English

FUJITSU Software
openUTM V7.0

Administering Applications

User Guide

Edition November 2019

2
FUJITSU



Comments... Suggestions... Corrections...

The User Documentation Department would like to know your opinion on this manual. Your feedback helps us to
optimize our documentation to suit your individual needs.

Feel free to send us your comments by e-mail to: bs2000services@ts.fujitsu.com.

Certified documentation according to DIN EN ISO 9001:2015

To ensure a consistently high quality standard and user-friendliness, this documentation was created to meet the
regulations of a quality management system which complies with the requirements of the standard DIN EN 1SO
9001:2015.

Copyright and Trademarks
Copyright © 2019 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software hames used are trademarks of their respective manufacturers.


mailto:bs2000services@ts.fujitsu.com

Table of Contents

Administering Applications ... ... ... .. 11
L PrefaCe ... 12
1.1 Summary of contents and target group ... 14
1.2 Summary of contents of the openUTM documentation ................. 15
1.2.1 openUTM documentation .. ........... ... i, 16
1.2.2 Documentation for the openSEAS product environment ................ 19
123 Readmefiles ........ . . 20
1.3 Changes in openUTM V7.0 ... ... e e 21
1.3.1 New server funClions ... ... 22
1.3.2 Discontinued server functions . .......... ... 26
1.3.3 NewclientfunCtions . ... ... .. 27
1.3.4 New functions for openUTM WinAdmin .............. .. .. ... .cou.... 28
1.3.5 New functions for openUTM WebAdmin .. ......... ... .. ... ... ....... 29
1.4 Notational conventioNS .. ... e 30
2 Overview of openUTM administration .................. ... .. ... vu.... 32
2.1 Command interface . ....... ... 34
2.2 KDCADMI program interface ............ .. it 36
2.3 Sample programs .. ... 40
2.4 PADM, DADM for administering message queues and printers .......... 41
2.5 Administration tool CALLUTM (BS2000 systems) ..................... 42
2.6 openUTM WinAdmin and openUTM WebAdmin ....................... 43
3 Administering objects and setting parameters ........... ... ... ... 44
3.1 Information functions in openUTM . ... ... . . . . . . .. 45
3.2 Performance check . ....... . . . . 47
3.2.1 Information about the utilization level of the application ................. 48
3.2.2 Diagnosing errors and bottlenecks . ......... ... .. . . . o oo 49
3.2.3Possible measures . ... ... 50
3.3 Avoiding a page pool bottleneck ....... ... . . . . . 55
3.3.1 Page pool of a standalone application .................. ... ... ...... 56
3.3.2 Page pools of a UTM cluster application ............................ 59
3.4 Exchanging the application program ............. .. .. ..., .. 60
3.5 Clients and printers .. ... . e 61
4 Changing the configuration dynamically ............. ... ............... 64
4.1 Requirements for KDCDEF generation .......... ... ... 65
4.2 Adding objects to the configuration dynamically ...................... 68

4.2.1 Adding clients, printers and LTERM partners . ............. .. ......... 69



4.2.2 Adding program units, transaction codes, TAQ queues and VORGANG exits . ..
72

4.2.3 Creating User IDS . ... ... . 73
424 Creating KeY SetS . . ... 74
4.2.5 Entering LU6.1 connections for distributed processing .................. 75
4.2.6 ENtering LTACS ... it 76
4.2.7 Format and uniqueness of objectnames ............ . ... .. .. .. 0. 77
4.3 Deleting objects dynamically from the configuration .................. 79
4.3.1 Deleting clients/printers and LTERM partners  ........................ 81
4.3.2 Deleting program units, transaction codes and VORGANG exits .......... 83
4.3.3Deleting user IDs ... ... e 85
4.3.4 Deleting Key Sets .. ... 87
4.3.5 Deleting LU6.1 connections and SESSIONS . . . .. ..o i i i 88
4.3.6 Deleting LTACS . ... e e 89
4.4 Modifying object properties . ........ .. . . 90
4.4.1 Modifying clients/printers and LTERM partners . ...................... 91
4.4.2 Modifying transaction codes and TAC quUeUES .............vuvirunnnn. 92
4.4.3 Modifying user IDS . ... ... 93
4.4.4 Modifying Key Sets ... ... 94
4.4.5 Modifying LUB.1 SESSIONS . . . ..ot ii 95
5 Generating konfiguration statements from the KDCFILE .................. 96
5.1 Starting the inverse KDCDEF . . ... ... . e 98
5.2 Result of theinverse KDCDEF run . .......... ... 100
5.3 Inverse KDCDEF for version migrations ................c.uuueeeeo... 101
5.4 Recommendations for regeneration of an application .................. 102
6 Administration using commands . ....... . . .. 104
6.1 Administrationindialog ............ . .. 105
6.2 Administration using message qUEUING ... ...ttt 106
7 Writing your own administration programs ............. i 109
7.1 Dialog administration programs . .............iiite i 110
7.1.1 Several administration calls ......... ... . .. . . . 111
7.1.2 MUItI-StEP SEIVICE . . .o 112
7.2 Diagnostic options for the administration interface .................... 113
8 Central administration of several applications ........... ... ... ... ... ... 114
8.1 Administration using WinAdmin and WebAdmin ...................... 115
8.1.1 Adapting generation of the UTM application .......................... 116
8.1.2 Configuration of WinAdmin and WebAdmin . ......................... 118
8.2 Configuration models for own application of administration ............ 120
8.2.1 Administration via UPIC clients . .............. ... 121
8.2.2 Administration via distributed processing . ......... ... ... 126

8.2.3 Administration via a TS application ............ ... ... . . . . . . . . . ... ... 131



8.3 Central Administration using commands ....................ii... 133

8.4 Central Administration using programs .......... ... .uuunneenn... 134
8.4.1 Decentralized administration programs .. ...........c.c.iiiinreaa... 135
8.4.2 Central administration programs . . ...........c ittt 137

9 Automatic administration . ......... .. 139
9.1 Control using the MSGTAC program . ...ttt 140
9.2 Control via user-specific message destinations ....................... 143

10 Access rights and dataaccess control .......... ... .. ... . ... . . .. ... ... 144

10.1 Configuring the administrator connection .......................... 147

10.2 Granting administration privileges . ......... ... . . . . . . 148

10.3 Generating administration commands ........... ... . . . ... 149

11 Program interface for administration - KDCADMI ....................... 151

11.1 Calling the KDCADMI funCtionNs .. ... ... 152
11.1.1 The KDCADMI functioncall . ........ ... . . . . . .. 153
11.1.2 Description of the data areas to be supplied ........................ 154
11.1.3 RetUrN COUBS . ..ot e e 166
11.1.4 Supplying the fields of the data structure with data when passing data .... 170

11.2 KDCADMI operation COUES . ... ..ottt e 171
11.2.1 KC_CHANGE_APPLICATION- Exchange application program .......... 172
11.2.2 KC_CREATE_DUMP - Createa UTMdump ........... ... .......... 179
11.2.3 KC_CREATE_OBJECT - Add objects to the configuration .............. 181

11.2.3.10bj]_type=KC_CON ... 186
11.2.3.20b)_type=KC_KSET . ... ... e 188
11.2.3.30b)_type=KC _LSES .. ... ... . . 189
11.2.3.4 0bj_type=KC_LTAC ... . e 190
11.2.3.50bj]_type=KC _LTERM . ... . . e e 193
11.2.3.6 obj_type=KC_PROGRAM . ... . . . . . e 198
11.2.3.7 0bj_type=KC_PTERM . ... .. . e 199
11.2.3.80b)_type=KC _TAC ... 207
11.2.3.90bj_type=KC _USER ... ... ... . . 215
11.2.3.10 RetUrNCOES . ..o 224
11.2.4 KC_CREATE_STATEMENTS - Create KDCDEF control statements (inverse
KD CDER) ..o 245
11.2.5 KC_DELETE_OBJECT - Deleteobjects ............. ... ... ... 255
11.2.6 KC_ENCRYPT - Create, delete, read RSAkeypairs .................. 268
11.2.7 KC_GET_OBJECT - Query information ............................ 277
11.2.8 KC_LOCK_MGMT - Release locks in UTM cluster applications ......... 303

11.2.9 KC_MODIFY_OBJECT - Modify object properties and application parameters .
308

11.2.9.1 obj_type=KC_CLUSTER_NODE . ... ...\t 315
11.2.9.2 0bj_type=KC DB_INFO ...\t 316



11.2.9.3 0bj_type=KC_KSET ...\ttt e 317

11.2.9.4 obj_type=KC_LOAD _MODULE ......... ... .. .. . . ... 318
11.2.9.50bj_type=KC _LPAP . . . . . . 321
11.2.9.6 0bj_type=KC_LSES ... ... . . 325
11.2.9.7 0bj_type=KC_LTAC ... . . e 327
11.2.9.8 0bj_type=KC _LTERM ... .. . . e e 329
11.2.9.9 obj_type=KC_MUX (BS2000 SyStems) ...........c.c.uiiuuuueenn.. 333
11.2.9.10 obj_type=KC_OSI_CON ... .. . e e 335
11.2.9.11 obj_type=KC_OSI_LPAP . ... . . . e 336
11.2.9.12 obj_type=KC_PTERM .. ... . . . . e 341
11.2.9.13 0bj_type=KC_TAC . .. . 345
11.2.9.14 obj_type=KC_TACCLASS . .. .. e 350
11.2.9.15 0bj_type=KC_TPOOL . ... ... e 353
11.2.9.16 obj_type=KC_USER .. ... . . . . 355
11.2.9.17 obj_type=KC_CLUSTER_CURR_PAR ........ ... . ... ... 361
11.2.9.18 obj_type=KC_CLUSTER_PAR . ..... ... .. .. . . . .. 362
11.2.9.19 obj_type=KC_CURR_PAR ... . . . . . e 364
11.2.9.20 obj_type=KC_DIAG_AND_ACCOUNT_PAR ........ ... ... ... 368
11.2.9.21 obj_type=KC_MAX_PAR . ... . . 379
11.2.9.22 obj_type=KC_TASKS_PAR .. ... . . . e 382
11.2.9.23 obj_type=KC_TIMER_PAR .. ... ... . e 384
11.2.9.24 RetUIN COUBS . . .\ttt e e e 388
11.2.10 KC_ONLINE_IMPORT - Import application data online ............... 408
11.2.11 KC_PTC_TA - Roll back transaction in PTC state ................... 412
11.2.12 KC_SEND_MESSAGE - Send message (BS2000 systems) ........... 416
11.2.13 KC_SHUTDOWN - Terminate the applicationrun ................... 420
11.2.14 KC_SPOOLOUT - Establish connections to printers . ................ 428
11.2.15 KC_SYSLOG - Administer the system logfile ...................... 432
11.2.16 KC_UPDATE_IPADDR - Update IP addresses . .................... 444
11.2.17 KC_USLOG - Administer the user logfile .......................... 451
11.3 Data structures used to pass information ........................... 454
11.3.1 Data structures for describing object properties . ..................... 456

11.3.1.1 kc_abstract_syntax_str - Abstract syntax for communication via OSI TP
457

11.3.1.2 kc_access_point_str- OSI TP accesspoint  ...................... 458
11.3.1.3 kc_application_context_str - Application context for communication via OSI

TP 463
11.3.1.4 kc_bcamappl_str - Names and addresses of the local application .. ... 464

11.3.1.5 kc_character_set_str - Names of character sets (for BS2000 systems only)
467

11.3.1.6 kc_cluster_node_str - Node applications of a UTM cluster application .. 468



11.3.1.7 kc_con_str- LU6.1 connections ........ ..., 474

11.3.1.8 kc_db_info_str - Output database information ..................... 479
11.3.1.9 kc_edit_str - EDIT profile options (BS2000 systems) ............... 481
11.3.1.10 kc_gssb_str - Global secondary storage areas of the application .. ... 484
11.3.1.11 kc_http_descriptor_str - HTTP descriptors of the application ........ 485
11.3.1.12 kc_kset_str - Key sets of the application ........................ 487
11.3.1.13 kc_load_module_str - Load modules (BS2000 systems) or shared objects

/DLLs (Unix, Linux and Windows SyStems) . ........... ... 489
11.3.1.14 kc_Ipap_str - Properties of LU6.1 partner applications ............. 493
11.3.1.15kc _Ises _str-LUB.L1 SESSIONS . . ...ttt i 499
11.3.1.16 kc_Itac_str - Transaction codes of remote services (LTAC) ......... 502
11.3.1.17 kc_Iterm_str- LTERM partners ............... ... 507
11.3.1.18 kc_message_module_str - User message modules ............... 516
11.3.1.19 kc_mux_str - Multiplex connections (BS2000 systems) ............ 518
11.3.1.20 kc_osi_association_str - Associations to OSI TP partner applications . 522
11.3.1.21 kc_osi_con_str-OSI TP connections .................coouu.... 524
11.3.1.22 kc_osi_Ipap_str - Properties of OSI TP partner applications ......... 532
11.3.1.23 kc_program_str - Program units and VORGANG exits . ............ 539
11.3.1.24 kc_ptc_str - Transactionsin PTCstate ......................... 543
11.3.1.25 kc_pterm_str - Clientsand printers . . . ....... ... . ... 545
11.3.1.26 kc_queue_str - Properties of temporary queues .................. 558
11.3.1.27 kc_sfunc_str - Functionkeys ........ .. ... .. ... . . . . ... 559
11.3.1.28 kc_subnet_str - Informationon subnets . ...... ... ... oL 561
11.3.1.29 kc_tac_str - Transaction codes of local services .................. 562
11.3.1.30 kc_tacclass_str - TAC classes for the application ................. 573
11.3.1.31 kc_tpool_str - LTERM pools for the application ................... 576

11.3.1.32 kc_transfer_syntax_str - Transfer syntax for communication via OSI TP
585

11.3.1.33 kc_user_str, kc_user_fix_str, kc_user_dynl_str and kc_user_dyn2_str user

DS e 586
11.3.2 Data structures used to describe the application parameters ............ 604
11.3.2.1 kc_cluster_curr_par_str - Statistics values of a UTM cluster application 605
11.3.2.2 kc_cluster_par_str - Global properties of a UTM cluster application .... 606
11.3.2.3 kc_curr_par_str - Current values of the application parameters ....... 613
11.3.2.4 kc_diag_and_account_par_str - Diagnostic and accounting parameters 625
11.3.2.5 kc_dyn_par_str - Dynamic objects . .......... ... .. . ... 633

11.3.2.6 kc_max_par_str - Maximum values for the application (MAX parameters) ..
638

11.3.2.7 kc_msg_dest_par_str - Properties of the user-specific message destinations
................................................................ 655

11.3.2.8 kc_pagepool_str - Current utilization of the page pool .............. 657
11.3.2.9 kc_queue_par_str - Properties of queue objects ................... 659



11.3.2.10 kc_signon_str - Properties of the sign-on process  ................ 660

11.3.2.11 kc_system_par_str - System parameters ............... .. .. .... 664
11.3.2.12 kc_tasks_par_str - Number of processes . ...................... 668
11.3.2.13 kc_timer_par_str- Timersettings ................ ... 672
11.3.2.14 kc_utmd_par_str - Parameters for distributed processing ........... 676
12 Administration commands - KDCADM . ... .. 678
12.1 KDCAPPL - Change properties and limit values for an operation ....... 681
12.2 KDCBNDL - Replace Master LTERM . ....... ... ... . . . . . . . 693
12.3 KDCDIAG - Switch diagnosticaidsonand off ....................... 694
12.4 KDCHELP - Query the syntax of administration commands ............ 702
12.5 KDCINF - Request information on objects and application parameters ... 703
12.5.1 KDCINF - Syntax description .. ........ . 705
12.5.2 Output from KDCINF . . ... 714
12.6 KDCLOG - Change theuserlogfile ......... ... ... . ... ... ... . ...... 751
12.7 KDCLPAP - Administer connections to (OSI-)LPAP partners ........... 752
12.8 KDCLSES - Establish/shut down connections for LU6.1 sessions ....... 759
12.9 KDCLTAC - Change the properties of LTACs . .......... ... .. ... 761
12.10 KDCLTERM - Change the properties of LTERM partners ............. 763

12.11 KDCMUX - Change properties of multiplex connections (BS2000 systems) .
766

12.12 KDCPOOL - Administer LTERM pools ....... ... .. ... . ... 769
12.13 KDCPROG - Replace load modules/shared objects/DLLSs ............. 771
12.14 KDCPTERM - Change properties of clients and printers .............. 776
12.15 KDCSEND - Send a message to LTERM partners (BS2000 systems) .... 781
12.16 KDCSHUT - Terminate an applicationrun ................ ... ... .... 782
12.17 KDCSLOG - Administer the SYSLOGfile .............. ... ... .. ...... 785
12.18 KDCSWTCH - Change the assignment of clients and printers to LTERM
PaAI IS . .o e e 790
12.19 KDCTAC - Lock/release transaction codes and TAC queues .......... 794
12.20 KDCTCL - Change number of processesofaTACclass .............. 796
12.21 KDCUSER - Change user properties . ...........iuinnnnnnnn. 800
13 Administering message queues and controlling printers ................. 802
13.1 Authorization concept (BS2000, Unix and Linux systems) ............. 804
13.2 Administering message queues (DADM) . ... 806
13.2.1 Displaying information on messages in a queue - DADMRQ ........... 808
13.2.2 Reading user information about a message - DADMUI ................ 809
13.2.3 Prioritizing messages in the queue -DADMCS ... ... ... ... ... .... 810
13.2.4 Deleting messages from a queue - DADM DA/DL .................... 811
13.2.5 Move messages from the dead letter queue - DADM MA/MV . .......... 812
13.3 Administering printers and control print output (PADM) ............... 813

13.3.1 Administering printers with PADM . . . ... ... . . 814



13.3.1.1 Querying information about a printer PADMPI .................... 815

13.3.1.2 Changing the printer status - PADMCS . ........................ 816
13.3.1.3 Assigning a printer to another LTERM partner - PADM CA  .......... 817
13.3.2 Print control with PADM . . .. ... .. 818
13.3.2.1 Activating/deactivating confirmation mode - PADM AC/AT ........... 820
13.3.2.2 Confirming or repeating print output - PADM OK/PR .. ............. 821
13.3.2.3 Querying information about print jobs to be confirmed - PADM Al .. ... 822
13.3.3 Handling of errors during printoutput . ............... ... ... .. ...... 823
13.4 UTM program units for DADM and PADM functions .................. 824
13.4.1 Generating KDCDADM and KDCPADM . . ... ... . . ... 825
13.4.2 KDCDADM - AdmINIiSter MesSSages ... ..o v vttt e e 826
13.4.2.1 DELETE - Delete messages from the message queue .............. 827
13.4.2.2 INFORM - Display information about message queues and messages . 829
13.4.2.3 MOVE - Move messages from the dead letter queue ............... 832
13.4.2.4 NEXT - Prioritize messages in the message queue ................ 834
13.4.3 KDCPADM - Print control and printer administration .................. 835

13.4.3.1 INFORM - Display information about printers for a printer control LTERM
836

13.4.3.2 MODE - Change the confirmation mode fora printer ............... 839
13.4.3.3 PRINT - Confirm /repeat printjob ............... .. ... ........... 840
13.4.3.4 STATE - Change the status of a printer ......................... 841
13.4.3.5 SWITCH - Change the assignment of printers to LTERM partners ... .. 842
14 APPENAIX . 843
14.1 Program interface for administration in COBOL ...................... 844
14.1.1 COPY members for the program interface in COBOL ................. 845
14.1.2 KDCADMI function call ........ ... . . . 849
14.1.3 NOtes ON Programming . . ... .vuvv ettt et e e 850
14.2 Sample programs . ... ... 851
14.2.1 The C program unit HNDLUSR (BS2000 systems) ................... 852
14.2.2 The C program unit SUSRMAX . . ... . e 853
14.2.3 The COBOL program unit COBUSER . .......... . ... ... ... . ... 854
14.2.4 The C program unit ENCRADM . ... ... ... . . . . . . .. 855
14.2.5 The C program units ADJTCLT .. ... ... e 856
14.3 CALLUTM - Tool for administration and client/server communication (BS2000
SY S BIMS ) . 861
14.3.1 GeNeration .. ...t 862
14.3.2 Description of CALLUTM program statements . ...................... 865
14.3.3 Components, system environment, software configuration on BS2000 systems
................................................................. 880
14.3.4 Integration in a UTM application on BS2000 systems ................. 881

14.3.5 Program-monitoring job variables on BS2000 systems . ............... 882



14.3.6 Messages issued by CALLUTM (BS2000 systems) ...................

15 Glossary

16 Abbreviations .. ... .
17 Related publications . ......... .. e



openUTM V7.0. Administering Applications. User Guide.

Administering Applications

11



openUTM V7.0. Administering Applications. User Guide.

1 Preface

The IT infrastructure of today's companies as the heart and engine of the business must meet the requirements of
the digital age. At the same time, it has to cope with increased amounts of data as well as with stricter requirements
from the environment, e.g. compliance requirements. It must also be possible to integrate additional applications at
short notice. And all this under the aspect of guaranteed security.

Thus, essential requirements for a modern IT infrastructure consist of, among others

® Flexibility and almost limitless scalability also for future requirements

® high robustness with highest availability

® absolute safety in all respects

® Adaptability to individual needs

® (Causing low costs

To meet these challenges, Fujitsu offers an extensive portfolio of innovative enterprise hardware, software, and
support services within the environment of our enterprise mainframe platforms, and is therefore your

® Reliable service provider, giving you longterm, flexible, and innovative support in running your company’s
mainframe-based core applications
® I|deal partner for working together to meet the requirements of digital transformation

® |ongterm partner, by reason of continuous adjustment of modern interfaces required by a modern IT landscape
with all its requirements.

With openUTM, Fujitsu provides you a thoroughly tried-and-tested solution from the middleware area.

openUTM is a high-end platform for transaction processing that offers a runtime environment that meets all these
requirements of modern, business-critical applications, because openUTM combines all the standards and
advantages of transaction monitor middleware platforms and message queuing systems:

® consistency of data and processing
® high availability of the applications
® high throughput even when there are large numbers of users (i.e. highly scalable)

* flexibility as regards changes to and adaptation of the IT system

A UTM application on Unix, Linux and Windows systems can be run as a standalone UTM application or
sumultanously on several different computers as a UTM cluster application.

openUTM forms part of the comprehensive openSEAS offering. In conjunction with the Oracle Fusion middleware,
openSEAS delivers all the functions required for application innovation and modern application development.
Innovative products use the sophisticated technology of openUTM in the context of the openSEAS product offering:

® BeanConnect is an adapter that conforms to the Java EE Connector Architecture (JCA) and supports
standardized connection of UTM applications to Java EE application servers. This makes it possible to integrate
tried-and-tested legacy applications in new business processes.

® Existing UTM applications can be migrated to the Web without modification. The UTM-HTTP interface and the
WebTransactions product, are two openSEAS alternatives that allows proven host applications to be used
flexibly in new business processes and modern application scenarios.

> The products BeanConnect and WebTransactions are briefly presented in the performance overview.
There are separate manuals for these products.

12



openUTM V7.0. Administering Applications. User Guide.

i Wherever the term Linux system or Linux platform is used in the following, then this should be understood
to mean a Linux distribution such as SUSE or Red Hat.

Wherever the term Windows system or Windows platform is in the following, this should be understood to
mean all the variants of Windows under which openUTM runs.

Wherever the term Unix system or Unix platform is used in the following, then this should be understood
to mean a Unix-based operating system such as Solaris or HP-UX.

13



openUTM V7.0. Administering Applications. User Guide.

1.1 Summary of contents and target group

The manual “Administering Applications” is intended for UTM application administrators and administration
programmers. It describes the program interface for administration which you can use to write your own
administration programs, the administration command interface, and the options available for administering
message queues.

Readers are expected to have a thorough grasp of the C programming language and to be familiar with openUTM.
It is particularly important to have competent knowledge of the generation tool KDCDEF and the program interface
KDCS. For further information, please refer also to the openUTM manuals “Generating Applications” and
“Programming Applications with KDCS".

Chapters 2, 3, 8, 9 and 10 of this manual contain general information about UTM administration. They are intended
both for programmers who write their own administration programs and for the users who use the administration
programs. For example, they provide information on the various interfaces that openUTM offers for administering
your UTM application, contain examples of how you can use the openUTM administration functions to ensure that
your application offers lasting performance and reliability, and introduce you to the options available for central and
automatic administration. Chapter 8 also examines the administration of UTM cluster applications on Unix, Linux
and Windows systems in greater detail.

Chapters 4, 5, 7 and 11 contain special information for programmers who write their own administration programs.
They provide a detailed description of the structure of administration programs and of the dynamic entry and
deletion of clients, printers, services and user IDs. Chapter 11 contains all the administration calls for the C program
interface and the C data structures of the interface. It also describes in detail which administration functions you can
implement with the aid of the interface.

Chapters 6 and 12 address the particular needs of the users of administration commands. Chapter 6 gives you
information on synchronous and asynchronous administration using administration commands. Chapter 12 includes
a description of the administration commands, and of the functions that you can execute with these commands.

Chapter 13 contains information on administering local message queues and on the administration of printers via a
printer control LTERM.

14



openUTM V7.0. Administering Applications. User Guide.

1.2 Summary of contents of the openUTM documentation

This section provides an overview of the manuals in the openUTM suite and of the various related products.

15



openUTM V7.0. Administering Applications. User Guide.

1.2.1 openUTM documentation

The openUTM documentation consists of manuals, the online help for the graphical administration workstation
openUTM WinAdmin and the graphical administration tool WebAdmin as well as release notes.

There are manuals and release notes that are valid for all platforms, as well as manuals and release notes that are
valid for BS2000 systems and for Unix, Linux and Windows systems.

All the manuals are available on the internet at https://bs2manuals.ts.fujitsu.com. For the BS2000 platform, you will
also find the manuals on the Softbook DVD.

The following sections provide a task-oriented overview of the openUTM V7.0 documentation.

You will find a complete list of documentation for openUTM in the chapter on related publications at the back of the
manual.

Introduction and overview

The Concepts and Functions manual gives a coherent overview of the essential functions, features and areas of
application of openUTM. It contains all the information required to plan a UTM operation and to design a UTM
application. The manual explains what openUTM is, how it is used, and how it is integrated in the BS2000, Unix,
Linux and Windows based platforms.

Programming

® You will require the Programming Applications with KDCS for COBOL, C and C++ manual to create server
applications via the KDCS interface or UTM-HTTP programming interface. This manual describes the KDCS
interface as used for COBOL, C and C++. This interface provides the basic functions of the universal transaction
monitor, as well as the calls for distributed processing. The manual also describes interaction with databases.
The UTM-HTTP programming interface provides functions that may be used for communication with HTTP
clients.

® You will require the Creating Applications with X/Open Interfaces manual if you want to use the X/Open
interface. This manual contains descriptions of the openUTM-specific extensions to the X/Open program
interfaces TX, CPI-C and XATMI as well as notes on configuring and operating UTM applications which use X
/Open interfaces. In addition, you will require the X/Open-CAE specification for the corresponding X/Open
interface.

® If you want to interchange data on the basis of XML, you will need the document entitled openUTM XML for
openUTM. This describes the C and COBOL calls required to work with XML documents.

® For BS2000 systems there is supplementary documentation on the programming languages Assembler, Fortran,
Pascal-XT and PL/1.

Configuration

The Generating Applications manual is available to you for defining configurations. This describes for both
standalone UTM applications and UTM cluster applications on Unix, Linux and Windows systems how to use the
UTM tool KDCDEF to

® define the configuration

® generate the KDCFILE

® and generate the UTM cluster files for UTM cluster applications

16


https://bs2manuals.ts.fujitsu.com/index

openUTM V7.0. Administering Applications. User Guide.

In addition, it also shows you how to transfer important administration and user data to a new KDCFILE using the
KDCUPD tool. You do this, for example, when moving to a new openUTM version or after changes have been
made to the configuration. In the case of UTM cluster applications, it also indicates how you can use the KDCUPD
tool to transfer this data to the new UTM cluster files.

Linking, starting and using UTM applications

In order to be able to use UTM applications, you will need the Using UTM Applications manual for the relevant
operating system (BS2000 or Unix, Linux and Windows systems). This describes how to link and start a UTM
application program, how to sign on and off to and from a UTM application and how to replace application programs
dynamically and in a structured manner. It also contains the UTM commands that are available to the terminal user.
Additionally, those issues are described in detail that need to be considered when operating UTM cluster
applications.

Administering applications and changing configurations dynamically

® The Administering Applications manual describes the program interface for administration and the UTM
administration commands. It provides information on how to create your own administration programs for
operating a standalone UTM application or a UTM cluster application and on the facilities for administering
several different applications centrally. It also describes how to administer message queues and printers using
the KDCS calls DADM and PADM.

® If you are using the graphical administration workstation openUTM WinAdmin or the Web application openUTM
WebAdmin, which provides comparable functionality, then the following documentation is available to you:

® Adescription of WinAdmin and description of WebAdmin, which provide a comprehensive overview of the
functional scope and handling of WinAdmin/WebAdmin.

® The respective online help systems, which provide context-sensitive help information on all dialog boxes and
associated parameters offered by the graphical user interface. In addition, it also tells you how to configure
WinAdmin or WebAdmin in order to administer standalone UTM applications and UTM cluster applications.

For detailed information on the integration of openUTM WebAdmin in SE Server's SE Manager, see
the SE Server manual Operation and Administration.

Testing and diagnosing errors

You will also require the Messages, Debugging and Diagnostics manuals (there are separate manuals for Unix,
Linux and Windows systems and for BS2000 systems) to carry out the tasks mentioned above. These manuals
describe how to debug a UTM application, the contents and evaluation of a UTM dump, the openUTM message
system, and also lists all messages and return codes output by openUTM.

Creating openUTM clients

The following manuals are available to you if you want to create client applications for communication with UTM
applications:

® The openUTM-Client for the UPIC Carrier System describes the creation and operation of client applications
based on UPIC. It indicates what needs to be taken into account when programming a CPI-C application and
what restrictions apply compared with the X/Open CPI-C interface.

17



openUTM V7.0. Administering Applications. User Guide.

® The openUTM-Client for the OpenCPIC Carrier System manual describes how to install and configure
OpenCPIC and configure an OpenCPIC application. It indicates what needs to be taken into account when
programming a CPI-C application and what restrictions apply compared with the X/Open CPI-C interface.

® The documentation for the product openUTM-JConnect shipped with BeanConnect consists of the manual and
a Java documentation with a description of the Java classes.

® The BizXML2Cobol manual describes how you can extend existing COBOL programs of a UTM application in
such a way that they can be used as an XML-based standard Web service. How to work with the graphical user
interface is described in the online help system.

® You can also use the software product WS4UTM (WebServices for openUTM) to provide services of UTM
applications as Web services. To do this, you need the Web Services for openUTM manual. Working with the
graphical user interface is described in the corresponding online help system.

Communicating with the IBM world

If you want to communicate with IBM transaction systems, then you will also require the manual Distributed
Transaction Processing between openUTM and CICS, IMS and LU6.2 Applications. This describes the CICS
commands, IMS macros and UTM calls that are required to link UTM applications to CICS and IMS applications.
The link capabilities are described using detailed configuration and generation examples. The manual also
describes communication via openUTM-LU62 as well as its installation, generation and administration.

PCMX documentation

The communications program PCMX is supplied with openUTM on Unix, Linux and Windows systems. The
functions of PCMX are described in the following documents:

® CMX manual “Betrieb und Administration” (Unix-Systeme) for Unix, Linux and Windows systems (only available
in German)

® PCMX online help system for Windows systems

18



openUTM V7.0. Administering Applications. User Guide.

1.2.2 Documentation for the openSEAS product environment

The Concepts and Functions manual briefly describes how openUTM is connected to the openSEAS product
environment. The following sections indicate which openSEAS documentation is relevant to openUTM.

Integrating Java EE application servers and UTM applications

The BeanConnect adapter forms part of the openSEAS product suite. The BeanConnect adapter implements the
connection between conventional transaction monitors and
Java EE application servers and thus permits the efficient integration of legacy applications in Java applications.

The manual BeanConnect describes the product BeanConnect, that provides a JCA 1.5- and JCA 1.6-compliant
adapter which connects UTM applications with applications based on Java EE, e.g. the Oracle application server.

Connecting to the web and application integration

Alternatively, you can use the WebTransactions product instead of the UTM HTTP program interface. Then you will
need the WebTransactions manuals. The manuals will also be supplemented by JavaDocs.

19



openUTM V7.0. Administering Applications. User Guide.

1.2.3 Readme files

Information on any functional changes and additions to the current product version described in this manual can be
found in the product-specific Readme files.

Readme files are available to you online in addition to the product manuals under the various products at

https://bs2manuals.ts.fujitsu.com. For the BS2000 platform, you will also find the Readme files on the Softbook DVD.

Information on BS2000 systems
When a Readme file exists for a product version, you will find the following file on the BS2000 system:
SYSRME. <pr oduct >. <ver si on>. <| ang>

This file contains brief information on the Readme file in English or German (<lang>=E/D). You can view this
information on screen using the / SHOW FI LE command or an editor.

The / SHOW | NSTALLATI ON- PATH | NSTALLATI ON- UNI T=<pr oduct > command shows the

user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and using a product version
are contained in the associated Release Notice. These Release Notices are available online at https://bs2manuals.
ts.fujitsu.com.

20


https://bs2manuals.ts.fujitsu.com/index
https://bs2manuals.ts.fujitsu.com/index
https://bs2manuals.ts.fujitsu.com/index

openUTM V7.0. Administering Applications. User Guide.

1.3 Changes in openUTM V7.0

The following sections provide more details about the changes in the individual functional areas.

21



openUTM V7.0. Administering Applications. User Guide.

1.3.1 New server functions

UTM as HTTP-Server
A UTM application can also act as an HTTP server.

GET, PUT, POST and DELETE are supported as methods. In addition to HTTP, access via HTTPS is also
supported.

The following interfaces have been changed:

® Generation
All systems:
¢ KDCDEF statement BCAMAPPL:
® Additional specification for the transport protocol for the operand T-PROT= with value SOCKET

*USP:  The UTM socket protocol is to be used on connections from this access point.
*HTTP: The HTTP protocol is to be used for connections from this access point.

*ANY: Both the UTM socket protocol and the HTTP protocol are supported on connections from
this access point.
® Additional specification for encryption for the operand T-PROT= with value SOCKET
SECURE: On connections from this access point, communication takes place using transport layer
security (TLS).
®* New operand USER-AUTH = *NONE | *BASIC. Herewith you can specify which authentication
mechanism HTTP clients must use for this access point.

¢ KDCDEF statement HTTP-DESCRIPTOR:
This statement defines a mapping of the path received in an HTTP request to a TAC and additional
processing parameters can be specified.

BS2000 systems:

¢ KDCDEF statement CHAR-SET:
With this statement, each of the four UTM code conversions provided by openUTM can be assigned up to
four character set names.

® Programming

® KDCS communication area (KB):
In the header of the KDCS communication area, there are new indicators for the client protocols HTTP, USP-
SECURE, and HTTPS in the kccp/KCCP field.

® KDCS call INIT PU:
® The version of the interface has been increased to 7.
® To obtain the complete available information, the value 372 must be specified in the KCLI field.

* New fields for requesting (KCHTTP/http_info) and returning (KCHTTPINF/httpinfo) HTTP-specific
information.

® Administration interface KDCADMI

® The data structure version of KDCADMI has been changed to version 11 (field version_data in the parameter
area).

22



openUTM V7.0. Administering Applications. User Guide.

® New structure kc_http_descriptor_strin the identification area to support the HTTP descriptor.

® New structure kc_character_set_strin the identification area for supporting the HTTP character set.

* New fields secure_soc and user_auth in structure kc_bcamappl_str for the support of HTTP access points.

® UTM-HTTP program interface

In addition to the KDCS interface, UTM provides an interface for reading and writing HTTP protocol information
and handling the HTTP message body.
The functions of the interface are briefly listed below:

Function kcHttpGetHeaderByindex()
This function returns the name and value of the HTTP header field for the specified index.

Function kcHttpGetHeaderByName()
The function returns the value of the HTTP header field specified by the name.

Function kcHttpGetHeaderCount()
This function returns the number of header fields contained in the HTTP request, that can be read by the
program unit.

Function kcHttpGetMethod()
This function returns the HTTP method of the HTTP request.

Function kcHttpGetMputMsg()
This function returns the MPUT message generated by the program unit.

Function kcHttpGetPath()

This function returns the HTTP path of the HTTP request normalized with
KC_HTTP_NORM_UNRESERVED.

Function kcHttpGetQuery()

This function returns the HTTP query of the HTTP request normal ized with
KC_HTTP_NORM_UNRESERVED.

Function kcHttpGetRc2String()
Help function to convert a function result of type enum into a printable zero terminated string.

Function kcHttpGetRegMsgBody()
This function returns the message body of the HTTP request.

Function kcHttpGetScheme()
This function returns the schema of the HTTP request.

Function kcHttpGetVersion()

This function returns the version of the HTTP request.

Function kcHttpPercentDecode()

Function to convert characters in percent representation in strings to their normal one-character
representation.

Function kcHttpPutHeader()
This function passes an HTTP header for the HTTP response.

Function kcHttpPutMgetMsg()
This function passes a message for the program unit, which can be read with MGET.

Function kcHttpPutRspMsgBody()
This function passes a message for the message body of the HTTP response.

Function kcHttpPutStatus()
This function passes a HTTP status code for the HTTP response.

23



openUTM V7.0. Administering Applications. User Guide.

Communication via the Secure Socket Layer (SSL)
BS2000 systems:

* |f a BCAMAPPL with T-PROT=(SOCKET,...,SECURE) has been generated for a UTM application, an
additional task is started with a reverse proxy when UTM starts the application. The reverse proxy acts as the
TLS Termination Proxy for the application and handles all SSL communication.

Unix, Linux and Windows systems :

® Another network process of the type utmnetss/ is available for secure access with TLS.

If BCAMAPPL is generated with T-PROT=(SOCKET,...,SECURE) for a UTM application, a number of
utmnetssl processes are started when UTM is started. The number of these processes depends on the value
LISTENER-ID of these BCAMAPPL objects. All TLS communication for the assigned BCAMAPPL port
numbers is handled in a utmnetssl process.

Encryption

The encryption functionality in UTM between a UTM application and a UPIC client has been revised. Security gaps
have been closed, modern methods have been adopted and delivery has been simplified as follows:

UTM-CRYPT variant

Previously, the encryption functionality in UTM was only available if the product UTM-CRYPT had been
installed. With UTM V7.0 this is no longer necessary. As of this version, the decision as to whether or not to use
the encryption functionality is made via generation or at the time of application start.

Security
A vulnerability has been fixed in the communication between a UTM application and a UPIC client.

This means that encrypted communication with a UTM application V7.0 is only possible together with
UPIC client applications as of UPIC V7.0!

Encryption Level 5 (Unix, Linux and Windows systems)

KDCDEF statements PTERM, TAC and TPOOL
The operand ENCRYPTION-LEVEL has an additional level 5, where the Diffie-Hellman method based on Elliptic
Curves is used to agree the session key and input/output messages are encrypted with the AES-GCM algorithm.

OSI-TP communication and port numbers

BS2000 systems:

KDCDEF statement OSI-CON
The operand LISTENER-PORT can also be specified on BS2000 systems.

Administration interface KDCADMI
In the structure kc_osi_con_str, the port number is also displayed in the listener-port field on BS2000 systems.

Subnets

In a UTM application, subnets can also be generated on BS2000 systems in order to restrict access to UTM
applications to defined IP address ranges. In addition, name resolution can be controlled via DNS.

The following interfaces have been changed for this purpose:

24



openUTM V7.0. Administering Applications. User Guide.

® Generation
BS2000 systems:

® KDCDEF statement SUBNET:
The SUBNET statement can also be specified on BS2000 systems.

All systems:
¢ KDCDEF statement SUBNET:

RESOLVE-NAMES=YES/NO can be used to specify whether or not a name resolution via DNS is to take
place after a connection is established.

If name resolution takes place, the real processor name of the communication partner is displayed via the
administration interface and in messages. Otherwise, the IP address of the communication partner and the
name of the subnet defined in the generation are displayed as the processor name.

® Administration interface KDCADMI
The structures kc_subnet_str and kc_tpool_str contain a new field resolve_names.

Access data for the XA database connection

A modified but not yet activated user name for the XA database connection can be read by Administration
(KDCADMI):

® QOperation code KC_GET_OBJECT:
Data Structure kc_db_info_str. New field db_new _userid.

Reconnect for the XA database connection

If an XA action to control the transaction detects that the connection to the database has been lost, the system tries
to renew the connection and repeat the XA action.

Only if this is not successful, the affected UTM process and the UTM application are terminated abnormally.
Previously, the UTM application was terminated abnormally, if a XA-Connection was lost without trying to reconnect.

Other changes

* XA messages
The messages regarding the XA interface were extended by the inserts UTM-Userid and TAC. The messages
K204-K207, K212-K215 and K217-K218 are affected.

* UTM-Tool KDCEVAL
In the TRACE 2 record of KDCEVAL the type of the last order (bourse announcement) was recorded in the
WAITEND record (first two bytes can be printed).

25



openUTM V7.0. Administering Applications. User Guide.

1.3.2 Discontinued server functions

In particular, the following functions has been discontinued:

* KDCDEF utiliy
Several functions have been deleted and can no longer be generated in KDCDEF. If they are still specified, this
will be rejected with a syntax error in the KDCDEF run.

