

SHORT The user information generated with DPUT NI is not output at the same time.

LONG The user information written with DPUT NI is not output at the same time.

Default: SHORT

OUT= Indicates where openUTM is to output the information.

KDCDISP openUTM outputs the information to the terminal at which the information was requested or
openUTM passes the information to the client which requested the information.

ltermname openUTM outputs the information to a printer. For , enter the name of the ltermname
LTERM partner assigned to the printer.

Result

For LIST=SHORT

User-id DPUT-id Gen-time Start-time Pos/Neg Dest.
user1 dput-id time1 time2 p/n/p n dest1

Key to terms:

User-id User ID or “*NONE“, if the user who generated the message has been deleted.

DPUT-id Job ID of the message

Gen-time

 Time when the message was generated. Enter in the following manner: time
(ddd,hh,mm,ss) where is the number of the day in the year, is the time in hours, the ddd hh mm
time in minutes and the time in seconds.ss

Start-time

This is output only for time-driven messages (DPUT messages).
 is the earliest time as of which the job can be processed. The output format for time is Start-time

the same as for .Gen-time

Pos/Neg Specifies whether a positive or negative confirmation job exists. The display field contains a “p” if a
positive confirmation job exists and an “n” if a negative confirmation job exists. “p n” indicates that
both a positive and a negative confirmation job exist.

Dest. Recipient of the message. For the dead letter queue, the original destination of the message is
specified here, i.e. the name of an asynchronous TAC, a TAC queue, a LPAP partner or an OSI-
LPAP partner. Otherwise, the field is empty.

For LIST=LONG

In addition to the information output for LIST=SHORT, the first 79 bytes of user information are output (in the next
line - DPUT NI message). The following information appears on the output:

openUTM V7.0. Administering Applications. User Guide.

 831

 User-id DPUT-id Gen-time Start-time Pos/Neg Dest.
 user dput-id time1 time2 p/n/p n dest1
User info:
 xx

openUTM V7.0. Administering Applications. User Guide.

 832

13.4.2.3 MOVE - Move messages from the dead letter queue

The dead letter queue is made up of messages which could not be processed.
In order to process these messages after any errors have been corrected, they must be assigned either to their
original destination or to a new destination.

tacdadm MOVE allows you to move individual messages or all messages stored in the dead letter queue. The
messages can be assigned to their original message queues or to any new destination of the same type
(asynchronous TAC / TAC queue, LPAP partner, OSI-LPAP partner).

tacdadm MOVE

 , INATION = { *ORIG | destination }DEST

 ,DPUTID = { ALL | dputid, TIME = (ddd,hh,mm,ss) }GEN

MOVE Move messages from the dead letter queue.

DESTINATION=

Specifies the new destination for the message.

*ORIG The message is to be assigned to its original destination.
If you specify DESTINATION=*ORIG together with DPUTID=ALL, all messages are assigned to their
original destinations.

destination

Name of the new destination for the message or for all messages with appropriate original
destination (asynchronous TAC / TAC queue, LPAP partner, OSI-LPAP partner).

DPUTID= ID of the message to be moved.

ALL All messages in the dead letter queue.

dputid Job ID of the message.

GENTIME=(ddd,hh,mm,ss)

Time the message was generated. Where:
 working day, hours, minutes, seconds.ddd hh mm ss

If you move multiple messages (DPUTID=ALL), then those messages remain in the dead
letter queue whose original destination does not match the new destination.

i

openUTM V7.0. Administering Applications. User Guide.

 833

Result

The job to move all messages to their original destinations is accepted without an error message being issued if
individual original destinations or all the original destinations no longer exist.

openUTM generates a message indicating whether the job was accepted or not. The message is output at the
terminal of the user issuing the job.

You must use separate KDCDADM demands in order to determine whether the messages have actually been
moved.

The sample program DADMMVS or dadmmvsc for selectively moving messages from the dead letter
queue is supplied with openUTM. The interactive program moves all messages from the dead letter
queue using a specified original destination and a specified new destination. You can find the description
of the sample program in the relevant system-specific openUTM manual “Using UTM Applications”.

i

openUTM V7.0. Administering Applications. User Guide.

 834

13.4.2.4 NEXT - Prioritize messages in the message queue

By entering NEXT you can prioritize a message located anywhere in the message queue, moving it to the tacdadm
front of the queue. This makes the message you select the next message to be processed by the recipient.

You can only prioritize time-driven messages (DPUT jobs) if the specified start time (the earliest execution point)
has already been reached.

NEXTtacdadm

 ,DPUTID=dputid, TIME=(ddd,hh,mm,ss)GEN

NEXT

The message specified in dputid is placed in first position in the message queue.

DPUTID=dputid

Job ID of the message to be prioritized.

GENTIME=(ddd,hh,mm,ss)

Time when the message was generated;
 is the number of that day in the year, is the time in hours, the time in minutes and the ddd hh mm ss

time in seconds.

Result

openUTM generates a message which lets you know whether the job was accepted or not. The message is output
to the terminal operated by the job submitter or is passed to the client which started the job.

openUTM V7.0. Administering Applications. User Guide.

 835

13.4.3 KDCPADM - Print control and printer administration

The KDCPADM program unit enables you to administer printers and the control of print outputs. KDCPADM covers
five functions. You can call each of these functions by entering the transaction code which you assigned to program
unit KDCPADM (called from now on) together with a few operands. This section describes which operands tacpadm
these are.

KDCPADM covers the following print control functions:

Confirming print output or repeating an output item (PRINT)

Switching between confirmation mode and automatic mode (MODE)

KDCPADM covers the following printer administration functions:

Changing the status of a printer (STATE).
You can disable a printer, re-enable a disabled printer, or establish/terminate a connection to a printer.

In UTM cluster applications, the disabling and enabling of printers applies globally to the cluster.

Assign a different or an additional printer to an LTERM partner, i.e. to a specific printer queue (SWITCH).
This means that you can arrange for print jobs to be handled by another printer (e.g. in the event of a
malfunction) or for a printer pool to be generated.

This function is only permitted in standalone UTM applications.

Inform about the printers assigned to a printer control LTERM (INFORM).

If you enter openUTM informs you about the syntax of the KDCPADM call. openUTM provides a tacpadm HELP,

brief description of the functions.

openUTM V7.0. Administering Applications. User Guide.

 836

13.4.3.1 INFORM - Display information about printers for a printer control LTERM

The INFORM allows you to display information about printers and about the message queues assigned to tacpadm
any particular printer.

openUTM provides the following information about the printers assigned to the printer control LTERM:

Name of the LTERM partner to which the printer is assigned

Status of the printer, i.e. openUTM indicates whether the printer is currently connected to the application and
whether or not the printer is disabled

Confirmation mode, i.e. openUTM indicates whether the printer is set for automatic mode or confirmation mode

Number of output jobs currently buffered in the queue of your selected printer, or the queue of the printer pool

Number of time-driven output jobs currently buffered in the queue.

openUTM supplies the following information about the output jobs in the queue of a printer or a printer pool:

Time at which the job was generated

For time-driven jobs, the time as of which the job is to be processed

Information about whether a positive or negative confirmation job is linked to the job.

The lists containing the information which openUTM returns can in some cases be very extensive. For this reason,
the following options are provided:

rerouting the output to a printer (OUT).

restricting the output by specifying the job ID of the job with which the output list should start. The lists should be
in ascending order of job ID. When you enter a job ID in CONT, the list starts with this job. No information is then
provided about jobs whose job ID occurs earlier in the listing.

tacpadm INFORM

 ,LIST= { PRINTERS | ACK }

 [,CID=cid1]

 [,CONT=cid2]

 [,OUT={ KDCDISP | ltermname1 }]

 [,CTERM=ltermname]

INFORM Outputs a summary list of printers or output jobs.

CID=cid1 (ontrol-) c ID
Printer ID of the printer. If you do not enter then openUTM returns information about all cid
printers and message queues assigned to the printer control LTERM.

LIST= Indicates which information has been requested.

PRINTERS Information about printers

ACK Information about the output jobs in the printer queues which still have to be confirmed.

CONT=cid2

openUTM V7.0. Administering Applications. User Guide.

 837

Controls the scope of the output. For you can enter the job ID of the printer as of cid2
which the list of information is to start.
There is no point entering CONT= unless the output produced in response to an earlier
INFORM call does not fit on one screen page. To continue output, you enter the printer ID
of the last printer that handled the previous output when you enter the next call in .cid2

OUT= Specifies where openUTM is to output the information.

KDCDISP openUTM outputs the information to the terminal on which the information was requested
or passes the information to the client which requested the information.

ltermname1 openUTM outputs the information to the printer. For enter the name of the ltermname1,
LTERM partner to which the printer is assigned.
Default: KDCDISP

CTERM=ltermname

Printer control LTERM to which the printer belongs. For , enter the name of cid1 ltermname
the printer control LTERM. If the command is not entered at the printer control LTERM of
printer , the user who enters the command must have administration privileges.cid1

Default:
Name of the LTERM partner at which the command is entered.

Result

For LIST=PRINTERS

 Control-id State Connected Mode LTERM-name # of msg.: output delayed
 cid1 Y/N Y/N auto/ack lterm1 num1 num2

Key to terms:

Control-id

Printer ID of the printer

State

Indicates whether the printer is disabled (N) or not (Y)

Connected

Indicates whether the connection to the printer is established (Y) or not (N)

Mode

Indicates whether confirmation mode (ack) or automatic mode (auto) is selected

LTERM name

Name of the LTERM partner to which the printer is assigned

output

Number of output jobs currently buffered in the printer queue

openUTM V7.0. Administering Applications. User Guide.

 838

delayed

Number of time-driven output jobs (DPUT job) currently buffered and waiting to be processed in the
printer queue and whose start time has not yet been reached.

For for LIST=ACK:

 Control-id User-id DPUT-id Gen-time Start-time Pos/Neg chain msg
 cid1 user1 dput-id time1 time2 p / n / p n

Key to terms:

Control-id Printer ID of the printer

User-id

User ID or “*NONE“, if the user who generated the job has been deleted.

DPUT-id

Job ID of the asynchronous job

Gen-time

Time at which the asynchronous job was generated. Enter in the form (ddd,hh,mm,ss), where is time ddd
the number of the day in the year, is the time in hours, the time in minutes and the time in hh mm ss
seconds.

Start-time

This is output only for time-driven jobs (DPUT jobs).
 is the earliest time as of which the job can be processed. The output format for time is the Start-time

same as for .Gen-time

Pos/Neg chain msg.

Specifies whether a positive or negative confirmation job exists. The display field contains a “p” if a
positive confirmation job exists and an “n” if a negative confirmation job exists. “p n” indicates that both a
positive and a negative confirmation job exist.

openUTM V7.0. Administering Applications. User Guide.

 839

13.4.3.2 MODE - Change the confirmation mode for a printer

With MODE you can change the confirmation mode. You can switch from automatic mode to confirmation tacpadm
mode and vice versa.

In UTM cluster applications, the change of confirmation mode applies globally to the cluster.

tacpadm MODE

 [,CID=cid]

 ,ACT={ ACK | AUTO}

 [,CTERM=ltermname]

MODE Switches between automatic mode and confirmation mode for a printer.

CID=cid (ontrol-) c ID
Printer ID of the printer to be administered. If you do not enter , then the call addresses all printers cid
assigned to the printer control LTERM . ltermname
If the call is not placed at the printer control LTERM, then the user must have administration
privileges.

ACT= Action to be performed, mandatory operand.

ACK Changes to confirmation mode, i.e. every print output has to be confirmed (e.g. with PRINT,...,
ACT=NEXT).

AUTO Activates automatic mode, i.e. print output does not have to be confirmed.
If is entered as a printer ID, the last print job for this printer is confirmed automatically.cid

CTERM=ltermname

Printer control LTERM, to which the printer belongs. For , please enter the name of the cid ltermname
printer control LTERM. If the command is not entered at this printer control LTERM, then the user
who started the procedure must have administration privileges.

Default:
Name of the LTERM partner at which the command is entered.

Result

openUTM returns a message informing you whether the job was accepted or rejected.

openUTM V7.0. Administering Applications. User Guide.

 840

13.4.3.3 PRINT - Confirm / repeat print job

With PRINT you can confirm a print job and arrange for the next job to be processed or for a print job to be tacpadm
repeated. In order to use the call PRINT, confirmation mode must already be activated.tacpadm

tacpadm PRINT

 ,CID=cid

 [,ACT={ NEXT| REPEAT}]

 [,CTERM=ltermname]

PRINT Confirms or repeats print output

CID=cid (ontrol-) c ID
printer ID of the printer to which the call refers

ACT= Action to be performed:

NEXT Print output is confirmed and the following output job is cleared for processing

REPEAT Print output is to be repeated
Default: NEXT

CTERM=ltermname

Name of the printer control LTERM to which the printer is assigned. If the command is not entered
at this printer control LTERM, then the user who starts the procedure must have administration
privileges.

Default:
Name of the LTERM partner at which the command was entered.

Result

openUTM returns a message informing you whether the job has been accepted or rejected.

openUTM V7.0. Administering Applications. User Guide.

 841

13.4.3.4 STATE - Change the status of a printer

The STATE allows you to change the status of a printer. You can:tacpadm

disable a printer or re-enable a disabled printer

establish or terminate the connection to a printer.

tacpadm STATE

 ,CID=cid

 ,ACT={ ON | OFF | CON | DIS | DISOFF }

 [,CTERM=ltermname]

STATE Changes the status of a printer

CID=cid (ontrol-) c ID
Printer ID of the printer whose status is to be changed

ACT= Action to be performed, mandatory operand.

ON Re-enable a disabled printer

OFF Disable a printer, i.e. it is no longer possible to establish a connection to this printer. If the printer is
still connected at the time, the connection will be terminated.

In UTM cluster applications, ON and OFF apply globally to the cluster.

CON Establish a connection to a printer

DIS Terminate the connection to a printer

DISOFF Terminate the connection to a printer and disable the printer.

CTERM=ltermname

Name of the printer control LTERM to which the printer is assigned. If the command is not entered
at this printer control LTERM, the user who started the procedure must have administration
privileges.

Default:
Name of the LTERM partner at which the command was entered

Result

openUTM returns a message informing you whether the job has been accepted or rejected.

openUTM V7.0. Administering Applications. User Guide.

 842

13.4.3.5 SWITCH - Change the assignment of printers to LTERM partners

The SWITCH allows you to change the assignment of LTERM partners and printers. This function is only tacpadm
permitted in standalone UTM applications.

You can:

assign the LTERM partner for this printer to a different printer, together with the message queue. This new
printer then processes the print jobs in the queue sequentially. This enables you, for example, to print output jobs
at a different printer if there is a malfunction on the original printer.

to group printers together to form printer pools. This involves assigning several printers to one LTERM partner.
All the printers in the pool will then work together to process the message queue for this LTERM partner. For
more information about printer pools, see the openUTM manual “Generating Applications”.

tacpadm SWITCH

 ,CID=cid

 ,LTERM=ltermname1

 [,CTERM=ltermname]

SWITCH Changes the assignment of printers to LTERM partners

CID=cid (ontrol-) c ID
Printer ID of the printer to which a different LTERM partner is to be assigned.

LTERM=ltermname1

Name of the LTERM partner to which the printer is to be assigned. For you can only enter ltermname1
an LTERM partner which has been specifically generated for printers and other output media. If a
printer has already been assigned to the LTERM partner, this assignment is not terminated. The
printers are simply grouped together to form a printer pool.

CTERM=ltermname

Name of the printer control LTERM to which the printer is assigned. If the command is not entered cid
at this printer control LTERM, the user who starts the procedure must have administration privileges.

Default:
Name of the LTERM partner at which the command was entered.

Result

openUTM returns a message informing you whether the job has been accepted or rejected.

openUTM V7.0. Administering Applications. User Guide.

 843

14 Appendix

Program interface for administration in COBOL

COPY members for the program interface in COBOL

KDCADMI function call

Notes on programming

Sample programs

The C program unit HNDLUSR (BS2000 systems)

The C program unit SUSRMAX

The COBOL program unit COBUSER

The C program unit ENCRADM

The C program units ADJTCLT

CALLUTM - Tool for administration and client/server communication (BS2000 systems)

Generation

Description of CALLUTM program statements

Components, system environment, software configuration on BS2000 systems

Integration in a UTM application on BS2000 systems

Program-monitoring job variables on BS2000 systems

Messages issued by CALLUTM (BS2000 systems)

openUTM V7.0. Administering Applications. User Guide.

 844

14.1 Program interface for administration in COBOL

The COBOL program interface for administration purposes is very similar to the C/C++ program interface described
in chapter . This means that you will also find it useful to refer to "Program interface for administration - KDCADMI"
the description of the program interface in chapter and to the "Program interface for administration - KDCADMI"
descriptions dealing with the functional scope, the structure of user-defined administration programs, and central
and automatic administration functions (chapters , "Administering objects and setting parameters" "Changing the

, , configuration dynamically" "Generating konfiguration statements from the KDCFILE" "Writing your own
, , and administration programs" "Central administration of several applications" "Automatic administration" "Access

) when writing your own administration programs in COBOL. This section lists the rights and data access control"
differences that you will need to be aware of when programming administration applications in COBOL:

The COBOL program interface differs from the C/C++ program interface in the following ways:

In place of a header file () which includes all the data structures, COBOL is supplied with individual kcadminc.h
COPY members. Each of these COPY members usually contains only a single data structure (see table in
chapter). This gives you the option of including individual "COPY members for the program interface in COBOL"
data structures in programs which, under certain circumstances, can make programming considerably easier (e.
g. when creating input/output tables).

In accordance with COBOL conventions, field names use uppercase letters in place of lowercase letters and
hyphens (-) in place of underscores (_).

Example: The COBOL field name OBJ-TYPE corresponds to the C data field .obj_type

openUTM V7.0. Administering Applications. User Guide.

 845

14.1.1 COPY members for the program interface in COBOL

The names of the COPY members for the program interface for administration are all prefixed with the letters KCA.
The table below contains the names of the C data structures in alphabetical order and specifies which COPY
member corresponds to which C data structure, or which COPY member contains particular definitions:

openUTM V7.0. Administering Applications. User Guide.

 846

C data structure / definitions COBOL COPY member

Operation codes and sub-operation codes for KDCADMI (values from and opcode
, the object types (values from) and the main and subcodes of subopcode1/2) obj_type

the return codes (values from)retcode

KCAOPRTC

Printable strings for the main and subcodes of the return codes KCAPRINC

kc_abstract_syntax_str KCAABSTC

kc_access_point_str KCAACCPC

kc_adm_parameter (parameter area) and
kc_id_area (identification area)

KCAPAIDC

kc_application_context_str KCAAPLCC

kc_bcamappl_str KCABCAMC

kc_change_application_str KCAAPPLC

kc_character_set_str KCACSETC

kc_cluster_curr_par_str KCACCURC

kc_cluster_node_str KCACLNOC

kc_cluster_par_str KCACLPAC

kc_con_str KCACONC

kc_create_statements_str KCACREAC

kc_curr_par_str KCACURRC

kc_db_info_str KCADBIC

kc_diag_and_account_par_str KCADACCC

kc_dyn_par_str KCADYNC

kc_edit_str (only on BS2000 systems) KCAEDITC

kc_encrypt_str KCAENCRC

kc_encrypt_advanced_str KCAENCAC

kc_gssb_str 1

kc_http_descriptor_str KCAHTPDC

kc_kset_str KCAKSETC

openUTM V7.0. Administering Applications. User Guide.

 847

C data structure / definitions COBOL COPY member

kc_load_module_str KCALMODC

kc_lock_mgtm_str KCACLLKC

kc_lpap_str KCALPAPC

kc_lses_str KCALSESC

kc_lterm_str KCALTRMC

kc_ltac_str KCALTACC

kc_max_par_str KCAMAXC

kc_msg_dest_par_str KCAMSGDC

kc_message_module_str KCAMSGMC

kc_mux_str (only on BS2000 systems) KCAMUXC

kc_online_import_str KCACLIMC

kc_osi_association_str KCAOASSC

kc_osi_con_str KCAOCONC

kc_osi_lpap_str KCAOLPAC

kc_pagepool_str KCAPGPLC

kc_ptc_str KCAPTCC

kc_program_str KCAPROGC

kc_pterm_str KCAPTRMC

kc_queue_par_str KCAQUPAC

kc_queue_str KCAQUEUC

kc_sfunc_str KCASFUNC

kc_shutdown_str KCASHUTC

kc_signon_str KCASIGNC

kc_subnet_str (only on Unix, Linux and Windows systems) KCASBNTC

kc_syslog_str KCASLOGC

kc_system_par_str KCASYSTC

openUTM V7.0. Administering Applications. User Guide.

 848

C data structure /
definitions

COBOL COPY member

kc_tac_str KCATACC

kc_tacclass_str KCATCLC

kc_tasks_par_str KCATASKC

kc_timer_par_str KCATIMEC

kc_tpool_str KCATPLC

kc_transfer_syntax_str KCATRANC

kc_user_dyn1_str KCAUSD1C

kc_user_dyn2_str KCAUSD2C

kc_user_fix_str KCAUSFXC

kc_user_str KCAUSERC

kc_utmd_par_str KCAUTMDC

1 In this case there is no corresponding COPY member as kc_gssb_str only consists of the 8 character-long field in which the GSSB name

(GS-NAME) is passed.

The COPY members for the COBOL program interface are stored in the following libraries:

for openUTM on BS2000 systems: in the library SYSLIB.UTM.070.COB

for openUTM on Unix and Linux systems: in the directory
 (Micro Focus Cobol compiler) or utmpath/copy-cobol85

 (NETCOBOL compiler from Fujitsu)utmpath/netcobol

for openUTM on Windows systems: in the directory
 (Micro Focus Cobol compiler)utmpath\copy-cobol85

openUTM V7.0. Administering Applications. User Guide.

 849

14.1.2 KDCADMI function call

When calling KDCADMI you can - as with the C/C++ interface - pass four sets of parameters to openUTM: the
parameter area KC-ADM-PARAMETER: the identification area ID-AREA; the selection area SELECT-AREA; and
the data area DATA-AREA. To find out what data to supply to each of these areas, please refer to the description of
the C/C++ interface in chapter . The KDCADMI must have the "Program interface for administration - KDCADMI"
following syntax:

CALL "KDCADMI" USING KC-ADM-PARAMETER,
 ID-AREA,
 SELECT-AREA,
 DATA-AREA.

openUTM V7.0. Administering Applications. User Guide.

 850

14.1.3 Notes on programming

When writing administration programs in COBOL, please observe the following points:

If you are working with the printable string tables for the return codes (the COPY member KCAPRINC), you will
need to remember that, in COBOL, a table always begins with the index “1”, whereas return code values always
begin with “0”. You can program accesses to a printable return code in the table as follows:

MOVE MC-TEXT (KC-MAINCODE + 1) TO MC.
MOVE SC-TEXT (KC-SUBCODE + 1) TO SC.

The data structure KC-ADM-PARAMETER with the call parameters for the administration interface begins on
level 1. KC-ADM-PARAMETER therefore has to be stored in the WORKING-STORAGE-SECTION or the
LOCAL-STORAGE-SECTION section.

If a data structure contains substructures, then these should generally be addressed in fully qualified form.

Example

MOVE SIGN-YEAR IN SIGN-TIME-DATE IN KC-USER-STR TO ...

openUTM V7.0. Administering Applications. User Guide.

 851

14.2 Sample programs

Sample programs are shipped with the product openUTM in the form of source code and object modules. You can
use these as programming templates for your own administration programs, modify them to suit your requirements,
compile them and integrate them in your application. The sample programs are the programs HNDLUSR (only
BS2000 systems), DADMMVS, PUBSUBA/PUBSUBD, SUSRMAX, COBUSER and ENCRADM (for a description of
DADMMVS and PUBSUBA/PUBSUBD, see the relevant openUTM manual “Using UTM Applications”).

On BS2000 systems you will find the source code and the object modules of the sample programs, the ERRCHCK
subroutine and the D0USER mask (IFG format) in the library SYSLIB.UTM.070.EXAMPLE.

On Unix and Linux systems you will find the COBOL module in the directory COBUSER.cbl utmpath/sample/src
 or The C sample program and the subprogram ERRCHCK form part of the sample /mfcobol /netcobol

application. Following installation of the sample application, they can be found in the corresponding subdirectory
/ ..utmsample utm-c

On Windows systems you will find the COBOL module in the directory COBUSER.cbl utmpath
. The C sample program and the subprogram ERRCHCK for part of the Quick Start Kit. \sample\src\mfcobol

Following installation of the Quick Start Kit, they can be found in the corresponding subdirectory \ \utmsample utm-c

.

The generation statements for the C sample programs are already entered in the KDCDEF input files of
the sample application (Unix and Linux systems or of the Quick Start Kit (Windows systems).

i

openUTM V7.0. Administering Applications. User Guide.

 852

14.2.1 The C program unit HNDLUSR (BS2000 systems)

HNDLUSR allows you to carry out the following actions with format control:

query and modify the properties of user IDs

enter new user IDs in the configuration

delete user IDs from the configuration

Notes on generation

The program unit must be defined as follows in the KDCDEF run:

PROGRAM HNDLUSR,COMP=ILCS

TAC HNDLUSR,PROGRAM=HNDLUSR,ADMIN=YES

FORMSYS ENTRY=KDCFHS,TYPE=FHS,LIB=library with connection module to the formatting system

The program unit uses the C routine ERRCHCK and the FHS format D0USER internally.

Note on linking

The HNDLUSR program unit can be linked to the application program by means of a RESOLVE-BY-AUTO
statement. The ERRCHCK routine is implicitly included as well.

Note on starting

The parameters for the FHS formatting system must be added to the start procedure for the application:

.FHS MAPLIB=format library

.FHS ISTD=RUNP

You must copy the FHS format D0USER from the EXAMPLE library to the format library you are using before the
application is started.

openUTM V7.0. Administering Applications. User Guide.

 853

14.2.2 The C program unit SUSRMAX

You can use SUSRMAX to carry out the following actions:

display all currently connected user IDs

display all user IDs that are currently in a service

display the currently set values for application parameters that can be defined in MAX at KDCDEF generation
and modified by administration

modify these application parameters

Notes on generation

The program unit must be defined as follows in the KDCDEF run:

BS2000 systems:

Unix, Linux and Windows systems:

PROGRAM SUSRMAX,COMP=ILCS (BS2000 systems)

or
PROGRAM SUSRMAX,COMP=C

TAC SUSRMAX,PROGRAM=SUSRMAX,ADMIN=YES

The program unit requires the following minimum sizes for KB and SPAB:

168 bytes for the KB program area

6296 bytes for the SPAB area

The program unit uses the C routine ERRCHCK internally.

Note on linking

On BS2000 systems, the SUSRMAX program unit can be linked to the application program by means of a
RESOLVE-BY-AUTO statement. The ERRCHCK routine is also included implicitly.

On Unix, Linux and Windows systems, the SUSRMAX program unit is automatically linked into the example
application.

openUTM V7.0. Administering Applications. User Guide.

 854

14.2.3 The COBOL program unit COBUSER

The program reads information on signed-on users and LTERM partners.

Notes on Generation:

The program unit must be defined in the KDCDEF run as follows:

BS2000 systems:

PROGRAM COBUSER, COMP=ILCS

TAC COBUSER, PROGRAM=COBUSER, ADMIN=YES

Unix and Linux systems:

PROGRAM COBUSER, COMP=COB2 (Micro Focus compiler)

PROGRAM COBUSER, COMP=NETCOBOL (NETCOBOL compiler from Fujitsu)

TAC COBUSER, PROGRAM=COBUSER, ADMIN=YES

Windows systems:
PROGRAM COBUSER, COMP=COB2 (Micro Focus Compiler)

TAC COBUSER, PROGRAM=COBUSER, ADMIN=YES

Note on linking:

On BS2000 systems, the COBUSER program unit can be linked to the application program by means of a
RESOLVE-BY-AUTO statement.

On Unix and Linux systems you must link the library which is located below the path libsample utmpath/sample
./sys

On Windows systems, the object must be linked explicitly.COBUSER.obj

openUTM V7.0. Administering Applications. User Guide.

 855

14.2.4 The C program unit ENCRADM

The ENCRADM program unit lets you perform the following administration functions for the encryption software.

generate new RSA key pairs

activate newly generated key pairs

delete active and newly generated key pairs

read out public keys in a file (both active and newly generated key pairs)

On Unix, Linux and Windows systems, ENCRADM is part of the sample application.

Notes on generation

The program unit must be defined using the following KDCDEF statements.

BS2000 systems:

PROGRAM ENCRADM, COMP=ILCS

TAC ENCRADM, PROGRAM=ENCRADM, ADMIN=YES

Unix, Linux and Windows systems:

PROGRAM ENCRADM,COMP=C

TAC ENCRADM, PROGRAM=ENCRADM, ADMIN=YES

The program unit requires the following minimum space for KB and SPAB:
200 bytes for the KB program area and 4 KB for the SPAB area.

The program unit uses the C routine ERRCHCK internally.

Notes on linking

On BS2000 systems, the ENCRADM program unit is linked to the EXAMPLE library in the application program by
means of a RESOLVE-BY-AUTO statement. The ERRCHCK routine is also linked implicitly.

On Unix, Linux and Windows systems, the ENCRADM program unit is automatically linked into the example
application.

openUTM V7.0. Administering Applications. User Guide.

 856

14.2.5 The C program units ADJTCLT

Using the C program unit ADJTCLT (adjust tac class), users can control how the processes (tasks) are distributed
to the TAC classes in the light of the current total number of processes and the current number of asynchronous
processes. To do this, the user creates a table containing the desired settings, see section "Creating a TAC class

".table

The program is supplied as a full dialog and asynchronous program unit.

On Unix, Linux and Windows systems, ADJTCLT forms part of the sample application or of the Quick Start Kit.

The program makes it possible to:

Automatically adapt the number of TAC class processes in accordance with the table. This function is always
executed.

Read in a new table with a default name, see section . This function is executed if no table has as "Sample table"
yet been read or if the operation code RF or READFILE is specified.

Read in a new table with any name. This function is executed if the operation code RF or READFILE is specified.

Modify the currently permitted number of asynchronous tasks. This function is executed if the operation code
MA= or MAXASYN= is specified, where is the desired maximum number of ASYNTASKS.ttt ttt ttt

Because modifying the number of permitted tasks for asynchronous processing does not generate any
messages, the change must not be made directly using the KDCAPPL command but must instead be performed
via the interface provided by this program in order to adapt the TAC class settings.

Creating a TAC class table

In this table, you specify the number of tasks per TAC class as a function of:

the number of running processes

and the current setting for the maximum number of processes that may be used for asynchronous processing.

The table must be saved as a text file. It can, for example, be created in Microsoft Excel and then be saved as a tab-
separated text file. Spaces are also permitted as separators.

Sample table

A sample table with the following default name is supplied for all platforms:

BS2000 systems: ADJTABLE.TXT

You will find this sample table in the library SYSLIB.UTM.070.EXAMPLE. Before the program unit can use this
table, you must copy it to the user ID under which the UTM application is running. In UTM cluster applications, all
the node applications can use the same table if the file is located in the shared pubset.

Unix, Linux and Windows systems: AdjTable.txt

If only one dialog TAC is generated for the program unit then all the functions must be started manually, i.
e. the program must be called manually whenever the number of tasks or asynchronous tasks or the table
has been changed.

For information on how to call the program automatically by means of the asynchronous TAC, see section
 ."ADJTCLT as MSGTAC or MSG-DEST program unit"

i

openUTM V7.0. Administering Applications. User Guide.

 857

On Unix, Linux and Windows systems, the table forms part of the sample application or of the Quick Start Kit.
Following the installation of the sample application or the Quick Start Kit, the table can be found in the following
subdirectory of the sample application or Quick Start Kit:

utmsample/utm-c (Unix and Linux systems)

(Windows systems)utmsample\utm-c

Structure of the table

The following rules apply to the structure of the table:

The values must be entered as printable numbers.

The first row in the table can be a title line.

All subsequent rows must have the following identical structure:

Column 1: Number of running processes. The maximum number of processes is 240.

Column 2: Current setting for the maximum number of processes that may be used for asynchronous
processing.

Column 3 onwards: Number of processes for each TAC class in ascending order, e.g.

17 2 4 3 3 ... 0 0 0 1 1 1

Row 3 corresponds to TAC class 1, row 4 to TAC class 2 etc.

The following applies to each of these rows:

The number of processes in row 1 must be greater than the total number of processes for all dialog TAC
classes (1 - 8) plus the number of asynchronous processes. The greater this difference is, the more free
processes there are for performing other tasks.

In the case of unused dialog TAC classes, it is also possible to specify 0 as the number of processes even
though the minimum value for the number of processes for dialog TAC classes is 1. Reason: If this were not
the case, the minimum number of processes for the application would be 9 (8 dialog TAC classes + 1).

You should note that the program is not able to check whether these dialog TAC classes are genuinely
unused.

The values for the TAC classes can also be omitted. In this case, the default value 0 is used for dialog TAC
classes and the default value '-' for asynchronous TAC classes. '-' for asynchronous TAC classes means that
the number of tasks for this TAC class is unchanged.

The number of processes (column 1) must be sorted in ascending order in the table, while the numbers of
asynchronous processes for which there are the same numbers of processes (column 2) must be sorted in
descending order.

Only the maximum permitted number of asynchronous processes, but not the number of processes permitted for
the individual TAC classes, has an influence on the number of required processes. This is ignored if the number
of permitted tasks for the individual asynchronous TAC classes is smaller than the maximum permitted number
of asynchronous tasks.

openUTM V7.0. Administering Applications. User Guide.

 858

Example

Extract from a table specifying that if there are 10 or fewer processes then one process, and if there are 12 or more
processes then two processes must always be reserved, and in which only dialog TAC classes 1, 2 and 3 are used.

All Asyn Tcl01 Tcl02 Tcl03 ... Tcl11 Tcl12 Tcl13 Tcl14 Tcl15 Tcl16

4 0 1 1 1 ... 0 0 0 0 2 2

5 1 1 1 1 ... 0 0 0 0 1 2

5 0 2 1 1 ... 0 0 0 0 1 1

6 2 1 1 1

6 1 2 1 1 ... 0 0 0 0 0 1

6 0 2 2 1 ... 0 0 0 0 0 0

...

10 5 2 1 1 ... 0 0 0 0 3 3

10 3 3 2 1 ... 0 0 0 0 1 2

10 1 3 3 2 ... - - - - - -

10 0 4 3 2

12 7 1 1 1 ... 0 0 0 0 3 4

12 3 3 2 2 ... 0 0 0 0 1 2

12 1 4 3 2

The program starts the search at the last entry in the table and selects the table entry for which the following two
conditions are satisfied:

The number of running processes must be greater than or equal to the number in column 1.

The difference between the number of currently running processes and the currently set maximum number of
asynchronous tasks must be greater than or equal to column 1 - column 2. This condition ensures that the
minimum number of processes that are free for dialog processing is actually greater than the sum of the numbers
of processes in the dialog TAC classes.

If an entry is found then the program performs the following calculation:

Number of available dialog processes = Column 1(All) - Column 2 (Asyn)

Example

If there are 12 processes and 7, 6, 5 or 4 asynchronous processes then the following row is selected:

12 7 1 1 1 ... 0 0 0 0 3 4

If there are 12 processes and 8 asynchronous processes then the following row is selected:

6 2 1 1 1

openUTM V7.0. Administering Applications. User Guide.

 859

Of the 12 running processes, 4 are always free for dialog processing since a maximum of 8 processes are
occupied by asynchronous processing. Of these 4 processes, a maximum of 3 are occupied by dialog
processing (sum of the processes for the dialog TAC classes 1+1+1). There is therefore always one process free.

If there are 12 processes and 9 asynchronous processes then no suitable entry is found.

If a suitable table entry is found then the number of processes for the individual TAC classes is adapted in
accordance with the table.

In the case of TAC classes generated with PGWT=YES, the number of processes must not exceed the generated
maximum number TASKS-IN-PGWT.

If the number of processes in TAC classes generated with PGWT=YES exceeds the maximum permitted number
TASKS-IN-PGWT then the smaller value is used.

ADJTCLT as MSGTAC or MSG-DEST program unit

The asynchronous program variant of ADJTCLT can also be used as a MSGTAC or MSG-DEST program. An
existing MSGTAC program can (after being adapted, if necessary) be integrated in the program unit. However,
ADJTCLT cannot be used as a subprogram of an existing MSGTAC program.

ADJTCLT as MSGTAC program

If ADJTCLT is only generated as a MSGTAC program then only those functions that do not require an operation
code are available since the MSGTAC program run is exclusively event-driven and the program cannot be called
via a TAC.

In this case, there must be a separate application message module and the messages K052, K056 and K058 must
have the message destination MSGTAC.

ADJTCLT as MSGDEST program

In the case of message-driven processing, the asynchronous TAC can also be generated as a MSG-DEST (MSG-
DEST USER-DEST-1/2/3/4, NAME=, DEST-TYPE=TAC, ...) and be used in the user message module as USER-
DEST for messages K052, K056 and K058.