¢ KDCDEF statement PTERM
Operand values 1 and 2 for ENCRYPTION-LEVEL

* KDCDEF statement TPOOL
Operanden values 1 and 2 for ENCRYPTION-LEVEL

® KDCDEF statement TAC
Operanden value 1 for ENCRYPTION-LEVEL

® BS2000 systems

® UTM Cluster:
UTM cluster applications are no longer supported on BS2000 systems.

® Unix, Linux and Windows systems

® TNS operation:
When starting a UTM application, the TNS generation is no longer read. The addressing information must be
stored completely during configuration with KDCDEF.

26



openUTM V7.0. Administering Applications. User Guide.

1.3.3 New client functions

Encryption

The encryption functionality in openUTM-Client has been revised. Security gaps have been closed, modern
methods have been adopted and delivery has been simplified as follows:

® UTM-CLIENT-CRYPT variant
Until now, the encryption functionality in openUTM-Client was only available if the product UTM-CLIENT-CRYPT
was installed. With openUTM Client V7.0 this is no longer necessary. As of this version, it is decided at runtime
whether the encryption functionality is available or not.

® Security
A vulnerability has been fixed when communicating with a UTM application.

® Encryption Level 5
The o penUTM client V7.0 supports communication with UTM V7.0 applications when ENCRYPTION-LEVEL 5
was generated for the connections to the UPIC client.
With Level 5 the Diffie-Hellman method, based on Elliptic Curves, is used to agree on the session key. Input
/output messages are encrypted using the AES-GCM algorithm. AES-GCM is an authenticated encryption
algorithm designed to provide both data authenticity (integrity) and confidentiality.
Level 5 is supported by the openUTM-Client on all platforms.

® Encryption BS2000
openUTM-Client (BS2000) uses openSSL instead of BS2000-CRYPT analogous to Unix, Linux and Windows
systems.

27


https://en.wikipedia.org/wiki/Authenticated_encryption

openUTM V7.0. Administering Applications. User Guide.

1.3.4 New functions for openUTM WinAdmin

WinAdmin supports all new features of openUTM 7.0 relating to the program interface for the administration.

28



openUTM V7.0. Administering Applications. User Guide.

1.3.5 New functions for openUTM WebAdmin

WebAdmin supports all new features of openUTM 7.0 relating to the program interface for the administration.

29



openUTM V7.0. Administering Applications. User Guide.

1.4 Notational conventions

Metasyntax

The table below lists the metasyntax and notational conventions used throughout this manual:

Representation

UPPERCASE
LETTERS

lowercase
letters

lowercase
letters in
italics

Typewriter
f ont

{}and|

(]

0)

Underscoring

abbreviated
form

Meaning

Uppercase letters denote constants (names of calls, statements,
field names, commands and operands etc.) that are to be entered
in this format.

In syntax diagrams and operand descriptions, lowercase letters
are used to denote place-holders for the operand values.

In running text, variables and the names of data structures and
fields are indicated by lowercase letters in italics.

Typewriter font (Courier) is used in running text to identify
commands, file names, messages and examples that must be
entered in exactly this form or which always have exactly this
name or form.

Curly brackets contain alternative entries, of which you must
choose one. The individual alternatives are separated within the
curly brackets by pipe characters.

Square brackets contain optional entries that can also be omitted.

Where a list of parameters can be specified for an operand, the
individual parameters are to be listed in parentheses and
separated by commas. If only one parameter is actually specified,
you can omit the parentheses.

Underscoring denotes the default value.

The standard abbreviated form of statements, operands and
operand values is emphasized in boldface type. The abbreviated
form can be entered in place of the full designation.

An ellipsis indicates that a syntactical unit can be repeated. It can
also be used to indicate sections of a program or syntax
description etc.

Example

LOAD- MODE=STARTUP

KDCFI LE=f i | ebase

utm-installationpath is
the UTM installation
directory

The call t pcal |

STATUS={ ON | OFF }

KDCFI LE=( fil ebase
[, { SINGLE |
DOUBLE } ] )

KEYS=(keyl, key2, . ..
keyn)

CONNECT= { YES |
NO }

TRANSPORT- SEL
ECTOR=c‘ C

Start KDCDEF

OPTI ON

DATA=st atenent file

END

30



openUTM V7.0. Administering Applications. User Guide.

Symbols
>

Indicates references to comprehensive, detailed information on the relevant topic.

i Indicates notes that are of particular importance.

Indicates warnings.

Other

utmpath On Unix, Linux and Windows systems, designates the directory under which openUTM was installed.

filebase On Unix, Linux and Windows systems, designates the directory of the UTM application. This is the base
name generated in the KDCDEF statement MAX KDCFILE=.

$userid On BS2000 systems, designates the user ID under which openUTM was installed.

upic_dir The directory under which UPIC Client for UPIC Carrier System is installed on Unix, Linux, or Windows
system.

31



openUTM V7.0. Administering Applications. User Guide.

2 Overview of openUTM administration

The term “administration” covers all activities involved in the control and administration of the current application.
“Administering” means adapting the application to changing circumstances and requirements without interrupting
the application run.

To help you administer your UTM application, openUTM provides you with the interfaces and tools in the following
list.

The command interface on which the basic administration functions are available. This is implemented in the
KDCADM administration program.

The KDCADMI program interface for administration which you can use to generate administration programs
specifically tailored to your application. The UTM administration functions are provided at this program interface.

The PADM and DADM calls at the KDCS program interface with which you administer local message queues
and printers, enabling you to control the output of print jobs. The UTM program units KDCDADM and KDCPADM
provide you with all the functions of the KDCS calls DADM and PADM.

The openUTM component WinAdmin with which you can administer several UTM applications in a network from
the graphical user interface on your PC.

The openUTM WebAdmin component that provides a Web application for the administration of UTM applications.

Only on BS2000 systems

WebAdmin can be integrated into the SE Manager as an add-on.

The administration tool CALLUTM with which you can start also administration services in UTM applications
while in a BS2000 task, and which enables you to call up administration commands.

The KDCISAT and KDCMSAT commands (dialog transaction codes) with which you can control the SAT logging
function for your application. These commands are described in the openUTM manual “Using UTM Applications
on BS2000 Systems”.

openUTM provides you with a comprehensive range of administration functions via the command interface and the
program interfaces KDCADMI and KDCS, enabling you to obtain optimum performance and flexibility from your
application, and ensuring that the application can operate without interruption (7*24-hour operation). You can, for
example, perform the following actions:

Check the performance of the application by querying information about the current utilization level of the
application, diagnosing performance bottlenecks and errors and, where necessary, taking measures to improve
performance.

Replace parts of the application program or the entire application program at runtime. This enables you to modify
program units during the application run or to add new program units.

Assign the restart information and/or print queues on terminals and printers where hardware faults arise to other
terminals or printers. This enables the user to continue work from a different terminal, or to redirect print jobs to
an intact printer.

Disable/enable clients, printers, LTERM pools, user IDs, services and the connection points for communication
partners (LTERM, LPAP and OSI-LPAP partners) where necessary.

Establish and shut down connections to clients, printers and partner applications or switch to replacement
connections.

32



openUTM V7.0. Administering Applications. User Guide.

® Request information about the configuration of an application and the current settings for application and
operating parameters.

® Modify the configuration of an application at runtime by adding to the configuration services, user IDs, clients,
printers, connections and session names for distributed processing by means of LU6.1, key sets and transaction
codes for partner applications or by deleting them from it.

® Administer TAC, USER and temporary queues as well as the local message queues of LTERM partners and
transaction codes.

® Terminate an application.

You can call up the administration functions of openUTM (with the exception of the SAT administration command) in
dialog mode or by means of message queuing. The message queuing form of administration for a UTM application
involves the use of “programmed administrators”, i.e. you can generate programs which execute administration
functions at a given time (DPUT call) or in response to specific events. The program interface calls and
administration commands can, in particular, be called by the MSGTAC event service.

You can also take advantage of the opportunities offered by the user-specific message destinations. These
message destinations allow you to read messages in a TAC or USER queue, for example, by means of the KDCS
program interface and the DGET function. With this function and corresponding follow-up processing, you can
design MSGTAC-like programs that respond specifically to a message.

> For information on automatic administration refer to chapter "Automatic administration".

UTM administration privileges are required for all administration functions which involve write access to
configuration data of the application. There is also a slightly lower level of authorization which entitles users to use
administration functions which have read-only access to the application data.

O For details of the authorizations concept, see chapter "Access rights and data access control”.

The following section provides a summary of the range of functions for individual interfaces and tools and also
describes the differences between them and their respective areas of application.

33



openUTM V7.0. Administering Applications. User Guide.

2.1 Command interface

openUTM is supplied with the standard administration program KDCADM in which some of the functions at the
program interface for administration (KDCADMI) are implemented. The command interface for administration
supports some of the functions of the program interface for administration (KDCADMI).

KDCADM provides the basic administration functions which you need in order to ensure that the application is
available continuously, and to check the performance of the application. KDCADM is not able to add new objects
dynamically or to delete objects from the configuration.

In order to call up individual KDCADM functions, you must assign specified transaction codes to the program
KDCADM. These transaction codes are referred to as administration codes.

There is a dialog transaction code (dialog command) for each KDCADM function and an asynchronous transaction
code (asynchronous command). You can therefore call the KDCADM administration functions synchronously in
dialog mode or asynchronously by means of message queuing.

When you call a command you can specify operands. With these operands, you can define the type of action which
is to be executed and specify the objects in the application to which the action must relate. The operands are
identical for the respective dialog and asynchronous commands.

> The KDCADM administration commands and their operands are described in chapter "Administration
commands - KDCADM".

Administration commands can only be entered in line mode. Similarly, administration commands are also output in
line mode. It is not possible to use formats.

C You will find information about the layout of output for administration in message queuing mode in chapter
"Administration using commands".

You will need to use KDCDEF to generate both the administration commands you wish to use at runtime and the
administration program KDCADM. Alternatively, you can use the KDCADMI program interface to include them
dynamically. You must always enter the KDCSHUT command used for terminating the application normally in the
configuration for your application.

The following table contains a summary of KDCADM functions and the commands which you use to call up these
functions.

KDCADM administration function Dialog Asynchronous
command command

Adjust the settings for application parameters and timers,define current number KDCAPPL @ KDCAPPLA
of processes for the application, establish connections to the printers for which
print jobs exist, replace the entire application program

Exchange master LTERMs of two LTERM bundles KDCBNDL A KDCBNDLA
Producing diagnostic documentation, e.g. request a UTM diagnosis dump KDCDIAG @ KDCDIAGA
Query properties of objects and the current settings of application parameters, KDCINF KDCINFA

request statistical information

Switch the user log file to the next file generation KDCLOG @ KDCLOGA

34



openUTM V7.0. Administering Applications. User Guide.

KDCADM administration function

Disable/enable LTERM partners, set up and shut down connections
Change the number of clients approved for an LTERM pool
Exchange load modules/shared objects/DLLs in the application
Disable/enable clients/printers, set up and shut down connections
Terminate the UTM application run

Switch the system log file (SYSLOG) of the application, activate/deactivate
size monitoring, modify the control value for size monitoring, query information
via the SYSLOG

Change the assignment of clients/printers to LTERM partners
Disable/enable transaction codes (local services)

Modify the maximum number of processes entitled to process jobs for a TAC
class simultaneously

Disable/enable user IDs, change passwords
Only on BS2000 systems:

Exchange sections of the application marked in the common memory pool for
exchange.

Disable/enable multiplex connections, set up and shut down connections

Send a message to one or more dialog terminals

The following functions are available for the administration of server-server communication via LU6.1 and OSI TP:

Set up and shut down logical connections to partner applications, switch
replacement connections to OSI TP partners, disable/enable LPAP or OSI-
LPAP partners, change timers for monitoring sessions and associations.

Set up and shut down logical connections for a session

Disable/enable a remote service (LTAC) for the local application, and adjust
timer settings for monitoring the establishment of sessions/associations and
their response times.

KDCADM functions and transaction codes

Dialog
command

KDCLTERM
KDCPOOL
KDCPROG
KDCPTERM
KDCSHUT

KDCSLOG

KDCSWTCH
KDCTAC

KDCTCL

KDCUSER

KDCAPPL

KDCMUX

KDCSEND

KDCLPAP

KDCLSES

KDCLTAC

Asynchronous

command

KDCLTRMA

KDCPOOLA

KDCPROGA

KDCPTRMA

KDCSHUTA

KDCSLOGA

KDCSWCHA

KDCTACA

KDCTCLA

KDCUSERA

KDCAPPLA

KDCMUXA

KDCSENDA

KDCLPAPA

KDCLSESA

KDCLTACA

35



openUTM V7.0. Administering Applications. User Guide.

2.2 KDCADMI program interface

You can use the program interface for administration (KDCADMI) to create administration programs specifically
tailored to suit your application. This program interface is provided in C/C++ and COBOL. This manual describes
the program interface for C/C++. Since the COBOL interface is broadly similar to the C/C++ interface, you can also
use the description in this manual as a guide when creating COBOL administration programs. For additional
information about creating administration programs in COBOL, see also the appendix, starting from "Program
interface for administration in COBOL".

The program interface offers functions which go beyond the basic administration functions of KDCADM. The
KDCADMI program interface also offers you the following additional functions:

® Functions with which you can modify the configuration dynamically:
You can add new services (program units, transaction codes), clients, printers, user IDs, connections and
session names for distributed processing by means of LU6.1, key sets, transaction codes for partner applications
and service-controlled queues to the configuration dynamically, delete them from the configuration or change the
properties of objects or application parameters.

® Inverse KDCDEF:
You can generate control statements for generation tool KDCDEF from the configuration information stored in
the KDCFILE.
This means that changes to the configuration made during the application run can be transferred when the
application is regenerated.

® OQutput all configuration data when information is requested:
When information is requested for individual objects or application parameters, all the configuration data stored
in the KDCFILE for this object or parameter is returned. In a custom-made administration program you can
analyze and process exactly the data that is of interest for a given application. When requesting information, you
can restrict output to those objects which satisfy particular criteria by entering these selection criteria when you
make the call.

The following table lists the functions of KDCADMI and the operation codes which are used to call up program
functions.

The KDCADMI program interface and all data structures are described in chapter "Program interface for
Lo e )
administration - KDCADMI",
Information about dynamic administration and inverse KDCDEF can be found in chapter "Changing the
configuration dynamically" and chapter "Generating konfiguration statements from the KDCFILE".

KDCADMI Function KDCADMI operation code

Exchange the entire application program without shutting down the application. KC_CHANGE_APPLICATION
BS2000 systems:

Exchange sections of the application in the common memory pool which are

marked for exchange.

Unix, Linux and Windows systems:

When doing this, you must specify whether the next higher version, the next

lower version or the current version of the application program is to be loaded.

Generate a UTM diagnosis dump without terminating the application. KC_CREATE_DUMP

36



openUTM V7.0. Administering Applications. User Guide.

KDCADMI Function

Extend the configuration of an application dynamically to include new services
(program units, transaction codes), clients, printers, user IDs, connections and
session names for distributed processing by means of LU6.1, key sets,
transaction codes for partner applications and service-controlled queues.

Start an inverse KDCDEF run online

Delete clients, printers, user IDs, services, connections and session names for
distributed processing by means of LU6.1, key sets, transaction codes for
partner applications and service-controlled queues from the configuration of the
application.

Generate, activate or delete RSA key pair.
Read public key of RSA key pair.

Query the names and properties of objects, the current settings of application
parameters and statistical information

On Unix, Linux and Windows systems: Permit a new sign-on for all users or for
an individual user still recorded as signed on at a failed node application or who
have/has a service bound to the failed node application.

Release cluster user file lock after incorrectly terminated KDCDEF run.

(Only in UTM cluster applications)

Modify the properties of objects or application parameters, e.g.:

change the settings for application parameters and timers,

define current process numbers for the application,

activate/deactivate traces,

replace load modules/shared objects/DLLs in the application,

disable/enable user IDs, transaction codes, clients/printers or connections to
partner applications,

establish and shut down connections to clients, printers and partner applications,
activate OSI TP replacement connections,

change the number of clients approved for an LTERM pool,

change the assignment of clients/printers to LTERM partners,

reset counter for statistics data,

change keys in key sets,

change the data access control for transaction codes, users and TAC queues.

On Unix, Linux and Windows systems: Import application data from a terminated
into a running node application (only for UTM cluster applications).

Roll back transaction in PTC state (prepare to commit).

Only on BS2000 systems:
Send message to a dialog terminal or to all active dialog terminals.

Terminate the UTM application run.

KDCADMI operation code

KC_CREATE_OBJECT

KC_CREATE_STATEMENTS

KC_DELETE_OBJECT

KC_ENCRYPT

KC_GET_OBJECT

KC_LOCK_MGMT

KC_MODIFY_OBJECT

KC_ONLINE_IMPORT

KC_PTC_TA

KC_SEND_MESSAGE

KC_SHUTDOWN

37



openUTM V7.0. Administering Applications. User Guide.

KDCADMI Function KDCADMI operation code
Establish connections to printers for which print jobs exist. KC_SPOOLOUT

Switch the system log file (SYSLOG) in the application, activate/deactivate size KC_SYSLOG

monitoring on/off, modify the control value for size monitoring, request information

via SYSLOG

Determine IP addresses of generated communication partners; KC_UPDATE_IPADDR

on BS2000 systems: only for T-PROT=SOCKET

Switch the user log file(s) to the next generation of file KC_USLOG

Administration functions in the program interface for administration

In addition to the greater range of functions that you can use in administration programs you write yourself,
administration programs which utilize the functions of the program interface also offer the following advantages:

® For administration by means of message queuing, you can choose any recipient for the results. This means that,
depending on the result of a KDCADMI call, you can call up various follow-up transactions.

This yields advantages for automatic and programmed administration.

® The results of an administration call can be analyzed and further processed in the program unit containing the
The number of administration calls which are subject to transaction management and which are to be executed
in a single transaction is, however, limited by the generated size of the restart area (generation statement MAX,
parameter RECBUF, see openUTM manual “Generating Applications”).

® Only on BS2000 systems: You can use formats for the entry and output of administration programs.

Calls for administration functions must be made between the KDCS calls INIT and PEND. The data structures
required for the exchange of data between openUTM and the program are predefined. For C/C++, the data
structures are provided in the include file kcadminc.h (Unix, Linux and Windows systems) or in the include member
kcadminc.hin the SYSLIB.UTM.070.C library (BS2000 systems).

C For information about setting up a program, see chapter chapter "Writing your own administration
programs".

openUTM on BS2000, Unix, Linux and Windows systems use the identical data structures. These data structures
contain a few fields which only relate to one of these operating systems. In the other operating system, binary
zeroes must be entered in these fields. The program is able to determine which operating system it is running on
with the aid of a KDCADMI call.

Since the KDCADMI calls and the data structures used are platform-independent, you can use KDCADMI to create
administration programs which:

® allow the user to administer several UTM applications from one “central” location. These UTM applications can
even be running on different platforms. In particular, you can administer UTM applications on BS2000 systems
from a UTM application on Unix, Linux or Windows system and vice versa. These applications can be running
under different versions of openUTM.

® are portable. You can compile the same source of an administration program on any of the three platforms and
link it to a UTM application from there.

38



openUTM V7.0. Administering Applications. User Guide.

C For information on central administration of applications, see chapter "Central administration of several
applications".

KDCADMI calls can, with one exception (termination of application run: KC_SHUTDOWN with subcode KC_KILL),
be submitted in dialog as well as asynchronous services.

These dialog services can be started by users at the terminal, via UPIC clients or OpenCPIC partners, by a partner
application or by HTTP clients.

The asynchronous services can be started by users at the terminal, by partner applications and by OpenCPIC
partners or from a program unit.

i The program interface for administration is subject to the compatibility guarantee, i.e. it is offered source-
compatible across several different versions of openUTM. For this reason, administration programs do not
need to be adapted to changes of version if they set those version as KDCADMI data structure version for
which they had been developed. |.e. the administration programs should be recompiled as they are and
then linked into a UTM application running under the follow-up version.

39



openUTM V7.0. Administering Applications. User Guide.

2.3 Sample programs

openUTM is shipped with sample programs in the form of source code and object modules. You can use these as a
basis for your own administration programs, modify them as required, compile them and integrate them in your
application. The sample programs are the programs HNDLUSR (only BS2000 systems), ENCRADM, SUSRMAX
and COBUSER. You will find an introduction to these in the section “Sample programs”.

40



openUTM V7.0. Administering Applications. User Guide.

2.4 PADM, DADM for administering message queues and printers

You can use the PADM and DADM calls at the KDCS program interface to administer the message queues and
printers for an application and to control the printer output.

For example, you can change the sequence of the jobs or messages in a queue, delete jobs or messages from the
gueues, generate printer pools and, in the event of a printer fails, you can redirect print jobs to another printer. In
addition, you can move messages from the dead letter queue into other message queues in order to edit them.

The calls PADM and DADM enable users or clients with no administration privileges to administer printers, control
printer output and administer the message queues for a printer. In other words, “normal” users can administer their
own “local” printers and administer the print jobs sent to these printers. Administration can be performed from the
print control LTERM to which the printer being administered is assigned.

PADM and DADM can also be used by the event service MSGTAC. The MSGTAC routine can be started
automatically if a printer fails and appropriate action can be taken in response to PADM and DADM calls.

Program units KDCDADM and KDCPADM are supplied with openUTM. These sample programs provide access to
all services requested by the DADM and PADM calls without requiring you to create your own program units.

C The PADM and DADM calls and the KDCDADM and KDCPADM programs are described in chapter
"Administering message queues and controlling printers".

Print output from a UTM application is not supported by openUTM on Windows systems. Consequently,
the PADM function in UTM applications on Windows systems is not relevant.

41



openUTM V7.0. Administering Applications. User Guide.

2.5 Administration tool CALLUTM (BS2000 systems)

CALLUTM is an UPIC client on a BS2000 system with the aid of which you can call UTM services from any BS2000
task. Using CALLUTM’s SDF interface, you can start administration services in UTM applications on the same
computer and also on other computers on the network. In particular, you can administer several UTM applications in
the network centrally. These can either be UTM applications on BS2000 systems or UTM on Unix, Linux or
Windows systems. CALLUTM is capable of running in dialog or in batch mode.

C CALLUTM is described in the appendix, starting from "CALLUTM - Tool for administration and client
/server communication"”.

42



openUTM V7.0. Administering Applications. User Guide.

2.6 openUTM WinAdmin and openUTM WebAdmin

The openUTM components WinAdmin and WebAdmin provide you with a convenient graphical user interface for
the administration of individual or multiple UTM applications.

WinAdmin and WebAdmin both provide much the same function scope. While openUTM WinAdmin is a Java
application that runs on Windows, Unix and Linux systems, openUTM WebAdmin is a web application which can be
accessed from any computers or mobile devices using a web browser.

The UTM applications may be distributed across the network. They can run on all approved platforms and possess
different version levels. Both WinAdmin and WebAdmin support the full function scope of the program interface
offered by the version in question.

The UTM applications requiring administration can be grouped into collections which can then be administered
jointly.

You have to generate the KDCWADMI administration program and the relevant transaction code KDCWADMI, in
order to be able to administer a UTM application through WinAdmin or WebAdmin. Specify ADMIN=YES for the
transaction code. KDCWADMI is part of the delivery scope of openUTM.

You can also use WinAdmin and WebAdmin to start and end UTM applications. When you start a UTM application,
the system assumes that openFT is available on the relevant computer. Consequently the openUTM WebAdmin
add-on in the SE Manager cannot start any UTM applications.

Security

The full range of UTM security functions, starting with access control using UTM user IDs and passwords through to
password and data encryption, is at your disposal in WinAdmin and WebAdmin.

WinAdmin and WebAdmin, moreover, also offer their own user concept, allowing you to define several users with
different rights, from read-only users through to “master” users, i.e. the WinAdmin or WebAdmin administrators.
Each user’s access to WinAdmin or WebAdmin is password-protected.

Differences between WinAdmin and WebAdmin

Using WinAdmin it is possible to modify objects in multiple applications in a single step or to combine multiple
administration steps in a single transaction.

> You will find an introduction to WinAdmin and WebAdmin in section “Administration using WinAdmin and
WebAdmin”.

43



openUTM V7.0. Administering Applications. User Guide.

3 Administering objects and setting parameters

This chapter provides a summary of the options made available by UTM’s administration functionality. A few
application areas of UTM administration are illustrated here by way of example. The administration commands and
program interface calls with which you can perform individual actions are merely referred to.

The chapter "Program interface for administration - KDCADMI" and the chapter "Administration commands -
KDCADM" contain a detailed description of the actions which you are able to perform with the aid of the program
interface and the administration commands.

The present chapter does not provide details of the administration functions for dynamically entering new objects in
the configuration, changing object properties or deleting objects. These administration functions are described in
chapter "Changing the configuration dynamically".

The following symbols are used in the ensuing description:

|:(::> refers to the administration command with which you can perform actions. Only the dialog command is
indicated in each case. However, you can also use the appropriate asynchronous command to execute the
specified actions (see table in chapter "Command interface").

E:3> refers to the function call at the program interface for administration with which you can execute the
required administration function.

You call also use all of the functions described in this section with the administration tools, WinAdmin and
WebAdmin.

44



openUTM V7.0. Administering Applications. User Guide.

3.1 Information functions in openUTM

openUTM provides you with information functions with which you can obtain an overview of the configuration of
your application, the settings for application parameters and the current utilization level of the application. You can
call the information functions of UTM administration with:

E§> KDCINF

|:'F‘>> KC_GET_OBJECT

These information functions can also be utilized by users who do not have administration privileges (see chapter
"Access rights and data access control").

With the aid of information functions, you can, for instance, arrange for output of the following information:

Application and system parameters defined during KDCDEF generation with the MAX statement
(section "type=SYSPARM" in chapter "Output from KDCINF" / "kc_max_par_str - Maximum values for the
application (MAX parameters)").

Number of processes currently active for the application, maximum number of processes that can be available
for asynchronous processing at one time, maximum number of processes that are available for processing
services at one time and that contain blocking calls, such as the KDCS call PGWT or the XATMI call tpcall
(section "type=SYSPARM" in chapter "Output from KDCINF" / "kc_tasks par_str - Number of processes").

Data about the current utilization level of the application. This information can, for example, include utilization of
the page pool or the cluster page pool, the total number of messages being exchanged, the number of users and
clients signed on, the number of services open at the present time, the number of transactions performed per
unit of time, the number of jobs buffered in the message queues etc.

(see sections "type=STATISTICS" and "type=SYSPARM" in chapter "Output from KDCINF" / "kc_curr_par_str -
Current values of the application parameters").

Current settings for the timers. In UTM, for example, timers are defined for assigning and waiting for resources,
waiting for an answer from a dialog partner both during and outside of a transaction, waiting for confirmations,
and waiting for a connection or session to be established (see section "type=SYSPARM'" in chapter "Output from
KDCINF" / "kc_timer_par_str - Timer settings").

Configuration data on all objects which appear in the configuration. This includes the names and logical
properties defined when adding objects to the configuration. It also includes control values for the message
gueues, the number of LTERM partners in an LTERM pool or the maximum number of parallel connections
generated to an OSI TP partner application.

Status of individual communication partners and printers in the application, and of connections to these. For
example, the output can show whether the communication partner is connected to the application and the length
of time that such a connection has been in existence, as well as whether or not the communication partner is
currently disabled, the number of messages exchanged on the connection, and whether automatic connection
setup is generated.

Maximum number of objects of a given type that the configuration of the application can maintain.

Number of objects that can still be added dynamically to the configuration.

Details of which specific data are returned is described in section "Data structures used to pass information” for
gueries with KC_GET_OBJECT and as of "Output from KDCINF" for queries using the administration command
KDCINF.

45



openUTM V7.0. Administering Applications. User Guide.

With information queries you can specify the selection criteria, i.e. you can request information on objects which
have particular properties, e.g.:

all LU6.1 connections currently established

® the association ID of all associations currently established to an OSI TP partner application
¢ all clients and printers currently connected to the application

® all users currently connected to the application

¢ all LTERMs of a connection bundle or all (OSI-)LPAPs of a LPAP bundle

46



openUTM V7.0. Administering Applications. User Guide.

3.2 Performance check

openUTM offers you numerous functions which you can use to obtain up-to-date information about the utilization
level of the application, to diagnose bottlenecks and to initiate actions to improve performance.

Reasons for performance bottlenecks can include such things as:

Increased requirements on service calls during peak times
Too many users/clients are working with the application at the same time

The processes that are available to the application are occupied by jobs for an extended period because they
have to wait for resources locked by other processes

Processing of a large number of asynchronous jobs impairs dialog operation

Too many long-running program units are running at the same time, e.g. program units which conduct a search
of all data for specific information

Many program units containing blocking calls are running at the same time, e.g. the KDCS call PGWT or the
XATMI call tpcall. During the waiting period, each of these program units occupies a process in the application
on an exclusive basis.

With distributed processing using OSI TP or LU6.1, the system waits long for an association or session to be
assigned

Frequent I/O accesses to the page pool
Frequent read accesses may indicate that the cache generated for the UTM application is too small.

Bottlenecks to connections to communication partners in the application

47



openUTM V7.0. Administering Applications. User Guide.

3.2.1 Information about the utilization level of the application

On the basis of data relating to the current and maximum utilization level of the application and of individual objects
supplied by the information functions of UTM, you can identify pending bottlenecks and introduce measures in good
time to prevent these bottlenecks from occurring.

You can obtain important data for performance control purposes with the following calls:

|3::> KDCINF STATISTICS or SYSPARM (general data)
KDCINF object type (query about data for individual objects)
The data actually returned by KDCINF STATISTICS are described in sections "type=STATISTICS" in
chapter "Output from KDCINF".

|:'|3> KC_GET_OBJECT with obj_type=KC_CURR_PAR (general data)
For queries about object-related data, enter the type of the object in obj_type.
The data actually returned in response to queries with KC_CURR_PAR is described in chapter
"kc_curr_par_str - Current values of the application parameters”. Object-specific data can be found in
section "Data structures for describing object properties”.

Ijr:>> KC_GET_OBJECT with obj_type=KC_CLUSTER_CURR_PAR for Unix, Linux and Windows systems
Supplies information about the occupancy of the cluster page pool in UTM cluster applications, see
"kc_cluster_curr_par_str - Statistics values of a UTM cluster application”.

If the information functions mentioned above indicate bottlenecks, you should carry out a more detailed analysis
using the UTM metering monitor KDCMON which gathers statistical data, e.g. on the utilization level of the
application, the progress of application program units, and the time needed to process a job. With the aid of system
administration, you can activate KDCMON and deactivate it again after a desired period of time while the system is
running. You can evaluate the data thus obtained using the UTM tool KDCEVAL.

|:(::> KDCAPPL KDCMON

[?> KC_MODIFY_OBJECT with obj_type=KC_DIAG_AND_ACCOUNT_PAR

KDCMON and the tool KDCEVAL are described in the openUTM manual “Using UTM Applications”, where you will
also find interpretation aids for the statistics produced by KDCMON and the measures you can take to eliminate
bottlenecks.

For performance control purposes, you also have the software monitor openSM2.

openSM2 supplies statistical data on the performance of the complete application program and the utilization level
of the system resources. You can activate/deactivate the supply of data to openSM2 through Administration. For
further information on openSM2 also refer to the openUTM manual “Using UTM Applications”.

|:<::> KDCAPPL SM2

|j§> KC_MODIFY_OBJECT with obj_type=KC_MAX_PAR

48



openUTM V7.0. Administering Applications. User Guide.

3.2.2 Diagnosing errors and bottlenecks

openUTM provides the following functions which assist you during the diagnosis of performance bottlenecks and
incorrect program behavior:

® You can check the maximum utilization of an application in a particular period.

® You can log events in the form of UTM messages in the SYSLOG.

® |n order to diagnose bottlenecks and errors in connections to communication partners, you can activate the UTM
BCAM trace or the OSS trace. The UTM BCAM trace can be activated for all connections, for a specific user only
or just for connections to specific partner applications and clients.

® You can enable the CPI-C trace, TX trace or XATMI trace to diagnose errors that occur in program units that use
the X/Open interfaces CPI-C, TX or XATMI.

® You can enable the ADMI trace to diagnose errors that occur at the administration program interface (KDCADMI).

® You can activate test mode. Test mode is used to generate diagnostic documentation when errors occur in the
UTM system code. Since test mode has a negative impact on UTM application performance, you should only
activate test mode when requested to do so by Systems Support. In test mode, additional internal UTM
plausibility checks are conducted and internal trace information is logged.

® You can request a diagnostic dump without having to interrupt the execution of the application. In this case, you
can do the following by issuing a command or via the program interface:

®* immediately request a general diagnosis dump. This has the ID DIAGDP.

® or request a dump as soon as a particular event (message, KDCS return code, signon return code) is
generated by openUTM. The dump ID is dependent on the event. You must first activate test mode since the
dump is only written when test mode is active.

[§> KDCDIAG

[?> KC_MODIFY_OBJECT with obj_type=KC_DIAG_AND_ACCOUNT_PAR

49



openUTM V7.0. Administering Applications. User Guide.

3.2.3 Possible measures

The following section describes some of the measures you can take to avoid performance bottlenecks or to remedy
existing bottlenecks.

Increasing the total number of processes for an application

If extended wait periods arise when processing jobs, particularly in dialog mode, you can increase the number of
processes in which the application program runs.

This makes particular sense in the event that the current application load rises above 80 % and at the same time
sufficient system resources are still free on the computer (memory space, CPU capacity). This value should fall
again after the total number of processes has been increased sufficiently.

The maximum permitted number of processes is defined in MAX TASKS during KDCDEF generation.This maximum
number cannot be increased at the administrative level. However, if the number of processes currently set is less
than this maximum number, you can start additional processes for the application.

|:(::> KDCINF SYSPARM:
Query the current maximum number of processes and the maximum permitted number of processes.
KDCAPPL TASKS: define a new number of processes.

[F:>> KC_GET_OBJECT with obj_type=KC_TASKS_PAR:
Query the maximum permitted number of processes and the current number of processes.
KC_MODIFY_OBJECT with obj type=KC_TASKS_PAR: change the number of processes.

Reducing the total number of processes for an application

Because of the possibility of load fluctuations, it is generally not sensible to reduce the total number of processes if
the application is not loaded to capacity part of the time.

The total number of processes should only be reduced when the computer as a whole encounters a bottleneck
which leads to reduced throughput and/or slower response times on the part of the application.

If you reduce the total number of processes, you must note the following points:

® If the total number of processes is reduced to such a level that it is less than the currently set maximum number
of processes that can be used at the same time for asynchronous processing (hereafter referred to as
ASYNTASKS), openUTM resets the value for ASYNTASKS to the specified total number of processes. For
subsequent changes to the total number of processes, openUTM adapts the value of ASYNTASKS automatically
until the value is reached which was previously set by administration or in the startup parameter for ASYNTASKS.

The same applies to the maximum number of program units with blocking calls (TASKS-IN-PGWT) permitted to
run simultaneously. Note that the maximum number of processes must be at least 2 if a transaction code or a
TAC class is generated with PGWT=YES or if the application is a UTM cluster application.

® |f, in a dialog TAC class, the value for TASKS-FREE is greater than the current total number of processes, one
process then continues to process the jobs going to this TAC class.

® |f, in the application, job processing is priority controlled (TAC-PRIORITIES is generated), and the value for
FREE-DIAL-TASKS is greater than the current total number of processes, one process then continues to
process the jobs going to this TAC class.

To ensure that, after the total number of processes has been reduced, dialog operation is not impaired by long-
running asynchronous services or by programs with blocking calls, it is advisable to adapt the value of ASYNTASKS

50



openUTM V7.0. Administering Applications. User Guide.

and TASKS-IN-PGWT to reflect the reduction you make in the total number of processes, i.e. you should also
reduce this value.

Reducing the number of processes available for asynchronous processing and for the
processing of program units with blocking calls

If the dialog mode for an application is delayed by time-consuming asynchronous processing (in other words, if
dialog jobs wait because too many processes are handling asynchronous jobs at the same time), you can reduce
the maximum number of processes (ASYNTASKS) that can be used at one time for asynchronous processing. This
means that there remain more processes free for synchronous processing. The number of processes in
ASYNTASKS is restricted by the maximum value generated in MAX ASYNTASKS.

You can occasionally set ASYNTASKS to 0. However, when doing so, you should note that all asynchronous jobs
are placed in buffer storage in the page pool. If the page pool is not large enough, this can cause bottlenecks in the
page pool.

When you reduce ASYNTASKS and if jobs are controlled through process restrictions for the individual TAC
classes in your application (TAC-PRIORITIES is not generated), you must also note the following:

If an asynchronous TAC class exists for which the current value set in TASKS-FREE is greater than or equal to
ASYNTASKS, then this TAC class is disabled, i.e. no further jobs are processed for this TAC class. In this instance,
TASKS-FREE is the minimum number of processes which should be kept free for processing other jobs going to
other asynchronous TAC classes.

To maintain a check, you should request information about the TAC classes after reducing the ASYNTASKS.

The same applies to the maximum number of processes (TASKS-IN-PGWT) in which program units with blocking
calls are allowed to run at the same time. In contrast to ASYNSTASKS, however, note that you cannot set the value
to 0, if such tasks exist.

Ec::> KDCINF SYSPARM: Display current settings
KDCAPPL ASYNTASKS / TASKS-IN-PGWT: change number of processes

|j:3> KC_GET_OBJECT with obj_type=KC_TASKS_PAR: Determine generated maximum number and
currently set number of processes
KC_MODIFY_OBJECT with obj _type=KC_TASKS_PAR: change number of processes

In applications without TAC-PRIORTIES:
changing the number of processes for individual TAC classes

If your application is generated with TAC classes, you can define a specific maximum number of processes for each
TAC class, i.e. the number of processes able to process jobs in one TAC class, and you can change this number if
SO required.

When creating the transaction code, you indicate the TAC class to which a transaction code is to belong. You can
therefore group transaction codes belonging to long-running program units into one TAC class or several TAC
classes. The proportion of processes in the application that are authorized to process jobs in this TAC class at the
same time can then be set by you at a level which reflects the utilization of that application. In the case of dialog
TAC classes, at least one process must be allowed to process jobs in the TAC class. In the case of asynchronous
TAC classes, the number can be reduced to 0.

In particular you should group the dialog TACs in program units containing blocking calls (e.g. KDCS call PGWT, or
XATMI call tpcall) in one TAC class (with PGWT=YES). After a blocking call, the program unit waits until the data

51



openUTM V7.0. Administering Applications. User Guide.

required for continuing the program has been received. For this period of time, the program unit and the related
transaction code assigns a process in the application on an exclusive basis. If several similar program units are
running concurrently, this can cause other jobs to remain waiting in the queue because no processes are available
to process them. The performance of the application is thus severely impaired. The wait time following a blocking
call can also be restricted using the timer PGWTTIME (see below).

|:<::> KDCINF TACCLASS: Determine current setting
KDCTCL: change number of processes

|:r:>> KC_GET_OBJECT with obj_type=KC_TACCLASS: Determine current setting
KC_MODIFY_OBJECT with obj_type=KC_TACCLASS: change number of processes

Changing the setting for timers

Timers are defined to prevent processes from remaining assigned for excessive periods of time while waiting for
resources to be freed up or for connections and sessions to be established. The timers monitor these wait times
and roll back the waiting transaction after the specified time elapses. The timers are defined during KDCDEF
generation and can be adapted at runtime.

In openUTM, timers are defined for the following wait times:

® Wait time after a blocking call (pgwttime)
The timer monitors the maximum length of time which a program unit waits before returning to the program unit
after placing a blocking call.

® Maximum length of time during a transaction that is spent waiting for an answer from a dialog partner
(termwait...).

® Maximum period of time over which resources can remain assigned by a transaction and the maximum period of
time that a program unit can wait for resources to be freed up (reswait...).

Using the information functions (parameter type STATISTICS/KC_CURR_PAR) you can, for example, determine
how frequently program units have had to wait for locked resources (relative figure).

® Maximum length of time to wait for a session/association to the partner application to be assigned.

i The timers are intended as "emergency brakes" for unforeseen situations.
You should therefore set the timer values in such a way that they do not run when the application is
executing normally. Timeouts should only be caused by exceptional situations, for example when a
program error occurs or no response is received from a partner application.

If the timers pgwttime or reswait are set for an excessively long period, particularly in bottleneck situations, then
individual processes in the application can be assigned by program units which either lock resources for too long at
a time (long-running units) or wait too long for required resources to become free. However, if the timers are not set
for long enough periods, system performance is impaired by transactions being rolled back frequently.

E(::> KDCINF SYSPARM or STATISTICS: Determine current timer settings and request information about
current wait times
KDCAPPL: change timer setting

>

52



openUTM V7.0. Administering Applications. User Guide.

KC_GET_OBJECT with obj_type=KC_TIMER_PAR / KC_CURR_PAR: Determine current timer settings
and request information about current wait times
KC_MODIFY_OBJECT with obj_type=KC_TIMER_PAR: change timer setting

Restricting the number of users/clients signed on

At runtime you can influence the number of users/clients that can connect to the application and request services
from the application at the same time. For this purpose, you are offered the following options:
® You can restrict the total number of users/clients able to sign on to an application at the same time.

® You can restrict the number of clients able to connect via individual LTERM pools at the same time. To do this,
you disable some of the LTERM partners in the pool.

® You can disable individual clients/LTERM partners/users.

® You can disable LTERM pools completely. At this point, it is no longer possible for users/clients to sign on to the
application via a disabled LTERM pool.

® Only on BS2000 systems: You allow only a small number of parallel sessions access to a multiplex connection.