However, a message-driven program unit only runs independently of the number of asynchronous processes and
TAC class control if it has been generated as a MSGTAC program. Otherwise the following applies:

There must always be at least one process that is permitted to perform asynchronous processing.

At least one process must be permitted in the program unit's TAC class.

Notes on generation

The program unit must be defined as follows in the KDCDEF run:

PROGRAM ADJTCLT, COMP=ILCS (BS2000 systems)

Unix, Linux and Windows systems)PROGRAM ADJTCLT, COMP=C (

Generation as dialog and asynchronous TAC:

TAC ADJTCLT, PROGRAM=ADJTCLT, ADMIN=YES, TYPE=D

TAC ADJTCLTA, PROGRAM=ADJTCLT, ADMIN=YES, TYPE=A

Generation as MSGTAC:

TAC KDCMSGTC, PROGRAM=ADJTCLT, ADMIN=YES, TYPE=A

openUTM V7.0. Administering Applications. User Guide.

 860

The asynchronous TAC ADJTCLTA can be generated as follows as MSG-DEST for, e.g., USER-DEST-1.

MSG-DEST USER-DEST-1, NAME=ADJTCLTA, DEST-TYPE=TAC , MSG-FORMAT=PRINT

On Unix, Linux and Windows systems, you can also take over the KDCDEF statements from the sample application
or the Quick Start Kit into the generation of the UTM application.

Notes on linking

On BS2000 systems, the program unit ADJTCLT can be linked to the application program by means of a RESOLVE-
BY-AUTO statement. This also implicitly links the routine ERRCHCK.

On Unix, Linux and Windows systems, the program unit ADJTCLT is automatically linked to the sample application
or the Quick Start Kit.

openUTM V7.0. Administering Applications. User Guide.

 861

14.3 CALLUTM - Tool for administration and client/server communication
(BS2000 systems)

CALLUTM is a UPIC client on a BS2000 system which communicates with UTM applications that can be running
either on the same BS2000 system or on a different system. CALLUTM can communicate with UTM applications
irrespective of the operating system under which they happen to be running.

CALLUTM allows you, from within a BS2000 task, to start services in a UTM application, pass data to and receive
data from those services. Messages are output in line mode. CALLUTM can run both in dialog mode and in batch
mode, i.e. it can be implemented in procedural environments within a BS2000 task.

This makes CALLUTM particularly suitable for the central administration of local and remote UTM applications. With
CALLUTM you can issue UTM administration commands and start administration programs in the UTM applications.

To do this, you must adapt the generations of the administered UTM applications, see .chapter "Generation"

To understand the following description of CALLUTM you will need to be familiar with UPIC on BS2000 systems,
see the manual „openUTM-Client for the UPIC Carrier System”.

openUTM V7.0. Administering Applications. User Guide.

 862

14.3.1 Generation

To use CALLUTM to administer UTM applications, proceed as follows:

In the local BS2000 system: In the “side information file” (also known as the UPICFILE) for the UPIC carrier
system, you create the corresponding entries for the UTM applications (see the manual “openUTM-Client for the
UPIC Carrier System“).

In each UTM application to be administered you must make PTERM entries and LTERM partner entries in the
relevant configurations or generate an LTERM pool via which CALLUTM can connect.

You need to create at least one user ID with administration privileges in each UTM application that you want to
administer for this (see example below). CALLUTM must pass this user ID (along with the relevant password) to
the UTM application when establishing the conversation. The CALLUTM statement CREATE-CONFIGURATION
contains the operands USER-ID and PASSWORD for this (see "Description of CALLUTM program statements

).(BS2000 systems)"

Example

The CALLUTM program on the BS2000 computer D017ZE00 is to communicate with the application DB400 on the
BS2000 computer D018ZE08.

Sample configuration for using the program CALLUTM

KDCDEF generation for the UTM application on the DB400 computer BS2HOSTA:

There are to be two ways in which CALLUTM can connect to the UTM application:

via an LTERM pool. If CALLUTM connects via the LTERM pool, CALLUTM will be unable to start any
administration commands and TACs for which administration privileges are required.

You can also assign the LTERM partner through which CALLUTM links up with the UTM application an
user ID with administration privileges (LTERM ...,USER=). CALLUTM then does not need to pass a
user ID to the UTM application and has administration privileges when establishing the connection.
Bear in mind, however, that this approach will reduce access control for the UTM application.

i

openUTM V7.0. Administering Applications. User Guide.

 863

via an LTERM partner generated explicitly for the purpose of working together with CALLUTM. To this end, a
PTERM statement, an LTERM statement and a USER statement must be issued for CALLUTM in the UTM
application.

The user ID (USER ADMUPCT0) must have administrator privileges and be assigned to the LTERM partner.

*- BCAMAPPL FOR CONNECTING CALLUTM VIA AN LTERM POOL

BCAMAPPL DB4UPAP0,T-PROT=ISO

*- BCAMAPPL FOR CONNECTING CALLUTM VIA A DEDICATED LTERM PARTNER

BCAMAPPL DB4UPAT0,T-PROT=ISO

- LTERM POOL FOR CONNECTING CALLUTM -----------------------------

TPOOL BCAMAPPL=DB4UPAP0,KSET=ALLKEYS,LTERM=UPCP0#0,NUMBER=9, -
 PRONAM=D017ZE00,PROTOCOL=N,PTYPE=UPIC-R

- DEFINE PTERM STATEMENT, LTERM PARTNER AND USER ID WITH --------
- ADMINISTRATION PRIVILEGES FOR CALLUTM -------------------------

PTERM UPCPT#T0, PRONAM=BS2HOSTC, PTYPE=UPIC-R, -
 BCAMAPPL=DB4UPAT0, PROTOCOL=N, LTERM=UPCLT#T0
LTERM UPCLT#T0, KSET=ALLKEYS, USER=ADMUPCT0, RESTART=N
* USER ID WITH ADMINSTRATOR PRIVILEGES ----------------------------
USER ADMUPCT0, PERMIT=ADMIN, PASS=(ADMT0 ,D)

Entries in the UPICFILE

Connecting CALLUTM to a UTM application

CALLUTM links up to the UTM application DB400 on the BS2HOSTA computer via the LTERM partner
UPCLT#T0, if you make the following entries in CALLUTM when establishing the connection:

local name = UPCPT#T0

symbolic destination name = DBSADMT0

openUTM V7.0. Administering Applications. User Guide.

 864

„UPCPT#T0“ is passed to openUTM as the client name (PTERM name).

The symbolic partner name DBSADMT0 is linked to the partner name DB4UPAT0 from the UPICFILE. That is
the name of the UTM application DB400, as specified in BCAMAPPL during the KDCDEF generation.

CALLUTM links up to the UTM application via the LTERM pool, if you make the following entries when
establishing the connection:

local name = locname

symbolic destination name = DBS0POOL or DBS1POOL

Enter an alphanumeric name (up to 8 bytes long) for with which CALLUTM signs on with the transport locname
system. This name is passed on to openUTM as the client name when the connection is established and it will
be assigned to an LTERM partner of the LTERM pool for the duration of the connection.

The symbolic partner name DBS0POOL or DBS1POOL is linked to the partner name DB4UPAP0 from the
UPICFILE. That is the name of the UTM application DB400 as entered in BCAMAPPL during the KDCDEF
generation.

Calling CALLUTM as an administrator program in a BS2000 task

You can call CALLUTM via the SDF command START-CALLUTM. This command can be found in the SDF UTM
application area. For further information, see the openUTM manual “Using UTM Applications on BS2000 Systems”,
section “Calling UTM tools”.

The communication to the server is possible with or without encryption.

Example (call via START-CALLUTM)

In the following example CALLUTM is to terminate the UTM application DB400 on the BS2HOSTA computer. For
this you must first start CALLUTM and sign on to the UTM application DB400 using the user ID ADMUPCT0, which
has administrator privileges. To terminate the application, you issue the UTM administration command KDCSHUT
NORMAL.

To do that you must you must enter the following sequence of program statements. The program statements will be
described in detail below.

/START-CALLUTM

//CREATE-CONFIGURATION LOCAL-NAME=UPCPT#T0, -

/ SYMB-DEST-NAME=DBSADMT0

//SELECT-SERVICE SERVICE-NAME=KDCSHUT, SERVICE-DATA='NORMAL'

//END

By default, communication with the server is handled over a Socket connection. If CMX is to be used, you can use

the following command.

/START-CALLUTM TRANSPORT-SYSTEM=*CMX

openUTM V7.0. Administering Applications. User Guide.

 865

14.3.2 Description of CALLUTM program statements

The program statements in CALLUTM are read by the SDF user interface and processed by the SDF command
processor. Alongside the standard SDF statements, CALLUTM can also use any of the program statements listed in
the table below:

No. Program statement Function

1. CREATE-CONFIGURATION Defines the environment for the program run and selects the
connection to the UTM application. This statement must be issued
as the first statement.

2. SELECT-SERVICE Starts a service (transaction code) in the UTM application. A
message (operands or parameter values) can also be issued with
this statement.

3. CONTINUE-SERVICE Continues a service that is not yet completed. For services which
consist of a number of processing steps, this statement starts the
next processing step once the previous one is completed. A
message can also be issued with this statement.

4. DEALLOCATE-CONVERSATION Terminates the conversation with the UTM application. Any service
that is still open in the UTM application and that belongs to this
conversation will be terminated abnormally.

5. SHOW-CONFIGURATION Displays the program runtime environment that was set with
CREATE-CONFIGURATION or MODIFY-CONFIGURATION.

6. MODIFY-CONFIGURATION Modifies the program runtime environment that was set with
CREATE-CONFIGURATION.

7. CALLUTM-ERROR-STEP Controls statement processing of CALLUTM in procedure or batch
mode.

CREATE-CONFIGURATION must always be the first statement to follow the program start. It is particularly
important to ensure that CREATE-CONFIGURATION is issued before the SELECT-SERVICE statement.
Statements 5 and 6 can be issued anywhere between CREATE-CONFIGURATION and the end of the program run.

The statements are listed below in alphabetical order and described in detail.

Notational conventions

The following description of the statements uses SDF syntax notation. The table below outlines the elements that
make up this form of notation, which are also described in the general section on in ."Notational conventions"

openUTM V7.0. Administering Applications. User Guide.

 866

Symbol Meaning Examples

< > Angle brackets indicate variables whose
values are described in terms of data types
and the associated information.

POSITION = <integer 1..256>

/ The slash character separates operand
values that can be used as alternatives.

SET-TEST-MODE = / *NO *YES

(...) Parentheses indicate operand values which
begin a structure.

, = (...) / SET-SERVICE-JV *YES *NO

Indentation Indentation indicates dependency on the
next highest operand.

, = / (...)SET-SERVICE-JV *NO *YES

*YES(...)

| JV-IDENTIFICATION = ...

|

|

|

A vertical line indicates operands that
belong together in a structure. It runs from
the start to the end of a structure.
Further substructures can occur within a
structure. The number of vertical lines to the
left of an operand indicates the structural
nesting depth.

, = / (...)SET-SERVICE-JV *NO *YES

*YES (...)

| JV-ID = (...) /...*JV-NAME

| *JV-NAME (...)

| | JV-NAME =...

Short name: The following name is a guaranteed alias
name for the statement name.

Short name: CONFATTR

CALLUTM-ERROR-STEP

The program statement CALLUTM-ERROR-STEP controls statement processing of CALLUTM in procedure or
batch mode:

If an error (other than SDF syntax error) occurred during CALLUTM program run, e.g. if the addressed UTM
application is offline, CALLUTM reads the following program statements from SYSDATA, until CALLUTM-ERROR-
STEP is recognized. If no CALLUTM-ERROR-STEP is found, CALLUTM will terminate.

The CALLUTM-ERROR-STEP statement has no operands.

openUTM V7.0. Administering Applications. User Guide.

 867

Example

//CREATE-CONFIGURATION ...
// ...
// ...
//SELECT-SERVICE SERVICE-NAME = KDCINF, SERVICE-DATA = C'STAT' (1)
//SELECT-SERVICE SERVICE-NAME = KDXINF, SERVICE-DATA = C'USER' (2)
//SELECT-SERVICE SERVICE-NAME = KDCINF, - (3)
// SERVICE-DATA = C'USER,L=KDCCON'
//CALLUTM-ERROR-STEP (4)
//SELECT-SERVICE SERVICE-NAME = KDCINF, SERVICE-DATA = C'TAC' (5)

Explanation:

Statement (1) is executed.
Statement (2) causes an error, because TAC KDXINF is not defined.
Statement (3) is not executed.
The processing is continued with statement (5).

CONTINUE-SERVICE

CONTINUE-SERVICE allows you to continue a service that was started in the UTM application with SELECT-
SERVICE and is made up of several steps. CONTINUE-SERVICE needs to be specified when the service sends a
message to CALLUTM after one dialog step is completed but when the service as a whole is not yet completed
because other processing steps remain to be executed. Data can be passed to the service for the next processing
step.

openUTM V7.0. Administering Applications. User Guide.

 868

1.

2.

CONTINUE-SERVICE

SERVICE-DATA = / list-poss(42):<c-string -with-lower-case 1..1800>*NO

, = / (...)SET-SERVICE-JV *NO *YES

*YES(...)

| JV-IDENTIFICATION = (...) / (...) *JV-NAME *LINK-NAME

| *JV-NAME(...)

| | JV-NAME=<full-filename-without-generation-version 1..54>

| | , = / <integer 1..256>POSITION 1

| | , = / <integer 1..256>LENGTH *REST

| *LINK-NAME

| | LINK-NAME =< alphanum-name 1..7>

| | , = / <integer 1..256>POSITION 1

| | , = / <integer 1..256>LENGTH *REST

| , = /< c-string 1..4> / <x-string 1..8>PASSWORD *NONE

| , = (...) / <c-string-with-lower-case 1..256> / <x-string 1..512>VALUE *RECEIVE-MSG

| *RECEIVE-MSG(...)

| | POSITION = / <integer 1..4000>1

For a description of the operands, see the SELECT-SERVICE statement ("Description of CALLUTM program
).statements (BS2000 systems)"

Example

This example refers to the sample administration program SUSRMAX which is supplied with openUTM (see
). The dialog with SUSRMAX consists of the following steps:"Sample programs"

SUSRMAX is started and returns a message prompting you to select a function:

-> //SELECT-SERVICE SERVICE-NAME=SUSRMAX
 <date: 04-19-2019 time: 11:21:03
 application: DB400 host: BS2HOSTA tac: SUSRMAX

 available commands:
 0 = end | 1 = show-connected-users
 2 = show-users-in-conversation | 3 = show-changeable-max-values
 4 = change-max-values |
 please make a selection

openUTM V7.0. Administering Applications. User Guide.

 869

2.

3.

4.

5.

The service is continued with CONTINUE-SERVICE; the function “1 = show-connectedusers” is selected
(SERVICE-DATA='1'). openUTM returns the requested information.

-> //CONTINUE-SERVICE SERVICE-DATA='1'
<- ...
 ... Output
 ...

The UTM message prompting you to select another function is output again.

-> //CONTINUE-SERVICE
<- ...
 ... The function selection message is output as in 1.
 ...

The service is continued with CONTINUE-SERVICE; the function ”2 = show-users-inconversation” is selected
(SERVICE-DATA='2'). openUTM returns the requested information.

-> //CONTINUE-SERVICE SERVICE-DATA='2'
<- ...
 ... Output
 ...

SUSRMAX is terminated (function “0 = end”).

-> //CONTINUE-SERVICE SERVICE-DATA='0'
 <date: 04-19-2019 time: 11:22:34
 application: DB400 host: D018ZE08 tac: SUSRMAX
 --
 conversation terminated
 --
-> //

CREATE-CONFIGURATION

The statement CREATE-CONFIGURATION defines the environment for the program run and selects the
connection to the UTM application. In other words, it allows you to determine:

how the program is to sign on to the UPIC carrier system

the UTM application to which a connection is to be established

the UTM user ID to be passed when the conversation is established

whether and to what extent a log file is to be written

whether UPICTRACE is also to run.

CREATE-CONFIGURATION must be the first statement issued when the program has started. If CREATE-
CONFIGURATION is issued repeatedly during the course of the program run, any open log files will be closed and
open services will be rolled back. An internal DEALLOCATE is also executed.

You can use MODIFY-CONFIGURATION during a program run to modify the values set with CREATE-
CONFIGURATION.

openUTM V7.0. Administering Applications. User Guide.

 870

CREATE-CONFIGURATION Alias: CONFATTR

LOCAL-NAME = <alphanum-name 1..8>

, = <alphanum-name 8..8>SYMB-DEST-NAME

USER-ID / <alphanum-name 1..8>(...) / <c-string_1..8_with-low> / < x-string 1..16>= *NONE

<alphanum-name 1..8>(...) / <c-string_1..8_with-low> / < x-string 1..16>

| PASSWORD /< c-string 1..16 >/< x-string 1..32>= *NONE

, / (...)WRITE-LOGGING-FILE = *NO *YES

*YES(...)

| LOGGING-FILENAME = <full-filename-without-generation-version 1..54>

| , = / OPEN-MODE *REPLACE *EXTEND

| , = / /LOGGING-INFO *ALL *SEND *RECEIVE

| , = / <integer 1..252>RECORD-LENGTH *STD

, = / WRITE-UPIC-TRACE *NO *YES

, = / <integer 1..1>CONFIGURATION-ID 1

, = / SET-TEST-MODE *NO *YES

,SET-ENCRYPTION-LEVEL = / <integer 1..4>*NO

LOCAL-NAME = <alphanum-name 1..8>

Local name under which CALLUTM signs on to the UPIC carrier system. This name must be
defined in the UPICFILE.

SYMB-DEST-NAME = <alphanum-name 8..8>

Symbolic partner name of the UTM application to which a connection is to be established. This
name must be defined in the UPICFILE.

USER-ID =

UTM user ID used to establish the conversation.

*NONE No security functions are used.

<alphanum-name 1..8>() / <c-string_1..8_with-low> / < x-string 1..16>

UTM user ID. This user ID must exist in the UTM application.

PASSWORD = *NONE
No password is assigned to the user ID set for USER-ID.

openUTM V7.0. Administering Applications. User Guide.

 871

PASSWORD = <c-string 1..16> or <x-string 1..32>
If a password is assigned to the user ID set for USER-ID, this password must be entered here as
a character string (c-string) or as a hexadecimal string (x-string).

WRITE-LOGGING-FILE =

Determines whether and to what extent the flow of data from the client to the server and back (i.
e. service data) is to be logged.

*NO No data is logged.

*YES () Data is logged.

LOGGING-FILENAME = <full-filename-without-gen-vers 1..54>
Name of the log file.

OPEN-MODE = *EXTEND
Any existing log file is extended (appended). If no log file exists, a new one is created.

OPEN-MODE = *REPLACE
Any existing log file is overwritten. If no log file exists, a new one is created.

LOGGING-INFO = *SEND
Only data that is sent to a service in the UTM application is logged.

LOGGING-INFO = *RECEIVE
Only the data that CALLUTM receives from a service in the UTM application is logged.

LOGGING-INFO = *ALL
All data that CALLUTM exchanges with a service in the UTM application is logged, i.e. both data
that is sent and data that is received.

RECORD-LENGTH = *STD / <integer 1..252>
Length of the records to be written to the log file. A new record is started whenever “newline” is
detected in the send or receive area. “newline” itself is not logged.
*STD stands for a record length of 79 bytes.

WRITE-UPIC-TRACE =

Indicates whether UPIC tracing is to be activated.

*NO The UPIC trace is not activated.

*YES The UPIC trace is activated.

If no *UPICTRA link name to a job variable exists, a new job variable JV.UPICTRACE.CALLUTM
is created with the value “-SX” and the link name *UPICTRA is assigned to it.

CONFIGURATION-ID = 1

Serves to identify the configuration. The only permissible value is 1.

SET-TEST-MODE=

Activate/deactivate test mode.

openUTM V7.0. Administering Applications. User Guide.

 872

*NO Test mode is not activated. No UPIC calls are output to SYSOUT.

*YES Test mode is activated. All UPIC calls from CALLUTM are output to SYSOUT.

SET-ENCRYPTION-LEVEL=

Specifies whether and how data is to be encrypted over the connection.

If encryption has been generated on the server side for the client connection, the relevant
encryption level from the generation must be specified here.

If encryption has been generated on the server side for a TAC that is to be called here, the
encryption level must also be specified on the client side.

*NO No encryption.

<integer 1..4>

Encryption level from the generation.

Example

//CREATE-CONFIGURATION LOCAL-NAME=UPCPT#T0,SYMB-DEST-NAME=DBSADMT0, -
// WRITE-LOGGING-FILE=*YES(L-F=LOG.CALLUTM)

DEALLOCATE-CONVERSATION

This statement terminates the conversation with the partner application. Any service that is still open in the UTM
application is terminated abnormally.

DEALLOCATE-CONVERSATION

CONFIGURATION-ID = / <integer 1..1> 1

CONFIGURATION-ID does not need to be specified (default setting).
Only CONFIGURATION-ID=1 may be specified.

Example

//DEALLOCATE-CONVERSATION

openUTM V7.0. Administering Applications. User Guide.

 873

MODIFY-CONFIGURATION

MODIFY-CONFIGURATION allows you to modify the existing values set with CREATE-CONFIGURATION or a
previous MODIFY-CONFIGURATION statement in the program runtime environment.

MODIFY-CONFIGURATION Alias: MODATTR

/ <alphanum-name 1..8>LOCAL-NAME = *UNCHANGED

, = / <alphanum-name 8..8>SYMB-DEST-NAME *UNCHANGED

, / <alphanum-name 1..8>USER-ID = *UNCHANGED

<alphanum-name 1..8>(...)

| /< c-string 1..8> / <x-string 1..16>PASSWORD = *UNCHANGED / *NONE

, / (...)WRITE-LOGGING-FILE = *UNCHANGED *YES

(...)*YES

| = LOGGING-FILENAME *UNCHANGED

| , = / * / OPEN-MODE *UNCHANGED REPLACE *EXTEND

| , = / / /LOGGING-INFO *UNCHANGED *ALL *SEND *RECEIVE

| , = / /< integer 1..252>RECORD-LENGTH *UNCHANGED *STD

, = / / WRITE-UPIC-TRACE *UNCHANGED *NO *YES

, = / <integer 1..1>CONFIGURATION-ID 1

, = / / SET-TEST-MODE *UNCHANGED *NO *YES

 = / ,SET-ENCRYPTION-LEVEL *UNCHANGED *NO

For a description of the operands, see statement CREATE-CONFIGURATION on "Description of CALLUTM
.program statements (BS2000 systems)"

Example

Logging is deactivated.

-> //MOD-CONF WRITE-LOGGING-FILE=*NO
<- CUA0050: configuration modified
-> //

openUTM V7.0. Administering Applications. User Guide.

 874

SELECT-SERVICE

SELECT-SERVICE starts a service in the UTM application. Data (i.e. operands and parameter values) required by
the service for processing can also be supplied. In addition, a job variable can be defined to accept the receive
message, segment of the receive message or any specified string once the statement has been executed. If the job
variable defined has not yet been cataloged a new one is created.

If you use SELECT-SERVICE to call a service which consists of several processing steps and which passes dialog
messages to CALLUTM between the individual processing steps, then, between the time the service is called and
the time when it is terminated, you can (with the exception of the standard SDF statements) only issue the following
statements:

CONTINUE-SERVICE
Continues the service once a dialog message has been received.

DEALLOCATE-CONVERSATION
Aborts the connection and (abnormally) terminates the service in the UTM application.

SHOW-CONFIGURATION
Reads the current configuration data.

SELECT-SERVICE

SERVICE-NAME = <alphanum-name 1..8>/<c-string-with-lower-case>

, = / list-poss(42): <c-string -with-lower-case 1..1800>SERVICE-DATA *NO

, = / (...)SET-SERVICE-JV *NO *YES

*YES(...)

| JV-IDENTIFICATION = (...) / (...) *JV-NAME *LINK-NAME

| *JV-NAME(...)

| | JV-NAME=<full-filename-without-generation-version 1..54>

| | , = / <integer 1..256>POSITION 1

| | , = / <integer 1..256>LENGTH *REST

| *LINK-NAME(...)

| | LINK-NAME =< alphanum-name 1..7>

| | , = / <integer 1..256>POSITION 1

| | , = / <integer 1..256>LENGTH *REST

| , = /< c-string 1..4> / <x-string 1..8>PASSWORD *NONE

| , = (...) / <c-string-with-lower-case 1..256> / <x-string 1..512>VALUE *RECEIVE-MSG

| *RECEIVE-MSG(...)

| | POSITION = / <integer 1..4000>1

openUTM V7.0. Administering Applications. User Guide.

 875

SERVICE-NAME = <alphanum-name 1..8>/<c-string-with-lower-case>

The transaction code with which the service is to be started in the UTM application; can also be
an administration command or a different administration TAC.

SERVICE-DATA =

Message to be passed to the service in the UTM application.

*NO No message data is passed.

list-poss(42): <c-string-with-lower-case 1..1800>

Message to be passed from the remote service. The message must be passed as a C string, i.e.
enclosed in quotes.

You can also pass a list of C strings here. The individual elements of the list are sent as partial
messages and also received as partial messages by the server.

Number of C strings: up to 42.

Total length of the list: up to 1800 characters

SET-SERVICE-JV =

Supplies data to a job variable.

*NO Data is not supplied to a job variable.

*YES () Data is supplied to a job variable.

JV-IDENTIFICATION = *JV-NAME ()
The job variable is addressed by name.

JV-NAME = <full-filename-without-generation-version 1..54>
Name of the job variable. If the job variable has not yet been cataloged a new one is created.

POSITION = 1
The job variable is set as of column 1.

POSITION = <integer 1..256>
The job variable is set as of the specified column.

LENGTH = *REST
As of POSITION, the full-length job variable can be set.

LENGTH = <integer 1..256>
The job variable is set to the specified length
(depending on the input value and starting position).

JV-IDENTIFICATION = *LINK-NAME ()
The job variable is addressed via a link name which must have been set before the statement
was executed (e.g. at the start of the program run).

LINK-NAME = <alphanum-name 1..7>
Link name set for the job variable.

openUTM V7.0. Administering Applications. User Guide.

 876

1.

2.

POSITION = as for *JV-NAME (); see above

LENGTH = as for *JV-NAME (); see above

PASSWORD = *NONE
Access to the job variable is not password-protected.

PASSWORD = <c-string 1..4> / <x-string 1..8>
Password used for (read and write) access to the job variable.

VALUE = *RECEIVE-MSG (POSITION = 1/<integer 1..4000>)
The job variable is reserved with the data received from the UTM application (in accordance with
the position and length defined above).
For POSITION you specify the position (column) within the receiving area as of which the data
received is to be written to the job variable. If POSITION 1, the job variable is positioned at the !=

corresponding distance within the receiving area.

VALUE = <c-string 1..256> / <x-string 1..512>
The job variable is reserved with the string passed for this value in accordance with the position
and length defined above.

Note on the use of job variables

Before the statement is executed, the job variable is initialized with blanks as of the specified position and to the
specified length. If an error occurs during this access to the job variable, the statement as a whole is not executed.

Example

The administration command KDCSHUT WARN, TIME=01 is called.

//SELECT-SERVICE SERVICE-NAME=KDCSHUT, SERVICE-DATA='WARN,TIME=01'

The command KDCINF reads the properties of the user ID UPCUSER (KDCINF USER,LIST=UPCUSER). The
output is to be written to the job variable JV.USER (as of column 81).

//SELECT-SERVICE SERVICE-NAME=KDCINF, -
// SERVICE-DATA='USER,LIST=(UPCUSER)', -
// SET-SERVICE-JV=*YES (-
// JV-ID=*JV-NAME (-
// JV-NAME=JV.USER, -
// POSITION=81) -
//) -
// VALUE=*RECEIVE-MSG(POSITION=161)

Result

Once the statement has executed, the job variable JV.USER will be reserved as follows as of column 81:

......column 81 column 123

.............| |

.............UPCUSER0_____________OFF_____N______________

.............8________0_______0__UPCLT#T0_______.

.............| |

.....column 124 column 160 is next line X'15'

openUTM V7.0. Administering Applications. User Guide.

 877

2.

For an explanation of the meaning of the contents, see also :"Output from KDCINF (examples)"

UPCUSER (value of USER):
Name of the user ID.

OFF (value of STATUS):
The user ID is disabled.

N (value of OSERV):
The user ID is not processing any service at present.

8 (value of NR.TACS):
Eight transaction jobs have so far been entered under this user ID.

0 (value of SECCNT):
Number of security violations under this user ID.

UPCLT#T0 (value of LTERM):
Name of the LTERM partner via which the user ID signs on.

openUTM V7.0. Administering Applications. User Guide.

 878

SHOW-CONFIGURATION

SHOW-CONFIGURATION allows you to display the values defined by the last CREATE-CONFIGURATION or
MODIFY-CONFIGURATION statement.

SHOW-CONFIGURATION Alias: SHOWATTR

CONFIGURATION-ID = / <integer_1..1> 1

, = /OUTPUT *SYSOUT *LOGGING-FILE

CONFIGURATION-ID = 1

Identifies the configuration. The only permissible value is 1.

OUTPUT=

Specifies the destination to which the requested data is to be output.

*SYSOUT

The requested data is to be output to SYSOUT.

*LOGGING-FILE

The requested data is to be written to the log file (see CREATE-CONFIGURATION; operand WRITE-
LOGGING-FILE). If no log file was defined with CREATE-CONFIGURATION or MODIFY-
CONFIGURATION, the data output will be rerouted to SYSOUT.

openUTM V7.0. Administering Applications. User Guide.

 879

Example

-> //SHOW-CONF OUTPUT=*SYSOUT
<- -- current configuration data: ---------------------------------
 local name = UPCPT#T0
 symbolic destination name = DBSADMT0
 partner name (from upicfile) = DBSUPAT0
 program name is enabled to UPIC
 no user identification given
 logging file name = LOG.CALLUTM
 open mode = replace
 record length = 79
 logging info = transmitted and received messages
 file is open
 upic trace is switched off
 program monitoring job variable is not specified
encryption is not available
-- end configuration data --------------------------------------
->

openUTM V7.0. Administering Applications. User Guide.

 880

14.3.3 Components, system environment, software configuration on BS2000 systems

The following components are supplied for CALLUTM:

the program SYSPRG.UTM.070.CALLUTM

the SDF syntax file SYSSDF.UTM.070.CALLUTM

The program CALLUTM is contained in the LMS library SYSLNK.UTM.070.CALLUTM. It requires the following
software configuration:

BS2000 systems with OSD/BC as of V10.0

CMX(BS2000) as of V1.4 if CMX is to be used to communication

SDF as of V4.7C

JV as of V15.0A (job variables)

The job variables are used with the link names UPICFIL, UPICPAT and UPICTRA as described in the openUTM
manual „openUTM-Client for the UPIC Carrier System”.

openUTM V7.0. Administering Applications. User Guide.

 881

14.3.4 Integration in a UTM application on BS2000 systems

To enable the program CALLUTM to communicate with a UTM application, entries and definitions along the lines of
those shown in the example in should be applied - with suitable modifications - to the current "Generation"
application.

openUTM V7.0. Administering Applications. User Guide.

 882

14.3.5 Program-monitoring job variables on BS2000 systems

If the program is started with a program-monitoring job variable (i.e. with the MONJV operand in the call), then
CALLUTM supplies the following values to the job variable in addition to the values set by the operating system:

openUTM V7.0. Administering Applications. User Guide.

 883

Column Length Contents Meaning

129 1 D / P / B Mode in which CALLUTM is running.
D: CALLUTM is running in dialog mode
P: CALLUTM is running in a procedure
B: CALLUTM is running in a batch job

131 - 134 4 <tsn> Task sequence number of the job

136 - 139 4 <nnnn> Serial number of the statement within the current program run (standard
SDF statements are not counted); leading zeroes are suppressed.

141 - 148 8 CUA<name> Internal name of the most recently executed statement or the current
statement. The following values can occur for <name>:

CREA for CREATE-CONFIGURATION

MODC for MODIFY-CONFIGURATION

SHOWC for SHOW-CONFIGURATION

SELS for SELECT-SERVICE

CONTS for CONTINUE-SERVICE

DEALL for DEALLOCATE-CONVERSATION

150 1 C / N / O Status of service processing:

C: A service is still open in the server application and must be
continued with CONTINUE-SERVICE.

N: No more services are open.

O: A service was called but no message has yet been received from it.

152 - 159 8 <servname> Name of the service in the UTM application (transaction code)

161 - 168 8 <localnam> “Local name”: the name under which CALLUTM is currently signed on to
the UPIC carrier system.

170 - 177 8 <symbdest> “Symbolic destination name” of the UTM application to which CALLUTM is
currently connected or is currently establishing a connection (name as
defined in the UPICFILE).

179 - 210 32 <partner> Name of the UTM application linked in the UPICFILE to the “symbolic
destination name”.

251 - 256 6 <nnnnnn> Number of the error that caused the program to terminate; leading zeroes
are suppressed. 0 indicates normal termination.

openUTM V7.0. Administering Applications. User Guide.

 884

14.3.6 Messages issued by CALLUTM (BS2000 systems)

CALLUTM generates the following messages:

CUA0010: give attributes

This message is output after CALLUTM has been started and prompts you to enter the statement CREATE-
CONFIGURATION.

CUA0015: symb-dest-name not found in UPICFILE

This message can occur after either of the statements CREATE-CONFIGURATION or MODIFY-
CONFIGURATION has been issued. It is output if the name specified in the operand SYMB-DEST-NAME
does not exist in the UPICFILE. The statement is aborted.
In procedures, this also causes the program to abort.

CUA0020: conversation started by service <name> has to be continued

This message indicates that a service started previously with SELECT-SERVICE needs to be continued. You
can now issue the CONTINUE-SERVICE statement to continue the service, or abort it with DEALLOCATE-
CONVERSATION.
<name> outputs the transaction code with which the service was started.

CUA0025: error analysing SDF statement = nnnn

An error occurred during analysis of an SDF statement. nnnn indicates the place within the program at which
the error occurred.
In procedures, this causes the program to abort.

CUA0030: JV = <name> not accessible (error = nnnnnnn)

The error nnnnnnn occurred during initialization of the job variable <name>. The program attempts to rectify
the error. If it cannot do so this will, in procedures, cause the program to abort.

callutm:error in <upic-call>:n

CUA0035: error in send-receive routine = nnnn

An error occurred during a call to the UPIC carrier system. Before the message CUA0035 is output, CALLUTM
first issues regarding the UPIC call (<upic-call>) during which the error occurred and the „callutm:...“

UPIC return code that was generated n (for an explanation of the meaning, see the manual „openUTM-Client
for the UPIC Carrier System”).

callutm:error in <upic-call>:n

In CUA0035, nnnn indicates the place within the program at which the error occurred. In procedures, this error
causes the program to abort.

Example

//**- callutm: error in allocate: 1 -**//

CUA0035: error in send-receive routine = 2007

This means that it was not possible to establish a connection to the UTM application. This message is output if
the UTM application is not available, if the BCMAP commands issued for the UTM application contained
errors, or if no BCMAP commands have yet been issued for the UTM application.

CUA0040: not processed statement = <name>

openUTM V7.0. Administering Applications. User Guide.

 885

CUA0045: program run is continued with next statement

The statement <name> could not be executed. The program run is not aborted: you can continue it by issuing
further statements. In procedures, the program run is continued with the following statement:

CUA0050: configuration modified

This message can occur after a MODIFY-CONFIGURATION statement. It indicates that the statement was
executed successfully and that the configuration has been modified as specified. You can now resume your
work under the new configuration.

CUA0051: no value given to modify configuration

This message can occur after a MODIFY-CONFIGURATION statement. It indicates that the statement was
analyzed successfully, but that the values specified did not result in a modification of the configuration.

CUA0055: conversation deallocated and abnormal end

The conversation with the UTM application has been shut down. The service in the UTM application has been
aborted.
In procedures, this causes the program to abort.

Possible causes:

The service in the UTM application encountered an error (PEND ER).

An administration service was started for which the client did not possess the necessary privileges.

CUA0060: no logging file assigned, output re-assigned to sysout (stdout)

This message can occur after a SHOW-CONFIGURATION statement for which OUTPUT=*LOGGING-FILE
was specified to request output to a log file.
The message indicates that no log file has yet been assigned; instead, output is redirected to SYSOUT.

CUA0065: deallocate not executed (program not in conversation), program run can be

continued with next statement"

The DEALLOCATE-CONVERSATION statement has been entered but no service was open.

The output is sent to SYSOUT.

CUA0070: restart not possible, continue with new service

It was not possible to restart with KDCDISP.

CUA0080: for a list of c-strings the total c-string-length (1800) is exceeded

A list of C strings was entered in the SERVICE-DATA operand in the SELECT-SERVICE or CONTINUE-
SERVICE statement. The length of the data exceeds the maximum permitted length.

CUA0085: current conversation will be terminated

CALLUTM is running in a procedure or in batch mode and the UPIC transport protocol has reported an error.
CALLUTM terminates the open service and may then branch to the statement CALLUTM-ERROR-STEP or
reaches the end of the statements.