Ec::> KDCAPPL MAX-CONN-USERS: total number of users/clients
KDCPOOL: disable a number of approved pool LTERM partners / LTERM pool

[F:>> KC_MODIFY_OBJECT
obj_type=KC_MAX_PAR: define total number of users/clients
obj_type=KC_TPOOL.: disable a number of approved pool LTERM partners / LTERM pool
obj_type=KC_PTERM: disable clients/printers
obj_type=KC_LTERM: disable LTERM partners
obj_type=KC_USER: disable users

Disabling services

It is, for example, possible to disable long-running services for a certain period by disabling the relevant transaction
code (State OFF). As of this point, jobs are no longer accepted for disabled transaction codes. In the case of
disabled asynchronous TACs, no further jobs are written to the message queue either.

You can disable a transaction code either exclusively as a service TAC or as both a service TAC and a follow-up
TAC (complete lock: State STOP).

You can also lock asynchronous services using the KEEP status, which means that jobs for the asynchronous TAC
are accepted, but not processed immediately. They can subsequently be processed when the application is less
busy, e.g. at night.

|j:> KDCTAC

|:'|3> KC_MODIFY_OBJECT obj_type=KC_TAC

Preventing or remedying bottlenecks for connections to partner applications

If bottlenecks occur during communication with LU6.1 or OSI TP partner applications, you can perform the following
actions:

53



openUTM V7.0. Administering Applications. User Guide.

Establish other transport connections to an LU6.1 partner application. Before you can communicate with a
partner application, you must first have created or generated several parallel connections, but not all the
connections created or generated should yet have been established.

Increase the number of parallel logical connections to an OSI TP partner application. The maximum possible
number of parallel connections is defined during generation in the OSI-LPAP statement.

Adapt the timer (access wait) for the wait time following a request for a remote service within which a session or
association with a partner application is to become available or be established. You can set this timer individually
for each LTAC. If the timer is set to O for an asynchronous LTAC, asynchronous jobs for this LTAC are also not
arranged in the local message queue of the partner application.

Adapt the timer (reply wait) which monitors the wait time for an answer from the partner application. This timer is
also set individually for each LTAC.

Adapt the setting of the idle timer. This timer indicates the length of time that a session or association can remain
unused before openUTM terminates the connection to the partner application. If the timer setting is too long, an
inordinate number of resources will be reserved by unnecessary connections.

If the timer setting is too short, too may resources will be used up to allow the connection to be set up again. The
timer is set individually for each partner.

Ec::> KDCLPAP / KDCLSES: establish connections, adjust idle time
KDCLTAC: change access wait and reply wait

[F:>> KC_CREATE_OBJECT obj_type=KC_CON/KC_LSES: create connections and sessions

[F:>> KC_MODIFY_OBJECT
obj_type=KC_LPAP/KC_OSI_LPAP/KC_LSES: establish connections, adjust idle time
obj_type=KC_LTAC: change access wait and reply wait

Note on Unix, Linux and Windows systems:

If a large amount of connections in your application are handled by the same BCAMAPPL name or access point in
your application, this can give rise to bottlenecks since processes can come up against system limitations (e.g. the
maximum number of file descriptors). During the next KDCDEF generation, you should then generate more
BCAMAPPL names and access points.

Enabling or disabling data compression

If GSSBs, LSSBs, ULS, TLS, or KB program areas are frequently read or written in a length which is greater than
one UTM page, you should check whether enabling data compression will enhance the performance of the UTM
application.

You can check whether data compression is worthwhile while it is enabled as follows:

|:(::> KDCINF STAT, AVG COMPRESS PAGES SAVED field

|:.F‘>> KC_GET_OBJECT with obj_type=KC_CURR_PAR, avg_saved_pgs by compr field

54



openUTM V7.0. Administering Applications. User Guide.

3.3 Avoiding a page pool bottleneck

The content and role of the page pool depends on whether the application is a standalone application (see below)
or a UTM cluster application (see chapter "Page pools of a UTM cluster application").

55



openUTM V7.0. Administering Applications. User Guide.

3.3.1 Page pool of a standalone application

User data generated during the application run is stored in the page pool of a standalone application. In addition to
UTM memory areas and service data, this includes:

* the message queues of the asynchronous TACs, LTERM, LPAP and OSI-LPAP partners and the user, TAC and
temporary queues (i.e. jobs to local services and communication partners and print jobs to the printers of the
application) that are not being processed

® dialog jobs or asynchronous jobs buffered for transaction codes of TAC classes, which are interrupted as a result
of TAC class control

The page pool size is defined during KDCDEF generation and cannot be modified at runtime.

While an application is running, it is necessary to ensure that the page pool is assigned completely. To this end, two
warning levels are defined for KDCDEF generation (page pool assignment in %). If page pool assignment reaches
one of these warning levels, openUTM generates message K041. If the destination MSGTAC is defined for this
message, you can respond to this event in an MSGTAC routine. If the second warning level (default setting 95%) is
reached, no more asynchronous jobs are written to the message queues and no more user log records (LPUT jobs)
are written to the user log file. Asynchronous jobs and LPUT calls then are rejected.

For this reason, when the first warning level is reached, measures must be taken to release memory space in the
page pool. While the application is running, you can obtain information about the current assignment of the page
pool.

Eé> KDCINF STATISTICS
KDCINF PAGEPOOL

E:3> KC_GET_OBJECT with obj_type=KC_CURR_PAR
KC_GET_OBJECT with obj_type=KC_PAGEPOOL

However, if page pool bottlenecks occur frequently, the page pool is simply not large enough. In this case, you
should regenerate the application and increase the size of the page pool.

The following section describes how to terminate message queues and dialog jobs in buffer storage in order to clear
space, i.e. relieve congestion, in the page pool.

Reducing the size of message queues
You can implement the following measures to reduce the size of message queues:

® Reduce printer queues by establishing connections to all printers for which print jobs are waiting. These print
jobs will then be processed immediately even if a control value (plev) has been generated for a printer and this
has not yet been reached.

® Request connections to TS applications and partner applications for which asynchronous jobs are in buffer store
in the page pool. If the communication partners are disabled, they must first be re-enabled.

® |ncrease the number of processes that can be used concurrently for asynchronous processing purposes.

® Increase the number of processes that can be used concurrently for processing jobs of a specific TAC class (in
applications without priority control).

56



openUTM V7.0. Administering Applications. User Guide.

® Unlock (status ON) or lock with status OFF any asynchronous transaction codes and TAC queues that are
locked with the KEEP status or blocked. The KEEP status means that jobs for the transaction code or queue in
guestion are accepted, but are not processed immediately, whereas the status OFF means that no further jobs
are accepted, but any waiting jobs will be processed.

® Delete the asynchronous jobs in the message queues of dynamically deleted LTERM partners and
asynchronous TACs.

® Delete older messages from service-controlled queues if they are no longer expected to be read.

® Assign messages from the dead letter queue to a new destination again in order to allow them to be edited.

|:<::> KDCINF STATISTICS:
total number of all messages in the buffer store in the page pool

KDCINF LTERM / LPAP / OSI-LPAP / TAC:
guery the assignment of message queues for individual objects

KDCINF PAGEPOOL.:
query the page pool page utilization subdivided according to types

KDCAPPL SPOOLOUT: reduce size of printer queues

KDCLTERM or KDCLPAP: establish connection to communication partners
KDCAPPL ASYNTASKS: change the number of processes

KDCTAC STATUS: change the status of a transaction code

KDCTCL: change the number of processes in a TAC class

[?> KC_GET_OBJECT with obj_type=KC_CURR_PAR:
query the total number of messages in buffer store in the page pool
with obj_type=KC_LTERM / KC_LPAP / KC_OSI-LPAP / KC_TAC:
assignment of message queues of individual objects
with obj type=KC_PAGEPOOL.:
query the page pool page utilization subdivided according to types

KC_SPOOLOUT: reduce the size of printer queues

KC_MODIFY_OBJECT

with obj_type=KC_LTERM/ KC_LPAP/KC_OSI_LPAP: establish connections
with obj_type=KC_TASKS_PAR: change number of ASYNTASKS processes
with obj_type=KC_TAC: change the status of a transaction code or a TAC queue
with obj_type=KC_TACCLASS: change the number of processes in a TAC class

DADM (KDCS call): delete jobs and move messages from the dead letter queue




openUTM V7.0. Administering Applications. User Guide.

In applications without TAC-PRIORITIES:
reducing the size of job queues in TAC classes

The information functions enable you to determine the number of jobs in buffer storage in the page pool in any
given TAC class. The information which openUTM issues on a TAC class includes the number of messages stored

in buffer storage in the page pool.
In order to reduce the size of these queues you can increase the maximum number of processes able to process

jobs in this TAC class at the same time.

|:(::> KDCINF TACCLASS query number of dialog jobs in buffer storage
KDCTCL: change number of processes

EF:>> KC_GET_OBJECT with obj_type=KC_TACCLASS:
query number of dialog jobs in buffer storage

KC_MODIFY_OBJECT with obj type=KC_TACCLASS:
change number of processes

Enabling or disabling data compression

When a large number of page pool pages are utilized for GSSBs, LSSBs, TLS, or ULS (KDCINF PAGEPOOL or
KC_GET_OBJECT with obj_type=KC_PAGEPOOL), you should check whether enabling data compression might
possibly reduce the number of utilized pages.

You can check whether data compression is worthwhile while it is enabled as follows:

E(::> KDCINF STAT, AVG COMPRESS PAGES SAVED field

EF:>> KC_GET_OBJECT with obj_type=KC_CURR_PAR, avg _saved pgs by compr field

58



openUTM V7.0. Administering Applications. User Guide.

3.3.2 Page pools of a UTM cluster application

Every node application in a UTM cluster application has its own page pool for data that is local to the node. In
addition, there is a common cluster page pool for data that is valid globally throughout the cluster. This results in
certain special characteristics compared to standalone applications:

® Data that applies locally to the node is stored only in the page pool of the relevant node application. Data that
applies locally in the node includes, for example, the TLS areas, message queues as well as buffered dialog or
asynchronous jobs to transaction codes of TAC classes which have been interrupted due to TAC class control
activities.

® Data that applies globally throughout the cluster is stored in the cluster page pool. This type of data includes
GSSB, ULS or cluster-wide service data.

Properties of the cluster page pool

The cluster page pool forms part of the UTM cluster files and consists of a management file and one or more files
containing the user data. The following are defined during generation with KDCDEF:

® The size of the cluster page pool file(s)
® The number of cluster page pool files
® A warning level for the cluster page pool

The message that the value has risen above or fallen below the warning level is always output by the node
application that triggered the change of state.

The administration functions permit the following actions:

® You can determine the current occupancy of the cluster page pool and reset the statistical values, e.g. by means
of WinAdmin, WebAdmin or the KDCADMI program interface.

KC_GET_OBJECT and KC_MODIFY_OBJECT with
obj_type=KC_CLUSTER_CURR_PAR

® You can increase the size of the cluster page pool files without terminating the UTM cluster application.

» openUTM manual “Using UTM Applications for Unix, Linux and Windows systems”, entry for
"Increasing the size of the cluster pagepool” in the section "Update generation in a cluster”.

59



openUTM V7.0. Administering Applications. User Guide.

3.4 Exchanging the application program

You can use the administration functions of openUTM to exchange the entire application program or parts of the
application program (individual load modules or shared objects) without having to terminate the application.

In order to exchange individual parts of the application program, the application program must have been generated
with load modules (on BS2000 systems) or with shared objects (on Unix or Linux systems) or DLLs (on Windows
systems).

For more detailed information about program exchange and the conditions governing program exchange, see the
openUTM manual “Using UTM Applications”.

Eé> KDCAPPL PROGRAM: exchange of the entire application program
KDCPROG: exchange of individual load modules, shared objects or DLLs

|:'F‘>> KC_CHANGE_APPLICATION: exchange of the entire application program
KC_MODIFY_OBJECTS with obj_type= KC_LOAD_MODULE:
exchange of individual load modules, shared objects or DLLs

Notes for BS2000 systems
Please proceed as follows when replacing load modules stored in a common memory pool:

1. Identify the load modules to be exchanged. To do this, call KC_MODIFY_OBJECT with obj type=
KC_LOAD_MODULE for these load modules and indicate which version is to be loaded during the ensuing
exchange operation. Alternatively, you can use the KDCPROG command.

2. In order to exchange the identified load modules, the entire application program must be terminated (all
individual processes) and reloaded. To do this, you call KC_CHANGE_APPLICATION or use the KDCAPPL
command.

60



openUTM V7.0. Administering Applications. User Guide.

3.5 Clients and printers
For clients and printers in an openUTM application, you can perform the actions described in the following section.

i Printers are not supported by openUTM on Windows systems.

Transferring logical properties from one terminal to another

If a terminal is defective, or if the user previously connected to the terminal wishes in future to work from a different
terminal, you can transfer the logical properties of one terminal to another one in stand-alone UTM applications.
You do this by assigning the LTERM partner of one terminal to another terminal (of the same type). In so doing, you
can for example transfer the following properties to the new terminal:

® restart information

® access rights (key set)

® access protection (access list or lock code)

® message gueue with asynchronous messages

® user ID for the automatic KDCSIGN, where defined

® |anguage environment, where defined

® start format, where defined

® control value glev for the message queue, where defined

|:(::> KDCSWTCH

|:F:>> KC_MODIFY_OBJECT with obj_type=KC_PTERM

Assigning the message queue of one printer to another printer

In standalone UTM applications, if one printer malfunctions, the printer queue can be assigned to another printer (of
the same type). This printer then processes the print jobs in that queue. To do this, you must disable the defective
printer and assign the LTERM partner of the printer to a different one.

In addition to the printer queue, defined logical properties are also transferred to the new printer. This includes the
control value glev for the printer queue and the value plev. As soon as plev print jobs are waiting in the printer
gueue, openUTM automatically sets up a connection to the printer.

KDCPTERM: Disable a printer
KDCSWTCH: Assign an LTERM partner to a different printer

|j:3> KC_MODIFY_OBJECT with obj_type=KC_PTERM

61



openUTM V7.0. Administering Applications. User Guide.

Generating printer pools

In standalone UTM applications, at runtime you can group printers in the application together into printer pools.
Printer pools are created when you assign additional printers to the LTERM partner of one printer. The printer
gueue belonging to the LTERM partner is then processed jointly by all printers assigned to that LTERM partner.
Good reasons for generating a printer pool can include:

® The message queue of a printer may become too large. It may prove necessary to wait too long for requested
print outputs and the page pool in which jobs are kept in buffer storage can be placed under excessive strain. To
process print jobs in the queue, several printers should be implemented.

®* When a printer is entered, if the maximum specified number of print jobs which can be stored in a printer queue
at one time (plev) is too small, print jobs sent to this printer will be rejected frequently.

® Additional printers have recently become available in a branch office. These printers are to process all print jobs
from this branch office on a joint basis, i.e. when a print job is issued, it is sent for processing to a printer which is
free at the time. You can load these new printers in the configuration dynamically and group them in printer pools
with the existing printers.

|:{:> KDCSWTCH

|j::> KC_MODIFY_OBJECT with obj_type=KC_PTERM

Disabling printers/clients and their LTERM partners

You can disable clients and printers and their LTERM printers. It is not possible to establish a connection to
disabled clients or via disabled LTERM partners. You can still send asynchronous jobs to disabled LTERM partners.
These are then stored in the message queue until the control value for that message queue is reached. However,
the jobs are not processed until the LTERM partners are re-enabled.

|:(::> KDCLTERM, KDCPTERM

[? > KC_MODIFY_OBJECT with obj_type=KC_PTERM or KC_LTERM

Connections to clients and printers

If necessary you can establish and terminate connections to TS applications, terminals and printers.
In the case of terminals, TS applications and printers that are always connected to the application, you can arrange
for connections to be established automatically each time the application starts.

l:(::> KDCLTERM, KDCPTERM

[p::> KC_MODIFY_OBJECT with obj_type=KC_PTERM or KC_LTERM

62



openUTM V7.0. Administering Applications. User Guide.

Reading information about the availability of clients and printers

Using the information functions of openUTM you can query information about the availability of clients and printers.

The following information is provided:

® Current status of client/printer (is it disabled at present or not?)

® Does a connection exist at present, or is an attempt currently being made to establish a connection?
® Period of time where the printer or client has already been connected to the application

®* Number of messages replaced on the connection

® Number of failures in the connection to client/printer

® Control value of message queue (glev)

®* Number of jobs in the message queue of a printer/printer pool for which a connection to the printer (pool) is
established automatically.

|:(::> KDCINF LTERM or PTERM

|:F:w> KC_GET_OBJECT with obj_type=KC_PTERM or KC_LTERM

63



openUTM V7.0. Administering Applications. User Guide.

4 Changing the configuration dynamically

openUTM provides you with functions at the administration program interface with which you can create new
objects in the configuration or delete them from the configuration during application runtime.

These functions further increase the availability of UTM applications. Regeneration of the application with KDCDEF,
for which operation has to be interrupted, is now required much less frequently. In addition, regeneration of a UTM
application is now much easier and a great deal less time-consuming. You will find appropriate recommendations
for regenerating a UTM application in section “Recommendations for regeneration of an application”.

Using the functions UTM provides for changing the configuration dynamically, you can create and delete the
following objects:

® user IDs, including the associated queues

® key sets

® transport connections to remote LU6.1 applications

® LU6.1 sessions

® transaction codes for your own application

® transaction codes, via which service programs can be started in partner applications

® LTERM partners

® clients, printers

® program units and VORGANG exits
(only in applications with load modules, shared objects or DLLS)

® TAC queues

To add and delete objects, use either the administration tools WinAdmin and WebAdmin or administration programs
you have generated yourself. Using the KC_CREATE_OBJECT call at the administration program interface, you
can add new objects to the configuration. With the KC_DELETE_OBJECT call, you can delete objects from the
configuration. The KC_MODIFY_OBJECT call allows you to change individual object properties.

i The full range of functions for dynamically changing the configuration can also be used in the function
variant UTM-F. openUTM saves all the changes made to the configuration (including the entry, deletion
and modification of dynamic objects) in the KDCFILE. The modified configuration data is then available
for the next application run.

The following section describes a number of things you need to be aware of during KDCDEF generation of the
application if you wish to add or delete objects to/from the configuration at runtime. It also describes points you must
consider when dynamically creating objects from your application configuration.

64



openUTM V7.0. Administering Applications. User Guide.

4.1 Requirements for KDCDEF generation

To enable you to add objects dynamically to the configuration of your UTM application, you must make the following
preparations when generating the application with KDCDEF.

No preparations are required for deleting objects from the configuration during KDCDEF generation.

Reserving spaces in the object tables of the KDCFILE

The configuration data of a UTM application is stored in the object tables of the KDCFILE that is created during
KDCDEF generation of the application. During KDCDEF generation, the space required to accommodate these
tables is also defined. For this reason, during KDCDEF generation, you must reserve table spaces for any objects
which you wish to add to the configuration of your application at runtime. You are assisted in this process by the
KDCDEF statement RESERVE (see the openUTM manual “Generating Applications”).

In the RESERVE statement you indicate how many table spaces are to be set aside for each single type of object, i.
e. how many LTERM partners are to be created dynamically, how many transaction codes etc. Table spaces are
reserved individually for each object type, i.e. a table space which you have reserved for an LTERM partner cannot
be occupied by a transaction code etc.

During the application run, you can dynamically create as many objects of one type as you have reserved table
spaces with KDCDEF. Deleting another object of the same type does not free up a table space for a new object. An
exception to this are user IDs and connections for distributed processing by means of LU6.1 for stand-alone
applications. These you can delete from the configuration immediately (see section "Deleting objects dynamically
from the configuration"). The table spaces occupied by these user IDs or LU6.1 connections are then freed up
immediately and are thus available for new user IDs and LU6.1 connections.

When reserving table spaces with RESERVE, always consider the following points:

openUTM internally creates one user ID for each UPIC and for each TS application (client of type APPLI or
SOCKET) which you add dynamically to the configuration. In UTM applications generated with user IDs (i.e. where
KDCDEF generation contains at least one USER statement), an additional table space is reserved for user IDs for
every APPLI, SOCKET or UPIC type client created dynamically. These table spaces are not freed up, when clients
are deleted. In applications with no user IDs, these table spaces are reserved by openUTM internally.

For further information about reserving table spaces, see the openUTM manual “Generating Applications”,
RESERVE control statement.

Generating lock codes, BCAMAPPL names and the formatting system

In the KDCDEF run you must have already generated objects or values statically in advance if you want to
reference them later in dynamic configuration; examples of this are the value range of lock codes and the names of
the transport system access points of the local application.

® | ock codes (access protection) which you wish to assign to the transaction codes and LTERM partners must fall
in the range between 1 and the maximum value defined in KEYVALUE (MAX statement). For this reason, you
should select a sufficiently high number for KEYVALUE and also generate keysets containing the appropriate
keycodes (see notes on the lock/keycode concept in the openUTM manual “Concepts und Functions”).

® All names in the local application (BCAMAPPL names) which are to be set up using connections to clients or
printers must be generated using KDCDEF. In particular, remember that you have to generate special
BCAMAPPL names in order to link TS applications via the socket interface or HTTP clients (PTYPE=SOCKET).

65



openUTM V7.0. Administering Applications. User Guide.

® Only on BS2000 systems: If start formats are to be assigned to user IDs and LTERM partners, a formatting
system must be generated during KDCDEF generation (FORMSYS statement). If #formats are used as start
formats, an additional sign-on service must be generated.

Requirements for adding program units and VORGANG exits

You can only add new program units and VORGANG exits to the configuration of your application dynamically if the
application satisfies the following requirements:

®* UTM applications on BS2000 systems must be generated with load modules (KDCDEF generation with LOAD
MODULE statements).However, the program unit should not be linked to a load module which is linked statically
to the application program (STATIC load mode)

® UTM applications on Unix or Linux systems must be generated with shared objects (KDCDEF generation with
SHARED-OBJECTS statements).

® UTM applications on Windows systems must use Windows DLLs. You will find further details on how to generate
the application in the openUTM manual “Generating Applications”.

A program unit which you wish to create dynamically at runtime must be linked to a load module, shared object or a
DLL which was defined during KDCDEF generation.

At least one program unit must have been generated with KDCDEF for each programming language in which you
wish to create program units in your application. Only then does the application program contain the language link
modules and runtime systems it requires in order to run.

Note for BS2000 systems:

In the case of program units compiled with ILCS-capable compilers (COMP=ILCS), it is sufficient to generate a
program unit with COMP=ILCS during KDCDEF generation. No PROGRAM statements have to be submitted for
the various programming languages.

In the case of COBOL programs, the relevant LOAD-MODULE must be generated with ALTERNATE-
LIBRARIES=YES in order to allow the required RTS modules to be dynamically loaded by autolink.

Requirements for the dynamic creation of transaction codes
If you wish to add transaction codes dynamically to the configuration, you must take account of the following points:

® Transaction codes for program units which use an X/Open program interface can only be created dynamically if
at least one transaction code for an X/Open program unit was generated statically with KDCDEF (TAC statement
with API! =KDCS).

® |f you wish to divide the transaction codes into TAC classes, in order to be able to control job processing, then
you must create at least one TAC class during KDCDEF generation.

During KDCDEF generation you can create TAC classes in three ways:

1. Generate a transaction code for which you specify a TAC class in the TACCLASS operand (TAC statement).
KDCDEF will then implicitly generate the specified TAC class.

2. If you are running the application without priority control (it contains no TAC-PRIORITIES statement), you
can generate TAC classes by writing a TACCLASS statement.

3. You can create TAC classes implicitly by writing a TAC-PRORITIES statement.

66



openUTM V7.0. Administering Applications. User Guide.

Once you have created a TAC class during KDCDEF generation you can assign the transaction codes which you
create dynamically to any TAC class of your choice between 1 and 8 (dialog) or 9 and 16 (asynchronous). The
TAC classes are created by openUTM implicitly. These implicitly created TAC classes can be administered.

If you generated the application without TAC-PRIORITIES, openUTM specifies the number of processes
(TASKS) in implicitly generated TAC classes as follows:

1 for dialog TAC classes (classes 1 to 8),

and 0 for asynchronous TAC classes (classes 9 to 16).

However, openUTM only creates asynchronous TAC classes if you set ASYNTASKS > 0 in the MAX statement
during KDCDEF generation.

In applications containing TAC classes without priority control, you can only create transaction codes dynamically
which start program unit procedures with blocking calls if TAC classes with PGWT=YES (dialog and/or
asynchronous TAC class) were explicitly created with TACCLASS statements in KDCDEF generation and MAX
TASKS-IN-PGWT > 0.

® |n applications with priority control (with TAC-PRIORITIES statement), you can only create transaction codes
dynamically which start program unit procedures with blocking calls (kc_tac_str.pgwt="Y") if MAX TASKS-IN-
PGWT=>0 was specified during KDCDEF generation.

Requirements for the dynamic creation of user IDs

You can only add user IDs to the configuration dynamically if your application was generated with user IDs. For this,
your KDCDEF generation must contain at least one USER statement and at least one user ID must have
administration privileges (USER with PERMIT=ADMIN).

Note for BS2000 systems:

If new user IDs with ID cards are also to be added to the configuration at runtime then, when reserving table spaces
with the RESERVE statement, you must explicitly indicate what percentage of user ID table spaces is to be set
aside for user IDs with ID cards (CARDS operand in the RESERVE statement).

If user IDs with Kerberos authentication are to be dynamically generated during operation, they must be reserved
using the PRINCIPALS operand of the RESERVE statement.

67



openUTM V7.0. Administering Applications. User Guide.

4.2 Adding objects to the configuration dynamically

Using the KC_CREATE_OBJECT call you can add new objects to the configuration of your application during an
application run.

|j::»> KC_CREATE_OBJECT in "KC_CREATE_OBJECT - Add objects to the configuration”

You can create exactly one object per KC_CREATE_OBJECT call. However, within the administration program, you
can call KC_CREATE_OBJECT several times in order to create several objects. When you place a call, you
indicate the type of object, its name and the properties you wish the object to have.

The creation of objects is subject to transaction management. Configuration data is not written to the object table
until the transaction has been logged successfully. This means that an object created in a program unit cannot be
accessed until the transaction has been concluded successfully. The object cannot be used before this happens
and it is also not possible to read or modify the object’s properties. Calls such as KC_MODIFY_OBJECT or
KC_GET_OBJECT can be submitted for the new object only after successful completion of the new create
operation, i.e. after successful completion of the transaction.

During the transaction in which an object is created, access to this object is only permitted in order to establish a
relational link to another object created in the same transaction. For example, a relationship of this kind can be
established between a client or printer and its connection point, the LTERM partner, between a transaction code
and the related program unit, between a transaction code and its VORGANG exit, or between a key set and the
objects (such as LTERMs, USERs, TACs or LTACs) to which it refers.

If two objects which relate to one another are created in one transaction, you must pay careful attention to the order
in which the objects were created. For example, you can create a client together with its connection point (LTERM
partner) in one and the same transaction. However, the LTERM partner must be created before the client since the
name of the LTERM partner is indicated when the client is created.

As a general rule, all objects to which you refer when creating a new object must either already feature in the
configuration or have been created in the same transaction prior to the new object. The following section provides a
detailed description of each type of object showing the sequence in which the objects must be created.

UTM cluster applications (Unix, Linux and Windows systems)

The following applies in UTM cluster applications:
The call applies globally to the cluster, i.e. the objects are dynamically entered in the configuration in all the node
applications.

Availability of dynamically created objects

Dynamically created objects are a component of the configuration, even in subsequent application runs, unless they
were deleted with KC_DELETE_OBJECT. The same applies to objects in a UTM-S and a UTM-F application.

68



openUTM V7.0. Administering Applications. User Guide.

4.2.1 Adding clients, printers and LTERM partners

To add a client or printer you must call KC_CREATE_OBJECT with object type KC_PTERM. To add an LTERM
partner, you must specify object type KC_LTERM.

i Printers are not supported in UTM applications running on Windows systems.

To enable you to connect a client or printer to the application, an LTERM partner must be assigned to it. If you
specify this LTERM partner when adding a client or printer, the LTERM partner must either already exist in the
configuration of that application or have been created in the same transaction prior to the client/printer. The
following rule therefore applies:

LTERM partner (KC_LTERM) before client/printer (KC_PTERM)

When adding clients/printers, you must distinguish between the following two cases:

® terminals and printers

® TS applications and UPIC clients

Terminals and printers

You can add terminals and printers to the configuration without assigning an LTERM partner directly to them, i.e.

you do not have to specify an LTERM partner when adding them. You can then assign the LTERM partner to the

terminal or printer at a later date. To do this, you are provided with the administration command KDCSWTCH and
the call KC_MODIFY_OBJECT (object type KC_PTERM). Actual assignment must then take place in a separate

transaction.

However, if you do specify an LTERM partner when adding a terminal or printer then, according to the rule stated
above, this LTERM partner must already exist in the configuration of that application or have been created in the
same transaction as the terminal or printer before the terminal or printer was added.

You can assign an LTERM partner to a printer even if the LTERM partner is already assigned to another printer.
This does not cancel the previous assignment. One LTERM partner can be assigned to a number of printers. These
printers then form a printer pool and process the message queue of the LTERM partner jointly.

You can only assign an LTERM partner which is not already assigned to another client. Any assignment to another
terminal which already exists must be cancelled before the client is created in a separate transaction (with the
administration command KDCSWTCH or the call KC_MODIFY_OBJECT).

If an LTERM partner is to be created explicitly with an automatic KDCSIGN to connect a terminal, you must, during
the create operation, assign the user ID under which the automatic KDCSIGN is to be executed when a connection
is being established. The user ID must already feature in the configuration before the LTERM partner is added, or
have been created in the same transaction before the LTERM partner. Generally speaking, the following rule
applies:

User ID (KC_USER) before LTERM partner (KC_LTERM)
before terminal (KC_PTERM)

On BS2000 systems, as a general rule, the following applies:
The property usage type (D for dialog partner or O for output medium) of the LTERM partner must match the value
which you specify in usage when adding the client/printer.

69



openUTM V7.0. Administering Applications. User Guide.

If an LTERM partner is created for a printer which is to be administered by a print control LTERM (CTERM), you
must assign the printer control LTERM when adding the LTERM partner. Before adding the LTERM partner, the
printer control LTERM must either already be in the configuration of the application (created statically or
dynamically) or in the same transaction as the LTERM partner, where it must have been created before the LTERM
partner. The following rule applies:

Printer control LTERM (KC_LTERM) before LTERM partner (KC_LTERM)
before printer (KC_PTERM)

TS applications and UPIC Clients

You must assign an LTERM partner when creating TS applications or UPIC clients (APPLI, SOCKET, UPIC-R or
UPIC-L type clients). This LTERM partner must be added in the same transaction as the client but before the client
itself. In other words, the KC_CREATE_OBJECT call which creates the LTERM partner must be processed in the
same transaction and before the KC_CREATE_OBJECT call which creates the client. In this instance, the rule to
apply is as follows:

LTERM partner (KC_LTERM) before the TS application/UPIC client (KC_PTERM)
in the same transaction

The assignment of a client to an LTERM partner cannot be cancelled as long as the client remains in the
configuration.

For the LTERM partner of a client of this type, openUTM requires a permanently assigned user ID, i.e. the
connection user ID.

You can create a connection user ID explicitly, in which case it has to be included in the same transaction as the
LTERM partner and the client. However, the user ID must be added to the configuration before the client. When
assigning a user ID to an LTERM partner, you must distinguish between the following cases:

® You are explicitly creating a user ID with the name of the LTERM partner. In this case, assignment is automatic
when you add the LTERM partner.

® You are creating a user ID with any name. In this case, you must explicitly enter the name when adding the
LTERM partner (field kc_Iterm_str.user_gen).

If you do not create the connection user ID explicitly, openUTM implicitly creates a user ID with the name of the
LTERM partner.

The connection user ID is always reserved for this client. No other user or client can log on with the application
under this user ID.

The user ID is assigned one of the reserved table spaces. If there are no more spare table spaces for this user ID,
the LTERM partner and client are not added to the configuration. The KC_CREATE_OBJECT calls are then
rejected.

In general terms, the following applies:
In applications with user IDs, you need three reserved table spaces to add a client of type APPLI, SOCKET or UPIC-
R/UPIC-L: one for object type PTERM, one for object type LTERM and one for object type USER.

70



openUTM V7.0. Administering Applications. User Guide.

The following sequence must be observed:

User ID (KC_USER) before LTERM partner (KC_LTERM) before
TS application/UPIC client (KC_PTERM)
All three objects must be created in the same transaction

A connection user ID cannot be administered, i.e. once you have created the user ID, you can no longer modify its
properties.

Example of creating a TS application or an UPIC client

A program which creates a TS application or an UPIC client and which explicitly assigns it a connection user ID
must have the structure illustrated in the diagram below. The KDCS calls in angle brackets are optional. The
individual KC_CREATE_OBJECT calls, in particular, can be located in various different KDCS programs. However,
these programs must run in the same transaction (terminate program, for example with PEND PA).

#i ncl ude <kcadm nc. h> /* Record definitions */
INIT /* KDCS call for signing on with */
/* UM
[ MCET] /* KDCS call for reading the */
/* calling TACs and the */
/* passing paraneters */
KC_CREATE_OBJECT with obj _type=KC USER /* KDCADM call for creating the */
/* user ID */
/* Possible error handling: the followi ng KC_ CREATE_OBJECT call should */
/* only be subnmitted if the previous call was error-free. */
KC_CREATE_OBJECT with /* KDCADM call for creating the */
obj _type=KC_LTERM /* LTERM part ner */
/* Possible error handling */
KC_CREATE_OBJECT with /* KDCADM call for creating the */
obj _t ype=KC_PTERM /* client */
/* Possible error handling */
MPUT /* KDCS call for sending a nessage */
/* to the job-subnmitting service */
PEND FI / RE/ SP/ FC /* KDCS call to terninate the */

/* transaction */




openUTM V7.0. Administering Applications. User Guide.

4.2.2 Adding program units, transaction codes, TAQ queues and VORGANG exits

To add a new program unit or VORGANG exit you must call KC_CREATE_OBJECT for the object type
KC_PROGRAM.
When adding a new transaction code or a new TAQ queue, you must specify the object type KC_TAC.

You can only add new program units and VORGANG exits dynamically if the application was generated with load
modules (BS2000 systems), shared objects (Unix or Linux systems) or DLLs (Windows systems).

You should assign at least one transaction code to one program unit to enable it to be called. You cannot add the
transaction code to the configuration until the program unit has been created. This means that program units must
either already be in the application configuration at the time the transaction code is created with
KC_CREATE_OBJECT, or they must have been created in the same transaction but before the transaction code
was created. The program unit can be created with KDCDEF or may have been created in a separate transaction.

You can also assign new transaction codes to program units already in the configuration.

A newly created program unit cannot be called until it has been loaded and at least one transaction code has been
assigned to it. To add the program unit, it must be compiled and linked into the application by a load module, shared
object or DLL created with KDCDEF. Following this, this load module, shared object or DLL must be replaced (see
KDCPROG in "KDCPROG - Replace load modules/shared objects/DLLs" or KC_MODIFY_OBJECT with "obj type
=KC_LOAD_MODULE").

Note for BS2000 systems:

® |f the public slice of the load module is located in a common memory pool, you must then still submit a
KDCAPPL PROG=NEW or KC_CHANGE_APPLICATION call to arrange for this load module to be replaced.
You cannot use the new or modified service until this has been done.

® A new program unit cannot be linked into a load module which is statically linked to the application program
(STATIC load mode).

If a VORGANG exit is to be assigned to a transaction code which you are creating dynamically (kc_tac_str.
exit_name) then this VORGANG exit must exist in the configuration of your application before the transaction code
is created or must have been created first (before the code) in the same transaction in which the transaction code
itself was created.

To ensure that the VORGANG exit is able to run properly, the relevant program must be created. Dynamically
created VORGANG exits must, like program units, be linked to a load module, shared object or DLL which then has
to be replaced.

When creating program units, transaction codes and VORGANG exits, the following general rule applies:

Program unit (KC_PROGRAM) and VORGANG exit (KC_PROGRAM)
before transaction codes (KC_TAC)

i The transaction codes for the event services BADTAC, MSGTAC and SIGNON (KDCBADTC,
KDCMSGTC, KDCSGNTC) cannot be created in the configuration dynamically.

72



openUTM V7.0. Administering Applications. User Guide.

4.2.3 Creating user IDs

When creating a new user ID and an associated USER queue, you must call KC_CREATE_OBJECT for object type
KC_USER. User IDs which are to have a fixed assignment to specific LTERM partners for an automatic KDCSIGN
must be created before the LTERM partner is added. See also section “Adding clients, printers and LTERM
partners” for details of things you will need to remember.

73



openUTM V7.0. Administering Applications. User Guide.

4.2.4 Creating key sets

To create a new key set, you have to call KC_CREATE_OBJECT for the object type KC_KSET. You can then
assign the new key set in the same transaction to a new user ID, a new LTERM partner, a new transaction code or
TAC queue or a new LTAC.

The following rule applies:

Key set (KC_KSET) before LTERM partner (KC_LTERM)
and user ID (KC_USER) and transaction code (KC_TAC) and LTAC (KC_LTAC)

74



openUTM V7.0. Administering Applications. User Guide.

4.2.5 Entering LU6.1 connections for distributed processing

In the case of a link by means of the LU6.1 protocol, for communication between the local UTM application and a
remote application you must define one or more transport connections and sessions by means of which the
communication relationships are set up.

For the entry of a transport connection, call KC_CREATE_OBJECT for the object type KC_CON. To define a
session, call KC_CREATE_OBJECT for the object type KC_LSES.

The prerequisite is that LPAP partners must be known and session properties defined in each application.

A number of CON and LSES objects must be created for each LPAP; the number of CON and LSES objects
determines the number of parallel connections that are possible with a partner application via an LPAP.

In cluster applications (Unix, Linux and Windows systems), it is necessary to generate, for each CON object, as
many LSES objects as there are node applications in order to enable the partner application to communicate with
all the node applications.

A CON object and an LSES object are created for each parallel connection via an LPAP and assigned to the LPAP.
Every CON object and every LSES object in each of the applications involved must be created appropriately so that
the following applies:

® A CON name in the local application is the same as a BCAMAPPL name in the remote application and vice
versa.

®* An LSES name in the local application is the same as an RSES name in the remote application and vice versa.

CAUTION!

It is not permissible for an LPAP name to create a number of CON objects that lead to different
applications or are assigned to different LPAPs in the partner application via their corresponding CON
objects.

Such configurations are not recognized by UTM and lead to errors when connections and sessions are
set up and when sessions are restarted.

75



openUTM V7.0. Administering Applications. User Guide.

4.2.6 Entering LTACs

In order to dynamically create a transaction code for starting a service or a remote service program in a partner
application, you have to call KC_CREATE_OBJECT for the object type KC_LTAC.

The local transaction code is assigned either

® the name of a transaction code in a specific partner application (with single-step addressing), in which case the
local transaction code addresses both the partner application and the transaction code in this application, or

® the name of a transaction code in any partner application (with double-step addressing). The partner application
in which the service program addressed by the local transaction code is to run must be specified explicitly in the
program interface.

If access rights are to be granted by means of an access list, the key set used for this must either already exist or
be dynamically created beforehand; the dynamic creation of the key set and the referenced LTAC can also take
place within a transaction. If the access rights are to be controlled by means of a lock code, the numeric value for
the lock code must not be less than 1 or greater than the maximum value permitted in the application (KDCDEF
statement MAX, KEYVALUE operand).

The following rule applies:

Key set (KC_KSET) before LTAC (KC_LTAC)

76



openUTM V7.0. Administering Applications. User Guide.

4.2.7 Format and uniqueness of object names

You must assign a name or logical address (clients and printers) to every object which you create dynamically in the
configuration using KC_CREATE_OBJECT. Using this name and its logical address, it must be possible to uniquely
identify the object in its application. Note the following rules when assigning names.

® You cannot use any reserved names. (--> Reserved names)

® The name of an object must be unique in the class of name belonging to the object name. (--> Unique names
and addresses)

® The names must not exceed the specified maximum length and can only contain certain characters (format). (-->
Format of the names)

The names of objects tagged for deleting at a later point in time with KC_DELETE_OBJECT may not be used for
objects in the same class of name. The names of user IDs and the names of connections for distributed processing
by means of LU6.1 that are deleted immediately can be reassigned again immediately.

Reserved names

Names of transaction codes starting with KDC are reserved for transaction codes in the event services and the
administration commands. Names starting with KDC must not therefore be used for other objects.

In UTM applications on BS2000 systems, program unit names must not begin with a prefix that is used for compiler
runtime modules (e.g. IT, IC).

In UTM applications on Unix, Linux or Windows systems, names of objects must also not start with KC, x, ITS or

mF. External names (e.g. program unit names) should not begin with ‘f ', ‘'n_", ‘'t ",'a_','o_',‘p_'or's_".‘t "is
reserved for PCMX. ‘a_', ‘'o_', ‘p_"and ‘s_' are reserved for OSS.

Any names reserved on a specific platform should not be used on any of the other platforms, in order to render the
applications portable.

Unique names and addresses

The names and addresses of objects in a UTM application are summarized in name classes. Within each name
class, the object names must be uniquely identified. They cannot be assigned to several objects. There are three
classes of name:

The following objects belong to the 1st class of names:
® |LTERM partners (object type KC_LTERM);
the LTERM partners of the LTERM pools also belong to this class.
® Transaction codes and TAC queues (object type KC_TAC).
® | PAP and OSI-LPAP partners for the server-server communication (object type KC_LPAP and KC_OSI_LPAP).