CUA0090: encryption is not available in this environment

Encryption not available.

openUTM V7.0. Administering Applications. User Guide.

 886

Action: Integrate encryption in the current UPIC client library.

CUA0100: CALLUTM-ERROR-STEP reached

After the occurrence of an error in a procedure or in batch mode, all statements were skipped until CALLUTM-
ERROR-STEP was recognized.

CUA0105: all statements will be ignored until CALLUTM-ERROR-STEP is recognized

After the occurrence of an error in a procedure or in batch mode, all statements are skipped until CALLUTM-
ERROR-STEP is detected. If no such statement is found, END terminates the program run.

openUTM V7.0. Administering Applications. User Guide.

 887

15 Glossary

A term in font means that it is explained somewhere else in the glossary.italic

abnormal termination of a UTM application

Termination of a , where the is not updated. Abnormal termination is UTM application KDCFILE
caused by a serious error, such as a crashed computer or an error in the system software. If you
then restart the application, openUTM carries out a .warm start

abstract syntax (OSI)

Abstract syntax is defined as the set of formally described data types which can be exchanged
between applications via . Abstract syntax is independent of the hardware and programming OSI TP
language used.

acceptor (CPI-C)

The communication partners in a are referred to as the and the acceptor. The conversation initiator
acceptor accepts the conversation initiated by the initiator with Accept_Conversation.

access list

An access list defines the authorization for access to a particular , or service TAC queue USER
. An access list is defined as a and contains one or more , each of which queue key set key codes

represent a role in the application. Users or LTERMs or (OSI) LPAPs can only access the service or
/ when the corresponding roles have been assigned to them (i.e. when their TAC queue USER queue

 and the access list contain at least one common .key set key code)

access point (OSI)

See service access point.

ACID properties

Acronym for the fundamental properties of : atomicity, consistency, isolation and transactions
durability.

administration

Administration and control of a by an or an .UTM application administrator administration program

administration command

Commands used by the of a to carry out administration functions for administrator UTM application
this application. The administration commands are implemented in the form of .transaction codes

administration journal

See .cluster administration journal

administration program

Program unit containing calls to the . This can be either the program interface for administration
standard administration program that is supplied with openUTM or a program written by KDCADM
the user.

openUTM V7.0. Administering Applications. User Guide.

 888

administrator

User who possesses administration authorization.

AES

AES (Advanced Encryption Standard) is the current symmetric encryption standarddefined by the
National Institute of Standards and Technology (NIST) and based on the Rijndael algorithm
developed at the University of Leuven (Belgium). If the AES method is used, the UPIC client
generates an AES key for each session.

Apache Axis

Apache Axis (Apache eXtensible Interaction System) is a SOAP engine for the design of Web
services and client applications. There are implementations in C++ and Java.

Apache Tomcat

Apache Tomcat provides an environment for the execution of Java code on Web servers. It was
developed as part of the Apache Software Foundation's Jakarta project. It consists of a servlet
container written in Java which can use the JSP Jasper compiler to convert JavaServer pages into
servlets and run them. It also provides a fully featured HTTP server.

application cold start

See .cold start

application context (OSI)

The application context is the set of rules designed to govern communication between two
applications. This includes, for instance, abstract syntaxes and any assigned transfer syntaxes.

application entity (OSI)

An application entity (AE) represents all the aspects of a real application which are relevant to
communications. An application entity is identified by a globally unique name (“globally” is used here
in its literal sense, i.e. worldwide), the (AET). Every application entity application entity title
represents precisely one . One application process can encompass several application process
application entities.

application entity qualifier (OSI)

Component of the . The application entity qualifier identifies a application entity title service access
 within an application. The structure of an application entity qualifier can vary. openUTM point

supports the type “number”.

application entity title (OSI)

An application entity title is a globally unique name for an (“globally” is used here in application entity
its literal sense, i.e. worldwide). It is made up of the of the relevant application process title

 and the application process application entity qualifier.

openUTM V7.0. Administering Applications. User Guide.

 889

application information

This is the entire set of data used by the . The information comprises memory areas UTM application
and messages of the UTM application including the data currently shown on the screen. If operation
of the UTM application is coordinated with a database system, the data stored in the database also
forms part of the application information.

application process (OSI)

The application process represents an application in the . It is uniquely OSI reference model
identified globally by the .application process title

application process title (OSI)

According to the OSI standard, the application process title (APT) is used for the unique
identification of applications on a global (i.e. worldwide) basis. The structure of an application
process title can vary. openUTM supports the type .Object Identifier

application program

An application program is the core component of a . It comprises the main routine UTM application
 and any and processes all jobs sent to a .KDCROOT program units UTM application

application restart

see warm start

application service element (OSI)

An application service element (ASE) represents a functional group of the application layer (layer 7)
of the .OSI reference model

application warm start

see .warm start

association (OSI)

An association is a communication relationship between two application entities. The term
“association” corresponds to the term in .session LU6.1

asynchronous conversation

CPI-C conversation where only the is permitted to send. An asynchronous transaction code initiator
for the must have been generated in the .acceptor UTM application

asynchronous job

Job carried out by the job submitter at a later time. openUTM includes functions message queuing
for processing asynchronous jobs (see and . An UTM-controlled queue service-controlled queue)
asynchronous job is described by the , the recipient and, where applicable, asynchronous message
the required execution time. If the recipient is a terminal, a printer or a transport system application,
the asynchronous job is a . If the recipient is an of the same queued output job asynchronous service
application or a remote application, the job is a . Asynchronous jobs can be background job time-

or can be integrated in a . driven jobs job complex

openUTM V7.0. Administering Applications. User Guide.

 890

asynchronous message

Asynchronous messages are messages directed to a . They are stored temporarily message queue
by the local and then further processed regardless of the job submitter. Distinctions UTM application
are drawn between the following types of asynchronous messages, depending on the recipient:

In the case of asynchronous messages to a all further processing is UTM-controlled queue,
controlled by openUTM. This type includes messages that start a local or remote asynchronous

 (see also) and messages sent for output on a terminal, a printer or a service background job
transport system application (see also).queued output job

In the case of asynchronous messages to a , further processing is service-controlled queue
controlled by a of the application. This type includes messages to a , service TAC queue
messages to a and messages to a . The USER queue and the USER queue temporary queue
temporary queue must belong to the local application, whereas the TAC queue can be in both
the local application and the remote application.

asynchronous program

Program unit started by a .background job

asynchronous service (KDCS)

Service which processes a . Processing is carried out independently of the job background job
submitter. An asynchronous service can comprise one or more program units/transactions. It is
started via an asynchronous .transaction code

audit (BS2000 systems)

During execution of a UTM events which are of relevance in terms of security can UTM application,
be logged by for auditing purposes.SAT

authentication

See .system access control

authorization

See .data access control

Axis

See .Apache Axis

background job

Background jobs are destined for an of the current asynchronous jobs asynchronous service
application or of a remote application. Background jobs are particularly suitable for time-intensive
processing or processing which is not time-critical and where the results do not directly influence the
current dialog.

basic format

Format in which terminal users can make all entries required to start a service.

basic job

Asynchronous job in a .job complex

openUTM V7.0. Administering Applications. User Guide.

 891

browsing asynchronous messages

A sequentially reads the in a . The service asynchronous messages service-controlled queue
messages are not locked while they are being read and they remain in the queue after they have
been read. This means that they can be read simultaneously by different services.

bypass mode (BS2000 systems)

Operating mode of a printer connected locally to a terminal. In bypass mode, any asynchronous
 sent to the printer is sent to the terminal and then redirected to the printer by the terminal message

without being displayed on screen.

cache

Used for buffering application data for all the processes of a . UTM application
The cache is used to optimize access to the and, in the case of UTM cluster applications, page pool
the .cluster page pool

CCR (Commitment, Concurrency and Recovery)

CCR is an Application Service Element (ASE) defined by OSI used for OSI TP communication which
contains the protocol elements (services) related to the beginning and end (commit or rollback) of a

. CCR supports the commitment.transaction two-phase

CCS name (BS2000 systems)

See .coded character set name

client

Clients of a can be:UTM application

terminals

UPIC client programs

transport system applications (e.g. DCAM, PDN, CMX, socket applications or UTM applications
which have been generated as).transport system applications

Clients are connected to the UTM application via LTERM partners.
Note: UTM clients which use the OpenCPIC carrier system are treated just like .OSI TP partners

client side of a conversation

This term has been superseded by .initiator

cluster

A number of computers connected over a fast network and which in many cases can be seen as a
single computer externally. The objective of clustering is generally to increase the computing
capacity or availability in comparison with a single computer.

cluster administration journal

The cluster administration journal consists of:

two log files with the extensions JRN1 and JRN2 for global administration actions,

the JKAA file which contains a copy of the KDCS Application Area (KAA). Administrative
changes that are no longer present in the two log files are taken over from this copy.

openUTM V7.0. Administering Applications. User Guide.

 892

The administration journal files serve to pass on to the other node applications those administrative
actions that are to apply throughout the cluster to all node applications in a UTM cluster application.

cluster configuration file

File containing the central configuration data of a . The cluster configuration UTM cluster application
file is created using the UTM generation tool .KDCDEF

cluster filebase

Filename prefix or directory name for the .UTM cluster files

cluster GSSB file

File used to administer GSSBs in a . The cluster GSSB file is created using UTM cluster application
the UTM generation tool .KDCDEF

cluster lock file

File in a used to manage cross-node locks of user data areas.UTM cluster application

cluster page pool

The cluster page pool consists of an administration file and up to 10 files containing a UTM cluster
user data that is available globally in the cluster (service data including LSSB, GSSB application’s

and ULS). The cluster page pool is created using the UTM generation tool .KDCDEF

cluster start serialization file

Lock file used to serialize the start-up of individual node applications (only on Unix, Linux and
Windows systems).

cluster ULS file

File used to administer the ULS areas of a . The cluster ULS file is created UTM cluster application
using the UTM generation tool .KDCDEF

cluster user file

File containing the user management data of a . The cluster user file is UTM cluster application
created using the UTM generation tool .KDCDEF

coded character set name (BS2000 systems)

If the product (e tended ost ode upport) is used, each character set used is uniquely XHCS X H C S
identified by a coded character set name (abbreviation: “CCS name” or “CCSN”).

cold start

Start of a after the application terminates normally () or after a UTM application normal termination
new generation (see also). warm start

openUTM V7.0. Administering Applications. User Guide.

 893

communication area (KDCS)

KDCS , secured by transaction logging and which contains service-specific primary storage area
data. The communication area comprises 3 parts:

the KB header with general service data

the KB return area for returning values to KDCS calls

the KB program area for exchanging data between UTM program units within a single .service

communication end point

see transport system end point

communication resource manager

In distributed systems, communication resource managers (CRMs) control communication between
the application programs. openUTM provides CRMs for the international OSI TP standard, for the
LU6.1 industry standard and for the proprietary openUTM protocol UPIC.

configuration

Sum of all the properties of a . The configuration describes:UTM application

application parameters and operating parameters

the objects of an application and the properties of these objects. Objects can be program units
and , communication partners, printers, , etc.transaction codes user IDs

defined measures for controlling data and system access.

The configuration of a UTM application is defined at generation time () and can static configuration
be changed dynamically by the administrator (while the application is running, dynamic configuration
). The configuration is stored in the .KDCFILE

confirmation job

Component of a where the confirmation job is assigned to the . There are job complex basic job
positive and negative confirmation jobs. If the returns a positive result, the positive basic job
confirmation job is activated, otherwise, the negative confirmation job is activated.

connection bundle

see LTERM bundle.

connection user ID

User ID under which a or a is signed on at the directly TS application UPIC client UTM application
after the connection has been established. The following applies, depending on the client (= LTERM
partner) generation:

The connection user ID is the same as the USER in the LTERM statement (explicit connection
user ID). An explicit connection user ID must be generated with a USER statement and cannot
be used as a “genuine” .user ID

The connection user ID is the same as the LTERM partner (implicit connection user ID) if no
USER was specified in the LTERM statement or if an LTERM pool has been generated.

openUTM V7.0. Administering Applications. User Guide.

 894

In a , the service belonging to a connection user ID (RESTART=YES in UTM cluster application
LTERM or USER) is bound to the connection and is therefore local to the node.
A connection user ID generated with RESTART=YES can have a separate service in each node

.application

contention loser

Every connection between two partners is managed by one of the partners. The partner that
manages the connection is known as the . The other partner is the contention loser.contention winner

contention winner

A connection's contention winner is responsible for managing the connection. Jobs can be started by
the contention winner or by the . If a conflict occurs, i.e. if both partners in the contention loser
communication want to start a job at the same time, then the job stemming from the contention
winner uses the connection.

conversation

In CPI-C, communication between two CPI-C application programs is referred to as a conversation.
The communication partners in a conversation are referred to as the and the .initiator acceptor

conversation ID

CPI-C assigns a local conversation ID to each , i.e. the and each have conversation initiator acceptor
their own conversation ID. The conversation ID uniquely assigns each CPI-C call in a program to a
conversation.

CPI-C

CPI-C (ommon rogramming nterface for ommunication) is a program interface for program-to-C P I C
program communication in open networks standardized by X/Open and CIW (PI-C mplementor's C I

orkshop). W
The CPI-C implemented in openUTM complies with X/Open’s CPI-C V2.0 CAE Specification. The
interface is available in COBOL and C. In openUTM, CPI-C can communicate via the OSI TP, LU6.
1 and UPIC protocols and with openUTM-LU62.

Cross Coupled System / XCS

Cluster of BS2000 computers with the Multiple System Control Highly Integrated System Complex

Facility (HIPLEX MSCF).®

data access control

In data access control openUTM checks whether the communication partner is authorized to access
a particular object belonging to the application. The access rights are defined as part of the
configuration.

data space (BS2000 systems)

Virtual address space of BS2000 which can be employed in its entirety by the user. Only data and
programs stored as data can be addressed in a data space; no program code can be executed.

openUTM V7.0. Administering Applications. User Guide.

 895

dead letter queue

The dead letter queue is a TAC queue which has the fixed name KDCDLETQ.
It is always available to save queued messages sent to transaction codes, TAC queues, LPAP or
OSI-LPAP partners but which could not be processed. The saving of queued messages in the dead
letter queue can be activated or deactivated for each message destination individually using the
TAC, LPAP or OSI-LPAP statement's DEAD-LETTER-Q parameter.

DES

DES (Data Encryption Standard) is an international standard for encrypting data. One key is used in
this method for encoding and decoding. If the DES method is used, the UPIC client generates a
DES key for each session.

dialog conversation

CPI-C conversation in which both the and the are permitted to send. A dialog initiator acceptor
transaction code for the must have been generated in the .acceptor UTM application

dialog job, interactive job

Job which starts a . The job can be issued by a or, when two servers dialog service client
communicate with each other (), by a different application.server-server communication

dialog message

A message which requires a response or which is itself a response to a request. The request and
the response both take place within a single service. The request and reply together form a dialog
step.

dialog program

Program unit which partially or completely processes a .dialog step

dialog service

Service which processes a interactively (synchronously) in conjunction with the job submitter (job
 or another server application) . A dialog service processes received from the client dialog messages

job submitter and generates dialog messages to be sent to the job submitter. A dialog service
comprises at least one In general, a dialog service encompasses at least one dialog transaction.
step. Exception: in the event of it is possible for more than one service to comprise service chaining,
a dialog step.

dialog step

A dialog step starts when a is received by the . It ends when the dialog message UTM application
UTM application responds.

dialog terminal process (Unix , Linux and Windows systems)

A dialog terminal process connects a terminal of a Unix, Linux or Windows system with the work
processes of the . Dialog terminal processes are started either when the user enters UTM application
utmdtp or via the LOGIN shell. A separate dialog terminal process is required for each terminal to be
connected to a UTM application.

openUTM V7.0. Administering Applications. User Guide.

 896

distributed processing

Processing of by several different applications or the transfer of to dialog jobs background jobs
another application. The higher-level protocols and are used for distributed LU6.1 OSI TP
processing. openUTM-LU62 also permits distributed processing with LU6.2 partners. A distinction is
made between distributed processing with (transaction logging across distributed transactions
different applications) and distributed processing without distributed transactions (local transaction
logging only). Distributed processing is also known as server-server communication.

distributed transaction

Transaction which encompasses more than one application and is executed in several different (sub-
)transactions in distributed systems.

distributed transaction processing

Distributed processing with distributed transactions.

dynamic configuration

Changes to the made by the administrator. UTM objects such as , configuration program units
, , printers or can be added, modified or in transaction codes clients LU6.1 connections, user IDs

some cases deleted from the configuration while the application is running. To do this, it is
necessary to create separate which use the functions of the administration programs program

. The WinAdmin administration program or the WebAdmin administration interface for administration
program can be used to do this, or separate must be created that utilize the administration programs
functions of the administration program interface.

encryption level

The encryption level specifies if and to what extent a client message and password are to be
encrypted.

event-driven service

This term has been superseded by .event service

event exit

Routine in an application program which is started automatically whenever certain events occur (e.g.
when a process is started, when a service is terminated). Unlike , an event exit must event services
not contain any KDCS, CPI-C or XATMI calls.

event function

Collective term for and . event exits event services

openUTM V7.0. Administering Applications. User Guide.

 897

event service

Service started when certain events occur, e.g. when certain UTM messages are issued. The
for event-driven services must contain KDCS calls. program units

filebase

UTM application filebase
On BS2000 systems, filebase is the prefix for the , the USLOG and the KDCFILE user log file system

 SYSLOG. log file
On Unix, Linux and Windows systems, filebase is the name of the directory under which the
KDCFILE, the user log file USLOG, the system log file SYSLOG and other files relating to to the
UTM application are stored.

Functional Unit (FU)

A subset of the protocol providing a particular functionality. The OSI TP protocol is divided OSI TP
into the following functional units:

Dialog

Shared Control

Polarized Control

Handshake

Commit

Chained Transactions

Unchained Transactions

Recovery

Manufacturers implementing OSI TP need not include all functional units, but can concentrate on a
subset instead. Communications between applications of two different OSI TP implementations is
only possible if the included functional units are compatible with each other.

generation

See UTM generation.

global secondary storage area

See secondary storage area.

hardcopy mode

Operating mode of a printer connected locally to a terminal. Any message which is displayed on
screen will also be sent to the printer.

heterogeneous link

In the case of a link between a and a non-UTM server-server communication: UTM application
application, e.g. a CICS or TUXEDO application.

Highly Integrated System Complex / HIPLEX ®

Product family for implementing an operating, load sharing and availability cluster made up of a
number of BS2000 servers.

openUTM V7.0. Administering Applications. User Guide.

 898

openUTM V7.0. Administering Applications. User Guide.

 899

HIPLEX ® MSCF

(MSCF = ultiple ystem ontrol acility) M S C F

Provides the infrastructure and basic functions for distributed applications with HIPLEX .®

homogeneous link

In the case of : a link between two It is of no server-server communication UTM applications.
significance whether the applications are running on the same operating system platforms or on
different platforms.

inbound conversation (CPI-C)

See incoming conversation.

incoming conversation (CPI-C)

A conversation in which the local CPI-C program is the is referred to as an incoming acceptor
conversation. In the X/Open specification, the term “inbound conversation” is used synonymously
with “incoming conversation”.

initial KDCFILE

In a , this is the generated by and which must be copied UTM cluster application KDCFILE KDCDEF
for each node application before the node applications are started.

initiator (CPI-C)

The communication partners in a are referred to as the initiator and the . The conversation acceptor
initiator sets up the conversation with the CPI-C calls Initialize_Conversation and Allocate.

insert

Field in a message text in which openUTM enters current values.

inverse KDCDEF

A function which uses the dynamically adapted configuration data in the to generate KDCFILE
control statements for a run. An inverse KDCDEF can be started “offline” under KDCDEF KDCDEF
 or “online” via the .program interface for administration

IUTMDB

Interface used for the coordinated interaction with resource managers on BS2000 systems. This
includes data repositories (LEASY) and data base systems (SESAM/SQL, UDS/SQL).

JConnect client

Designation for clients based on the product openUTM-JConnect. The communication with the UTM
application is carried out via the .UPIC protocol

JDK

Java Development Kit
Standard development environment from Oracle Corporation for the development of Java
applications.

openUTM V7.0. Administering Applications. User Guide.

 900

job

Request for a provided by a . The request is issued by specifying a service UTM application
transaction code. See also: , , , . queued output job dialog job background job job complex

job complex

Job complexes are used to assign to . An asynchronous job confirmation jobs asynchronous jobs
within a job complex is referred to as a .basic job

job-receiving service (KDCS)

A job-receiving service is a started by a of another server application.service job-submitting service

job-submitting service (KDCS)

A job-submitting service is a which requests another service from a different server service
application () in order to process a job.job-receiving service

KDCADM

Standard administration program supplied with openUTM. KDCADM provides administration
functions which are called with transaction codes ().administration commands

KDCDEF

UTM tool for the of . KDCDEF uses the configuration information in the generation UTM applications
KDCDEF control statements to create the UTM objects and the ROOT table sources for KDCFILE
the main routine .KDCROOT
In UTM cluster applications, KDCDEF also creates the the , cluster configuration file, cluster user file
the , the and the .cluster page pool cluster GSSB file cluster ULS file

KDCFILE

One or more files containing data required for a to run. The KDCFILE is created UTM application
with the UTM generation tool . Among other things, it contains the of the KDCDEF configuration
application.

KDCROOT

Main routine of an which forms the link between the and the UTM application program program units
system code. KDCROOT is linked with the to form the .program units application program

KDCS message area

For KDCS calls: buffer area in which messages or data for openUTM or for the are program unit
made available.

KDCS parameter area

See parameter area.

KDCS program interface

Universal UTM program interface compliant with the national DIN 66 265 standard and which
includes some extensions. KDCS (compatible data communications interface) allows dialog services
to be created, for instance, and permits the use of functions. In addition, KDCS message queuing
provides calls for . distributed processing

openUTM V7.0. Administering Applications. User Guide.

 901

Kerberos

Kerberos is a standardized network authentication protocol (RFC1510) based on encryption
procedures in which no passwords are sent to the network in clear text.

Kerberos principal

Owner of a key.
Kerberos uses symmetrical encryption, i.e. all the keys are present at two locations, namely with the
key owner (principal) and the KDC (Key Distribution Center).

key code

Code that represents specific access authorization or a specific role. Several key codes are grouped
into a .key set

key set

Group of one or more under a particular a name. A key set defines authorization within key codes
the framework of the authorization concept used (lock/key code concept or concept). A access list
key set can be assigned to a , an an , a or a user ID LTERM partner (OSI) LPAP partner service

.TAC queue

linkage program

See .KDCROOT

local secondary storage area

See secondary storage area.

Log4j

Log4j is part of the Apache Jakarta project. Log4j provides information for logging information
(runtime information, trace records, etc.) and configuring the log output. uses the software WS4UTM
product Log4j for trace and logging functionality.

lock code

Code protecting an LTERM partner or transaction code against unauthorized access. Access is only
possible if the of the accesser contains the appropriate (lock/key code concept).key set key code

logging process

Process in Unix, Linux and Windows systems that controls the logging of account records or
monitoring data.

LPAP bundle

LPAP bundles allow messages to be distributed to LPAP partners across several partner
applications. If a UTM application has to exchange a very large number of messages with a partner
application then load distribution may be improved by starting multiple instances of the partner
application and distributing the messages across the individual instances. In an LPAP
bundle, openUTM is responsible for distributing the messages to the partner application instances.
An LPAP bundle consists of a master LPAP and multiple slave LPAPs. The slave LPAPs are
assigned to the master LPAP on UTM generation. LPAP bundles exist for both the OSI TP protocol
and the LU6.1 protocol.

openUTM V7.0. Administering Applications. User Guide.

 902

LPAP partner

In the case of via the protocol, an LPAP partner for each partner distributed processing LU6.1
application must be configured in the local application. The LPAP partner represents the partner
application in the local application. During communication, the partner application is addressed by
the name of the assigned LPAP partner and not by the application name or address.

LTERM bundle

An LTERM bundle (connection bundle) consists of a master LTERM and multiple slave LTERMs. An
LTERM bundle (connection bundle) allows you to distribute queued messages to a logical partner
application evenly across multiple parallel connections.

LTERM group

An LTERM group consists of one or more alias LTERMs, the group LTERMs and a primary LTERM.
In an LTERM group, you assign multiple LTERMs to a connection.

LTERM partner

LTERM partners must be configured in the application if you want to connect clients or printers to a
. A client or printer can only be connected if an LTERM partner with the appropriate UTM application

properties is assigned to it. This assignment is generally made in the , but can also be configuration
made dynamically using terminal pools.

LTERM pool

The TPOOL statement allows you to define a pool of LTERM partners instead of issuing one LTERM
and one PTERM statement for each . If a client establishes a connection via an LTERM pool, client
an LTERM partner is assigned to it dynamically from the pool.

LU6.1

Device-independent data exchange protocol (industrial standard) for transaction-oriented server-
.server communication

LU6.1-LPAP bundle

LPAP bundle for partner applications.LU6.1

LU6.1 partner

Partner of the that communicates with the UTM application via the protocol. UTM application LU6.1
Examples of this type of partner are:

a UTM application that communicates via LU6.1

an application in the IBM environment (e.g. CICS, IMS or TXSeries) that communicates via LU6.
1

main process (Unix /Linux / Windows systems)

Process which starts the . It starts the , the , UTM application work processes UTM system processes
and the and monitors the printer processes, network processes, logging process timer process UTM

. application

openUTM V7.0. Administering Applications. User Guide.

 903

main routine KDCROOT

See .KDCROOT

management unit

SE Servers component; in combination with the , permits centralized, web-based SE Manager
management of all the units of an SE server.

message definition file

The message definition file is supplied with openUTM and, by default, contains the UTM message
texts in German and English together with the definitions of the message properties. Users can take
this file as a basis for their own message modules.

message destination

Output medium for a . Possible message destinations for a message from the openUTM message
transaction monitor include, for instance, terminals, , the MSGTAC, the TS applications event service

SYSLOG or SYSOUT/SYSLST or system log file TAC queues, asynchronous TACs, USER queues,
stderr/stdout.
The message destinations for the messages of the UTM tools are SYSOUT/SYSLST and stderr
/stdout.

message queue

Queue in which specific messages are kept with transaction management until further processed. A
distinction is drawn between and , depending on service-controlled queues UTM-controlled queues
who monitors further processing.

message queuing

Message queuing (MQ) is a form of communication in which the messages are exchanged via
intermediate queues rather than directly. The sender and recipient can be separated in space or
time. The transfer of the message is independent of whether a network connection is available at the
time or not. In openUTM there are and .UTM-controlled queues service-controlled queues

MSGTAC

Special event service that processes messages with the message destination MSGTAC by means
of a program. MSGTAC is an asynchronous service and is created by the operator of the application.

multiplex connection (BS2000 systems)

Special method offered by to connect terminals to a . A multiplex connection OMNIS UTM application
enables several terminals to share a single transport connection.

multi-step service (KDCS)

Service carried out in a number of .dialog steps

multi-step transaction

Transaction which comprises more than one .processing step

Network File System/Service / NFS

Allows Unix systems to access file systems across the network.

openUTM V7.0. Administering Applications. User Guide.

 904

network process (Unix / Linux / Windows systems)

A process in a for connection to the network.UTM application

network selector

The network selector identifies a service access point to the network layer of the OSI reference
 in the local system.model

node

Individual computer of a .cluster

node application

UTM application that is executed on an individual as part of a .node UTM cluster application

node bound service

A node bound service belonging to a user can only be continued at the node application at which the
user was last signed on. The following services are always node bound:

Services that have started communications with a job receiver via LU6.1 or OSI TP and for
which the job-receiving service has not yet been terminated

Inserted services in a service stack

Services that have completed a SESAM transaction

In addition, a user’s service is node bound as long as the user is signed-on at a node application.

node filebase

Filename prefix or directory name for the , and node application's KDCFILE user log file system log
.file

node recovery

If a node application terminates abnormally and no rapid warm start of the application is possible on
its associated then it is possible to perform a node recovery for this node on another node computer
node in the UTM cluster. In this way, it is possible to release locks resulting from the failed node
application in order to prevent unnecessary impairments to the running .UTM cluster application

normal termination of a UTM application

Controlled termination of a . Among other things, this means that the administration UTM application
data in the are updated. The initiates normal termination (e.g. with KDCFILE administrator
KDCSHUT N). After a normal termination, openUTM carries out any subsequent start as a .cold start

object identifier

An object identifier is an identifier for objects in an OSI environment which is unique throughout the
world. An object identifier comprises a sequence of integers which represent a path in a tree
structure.

OMNIS (BS2000 systems)

OMNIS is a “session manager” which lets you set up connections from one terminal to a number of
partners in a network concurrently OMNIS also allows you to work with multiplex connections.

online import

openUTM V7.0. Administering Applications. User Guide.

 905

In a , online import refers to the import of application data from a normally UTM cluster application
terminated node application into a running node application.

online update

In a online update refers to a change to the application configuration or the UTM cluster application,
application program or the use of a new UTM revision level while a is UTM cluster application
running.

open terminal pool

Terminal pool which is not restricted to clients of a single computer or particular type. Any client for
which no computer- or type-specific terminal pool has been generated can connect to this terminal
pool.

OpenCPIC

Carrier system for UTM clients that use the protocol.OSI TP

OpenCPIC client

OSI TP partner application with the carrier system.OpenCPIC

openSM2

The openSM2 product line offers a consistent solution for the enterprise-wide performance
management of server and storage systems. openSM2 offers the acquisition of monitoring data,
online monitoring and offline evaluation.

openUTM cluster

From the perspective of UPIC clients, from the perspective of the server:Combination of several not
node applications of a UTM cluster application to form one logical application that is addressed via a
common symbolic destination name.

openUTM-D

openUTM-D (openUTM distributed) is a component of openUTM which allows distributed processing.
openUTM-D is an integral component of openUTM.

OSI-LPAP bundle

LPAP bundle for partner applications.OSI TP

OSI-LPAP partner

OSI-LPAP partners are the addresses of the generated in openUTM. In the case of OSI TP partners
 via the protocol, an OSI-LPAP partner for each partner application distributed processing OSI TP

must be configured in the local application. The OSI-LPAP partner represents the partner application
in the local application. During communication, the partner application is addressed by the name of
the assigned OSI-LPAP partner and not by the application name or address.

openUTM V7.0. Administering Applications. User Guide.

 906

OSI reference model

The OSI reference model provides a framework for standardizing communications in open systems.
ISO, the International Organization for Standardization, described this model in the ISO IS7498
standard. The OSI reference model divides the necessary functions for system communication into
seven logical layers. These layers have clearly defined interfaces to the neighboring layers.

OSI TP

Communication protocol for distributed transaction processing defined by ISO.
OSI TP stands for Open System Interconnection Transaction Processing.

OSI TP partner

Partner of the UTM application that communicates with the UTM application via the OSI TP protocol.
Examples of such partners are:

a UTM application that communicates via OSI TP

an application in the IBM environment (e.g. CICS) that is connected via openUTM-LU62

an OpenCPIC client

applications from other TP monitors that support OSI TP

outbound conversation (CPI-C)

See .outgoing conversation

outgoing conversation (CPI-C)

A conversation in which the local CPI-C program is the is referred to as an outgoing initiator
conversation. In the X/Open specification, the term “outbound conversation” is used synonymously
with “outgoing conversation”.

page pool

Part of the in which user data is stored.KDCFILE
In a this data consists, for example, of , messages sent to standalone application dialog messages

, . message queues secondary memory areas
In a UTM cluster application, it consists, for example, of messages to .message queues, TLS

parameter area

Data structure in which a program unit passes the operands required for a UTM call to openUTM.

partner application

Partner of a UTM application during . Higher communication protocols are distributed processing
used for distributed processing (, or LU6.2 via the openUTM-LU62 gateway).LU6.1 OSI TP

postselection (BS2000 systems)

Selection of logged UTM events from the SAT logging file which are to be evaluated. Selection is
carried out using the SATUT tool.

openUTM V7.0. Administering Applications. User Guide.

 907

prepare to commit (PTC)

Specific state of a distributed transaction
Although the end of the distributed transaction has been initiated, the system waits for the partner to
confirm the end of the transaction.

preselection (BS2000 systems)

Definition of the UTM events which are to be logged for the . Preselection is carried out SAT audit
with the UTM-SAT administration functions. A distinction is made between event-specific, user-
specific and job-specific (TAC-specific) preselection.

presentation selector

The presentation selector identifies a service access point to the presentation layer of the OSI
 in the local system.reference model

primary storage area

Area in main memory to which the has direct access, e.g. KDCS program unit standard primary
, .working area communication area

print administration

Functions for and the administration of , sent to a printer.print control queued output jobs

print control

openUTM functions for controlling print output.

printer control LTERM

A printer control LTERM allows a client or terminal user to connect to a UTM application. The
printers assigned to the printer control LTERM can then be administered from the client program or
the terminal. No administration rights are required for these functions.

printer control terminal

This term has been superseded by .printer control LTERM

printer group (Unix systems)

For each printer, a Unix system sets up one printer group by default that contains this one printer
only. It is also possible to assign several printers to one printer group or to assign one printer to
several different printer groups.

printer pool

Several printers assigned to the same .LTERM partner

printer process (Unix / Linux systems)

Process set up by the for outputting to a . The main process asynchronous messages printer group
process exists as long as the printer group is connected to the . One printer process UTM application
exists for each connected printer group.

openUTM V7.0. Administering Applications. User Guide.

 908

process

The openUTM manuals use the term “process” as a collective term for processes (Unix / Linux /
Windows systems) and tasks (BS2000 systems).

processing step

A processing step starts with the receipt of a sent to the by a dialog message UTM application client
 or another server application. The processing step ends either when a response is sent, thus also
terminating the , or when a dialog message is sent to a third party.dialog step

program interface for administration

UTM program interface which helps users to create their own . Among other administration programs
things, the program interface for administration provides functions for , for dynamic configuration
modifying properties and application parameters and for querying information on the configuration
and the current workload of the application.

program space (BS2000 systems)

Virtual address space of BS2000 which is divided into memory classes and in which both executable
programs and pure data are addressed.

program unit

UTM are implemented in the form of one or more program units. The program units are services
components of the . Depending on the employed API, they may have to contain application program
KDCS, XATMI or CPIC calls. They can be addressed using . Several different transaction codes
transaction codes can be assigned to a single program unit.

queue

See message queue.

queued output job

Queued output jobs are which output a message, such as a document, to a asynchronous jobs
printer, a terminal or a transport system application.
Queued output jobs are processed by UTM system functions exclusively, i.e. it is not necessary to
create program units to process them.

Quick Start Kit

A sample application supplied with openUTM (Windows systems).

redelivery

Repeated delivery of an that could not be processed correctly because, for asynchronous message
example, the was rolled back or the was terminated abnormally. transaction asynchronous service
The message is returned to the message queue and can then be read and/or processed again.

reentrant program

Program whose code is not altered when it runs. On BS2000 systems this constitutes a prerequisite
for using . shared code

openUTM V7.0. Administering Applications. User Guide.

 909

request

Request from a or another server for a .client service function

requestor

In XATMI, the term requestor refers to an application which calls a service.

resource manager

Resource managers (RMs) manage data resources. Database systems are examples of resource
managers. openUTM, however, also provides its own resource managers for accessing message
queues, local memory areas and logging files, for instance. Applications access RMs via special
resource manager interfaces. In the case of database systems, this will generally be SQL and in the
case of openUTM RMs, it is the KDCS interface.

restart

See screen restart.
see service restart.

RFC1006

A protocol defined by the IETF (Internet Engineering Task Force) belonging to the TCP/IP family that
implements the ISO transport services (transport class 0) based on TCP/IP.

RSA

Abbreviation for the inventors of the RSA encryption method (Rivest, Shamir and Adleman). This
method uses a pair of keys that consists of a public key and a private key. A message is encrypted
using the public key, and this message can only be decrypted using the private key. The pair of RSA
keys is created by the UTM application.

SAT audit (BS2000 systems)

Audit carried out by the SAT (Security Audit Trail) component of the BS2000 software product
SECOS.

screen restart

If a is interrupted, openUTM again displays the of the last completed dialog service dialog message
 on screen when the service restarts provided that the last transaction output a message transaction

on the screen.

SE manager

Web-based graphical user interface (GUI) for the SE series of Business Servers. SE Manager runs
on the and permits the central operation and administration of server units (with management unit
/390 architecture and/or x86 architecture), application units (x86 architecture), net unit and
peripherals.

SE server

A Business Server from Fujitsu's SE series.

openUTM V7.0. Administering Applications. User Guide.