The following objects belong to the 2nd class of names:

® User IDs, including the associated queues (object type KC_USER)
® Sessions for distributed processing using LU6.1 (object type KC_LSES)
® Connections and associations for distributed processing using OSI TP (object type KC_OSI_ASSOCIATION)

77



openUTM V7.0. Administering Applications. User Guide.

The following objects belong to the 3rd class of names:

Clients and printers (object type KC_PTERM).

In this context, clients are: terminals, UPIC clients, TS applications (DCAM, CMX applications and UTM
applications) which do not use LU6.1 and OSI TP protocols for communication.

Name of the partner application for distributed processing using protocol LU6.1 (object type KC_CON).

Name of the partner application in the case of distributed processing using the OSI TP protocol.
Even if it is not possible to generate OSI-CONs dynamically, the names already generated for OSI-CONs are
already allocated to this name class and cannot be used for other objects of this name class.

Multiplex connections (object type KC_MUX, only on BS2000 systems).

The objects listed in the 3rd class of name are communication partners for the UTM application. They or the
connections to them must be uniquely identifiable for openUTM. For this reason, every communication partner must
be identified with a logical address. The logical address is a name triplet made up of the following components:

1.

Name of the communication partner (pt_name, co_name of the LU6.1 connection, mx_name). This is the
symbolic name by which the communication partner is known to the transport system.

Name of the computer on which the communication partner is located (pronam).

Name of the local application via which the connection to the communication partner is established (bcamapp!
or ACCESS-POINT). Even if OSI TP connections cannot be generated dynamically, the names that have
already been generated for ACCESS POINTS must be taken into account.

Each communication partner must have a different name triplet.

Format of the names

All

names which you define must conform to the following conventions:

The names of LTERM partners, clients and printers (KC_PTERM), transaction codes, user IDs, LU6.1
connections and sessions as well as transaction codes for remote services must only be 1 to 8 characters in
length.

The names of program units can be up to 32 characters in length if the application was generated using load
modules/shared objects/DLLs.

Permissible characters for object names in a UTM application on BS2000 systems are:A,B,C,...,Z, 0,1,...,9, #, @,
$. Any combination of these characters is permitted.

Permissible characters for object names in a UTM application on Unix, Linux systems and Windows systems are:
ABC,..Z ab,c,..,2z01,..9# @,8$.

78



openUTM V7.0. Administering Applications. User Guide.

4.3 Deleting objects dynamically from the configuration

You can use the KC_DELETE_OBJECT call at the program interface for administration to delete objects from the
configuration of your application while the application is running.

|j::> KC_DELETE_OBJECT in "KC_DELETE_OBJECT - Delete objects"

We distinguish two methods for deleting objects: delayed delete and immediate delete.

® delayed delete (KC_DELETE_OBJECT subopcodel=KC_DELAY)

The term delayed delete is used to mean that objects are simply designated as deleted. The objects and their
properties remain in the object table as before. Delayed deletion acts like a permanent lock which cannot be
undone. Physical deletion of objects from the object table only takes place during regeneration if you are working
with the inverse KDCDEF.

Users no longer have access to an object designated for delayed deleting. Only the administrator still has read-
only access to such objects, i.e. you can read the names and properties of objects designated for “delayed
delete” with KC_GET_OBJECT or with the administration command KDCINF. However, it is no longer possible
to change the properties of these objects. User IDs designated for a “delayed delete” can, however, be
completely removed from the configuration using an “immediate delete”.

A delayed delete frees up no space in the object table. The names of deleted objects remain assigned, i.e. no
more new objects can be created dynamically in their name class. In particular, no new objects can be created
dynamically with the same name and the same object type.

Key sets, LU6.1 sessions, LTACs, LTERM partners, program units, transaction codes and TAC queues can only
be removed from the configuration using the delayed delete method.

* jmmediate delete (KC_DELETE_OBJECT subopcodel=KC_IMMEDIATE)
Immediate deletion is only permitted for the user IDs and LU6.1 connections of standalone UTM applications.

Immediate delete removes an object and its properties from the object table with immediate effect. The table
space assigned to a user ID or CON object removed using the “immediate delete” method is available for a
newly created user ID or CON object right away without the application needing to be regenerated. The name of
a user ID or CON obiject that is deleted immediately does not remain locked. You can generate a new user ID or
CON object using the same name right away.

Once an object is deleted in this fashion, nobody, including the administrator, any longer has any kind of access
to it, neither read nor write access.

You can delete just one object with each KC_DELETE_OBJECT call (delayed or immediate delete). In any one
program unit, you can make several KC_DELETE_OBJECT calls in succession, i.e. you can delete several objects
of different types. In the case of objects related to one another, it is nevertheless important to pay attention to the
sequence in which these objects are deleted. An object to which other objects are related cannot be deleted until
the other related objects have been deleted, i.e. until their relationship has been cancelled by means of
administration functions (e.g. KDCSWTCH can be used to terminate the relationship between terminal/printer and
LTERM partner). The following sections describe the rules you must observe when deleting objects.

Object deletion, be it delayed or immediate, is subject to transaction management. The object is not deleted until
the transaction in which the KC_DELETE-OBJECT is being processed has been completed successfully.

However, only objects that are featured in the configuration can be deleted. In other words, you cannot delete an
object created dynamically in the configuration until the transaction in which the create operation took place has
been completed.

79



openUTM V7.0. Administering Applications. User Guide.

Deletion in UTM-F and UTM-S applications applies beyond the end of these applications and cannot be undone.

UTM cluster applications (Unix, Linux and Windows systems)

The following applies in UTM cluster applications:
The call applies globally to the cluster, i.e. objects are deleted from the configuration in all the node applications.
Only delayed deletion is permitted in UTM cluster applications.

80



openUTM V7.0. Administering Applications. User Guide.

4.3.1 Deleting clients/printers and LTERM partners

Clients/printers and LTERM partners can only be removed from the configuration with a delayed delete.

To delete a client or printer from the configuration you must call KC_DELETE_OBJECT (with subopcodel
=KC_DELAY) for the object type KC_PTERM. To delete an LTERM partner, you have to indicate the object type
KC_LTERM.

You are only allowed to delete a client/printer and its related LTERM partners if the client/printer is not connected to
the application. For this reason, you should disable the client/printer before deletion to prevent errors from
occurring. Such disabling operations must take place in a separate transaction. To disable the client/printer, see
KDCPTERM in "KDCPTERM - Change properties of clients and printers" or KC_MODIFY_OBJECT with "obj_type
=KC_PTERM".

Clients/printers and their associated LTERM partners have a logical relationship to one another. For this reason,
you must pay attention to the sequence when deleting clients, printers and their LTERM partners. In general terms,
the following rule applies:

An LTERM partner cannot be deleted while a.client/printer is assigned to it.

If the client/printer and the related LTERM partner are to be deleted from the configuration, the following rule applies:

Client/printer (KC_PTERM) before LTERM partner (KC_LTERM).

Both objects can only be deleted from the configuration one after the other in different transactions.

When deleting LTERM patrtners, please note:

® With UPIC clients (type UPIC-R and UPIC-L) and TS applications (type APPLI or SOCKET), you must delete the
client from the configuration before deleting the LTERM partner.

® With terminals and printers, you can delete the LTERM partner without removing the terminal or printer from the
configuration. In this event, before deleting the LTERM partner, you must assign the client or printer to another
LTERM partner in a separate transaction (KDCSWTCH in "KDCSWTCH - Change the assignment of clients and
printers to LTERM partners" or KC_MODIFY_OBJECT with "obj type=KC_PTERM").

You cannot delete the following LTERM and PTERM partners:

® LTERM partners belonging to an LTERM pool

®* LTERMS, belonging to LTERM bundles or LTERM groups,

® printer control LTERMs

® the LTERM partner KDCMSGLT which openUTM creates internally for the MSGTAC service
®* LTERM partners belonging to a multiplex connection (only on BS2000 systems)

® LTERM and PTERM partners that are used for cluster-internal communication in UTM cluster applications (Unix,
Linux and Windows systems).

You can delete all other LTERM partners and clients/printers from the configuration if you comply with the above
rules, regardless of whether they were added to the configuration statically (with KDCDEF) or dynamically.

81



openUTM V7.0. Administering Applications. User Guide.

i You can delete the LTERM partner defined as recipient (destadm) for the results of asynchronous
administration commands. However, in this case, you should define a new recipient, as otherwise the
results of asynchronously processed administration commands are lost. To do this, you have the
KC_MODIFY_OBJECT call with parameter type KC_MAX_PAR and the administration command
KDCAPPL.

Deleting clients, printers and LTERM partners has the following effects:

® |tis no longer possible to set up a connection to a deleted client/printer. This means that no more messages can
be sent to a client or printer once it has been deleted.

* No more asynchronous messages can be created for a deleted LTERM partner. In other words, no more
asynchronous jobs can be added to the message queue of the LTERM partner.

® Asynchronous jobs in the message queue of the LTERM partner at the time of deletion, i.e. jobs created before
the deletion process, can no longer be read from the queue by the client/printer. In other words, the
asynchronous jobs in the queue can no longer be processed. However, they can still be accessed by
administration functions: they can be deleted from the queue. To do this, you can use the KDCS call DADM (see
openUTM manual ,Programming Applications with KDCS”).

® Asynchronous jobs created by an LTERM partner which has already been deleted are still able to run and can be
administered. However, when processing jobs, it is no longer possible to create any further asynchronous jobs
(follow-up jobs).

® TLS areas (TLS = terminal-specific long-term storage area) belonging to a deleted LTERM partner are still
available for read and write accesses.

82



openUTM V7.0. Administering Applications. User Guide.

4.3.2 Deleting program units, transaction codes and VORGANG exits

Program units, transaction codes, TAC queues and VORGANG exits can only be deleted from the configuration
using the delayed delete method.

To delete a program unit or VORGANG exit from the configuration you must call KC_DELETE_OBJECT (with
subopcodel=KC_DELAY) for the object type KC_PROGRAM. To delete a transaction code or a TAC queue, you
must specify the object type KC_TAC.

Transaction codes and the program unit to which this transaction code is assigned are related to one another. In the
same way, a VORGANG exit is related to the transaction codes to which it is assigned. For this reason, you must
note the sequence followed when deleting transaction codes, program units and VORGANG exits. The following
rule applies:

A program unit/'VORGANG exit cannot be deleted until all related transaction codes have been deleted.

The following program units must not be deleted:

® program units belonging to the event exits, START, SHUT, FORMAT or INPUT.
® BS2000 systems: program units and VORGANG exits linked to load modules with the STATIC load mode.

® Unix, Linux and Windows systems: program units and VORGANG exits linked statically to the application
program, i.e. you can only delete program units and VORGANG exits that are contained in shared objects or
DLLs.

The following transaction codes must not be deleted:

® transaction codes KDCMSGTC, KDCSGNTC, KDCBADTC in event services MSGTAC, SIGNON and BADTACS
® the administration command KDCSHUT in the administration program KDCADM

® transaction codes KDCTXCOM and KDCTXRLB created internally by openUTM for XATMI.

® Transaction codes defined in the SIGNON-TAC parameter of the BCAMAPPL statement.

The following TAC queue must not be deleted:

® the dead letter queue KDCDLETQ.

You can delete all other program units and VORGANG exits (that are not statically linked) and transaction codes
from the configuration, regardless of whether they were created in the configuration dynamically or statically.

i You can delete an asynchronous TAC or a TAC queue defined as a recipient (destadm) for the results of
the asynchronous commands. In this event, you should define a new recipient, otherwise the results are
lost. To do this, you can use the call KC_MODIFY_OBJECT with parameter type KC_MAX_PAR and the
administration command KDCAPPL.

83



openUTM V7.0. Administering Applications. User Guide.

Deletion of program units, VORGANG exits, transaction codes and TAC queues has the following effects:

Deleted program units and VORGANG exits can no longer be called.
Asynchronous jobs to a deleted transaction code can no longer be created.

Asynchronous jobs that are still in the message queue of a transaction code at the time of deletion are no longer
processed. They do, however, remain in the message queue of the asynchronous TAC. To relieve capacity
constraints in the page pool you should delete these asynchronous jobs from the queue (see KDCS call DADM
in the openUTM manual ,,Programming Applications with KDCS").

No dialog services can be started to a deleted TAC. Dialog services that are open at the time of deletion can still
be processed normally provided that only the service TAC is deleted. They are, however, terminated if a follow-
up TAC is called which has already been deleted.

When a TAC queue is deleted, its messages are deleted immediately. New messages cannot be created for a
deleted TAC queue.

84



openUTM V7.0. Administering Applications. User Guide.

4.3.3 Deleting user IDs

You can remove a user ID from the configuration using either the “delayed” or the “immediate” delete method (see
"Deleting objects dynamically from the configuration"). In UTM cluster applications (Unix, Linux and Windows
systems) only the delayed delete method is possible.

To delete a user ID from the configuration you must call KC_DELETE_OBJECT (with subopcodel=KC_DELAY or
KC_IMMEDIATE) for the object type KC_USER.

Apart from the exceptions listed below, you can delete any user ID created explicitly in the configuration (statically
or dynamically).

You cannot delete the following user IDs:

® KDCMSGUS, which openUTM creates internally for the MSGTAC service
® user IDs assigned to a terminal for an automatic KDCSIGN (see "Adding clients, printers and LTERM partners")

® connection user IDs (i.e. user IDs that are permanently assigned to a client of the type UPIC, APPLI or socket)

In applications without explicitly generated user IDs, the deletion of user IDs created internally is generally not
possible.

The following restrictions apply with regard to the point in time at which a user ID may be deleted:

You can only delete a user ID (delayed or immediate delete) if no user or client is signed on to the application at the
time of deletion. For this reason, you should disable the user ID before deletion to avoid errors. Such disabling
operations must occur in a separate transaction. To disable a user ID, see KDCUSER in "KDCUSER - Change user
properties" or KC_MODIFY_OBJECT with "obj type=KC_USER".

Deleting a user ID is also temporarily not possible in the following cases:

® an asynchronous job is being processed, i.e. has been retrieved from the message queue and started.
® adistributed transaction is in PTC status (PTC = Prepare to Commit).

® the user-specific long-term storage area (ULS) of the user ID cannot be locked, e.g. because the administrator or
an administration program is accessing it.

Delayed delete
Delayed deletion of a user ID has the following effects:

® No users/clients are able to sign on to the application with a user ID designated for a delayed delete.

® Asynchronous services which were started before the user ID was deleted and which are not being processed at
the time of deletion are still able to run and can be administered. These services are not, however, able to create
any more asynchronous jobs themselves.

® An open dialog service cannot be continued any further. Any service data that has been saved for a user (e.g.
LSSB data, dialog messages) is deleted:

® in the case of standalone applications, the next time the application is started

® in UTM cluster applications (Unix, Linux and Windows systems), on the next start-up of the node application
at which the user was last signed on

The data is not deleted if an open service has a transaction in the PTC state. In this case, the transaction must
first either be committed or rolled back. You can, for example, roll back transactions with the PTC state using the
program interface (opcode KC_PTC_TA).

85



openUTM V7.0. Administering Applications. User Guide.

ULS areas (ULS = user-specific long-term storage area) belonging to the user ID are still available for read and
write accesses.

All the messages in the message queue for this user ID are deleted immediately. No new messages can be
created for this message queue.

Immediate delete

Immediate deletion of a user ID has the following effects:

No users/clients are able to sign on to the application with an immediately deleted user ID.

Asynchronous jobs which were generated and placed in the message queue by openUTM before the user ID
was deleted, do not start, i.e. openUTM does not process them. They are deleted the moment openUTM
retrieved them from the message queue for processing.

If you query the information on jobs in the message queue using DADM RQ (see "Displaying information on
messages in a queue - DADM RQ"), openUTM, instead of the user ID that issued the job, will output *NONE for
the jobs of a deleted user ID.

Jobs for LTERM or LPAP partners that are started before the user ID is deleted and are still in the partner’s
message queue, are sent.

An open dialog service that was started by a deleted user ID, is also deleted immediately. There may be open
dialog services for a user who is not signed on, e.qg. if the user signed off during the service using KDCOFF after
a synchronization point had already been reached.

ULS areas (ULS = user-specific long-term storage area) belonging to the deleted user ID cannot be accessed.
They are deleted.

All the messages in the message queue for this user ID are deleted immediately.

86



openUTM V7.0. Administering Applications. User Guide.

4.3.4 Deleting key sets

Key sets can only be deleted from the configuration after a delay. To delete a key set, you have to call
KC_DELETE_OBJECT (with subopcodel=KC_DELAY) for the object type KC_KSET.

Restriction: The KDCAPLKS key set cannot be deleted at all.

Objects that reference a deleted key set lose their access rights. However, other key sets can be assigned
dynamically to TACs, TAC queues and user IDs.

87



openUTM V7.0. Administering Applications. User Guide.

4.3.5 Deleting LU6.1 connections and sessions

To delete an LUG.1 transport connection between the local UTM application and a partner application, you must call
KC_DELETE_OBJECT (in standalone applications with subopcode1=KC_IMMEDIATE, in UTM cluster applications
with KC_DELAY) for the object type KC_CON. If you want to delete an LU6.1 session, call KC_DELETE_OBJECT
(withsubopcodel=KC_DELAY) for the object type KC_LSES.

Deleting LU6.1 connections

It is not possible to delete a CON object when it is linked to the application.

Points to note when deleting LU6.1 sessions
An LSES object (LU6.1 session) can only be deleted when:
® The session is not set up, and

® Neither of the two half-sessions have the status PTC.

In order to check whether a session has the status PTC, you can query the status of the session (e.g. by means of
KC_GET_OBJECT with the object type LSES).

The following procedure is recommended for deleting an LSES object:

1. Set up the session before deleting the object.
2. Set the session to “quiet”.

3. Once the connection is set up, delete the object by means of the above call.

88



openUTM V7.0. Administering Applications. User Guide.

4.3.6 Deleting LTACs

Transaction codes by means of which service programs are started in partner applications can only be deleted from
the configuration after a delay.

To delete an LTAC, you have to call KC_DELETE_OBJECT (with subopcode1=KC_DELAY) for the object type
KC_LTAC.

89



openUTM V7.0. Administering Applications. User Guide.

4.4 Modifying object properties

You can use the KC_MODIFY_OBJECT call during an application run to modify the properties of objects and
parameters of the application program and initiate actions (e.g. resetting of statistical values).

|j::»> KC_MODIFY_OBJECT in "KC_MODIFY_OBJECT - Modify object properties and application parameters"

The following object types have properties that can be modified dynamically:

KC_CLUSTER_NODE, KC_DB_INFO, KC_KSET, KC_LOAD_MODULE, KC_LPAP, KC_LSES, KC_LTAC,
KC_LTERM, KC_MUX, KC_OSI_CON, KC_OSI_LPAP, KC_PTERM, KC_TAC, KC_TACCLASS, KC_TPOOL,
KC_USER.

The following sections describe how to modify certain object types in more detail (KC_PTERM, KC_LTERM,
KC_TAC, KC_USER, KC_KSET and KC_LSES).

The following parameter types have properties that can be modified dynamically:

KC_CLUSTER_CURR_PAR, KC_CLUSTER_PAR, KC_CURR_PAR, KC_DIAG_AND_ACCOUNT_PAR,
KC_MAX_PAR, KC_TASKS_PAR, KC_TIMER_PAR.

You can modify a single object with each KC_MODIFY_OBJECT call. However, it is possible in an administration
program to call KC_MODIFY_OBJECT more than once in order to modify the properties of multiple objects. In the
call you specify the type of the object, its name and the properties to be modified.

When modifying application parameters, in a single call you can modify all the parameters that belong to the same
parameter type.

The section entitled "KC_MODIFY_OBJECT - Modify object properties and application parameters" explains which
properties can be modified for which object type or application parameter and which actions are thus initiated.

The effectiveness and duration of a change depends on the object type or application parameter and on the
property that is changed. Some changes apply only to the current application run, whereas others apply beyond it
as well (durable). A change can take effect:

® immediately

® after transaction processing (PEND)

® when the utilization of the application permits it

UTM cluster applications (Unix, Linux and Windows systems)

The following applies in a UTM cluster application:

Depending on the object, the call can initiate actions that apply either globally in the cluster or locally in the node.
Actions with a global effect apply to all the node applications in the UTM cluster application irrespective of whether a
node application is currently active or not. Actions with a local effect only apply to the node applications at which
they are executed.

90



openUTM V7.0. Administering Applications. User Guide.

4.4.1 Modifying clients/printers and LTERM partners

In order to modify the properties of a client or printer, you have to call KC_MODIFY_OBJECT with the object type
KC_PTERM. To modify the properties of an LTERM partner, you must specify the object type KC_LTERM.

LTERM partners that belong to an LTERM pool or clients/printers that are connected via an LTERM pool cannot be
modified.

In the case of clients/printers and LTERM partners, you can change the status and the current state of the
connection to the client/printer. A change of status (enabled/disabled) continues to apply after transaction
processing beyond the end of the application run. A change to the current state (connection in existence, not in
existence, currently being set up) applies when permitted by the utilization level of the application, but not after the
end of the application run.

If you want to change the assignment of a client/printer to an LTERM partner, the partner must be in existence (it
must not have been deleted). The LTERM partner must not be configured for connection to a client of the type
UPIC. In addition, the LTERM partner must not be the master slave of an LTERM bundle or an alias or primary
LTERM of an LTERM group. A change to the assignment continues to apply after transaction processing beyond
the end of the application run.

In the case of clients/printers, only the LTERM partner, if assigned, or only one mode may be modified for automatic
connection setup at the startup of the application. It is only possible to request automatic connection setup at
startup of the application if the client/printer is not disabled. A change to connection setup at application startup
continues to apply after transaction processing beyond the end of the application run.

Note on BS2000 Systems:

If the LTERM partner is assigned to a terminal, you can change the format attributes. However, a specific start
format can only be used for applications without user IDs or when a separate sign-on service is defined. A change
to the format attributes continues to apply after transaction processing beyond the end of the application run.

91



openUTM V7.0. Administering Applications. User Guide.

4.4.2 Modifying transaction codes and TAC queues

In order to modify the properties of a TAC or a TAC queue, you must call KC_MODIFY_OBJECT with the object
type KC_TAC.

It is not possible to change the status of a TAC and at the same time reset specific statistical values.

Changes to the status of a TAC or a TAC queue take effect immediately and continue to apply beyond the end of
the application run. Changes to the statistical values of a transaction code take effect immediately.

If you want to control accesses to a transaction code by means of a key set, you can assign an existing key set to
the access list of the transaction code. If there is a lock code, you have to remove it (set it to zero). Conversely, if
access to the transaction code is protected by a lock code, there must not be a key set defined in the access list.

You can also protect a TAC queue against unauthorized reading/deletion and writing by means of a key set. To do
this, assign the desired key set to the q_read ac/ and/or q_write_acl parameters.

Changes to the parameters that control access continue to apply after transaction processing beyond the end of the
application run.

Backup of messages in the dead letter queue in the event of processing errors can be enabled or disabled for
asynchronous transaction codes using CALL=BOTH/FIRST and TAC queues. This backup option is not possible for
MSGTAC and KDCDLETQ. Enabling and disabling of backup to the dead letter queue remains in effect after the
end of the transaction and beyond the application run.

92



openUTM V7.0. Administering Applications. User Guide.

4.4.3 Modifying user IDs

In order to modify the properties of a user ID or the assigned USER queue, you have to call KC_MODIFY_OBJECT
with the object type KC_USER.

You cannot disable user IDs with administration authorization, nor can you modify properties of user IDs that are
assigned to a client of the type APPLI, SOCKET or UPIC.

If you want to change the password for a user ID, ensure that:

® The new password corresponds to the complexity level defined for the user ID.

® The existing password is not reused when it is only possible to use passwords with a limited period of validity for
the user ID.

You can supply a user ID with access rights (key set) or change them.

You can use a key set to protect a USER queue against unauthorized reading/deletion and writing. To do this,
assign the desired key set to the q_read_acl and/or q_write_acl parameters (see "kc_user_str, kc_user_fix_str,
kc_user_dynl_strand kc_user_dyn2_str user IDs").

Any changes you make to the properties of a user ID or a USER queue continue to apply after transaction
processing beyond the end of the application run.

93



openUTM V7.0. Administering Applications. User Guide.

4.4.4 Modifying key sets

In order to modify the keys of a key set, you must call KC_MODIFY_OBJECT with the object type KC_KSET.

Note that the KDCAPLKS key set cannot be modified and that it is not permissible to specify a key less than 1 or
greater than the maximum value permitted in the application (KDCDEF statement MAX, KEYVALUE operand).

Key sets with the MASTER attribute cannot be modified either.

94



openUTM V7.0. Administering Applications. User Guide.

4.4.5 Modifying LU6.1 sessions

In order to modify the properties of an LU6.1 session, you must call KC_MODIFY_OBJECT with the object type
KC_LSES.

For an LU6.1 session you can initiate connection establishment or connection cleardown and, in the case of
connection establishment, assign a transport connection to the session.

If you request the immediate establishment of a connection, the QUIET property must not be set and the LPAP
partner must not be disabled. If you request the immediate cleardown of a connection, none of the other properties
must be modified.

When specifying a transport connection for the session, you should ensure that the connection exists and is
generated for the associated LPAP partner.

Any changes you make to an LSES object do not take effect unless the utilization level of the application permits it.

95



openUTM V7.0. Administering Applications. User Guide.

5 Generating konfiguration statements from the KDCFILE

To ensure that regeneration does not cause you to lose the changes you made to your configuration while the
application was running, openUTM provides you with the inverse KDCDEF. You can use this inverse KDCDEF to
generate control statements for the UTM tool KDCDEF from current configuration data in the KDCFILE.

KDCDEF control statements generated by the inverse KDCDEF

The inverse KDCDEF generates control statements for the object types for which dynamic entry and deletion is
possible. The inverse KDCDEF does not generate control statements for other objects and components in the
application or for application parameters. However, you can use the inverse KDCDEF to generate the following
KDCDEF control statements:

® USER statements

For all user IDs that currently exist in the application. The inverse KDCDEF does not create any USER
statements for the user IDs created internally by openUTM.

In applications without user IDs, the inverse KDCDEF does not generate any USER statements.
¢ LTERM statements

For all LTERM partners in the application which do not belong to an LTERM pool or a multiplex connection.
* PTERM statements

For all clients and printers entered in the configuration. For clients belonging to an LTERM pool or a multiplex
connection, no PTERM statements are generated.

* PROGRAM statements

For all program units and exits currently contained in the configuration of that application.
® TAC statements

For all transaction codes and TAC queues in the application.
® KSET statements

For all the application’s key sets.
¢ CON statements

For all the application’s LU6.1 connections.
® | SES statements

For all the application’s LU6.1 sessions.
® LTAC statements

For all the transaction codes for partner applications.

The inverse KDCDEF generates control statements for all objects in the application belonging to one of these object
types, regardless of whether the objects were entered in the configuration dynamically or were generated statically
during a previous KDCDEF generation process. All modifications which you performed for this object during the
application run are taken into account.

The inverse KDCDEF does not generate any control statements for objects which were deleted dynamically from
the configuration of this application. After the next regeneration, these objects are therefore deleted completely from
the configuration. They then cease to occupy any space in the table and the names of these objects can reused
during regeneration.

96



openUTM V7.0. Administering Applications. User Guide.

Over and above this, after regeneration with KDCDEF, the UTM tool KDCUPD does not transmit any application
data relating to the dynamically deleted objects from the old KDCFILE to the new KDCFILE, even if there is an
object with the same name and object type as a deleted object in the new KDCDEF generation process. In
particular, no asynchronous jobs generated by LTERM partners or user IDs which have subsequently been deleted
are passed from KDCUPD.

The USER statements generated by the inverse KDCDEF do not contain any passwords. For user IDs generated
with a password, the inverse KDCDEF generates USER control statements in this form:

USER name, PASS=* RANDQM . ...

After a new KDCFILE has been generated, i.e. after the following KDCDEF run, you must pass the passwords for
user IDs to the new KDCFILE using the UTM tool KDCUPD (see the openUTM manual “Generating Applications”).
This is also possible in a UTM-F application.

i In the case of UTM cluster applications, the passwords are present in the cluster user file and do no have
to be transferred to a new KDCFILE using KDCUPD.

97



openUTM V7.0. Administering Applications. User Guide.

5.1 Starting the inverse KDCDEF

You can start the inverse KDCDEF “online” or “offline”. “Online” means that you start the inverse KDCDEF during

the application is running. “Offline” means that you start the inverse KDCDEF after shutting down the application run.

In both cases, you can call the inverse KDCDEF in such a way that it produces KDCDEF control statements for all
possible objects. However, you can also call the inverse KDCDEF in such a way that it only generates control
statements for specified object types, which are grouped together in the object groups CON, DEVICE, KSET, LSES,
LTAC, PROGRAM and USER.

You can request KDCDEF control statements for just one or more of these groups.

Starting inverse KDCDEF online

In order to start an inverse KDCDEF run online, you must generate your own application program which calls
KC_CREATE_STATEMENTS.

KC_CREATE_STATEMENTS in "KC_CREATE_STATEMENTS - Create KDCDEF control statements
(inverse KDCDEF)"

The time at which the KDCDEF run actually starts depends on whether or not, when the
KC_CREATE_STATEMENTS call is placed, another service in the application currently has write access to the
configuration data in that application. Distinctions must be drawn between the following cases:

® Atthe time the KC_CREATE_STATEMENTS call is made, transactions may be running which modify the
configuration data of the application or which change the passwords or locales.
In this case, the KC_CREATE_STATEMENTS call will generate an asynchronous job. The inverse KDCDEF run
is not started until these transactions have been completed.However, new transactions of this kind cannot be
started until the inverse KDCDEF run has been completed, i.e. until the asynchronous job has been processed.

The following also applies in UTM cluster applications:

In all running node applications, an administration action which applies globally to the cluster results in a
transaction which may delay the start of the inverse KDCDEF. Conversely, the execution of a global
administration action at a running node may be delayed if an inverse KDCDEF is currently running there.

® At the time of the KC_CREATE_STATEMENTS call, no transactions are running which modify the configuration
data, passwords or locales.
In this case, the inverse KDCDEF run is started immediately (synchronously). The run will already have been
terminated when control is returned to the program unit. In other words, by this time, all requested KDCDEF
control statements have been generated and stored in files.

Note on UTM cluster applications:
It is not possible to start an online inverse KDCDEF as long as node applications with different generations are
running in a UTM cluster application.

An inverse KDCDEF run is not subject to transaction management.
With the aid of the inverse KDCDEF executed online, you can make all preparations for regenerating your

application parallel to the application run. This minimizes the amount of downtime incurred.

i You can also start the inverse KDCDEF online using the administration tools WinAdmin and WebAdmin.

98



openUTM V7.0. Administering Applications. User Guide.

Starting the inverse KDCDEF offline

You can start the inverse KDCDEF offline, i.e. not during application runtime, by calling the UTM generation tool
KDCDEF and submitting the control statement CREATE-CONTROL-STATEMENTS.

C CREATE-CONTROL-STATEMENTS; see the openUTM manual “Generating Applications”

Files generated by the inverse KDCDEF can then be processed in the same KDCDEF run, or in a later one.

99



openUTM V7.0. Administering Applications. User Guide.

5.2 Result of the inverse KDCDEF run

The inverse KDCDEF either writes all control statements to one file or it writes the control statements for each
group of objects to separate files.

On BS2000 systems, the control statements can also be written to an LMS library element instead of a file.

You can pass the files written by inverse KDCDEF as input to KDCDEF when the application is regenerated. To do
so, you must enter the control statement OPTION DATA=filename for each of these files.

You can pass the files generated by inverse KDCDEF as input files direct to KDCDEF. However, you can also edit
the files as well, i.e. you can modify them before the next KDCDEF run.

Whether or not LMS library elements on BS2000 systems can be modified depends on their type — only text-type
elements can be modified.

You define the names of files generated by inverse KDCDEF when starting the inverse KDCDEF. If no file with this
name exists, a new one is created automatically. If a file of this name does exist, you can define whether it should
be overwritten or appended.

100



openUTM V7.0. Administering Applications. User Guide.

5.3 Inverse KDCDEF for version migrations

When migrating to a new version of openUTM, you must first generate the KDCDEF control statements in the
previous version, i.e. you must start the inverse KDCDEF in the previous version. You can use the files this
KDCDEF generates as input files for KDCDEF in the new version of openUTM.

101



openUTM V7.0. Administering Applications. User Guide.

5.4 Recommendations for regeneration of an application

When operating a UTM application, it may prove unavoidable to regenerate the application, i.e. to perform another
KDCDEF run. Possible reasons can include:

® The maximum values defined during generation must be adapted.

®* New objects may have to be generated for distributed processing via LU6.1 or OSI TP because the server
network has to be extended for distributed processing.

A KDCDEF run is only required for distributed processing via LU6.1 when new LPAP objects have to be inserted.
Objects of the type CON, LSES and LTAC, on the other hand, can also be created by means of dynamic
administration (provided enough table spaces have been kept free by means of the RESERVE statement).

* New load modules, shared objects or DLLs must be inserted in the application program.

®* The table spaces reserved for dynamic entry of objects in the configuration are occupied. The tables must be
extended or objects marked for deletion must be deleted now to create spare table spaces.

You can minimize the application downtime resulting from this type of regeneration. To do this, please note the
following recommendations:

® When first generating your application, you should distribute the control statements for KDCDEF across several
files before making them available to KDCDEF with OPTION DATA=. In particular, you should write the control
statements USER, LTERM, PTERM, PROGRAM, TAC, CON, KSET, LSES and LTAC and TAC to separate files.
When doing so, ensure that all statements relating to one specific group (see "Starting the inverse KDCDEF")
are written to one file. In this way, you can replace these files with files generated by an inverse KDCDEF if you
regenerate the application at a later time.

* Before regenerating the application and before starting the inverse KDCDEF run, you should dynamically delete
all objects no longer intended for the new configuration (KC_DELETE_OBJECT). Compared with manual
deletion, dynamic deletion of related control statements from the input file has the following advantages for
KDCDEF:

® Manual deletion of KDCDEF statements from the KDCDEF input file is messy and prone to errors. Due
account must be taken of relationships between the objects and, hence, between the KDCDEF statements
during the manual deletion process. If any such relationships are overlooked, you must repeat the KDCDEF
run. This only adds to the downtime.

® You can automate the procedures involved in regeneration by calling the offline inverse KDCDEF followed by
KDCUPD, see openUTM manual “Generating Applications”.

Over and above this, please note that under certain circumstances, when objects are being deleted manually, data
stored in the KDCFILE and relating to the deleted objects can be passed to the new KDCFILE by KDCUPD, which
is executed in conjunction with the following regeneration operation:

You wish to prevent KDCUPD from transferring the data from the old KDCFILE for a given file (e.g. because the
"new" object has the same name and type but different properties). However, with KDCUPD you can only exclude
the transfer of data for all objects of a given type, but not for a given object. You should therefore delete the object
from the configuration dynamically. The object should be included again in the new generation.

In this case, KDCUPD does not transfer the data belonging to this object, as KDCUPD does not transfer the data of
deleted objects.

C For information on update generations in a UTM cluster application, see the corresponding subsection in
the openUTM manual “Using UTM Applications on Unix, Linux and Windows systems”.

102



openUTM V7.0. Administering Applications. User Guide.

Example

The new configuration should contain a transaction code with the name of an asynchronous transaction code which
existed in the “old” configuration. However, the new transaction code calls a different service (i.e. it is assigned to a
different program unit). A distinction must be made between the following cases:

® The properties of the "old" transaction code have been changed:
In this case, if you enter TRANSFER ASYNTACS=YES, KDCUPD transfers the message queue of the “old”
transaction code to the new KDCFILE together with the asynchronous jobs in the queue and assigns them to the
“new” transaction code. Entering KDCUPD with TRANSFER ASYNTACS=NO ensures that none of the message
gueues for asynchronous transaction codes are transferred from the old KDCFILE to the new one.

® The old transaction code was dynamically deleted from the configuration. In the new configuration, it is included
again:
In this case, even if you enter TRANSFER ASYNTACS=YES, KDCUPD does not transfer the message queue
for the old transaction code to the new KDCFILE because KDCUPD does not transfer any data from deleted
objects.

The same applies to message queues for LTERM partners and USER queues of users.

103



openUTM V7.0. Administering Applications. User Guide.

6 Administration using commands

To enable you to use the administration commands of openUTM, the following requirements must first be fulfilled:

® The standard administration program KDCADM must have been generated (KDCDEF statement PROGRAM) or
included in the configuration dynamically (administration program with KC_CREATE_OBJECT and obj_type
=KC_PROGRAM).

® The administration commands which you want to use must have been generated as transaction codes (KDCDEF
statement TAC) or included in the configuration dynamically (administration program with
KC_CREATE_OBJECT and obj_type=KC_TAC).

For details of KDCDEF generation for commands and of the authorization level required for calling commands, see
chapter “Access rights and data access control”.

The openUTM command interface provides a dialog command and an asynchronous command for every KDCADM
administration function. You can therefore terminate all actions (exception: shutting down the application run with
KDCSHUT KILL), either in dialog or message queuing.

i openUTM commands can be issued by users on a terminal, by client programs and by partner
applications. However, in the first instance, they are intended for terminal input. For administration by
client programs and other applications, the program interface to administration is far more suitable.

104



openUTM V7.0. Administering Applications. User Guide.

6.1 Administration in dialog

The dialog administration commands can be used by:

® users on terminals

* UPIC clients

® TS applications

® HTTP clients

® | U6.1 or OSI TP partner applications

® other dialog program units in the application

i The user IDs, LPAPs and OSI-LPAPs, which are calling the commands must have administrator
authorization.

Input of administration commands

A user on the terminal must enter the commands in line mode. Formatted entries are not accepted (exception:
commands which have no operands).

The advantage of entering commands in line mode is that command processing does not take much time and
administration tasks can also be performed in conjunction with other services.

In the UTM application on a BS2000 system, entries for administration commands will be rejected if an
edit profile was used the last time that output was issued.

Output of results

openUTM returns the result of command processing to the job-submitting service. Output to the terminal also
occurs in line mode.

If output to a terminal does not fit on one page of the screen, openUTM offers a continuation prompt on the last line
of each screen display which can be used to continue output from the current position.

The chapter “Administration commands - KDCADM” describes what the result message for each command looks
like in the section describing the relevant commands.

Output after successful processing of an administration command does not necessarily mean that the action you
requested has been completed successfully. With some commands, the message merely means that openUTM has
initiated the action (e.g. to establish a connection, to exchange programs). The reason for this is that it takes an
extended period for these actions to be carried out or that openUTM is not able to execute the action until a later
time. You can find out whether the appropriate action was carried out successfully by submitting a KDCINF query at
a later date. With some of these actions (e.g. program exchange), openUTM generates K messages after
processing is complete which indicate to you whether or not the action was performed successfully. These
messages are usually sent to the message destination SYSLOG; output takes place in standard form (SYSOUT
Istderr).

105



openUTM V7.0. Administering Applications. User Guide.

6.2 Administration using message queuing

The asynchronous commands can be called by:

® terminal users
® TS applications
® | U6.1 or OSI TP partner applications

® other dialog or asynchronous program units in the application
i The users/(OSI-)LPAPs that call the commands must have administration authorization.

When an asynchronous command is submitted, an asynchronous job is generated which openUTM adds to the
message queue of the relevant administration TACs of KDCADM. The job is then executed independently of the job-
submitting service or program unit.

The asynchronous commands make “programmed or automatic administration” possible. The data supplied by the
standard administration program KDCADM can be passed to another program unit which analyzes the data and
initiates appropriate actions (calling additional commands or transaction codes). The asynchronous commands can,
for example, be called by event service MSGTAC which responds to certain events (UTM messages) when an
administration command is called.

Submitting administration commands

At a terminal, asynchronous commands must be entered in line mode, as they are with administration in dialog
mode. Partner applications pass commands together with operands to the application. The same operands are
passed as in dialog mode. The asynchronous commands differ from dialog commands only in terms of their name.

A KDCS program unit calls an asynchronous command, either by submitting an FPUT NE call or, if the command is
to be executed by a certain time, by submitting a DPUT NE call.

You supply the name of the asynchronous command (=transaction code) to the KDCS parameter field KCRN of the
call. The message area for the call must contain the operand list of the administration command. You must pass
every administration command in an FPUT or DPUT call.

You can send several calls relating to the same administration command and which are to be processed in one
transaction as message sections. Every message section must contain an administration command (including the
operands). The administration program KDCADM reads the message sections in a loop of FGET calls and
processes them.

FPUT NT or DPUT NT First call of the administration command, e.g. KDCLTRMA
FPUT NT or DPUT NT Second call from KDCLTRMA
Further calls from KDCLTRMA

FPUT NE or DPUT NE Last call from KDCLTRMA

The user ID under which the program unit is running must have administration privileges. The MSGTAC program
unit always has administration privileges (see also the description of the MSGTAC program unit in the openUTM
manual ,Programming Applications with KDCS").

106



openUTM V7.0. Administering Applications. User Guide.

Output of the result

After the job has been processed, openUTM informs you of the result via an asynchronous message. This message
has the following format:

Header
1st line of result (= 1st line on screen, as for dialog output)
2nd line of result (= 2nd line on screen, as for dialog output)

The result is output with the same number of lines as the corresponding dialog command. Only the line output in
dialog mode for the scrolling function is omitted.

The structure of screen lines for dialog output is illustrated in chapter "Administration commands - KDCADM" beside
the description of the appropriate command.

Structure of header

ADMCMD: Command Name @ blank | Operands in the administration command

8 bytes 8 bytes 1 byte | ... variable ...