 910

secondary storage area

Memory area secured by transaction logging and which can be accessed by the KDCS program unit
with special calls. Local secondary storage areas (LSSBs) are assigned to one Global service.
secondary storage areas (GSSBs) can be accessed by all services in a . Other UTM application
secondary storage areas include the and the terminal-specific long-term storage (TLS) user-specific

 .long-term storage (ULS)

selector

A selector identifies a service access point to services of one of the layers of the OSI reference
 in the local system. Each selector is part of the address of the access point.model

semaphore (Unix / Linux / Windows systems)

Unix, Linux and Windows systems resource used to control and synchronize processes.

server

A server is an which provides . The computer on which the applications are application services
running is often also referred to as the server.

server-server communication

See .distributed processing

server side of a conversation (CPI-C)

This term has been superseded by .acceptor

service

Services process the that are sent to a server application. A service of a UTM application jobs
comprises one or more transactions. The service is called with the . Services can be service TAC
requested by or by other servers.clients

service access point

In the OSI reference model, a layer has access to the services of the layer below at the service
access point. In the local system, the service access point is identified by a . During selector
communication, the links up to a service access point. A connection is established UTM application
between two service access points.

service chaining (KDCS)

When service chaining is used, a follow-up service is started without a specification dialog message
after a has completed.dialog service

service-controlled queue

Message queue in which the calling and further processing of messages is controlled by . A services
service must explicitly issue a KDCS call (DGET) to read the message. There are service-controlled
queues in openUTM in the variants , and . USER queue TAC queue temporary queue

openUTM V7.0. Administering Applications. User Guide.

 911

service restart (KDCS)

If a service is interrupted, e.g. as a result of a terminal user signing off or a being UTM application
terminated, openUTM carries out a . An is restarted or service restart asynchronous service
execution is continued at the most recent , and a continues synchronization point dialog service
execution at the most recent . As far as the terminal user is concerned, the synchronization point
service restart for a dialog service appears as a provided that a dialog message was screen restart
sent to the terminal user at the last synchronization point.

service routine

See .program unit

service stacking (KDCS)

A terminal user can interrupt a running and insert a new dialog service. When the dialog service
inserted has completed, the interrupted service continues.service

service TAC (KDCS)

Transaction code used to start a .service

session

Communication relationship between two addressable units in the network via the SNA protocol LU6.
 .1

session selector

The session selector identifies an in the local system to the services of the session access point
layer of the .OSI reference model

shared code (BS2000 systems)

Code which can be shared by several different processes.

shared memory

Virtual memory area which can be accessed by several different processes simultaneously.

shared objects (Unix / Linux / Windows systems)

Parts of the can be created as shared objects. These objects are linked to the application program
application dynamically and can be replaced during live operation. Shared objects are defined with
the KDCDEF statement SHARED-OBJECT.

sign-on check

See .system access control

sign-on service (KDCS)

Special for a user in which control how a user signs on to a UTM dialog service program units
application.

single-step service

Dialog service which encompasses precisely one . dialog step

openUTM V7.0. Administering Applications. User Guide.

 912

single-step transaction

Transaction which encompasses precisely one .dialog step

SOA

(Service-Oriented Architecture)
SOA is a system architecture concept in which functions are implemented in the form of re-usable,
technically independent, loosely coupled . Services can be called independently of the services
underlying implementations via interfaces which may possess public and, consequently, trusted
specifications. Service interaction is performed via a communication infrastructure made available
for this purpose.

SOAP

SOAP (Simple Object Access Protocol) is a protocol used to exchange data between systems and
run remote procedure calls. SOAP also makes use of the services provided by other standards, XML
for the representation of the data and Internet transport and application layer protocols for message
transfer.

socket connection

Transport system connection that uses the socket interface. The socket interface is a standard
program interface for communication via TCP/IP.

standalone application

See .standalone UTM application

standalone UTM application

Traditional that is not part of a .UTM application UTM cluster application

standard primary working area (KDCS)

Area in main memory available to all KDCS . The contents of the area are either program units
undefined or occupied with a fill character when the program unit starts execution.

start format

Format output to a terminal by openUTM when a user has successfully signed on to a UTM
(except after a and during sign-on via the).application service restart sign-on service

static configuration

Definition of the during generation using the UTM tool .configuration KDCDEF

SYSLOG file

See .system log file

synchronization point, consistency point

The end of a . At this time, all the changes made to the during the transaction application information
transaction are saved to prevent loss in the event of a crash and are made visible to others. Any
locks set during the transaction are released.

openUTM V7.0. Administering Applications. User Guide.

 913

system access control

A check carried out by openUTM to determine whether a certain is authorized to work with user ID
the . The authorization check is not carried out if the UTM application was UTM application
generated without user IDs.

system log file

File or file generation to which openUTM logs all UTM messages for which SYSLOG has been
defined as the during execution of a message destination UTM application.

TAC

See .transaction code

TAC queue

Message queue generated explicitly by means of a KDCDEF statement. A TAC queue is a service-
that can be addressed from any service using the generated name.controlled queue

temporary queue

Message queue created dynamically by means of a program that can be deleted again by means of
a program (see).service-controlled queue

terminal-specific long-term storage (KDCS)

Secondary storage area assigned to an or and which is retained LTERM, LPAP OSI-PAP partner
after the application has terminated.

time-driven job

Job which is buffered by openUTM in a up to a specific time until it is sent to the message queue
recipient. The recipient can be an of the same application, a , a asynchronous service TAC queue
partner application, a terminal or a printer. Time-driven jobs can only be issued by KDCS program

.units

timer process (Unix / Linux / Windows systems)

Process which accepts jobs for controlling the time at which are executed. It does work processes
this by entering them in a job list and releasing them for processing after a time period defined in the
job list has elapsed.

TLS termination proxy

A TLS termination proxy is a proxy server that is used to handle incoming TLS connections,
decrypting the data and passing on the unencrypted request to other servers.

TNS (Unix / Linux / Windows systems)

Abbreviation for the Transport Name Service. TNS assigns a transport selector and a transport
system to an application name. The application can be reached through the transport system.

Tomcat

see Apache Tomcat

https://en.wikipedia.org/wiki/Proxy_server
https://en.wikipedia.org/wiki/Transport_Layer_Security

openUTM V7.0. Administering Applications. User Guide.

 914

transaction

Processing section within a for which adherence to the is guaranteed. If, service ACID properties
during the course of a transaction, changes are made to the , they are either application information
made consistently and in their entirety or not at all (all-or-nothing rule). The end of the transaction
forms a .synchronization point

transaction code/TAC

Name which can be used to identify a . The transaction code is assigned to the program program unit
unit during or . It is also possible to assign more than one transaction static dynamic configuration
code to a program unit.

transaction rate

Number of successfully executed per unit of time.transactions

transfer syntax

With the data to be transferred between two computer systems is converted from the local OSI TP,
format into transfer syntax. Transfer syntax describes the data in a neutral format which can be
interpreted by all the partners involved. An must be assigned to each transfer Object Identifier
syntax.

transport connection

In the this is a connection between two entities of layer 4 (transport layer).OSI reference model,

transport layer security

Transport layer security is a hybrid encryption protocol for secure data transmission in the Internet.

transport selector

The transport selector identifies a service access point to the transport layer of the OSI reference
 in the local system.model

transport system access point

See transport system end point.

transport system application

Application which is based directly on a transport system interface (e.g. CMX, DCAM or socket).
When transport system applications are connected, the partner type APPLI or SOCKET must be
specified during . A transport system application cannot be integrated in a configuration distributed

.transaction

transport system end point

Client/server or server/server communication establishes a connection between two transport
system end points. A transport system end point is also referred to as a local application name and
is defined using the BCAMAPPL statement or MAX APPLINAME.

TS application

See transport system application.

openUTM V7.0. Administering Applications. User Guide.

 915

typed buffer (XATMI)

Buffer for exchanging typed and structured data between communication partners. Typed buffers
ensure that the structure of the exchanged data is known to both partners implicitly.

UPIC

Carrier system for openUTM clients. UPIC stands for Universal Programming Interface for
Communication. The communication with the UTM application is carried out via the .UPIC protocol

UPIC Analyzer

Component used to analyze the UPIC communication recorded with . This step is UPIC Capture
used to prepare the recording for playback using .UPIC Replay

UPIC Capture

Used to record communication between UPIC clients and UTM applications so that this can be
replayed subsequently ().UPIC Replay

UPIC client

The designation for openUTM clients with the UPIC carrier system and for .JConnect clients

UPIC protocol

Protocol for the client server communication with . The UPIC protocol is used by UTM applications
 and .UPIC clients JConnect clients

UPIC Replay

Component used to replay the UPIC communication recorded with and prepared with UPIC Capture
.UPIC Analyzer

user exit

This term has been superseded by event exit.

user ID

Identifier for a user defined in the for the (with an optional password configuration UTM application
for) and to whom special data access rights () have system access control system access control
been assigned. A terminal user must specify this ID (and any password which has been assigned)
when signing on to the UTM application. On BS2000 systems, system access control is also
possible via . Kerberos
For other clients, the specification of a user ID is optional, see also . connection user ID
UTM applications can also be generated without user IDs.

user log file

File or file generation to which users write variable-length records with the KDCS LPUT call. The
data from the KB header of the is prefixed to every record. The user log KDCS communication area
file is subject to transaction management by openUTM.

openUTM V7.0. Administering Applications. User Guide.

 916

USER queue

Message queue made available to every user ID by openUTM. A USER queue is a service-
and is always assigned to the relevant user ID. You can restrict the access of other controlled queue

UTM users to your own USER queue.

user-specific long-term storage

Secondary storage area assigned to a , a or an and which is retained user ID session association
after the application has terminated.

USLOG file

See user log file.

UTM application

A UTM application provides which process jobs from or other applications. services clients
openUTM is responsible for transaction logging and for managing the communication and system
resources. From a technical point of view, a UTM application is a process group which forms a
logical server unit at runtime.

UTM client

See client.

UTM cluster application

UTM application that has been generated for use on a cluster and that can be viewed logically as a
 application. single

In physical terms, a UTM cluster application is made up of several identically generated UTM
applications running on the individual cluster .nodes

UTM cluster files

Blanket term for all the files that are required for the execution of a UTM cluster application on Unix,
Linux and Windows systems. This includes the following files:

Cluster configuration file

Cluster user file

Files belonging to the cluster page pool

Cluster GSSB file

Cluster ULS file

Files belonging to the *cluster administration journal

Cluster lock file*

Lock file for start serialization*

The files indicated by * are created when the first node application is started. All the other files are
created on generation using KDCDEF.

UTM-controlled queue

Message queues in which the calling and further processing of messages is entirely under the
control of openUTM. See also and .asynchronous job, background job asynchronous message

openUTM V7.0. Administering Applications. User Guide.

 917

UTM-D

See openUTM-D.

UTM-F

UTM applications can be generated as UTM-F applications (UTM fast). In the case of UTM-F
applications, input from and output to hard disk is avoided in order to increase performance. This
affects input and output which uses to save user data and transaction data. Only changes to UTM-S
the administration data are saved.
In UTM cluster applications that are generated as UTM-F applications (APPLI-MODE=FAST),
application data that is valid throughout the cluster is also saved. In this case, GSSB and ULS data
is treated in exactly the same way as in UTM cluster applications generated with UTM-S. However,
service data relating to users with RESTART=YES is written only when the relevant user signs off
and not at the end of each transaction.

UTM generation

Static configuration of a using the UTM tool KDCDEF and creation of an application UTM application
program.

UTM message

Messages are issued to by the openUTM transaction monitor or by UTM UTM message destinations
tools (such as). A message comprises a message number and a message text, which can KDCDEF
contain with current values. Depending on the message destination, either the entire inserts
message is output or only certain parts of the message, such as the inserts).

UTM page

A UTM page is a unit of storage with a size of either 2K, 4K or 8 K. In standalone UTM applications,
the size of a UTM page on generation of the UTM application can be set to 2K, 4K or 8 K. The size
of a UTM page in a is always 4K or 8 K. The and the restart area UTM cluster application page pool
for the KDCFILE and are divided into units of the size of a UTM page.UTM cluster files

utmpath (Unix / Linux / Windows systems)

The directory under which the openUTM components are installed is referred to as in this utmpath
manual.
To ensure that openUTM runs correctly, the environment variable UTMPATH must be set to the
value of . On Unix and Linux systems, you must set UTMPATH before a UTM application is utmpath
started. On Windows systems UTMPATH is set in accordance with the UTM version installed most
recently.

UTM-S

In the case of UTM-S applications, openUTM saves all user data as well as the administration data
beyond the end of an application and any system crash which may occur. In addition, UTM-S
guarantees the security and consistency of the application data in the event of any malfunction. UTM
applications are usually generated as UTM-S applications (UTM secure).

UTM SAT administration (BS2000 systems)

UTM SAT administration functions control which UTM events relevant to security which occur during
operation of a are to be logged by . Special authorization is required for UTM UTM application SAT
SAT administration.

openUTM V7.0. Administering Applications. User Guide.

 918

UTM socket protocol (USP)

Proprietary openUTM protocol above TCP/IP for the transformation of the Socket interface received
byte streams in messages.

UTM system process

UTM process that is started in addition to the processes specified via the start parameters and which
only handles selected jobs. UTM system processes ensure that UTM applications continue to be
reactive even under very high loads.

UTM terminal

This term has been superseded by .LTERM partner

UTM tool

Program which is provided together with openUTM and which is needed for UTM specific tasks (e.g
for configuring).

virtual connection

Assignment of two communication partners.

warm start

Start of a application after it has terminated abnormally. The is reset UTM-S application information
to the most recent consistent state. Interrupted are rolled back to the most recent dialog services

, allowing processing to be resumed in a consistent state from this point (synchronization point
). Interrupted are rolled back and restarted or restarted at the service restart asynchronous services

most recent .synchronization point
For applications, only configuration data which has been dynamically changed is rolled back UTM-F
to the most recent consistent state after a restart due to a preceding abnormal termination.
In UTM cluster applications, the global locks applied to GSSB and ULS on abnormal termination of
this node application are released. In addition, users who were signed on at this node application
when the abnormal termination occurred are signed off.

WebAdmin

Web-based tool for the administration of openUTM applications via a Web browser. WebAdmin
includes not only the full function scope of the but also additional administration program interface
functions.

Web service

Application which runs on a Web server and is (publicly) available via a standardized, programmable
interface. Web services technology makes it possible to make UTM program units available for
modern Web client applications independently of the programming language in which they were
developed.

WinAdmin

Java-based tool for the administration of openUTM applications via a graphical user interface.
WinAdmin includes not only the full function scope of the but also administration program interface
additional functions.

openUTM V7.0. Administering Applications. User Guide.

 919

work process (Unix / Linux / Windows systems)

A process within which the of a run.services UTM application

workload capture & replay

Family of programs used to simulate load situations; consisting of the main components UPIC
, and and - on Unix, Linux and Windows systems - the utility Capture UPIC Analyzer Upic Replay

program . Workload Capture & Replay can be used to record UPIC sessions with UTM kdcsort
applications, analyze these and then play them back with modified load parameters.

WS4UTM

WS4UTM (eb ervices for open) provides you with a convenient way of making a service of a W S UTM
UTM application available as a Web service.

XATMI

XATMI (X/Open Application Transaction Manager Interface) is a program interface standardized by X
/Open for program-program communication in open networks.
The XATMI interface implemented in openUTM complies with X/Open’s XATMI CAE Specification.
The interface is available in COBOL and C. In openUTM, XATMI can communicate via the OSI TP,

 and UPIC protocols.LU6.1

XHCS (BS2000 systems)

XHCS (Extended Host Code Support) is a BS2000 software product providing support for
international character sets.

XML

XML (eXtensible Markup Language) is a metalanguage standardized by the W3C (WWW
Consortium) in which the interchange formats for data and the associated information can be
defined.

openUTM V7.0. Administering Applications. User Guide.

 920

16 Abbreviations

Please note: Some of the abbreviations used here derive from the German acronyms used in the original German
product(s).

ACSE Association Control Service Element

AEQ Application Entity Qualifier

AES Advanced Encryption Standard

AET Application Entity Title

APT Application Process Title

ASCII American Standard Code for Information Interchange

ASE Application Service Element

Axis Apache eXtensible Interaction System

BCAM Basic Communication Access Method

BER Basic Encoding Rules

BLS Binder - Loader - Starter (BS2000 systems)

CCP Communication Control Program

CCR Commitment, Concurrency and Recovery

CCS Coded Character Set

CCSN Coded Character Set Name

CICS Customer Information Control System

CID Control Identification

CMX Communication Manager in Unix, Linux and Windows Systems

COM Component Object Model

CPI-C Common Programming Interface for Communication

CRM Communication Resource Manager

CRTE Common Runtime Environment (BS2000 systems)

DB Database

DBH Database Handler

DC Data Communication

DCAM Data Communication Access Method

DES Data Encryption Standard

openUTM V7.0. Administering Applications. User Guide.

 921

DLM Distributed Lock Manager (BS2000 systems)

DMS Data Management System

DNS Domain Name Service

DP Distribted Processing

DSS Terminal (Datensichtstation)

DTD Document Type Definition

DTP Distributed Transaction Processing

EBCDIC Extended Binary-Coded Decimal Interchange Code

EJB Enterprise JavaBeansTM

FGG File Generation Group

FHS Format Handling System

FT File Transfer

GCM Galois/Counter Mode

GSSB Global Secondary Storage Area

HIPLEX® Highly Integrated System Complex (BS2000 systems)

HLL High-Level Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IFG Interactive Format Generator

ILCS Inter-Language Communication Services (BS2000 systems)

IMS Information Management System (IBM)

IPC Inter-Process Communication

IRV International Reference Version

ISO International Organization for Standardization

Java EE Java Platform, Enterprise Edition

JCA Java EE Connector Architecture

JDK Java Development Kit

KAA KDCS Application Area

KB Communication Area

openUTM V7.0. Administering Applications. User Guide.

 922

KBPRG KB Program Area

KDCADMI KDC Administration Interface

KDCS Compatible Data Communication Interface

KTA KDCS Task Area

LAN Local Area Network

LCF Local Configuration File

LLM Link and Load Module (BS2000 systems)

LSSB Local Secondary Storage Area

LU Logical Unit

MQ Message Queuing

MSCF Multiple System Control Facility (BS2000 systems)

NB Message Area

NEA Network Architecture for BS2000 Systems

NFS Network File System/Service

NLS Native Language Support

OLTP Online Transaction Processing

OML Object Module Library

OSI Open System Interconnection

OSI TP Open System Interconnection Transaction Processing

OSS OSI Session Service

PCMX Portable Communication Manager

PID Process Identification

PIN Personal Identification Number

PLU Primary Logical Unit

PTC Prepare to commit

RAV Computer Center Accounting Procedure

RDF Resource Definition File

RM Resource Manager

RSA Encryption algorithm according to Rivest, Shamir, Adleman

RSO Remote SPOOL Output (BS2000 systems)

openUTM V7.0. Administering Applications. User Guide.