Recipient for the result

All messages generated by the asynchronous commands go to the same recipient (DESTADM) which can be
defined either during KDCDEF generation or at runtime by administration using either WinAdmin, WebAdmin or the
KDCADMI program interface (opcode=KC_MODIFY_OBJECT and object _type=KC_MAX_PAR, see
"obj_type=KC_ MAX_ PAR"). Administration can define a different recipient at any time. A recipient can take the form
of an asynchronous TAC which further processes the result or the LTERM partner of a terminal, printer or a TS
application.

If no recipient has been defined, openUTM still carries out the administration commands but the result messages
are lost in the process.

However, if an asynchronous TAC is defined as the recipient, and if it is not available, e.g. because it is disabled,
the command is not executed and openUTM generates the message K076.

If the recipient is an LTERM partner, the result is issued as an asynchronous message.
If the recipient is an asynchronous TAC, the relevant program unit must read every single line of the result with an
FGET call. The first FGET call supplies the header. Every subsequent call supplies one line of screen output.

i The layout of the output is not subject to the compatibility guarantee, i.e. it may vary when changing to a
new version of openUTM. Program units which evaluate the output from administration commands may
therefore have to be adapted when a new version is installed.

107



openUTM V7.0. Administering Applications. User Guide.

Assignment of jobs to results for the recipient

When entering the operands of an asynchronous command, you can also enter a comment in inverted commas
(“comment”). This comment can then be evaluated by the recipient for the results message.

As a comment you can, for example, enter a job number. The recipient can use this job number to identify the job.

In this case, the comment should be entered before the operand to ensure that job identification is always at the
start of each message and is easy to address.

asynchronous comand "coment " operands

108



openUTM V7.0. Administering Applications. User Guide.

7 Writing your own administration programs

The KDCADMI program interface allows you to write your own administration programs. You must always write an
administration program as a KDCS program unit, i.e. it must be framed by an INIT and a PEND call. The PEND call
should always terminate the transaction.

You can create administration programs:

® as dialog program units for administration in dialog mode

® as asynchronous program units for administration by means of message queues, e.g. for automatic
administration, see chapter “Automatic administration”.

Every administration program has the following structure:

INIT

MEET (or FGET, if it is an asynchronous program
Anal yse i nput

KDCADM (cal |l administration interface)

[ KDCADM ] (several calls if necessary)

[ RSET]
MPUT (or FPUT/ DPUT)
PEND

You can submit several administration calls in an administration program. If you start a number of calls in a
transaction, you must take account of the fact that some calls have to be made in a certain order and that a number
of actions prompted by administration programs are subject to transaction management, i.e. they are not executed
until a PEND call has been carried out successfully. In this case, you should provide a RSET call in the event of a
fault.

A UTM application can have several administration programs for different purposes. An administration program can
be started from a terminal, a client or another program unit (e.g. MSGTAC) or indeed from another application.

109



openUTM V7.0. Administering Applications. User Guide.

7.1 Dialog administration programs

If you wish to perform administration tasks in dialog mode, you can:

® group several administration jobs in one program, or
® program the administration tasks as a multi-step service and

® input and output the data using formats (only on BS2000 systems)

The two examples below outline how you can implement this.

110



openUTM V7.0. Administering Applications. User Guide.

7.1.1 Several administration calls

In this example, a load module, shared object or a DLL available in several versions is to be replaced at runtime
with a new version and extended by a new program unit with a new TAC. The exchange operation runs in three
steps.

First of all, a number of files must be requested by KDCADMI, e.g. the version of load module/shared object/DLL
loaded that is before the configuration (TAC, PROGRAM statement) is modified in a second step. The actual
exchange takes place in the final step.

#i ncl ude <kcadm nc. h> /* Include file for the adm nistration */

INT

MGET /* Read in data (nane, TAC, ...) */
/* of prog. unit being replaced */

Anal yse i nput
/********************* 1st SectlonChECk and query *********************/

KDCADM opcode=KC _GET_OBJECT /* |s space for the TAC PROGRAM ... */
/* statenents reserved ? */
KDCADM opcode=KC_GET_OBJECT /* Check whet her TAC PROGRAM st atenents ... */
/* already exist */
KDCADM opcode=KC_GET_OBJECT /* Determi ne current version of |oad nodule */
/* shared object */

if {error in section 1:
MPUT with PEND FI } /* |f error message appears on screen */

/********************* 2nd Sectlon dyn genel’atlon *****************I
KDCADM opcode=KC_CREATE_OBJECT

/* Insert PROGRAM statenent */

KDCADM opcode=KC_CREATE_OBJECT

/* Insert TAC statenent */

if {error in section 2: RSET}/* roll back if fault in transaction */

/********************* 3rd Sectlon repl aCl ng program ********************/
KDCADM opcode=KC_MODI FY_OBJECT

/* Exchange programunit */

MPUT /* Message on screen */

PEND FI

If errors occur in section 2, the RSET call is necessary to prevent inconsistent generation from occurring. The
KC_CREATE_OBJECT operations must be specified for the objects shown in this sequence (PROGRAM TAC),
otherwise openUTM is unable to generate the necessary references.

111



openUTM V7.0. Administering Applications. User Guide.

7.1.2 Multi-step service

In this example, information about the UTM application is retrieved in a first step and then, if necessary, object

properties are modified in a second step. Both programs operate using a #format.

/************************ Program Unlt ADNREAD ***************************/

#i ncl ude <kcadm nc. h> /* Header file for adm nistration
INIT
MGET ... KCVF=#FORMADM /* Entries are read in with a fornmat

/* and the input is analyzed
KDCADM opcode=KC_GET_OBJECT

/* Adm nistration call, UTM sends data to
/* the program

MPUT KCVF=#FORMADM /* Qutput data/result to screen

PEND RE KCRN=ADMMOD /* Service is continued

*

/************************ Program unlt ADM\/GD Rk I R Ik kR

#i ncl ude <kcadm nc. h> /* Header file for administration
INIT
MGET ... KCMF=#FORVMADM /* Entries are read in with a format

/* and the input is analyzed
KDCADM opcode=KC_MODI FY_OBJECT

/* The required object is nodified

/* Several KDCADM calls are possible
MPUT KCMF=#FORVADM /* Qutput data/result to screen
PEND FI /* Service is term nated

You can extend these programs, for instance, as follows:

® analyze the responses to the KDCADMI call and, in the event of errors, issue an appropriate message or

® write the data supplied to an LSSB in ADMREAD which can be reused in ADMMOD.

openUTM on Unix, Linux and Windows systems does not support a formatting system, so if you want to call the
program using utmdtp in a shell resp. DOS window, you must program the MGET and MPUT calls in line mode

You can also address this program using a UPIC client.

*

/

*/
*/

*/
*/
*/
*/

*/
*/

*/
*/
*/
*/

112



openUTM V7.0. Administering Applications. User Guide.

7.2 Diagnostic options for the administration interface

For error diagnosis for calls made to the administration interface, there are the two areas Administration DIAGAREA
and Administration USERAREA in the UTM dump and the ADMI trace as a individual file. openUTM offers the
following diagnosis options:

® Inthe UTM Diagarea, the KDCS opcode ADMI displays the administration interface.

® A simultaneous log is kept for all calls in Administration DIAGAREA. The Administration DIAGAREA is structured
in a similar manner to the UTM Diagarea and is described cyclically.

® A simultaneous service-specific log is kept for all data transferred to openUTM in Administration USERAREA
(data area or selection area). In each case, the Administration USERAREA only receives the data of one call to
the administration interface.

® You can enable the ADMI trace to diagnose errors that occur in programs that use the administration program
interface (KDCADMI).

®* On BS2000 systems, if SAT logging is activated and the UTM event ADM-CMD is selected, all calls to the
administration interface are logged. In addition, in the case of opcode=KC_GET_OBJECT, the return codes
KC_MC _OK and KC_MC_LAST ELT are logged successfully.

For a description of Administration DIAGAREA, Administration USERAREA, ADMI trace and of the structure of the
SAT log records, please refer to the relevant openUTM manual "Messages, Debugging and Diagnostics” for the
platform you are using.

113



openUTM V7.0. Administering Applications. User Guide.

8 Central administration of several applications

If you want to administer several UTM applications centrally, you can either use WinAdmin or WebAdmin or perform
administration using your own command procedures or administration programs.

WinAdmin and WebAdmin provide all the functions of the programming interface in a convenient user interface.
You can administer several UTM applications running on different computers with BS2000, Unix, Linux or
Windows systems at the same time.

WinAdmin and WebAdmin are easy and quick to use, as no programming is required, either on the
administration computer or in the UTM applications to be administered.

You can create your own command procedures or programs if, for instance, you wish to use functions that are
not provided by WinAdmin or WebAdmin.

The administration tasks are split into a centralized part, the administration application, and a remote part which
runs on the particular UTM application to be administered.

You can handle central administration either via the command interface or via the program interface. You are
advised to always use the program interface for the administration of the program interface.

A number of basic models are available for configuring the central administration functions, see "Configuration
models for own application of administration".

Administration of UTM cluster applications (Unix, Linux and Windows systems)

You can administer the node applications of a UTM cluster application together.

WinAdmin and WebAdmin provide administration functions which you can apply globally to all of the node
applications of the UTM cluster application. Furthermore, WinAdmin and WebAdmin allow you, for example, to
display statistical summaries which include all the running node applications.

For this reason, you are recommended to use WinAdmin or WebAdmin to administer UTM cluster applications.

You can create your own command procedures or programs in the usual way. Additional data structures are
available for administering UTM cluster applications:

® The data structure kc_cluster_par_stris defined for the parameter type KC_CLUSTER_PAR. UTM uses
kc_cluster_par_strto return the current settings for the global properties made in a UTM cluster application
together with current data (e.g. generation time, start time, number of active and generated node applications)
(see section "kc_cluster_par_str - Global properties of a UTM cluster application™).

® The data structure kc_cluster_node_stris defined for the object type KC_CLUSTER_NODE. UTM uses
kc_cluster_node_str to return the properties of the individual node applications (instances) in a UTM cluster
application (see section "kc_cluster_node_str - Node applications of a UTM cluster application”).

® The data structure kc_cluster_curr_par_stris defined for the object type KC_CLUSTER_CURR_PAR. UTM
returns current values for the UTM cluster application in kc_cluster_curr_par_str (see section
"kc_cluster_curr_par_str -Statistics values of a UTM cluster application"). In addition, kc_cluster_curr_par_str
can be used to reset the statistics counters of the UTM cluster application.

In section "Generation example for a UTM cluster application" in chapter "Administration via UPIC clients", you
can find a generation example for the administration of a UTM cluster application via a UPIC client.

Cs You can find further information on administering UTM cluster applications in the openUTM manual
“Using UTM Applications on Unix, Linux and Windows Systems”

114



openUTM V7.0. Administering Applications. User Guide.

8.1 Administration using WinAdmin and WebAdmin

This section provides you with an introduction to working with WinAdmin and WebAdmin. For detailed information,
see

* the WinAdmin Description which provides a comprehensive overview of the range of functions and the
WinAdmin handling. This document is available online as a PDF file.

* the WebAdmin Description which provides a comprehensive overview of the range of functions and WebAdmin
handling. This document is available online as a PDF file.

® the online help system which describes context-sensitively all the dialog boxes and associated parameters
available in the graphical user interface of WinAdmin and WebAdmin. It also illustrates how to configure
WinAdmin and WebAdmin in order to administer UTM applications.

WinAdmin and WebAdmin allow you to use the complete range of functions of KDCADMI, for instance to add
objects to configurations dynamically, delete objects or start and terminate UTM applications. Furthermore,
additional functions are available which cannot be accessed using KDCADMI:

® Definition of message collectors in order to query, display and archive UTM messages from the live UTM
applications,

® Administration of message queues,

® Administration and control of printers,

® Reviewing the contents of GSSBs and deleting GSSBs,

® Creation and deletion of temporary queues,

® Grouping of several administration steps in a single transaction (only WinAdmin),

® Extremely comprehensive support for the UTM security concept using roles and access lists,

® Definition of actions such as storing statitic values in files or reacting to thresholds being exceeded or not met,

® Collection and archiving of statistical data on the UTM applications.

As far as openUTM is concerned, WinAdmin and WebAdmin area UPIC-R type clients. Before you can administer a
UTM application using WinAdmin or WebAdmin, you must therefore

® generate WinAdmin or WebAdmin access in the UTM application (see "Adapting generation of the UTM
application"),

® and configure the connection parameters in WinAdmin or WebAdmin (see "Configuration of WinAdmin and
WebAdmin").

115



openUTM V7.0. Administering Applications. User Guide.

8.1.1 Adapting generation of the UTM application

On the UTM application side, access to the program KDCWADMI and the UPIC connection from WinAdmin or
WebAdmin must be generated.
Enabling access to the program interface

In order to enable access to the program interface, the program KDCWADMI and the TAC KDCWADMI must be
generated. The following KDCDEF statements are required for this:

PROGRAM KDCWADM , COWP=I LCS BS2000 systems
PROGRAM KDCWADM , COWMP=C Unix, Linux and Windows systems

and TAC KDCWADM , PROCRAMEKDCWADM , CALL=BOTH,
ADM N=Y

The program unit KDCWADMI is supplied with openUTM and can be linked to the application or be dynamically
loaded by the application.

openFT must be installed and configured if you want to use WinAdmin or WebAdmin to start UTM applications or
use WinAdmin to initiate KDCDEF/KDCUPD runs. WinAdmin can send or retrieve data via FTP.

116



openUTM V7.0. Administering Applications. User Guide.

Making WinAdmin and WebAdmin known as a UPIC client

In addition, WinAdmin or WebAdmin must be generated as a UPIC client in all the openUTM applications to be
administered using WinAdmin or WebAdmin. The following KDCDEF statements serve as an example (PTERM
/LTERM):

BCAMAPPL bcamappl_name, BS2000 systems
T- PROT=RFC1006

BCAMAPPL bcamappl_name, Unix, Linux and Windows systems
T- PROT=RFC1006, Note: Although LISTENER-PORT is not a
LI STENER- PORT= port mandatory parameter, it is required in practice.

and PTERM pterm-name
LTERM= lterm-name,
BCAMAPPL= bcamappl-name,
PRONAM= processor-name,
PTYPE=UPI C- R

LTERM lterm-name
MAX PRI VI LEGED- LTERME lterm-name

USER wadmin, PASS=CXYZ',

PERM T=ADM N,
RESTART=NO
or TPOOL LTERM= upiclt, However, in this case it is then not
NUVBER=10, possible to set up this connection
PRONAME* ANY, as a privileged LTERM.

PTYPE=UPI C- R,
BCAMAPPL= bcamappl-name

The names pterm-name, Ilterm-name, bcamappl-name, upiclt, and wadmin are freely selectable in accordance with
the naming conventions.

pterm-name is the name you give to the WinAdmin or WebAdmin client. bcamappl-name is the name you give to
the application for client/server communication. upiclt is the prefix for the name of the LTERM partner, wadmin is an
administration-authorized user ID for the application, and XYZ is the password for the wadmin user ID.

The assignment of a password is not mandatory, but a password should nevertheless always be used to maintain
the security of the application.

You need the application name assigned here, the user ID and possibly the password in order to configure
WinAdmin or WebAdmin.

117



openUTM V7.0. Administering Applications. User Guide.

8.1.2 Configuration of WinAdmin and WebAdmin

A configuration database is set up when WinAdmin and WebAdmin are started for the first time. The administration
data of the UTM applications to be administered using WinAdmin or WebAdmin must be stored in this database to
begin with. You use this data to specify the following on the WinAdmin and WebAdmin side:

® what the application is called
® the system on which the application runs
® the properties of the connection

® the users who can administer this application

This data is assigned to the WinAdmin or WebAdmin objects ,Hosts”, ,UTM Applications”, ,UPIC Connections” and
~WinAdmin Users* or ,WebAdmin Users”.

You can also define collections. A collection contains one or more UTM applications. By default, the collection <All
UTM Applications> is set up.

i When changing the WinAdmin or WebAdmin version, you can import the data of the previous version.

Configuration of WinAdmin and WebAdmin objects
The following table lists WinAdmin’s and WebAdmin's objects that have to be defined.
Object Description and properties

Hosts This object describes in WinAdmin or WebAdmin the system on which the UTM application runs
(application host).

UTM This object describes the UTM application to be administered.
Applications
UPIC You use this object to define the connection from WinAdmin or WebAdmin to the application.

Connections

WinAdmin / | After installation, only the WinAdmin/WebAdmin user ID “Master” is authorized to do everything. It
WebAdmin is advisable to define further user IDs with restricted authorizations.
Users

Collections | This object combines UTM applications to form a collection.

For details, see the description of WinAdmin and/or WebAdmin.

Working with collections

A WinAdmin/WebAdmin user can combine multiple applications to form a collection in order to simplify their
administration.

Using WinAdmin, it is even possible to administer objects from different applications in an open collection together, i.
e. in a single step.

118



openUTM V7.0. Administering Applications. User Guide.

Checking availability

When you have performed the necessary configuration steps in UTM and WinAdmin/WebAdmin, you can check
that the UTM application is accessible.

If the application is available, you can view its objects. These are displayed graphically in the WinAdmin/WebAdmin
user interface in a tree structure or as a table.

119



openUTM V7.0. Administering Applications. User Guide.

8.2 Configuration models for own application of administration

You can implement the administration application as a UPIC client application, as a UTM application with distributed
processing (with or without global transaction management) or as a TS application (SOCKET, CMX, DCAM, UTM,
HTTP client). The figure below illustrates all possibilities and the interfaces they use.

UTM applications

PTERM LPAP/OSI-LPAP... PTERM PTERM
,PTYPE=UPIC-R ,PTYPE=APPLI ,PTYPE=SOCKET
U M U M U M UTM UT™m

™ ut ™ uTt ™ uT

CPI-C KDCS ICMX/IDCAM .... SOCKET
I I T
UT™m UT™M CMX/
client server DCAM...
UPIC client UTM-VTV TS application TS application

Administrations applications

In all cases, the administration application must be generated with administration privileges in the applications to be
administered.

The diagram applies equivalently for the administration of UTM cluster applications, see also section "Generation
example for a UTM cluster application” in chapter "Administration via UPIC clients".

120



openUTM V7.0. Administering Applications. User Guide.

8.2.1 Administration via UPIC clients

A UPIC client can run on BS2000, Unix, Linux and Windows systems. If the platform you select is Windows system,
you have the advantage of being able to generate a friendly graphical user interface for the administration program.

A client can also be restarted in that it can request the latest output message and continue the interrupted service;
see the manual ,openUTM-Client for the UPIC Carrier System”.

Please note that a UPIC client

® can only communicate with one application at any one time, if it is running under a BS2000 system
® cannot itself send any asynchronous jobs to openUTM

® always has to take the initiative, i.e. it cannot be started from the application to be administered.

i UPIC clients for Unix, Linux and Windows systems are available for the products WinAdmin and
WebAdmin.
WinAdmin and WebAdmin offer the full function scope of the KDCADMI program interface (see the
section "Administration using WinAdmin and WebAdmin").

UTM on BS2000 systems is supplied with a UPIC client program complete with an SDF command
interface in the form of a fully compiled object code. You can adapt the configuration for this program to
the needs of your own configuration. For more details, see section "CALLUTM - Tool for administration
and client/server communication (BS2000 systems)" of the appendix.

121



openUTM V7.0. Administering Applications. User Guide.

Programming

What you program is a UPIC program which sends the data required for administration (the administration

command or input for the administration command) to the remote application and receives the corresponding output

from the application being administered. The diagram below gives a rough outline of a UPIC program for Unix,

Linux or Windows systems.

#i ncl ude <upic. h>

Enabl e_UTM UPI C [ *
Initialize Conversation /*
/*
/*
Set _TP_Nane [ *
/*

Sign on to UPIC carrier system
Initialize conversation;

sym dest _nane addresses the
application to be adm nistered.
TAC for admi nistration program
or KDC.... adnministration TAC

Set _Conversation_Security_ Type=CM SECURI TY_PROGRAM

/*
Set _Conversation_Security_User_ID /*
/*
Set _Conversation_Security_Password /*
Al l ocate /*

mencpy (buffer, ) /*
/*

Send_Dat a /*
/*
Recei ve /*
/*
/*

Di sabl e_UTM UPI C /*

Use UTM user concept

Set UTM user | D which nust have
adm ni stration privileges.
Password for user ID

Set up conversation.

Supply data area with
conmand or program i nput

Send command/ program i nput to
t he admi ni stered application.

Message returned by UTM appli -
cation and then eval uated by
t he program

Sign off UPIC carrier system

*/

*/
*/
*/
*/

*/
*/
*/
*/

*/

*/
*/

*/
*/

*/
*/
*/

How the UPIC program can send and receive data is described in section "Central Administration using commands"

and section "Central Administration using programs".

122



openUTM V7.0. Administering Applications. User Guide.

Generation example (standalone UTM application)

The UPIC program on a Unix or Linux system UNIX0001 is to administer three UTM applications. One application is
running on a BS2000 system D123ZE45, the second on a Unix system D2345012 and the third on a Windows
system WSERVO01. The UTM applications are to be able to shut down with the administration TAC KDCSHUT and
to call the administration program with the TAC TPADMIN.

1. Entries in the UPIC client’s upicfile

upicfile:

* Local name of the CPI-C application

LNADM NOO1 UPI CO001;

* UTM application on a BS2000 system

HDUTMAWO01 APPLI BS2. D123ZE45 TPADM N,

* UTM application on a Unix or Linux system
SDUTVAWD02 APPLUNi x. D234S012 TPADM N PORT=30000;
* UTM application on a Wndows system
SDUTVAWO03 APPLI W N. WBERVO1 TPADM N PORT=30000;

2. UTM generation on the BS2000 system:

BCAMAPPL APPLI BS2, T- PROT=I SO
PTERM UPI CO001, PTYPE=UPI C- R, LTERM=UPI CLTRM
, BCAMAPPL=APPLI BS2, PRONAM=UNI X0001, . . .
LTERM UPI CLTRM KSET=ALLKEYS, USER=REMADM N, RESTART=N
USER REMADM N, PERM T=ADM N, RESTART=NO *)
TAC KDCSHUT, PROGRAM=KDCADM ADM N=Y *x)
TAC TPADM N, PROGRAM-FADM NPRG, ADM N=Y, . . .
PROGRAM ADM NPRG, . . .
PROGRAM KDCADM

The processor name UNIX0001 must be generated in BCAM (by means of a BCIN or CREATE-PROCESSOR
command or in the RDF). BCMAP entries are not required for RFC1006 via port 102.

3. UTM generation on Unix and Linux systems:

BCAVAPPL APPLUNI x, LI STENER- PORT=30000, TSEL- FORVAT=T, T- PROT=RFC1006

PTERM UPI C0001, PRONAM=UNI X0001, TSEL- FORMAT=T, PTYPE=UPI C- R, LTERM=UPI CLTRM
, BCAMAPPL=APPLUni x

LTERM UPI CLTRM KSET=ALLKEYS, USER=REMADM N, RESTART=N

USER REMADM N, PERM T=ADM N, RESTART=NO *)

TAC KDCSHUT, PROGRAMFKDCADM ADM N=Y **x)

TAC TPADM N, PROGRAM=ADM NPRG, ADM N=Y, . . .

PROGRAM ADM NPRG, . . .

PROGRAM KDCADM

123



openUTM V7.0. Administering Applications. User Guide.

4. UTM generation on Windows systems:

BCAMAPPL APPLI W N, LI STENER- PORT=30000, TSEL- FORMAT=T, T- PROT=RFC1006
PTERM UPI C0001, PRONAM=UNI X0001, TSEL- FORMAT=T
PTYPE=UPI C- R, LTERM=UPI CLTRM BCAMVAPPL=APPL| W N
LTERM UPI CLTRM KSET=ALLKEYS, USER=REMADM N, RESTART=N
USER REMADM N, PERM T=ADM N, RESTART=NO *)
TAC KDCSHUT, PROGRAMEKDCADM ADM N=Y **)
TAC TPADM N, PROGRAM=ADM NPRG, ADM N=Y, . . .
PROGRAM ADM NPRG . . .
PROGRAM KDCADM

*)  The connection user ID is used here, for which no password protection applies. If you require greater
security, the UPIC client has to pass on a “genuine” user ID to openUTM using the CPI-C calls
Set_Conversation_Security Type/_User ID/ Password. In this case the user ID must have
administrator privileges and be password protected.

**)  You should generate all the relevant TACs. KDCSHUT must always be generated. In the UPIC,
program, the TAC can be set via the program (the default is TPADMIN).

Generation example for a UTM cluster application (Unix, Linux and Windows systems)

The UPIC program on Unix or Linux system UNIX0002 is to administer a UTM cluster application on the Linux
systems C123DE10, C123DE11 and C123DE12. The UTM cluster application APPLLINC consists of three nodes
and the administration program should be able to call it by means of the TAC REMADMIN.

1. Entries in the UPIC client’s upicfile:

The UPIC client is configured in a way that requires a separate Symbolic Destination Name to be specified for
each node.

* Local nane of the CPI-C application

LNADM NOO1 UPI C0001;

* UTM cluster application on the Linux system
CDcl node01 APPLLI NC. C123DE10 REMADM N

CDcl node02 APPLLI NC. C123DE11 REMADM N

CDcl node03 APPLLI NC. C123DE12 REMADM N

In this case, the UPIC program must explicitly address the relevant node (clnode01, clnode02 or cinode03).

124



openUTM V7.0. Administering Applications. User Guide.

2. UTM generation on the Linux system (initial KDCFILE):

BCAMAPPL APPLLI NC, T- PROT=I| SO
PTERM UPI C0001, PTYPE=UPI C- R, LTERM=UPI CLTRM
, BCAMAPPL=APPLLI NC, PRONAM=UNI X0002, . ..
LTERM UPI CLTRM KSET=ALLKEYS, USER=REMADM N, RESTART=N

USER ADMJUSRO1, PERM T=ADM N, RESTART=NO
USER ADMUSR02, PERM T=ADM N, RESTART=NO
USER ADMUSRO03, PERM T=ADM N, RESTART=NO
TAC KDCSHUT, PROGRAMEKDCADM ADM N=Y

TAC REMADM N, PROGRAMFADM NPRG, ADM N=Y, . . .
PROGRAM ADM NPRG . . .

PROGRAM KDCADM

*)  For each node, you should generate a user ID with administration authorizations since, by default, a
user in a UTM cluster application continues to be signed on when the conversation terminates. The

UPIC program must assign the user ID.

**)  You should generate all the relevant administration TACs. In the UPIC, program, the TAC can be set via

the program (the default is REMADMIN).

*)
*)

**)

125



openUTM V7.0. Administering Applications. User Guide.

8.2.2 Administration via distributed processing

If you want to handle central administration for openUTM via distributed processing, you have the following
advantages:

® Several applications can be administered simultaneously.

® Administration jobs can be started both from the administration application itself and from the applications being
administered (the polling function).

* Time-driven administration jobs can be set up very easily (DPUT).

® You can, if necessary, work with global transaction management. This allows you, for example, to ensure that
certain application parameters are modified simultaneously for all applications, which cannot be guaranteed
when administering applications via a UPIC client or a TS application (as network failures can mean that the
operation cannot be performed for one of the applications while the others are already working with the new
values).

You can use the LU6.1 or OSI TP protocols for communication between the administration application and the
servers being administered.

Programming

If you require global transaction management for your administration operations, one transaction from the
administration application will need to communicate with several job receivers. The figure below illustrates this
principle using the example of two administered applications, each of which submits several administration calls.

126



openUTM V7.0. Administering Applications. User Guide.

The program TPADM sends jobs to both applications. The program TPREC is called only after responses have
been received from both applications. Once both applications have completed their respective jobs properly,
TPREC terminates the global transaction and the service.

The following example gives an idea of what the programs TPADM and TPREC might look like. The administrative
task is, from a Unix computer, to initiate the simultaneous exchange of a program in a UTM application on a Unix or
Linux system and a UTM application on a BS2000 system. Program exchange is handled differently on Unix, Linux
and Windows systems and BS2000 systems, however. BS2000 systems determine the current version of the load
module, marks the load module for exchange and then reloads the application. On Unix, Linux and Windows
systems, the program is replaced immediately. The administered applications can use a program like the one in
chapter "Several administration calls". The figure below illustrates this example for LU6.1 and OSI TP without global
transaction management.

If you are using a UTM application on Windows systems, either instead of the administered or the administering
UTM application on Unix or Linux systems, or both, then programming and generation are the same. Note that port
number 102 cannot be used for UTM applications on Unix, Linux and Windows systems.

/* Programunit TPADM sends data to applicati ons UTMAPPL1 and UTMAPPL2 */

INIT
mencpy (buffer, ...) /* Edit data. */
APRO DM KCPI =VA D1 KCPA=UTMAPPL1 /* Address job-receiving service */
KCRN=TPADM N /* TPADM N i n UTMAPPL1. */
MPUT NE buffer /* Send data to UTMAPPLI1. */
KCRN=VG D1
APRO DM KCPI =Vd D2 KCPA=UTMAPPL2 /* Address job-receiving service */
KCRN=TPADM N /* TPADM N i n UTMAPPL2. */
MPUT NE buf fer /* Send data to UTMAPPL2. */
KCRN=VA D2
PEND KP KCRN=TPREC /* Wait for job receiver. */

127



openUTM V7.0. Administering Applications. User Guide.

For OSI TP with global transaction management, additional statements are required in order to:

® select the commit functional unit
(APRO... KCOF=C)

® request UTMAPPLL1 to initiate the end of the transaction and dialog
(CTRL PE, KCRN=VGID1)

® request UTMAPPL2 to initiate the end of the transaction and dialog
(CTRL PE, KCRN=VGID1)

/* Fol |l ow up program TPREC recei ves confirmation from job-receiving
/* service
INIT
KCRPI =VA Dx /* 1st nessage cones fromJS
/* service with service |ID VG Dx.
MGET NT KCRN=VAE Dx /* Read response fromJS service 1,
KCRCCC=12Z KCRPI =VG Dy /* Further nessage from other JS
/* service (VA Dy) already waiting
if (OK) /* JS service 1 has initiated
{ /* program exchange.
MGET NT KCRN=VG Dy /* Read response fromJS service 2.
KCRCCC=10Z KCRPI =SPACES /* No further nessages waiting.
if (OK) /* JS service 2 has initiated
{ /* program exchange
MPUT NE /* Send nessage to administrator.
PEND FI /* Term nate gl obal transaction.
} else error_routine();
} else error_routine();
error_routine () /* Error routine
{ MPUT NE /* Notify adm nistrator
PEND FR } /* roll back and term nate

/* gl obal transaction.

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

128



openUTM V7.0. Administering Applications. User Guide.

Generation example
The example shows an LU6.1 generation; the administration application uses two-level addressing.

In the example the port numbers and computer names (BS20HOST, UnixHOST, UnixADMI) are specified in the
generation statements. See the openUTM manual “Generating Applications” under "Providing address information’
for further information.

1. Generation of the UTM administration application on Unix or Linux systems

BCAMAPPL ADM NAPP, LI STENER- PORT=1234, T- PROT=RFC1006, T- SEL- FORMAT=T
* k% %
*** Connection to application on Unix or Linux system the adm nistrator
*** gpplication is the job submtter.
SESCHA ADMAPPL1, PLU=Y, CONNECT=Y
LPAP UTMVAPPL1, SESCHA=ADVAPPL1
LSES ADVAGL, LPAP=UTVAPPLL, . ..
CON APPLUNIi x, BCAVAPPL=ADM NAPP, PRONAM=Uni xHOST -

, LI STENER- PORT=2345, LPAP=UTVAPPL1, ...
* k%
*** Connection to application on the BS2000 system
*** the admi nistrator application is the job submtter.
SESCHA ADMAPPL2, PLU=Y, CONNECT=Y
LPAP UTMVAPPL2, SESCHA=ADVAPPL?2
LSES ADVAGR2, LPAP=UTVVAPPL2, . ..
CON APPLI BS2, BCAVAPPL=ADM NAPP, PRONAM-BS20HOST -

, LI STENER- PORT=102, LPAP=UTVAPPL2, . ..
* k% %
*** LTAC for the renpte admi nistration progran two-I|evel addressing
*** | TACCRTAC is the TACin the renote application.
LTAC TPADM N
* k% %
*** TACs for both adm nistration prograns
TAC TPADM PROGRAME. . .
TAC TPREC, PROGRAME. . .

2. Generation of the administered UTM application on the BS2000 system

BCAMAPPL APPLI BS2, T- PROT=I SO

* k% %

*** LU6 generation for the job receiver

SESCHA ADM NREC, PLU=N, CONNECT=N

LPAP UTMADM N, SESCHA=ADM NREC, PERM T=ADM N

LSES ADVAN, LPAP=UTVADM N, . . .

CON ADM NAPP, BCANAPPL=APPL| BS2, PRONAM=Uni XxADM , LPAP=UTNVADM N, . . .
* % %

TAC TPADM N, PROGRAM-ADM NPRG, ADM N=Y

PROGRAM ADM NPRG . . .

129



openUTM V7.0. Administering Applications. User Guide.

3. Generation of the administered UTM application on Unix or Linux systems

BCAVAPPL APPLUNI x, LI STENER- PORT=1234, T- PROT=RFC1006, T- SEL- FORVAT=T
* % %
*** | U6 generation for the job receiver
SESCHA ADM NREC, PLU=N, CONNECT=N
LPAP UTMVADM N, SESCHA=ADM NREC, PERM T=ADM N
LSES ADVAN, LPAP=UTMADM N, . . .
CON ADM NAPP, BCAVAPPL=APPLUNi x, PRONAM=Uni XADM -
, LI STENER- PORT=2345, LPAP=UTVADM N, . . .
* k% %
TAC TPADM N, PROGRAM-ADM NPRG, ADM N=Y
PROGRAM ADM NPRG, . . .

130



openUTM V7.0. Administering Applications. User Guide.

8.2.3 Administration via a TS application

The application can be any TS application such as a CMX application (PTYPE=APPLI) or a socket USP application
(PTYPE=SOCKET), for example. However, you can also use a UTM application, which you generate as a TS
application. The administration application is linked to the administered UTM applications by means of an LTERM
/PTERM or TPOOL statement.

In all cases, the application can:

® simultaneously administer several UTM applications

® be started by the administered applications

How the application can be programmed depends on the type of TS application used. If you are using a UTM
application, you can also use DPUT to send time-driven jobs to the administered applications.

In order to carry out administration by means of a TS application, one of the following cases must apply:

® The connection user ID must have administration authorization, e.g.:

LTERM ADM NLTM KSET=ALLKEYS, RESTART=N, USER=ADM NUS
USER ADM NUS, PERM T=ADM N, RESTART=N

or

® A genuine user ID with administration authorization must be signed on during the signon process for the TS
application.

Generation

For the generation of an administered UTM application on a BS2000 system, it should be possible to call the
command KDCSHUT and to call the administration program with the TAC TPADMIN.

To achieve this, the following statements will be required in the decentralized application for LTERM, TAC and
PROGRAM, irrespective of whether the central application is a socket, CMX or DCAM application:

R S S S S S

*** | TERM TAC and PROGRAM

EE S O S I I S O S I O I S
LTERM ADM NLTM KSET=ALLKEYS, RESTART=N

USER ADM NLTM PERM T=ADM N, RESTART=N

TAC KDCSHUT, PROGRAM=KDCADM ADM N=Y

TAC TPADM N, PROGRAMFADM NPRG, ADM N=Y, . . .

PROGRAM ADM NPRG . . .

PROGRAM KDCADM

To address the central application you must write the following statements depending on which type of application
(DCAM or CMX) you are using. If you are using a UTM application, the same applies depending on whether the
application is linked via NEA or via TCP/IP.

131



openUTM V7.0. Administering Applications. User Guide.

kkkhkkhkhkhhkhkkhkhkhhkhkdhkhkhkhkhkhhkdhkdhhhkhkdkdhhkdhkhdrddhhkdrdhkrhkrhbdrxdhkhrhkrdkrrkdrkhrrrdrhkdxxk

*** DCAM application which comunicates via

*** NEA protocols with openUTM applications: on BS2000 systens

EE S R S O
BCAMAPPL APPLI BS2, T- PROT=NEA

PTERM dcam name, PTYPE=APPL| , LTERM=ADM NLTM

BCAVAPPL=APPLI BS2, PRONAM=dcam conput er

Rk b Sk R IR I R S o S R R o Sk kS A I R O kO R Rk S S o

*** CMX application on Unix or Linux systemvia TCP/ I P-RFC1006
LR R R R R R R EEEEEEREEEEEEEEEEEEREEREEEREEEEEREEEEEEEREEEEEEEEEEEEEEEEEEEEEES
BCAMAPPL APPLUni x, T- PROT=RFC1006
PTERM t - sel ect or, PTYPE=APPLI| , LTERM=ADM NLTM BCAMAPPL=APPLUnI X,
LI STENER- PORT=port - nunber, PRONAM=uni x- conput er

ESE Rk I S S S I S S S

*** Socket application on Unix or Linux system

R Rk b Sk R IR Ik R R o R R Rk kS R S R S S Rk R S b S R S o

BCAMAPPL SOCKETBS, LI STENER- PORT=12000, T- PROT=SOCKET
PTERM SOCKPTRM PTYPE=SOCKET, LTERM-ADM NLTM BCAMAPPL=SOCKETBS,
LI STENER- PORT=port - nunber, PRONAM=uni x- comput er

dcam-name and dcam-computer are the respective names of the DCAM application and computer on which the
DCAM application is running. t-selector is the T selector for the remote CMX application. unix-computer is the name
of the computer on which the CMX or socket application runs. port-number is the port number at which the central
CMX or socket application waits for connection setup requests.

132



openUTM V7.0. Administering Applications. User Guide.

8.3 Central Administration using commands

Alongside the program interface, openUTM also provides the command interface for administration. However, the
command interface only provides a subset of the functionality available in the program interface.

You can use both synchronous and asynchronous commands for central administration. In either case, the central
administration program will have to:

®* make the command available in the prescribed syntax

® send it to the administered UTM application in the form of a message.

The application being administered executes the command as if it had issued it itself. To be able to evaluate the
command output in the central application you will, however, need to observe the differences inherent in
synchronous and asynchronous methods.

Synchronous commands

If you use synchronous administration commands for central administration, the command output will be returned
automatically to the sender, i.e. to the administration program.

This means that any configuration model is suitable for central administration with synchronous commands. If you
are using a UPIC client for Windows systems, you can, for example, write a program using Microsoft Visual Studio
which allows you to enter the administration commands via a friendly Windows interface. The program is able to
filter openUTM’s response before issuing any output so that you only see the parameters that are of importance to
you. You can then implement the message interface to openUTM via a CPI-C program as described in section
“Administration via UPIC clients”.

Asynchronous commands

If you use asynchronous administration commands for central administration, the output is not returned
automatically to the sender. The destination for command output must therefore be generated with MAX DESTADM
in the decentralized applications.

If the central application is a TS application, then specify the LTERM name for the central application in MAX
DESTADM. However, please note that the central application receives this output asynchronously, i.e. it has to
determine the sender.

If you want to handle administration operations in the context of distributed processing, you must also use MAX
DESTADM=TAC to add a further decentralized asynchronous program which receives the output and forwards it
with FPUT to the administration application.

133



openUTM V7.0. Administering Applications. User Guide.

8.4 Central Administration using programs

If you are using the program interface, you can split the tasks in one of two ways between the administration
application and the applications to be administered:

® Decentralized administration programs:
You can use the program interface in such a way that a complete administration program exists within the
administered application which can autonomously determine the necessary parameters and evaluate the data
returned to it.

® Central administration programs
You can use the program interface in the administered application purely as a message interface, i.e. it receives
all parameters from the administration application and returns the results of the call (return codes, data) without
verification.

134



openUTM V7.0. Administering Applications. User Guide.

8.4.1 Decentralized administration programs

If the administered applications use complete administration programs as described in chapter "Writing your own
administration programs", the control of an administration service will essentially reside with the application that is
being administered. The administration program must therefore:

® interpret a message received from the administration application or - in the case of automatic administration, for
example - from an application-internal MSGTAC program

® correctly supply all areas for the administration call

® evaluate and respond to the return codes, i.e. it must notify the administration application in the event of errors
and, where appropriate, roll back the transaction

® evaluate the returned data and decide what data is to be sent to the administration application.

It is advisable to write individual program units for the various administration tasks or, if you are using a complete
administration program, to address the program with different TACs depending on the task required. This will
ensure that the tasks is selected on the basis of the TAC and not on the basis of the message.

Portable administration programs

If you want to use your administration programs in different applications running on different platforms, you can
write the relevant programs in such a way that they can run both on Unix, Linux or Windows systems and BS2000
systems.

This task is simplified by the fact that the program interface has the same data structures on all platforms. You will,
however, need to note the following platform-specific differences:

® There are certain fields and substructures which only have any meaning on one platform
®* When reading data, fields which are not relevant to the given platform are always populated with binary zeros.

®* When modifying or generating objects, the fields which are not relevant to the given platform must be
populated with binary zeros. For this reason, the program should first establish the platform on which it is
running. To do this it has to evaluate the field system type in the structure kc_system par_str after calling
KDCADMI with the following parameters:

opcode=KC_GET_OBJECT

subcodel=KC_APPLICATION_PAR

obj_type=KC_SYSTEM_PAR

Once it has determined which platform it is running on, the program must first reserve the fields that are valid

for all of the operating systems for the administration calls themselves. It then reserves the fields that are
needed for the relevant platform.

® The sort order for characters differs between BS2000 systems and Unix, Linux and Windows systems: BS2000
systems generally use an EBCDIC code and Unix, Linux and Windows systems an ISO code.

®* Names on BS2000 applications only use uppercase letters, whereas Unix, Linux and Windows systems names
can use both lowercase and uppercase.

® Unix, Linux or Windows systems normally use other character sets than BS2000 systems (ASCII/EBCDIC
problem).

The following example shows a portable administration program which replaces a load module, shared object or
DLL in the decentralized application. The program verifies which platform it is running on and uses the result to
effect a program-internal branch.

135



openUTM V7.0. Administering Applications. User Guide.

On Unix, Linux and Windows systems, only the shared object/DLL is replaced, whereas BS2000 systems check
whether the load module is in a common memory pool and, therefore, whether the application in fact needs to be
replaced.

#i ncl ude <kcadmi nc. h> /* Include file for the administration */
INIT
MGET /* Read in nane/date of the program unit */
Anal yze i nput
KDCADM opcode=KC GET_OBJECT /* Query operating system */
KDCADM opcode=KC_GET_OBJECT
/* Determine current version of |oad */
/* modul e and check whether it is at all */
/* possible to replace it. */
i f (BS2000) /* BS2000 routine */
{ KDCADM opcode=KC GET_OBJECT
/* Query | oad node and determ ne whet her */
/* programis marked for exchange . */
KDCADM opcode=KC_MDI FY_OBJECT
/* Replace or mark load nmodule if it is */
/* in a conmobn nenory pool . */

if (common nenory pool)
KDCADM opcode=KC_CHANGE_APPLI CATI ON

/* Repl ace application */
} /* End of the BS2000 routine */
el se /* Uni x/ Li nux/ Wndows routine */
KDCADM opcode=KC_MDI FY_OBJECT
/* Repl ace shared object/DLL */
/* End of the Unix/Linux/Wndows routine */
MPUT /* Message to the initiator */

PEND FI

The program can also be supplemented by means of dynamic generation (TAC, PROGRAM,...) as described in the
example in chapter "Several administration calls".

136



openUTM V7.0. Administering Applications. User Guide.

8.4.2 Central administration programs

You can use the program interface on the side of the applications to be administered as a dedicated message
interface. In this case, control of the administration functions lies entirely with the administration application. This
application supplies the four areas needed for each administration call with the data they require and uses MPUT NT
INE to send it to the administered application.

The administered application merely converts the data supplied to the syntax required by the administration
interface and then calls it. This means that it checks neither the data supplied with MGET nor the codes and data
returned by the call. The diagram below outlines a program of this type.

/**************************************************************************/

/* Di al og program for the adm nistered application */
/* */
/* The program has four buffers in which data is received: */
/* paraneter_area, identification_area, selection_area, data_area */

/**************************************************************************/

INIT
MGET NT in parameter_area /* Fully supplied parameter area */
/* for the administration interface */
MGET NT in identification_area /* The identification area is */
/* supplied as a function of the */
/* opcode for the paraneter area. */
MGET NT in selection_area /* The data supplied to the selection */
/* area depends on the operation and */
/* may only have the length O. */
MEET NE in data_area /* Data is supplied where necessary; */
/* otherwise the length 0 is supplied */
KDCADM ( &par anet er _ar ea, /* The program calls KDCADM without */
& dentification_area, /* checking the data. */
&sel ection_area,
&dat a_area);
MPUT NT paraneter_area /* Paraneter area with the return */
/* codes and other returned data */
MPUT NE dat a_area /* Data area with returned data or */
/* the length O if no data is */
/* returned */
PEND FI /* Termi nate service; info is returned*/

/* to the adninistration application */

137



openUTM V7.0. Administering Applications. User Guide.

The administration application has to send a commensurate number of message segments. In the case of a UPIC

client, the result may look something like this:

/**************************************************************************/

/* UPI C program for the administration application */
/* */
/* The program sends four nmessage segnents */

/**************************************************************************/

Enabl e_UTM UPI C

Initialize_Conversation

[ Set _TP_Nane] /* Set TAC if necessary */
Set _Conversation_Security_ Type /* Sign on as a UTM user */
Set _Conversation_Security_User_I D

Set _Conversation_Security_Password

mencpy (...) /* Supply all data areas */
mencpy  (...)
Send_Dat a paraneter_area /* Send paraneter area */
Send_Data identification_area /* Send identification area */
Send Data sel ection_ara /* Send sel ection area */
Send_Data data_area /* Send data area */
Recei ve paraneter_area /* Contains return codes/info */
Recei ve data_area /* Data area containing the */
/* requested information */

Di sabl e_UTM _UPI C

For details of how to generate this kind of UPIC client, see "Administration via UPIC clients".

If the administration application is running on a different platform to the application being administered, the
characters in the areas supplied may be converted. No problems will arise as long as these areas only contain

printable characters, i.e. the identification, selection and data areas. In the parameter area (parameter_area), which

can also contain non-printable characters and numeric values, you will need to apply a conversion mechanism.

Define an interim parameter area in both applications which only contains printable characters.

The administration application converts the characters in the original parameter area into printable characters,
puts these in the interim parameter area and then sends this to the applications being administered.

The administered applications write the values received to the interim parameter area, convert them to the
correct numeric values and then copy these to the parameter area used for the administration call.

138



openUTM V7.0. Administering Applications. User Guide.

9 Automatic administration

You can use asynchronous programs or administration commands to administer an application automatically. This
can involve having parameters raised or lowered depending on load values or triggering responses to errors. For
control purposes you can, for example, use an MSGTAC program and/or time-controlled jobs.

This is how application control using the MSGTAC program proceeds:

1. An event occurs in the application and generates a message.
2. The message is passed on to the MSGTAC program.

3. MSGTAC analyses the message and then initiates the appropriate operation.

Such operations can, for instance, include calling the KDCADMI program interface, calling an administration
command or starting an asynchronous administration program (FPUT/DPUT), which executes further administration
tasks.

Instead of the MSGTAC program it is also possible to use a program to which a TAC is assigned that is defined as
an additional message destination (KDCDEF statement MSG-DEST).

If you are using WinAdmin or WebAdmin as your administration tool, you can also use it to execute scripts or start
programs when particular events occur, for instance when a threshold value is exceeded.

Another possible form of automatic administration is to have statistical data queried at regular intervals and to
trigger the appropriate responses.

Diagnostic activities are yet another potential application. For certain events you can, for example, activate test
mode, generate traces, create UTM dumps or have data supplied to the openSM2 event monitor.

139



openUTM V7.0. Administering Applications. User Guide.

9.1 Control using the MSGTAC program

How you can automate the administration of an application using the MSGTAC program is illustrated using an
example in which the message K041 Warni ng | evel xx for PAGEPOCOL exceeded triggers an automatic
response. In place of KO41 you can also insert other messages such as KO91 Due to resource bottl eneck
. .. for control purposes.

For this example, the message destination MSGTAC must be defined for KO41, and an MSGTAC program must be
written which processes this message and issues an FPUT output message to start an asynchronous program
PRGKO041.

You will find two versions of PRGKO041 illustrated below. In one example it carries out the administration operations
through the program interface and in the other it uses the command interface. The functions may also be realized
within the MSGTAC routine itself.

Structure of an MSGTAC program

The MSGTAC program can be set up along the following lines:

/*'k*'k*'k*********************** '\/BG'['AC program 'k*'k*'k***********************/

#i ncl ude <kcmnsg. h>

INIT
FGET nessage /* Read nessage */

switch (nsg-id)
{ case Kxx:...
case K041:
{ FPUT data KCRN=PRGK041 /* Call program unit PRGK041l */
br eak;

case Kyy: ..
}
PEND FI

The program PRGKO041 controls the operations necessitated by the occurrence of KO41. The diagram below
outlines what PRGK041 might look like if it uses the program interface and the command interface.

140



openUTM V7.0. Administering Applications. User Guide.

Control via the program interface

The following asynchronous administration program is started with MSGTAC.

[**xx*xx%%x Program unit PRGKO41 for KDCADM programinterface *x**xx*xxxx/

#i ncl ude <kcadm nc. h> /* Head file for adm nistration */
INIT
FGET data /* Read data supplied by MSGTAC */

KDCADM opcode=KC_GET_OBJECT

/* Admi nistration call: UMreturns the */
/* requested statistical data to the */
/* program */
if {... } /* Analyze data and prepare operations */

KDCADM opcode=KC_MODI FY_OBJECT

/* The appropriate parameter is nodified. */
/* Additional KDCADM calls may be needed */
/* to nodify other paraneters. */
FPUT /* Message to administrator if necessary */

PEND FI

You can have the application data read and analyzed within a program; any number of KDCADMI calls is permitted.
This means that a number of application parameters can be modified if this should be necessary as a result of the
current application data.

141



openUTM V7.0. Administering Applications. User Guide.

Example: activating/deactivating automatic diagnostics
The following example is a response to the message
K119 OSI-TP error information...

An MSGTAC program such as the one outlined in section "Structure of an MSGTAC program" intercepts K119 and
uses FPUT to start the administration program. Depending on the information supplied in K119, this program
activates the OSI trace functions.

#i ncl ude <kcadm nc. h> /* Header file for adnministration */

INIT

FGET /* Read data from MSGTAC */
if {... } /* Analyze data */

KDCADM opcode=KC_MODI FY_OBJECT

/* Activate OS|I trace functions under */
/* certain circumstances. */

FPUT KCRN=adni n-1lterm /* Message to adm nistrator: trace running */

DPUT KCRN=TRACEOFF /* After a while, a further asynchronous */
/* program ( TRACECFF) deactivates the */
/* trace again. */

PEND FI

You can also use this program structure, for example, to respond to the message K065 Net nessage ... You

can follow the same pattern to write a program which creates a UTM dump in response to a message with
KDCADMI opcode=KC_CREATE_DUMP.

142



openUTM V7.0. Administering Applications. User Guide.

9.2 Control via user-specific message destinations

For messages created by UTM, UTM provides four further freely available message destinations that can be used
to control administrative activities. These message destinations are referred to as USER-DEST-1, USER-DEST-2,
USER-DEST-3 and USER-DEST-4 and can be explicitly assigned the following objects:

® a USER queue (the message queue of a user ID)
® aTAC queue
® an asynchronous TAC or

® an LTERM partner that is not assigned to a UPIC client

These message destinations allow you to read messages in a TAC or USER queue, for example, via the KDCS
program interface using the DGET function. By means of this function and corresponding follow-up processing you
can design MSGTAC-like programs that respond specifically to a message.

By assigning a USER or TAC queue to a user-specific message destination you can, for example, output UTM
messages at the WinAdmin or WebAdmin administration workstation (see the openUTM manual "Messages,
Debugging and Diagnostics” or the online help for WinAdmin/WebAdmin, keyword ,message collector").

The user-specific message destinations are configured by means of the generation statement MSG-DEST. You can
obtain specific information on a message destination by means of the KC_GET_OBJECT statement and the
KC_MSG_DEST_PAR object type.

You assign a message to a message destination by means of the KDCMMOD utility. The openUTM manual ”
Messages, Debugging and Diagnostics” describes which messages can be assigned to the user-specific message
destinations.

When a message occurs for which USER-DEST-n is defined as the message destination, UTM creates an
asynchronous job to this message destination.

If the asynchronous job is rejected because, for example, the assigned object is disabled, the message is lost to the
message destination. If there is another message for the message destination, openUTM tries again to create an
asynchronous job for this message destination.

If an asynchronous TAC is assigned to a message destination USER-DEST-n, openUTM starts the program that is
assigned to the TAC once for each message created. In contrast to the situation with MSGTAC, only one message
can ever be read by means of FGET in a program run. In the KB header, KDCMSGUS is defined as the user and
KDCMSGLT as the LTERM for this program unit run.

143



openUTM V7.0. Administering Applications. User Guide.

10 Access rights and data access control

Administration authorization is defined in the UTM generation. It is not bound to a certain person (user ID) or to a
specific location (console). Administration can be carried out through any LTERM partner, regardless of whether
this is in the form of a terminal, UPIC Client, HTTP client or TS application. Furthermore, you can assign
administration authorization to partner applications of your UTM application, allowing you to administer each your
UTM applications from another application. In particular, you can administer a number of applications running on
different computers centrally from one application (see the chapter "Central administration of several applications").

In addition to general security functions (access via user IDs and the lock/key code and access list concept),
openUTM also provides a special authorizations concept specially for administering a UTM application via the
program interface KDCADMI and via the administration commands.

Authorization level 1

Users, clients and partner applications can call administration services which merely query, collate and analyze the
information offered with regard to objects and application parameters (i.e. which only require read access to the
configuration data) without any administration authorization (also referred to as administration privileges). This
assumes that you have assigned the authorization level ADMIN=READ to the transaction codes via which these
administration services are called.

ADMIN=READ can only be specified in the following cases:

® for the commands KDCINF, KDCINFA, KDCHELP and KDCHELPA
® for transaction codes which start program runs in which the following calls are issued:
® KC_GET_OBJECT

® KC_ENCRYPT with subopcode1=KC_READ_ACTIV_PUBLIC_KEY or subopcodel
=KC_READ_NEW_PUBLIC_KEY

® KC_SYSLOG with subopcodel=KC_INFO

In such cases, program units and transaction codes can be generated as follows:

® BS2000 systems

PROGRAM ADMPROG, COVP=| LCS
TAC ADMIAC, PROGRAM=ADMPROG, ADM N=READ

® Unix, Linux and Windows systems

PROGRAM ADMPROG, COWP=C
TAC ADMIAC, PROGRAM=ADMPROG, ADM N=READ

144



openUTM V7.0. Administering Applications. User Guide.

Authorization level 2

Administration services which modify the configuration, the application data and object properties (i.e. which require
write access to the configuration data) can only ever be called by user IDs and partner applications with

administration privileges (PERMIT=ADMIN). The transaction codes for these services must be configured with
ADMIN=YES.

In these cases, program units and transaction codes must be generated as follows:

® BS2000 systems

PROGRAM ADMPROG, COVP=| LCS
TAC ADMIAC, PROGRAMEADMPROG, ADM N=Y

® Unix, Linux and Windows systems

PROGRAM ADMPROG, COWP=C
TAC ADMIAC, PROGRAM=ADMPROG, ADM N=Y

The following transaction codes must be generated with ADMIN=Y:

® all administration commands, apart from KDCINF[A] and KDCHELP[A]

® transaction codes which start program runs in which KDCADMI calls other than KC_GET_OBJECT,
KC_ENCRYPT with subopcode1=KC_READ_ACTIV_PUBLIC_KEY or subopcodel
=KC_READ_NEW_PUBLIC_KEY or
KC_SYSLOG with subopcodel=KC_INFO are issued:

Other program units which call transaction codes with authorization level 2 must run under a user ID which has
administration privileges.

145



openUTM V7.0. Administering Applications. User Guide.

Example

You can write an administration program which, if it is called by the transaction code ADMTACL1, merely queries
whether a printer is connected to the application. If the same program is called with the transaction code
ADMTAC2, the program unit again uses KC_GET_OBJECT to query whether the printer is connected to the
application. However, if the printer is not connected to the application, the program unit will then also request that a
connection be established to the printer (KC_MODIFY_OBJECT). ADMTAC1 can be called from any user ID and

from any partner application. ADMTAC2, however, can be called only from user IDs and partner applications that
have administration privileges.

The KDCDEF generation would consequently look like this:

® BS2000 systems

PROGRAM ADMPROG, COVP=I| LCS
TAC ADMIACL, PROGRAMFADMPROG, ADM N=READ
TAC ADMIAC2, PROGRAM=ADMPROG, ADM N=Y

® Unix, Linux and Windows systems
PROGRAM ADMPROG, COVP=C

TAC ADMIACL, PROGRAMFADMPROG, ADM N=READ
TAC ADMIAC2, PROGRAMFADVPROG, ADM N=Y

You can then allocate access authorizations in detail using the lock/key code and access list concept.

146



openUTM V7.0. Administering Applications. User Guide.

10.1 Configuring the administrator connection

The connection via which an administrator performs the local administration of a UTM application can be generated
in different ways. It is possible to generate the connection via

® a TPOOL statement
® a PTERM and LTERM statement

Recommendation

The connection for the (main) administrator should be generated via a PTERM and an LTERM statement. On the
one hand, this type of connection offers better protection against unauthorized access than an open terminal pool.
On the other, an LTERM that is explicitly generated as an administrator workstation can be identified as privileged
using the following statement:

MAX PRI VI LEGED- LTERM = | t er m nane

In bottleneck situations, UTM treats a connection generated in this way as privileged in order to make it easier for
an administrator to access applications that are subject to high load.

147



openUTM V7.0. Administering Applications. User Guide.

10.2 Granting administration privileges

Administration privileges in applications with user IDs

In applications with user IDs, transaction codes for authorization level 2 can only be called under user IDs and
partner applications to which administration privileges were assigned when they were entered in the configuration.
User IDs and partner applications that are to administer the local application must be generated as follows:

USER ADMUS, [ PASS=C . . ... ', PROTECT-PWA(...,....,...)], PERMT=ADMN.....
LPAP ADVPA, SESCHA=. .., PERM T=ADM N. . . .
OSI - LPAP ADMPAO, ASS- NAMES=. . ., CONTW N=. . ., PERM T=ADM N. . . .

Administration functions can also be carried out via an OSI TP partner application, if the OSI-LPAP does not have
administration privileges. The application context of the OSI-LPAP must contain the abstract syntax UTMSEC in this
case, and the partner has to pass on a user ID that has administration authorization in the local application.

User IDs with administration privileges can also be dynamically linked into the application configuration.

Applications without user IDs

In applications which do not have user IDs, any user or client that is connected to the application via an LTERM

partner can execute administration commands and other administration TACs. Data access protection for these

services can then only be implemented by means of the lock/key code and access list concept. To do so you will
need to protect the administration commands with a lock code or an access list, and then only allocate a key set
with a suitable key code to clients and terminals (LTERM partners) via which it should be possible to administer

applications. Even in applications without user IDs, partner application can only execute administration functions
with authorization level 2 if they were generated with PERMIT=ADMIN.

148



openUTM V7.0. Administering Applications. User Guide.

10.3 Generating administration commands

The openUTM administration commands you want to use when running the application must be specified during
KDCDEF generation or they must be entered dynamically into the configuration using WinAdmin, WebAdmin or an
administration program you have written yourself.

To do this you will need to define the administration program KDCADM with a PROGRAM statement and generate
the necessary commands as KDCADM transaction codes.

An exhaustive generation of KDCADM and of all administration commands is given below. Your KDCDEF
generation must only include the TAC statements for those administration commands that you want to use when
running the program. The administration command KDCSHUT must be generated in all cases.

REMARK Gener ate KDCADM for openUTM on BS2000 systens

PROGRAM KDCADM COVP=I LCS

REMARK Gener at e KDCADM for openUTM on Uni x, Linux and W ndows systens:
PROGRAM KDCADM COVP=C

REMARK Gener ate di al og TACs (commands) from KDCADM

TAC KDCAPPL , PROGRAMEKDCADM ADM N=Y
TAC KDCBNDL , PROGRAM=KDCADM ADM N=Y
TAC KDCDI AG , PROGRAM=KDCADM ADM N=Y
TAC KDCHELP , PROGRAM=EKDCADM ADM N=READ "ADM N=Y is also permtted"
TAC KDClI NF , PROGRAM=KDCADM ADM N=READ "ADM N=Y is also permtted"
TAC KDCLOG , PROGRAM=KDCADM ADM N=Y
TAC KDCLPAP , PROGRAM=KDCADM ADM N=Y
TAC KDCLSES , PROGRAMEKDCADM ADM N=Y
TAC KDCLTAC , PROGRAM=KDCADM ADM N=Y
TAC KDCLTERM PROGRAM=KDCADM ADM N=Y
TAC KDCPOOL , PROGRAM=KDCADM ADM N=Y
TAC KDCPROG , PROGRAMEKDCADM ADM N=Y
TAC KDCPTERM PROGRAMEKDCADM ADM N=Y
TAC KDCSHUT , PROGRAM=KDCADM ADM N=Y
TAC KDCSLOG , PROGRAM=KDCADM ADM N=Y
TAC KDCSWI'CH, PROGRAM=EKDCADM ADM N=Y
TAC KDCTAC , PROGRAMEKDCADM ADM N=Y
TAC KDCTCL , PROGRAM=KDCADM ADM N=Y
TAC KDCUSER , PROGRAM=KDCADM ADM N=Y

TAC KDCMUX , PROGRAMEKDCADM ADM N=Y "only on BS2000 systens"
TAC KDCSEND , PROGRAM=KDCADM ADM N=Y "only on BS2000 systens"

REMARK Gener ate asynchronous TACs (conmands) from KDCADM

TAC KDCAPPLA, PROGRAM=KDCADM ADM N=Y, TYPE=A
TAC KDCBNDLA, PROGRAM=KDCADM ADM N=Y, TYPE=A
TAC KDCDI AGA, PROCRAM=KDCADM ADM N=Y, TYPE=A
TAC KDCHELPA, PROGRAM=KDCADM ADM N=READ, TYPE=A "ADM N=Y is al so permtted"”
TAC KDCl NFA , PROGRAM-KDCADM ADM N=READ, TYPE=A "ADM N=Y is al so permitted"
TAC KDCLOGA , PROGRAM=KDCADM ADM N=Y, TYPE=A
TAC KDCLPAPA, PROCRAM=KDCADM ADM N=Y, TYPE=A
TAC KDCLSESA, PROGRAM=KDCADM ADM N=Y, TYPE=A
TAC KDCLTACA, PROGRAM=KDCADM ADM N=Y, TYPE=A
TAC KDCLTRVA, PROGRAM=KDCADM ADM N=Y, TYPE=A
TAC KDCPOCOLA, PROGRAM=KDCADM ADM N=Y, TYPE=A
TAC KDCPROGA, PROGRAM=KDCADM ADM N=Y, TYPE=A

149



openUTM V7.0. Administering Applications. User Guide.

TAC
TAC
TAC
TAC
TAC
TAC
TAC

TAC
TAC

KDCPTRVA, PROGRAM=KDCADM ADM N=Y, TYPE=A
KDCSHUTA, PROGRAM=KDCADM ADM N=Y, TYPE=A
KDCSLOGA, PROGRAM=KDCADM ADM N=Y, TYPE=A
KDCSWCHA, PROGRAM=KDCADM ADM N=Y, TYPE=A
KDCTACA, PROGRAM=KDCADM ADM N=Y, TYPE=A

KDCTCLA, PROGRAM=KDCADM ADM N=Y, TYPE=A

KDCUSERA, PROGRAM=KDCADM ADM N=Y, TYPE=A

KDCMUXA, PROGRAM=KDCADM ADM N=Y, TYPE=A
KDCSENDA, PROGRAM=KDCADM ADM N=Y, TYPE=A

"only on BS2000 systens"
"only on BS2000 systens"

As with the ADMIN=READ generation above, the commands KDCINF[A] and KDCHELPJ[A] can be called from any
user ID and from any partner application. However, you can assign a lock code to these commands (with the
operand LOCK; e.g. LOCK=1). These commands can then only be called from user IDs and partner applications to
which a keyset with the associated keycode (keycode 1) is assigned.

The access list concept provides another way of controlling access to these commands. An access list is assigned
a key set containing a number of key/access codes, which can be for a specific group of commands, for example. If
an access list like this is assigned to a command, only one user can access this command when the key set of the
user’s user ID and the key set of the LTERM partner via which the user is logged in each contain at least one key
/access code that is also contained in the access list of the command.

You can generate the administration commands dynamically by generating the commands required using
KC_CREATE_OBJECT and obj type KC_TAC.

150



openUTM V7.0. Administering Applications. User Guide.

11 Program interface for administration - KDCADMI

This chapter describes the C/C++ program interface for administration. The COBOL program interface corresponds
largely to the C/C++ program interface. For this reason, the following interface description will also be useful for
reference if you are writing administration programs in COBOL. COBOL-specific issues that you will need to be
aware of when programming in this language are described in the appendix "Program interface for administration in
coBOL".

The same C or COBOL data structures are passed to the interface in all of the supported platforms. The data fields
that are irrelevant for an operating system are set to binary zero.

The C data structures are defined on Unix, Linux and Windows systems in the kcadminc.h header file and, on
BS2000 systems, in the include element kcadminc.h in the library SYSLIB.UTM.070.C.

In this chapter you will find:

® a general description of a KDCADMI function call and the data areas you must pass to openUTM in the call.

® adescription of the operations you can execute and the values of the parameters that need to be passed to
openUTM for these operations, as well as the values returned by openUTM, for every KDCADMI operation code.

The descriptions are ordered alphabetically according to the operation codes.

® adescription of the C data structures used to pass properties of the application objects and application
parameters to the program interface. This chapter begins by describing the data structures for application objects
and continues with descriptions of the data structures for application parameters.

The descriptions are arranged alphabetically by the names of the data structures.

® a detailed description of the effect of the KDCADMI call in standalone UTM applications and UTM cluster
applications.

151



openUTM V7.0. Administering Applications. User Guide.

11.1 Calling the KDCADMI functions

The UTM administration functions provided by the program interface for administration purposes are called using
the KDCADMI function. You can pass pointers to four different data areas to UTM when calling KDCADMI. They are:

® the parameter area (parameter_area)

In the parameter area you can tell UTM which operation it is to execute. This means, for example, that you can
instruct UTM to return information on objects or operation parameters of the application, add an object to the
configuration, change the properties of objects or delete an object.

If the operation is to be carried out on a certain object or group of objects, then you must specify the object type
of the object(s) in the parameter area.

Once it has executed or initiated a task to carry out the operation, UTM stores the return code and the length of
the data returned in the parameter area. The return code informs you whether the call was successful or
unsuccessful.

® the identification area (identification_area)

You require the identification area to specify the object names if, for example, an object is to be deleted from the
configuration, an object’s properties are to be changed or object properties are to be output. In this case, you will,
in the identification area, need to pass all data required by UTM to uniquely identify the objects to be
administered.

® the selection area (selection_area)

In the selection area, you can pass selection criteria to UTM when querying information (see the
KC_GET_OBJECT operation). UTM will then only return information on those objects meeting the selection
criteria.

Example: information on all users currently signed onto the application.

® the data area (data_area)

In the data area you can pass to UTM the information that it needs, for example the names and properties of new
objects if you are adding new objects to the configuration.

UTM then returns the requested information to the program in the data area, e.g. when outputting object
properties.

152



openUTM V7.0. Administering Applications. User Guide.

11.1.1 The KDCADMI function call

A C program which issues KDCADMI calls must always contain an #include statement referring to the header file or
include element kcadminc.h. In kcadminc.h, the function KDCADMI is declared as follows:

voi d KDCADM (struct kc_adm paraneter * , [* par amet er _ar ea */
voi d Y identification_area */
voi d * o, * sel ection_area */
voi d * ), 1* data_area */

The KDCADMI function is called as follows:

#i ncl ude <kcadmi nc. h>

KDCADM ( &par anet er _ar ea,
& dentification_area,
&sel ection_area,
&data_area );

where:
&parameter_area

is the address of the parameter area named parameter_area.
&identification_area

is the address of the identification area named identification_area.
&selection_area

is the address of the selection area named selection_area.
&data_area

is the address of the data area named data_area.

If one of the four areas is not needed for a particular call, then the null pointer must be passed as the address of
that area.

153



openUTM V7.0. Administering Applications. User Guide.

11.1.2 Description of the data areas to be supplied

This section contains a general description of the parameters and data that can be passed to UTM when calling
KDCADMI.

More detailed information concerning how to assign data to the identification area, selection area, data area and
fields of the parameter area for individual operations can be found in section "KDCADMI operation codes".

The following symbols have the following meanings:
--> The field is an input field. You can pass information to UTM using this field.

<-- The field is an output field. UTM returns information to the administration program in this field.

Parameter area

You can instruct UTM to perform a specific operation using the parameter area. The opcode, subopcodel and
subopcode? fields are provided for this purpose. In the obj_type field, you specify the object type of the target object.

After processing, UTM stores the return code and the length of the data returned in the parameter area. You can
determine if the call was successful or not from the return code.

The parameter area is defined as followed by the structure kc_adm_parameter.

struct kc_adm_parameter

int version;

KC_ADM RETCODE r et code;

i nt version_dat a;

KC_ADM OPCODE opcode;
KC_ADM SUBOPCODE subopcodel;
KC_ADM SUBOPCODE subopcode2;
KC_ADM TYPE obj _type;

i nt obj _nunber;

i nt nunmber _ret;

int id_Ith;

int select Ith;

int data Ith;

int data Ith_ret;

Input fields in the kc_adm_parameter structure (hereafter indicated using the -->character) that are not used must
always be set to binary zero. The version, version_data and opcode fields must contain data every time KDCADMI
is called.

The fields in the data structure have the following meanings:

154



openUTM V7.0. Administering Applications. User Guide.

-->version
Designates the version of the program interface used by the user program.

The version of the program interface indicates the variant of the program interface and the layout of the
parameter areas passed at call time. You must explicitly specify the version of the program interface on
each call of KDCADMI. So far, only KC_ADMI_VERSION_1 has been defined as a version.

If the variant of the program interface is modified in a subsequent version then the version of the program
interface is increased. If the extensions are compatible and you would like to continue to use the existing
program interface in the new openUTM version then you do not need to adapt your existing
administration programs and can continue to specify the version of the interface as
KC_ADMI_VERSION_1. If you want the administration program to use the new program interface then
you must adapt your programs and specify the program interface version of the current openUTM version
in version.

The interface is designed to be source-compatible across multiple openUTM versions.
<--retcode
In the retcode field, UTM returns the code of the function call.

There are general and function-specific return codes.

The general return codes can be returned by all functions. They are described in "Return codes".

The function-specific return codes only occur in connection with certain program interface calls, and they
are listed in the relevant call descriptions.

If the entire length of data in the parameter area cannot be accessed, then the KDCS return code in the
return area of the communication area for the service processing the KDCADMI call is assigned '70Z', the
KCRCDC return code is assigned 'A100', and the service is aborted with PEND ER.

The retcode field must be assigned the constant KC_RC_NIL before the function is called.
-->version_data
Version of the data structures used.

The version of the data structures determines the layout of the data structures used. You must specify the
value of version_data explicitly for each KDCADMI call. In openUTM V7.0, the constant
KC_VERSION_DATA 11 should be used for version data.

i KC_VERSION_DATA (without suffix) always refers to the current version of the data structures.
Programs that want to benefit from the source compatibility of the interface should not use the
constant KC_VERSION_DATA, but for version_data should always specify the version constant
KC_VERSION_DATA_xx for the interface version for which the program was written.
KC_VERSION_DATA 11 is the version valid for openUTM V7.0, while
KC_VERSION_DATA 10 refers to the version valid for openUTM V6.5 for example.

If the layout of the data structures is modified to remain object-compatible, KC_VERSION_DATA is not
increased and the program units can run in the new UTM version.

155



openUTM V7.0. Administering Applications. User Guide.

If the layout of the data structures changes in a way that is incompatible in an openUTM version, for
example if the data structures receive new fields and therefore become larger, then the version number of
the data structure is incremented. The constants KC_VERSION_DATA and KC_VERSION_DATA_10 are
defined in the same include file as the data structures. Because the interface is source-compatible,
program units must be only recompiled in this case.

-->opcode, subopcodel, subopcode2

In these fields you tell UTM which action to execute. The opcode field must be assigned a value each
time KDCADMI is called. This field determines which operation will be executed. In the subopcodel and
subopcode?Z fields, you can specify in more detail what action should be taken depending on the value of
opcode.

The values you will need to use for opcode to execute certain operations are summarized in the following
table. The operation codes indicated by a (*) are socalled standard operations that are explained in more
detail in the section "Data structures for object and parameter types".

Function Value of opcode
Replace the entire application program. KC_CHANGE_APPLICATION
BS2000 systems:

Replace application sections that have been marked for exchange in
the Common Memory Pool.

Unix, Linux and Windows systems:

In subopcodel you specify whether the next highest, next lowest or
the current version of the application program is to be loaded.

Create a UTM dump KC_CREATE_DUMP
Create a new object in the configuration KC_CREATE_OBJECT (*)
Create KDCDEF control statements online KC_CREATE_STATEMENTS

(inverse KDCDEF)
Delete an object, i.e. remove it from the configuration KC_DELETE_OBJECT (*)

Generate, activate, delete or read RSA key pairs for data encryption ot = KC_ENCRYPT
the communication with clients

Query information on objects and application parameters. KC_GET_OBJECT (¥
You control the type and amount of detail of information returned
using subopcodel and subopcode?.

Only in UTM cluster applications: KC_LOCK_MGMT
Permit a new sign-on for all users or for an individual user still

recorded as signed on at a failed node application or who have/has a

service bound to the failed node

application,.

Release cluster user file lock after incorrectly terminated KDCDEF run.

156



openUTM V7.0. Administering Applications. User Guide.

Function

Modify object properties or application parameters

Only in UTM cluster applications:
Import TACs, TAC queues and open asynchronous services from a
terminated into a running node application.

Roll back transaction in PTC state.

Only on BS2000 systems:
Send a message to one dialog terminal or to all dialog terminals connected
to the application.

Terminate an application run.

Specify how the application is to be terminated (kill, normal termination) in
subopcodel and subopcode? .

In the case of UTM cluster applications, specify whether an individual node
application or the complete UTM cluster application is to be terminated.

Establish connections to printers for which messages have been queued.

Carry out an operation on the system log file SYSLOG.
You specify which operation is to be executed using subopcodel.

Update the IP address of an individual or of all communication partners.
On BS2000 systems, the communication partners must be generated with T-
PROT=SOCKET.

Switch to the next generation of the user log file(s)

Value of opcode

KC_MODIFY_OBJECT
)

KC_ONLINE_IMPORT

KC_PTC_TA

KC_SEND_MESSAGE

KC_SHUTDOWN

KC_SPOOLOUT

KC_SYSLOG

KC_UPDATE_IPADDR

KC_USLOG

The information you may or must supply in the other fields of the parameter area and in the identification
area, selection area and data area are dependent on the opcode passed. For each operation code (value
of opcode), section "Calling the KDCADMI functions" contains a description of the operations that can be
carried out and of the information that the data area must contain to be passed to UTM in order to carry
out these operations. The list is ordered alphabetically according to the operation code.

-->0bj_type

The obj_type field must contain either the type of the target object or the type of the application parameter

whose value is queried or is to be changed.

The object or parameter types that you can enter depend on which operation you require, and therefore

on the values in the opcode, subopcodel and subopcode? fields

The two tables below contain the objects and parameter types that are supported for the standard

operations in UTM. Standard operations are:

® Display

157



openUTM V7.0. Administering Applications. User Guide.

® Create
* Modify

® Delete

The column “opcode” in the table contains the operation codes for which each object type or parameter
type can be specified. The following abbreviations are used:

® CRE for KC_CREATE_OBJECT (Create)

®* DEL for KC_DELETE_OBJECT (Delete)

® GET for KC_GET_OBJECT (Show)

* MOD for KC_MODIFY_OBJECT (Modify)

Object types
Object type Value of obj_type opcode
Abstract syntax for communication via OSI TP KC_ABSTRACT_SYNTAX GET
OSI TP access points for local application KC_ACCESS_POINT GET
Application context for communication via OSI KC_APPLICATION_CONTEXT @ GET
TP
Names for the local application that were KC_BCAMAPPL GET

generated with KDCDEF (in a BCAMAPPL
statement or in MAX APPLINAME)

Only on BS2000 systems: KC_CHARACTER_SET GET
Names of the Character Sets (CHAR-SET

Statement)

Names and properties of a node application in a KC_CLUSTER_NODE GET, MOD

UTM cluster application

Connections for distributed processing via LU6.1 KC_CON GET, CRE,

DEL
Database connection KC_DB_INFO GET, MOD
Only on BS2000 systems: KC_EDIT GET

Edit options for screen output in line mode

Global secondary storage areas for KDCS KC_GSSB GET
program units used to exchange data between
services (GSSB)

158



openUTM V7.0. Administering Applications. User Guide.

Object type

Names and properties of the HTTP descriptors (HTTP-
DESCRIPTOR Statement)

Keysets for the application. Keysets determine the
access privileges of clients and users accessing
services and LTERM partners.

Load modules of a UTM application on BS2000
systems or the shared objects/DLLs of a UTM
application on Unix, Linux or Windows systems

LPAP partner for connecting partner applications for
distributed processing via LU6.1

Sessions for distributed processing via LU6.1

Local transaction codes for services provided by
partner applications for distributed processing via LUG6.
lorOSITP

LTERM partner for connecting clients and printers

User-defined message module

Only on BS2000 systems:
Multiplex connections 1

Associations with partner applications for distributed
processing via OSI TP

Connections for distributed processing via OSI TP

OSI-LPAP partner for connecting partner applications
for distributed processing via OSI TP

Transactions in PTC state

Program units of the UTM application and VORGANG
exits

Clients and printers.
"Clients" can be: terminals, UPIC clients, TS
applications

Temporary queues

Allocation of UTM function keys

Value of obj_type

KC_HTTP_DESCRIPTOR

KC_KSET

KC_LOAD_MODULE

KC_LPAP

KC_LSES

KC_LTAC

KC_LTERM

KC_MESSAGE_MODULE

KC_MUX

KC_OSI_ASSOCIATION

KC_OSI_CON

KC_OSI_LPAP

KC_PTC

KC_PROGRAM

KC_PTERM

KC_QUEUE

KC_SFUNC

opcode

GET

GET,
MOD,
CRE, DEL

GET, MOD

GET, MOD

GET,
MOD,
CRE, DEL

GET,
MOD,
CRE, DEL

CRE, DEL,
GET, MOD

GET

GET, MOD

GET

GET, MOD

GET, MOD

GET

CRE, DEL,
GET

CRE, DEL,
GET, MOD

GET

GET

159



openUTM V7.0. Administering Applications. User Guide.

Object type Value of obj_type
Properties of sign-on procedure KC_SIGNON

IP subnets KC_SUBNET
Transaction codes for local services and KC_TAC

TAC queues

TAC classes for the application KC_TACCLASS
LTERM pools for the application KC_TPOOL
Transfer syntax for communication via OSI TP KC_TRANSFER_SYNTAX
User IDs of the application, including queues KC_USER

User IDs of the application including their queues KC_USER_FIX,
(optimized access for UTM cluster applications) KC_USER_DYN1,

KC_USER_DYN2

opcode

GET
GET

CRE, DEL,
GET, MOD

GET, MOD
GET, MOD
GET

CRE, DEL,
GET, MOD

GET

160



openUTM V7.0. Administering Applications. User Guide.

Parameter types
Parameter type Value of obj _type opcode
Current statistics values on the capacity utilization of a UTM KC_CLUSTER_CURR_PAR GET,
cluster application MOD
Properties of a UTM cluster application (e.g. name of the cluster KC_CLUSTER_PAR GET,
filebase, node application monitoring settings) as well as current MOD

settings (e.g. number of started node applications)

Current settings of the application parameters and statistics KC_CURR_PAR GET,
concerning the application capacity utilization MOD
Parameters for diagnosis and UTM Accounting KC_DIAG_AND_ACCOUNT_PAR @ GET,

MOD
Data for dynamic configuration: KC_DYN_PAR GET

Number of existing and reserved objects, i.e. the total number of
objects available in the individual object tables and the number
of objects that can still be configured dynamically

Application name, KDCFILE name and maximum values for the KC_MAX_PAR GET,
application, such as the size of the cache, size and number of MOD
storage areas for KDCS program units, and the maximum

number of processes permitted for the application

Name, type and format of a user-specific message destination KC_MSG_DEST_PAR GET
Current page pool assignment KC_PAGEPOOL GET
General information on the generated temporary queues: KC_QUEUE_PAR GET

maximum number of queues, maximum number of messages for
a queue, behavior of full queues.

System parameters: KC_SYSTEM_PAR GET
Type and version of the operating system, name of the computer

and the basic application data (application name, application

with or without distributed processing, etc.)

Process parameters for the application: KC_TASKS_PAR GET,
Maximum and current number of application processes as well MOD
as of the processes available for processing asynchronous jobs

and program unit runs with blocking calls.

161



openUTM V7.0. Administering Applications. User Guide.

Parameter type Value of opcode
obj_type
Application timer KC_TIMER_PAR @ GET,
MOD
Global values for distributed processing, except for the timer defined for KC_UTMD_PAR @ GET

distributed processing

Data structures for object and parameter types

For each of the object and parameter types associated with the standard operations, a data structure is
provided in the header file kcadminc.h with which you can pass object properties and/or parameter values
to UTM or get them from UTM. There are also corresponding data structures for some of the operations
that do not form part of the standard operations. The data structures are described in section "Data
structures used to pass information”. The names of the data structures are created as follows:

The data structure "typ_str" belongs to the object or parameter type "TYP". For example, the data
structure kc_user_str belongs to KC_USER, and kc_max_par_strto KC_MAX_PAR.

A similar principle applies to non-standard operations. E.g. the data structure kc_application_par_str
belongs to the operation code KC_APPLICATION_PAR.

-->0bj_number

Number of objects for which the required operation is to be carried out. In obj_number you specify the
number of objects about which UTM is to supply information when information is requested
(KC_GET_OBJECT).

<--number_ret
UTM returns the actual number of objects for which the operation was carried out in number _ret.
-->id_|Ith

In the id_Ith field you must specify the length of the identification area identification_area passed in the
call.
If no identification area is passed, then id_/th=0 must be specified.

-->select_lIth

In the select_Ith field you must specify the length of the data structure that is passed to UTM in the
selection area selection_area.
If no selection area is passed, then select Ith=0 must be specified.

-->data_Ith

In the data_lIth field you must specify the length of the data area data_area passed in the call or in which
UTM shall return data.
If no data will be passed in the data area, then data_[th=0 must be specified.