 923

RTS Runtime System

SAT Security Audit Trail (BS2000 systems)

SECOS Security Control System

SEM SE Manager

SGML Standard Generalized Markup Language

SLU Secondary Logical Unit

SM2 Software Monitor 2

SNA Systems Network Architecture

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SPAB Standard Primary Working Area

SQL Structured Query Language

SSB Secondary Storage Area

SSL Secure Socket Layer

SSO Single Sign-On

TAC Transaction Code

TCEP Transport Connection End Point

TCP/IP Transport Control Protocol / Internet Protocol

TIAM Terminal Interactive Access Method

TLS Terminal-Specific Long-Term Storage

TLS Transport Layer Security

TM Transaction Manager

TNS Transport Name Service

TP Transaction Processing (Transaction Mode)

TPR Privileged Function State in BS2000 systems (Task Privileged)

TPSU Transaction Protocol Service User

TSAP Transport Service Access Point

TSN Task Sequence Number

TU Non-Privileged Function State in BS2000 systems (Task User)

TX Transaction Demarcation (X/Open)

openUTM V7.0. Administering Applications. User Guide.

 924

UDDI Universal Description, Discovery and Integration

UDS Universal Database System

UDT Unstructured Data Transfer

ULS User-Specific Long-Term Storage

UPIC Universal Programming Interface for Communication

USP UTM Socket Protocol

UTM Universal Transaction Monitor

UTM-D UTM Variant for Distributed Processing in BS2000 systems

UTM-F UTM Fast Variant

UTM-S UTM Secure Variant

UTM-XML openUTM XML Interface

VGID Service ID

VTSU Virtual Terminal Support

WAN Wide Area Network

WS4UTM Web-Services for openUTM

WSDD Web Service Deployment Descriptor

WSDL Web Services Description Language

XA X/Open Access Interface
(X/Open interface for acess to the resource manager)

XAP X/OPEN ACSE/Presentation programming interface

XAP-TP X/OPEN ACSE/Presentation programming interface Transaction Processing extension

XATMI X/Open Application Transaction Manager Interface

XCS Cross Coupled System

XHCS eXtended Host Code Support

XML eXtensible Markup Language

openUTM V7.0. Administering Applications. User Guide.

 925

17 Related publications

You will find the manuals on the internet at .https://bs2manuals.ts.fujitsu.com

openUTM documentation

openUTMConcepts and Functions

User Guide

openUTM Programming Applications with KDCS for COBOL, C and C++

Core Manual

openUTM Generating Applications

User Guide

openUTM Using UTM Applications on BS2000 Systems

User Guide

openUTM Using UTM Applications on Unix, Linux and Windows Systems

User Guide

openUTM Administering Applications

User Guide

openUTM Messages, Debugging and Diagnostics on BS2000 Systems

User Guide

openUTM Messages, Debugging and Diagnostics on Unix, Linux and Windows Systems

User Guide

openUTM Creating Applications with X/Open Interfaces

User Guide

openUTM XML for openUTM

openUTM Client (Unix systems) for the OpenCPIC Carrier System
Client-Server Communication with openUTM

User Guide

openUTM Client for the UPIC Carrier System
Client-Server Communication with openUTM

User Guide

https://bs2manuals.ts.fujitsu.com/index

openUTM V7.0. Administering Applications. User Guide.

 926

openUTM WinAdmin
Graphical Administration Workstation for openUTM

Description and online help system

openUTM WebAdmin
Web Interface for Administering openUTM

Description and online help system

openUTM, openUTM-LU62
Distributed Transaction Processing between openUTM and CICS, IMS and LU6.2
Applications

User Guide

openUTM (BS2000)
Programming Applications with KDCS for Assembler
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for Fortran
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for Pascal-XT
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for PL/I
Supplement to Core Manual

WS4UTM (Unix systems and Windows systems)
WebServices for openUTM

Documentation for the openSEAS product environment

BeanConnect

User Guide

openUTM-JConnect
Connecting Java Clients to openUTM

User documentation and Java docs

WebTransactions
Concepts and Functions

WebTransactions
Template Language

openUTM V7.0. Administering Applications. User Guide.

 927

WebTransactions
Web Access to openUTM Applications via UPIC

WebTransactions
Web Access to MVS Applications

WebTransactions
Web Access to OSD Applications

Documentation for the BS2000 environment

AID Advanced Interactive Debugger
Core Manual

User Guide

AID Advanced Interactive Debugger
Debugging of COBOL Programs

User Guide

AID Advanced Interactive Debugger
Debugging of C/C++ Programs

User Guide

BCAM
BCAM Volume 1/2

User Guide

BINDER
User Guide

BS2000 OSD/BC
Commands Volume 1 - 7

User Guide

BS2000 OSD/BC
Executive Macros

User Guide

BS2IDE
Eclipse-based Integrated Development Environment for BS2000
User Guide and Installation Guide
Web page: https://bs2000.ts.fujitsu.com/bs2ide/

https://bs2000.ts.fujitsu.com/bs2ide/

openUTM V7.0. Administering Applications. User Guide.

 928

BLSSERV
Dynamic Binder Loader / Starter in BS2000/OSD

User Guide

DCAM
COBOL Calls

User Guide

DCAM
Macros

User Guide

DCAM
Program Interfaces

Description

FHS
Format Handling System for openUTM, TIAM, DCAM

User Guide

IFG for FHS
User Guide

HIPLEX AF
High-Availability of Applications in BS2000/OSD

Product Manual

HIPLEX MSCF
BS2000 Processor Networks

User Guide

IMON
Installation Monitor

User Guide

MT9750 (MS Windows)
9750 Emulation under Windows
Product Manual

OMNIS/OMNIS-MENU
Functions and Commands

User Guide

openUTM V7.0. Administering Applications. User Guide.

 929

OMNIS/OMNIS-MENU
Administration and Programming

User Guide

OSS (BS2000)
OSI Session Service
User Guide

openSM2
Software Monitor

User Guide

RSO
Remote SPOOL Output

User Guide

SECOS
Security Control System

User Guide

SECOS
Security Control System

Ready Reference

SESAM/SQL
Database Operation

User Guide

TIAM
User Guide

UDS/SQL
Database Operation

User Guide

Unicode in BS2000/OSD
Introduction

VTSU
Virtual Terminal Support

User Guide

XHCS
8-Bit Code and Unicode Support in BS2000/OSD

User Guide

openUTM V7.0. Administering Applications. User Guide.

 930

Documentation for the Unix, Linux and Windows system environment

CMX V6.0 (Unix systems)
(only available in German)Betrieb und Administration

User Guide

CMX V6.0
Programming CMX Applications
Programming Guide

OSS (UNIX)
OSI Session Service
User Guide

PRIMECLUSTERTM

Concepts Guide (Solaris, Linux)

openSM2

The documentation of openSM2 is provided in the form of detailed online help systems, which are delivered with the
product.

Other publications

CPI-C

X/Open CAE Specification
Distributed Transaction Processing:
The CPI-C Specification, Version 2
ISBN 1 85912 135 7

Reference Model
X/Open Guide
Distributed Transaction Processing:
Reference Model, Version 2
ISBN 1 85912 019 9

REST
Architectural Styles and the Design of Network-based Software Architectures
Dissertation Roy Fielding

TX
X/Open CAE Specification
Distributed Transaction Processing:
The TX (Transaction Demarcation) Specification
ISBN 1 85912 094 6

XATMI
X/Open CAE Secification
Distributed Transaction Processing

openUTM V7.0. Administering Applications. User Guide.

 931

The XATMI Specification
ISBN 1 85912 130 6

XML
W3C specification (www consortium)

Web page: http://www.w3org/XML

http://www.w3org/XML

	Administering Applications
	Preface
	Summary of contents and target group
	Summary of contents of the openUTM documentation
	openUTM documentation
	Documentation for the openSEAS product environment
	Readme files

	Changes in openUTM V7.0
	New server functions
	Discontinued server functions
	New client functions
	New functions for openUTM WinAdmin
	New functions for openUTM WebAdmin

	Notational conventions

	Overview of openUTM administration
	Command interface
	KDCADMI program interface
	Sample programs
	PADM, DADM for administering message queues and printers
	Administration tool CALLUTM (BS2000 systems)
	openUTM WinAdmin and openUTM WebAdmin

	Administering objects and setting parameters
	Information functions in openUTM
	Performance check
	Information about the utilization level of the application
	Diagnosing errors and bottlenecks
	Possible measures

	Avoiding a page pool bottleneck
	Page pool of a standalone application
	Page pools of a UTM cluster application

	Exchanging the application program
	Clients and printers

	Changing the configuration dynamically
	Requirements for KDCDEF generation
	Adding objects to the configuration dynamically
	Adding clients, printers and LTERM partners
	Adding program units, transaction codes, TAQ queues and VORGANG exits
	Creating user IDs
	Creating key sets
	Entering LU6.1 connections for distributed processing
	Entering LTACs
	Format and uniqueness of object names

	Deleting objects dynamically from the configuration
	Deleting clients/printers and LTERM partners
	Deleting program units, transaction codes and VORGANG exits
	Deleting user IDs
	Deleting key sets
	Deleting LU6.1 connections and sessions
	Deleting LTACs

	Modifying object properties
	Modifying clients/printers and LTERM partners
	Modifying transaction codes and TAC queues
	Modifying user IDs
	Modifying key sets
	Modifying LU6.1 sessions

	Generating konfiguration statements from the KDCFILE
	Starting the inverse KDCDEF
	Result of the inverse KDCDEF run
	Inverse KDCDEF for version migrations
	Recommendations for regeneration of an application

	Administration using commands
	Administration in dialog
	Administration using message queuing

	Writing your own administration programs
	Dialog administration programs
	Several administration calls
	Multi-step service

	Diagnostic options for the administration interface

	Central administration of several applications
	Administration using WinAdmin and WebAdmin
	Adapting generation of the UTM application
	Configuration of WinAdmin and WebAdmin

	Configuration models for own application of administration
	Administration via UPIC clients
	Administration via distributed processing
	Administration via a TS application

	Central Administration using commands
	Central Administration using programs
	Decentralized administration programs
	Central administration programs

	Automatic administration
	Control using the MSGTAC program
	Control via user-specific message destinations

	Access rights and data access control
	Configuring the administrator connection
	Granting administration privileges
	Generating administration commands

	Program interface for administration - KDCADMI
	Calling the KDCADMI functions
	The KDCADMI function call
	Description of the data areas to be supplied
	Return codes
	Supplying the fields of the data structure with data when passing data

	KDCADMI operation codes
	KC_CHANGE_APPLICATION- Exchange application program
	KC_CREATE_DUMP - Create a UTM dump
	KC_CREATE_OBJECT - Add objects to the configuration
	obj_type=KC_CON
	obj_type=KC_KSET
	obj_type=KC_LSES
	obj_type=KC_LTAC
	obj_type=KC_LTERM
	obj_type=KC_PROGRAM
	obj_type=KC_PTERM
	obj_type=KC_TAC
	obj_type=KC_USER
	Returncodes

	KC_CREATE_STATEMENTS - Create KDCDEF control statements (inverse KDCDEF)
	KC_DELETE_OBJECT - Delete objects
	KC_ENCRYPT - Create, delete, read RSA key pairs
	KC_GET_OBJECT - Query information
	KC_LOCK_MGMT - Release locks in UTM cluster applications
	KC_MODIFY_OBJECT - Modify object properties and application parameters
	obj_type=KC_CLUSTER_NODE
	obj_type=KC_DB_INFO
	obj_type=KC_KSET
	obj_type=KC_LOAD_MODULE
	obj_type=KC_LPAP
	obj_type=KC_LSES
	obj_type=KC_LTAC
	obj_type=KC_LTERM
	obj_type=KC_MUX (BS2000 systems)
	obj_type=KC_OSI_CON
	obj_type=KC_OSI_LPAP
	obj_type=KC_PTERM
	obj_type=KC_TAC
	obj_type=KC_TACCLASS
	obj_type=KC_TPOOL
	obj_type=KC_USER
	obj_type=KC_CLUSTER_CURR_PAR
	obj_type=KC_CLUSTER_PAR
	obj_type=KC_CURR_PAR
	obj_type=KC_DIAG_AND_ACCOUNT_PAR
	obj_type=KC_MAX_PAR
	obj_type=KC_TASKS_PAR
	obj_type=KC_TIMER_PAR
	Return codes

	KC_ONLINE_IMPORT - Import application data online
	KC_PTC_TA - Roll back transaction in PTC state
	KC_SEND_MESSAGE - Send message (BS2000 systems)
	KC_SHUTDOWN - Terminate the application run
	KC_SPOOLOUT - Establish connections to printers
	KC_SYSLOG - Administer the system log file
	KC_UPDATE_IPADDR - Update IP addresses
	KC_USLOG - Administer the user log file

	Data structures used to pass information
	Data structures for describing object properties
	kc_abstract_syntax_str - Abstract syntax for communication via OSI TP
	kc_access_point_str - OSI TP access point
	kc_application_context_str - Application context for communication via OSI TP
	kc_bcamappl_str - Names and addresses of the local application
	kc_character_set_str - Names of character sets (for BS2000 systems only)
	kc_cluster_node_str - Node applications of a UTM cluster application
	kc_con_str - LU6.1 connections
	kc_db_info_str - Output database information
	kc_edit_str - EDIT profile options (BS2000 systems)
	kc_gssb_str - Global secondary storage areas of the application
	kc_http_descriptor_str - HTTP descriptors of the application
	kc_kset_str - Key sets of the application
	kc_load_module_str - Load modules (BS2000 systems) or shared objects/DLLs (Unix, Linux and Windows systems)
	kc_lpap_str - Properties of LU6.1 partner applications
	kc_lses_str - LU6.1 sessions
	kc_ltac_str - Transaction codes of remote services (LTAC)
	kc_lterm_str - LTERM partners
	kc_message_module_str - User message modules
	kc_mux_str - Multiplex connections (BS2000 systems)
	kc_osi_association_str - Associations to OSI TP partner applications
	kc_osi_con_str - OSI TP connections
	kc_osi_lpap_str - Properties of OSI TP partner applications
	kc_program_str - Program units and VORGANG exits
	kc_ptc_str - Transactions in PTC state
	kc_pterm_str - Clients and printers
	kc_queue_str - Properties of temporary queues
	kc_sfunc_str - Function keys
	kc_subnet_str - Information on subnets
	kc_tac_str - Transaction codes of local services
	kc_tacclass_str - TAC classes for the application
	kc_tpool_str - LTERM pools for the application
	kc_transfer_syntax_str - Transfer syntax for communication via OSI TP
	kc_user_str, kc_user_fix_str, kc_user_dyn1_str and kc_user_dyn2_str user IDs

	Data structures used to describe the application parameters
	kc_cluster_curr_par_str - Statistics values of a UTM cluster application
	kc_cluster_par_str - Global properties of a UTM cluster application
	kc_curr_par_str - Current values of the application parameters
	kc_diag_and_account_par_str - Diagnostic and accounting parameters
	kc_dyn_par_str - Dynamic objects
	kc_max_par_str - Maximum values for the application (MAX parameters)
	kc_msg_dest_par_str - Properties of the user-specific message destinations
	kc_pagepool_str - Current utilization of the page pool
	kc_queue_par_str - Properties of queue objects
	kc_signon_str - Properties of the sign-on process
	kc_system_par_str - System parameters
	kc_tasks_par_str - Number of processes
	kc_timer_par_str - Timer settings
	kc_utmd_par_str - Parameters for distributed processing

	Administration commands - KDCADM
	KDCAPPL - Change properties and limit values for an operation
	KDCBNDL - Replace Master LTERM
	KDCDIAG - Switch diagnostic aids on and off
	KDCHELP - Query the syntax of administration commands
	KDCINF - Request information on objects and application parameters
	KDCINF - Syntax description
	Output from KDCINF

	KDCLOG - Change the user log file
	KDCLPAP - Administer connections to (OSI-)LPAP partners
	KDCLSES - Establish/shut down connections for LU6.1 sessions
	KDCLTAC - Change the properties of LTACs
	KDCLTERM - Change the properties of LTERM partners
	KDCMUX - Change properties of multiplex connections (BS2000 systems)
	KDCPOOL - Administer LTERM pools
	KDCPROG - Replace load modules/shared objects/DLLs
	KDCPTERM - Change properties of clients and printers
	KDCSEND - Send a message to LTERM partners (BS2000 systems)
	KDCSHUT - Terminate an application run
	KDCSLOG - Administer the SYSLOG file
	KDCSWTCH - Change the assignment of clients and printers to LTERM partners
	KDCTAC - Lock/release transaction codes and TAC queues
	KDCTCL - Change number of processes of a TAC class
	KDCUSER - Change user properties

	Administering message queues and controlling printers
	Authorization concept (BS2000, Unix and Linux systems)
	Administering message queues (DADM)
	Displaying information on messages in a queue - DADM RQ
	Reading user information about a message - DADM UI
	Prioritizing messages in the queue - DADM CS
	Deleting messages from a queue - DADM DA/DL
	Move messages from the dead letter queue - DADM MA/MV

	Administering printers and control print output (PADM)
	Administering printers with PADM
	Querying information about a printer PADM PI
	Changing the printer status - PADM CS
	Assigning a printer to another LTERM partner - PADM CA

	Print control with PADM
	Activating/deactivating confirmation mode - PADM AC/AT
	Confirming or repeating print output - PADM OK/PR
	Querying information about print jobs to be confirmed - PADM AI

	Handling of errors during print output

	UTM program units for DADM and PADM functions
	Generating KDCDADM and KDCPADM
	KDCDADM - Administer messages
	DELETE - Delete messages from the message queue
	INFORM - Display information about message queues and messages
	MOVE - Move messages from the dead letter queue
	NEXT - Prioritize messages in the message queue

	KDCPADM - Print control and printer administration
	INFORM - Display information about printers for a printer control LTERM
	MODE - Change the confirmation mode for a printer
	PRINT - Confirm / repeat print job
	STATE - Change the status of a printer
	SWITCH - Change the assignment of printers to LTERM partners

	Appendix
	Program interface for administration in COBOL
	COPY members for the program interface in COBOL
	KDCADMI function call
	Notes on programming

	Sample programs
	The C program unit HNDLUSR (BS2000 systems)
	The C program unit SUSRMAX
	The COBOL program unit COBUSER
	The C program unit ENCRADM
	The C program units ADJTCLT

	CALLUTM - Tool for administration and client/server communication (BS2000 systems)
	Generation
	Description of CALLUTM program statements
	Components, system environment, software configuration on BS2000 systems
	Integration in a UTM application on BS2000 systems
	Program-monitoring job variables on BS2000 systems
	Messages issued by CALLUTM (BS2000 systems)

	Glossary
	Abbreviations
	Related publications