<--data_Ith_ret

UTM returns the actual length of the data returned in the data area in the data Ith_ret field.

162



openUTM V7.0. Administering Applications. User Guide.

Identification area

The identification area identification _area is used to identify the target object for the administration operation. All
objects within a group of a certain object type must be uniquely identified by their object _name.

The following union is provided for passing the object name using the identification area.

union kc_id_area

char kc_name2[ 2];

char kc_nane4[ 4] ;

char kc_nane8[ 8] ;

char kc_name32[ 32];

struct kc_triple_str triple;

struct kc_long_triple_str long_ triple;

struct kc_ptc_id_str ptc_id;

Whether or not an object in the identification area needs to be uniquely specified depends on the function called.
The object name must be specified as follows in order to uniquely identify it:

® For the object types KC_CON an KC_PTERM, you must pass the triplet name, processorname and bcamappl-
name as the object name to UTM using the union field long _triple of type kc_long_triple_str. Here name is the
name of the object (for example the PTERM name), processor-name is the name of the computer on which the
object is located, and bcamappl-name is the name of the local application via which the connection between the
object and the application is established.

struct kc_long_triple_str

char p_nane[ 8];
char pronani 64];
char bcamappl [ 8] ;
® For the object type KC_MUX on BS2000 systems, you must pass the triplet name, processor-name and
bcamappl-name as the object name to UTM using the union field triple of type kc_triple_str. Here name is the
name of the object, processor-name is the name of the computer on which the object is located, and bcamappl-

name is the name of the local application via which the connection between the object and the application is
established.

struct kc_triple_str

char p_nane[ 8];
char pronani8];
char bcamappl [ 8] ;

163



openUTM V7.0. Administering Applications. User Guide.

® Foran LTERM pool (object type KC_TPOOL) you must pass the LTERM prefix, from which the names of the
LTERM partners in the LTERM pool can be created, as the object name. The LTERM prefix must be passed to
UTM using the kc_name8 union field.

For the object type KC_TACCLASS you must pass the TAC class nhumber as the object name using the
kc_name?Z union field if the function call applies to a particular TAC class. Otherwise specify binary 0 to indicate
that the call applies to all TAC classes.

For the object type KC_DB_INFO you must adopt the identification of the database (db_id) as the object name in
the union element kc_name?2 if the function call is to be valid for a particular database. db_id is a number and
represents the databases in the order in which they were generated in the KDCDEF run.

® For load modules, shared objects, DLLs (object type KC_LOAD_MODULE) and program units (KC_PROGRAM),
pass the name specified at generation using the kc_name32 union field.

® For the object type KC_SFUNC (UTM function keys) you must pass the short description of the function key as
the object name in the union element kc_name4.

® For the function KC_PTC_TA (roll back a transaction in PTC state), you must fill the union element kc_ptc _id_str
with the values from the structure ptc_ident. You can get the content of ptc_ident by first calling
KC_GET_OBJECT with object type KC_PTC.

The data structure kc_ptc_id_stris defined as follows:

struct kc_ptc_id_str

char vg_indx[10];
char vg nr[10];
char ta_nr_in_vg[5];
® For the remaining object types, pass the object name specified at generation using the kc_name8 union field if

the function call applies for a particular object. Otherwise specify binary 0 to indicate that the call applies to all
objects of this type.

If the identification area is not supported for a call, then you must set the area address to the null pointer. You must
then set id_[th=0 in the parameter area.

Selection area

In the selection area you can pass a data structure containing selection criteria to UTM when querying information
(operation code KC_GET_OBJECT). UTM then returns only the names and properties of the objects of the
specified object type which meet the selection criteria.

The selection criteria must be passed in the data structure defined in kcadminc.h for that object type (obj_type). In
the data structure you must set the search values for the fields to be used for selection.

Example

You would like to query information on which user IDs are currently signed on as users or clients. To do this,
you specify the value 'Y' in the connect_mode field in the data structure kc_user_strin the selection area.

164



openUTM V7.0. Administering Applications. User Guide.

If several selection criteria are specified simultaneously, then only those objects meeting all of the selection criteria
will be returned. The remaining fields in the structure must be set to binary zero. The selection criteria that can be
used in a search can be found in the description of KC_GET_OBJECT starting from section "Selection area" in
chapter "KC_GET_OBJECT - Query information".

If you want to pass selection criteria, then when calling KDCADMI, you must pass the address of the selection area
and, in the select_lth field in the parameter area, specify the length of the data structure passed in the selection
area.

If the selection area is not used for a call, then you must set the &selection_area area address to the null pointer.
You must then set select_Ith=0 in the parameter area.
Data area

The data area is used to pass object properties, parameter values and information to or from UTM. The structure of
the data depends on the operation code and on the type of the target object.

If data is to be passed in the data area during a KDCADMI call, then you must pass the address of the data area
and set the data_Ith field of the parameter area to the length of the data structure passed in the data area.

If information is queried which is to be stored in the data area, then you must, when calling KDCADMI, pass the
address of the data area you have provided to store the return data and set the data Ith field of the parameter area
to the length of this data area.

If the data area is not used in a call, then you must pass the null pointer as the address of the area. You must then
set data_Ith=0 in the parameter area.

The data area must not exceed 16 MB.

165



openUTM V7.0. Administering Applications. User Guide.

11.1.3 Return codes

The KDCADMI return code consists of a main code and a subcode. The main code tells you whether the requested
function has been executed or whether the execution has been initiated in a task (return code KC_MC_OK), or
whether execution could not be carried out (return code not equal to KC_MC_OK). The subcode contains further
information pertaining to the main code returned if the subcode is not equal to KC_SC_NO_INFO.

The code is returned in the following data structure:

typedef struct

{ KC_MAI NCODE nc;
KC_SUBCODE SC;

} KC_ADM RETCODE;

UTM returns the code in the retcode field of the parameter area. If it is not possible to access the entire length of the
parameter area or if the area is not oriented toward word boundaries, then UTM sets the return code KCRCCC=70Z
and the return code KCRCDC=A100 in the return code area of the communication area. The service is aborted with
PEND ER.

Both the main codes and the subcodes are defined as enumeration type (enum) in the header file. KDCADMI
therefore returns a numeric constant.

In order to facilitate the diagnostics process when an error occurs, you can have the main codes and the subcodes
listed in the form of strings (e.g. "KC_MC_OK"). For this, in your program, you must define the symbolic name
KC_ADM_GEN_STRING using the #define statement before you include kcadminc.h.

#defi ne KC_ADM GEN_STRI NG
#i ncl ude kcadm nc. h

General return codes (independent of operation codes)

The following table lists the return codes that can be returned for any operation (i.e. for all operation codes)
executed using KDCADMI. Other return codes only arise in conjunction with certain operation codes. These return
codes are listed in the descriptions of the individual operation codes.

Main code = KC_MC_OK
The function was executed or a task was initiated to execute the function.

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_VERS_DATA_NOT_SUPPORTED

A version of the data structure which is not supported by UTM was specified in the version_data field of the
parameter area.

Subcode:

KC_SC_NO_INFO

166



openUTM V7.0. Administering Applications. User Guide.

Main code = KC_MC_VERSION_NOT_SUPPORTED

A version of the program interface which is not supported by UTM was specified in the version field of the
parameter area.

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_AREA_INVALID

One of the data areas passed in a KDCADMI call cannot be accessed over its entire length because, for
example, the area address is invalid or the required length of the area is not allocated.

Subcodes:
KC_SC_ID_AREA
The identification area cannot be accessed over its entire length.

KC_SC_SEL_AREA

The selection area cannot be accessed over its entire length.

KC_SC_DATA AREA

The data area cannot be accessed over its entire length,

or the address of the parameter area is within the data area.
Main code = KC_MC_NO_ADM_TAC

The transaction code that initiated the administration call does not have the privileges required to execute
the operation requested (administration privileges or ADM-READ privileges)

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_PAR_INVALID
An invalid value was specified or a field was not set in the parameter area.

Subcodes:
KC_SC_RETCODE

The retcode field of the parameter area was not set to KC_RC_NIL.
KC_SC_OPCODE

The operation code specified in the opcode field of the parameter area is invalid.

KC_SC_SUBOPCODE1

The operation modifier specified in the subopcodel field of the parameter area is invalid.

167



openUTM V7.0. Administering Applications. User Guide.

KC_SC_SUBOPCODE2

The operation modifier specified in the subopcode?Z field of the parameter area is invalid.
KC_SC_TYPE

The object type specified in the obj_type field of the parameter area is invalid.
KC_SC_NUMBER

The number of objects specified in the obj_number field of the parameter area is invalid.
KC_SC_ID_LTH

The length specified in the id_/th field of the parameter area is invalid.

Possible reasons:

® jd Ithis not equal to the length of the name field for the object type.

® jd Ith > 0, although no identification area may be passed.

KC_SC_SELECT_LTH

The length specified in the select _Ith field of the parameter area is invalid.

Possible reasons:

® select_Ithis not equal to the length of the data structure for the object type.
® select Ith> 0, although selection is not allowed.

KC_SC_DATA_LTH

The length specified in the data _Ith field of the parameter area is invalid.

Possible reasons:
® data Ithis not equal to the length of the data structure for the object type or, for KC_GET_OBJECT, itis
smaller than obj_number * length of the data structure for the object

type.
® data Ith> 0, but no data area was passed.
® data Ith> 16 MB.

KC_SC_NUMBER_RET
The number _retfield of the parameter area was not set to binary zero.
KC_SC_DATA_LTH_RET

The data_Ith_ret field of the parameter area is not set to binary zero.

168



openUTM V7.0. Administering Applications. User Guide.

Main code = KC_MC_FUNCT_NOT_SUPPORTED

The operation requested is not supported by the operating system or by the version of the operating system
under which the application is running.

This return code is returned by UTM when, for example, an operation has been requested in a UTM
application on Unix, Linux or Windows systems that is only defined for UTM applications on BS2000
systems.

Subcode:

KC_SC_NO_INFO

169



openUTM V7.0. Administering Applications. User Guide.

11.1.4 Supplying the fields of the data structure with data when passing data

The data structure fields used in the identification area, selection area and data area to pass data between UTM
and the administration programs are all of the type "char". The square brackets following the name of the field
contain the length of the field. If there are no square brackets, then the field is one byte long.

The following points should be observed when passing data between an administration program and UTM:

®* Names and keywords must be left-justified and any bytes left over to the right must be padded with spaces.
The data passed to UTM can only contain uppercase letters, except for object names.

Object names can also contain lowercase letters. The letters are not converted to uppercase. The requirements
specified in section “Format and uniqueness of object names” must be observed when creating new objects
using KC_CREATE_OBJECT.

Example: The ptype (kc_pterm_str) field is 8 bytes long. ptype =APPLI would be stored as follows: APPLIbbb
where b means blank.

® The numerical data returned by UTM is stored right-justified with leading spaces. Left- and right-justified
numerical data is accepted when data is passed from an administration program to UTM. Right-justified entries
with leading spaces or zeroes are accepted. Left-justified entries can be terminated by the null byte (\0, if the
field is sufficiently large) or padded with blanks.

Example: The conn_users field (kc_max_par_str) is 10 bytes long. conn_users =155 can for example be passed
as follows:
'bbbbbbb155' or '0000000155' or '155\0" or '155bbbbbbb’ where b means blank

® Fields in the data structures in which no values are passed must be supplied with binary zeroes.

170



openUTM V7.0. Administering Applications. User Guide.

11.2 KDCADMI operation codes

In this section you will find an overview of the parameters you need to pass to UTM depending on the operation you
wish to execute. The descriptions are organized according to the operation codes passed in the opcode field of the
parameter area and are listed in alphabetical order.

Description format
The description of an operation code consists of four parts:

1. The first part offers a general outline of the actions that can be executed, a list of the requirements that must be
fulfilled so that UTM can execute the relevant action, and notes and special cases to consider when executing
the actions.

If changes are made to the configuration and the properties then information is provided concerning the period
during which the performed modifications will remain effective and whether these changes have a global or
local effect for UTM cluster applications.

If the administration function or a portion of the function described can also be executed by means of an
administration command (KDCADM transaction code), then the following symbol is used to indicate this
command:

>

2. The second part is a table containing a short description of which areas (parameter, identification, selection or
data area) require data for each action, and of the data that must be specified in these areas.

3. The third part consists of a schematic representation of the call, containing all optional and mandatory entries
and the information that is returned by UTM. Fields requiring data before the call is made are shaded gray in
the graphics. All fields in the parameter area that are not listed in the tables must be set to binary zero before
you call KDCADMI.

The symbol "—" in a table means that no data needs to be passed to UTM in this area.

4. The fourth part contains comments and notes on the graphic, i.e. regarding the entries that need to be made
and the information that is returned by UTM.

171



openUTM V7.0. Administering Applications. User Guide.

11.2.1 KC_CHANGE_APPLICATION- Exchange application program

You can initiate the exchange of the entire application program during the application run using
KC_CHANGE_APPLICATION. In this way, you can exchange program units and add new program units to the
application program without having to terminate the application. See the openUTM manual “Using UTM
Applications” for more information on exchanging programs.

You can carry out the following operations using KC_CHANGE_APPLICATION:

Terminate a UTM application on a BS2000 system that was generated with load modules in all processes and
reload it.

You will need this function to exchange load modules in a common memory pool. During a reloading, the current
version of the load module i loaded that has been previously specified with a KC_MODIFY_OBJECT call for the
object type KC_LOAD_MODULE.

In addition, termination of the application program in all processes and a subsequent reload will unload all load
modules generated with the load mode set to ONCALL.

Only subopcode1=KC_NEW and KC_SAME are possible. KC_SAME has the same effect as KC_NEW

An entire UTM application program on Unix, Linux or Windows systems can be exchanged (subopcodel
=KC_NEW) by the application program of the next highest file generation in the file generation directory filebase
/PROG (filebase= base name of the application).

You can also undo program exchange using KC_CHANGE_APPLICATION, meaning you can switch back to the
previously loaded application program (subopcodel=KC_OLD) or you can reload the application program (
subopcodel1=KC_SAME) without switching to another file generation.

The following requirements must be met:

For UTM applications on a BS2000 system generated with load modules, you need to mark the parts of the
application that are in a common memory pool and are to be exchanged beforehand using
KC_MODIFY_OBJECT calls and the KC_LOAD_MODULE object type (see "obj_type=KC_LOAD_MODULE").

When exchanging a UTM application program on Unix, Linux or Windows systems, the different versions of the
application program (including the version currently loaded) should be administered using the UTM tool
KDCPROG in the file generation directory filebase/PROG. The file generation directory must have been created
using KDCPROG (KDCPROG CREATE).

If the file generation directory filebase/PROG does not exist, UTM will reload the application program filebase
/utmwork (on Unix or Linux systems) or filebase\utmwork (on Windows systems).

The program exchange is described in the openUTM manual “Using UTM Applications”.

The following points should be noted when exchanging the application program:

The program units added to the new application program must have been defined at the time of the KDCDEF
generation or they must have been dynamically configured by means of administration functions.

No previously existing program units may be missing in the new application program. Jobs accepted for a
transaction code for which no program unit exists after program exchange will be terminated abnormally (PEND
ER) by UTM during execution.

172



openUTM V7.0. Administering Applications. User Guide.

Procedure / period of validity / transaction logging / cluster:

The call initiates program exchange, meaning that a job is created to exchange the programs. The exchange itself
will not have been completed when control is returned to the program unit. Program exchange is not subject to
transaction logging - it cannot be undone in the same transaction by following it up with a RSET call.

Each process in the application program is exchanged individually. This is done by terminating the application
program running for this process and then loading the new application program. The application program is only
exchanged for one process at a time in order to avoid having to interrupt operations to implement program
exchange. While the application program is being exchanged for a given process, jobs from other processes are
also being processed concurrently. These jobs may then contain processes in which the old application program is
still running. This leads to a situation where jobs are processed by both the old and the new application programs
during the exchange phase.

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The call applies globally to the cluster, i.e. the application exchange is initiated in every running node application.

After the job has been processed, UTM sends you a UTM message informing you of the success or failure of the
program exchange procedure. UTM sends the UTM message K074 if program exchange was carried out
successfully. If UTM could not execute the program exchange, then it sends UTM message K075. If an error
occurred, then UTM message K078 is sent in addition to KO74 or 075. UTM message K078 contains the cause of
the error as an insert.

|:<::> KDCAPPL ("KDCAPPL - Change properties and limit values for an operation"), PROG operand

173



openUTM V7.0. Administering Applications. User Guide.

Data to be supplied

Function of the call

In UTM application on Unix, Linux
and Windows systems with Shared
Objects/ DLLs:

Exchange the current application
program with the next highest version
of the application program

In UTM application on Unix, Linux
and Windows systems with Shared
Objects/ DLLs:

Undo program exchange, i.e.
exchange the current application
program with the next lowest version
of the application program

In UTM applications on Unix, Linux
and Windows systems with Shared
Objects/DLLs:

Reload application program from the
same file generation.

In UTM applications on BS2000
systems with load modules:
Terminate the application program in
all processes and then restart it in
order to exchange parts of the
application in the common memory
pool. Static application parts can
therefore also be exchanged when
the application is linked before.

parameter
areal

subopcodel:

KC_NEW

subopcodel:

KC_OLD

subopcodel:

KC_SAME

subopcodel:

KC_NEW/
KC_SAME

Data to be entered in the

identification @ selection data area
area

area

(A pointer to a data
area to which UTM can
return data must be
passed in the call.)

1 The operation code KC_CHANGE_APPLICATION must be specified in the parameter area in all cases.

174



openUTM V7.0. Administering Applications. User Guide.

Parameter settings
Parameter area

Field name Contents
version KC_ADM|_VERSION._1
retcode KC_RC_NIL
version_data KC_VERSION_DATA 11
opcode KC_CHANGE_APPLICATION
subopcodel = KC_NEW / KC_SAME /KC_OLD (Unix, Linux and Windows systems)
id_Ith 0
select Ith 0
data_Ith Length of the data area / 0

Identification area

Selection area

Data area

KDCADMI call

KDCADMI (&parameter_area, NULL, NULL, &data_area)

175



openUTM V7.0. Administering Applications. User Guide.

Data returned by UTM
Parameter area
Field name = Contents
retcode Return codes
data_Ith ret = Actual length of the data in the data area
Data area

Data structure kc_change_application_str/ —

subopcodel

You can use subopcodel to set which type of program exchange is to be executed. The following types of
exchanges can be carried out:

KC_NEW  When exchanging a UTM application on a Unix, a Linux or a Windows system, UTM loads the
application program from the next highest file generation.

For a UTM application on a BS2000 system generated with load modules, UTM terminates the
application program successively in all processes and reloads it again immediately. The current
version of each of the load modules is loaded, meaning that the load modules in the common
memory pool marked in KC_MODIFY_OBJECT calls are exchanged.

Static application parts can therefore also be exchanged when the application is linked before.

KC_OLD When exchanging a UTM application on Unix, Linux or Windows systems, UTM loads the
application program from the next lowest file generation.

In this way, the old application program can be reloaded if errors are detected in the application
program after switching to a new file generation.

KC_SAME On Unix, Linux and Windows systems, openUTM loads the application program from the same
file generation.

On BS2000 systems, KC_SAME has the same effect as KC_NEW.

data_lth
in the data_Ith field you specify the length of the data area provided to contain the data returned by UTM.

When exchanging a UTM application on Unix, Linux or Windows systems, you must specify data_Ith >= sizeof (
kc_change_application_str).

You must pass a pointer to the data area in the function call.

When exchanging a UTM application program under a BS000 system generated with load modules, you must
set data_Ith=0. UTM does not return any data.

176



openUTM V7.0. Administering Applications. User Guide.

retcode

in the retcode field UTM stores the return code of the call. In addition to the return codes listed in section
"Return codes", the following codes can also be returned when the application program has been exchanged:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:
KC_SC NOT_CHANGEABLE
The application was started in the dialog. Program exchange is not possible.

KC_SC_FILE_ERROR (only on Unix, Linux and Windows systems)

An error occurred while accessing the file generation of the application program to be loaded. UTM
produced UTM message K043 with the DMS return code.

KC_SC_NOT_GEN (only on BS2000 systems)

The UTM application is gererated without load modules.

KC_SC_NO_GLOB_CHANG_POSSIBLE

Only in UTM cluster applications:
No global administration changes are possible since the generation of the node applications is not
consistent at present.

KC_SC_JFCT_RT_CODE_NOT_OK

Only for UTM cluster applications:
Internal UTM error
Please contact system support.

Main code = KC_MC_REJECTED_CURR
The call cannot be processed at the current time.

Subcode:

KC_SC_CHANGE_RUNNING

A program exchange is already being executed, meaning a program exchange started earlier is not yet
complete.

KC_SC_INVDEF_RUNNING

Only for UTM cluster applications:
An inverse KDCDEF is currently running, i.e. the job cannot be processed at present.

177



openUTM V7.0. Administering Applications. User Guide.

Maincode = KC_MC_RECBUF_FULL

Subcode:

KC_SC_NO_INFO

Only for UTM cluster applications:
The buffer containing the restart data is full (see openUTM manual “Generating Applications”, KDCDEF
control statement MAX, RECBUF parameter).

data_Ith ret
In the data_lIth_ret field of the parameter area, UTM returns the actual length of the data in the data area.
Data area

When exchanging a UTM application on Unix, Linux or Windows systems, UTM returns the data structure
kc_change_application_str to the data area if a pointer to a data area was passed in the KDCADMI call.

struct  kc_change _application_str

char program fgg newf 4];

char program fgg ol d[ 4] ;

program_fgg_new

UTM returns the file generation number of the application program loaded as a result of
program exchange.

program_fgg_old

UTM returns the file generation number of the application program loaded before program
exchange was executed.

178



openUTM V7.0. Administering Applications. User Guide.

11.2.2 KC_CREATE_DUMP - Create a UTM dump

KC_CREATE_DUMP allows you to create a UTM dump for diagnostic purposes (with REASON=DIAGDP) without
having to abort the application run.

The dump is created by the process that initiated the KDCADMI call.

Procedure / period of validity / transaction management / cluster

The call is not subject to transaction management. It has an immediate effect. The operations initiated by the call
will already have been completed when control is returned to the program unit.

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The call applies locally to the node, i.e. a UTM dump for diagnostic purposes is only generated in this node
application.

|:<::> KDCDIAG ("KDCDIAG - Switch diagnostic aids on and off"), DUMP operand

Data to be supplied
Function of the call Data to be entered in the
parameter area identification area = selection area data area

Create a UTM dump | KC_CREATE_DUMP e

Parameter settings
Parameter area
Field name Contents
version KC_ADMI_VERSION_1
retcode KC_RC_NIL

version_data KC_VERSION_DATA 11

opcode KC_CREATE_DUMP
id_Ith 0
select_Ith 0
data_|Ith 0

Identification area

Selection area

179



openUTM V7.0. Administering Applications. User Guide.

Data area

KDCADMI call

KDCADMI (&parameter_area, NULL, NULL, NULL)

Data returned by UTM
Parameter area
Field name Contents

retcode Return codes

UTM only returns the codes listed in section "Return codes".

180



openUTM V7.0. Administering Applications. User Guide.

11.2.3 KC_CREATE_OBJECT - Add objects to the configuration

KC_CREATE_OBJECT allows you to add the following objects dynamically to the application configuration:

® transport connections to remote LU6.1 applications (KC_CON)

® key sets (KC_KSET)

® LU6.1 sessions (KC_LSES)

® transaction codes by means of which service programs are started in partner applications (KC_LTAC)
® an LTERM partner to connect clients and printers (KC_LTERM)

® application program units and VORGANG exits (KC_PROGRAM)

® clients and printers (KC_PTERM)

® transaction codes and TAC queues (KC_TAC)

® user IDs, including their queues (KC_USER)

i openUTM on Windows systems does not support any printers.

Exactly one object can be created per KC_CREATE_OBJECT call. Within any given program unit, however,
KC_CREATE_OBJECT can be called several times, i.e. several objects with the same type or with different object
types can be created.

You will find more detailed information on dynamically adding objects to the configuration in chapter "Changing the
configuration dynamically”.

i If an object which can be dynamically generated in a UTM cluster application (Unix, Linux and Windows
systems) has to be deleted then you must always delete it using the administration functions. These
objects cannot be deleted simply by means of a regeneration.

Requirements for dynamically adding an object

® During KDCDEF generation of the UTM application, RESERVE was used to reserve spaces in the table for the
object type; one of these spaces in the table is still empty. You can determine if there are still free spaces
available in the table for the corresponding object type using KC_GET_OBJECT and the KC_DYN_PAR
parameter type.

® You can only add application program units and VORGANG exits dynamically if the application was generated
with load modules (BS2000 systems) or shared objects/DLLs (Unix, Linux and Windows systems). The program
unit or VORGANG exit must be created by a compiler for which a program unit has already been statically
configured (PROGRAM statement) during the KDCDEF generation.
Only on BS2000 systems: For ILCS-capable compilers, it is sufficient to statically generate a program unit with
COMP=ILCS.

® Transaction codes for program units that use an X/Open program interface can only be added dynamically if at
least one transaction code for an X/Open program unit was configured during the KDCDEF generation.

® User IDs can only be configured dynamically if the application was generated with user IDs.
Note for BS2000 systems:

® User IDs with ID cards or can only be added dynamically if space in the table was reserved explicitly for user
IDs with ID cards during the KDCDEF generation, and if one of these table spaces is still free.

181



openUTM V7.0. Administering Applications. User Guide.

® You can only dynamically enter user IDs with Kerberos authentication if table spaces for user IDs with
Kerberos authentication have been reserved explicitly and if one of these spaces is still free.

The following must be observed when adding new objects / cluster

Certain rules must be observed when adding objects that are related to each other. These rules are described in
chapter "Changing the configuration dynamically". The following are examples of objects that are related to each
other:

® transaction codes and the program units and VORGANG exits assigned to them

® clients/printers and the associated LTERM partners and the connection user IDs or user IDs for the automatic
KDCSIGN

® Kkey sets referenced by user IDs, LTERM partners and transaction codes

Procedure / period of validity / transaction management / cluster

The call is subject to transaction management. Until the transaction has been completed, a dynamically created
object can only be accessed within the transaction itself. Applicationwide access is only possible after the
transaction has been completed. In particular, the object can only be manipulated by means of administration
functions after the transaction has been completed (this includes information queries). Within the same transaction,
the object can only be accessed when adding additional objects that are related to it.

The call’s effects extend beyond the end of the current application run. This means that objects added dynamically
are also part of the configuration for later application runs (as long as the objects are not deleted again).

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The call applies globally to the cluster, i.e. the objects are dynamically entered in the configuration in all the node
applications.

Data to be supplied

Function of the call Data to be entered in the

parameter area 1 identification | selection data area

area area
Add transport connections to the obj_type: —_— —_— Data structure kc_con_str
remote LUG6.1 application to the KC_CON with the name and
configuration properties of the partner
and the connection
Add key set to the configuration obj_type: _ _— Data structure kc_kset _str
KC_KSET with the name and

properties of the key set

182



openUTM V7.0. Administering Applications. User Guide.

Function of the call Data to be entered in the

parameter areal  identification = selection dataarea

area area

Add LU6.1 session to the obj_type: Data structure kc_Ises_str

configuration KC_LSES with the name and
properties of the partners
involved

Add transaction code by means obj_type: Data structure kc_ltac_str

of which service programs are KC_LTAC with the name and

started in partner applications to properties of the LTAC and

the configuration the partner

Add an LTERM partner to the obj_type: Data structure kc_lterm_str

configuration KC_LTERM with the name and
properties of the LTERM
partner

Add a program unit or obj_type: Data structure

VORGANG exit to the KC_PROGRAM kc_program_str with the

configuration name and properties of the
program unit or VORGANG
exit

Add a client/printer (PTERM) to obj_type: Data structure

the configuration KC_PTERM kc_pterm_str with the
name and properties of the
client/printer

Add a transaction code obj_type: Data structure kc_tac_str

or TAC queue to the KC_TAC with the name and

configuration properties of the
transaction code or TAC
queue

Add a user ID (including queue) obj_type: Data structure kc_user_str

to the configuration KC_USER with the name and

1 The operation code KC_CREATE_OBJECT must be specified in the parameter area in all cases.

properties of the user ID
and queue

183



openUTM V7.0. Administering Applications. User Guide.

Parameter settings
Parameter area

Field name Contents
version KC_ADMI_VERSION_1
retcode KC_RC_NIL
version_data KC_VERSION_DATA 11
opcode KC_CREATE_OBJECT
obj_type Object type

obj_number |1

id_Ith 0
select_Ith 0
data_lth Length of the data in the data area

Identification area

Selection area

Data area

Data structure of the object type

KDCADMI call

KDCADMI (&parameter_area, NULL, NULL, &data_area)

Data returned by UTM
Parameter area
Field name Contents

retcode Return codes

184



openUTM V7.0. Administering Applications. User Guide.

obj_type

In the obj_type field you must specify the type of object to be created. You can specify the following object
types:

KC_CON, KC_KSET, KC_LSES, KC_LTAC, KC_LTERM, KC_PROGRAM, KC_PTERM, KC_TAC, KC_USER.
obj_number

Only one object can be created per call. Therefore you must set obj number = 1.
data_lth

In the data_lth field you specify the length of the data structure you are passing to UTM in the data area.
Data area

You must pass a data structure in the data area containing the name of the new object and the properties to
be assigned to this object. A unique data structure is provided for each individual object type, and you must
place this data structure in the data area.

The tables on the following pages as of "obj_type=KC_CON" contain descriptions of the data structures as a
function of the type of the object to be created. The table shows you which fields in the relevant data structure
must be supplied with data.

The entries in the first column of the table have the following meanings:

o] Supplying the field with data is optional
m  Supplying the field with data is mandatory

(m) Supplying the field with data may be mandatory, depending on the data you have entered for the other
mandatory parameters or at the level of the operating system under which the UTM application is
running.

Fields in the data structures that you have not explicitly specified must be set to binary zero. UTM will use the
default values for these fields. You can find the default values listed in the descriptions of the data structures in
section "Data structures used to pass information".

retcode

In the retcode field UTM outputs the return codes of the call, see "Returncodes".

185



openUTM V7.0. Administering Applications. User Guide.

11.2.3.1 obj_type=KC_CON

In order to create a new LUG6.1 transport connection to a remote application, you must place the data structure

kc_con_strin the data area.

The following table shows how the fields in the data structure are to be supplied with data.

m

2

(0]

3

Field name 1

co_name[8]

pronam_long[64]

bcamappl[8]

Meaning

Name of the partner application with which there is to be communication via
the logical connection. For the format of the name see the section "Format
and uniqueness of object names".

BS2000 systems:

co_name can be either the BCAM name of a UTM partner application (in the
case of a homogeneous link) or the name of a TRANSIT application (in the
case of a heterogeneous link).

Unix, Linux and Windows systems:

You must specify the T-selector which the partner application uses to sign on
to the transport system for co_name.

The first character must be a letter.

Name of the partner system.

For pronam_long you specify the name of the processor on which the
partner application co_name runs. This is the name of a Unix, Linux,
Windows or BS2000 system.

The complete host name (FQDN) under which the host is known in the DNS
has to be specified. The name can be up to 64 characters long.

Instead of a 64 character FQDN name, a short local name (on BS2000
systems: BCAM name) of the partner computer may be used (max. 8
characters). In this case, it must be possible for the transport system to map
the local name to an FQDN name or an IP address using external additional
information (in BS2000 systems: FQDN file, in Unix, Linux or Windows
systems: hosts file).

Specifies a name of the local application, as defined at generation in the
control statement MAX or BCAMAPPL. A BCAMAPPL name for which T-
PROT=SOCKET is generated must not be specified.

Default: If nothing is specified, the primary application name in MAX ...,
APPLINAME-= applies.

186



openUTM V7.0. Administering Applications. User Guide.

m

03

Field namel | Meaning

Ipap[8] Name of the LPAP partner of the partner application to which the connection is to be set
up. The name of the LPAP partner by means of which the partner application obtains a
connection must have been defined by means of the LPAP statement at generation.

By creating a number of CON objects with the same LPAP name, parallel connections to
the partner application are configured. You must ensure that the parallel connections lead
to the same partner application (co_name and pronam).

termn[2] Identifier for the type of the communication partner with a maximum length of 2
characters. termn is not queried by UTM; it is set by the user for evaluation purposes in
order, for example, to query or group terminal types. The identifier termn is entered in the
KB header for job-receiving services (i.e. for services started in the local application by a
partner application).

listener_port[5] = Port number of the partner application.

BS2000 systems:
A port number not equal 0 may only be specified, if the local application specified in the
bcamappl parameter was not generated with T-PROT=NEA.

t_prot Only on Unix, Linux and Windows systems:
Contains the address format with which the partner application signs on to the transport
system. The address format is specified as follows:

'R' ' RFC1006, ISO transport protocol class 0 via TCP/IP and RFC1006 convergence
protocol.

tsel_format Only on Unix, Linux and Windows systems:
Contains the format indicator of the T-selector of the partner address:

'T"  TRANSDATA format
'E' EBCDIC character format
‘A" ASCII character format

The significance of the address formats is described in the "PCMX documentation”
(openUTM documentation).

All fields of the kc_con_str data structure that are not listed and all the fields that are not relevant to the operating system used are to be

set to binary zero. The data structure is described in full in chapter "kc_con_str - LU6.1 connections".
Mandatory on BS2000 systems

Optional on Unix, Linux and Windows systems

187



openUTM V7.0. Administering Applications. User Guide.

11.2.3.2 obj_type=KC_KSET

In order to create a new key set, you have to place the data structure kc_kset_str in the data area. The following
table shows how the fields in the data structure are to be supplied with data.

Field name

m  ks_name[8]

(0]

(0]

1

master

keys[4000]

1

Meaning
Name of the key set.

Specifies whether the key set is a master key set. A master key set contains all the key
or access codes required to access the objects of the application (i.e. all key codes
between 1 and the maximum value defined at KDCDEF generation in MAX
KEYVALUE).

'Y The key set is a master key set.
'N' The key set is not a master key set.

In this field you select the key or access codes to be assigned to this key set. Only
keys up to the maximum value generated (MAX KEYVALUE) can be selected.

For each key to be contained in the key set, the corresponding byte in the field must be
set to 1; all the keys fields that are not selected must contain the value 0. If the key 10
is to be created, for example, keys[9] must contain the value 1 (note: the array begins
with an index of 0).

A recovery buffer size of at least 16,500 bytes is recommended for 4,000 keys (MAX
generation statement, RECBUF parameter).

All fields of the kc_kset_str data structure that are not listed and all the fields that are not relevant to the operating system used are to be

set to binary zero. The data structure is described in full in chapter "kc_kset_str - Key sets of the application”.

188



openUTM V7.0. Administering Applications. User Guide.

11.2.3.3 obj_type=KC_LSES

In order to create a new LU6.1 session, you must place the data structure kc_Ises_strin the data area. The
following table shows how the fields in the data structure are to be supplied with data.

Field name 1 Meaning
m | Is_name[8] This is the name of the session in the local application (local half-session name).

The specified name must be unique and may not be assigned to any other object of
name class 2. See also the section "Format and uniqueness of object names".

m | Ipap[8] Name of the LPAP partner assigned to the partner application. Is_name is used for
communication with the partner application assigned to the LPAP partner /jpap in the
local application.

0 rses[8] This is the name that describes the session in the remote application (remote half-
session name). The name can be up to 8 characters long.

1 Allfields of the kc_Ises_str data structure that are not listed and all the fields that are not relevant to the operating system used are to be

set to binary zero. The data structure is described in full in chapter "kc_Ises_str - LU6.1 sessions".

189



openUTM V7.0. Administering Applications. User Guide.

11.2.3.4 obj_type=KC_LTAC

In order to create a new transaction code by means of which service programs can be started in partner
applications, you must place the data structure kc_ltac_strin the data area. The following table shows how the
fields in the data structure are to be supplied with data.

Field name 1

m | Ic_name[8]

0 Ipap([8]

0 rtac[64]

0 rtac_lth[2]

0 code_type

Meaning
Name of a local transaction code for the remote service program.

Specifies the partner application to which the service program belongs. /pap contains
® the name of the LPAP or OSI-LPAP partner assigned to the partner application,

® or the name of a master LPAP partner.

If Ipap is not specified, the name of the partner application must be specified in the APRO
function call (in the KCPA field).

The name of the associated transaction code in the remote application
(recipient_TPSU _title).

Specifies the length of the name rtac. The number of relevant bytes is specified in rtac.
Minimum value: '1', maximum value: '64'

Specifies which code type is used by UTM internally for the rtac name:

" | INTEGER
The TAC name in rtac is a positive integer between 0 and 67108863.
rtac names of the code type INTEGER are only permitted for partner applications that
are not UTM applications and that communicate via the OSI TP protocol.

'P' | PRINTABLE-STRING

The TAC name in rtac is specified as a string with a maximum length of 64 characters.

A distinction is drawn between uppercase and lowercase.
A TAC name with the code type PRINTABLE-STRING can contain the following

characters:

* ABC,...,Z
® ab,c ...,z
® 0,12 ...,9

® the special characters'-:? =, +. () / (blank)

T'  T61-STRING
rtac contains a T61 string. For the code type T61-STRING, UTM supports all the
characters of the code type PRINTABLE-STRING as well as the following special
characters:
$><&@#%;*_

190



openUTM V7.0. Administering Applications. User Guide.

(o]

0 | accesswait_sec[5]

(0]

(o]

Field name 1

state

replywait_sec[5]

lock_code[4]

Meaning

Specifies whether or not /c_name is disabled for the remote service program after
the startup of the local application.

'Y' Ic_name is not disabled. Jobs are accepted for the associated remote service.
'N'  lc_name is disabled. Jobs are not accepted for the associated remote service.

Maximum time waited in seconds for a session to be occupied (possibly including
connection establishment) or for an association to be established after the remote
service is requested (the LTAC is called).

In the case of asynchronous jobs (LTAC with ftac_type='A"), a wait time ! = 0 means
the job is always entered in the local message queue for the partner application.
Dialog jobs are accepted.

A wait time accesswait_sec=0 means that dialog jobs are rejected if no session
/association for which the local application is the contention winner has been
generated.

In the case of asynchronous jobs, the FPUT call is rejected with a return code if
there is no logical connection to the partner application.

If there is a logical connection to the partner application, the message is entered in
the local message queue.

Dialog jobs are rejected regardless of the value in accesswait_sec if there is no
logical connection to the partner application. The establishment of a connection is
initiated at the same time.

Minimum value: '0' (jobs are rejected)
Maximum value: ‘32767

Maximum time in seconds waited by UTM for a reply from the remote service.
By limiting the wait time you can ensure that clients or users on the terminal do not
have to wait too long.

replywait_sec='0' means the wait time is not limited.

Minimum value: 'O’
Maximum value: '32767'

Contains the lock code assigned to the remote service in the local application (data
access control). lock code can contain a number between '0' and the maximum

value defined by means of the KEYVALUE operand of the KDCDEF statement MAX.

'0' means that the LTAC is not protected by a lock code.

If lock code is specified, access _list cannot be specified.

191



openUTM V7.0. Administering Applications. User Guide.

1

Field name 1

Itac_type

[tacunit[4]

access_list[8]

Meaning

Specifies whether the local application processes jobs in a dialog with the remote service or
whether asynchronous jobs are transferred to the partner service.

‘D' | Jobs to the partner service are processed in a dialog.
‘A" | The partner service is started asynchronously (by means of message queuing).

Contains the number of accounting units calculated in the UTM accounting phase for each
Itac call.

The accounting units are added to the accounting unit counter of the user ID that called the
Itac.

Minimum value: '0', maximum value: '4095'

Describes a key set that specifies the access rights that a user of the local UTM application
must have in order to send a job to the remote service program. Whether the job is
executed in the remote application depends on the access rights defined there.

The key set must be created first or already have been defined at generation.

If access_listis specified, lock _code cannot be specified.

A user can only access the LTAC if the key set of the user, the key set of the LTERM
partner via which the user is signed on and the specified key set have at least one key code
in common.

to binary zero. The data structure is described in full in chapter "kc_ltac_str - Transaction codes of remote services (LTAC)".

All fields of the kc_ltac_str data structure that are not listed and all the fields that are not relevant to the operating system used are to be set

192



openUTM V7.0. Administering Applications. User Guide.

11.2.3.5 obj_type=KC_LTERM

To create a new LTERM partner you must place the data structure kc_Ilterm_strin the data area. You cannot create
LTERMs for bundles and groups.

The following table shows how the fields in the data structure are to be supplied with data.

m

(o]

0

(o]

Field name 1

It name[8]

kset[8]

locale_lang_id[2]
locale_terr_id[2]
locale_ccsname[8]

lock_code[4]

Meaning

Name of the LTERM partner. The name may be up to 8 characters long.

The name may be entered in upper or lowercase letters. The name must be
unique within its name class. See section "Format and uniqueness of object
names" for information on the format and uniqueness of the name. Names of
LTERM partners and transaction codes that have been deleted may not be used.

Only relevant for dialog partners (usage_type='D"):

Key set of the application to which the LTERM partner is to be assigned. The key
set must have been created dynamically first or defined at generation.

A client or client program can only start a service secured with a lock code or
access list if the corresponding key or access code for the lock code or access list
is contained both in the key set of the user ID under which the client or client
program signs on and in the key set of the associated LTERM partner.

Note

If you do not want to define any access protection for LTERM partners in an
application generated with user IDs (USER), then assign key sets to the LTERM
partners containing all of the key codes of the application (MASTER).

Only on BS2000 systems:
Specifies the language environment (locale) of the LTERM partner.

In locale_lang_id you specify the language code of the language to be used when
sending UTM messages to the LTERM partner. It is a maximum of 2 bytes long.

In locale_terr_id you specify the territory code.
This parameter specifies territorial particularities of the main language. It is a
maximum of 2 bytes long.

In locale_ccsname you specify the CCS name of the expanded coded character s
et. The CCS name can be up to 8 bytes long .It must belong to one of the
EBCDIC character sets defined on the BS2000 system, see XHCS User Giude.

Only relevant for dialog partners (usage_type='D"):

Lock code to be assigned to the LTERM partner (access security). The lock code
must lie within the range defined in the KEYVALUE operand of the MAX KDCDEF
command.

193



openUTM V7.0. Administering Applications. User Guide.

Field name

0 state

0 | usage_type

0 | user_gen[8]

0 | cterm[8]

1

Meaning

Specifies whether the LTERM partner is to be disabled or not after generation.
Y The LTERM partner is not to be disabled. (ON)
'N' The LTERM partner is to be disabled. (OFF)

Specifies whether the LTERM partner is to be configured for connecting dialog partners or
for connecting printers:

‘D’ LTERM partner for connecting dialog partners.
'O LTERM partner for connecting output media such as printers.

Only relevant for dialog partners (usage_type='D"):

For LTERM partners of terminals:

User ID for which UTM will execute an automatic KDCSIGN when establishing the logical
connection. This user ID must have been entered in the configuration dynamically or
statically before the LTERM partner.

For LTERM partners of UPIC clients and TS applications:

The connection user ID must be created in the same transaction in which the LTERM
partner was created. See chapter "Changing the configuration dynamically" for more
information.

Default for LTERM partners of terminals:

No automatic KDCSIGN

Default for LTERM partners of UPIC clients (ptype='"UPIC-R") or TS applications (ptype
='APPLI' or 'SOCKET"):

Connection user ID with the name of the LTERM partner.

If this user ID is not created explicitly in the same transaction as the LTERM partner, then
UTM creates this user ID implicitly. This user ID must not already exist, however.

Note:
The use of the automatic KDCSIGN on terminals restricts access protection.

Only on BS2000, Unix and Linux systems:

Only relevant for LTERM partners used to connect printers (usage_type='0").

Name of the printer control LTERM that is to administer the printer. The printer control
LTERM must have been dynamically or statically added to the configuration before the
LTERM partner (see chapter "Changing the configuration dynamically").

Every printer assigned to this LTERM partner (KC_PTERM) must be assigned a printer ID (

cid) that is unique to this printer control LTERM.

194



openUTM V7.0. Administering Applications. User Guide.

Field name 1

o | format_attr
format_name([7]

o | plev[5]

Meaning

Only on BS2000 systems:

Only relevant if a terminal is to be assigned to the LTERM partner.

With the help of these fields you can assign an LTERM-specific start format to the
LTERM partner.

One requirement for assigning a start format is that a formatting system has been
generated (KDCDEF command FORMSYS). If the start format is a #Format, then a sign-
on service must also have been generated.

You must always specify a format_name and a format_attr when defining a start format.
In format_attr you specify the format code of the start format:

'A' for the format attribute ATTR (+Format).
'N' for the format attribute NOATTR (*Format).
'E' for the format attribute EXTEND (#Format).

See section "format_attr, format_name (only on BS2000 systems)" in chapter
"kc_lterm_str - LTERM partners"” for descriptions of the format attributes.

In format_name you specify the name of the start format. The name can be up to 7
characters long and may only contain alphanumeric characters.

Only on BS2000, Unix and Linux systems:

Only relevant for LTERM partners of output media (usage_type ='O").

In plev you specify the control value for the message queue of the LTERM partner. As
soon as the number of output jobs in the queue equals the value specified in plev, UTM
attempts automatically to establish a connection to the printer. If a printer pool is assigned
to the LTERM partner, then UTM establishes connections to all printers. UTM
automatically shuts the connection down as soon as the message queue is empty.

You may only specify plev in conjunction with gamsg="Y".

plev="0' means that no control value is defined.

Minimum value: '0' Maximum value: '32767"

195



openUTM V7.0. Administering Applications. User Guide.

Field name
0  gamsg
0 | glev[5]
0 restart

1

Meaning

Specifies whether asynchronous jobs (FPUT and DPUT jobs) sent to the client/printer
assigned to this LTERM partner are to be temporarily stored in the message queue of the
LTERM partner, even if the client/printer is not connected to the application.

'Y' | An asynchronous job is added to the message queue.
gamsg="Y'is not possible for restart='"N'.

'N' ' An asynchronous job is rejected if the corresponding client/printer
is not connected to the application.

Specifies the maximum number of asynchronous messages that may be temporarily stored
in the message queue of the LTERM partner at any one time. If the control value in glevis
exceeded, then UTM rejects any further asynchronous jobs sent to this LTERM partner or to
the client/printer assigned to it.

Minimum value:'0'  Maximum value:'32767"

Is only relevant for dialog partners (LTERM partners with usage type='D").
In restart you specify how UTM will deal with asynchronous messages in the message
gueue of the LTERM partner at the time when the connection is being established.

'Y' | Asynchronous messages to the client remain queued.
In an application without user IDs, UTM executes an automatic service restart for this
LTERM partner.
In a UTM cluster application without user IDs, 'Y" is only permitted
if it was generated with CLUSTER USER-RESTART=YES.

'N' ' UTM deletes all asynchronous messages from the queue when the connection is
established.
If the job is a job complex, then a negative confirmation job is activated.
UTM does not execute an automatic restart for the LTERM partner in an application
without user IDs.

if gamsg="Y" then restart="Y' must be set.

196



openUTM V7.0. Administering Applications. User Guide.

Field name 1

0 annoamsg

0 | netprio

0 | kerberos_dialog

Meaning

Only on BS2000 systems:

Only relevant for the LTERM partner of a terminal.

In annoamsg you specify if UTM is to announce an asynchronous message to the terminal
before outputting:

'Y' | Asynchronous messages are announced by a message appearing in the system line.
'N' ' Asynchronous messages are output immediately (without announcement).

Only on BS2000 systems:
Specifies the transport priority used for the transport connection between the application
and the client/printer.

'M' | "Medium" transport priority
L' "Low" transport priority
For native TCP/IP connections (¢t_prot = SOCKET) this field has no significance.

Only on BS2000 systems:

Specifies whether a Kerberos dialog is performed on the establishment of a connection for
clients that support Kerberos and are connected with the application directly via via this
LTERM partner (not via OMNIS).

'Y' A Kerberos dialog is performed.

‘N" ' No Kerberos dialog is performed.

1 Allfields in the data structure kc_lterm_strthat are not listed and all fields that are not relevant to the operating system you are using are

to be set to binary zero. The data structure is described in chapter "kc_lterm_str - LTERM partners".

Clients/printers are assigned to LTERM partners (LTERM - PTERM) when clients/printers are being
added to the configuration, or with the aid of KC_MODIFY_OBJECT.

197



openUTM V7.0. Administering Applications. User Guide.

11.2.3.6 obj_type=KC_PROGRAM

To add a new program unit or VORGANG exit to the configuration you must place the data structure kc_program_str
in the data area.

The table below shows you how to supply data to the fields in the data structure kc_program_str.

m

(m)

m

1

Field name 1

pr_name[32]

compiler

load_module[32]

Meaning

Name of the program unit. The name may be up to 32 bytes long.

You must observe the conventions in section "Format and uniqueness of object
names" when specifying a name. The name of a program unit that has been deleted
from the configuration cannot be used.

In UTM applications on BS2000 systems you specify the ENTRY or CSECT name of
the program unit.

Compiler or ILCS-capability of the compiler used to compile the program unit.

In UTM applications on BS2000 systems the compiler specification is mandatory.
For all program units that support ILCS you must specify 'I' for ILCS for the compiler.

In UTM applications on BS2000 systems the following settings are possible:
'I'for ILCS (Inter Language Communication Services)

'A' for the assembler compiler ASSEMB

'C' for the C compiler (UTM sets this to 'l')

'1' for the COBOL compiler (COB1)

'F' for the FORTRAN compiler (FOR1)

‘X' for PASCAL-XT

'P' for PLI1

'S' for SPL4

In a UTM application on a Unix, Linux and Windows system the following values are
possible:

'C' for the C compiler

'+' for the C++ compiler

'2' for the COBOL compiler of Micro Focus

'3' for the NetCOBOL compiler from Fujitsu

Name of the load module (BS2000 systems) or of the shared object/DLL (Unix, Linux
and Windows systems) into which the program unit is linked.
The name can be up to 32 characters long.

BS2000 systems:
The load module must be statically configured using the KDCDEF control statement
LOAD-MODULE. It may not be statically linked to the application program.

Unix, Linux and Windows systems:
The shared object must/DLL be statically configured using the KDCDEF command
SHARED-OBJECT.

All fields in the data structure kc_program_str that are not listed and all fields that are not relevant to the operating system you are using

are to be set to binary zero. The data structure is described in full in chapter "kc_program_str - Program units and VORGANG exits".

198



openUTM V7.0. Administering Applications. User Guide.

11.2.3.7 obj_type=KC_PTERM

To add a printer or client (i.e. a terminal, an UPIC client or a TS application) to the configuration, you must place the
data structure kc_pterm_strin the data area in which you will pass the name, address and properties of the client or
printer to UTM. The table below shows you how to supply the fields of the structure with data.

i openUTM on Windows systems does not support any printers.

Field name

m  pt_name[8]

1

Meaning

Name of the client or printer. The name may be up to 8 characters long.

The symbolic name under which the client/printer is known to the transport system should be
specified in pt_name.

See section "Format and uniqueness of object names" for information on the format of the
name and its uniqgueness. Names of objects that have been deleted and which belong to the
same name class may not be used.

If your application contains an LTERM pool with connect_mode="M' (multi), then the triplet (
pt_name, pronam,bcamappl) must not be the same as any naming triplet in the LTERM pool
(= the triplet made up of the name of an LTERM partner in the pool, the processor name of
the pool client and the BCAMAPPL name of the application which is used to establish the
connection from the client). Otherwise, no other client will be able to connect via this LTERM
pool.

Special features of communication via the socket interface:

If the connection between the communication partner and the UTM application is to be
realized via the socket interface (SOCKET), and if the partner is to use a specific port
number when establishing the connection, you must supply the value PRTnnnnn for
pt_name, nnnnn being the port number in the remote system, via which the partner will
establish the connection. If the partner is a UTM application, the port number cannot be
supplied, because UTM does not set the port number itself.

If it is only the local application that establishes the connection, and not the partner
application, the name is only required internally, e.g. for administration purposes.

199



openUTM V7.0. Administering Applications. User Guide.

(m)

(o]

(m)

(o]

Field name 1

pronam_long[64]

bcamappl[8]

ptype[8]

ptype_fotyp[8]

Meaning

Name of the computer on which the client/printer is located.

The complete host name (FQDN) under which the host is known in the DNS has to
be specified. The name can be up to 64 characters long. Instead of a 64 character
FQDN name, a short local name (on BS2000 systems: BCAM name) of the partner
computer may be used (max. 8 characters). In this case, it must be possible for the
transport system to map the local name to an FQDN name or an IP address using
external additional information (in BS2000 systems: FQDN file, in Unix, Linux or
Windows systems: hosts file).

If ptype="RSO' on BS2000 systems, then pronam_long=*RSO' must be specified.

If the connection to the partner is established through the socket interface (TCP-IP-
APPLI, t_prot="T' protocol) you must specify the system’s symbolic address or the
real host name in pronam_long.

On Unix, Linux and Windows systems pronam_long may be specified only with ptype
='UPIC-R’, 'APPLI' or 'SOCKET'. openUTM uses the default value (blanks) for
terminals and printers.

Name of the UTM application through which the connection between the UTM
application and the client/printer is to be established. The application name must
have been statically generated using a BCAMAPPL command or during the
KDCDEF generation by defining it in MAX APPLINAME.

If the connection to the communication partner is to be established vie the SOCKET
protocol, you must specify a BCAMAPPL name with t_prot="T".

Only on BS2000 systems:
When ptype is not equal to 'APPLI', 'SOCKET' or 'UPIC-R', only the application name
generated in MAX APPLINAME (default value) may be specified for bcamappl!.

Type of client/printer

You will find a list of possible types in chapter "kc_pterm_str - Clients and printers”
(section "BS2000 systems").

When ptype='"APPLI', 'SOCKET or 'UPIC-R', lterm must be specified.

The specification of a ptype is mandatory for UTM applications on BS2000 systems.
It is not permissible to specify ptype="PRINTER' on Windows systems.

Only relevant for printers (ptype = 'PRINTER') on Unix and Linux systems.
In ptype_fotyp you specify the type of the printer (printertype).

200



openUTM V7.0. Administering Applications. User Guide.

(o]

(m)

(o]

(o]

(o]

Field name 1

ptype_class[40]

Iterm[8]

auto_connect

State

cid[8]

Meaning

Only relevant for printers (ptype = 'PRINTER') on Unix and Linux systems.

In ptype_class you specify the name of the printer group (printer class) to which the
printer belongs. The printer group is determined during the generation on the Unix or
Linux system.

Name of the LTERM partner to be assigned to this client/printer.

This parameter is optional for terminals and printers. An LTERM partner can be assigned
to them at a later time using the administration functions.

If the name of an LTERM partner is specified in /term, then it must have been statically or
dynamically added to the configuration before the terminal/printer.

For UPIC clients and TS applications (ptype = 'UPIC-R', 'APPLI' or 'SOCKET") lterm is a
mandatory parameter. The LTERM partner specified must be created in the same
transaction as the client. See "Changing the configuration dynamically" for more
information.

Specifies if the connection to the client/printer is to be established automatically when the
application is started:

'Y'  UTM is to try to establish a connection to the client/printer every time the application
is started.

‘N' ' UTM is not to try automatically to establish the connection.

For UPIC clients, only auto_connect="N'is allowed.

Specifies if the client/printer is to be disabled at first after being added.
'Y' | The client/printer is not be disabled (ON).

‘N' ' The client/printer is to be disabled (OFF).

Only relevant for printers on BS2000, Unix and Linux systems.

In cid you specify the printer ID (CID). The CID may contain a maximum of 8 characters.
The CID is required if the printer is to be administered using a printer control LTERM.
The printer control LTERM identifies the printer using the CID. The CID must be unique
to the printer control LTERM.

201



openUTM V7.0. Administering Applications. User Guide.

(o]

(o]

Field name

map

termn[2]

1

Meaning

Only relevant for TS applications (ptype = 'APPLI") or SOCKET-USP applications

In map you specify whether or not UTM is to perform a code conversion (EBCDIC <-> ASCII)
for the user messages exchanged between the communication partners. User messages are
transferred at the KDCS interface with the calls for message handling (MPUT/FPUT/DPUT)
in the message area.

‘U (USER)
UTM does not convert the data in the KDCS message area, i.e. the data of the message area
are exchanged between the communication partners without any changes.

'S, 1, 2,13, 4

is only permitted for the following TS applications:

® BS2000 systems: ptype='SOCKET"

® Unix, Linux and Windows systems: ptype='"APPLI' or 'SOCKET"

If you specify one of these values, UTM converts the user messages according to the code
tables provided for the code conversion, see the "Code conversion" section in the openUTM
manual "Generating Applications", i.e.:

® Prior to sending, the code is converted from ASCII to EBCDIC on Unix, Linux and
Windows systems and from EBCDIC to ASCII on BS2000 systems.

® After receival, the code is converted from EBCDIC to ASCII on Unix, Linux and Windows
systems and from ASCII to EBCDIC on BS2000 systems.

openUTM assumes that the messages contain only printable characters.In this case, the
specifications 'S' and 'S1' are synonymous.

For more information on code conversion, please refer to the openUTM manual
~Programming Applications with KDCS”; keyword ,code conversion®.

Code for the type of client/printer (terminal mnemonic). The code is a maximum of 2
characters long. Default values for termn can be found in the table in chapter "kc_pterm_str -
Clients and printers" (section "BS2000 systems" or "Unix, Linux and Windows systems").

202



openUTM V7.0. Administering Applications. User Guide.

(o]

(o]

(0]

(o]

Field name 1

protocol

usage_type

listener_port[5]

t_prot

Meaning

Only on BS2000 systems:

Specifies if the NEABT user utility protocol is to be used for connections to the client/printer.

'N' (NO): Do not use NEABT.
'S' (STATION): Use NEABT.

For clients connected through a multiplex connection, you must set protocol = 'S'.

For UPIC clients, RSO printers and TS applications connected via the socket interface, you

must set protocol = 'N'. In these cases, protocol = 'N' is ignored.

Only on BS2000 systems:
Specifies whether a dialog partner or an output medium is to be configured. You can
specify the following:

'D' for a dialog partner
'O’ for an output medium (printer, for example)

You specify in listener_port the port number in the remote system at which the partner
application awaits requests for connection establishment from outside.
All port numbers are allowed.

On BS2000 systems, listener_port is only allowed in the case of ptype="APPLI' or
'SOCKET".

The specification is mandatory for ptype="SOCKET".

A port number not equal 0 may only be specified, if the local application specified in the
bcamappl parameter was not generated with T-PROT=NEA.

On Unix, Linux and Windows systems, listener_portis only relevant for t_prot="T' and 'R'.

Only relevant for clients of the type pttype=APPLI', 'SOCKET" or 'UPIC-R' on Unix, Linux
and Windows systems. You specify the address format of the client’s transport address.
Possible values are:

'R' ' RFC1006, ISO transport protocol class 0 using TCP/IP and the
RFC1006 convergence protocol (APPLI, UPIC-R)

T" ' Native TCP-IP transport protocol for communication via the socket interface (SOCKET)

203



openUTM V7.0. Administering Applications. User Guide.

(o]

(0]

Field name

tsel_format

idletime[5]

1

Meaning

Only relevant for clients of the type pttype=APPLI', 'SOCKET" or 'UPIC-R' on Unix, Linux
and Windows systems. You specify the format of the T-selector for the client address.
Possible values are:

'T': TRANSDATA format
'E": EBCDIC character format
'A": ASCII character format

May only be specified for dialog partners.

In idletime you define the maximum duration in seconds which UTM waits for a response
from the client after the end of a transaction or after a sign-off (KDCSIGN). If the time is
exceeded, the connection to the client is closed down. If the client is a terminal, message
K021 is issued before the connection is closed down. The value for idletime must not be
smaller than the timer value in kc_timer_par_str.termwait_in_ta_sec and kc_timer_par_str.
pgwttime_sec (see "kc_timer_par_str - Timer settings").

The purpose of this function is to improve data protection:

If a user forgets to sign off when interrupting or finishing work at a terminal, the connection is
automatically closed down when the idle time expires. This reduces the danger of
unauthorized access.

Maximum value: '32767"

Minimum value: '60'

The value 0 means wait without time limit.

In the case of values smaller then 60 but not equal to O, the value 60 is used.

In the case of an invalid value, UTM sets idletime to the lowest value allowed and issues the
return code KC_MC_OK with the subcode KC_SC_ INVALID_IDLETIME.

204



openUTM V7.0. Administering Applications. User Guide.

Field name 1

0 | encryption_level

Meaning

Only relevant for UPIC clients and also for some terminal emulations on BS2000 systems.

In encryption_level you define the lowest encryption level for communication with a client,

* whether the encryption of messages is demanded by default or not

® which encryption level is demanded,

® or whether the client is a “trusted” client.

Possible values are:

N’

(NONE)

UTM does not demand data encryption.

The client can only activate services for whose service TACs encryption was
generated (see kc_tac_str.encryption_level in chapter "kc_tac_str - Transaction
codes of local services"), if the client agrees encryption.

(LEVEL 3)

UTM demands that messages are encrypted with encryption level 3. In other words,
the messages are encrypted with the AES-CBC algorithm and an RSA key with a key
length of 1024 bits is used for exchange of the AES key.

(LEVEL 4)

UTM demands that messages are encrypted with encryption level 4. In other words,
the messages are encrypted with the AES-CBC algorithm and an RSA key with a key
length of 2048 bits is used for exchange of the AES key.

(LEVEL 5)

UTM demands that messages are encrypted with encryption level 5. In other words,
the messages are encrypted with the AES-GCM algorithm. The Agreement of the
AES key is done with the Ephemeral Elliptic Curve Diffie-Hellman method (ECDHE)
and an RSA Key with key length of 2048 bits.

Level 5 is only supported in openUTM on Unix, Linux, and Windows systems.

Establishment of a connection to the client is rejected by UTM if the client does not
support at least the specified encryption level (3, 4 or 5).

Specifying encryption_level=3 ... 5 is meaningful only if the encryption funcions
are available on your system. Otherwise the client cannot connect.

(TRUSTED)

The client is a trusted client.

Messages exchanged between the client and the application are not encrypted.

A “trusted client” can activate services for which the service TACs require encryption
(generated with kc_tac_str.encryption_level ='2' or '5'; see "kc_tac_str - Transaction
codes of local services").

Select this setting only if the client is not generally accessible and communication
runs through a protected connection.

205



openUTM V7.0. Administering Applications. User Guide.

(0]

1

The following applies for the individual client types with regard to the encryption level:

Encryption Levels 3 to 5 are meaningful for remote UPIC clients (PTYPE=UPIC-R).

Encryption Level 3 4 or 5 is replaced by TRUSTED by openUTM for local UPIC clients
(PTYPE=UPIC-L) of an application on Unix, Linux or Windows systems.

For HTTP clients which connect to the application via a transport system end point
(BCAMAPPL) that is generated with T-PROT=(..., SECURE) the encryption level is
always set to TRUSTED by UTM.

If 3 ... 5is specified for a partner of another type, the value is replaced by NONE by
openUTM without issue of a message.

For data to be encrypted on a connection to the client the corresponding RSA keys must

be

available.

If the application is generated with OPTION GEN-RSA-KEYS=NO, KDCDEF does not
create RSA keys, i.e. by default no RSA keys are available. It is however possible to
transfer RSA keys by means of KDCUPD or to create them with KC_ENCRYPT. These
keys can then be used by newly generated objects.

usp_hdr This parameter is only significant for PTERMs with ptype='"SOCKET".
It specifies the output messages for which UTM sets up a UTM socket protocol header on
this connection. The possible values are:

Al

N’

All fields in the data structure kc_pterm_str that are not listed and all fields that are not relevant to the operating system you are using are

UTM creates a UTM socket protocol header for all output messages (dialog,
asynchronous, K messages) and precedes the message with it.

UTM creates a UTM socket protocol header for the output of K messages only and
precedes the message with this.

UTM does not create a UTM socket protocol header for any output message.

to be set to binary zero. The data structure is described in full in chapter "kc_pterm_str - Clients and printers".

206



openUTM V7.0. Administering Applications. User Guide.

11.2.3.8 obj_type=KC_TAC

To create a new transaction code or a TAC queue, you must place the data structure kc_tac_strin the data area.

The following fields are involved in the creation of a TAC queue:

tc_name, admin, qlev, q_mode, q_read_acl, q_write_acl, state and type.

None of the other fields are evaluated for TAC queues.

The table below shows how to supply data to the fields in the data structure kc_tac_str.

(m)

Field name

tc_name[8]

program[32]

lock_code[4]

1

Meaning

Name of the transaction code (tac_type='A' or 'D’) or the TAC queue (tac_type='Q'"). The
name may be up to 8 characters long.

See section "Format and uniqueness of object names" for information on the format and
unigueness of the name. Names of deleted objects that belong to the same name class
cannot be used.

Name of the program unit to which the transaction code is to be assigned. The name can
be up to 32 characters long. The program unit must already exist in the configuration or it
must have been added before the transaction code.

This parameter is not permitted for TAC queues.

Lock code (access security) to be assigned to the transaction code. The lock code is a
whole number. It must lie within the range defined in MAX KEYVALUE during the
KDCDEF generation.

Note

Jobs from a user/client will only be processed if both the key set of the user/client and the
key set of the LTERM partner via which the user/client is connected to the application
contain the keycode corresponding to the lock code of the service TAC.

207



openUTM V7.0. Administering Applications. User Guide.

Field name

0 state

1

Meaning

Specifies whether or not the transaction code or the TAC queue is to be disabled initially
after generation.

v

A TAC is not disabled (ON).
Reading and writing are permitted for a TAC queue.

A TAC is disabled (OFF).

If it is the TAC of a KDCS program unit of the type call_type='B' or 'N', the TAC is
disabled as a service TAC (1st TAC of a service) but not as a follow-up TAC of a
service.

Reading is permitted for a TAC queue, but not writing.

UTM does not accept any jobs for the TAC. The TAC is completely disabled (HALT).

If this TAC is called as a follow-up TAC, the service is terminated with PEND ER (74Z2).

Asynchronous jobs that are already buffered in the message queue of the TAC are not

started. They remain in the message queue until the status of the TAC is reset to ON or
OFF.

A TAC queue is disabled for write and read accesses.

'K' can only be specified for asynchronous transaction codes that are also service TACs
(call_type='B' or 'F') and for TAC queues. UTM accepts jobs for the transaction code.
However, the jobs are not processed; they are merely written to the job queue of the
transaction code. They are processed when you change the status of the transaction
code to 'Y' or 'N'.

You can use state="K' to collect jobs that are not to be executed until the application is
subject to a lighter load (e.g. at night).

In order to avoid overloading the page pool with too many buffered jobs, you should use
the glev parameter to limit the size of the job queue for the transaction code.

Writing is permitted for a TAC queue, but not reading.

UTM always sets state="Y" for the administration commands KDCSHUT and KDCTAC, even
if you have entered another value. This ensures that you can administer your application at
all times.

208



openUTM V7.0. Administering Applications. User Guide.

Field name

0 | tacclass[?]

o0 admin

1

Meaning

Can only be specified if a TAC class was created during KDCDEF generation.
In tacclass you specify which TAC class is to be assigned to the transaction code.
You must observe the following points:

A dialog transaction code (tac_type = 'D") can only be assigned a TAC class between 1
and 8 (1 <= tacclass <= 8).

An asynchronous transaction code (tac_type = 'A") can only be assigned a TAC class
between 9 and 16 (9 <= tacclass <= 16).

If your application is generated without a TAC-PRIORITIES statement, all dialog TACs (
tac_type='D") from program units that use blocking calls (such as the KDCS call PGWT)
must be assigned to the same dialog TAC class for which PGWT=YES must be set.
Accordingly, all asynchronous TACs that use blocking calls must also be assigned to the
asynchronous TAC class for which PGWT=YES is set.

If your application is generated with a TAC-PRIORITIES statement, all dialog TACs from
program units that use blocking calls can be assigned to any dialog TAC class. You only
need to set pgwt="Y". Similarly, this applies to asynchronous TACs

Default (assuming that at least one TAC class exists):dialog TACs are not assigned a TAC
class, asynchronous TACs are assigned TAC class 16.

Specifies which privileges a user or client must have to be able to call this transaction code or
a service containing this transaction code as the follow-up TAC. In the case of a TAC queue,

the authorization refers to write and read accesses. Possible values are:

v

This transaction code can only be called by a user with administration privileges. admin
='Y' must be assigned to transaction codes of administration programs that do more
than just read application data. In the case of a TAC queue, only a user with
administration authorization can read messages from this queue or write messages to
the queue.

No administration authorization is required to call the transaction code or to access the
TAC queue. Program units that are started by means of a transaction code with admin
='N' may not issue KDCADMI calls.

As in the case of admin="N', no administration authorization is required in order to call
this transaction code or access the TAC queue. However, the associated program unit
can use all the functions of KDCADMI that have read access to the application data.

209



openUTM V7.0. Administering Applications. User Guide.

(o]

(0]

(o]

(o]

(o]

Field name 1

call_type

exit_name[32]

glev[5]

tac_type

real_time_sec[5]

Meaning

Specifies whether a service is started using the transaction code or if the transaction
code is a follow-up TAC in a service. The following can be specified:

'B'  The TAC can be the first TAC as well as a follow-up TAC in a service (BOTH).
'F' The TAC can only be the first TAC in a service (FIRST).
'N' ' The TAC can only be a follow-up TAC in a service (NEXT).

Name of the VORGANG event exit to be assigned to this TAC. exit_name can only
be specified if call_type ='F' or 'B' has been set.

The VORGANG exit specified in exit_name must already be contained in the
configuration as a program unit of the application (dynamically with object type
KC_PROGRAM or with the KDCDEF command PROGRAM).

If the program unit in program is linked into a load module with the load mode set to
ONCALL, then the VORGANG exit must be contained in the same load module.

Only relevant for asynchronous TACs (tac_type = 'A") or TAC queues (tac_type='Q").
UTM only takes the jobs into account at the end of the transaction. The number of
messages specified in glev for a message queue may therefore be exceeded when
several messages are created for the same queue in a single transaction.

If the number specified in glev is exceeded, how UTM responds depends on the
setting for g_mode.

Minimum value: '0', Maximum value: '32767'

If a value > 32767 is specified for glev, then UTM will reset it to the default value
without notification.

Specifies whether jobs sent to this transaction code are to be processed
asynchronously or in dialog mode or whether a TAC queue is created:

'D'  The transaction code is a dialog TAC
‘A’ | The transaction code is an asynchronous TAC

'‘Q'"  ATAC queue is created.
A DPUT call can be used to write a message to a queue like this, and a DGET
queue can be used to read a message from it.

Specifies the maximum amount of real time in seconds that a program unit run
started with this TAC may use. If the program unit runs for a longer time, then UTM
aborts the service.

real_time_sec ='0' means there is no limit to the amount of real time that may be
used.

Minimum value: '0', Maximum value: '32767"

210



openUTM V7.0. Administering Applications. User Guide.

Field name 1

0 | cpu_time_msec[8]

0 | dbkey[8]

0  runprio[3]

0 | api

Meaning

Only on BS2000 systems:

Specifies the maximum amount of CPU time in milliseconds that a program unit run
started with this TAC may use. If the program unit runs for a longer time, then UTM
aborts the service.

cpu_time_msec ='0' means there is no limit to the amount of CPU time that may be
used.

Minimum value: '0', Maximum value: ‘86400000
The values from 1 to 999 are invalid and will be rounded up to 1000 by UTM.

Only on BS2000 systems:
Is only relevant if the program unit belonging to the transaction code sends database
calls and the database system is linked to UTM.

In dbkey you specify the database key that UTM passes to the database system when
a program unit makes a database call. The format of the key depends on the database
system used. The key can be up to 8 characters long.
At the present time, dbkey is only supported for UDS.

Setting dbkey="UTM' causes the value of the start parameter DBKEY to be passed to
the database (see “Start parameters” in the openUTM manual “Using UTM
Applications”).

Only on BS2000 systems:

Run priority of the process in the operating system in which the program unit belonging
to the transaction code is running.

runprio ='0" means that the transaction code is not assigned any special run priority.

Minimum value: '30' (highest priority),
Maximum value: '255' (lowest priority)

UTM program interface used by the program unit belonging to the transaction code.
'K': KDCS

'X': X/Open interface XATMI
'C": X/Open interface CPI-C

211



openUTM V7.0. Administering Applications. User Guide.

Field name
0 satadm
0 satsel

0 | tacunit[4]

0 pgwt

1

Meaning

Only on BS2000 systems:
Specifies if UTM SAT administration privileges are required to call the transaction code.

'Y' | The transaction code may only be called by users and partner applications that have
UTM SAT administration privileges.
satadm="Y' must be specified if the transaction code uses the UTM SAT administration
functions.

'N' ' UTM SAT administration privileges are not required to call the transaction code.

Only on BS2000 systems:
Type of SAT logging for this transaction code.

'B' ' Both successful and unsuccessful events are to be logged (BOTH).
'S'" | Only successful events are to be logged (SUCC).

'F' | Only unsuccessful events are to be logged (FAIL).

'N' ' No TAC-specific SAT logging is defined.

Logging can only take place if SAT logging is activated for the application. (See the
openUTM manual “Generating Applications” for more information on SAT logging.)

Only relevant if the application uses accounting functions (see openUTM manual
“Generating Applications”; Accounting and KDCDEF statement ACCOUNT and openUTM
manual “Using UTM Applications”; SAT logging).

In tacunit, you enter the number of accounting units that will be charged to a user’s account
for calling this transaction code.
Only integers are allowed for tacunit.

Minimum value: '0', maximum value: '4095'

Specify only if your application processes job to TAC classes using priority control, i.e. the
KDCDEF generation contains the TAC-PRIORITIES statement.

In pgwt, you specify whether blocking calls (e.g. PGWT) can be run in a program unit
started for this transaction code.

'Y' | Blocking call can be run. Specify "Y' only if you assign the TAC to a TAC class.

‘N' | Blocking calls are not allowed.

212



openUTM V7.0. Administering Applications. User Guide.

Field name 1

0 | encryption_level

0 | access_list[8]

Meaning

Only for service TACs (call_type='F'or 'B").
In encryption_level, you specify whether messages for this transaction code must be
encrypted or not.

‘2" (Level 2)
Input messages must be encrypted using the AES-CBC algorithm for access to the
transaction code.

'5' | (Level 5) on Unix, Linux and Windows Systems
Input messages must be encrypted using the AES-GCM algorithm for access to the
transaction code.

If encryption_level = '2' or '5' is specified, the client can only start a service using this
transaction code, if one of the following conditions is met:

® The client is a “trusted” client (see kc_pterm_stror kc_tpool_str field
encryption_level).

®* The client has encrypted the input message to the transaction code with at least
the specified encryption level. If a “not trusted” client does not encrypt the input
message or does not encrypt it to the required level, no service is started.

If the transaction code is called without user data of if it is started via service
concatenation, the client must be able to encrypt data, because UTM encrypts all
dialog output messages it transmits and, in multi-step services, expects all input
messages received from a “not trusted” client also to be encrypted.

'N' ' (NONE)
No message encryption required.

You use this to specify a key set that controls the access rights of users for this transaction
code. The key set must have been created dynamically beforehand or defined at
generation.

access_list must not be specified together with lock _code.

A user can only access the transaction code if the key set of the user, the key set of the
LTERM partner by means of which the user is signed on and the specified key set have at
least one key code in common. If you specify neither access_list nor lock code, the
transaction code is not protected, and any user can call it.

213



openUTM V7.0. Administering Applications. User Guide.

Field name 1

0  g_mode

0 | g_read_acl[8]

0 | g_write_acl[8]

0 | dead_letter_q

1

Meaning

Specifies how UTM responds when the maximum number of saved but not yet executed
jobs to this asynchronous TAC or to the TAC queue is reached. The possible values are:

'S'" | UTM rejects any further jobs.

‘W' | Only when tac_type='Q"
UTM accepts further messages but deletes the oldest messages in the queue.

Only when tac_type='Q":

Specifies the rights (name of a key set) that a user requires in order to read and delete
messages from this queue.

A user only has read access to this TAC queue when the key set of the user and the key
set of the logical terminal via which the user is signed on contain at least one key code that
is also contained in the specified key set.

If g_read_acl does not contain a value, all users can read and delete messages from this
queue.

Only when tac_type='Q":

Specifies the rights (name of a key set) that a user requires in order to write messages to
this queue.

A user only has write access to this TAC queue when the key set of the user and the key
set of the logical terminal via which the user is signed on contain at least one key code that
is also contained in the specified key set.

If g_write_acl does not contain a value, all users can write messages to this queue.

Specifies whether a queued message should be retained in the dead letter queue if it was
not processed correctly and it has not been redelivered.

"Y' | Messages to this asynchronous TAC or this TAC queue which could not be
processed are backed up in the dead letter queue if they are not redelivered and (with
message complexes) no negative acknowledgement job has been defined.

'N' | Messages to this asynchronous TAC or this TAC queue which could not be
processed are not backed up in the dead letter queue. This value must be specified
for all interactive TACs and for asynchronous TACs with CALL=NEXT, as well as for
KDCMSGTC and KDCDLETQ.

All fields in the data structure kc_tac_str that are not listed and all fields that are not relevant to the operating system you are using are to

be set to binary zero. The data structure is described in full in chapter "kc_tac_str - Transaction codes of local services".

214



openUTM V7.0. Administering Applications. User Guide.

11.2.3.9 obj_type=KC_USER

To create a new user ID you must place the data structure kc_user_strin the data area.

A permanent queue is available to every user ID. This queue is addressed using the name of the user ID. The
access of other users to this USER queue is controlled by means of the values in the q_read _acland q_write_acl
fields. The maximum number of messages that can be buffered and the response of UTM when this value is
reached is determined by the values in the glev and q_mode fields.

The table below shows you how to supply the fields of the data structure with data.

m  us_hame][8]

(0]

(o]

Field name

kset[8]

state

Meaning

Name of the user ID. It can be up to 8 characters long.
If the name of the user ID matches the name of an LTERM partner to which a UPIC client
or TS application, but no user ID, has been assigned, then no user may sign on to the

UTM application using this user ID. UTM then assigns this user ID exclusively to the client.

See section "Format and uniqueness of object names" for more information on the format
and unigueness of the name. Names of objects of the same name class that have been
tagged for delayed delete with KC_DELAY cannot be used.

Key set of the user ID. The key set must have been created dynamically beforehand or
generated statically. The key set determines the access privileges of the user/client that
signs on to the application using this user ID.

Specifies if the user ID is to be disabled or not. No user/client can sign on to the
application using a disabled user ID. The user ID must be released (enabled) explicitly by
the administrator.

'Y': The user ID is not to be disabled (ON).
'N": The user ID is to be disabled (OFF).

215



openUTM V7.0. Administering Applications. User Guide.

Field name 1

0 card_position[3]
card_string_Ith[3]
card_string_type
card_string[200]

Meaning

Only on BS2000 systems:

These fields are only relevant if access to the application for this user ID is only possible

using a magnetic stripe card. The fields specify which subfield of the identification
information on the magnetic stripe is to be checked and what information must be
contained therein.

Specifying card... excludes the possibility of specifying principal.

You must specify the following information in these fields:

card_position

Number of the byte on the magnetic stripe card where the information to be checked
begins. card_string_lth

Length of the identification information to be checked in bytes.

Maximum value: '100', Minimum value: '1'

card_position and card_string_Ith must define a section of the field of identification
information within the area defined by the MAX
CARDLTH generation parameter.

card_string_type
Encoding format of the identification information to be checked:

X' | The identification information is passed as a hexadecimal string.
'C' | The identification information is passed as a character string.

card_string
Character string that must be contained in the section to be checked on the magnetic
stripe card. Only the length of the contents specified in card_string_Ith is relevant if

card_string_type ='C'. For card_string type ='X', the length of the relevant data is equal

to 2 card_string _lIth.

The union kc_string is provided for passing identification information

(see "kc_user_str, kc_user_fix_str, kc_user_dynl_str and kc_user_dyn2_str user IDs").

216



openUTM V7.0. Administering Applications. User Guide.

Field name

0 | passwordl6

1

Meaning

Password for this user ID.

The password can be up to 16 characters long. The password specified must correspond
to the complexity level specified in protect pw_compl and protect pwi16_Ith. You must
also specify how UTM is to interpret the data in password using the password_type field.
The password must consist of characters which are permitted in the UTM application, see
the openUTM manual “Generating Applications”, USER statement.

On BS2000 system, specifying password16 excludes the possibility of specifying principal.

The union kc_pw16 is provided for passing the password.

uni on kc_pwl6
char x[32]; /* for X ..." */
char c[16]; /* for C..." */

In UTM applications on BS2000 systems you can specify the password either as a
character string or as a hexadecimal string. For a hexadecimal password (password_type
='X"), each half byte is displayed as a character. If you specify a password containing less
than 16 characters, then you must pad password16 to the right with spaces (
password_type="C"), or with the hexadecimal value for a space (password_type="X').

In UTM applications running on Unix, Linux or Windows systems you must always pass
the password as a character string (field password16.c). If you specify a password
containing less than 16 characters, then you must pad password16.c to the right with
blanks.

You must specify password16 if password_type ='C' or 'X'.
You may not specify password16 if password_type ='R' or 'N'.

If a user ID is to be created without a password, then you cannot specify anything in
password16 and password_type. For protect pw_compl, you must set it to '0' and for
protect_pw16_Ithto '00' (default).

217



openUTM V7.0. Administering Applications. User Guide.

Field name 1

0 | password_type

0 password_dark

Meaning

In password_type you must specify how the password in password is to be interpreted.
The following entries are possible:

'c

NG

The password in password is interpreted as a character string.

The password in password is interpreted as a hexadecimal password. Only allowed for
user IDs in a UTM application on a BS2000 system.

No password may be specified iOn password.

The password generated is a random password. Before the user thus generated can
sign on, the administrator must explicitly reset the password.

Specifies if a password is to be hidden when entered at a terminal.

v

After KDCSIGN, UTM requests the user in an interim dialog to enter the password in a
darkened field.

The user conveys the password directly at KDCSIGN. The password is visible on the
screen during sign-on (default value).

You can also set password _dark="Y" if you have not specified a password. If the user ID is
assigned a password later (with KC_MODIFY_OBJECT, for example), the password entry
will be darkened.

Note

In applications running on Unix, Linux or Windows systems, password entry is never
darkened.

218



openUTM V7.0. Administering Applications. User Guide.

(o]

(0]

Field name 1

format_attr
format_name|[7]

locale_lang_id[2]
locale_terr_id[2]
locale_ccsname[8]

Meaning

Only on BS2000 systems:
With the aid of this field you can assign the user ID a user-specific start string.
You must specify format_name and format_attr.

A requirement for assigning a start format is that a formatting system must have been
generated (KDCDEF command FORMSYS). If the start format is a #Format, then a sign-
on service must also have been generated.

In format_attr you specify the format key of the start format:

‘Al for the format attribute ATTR (+Format).
"N' for the format attribute NOATTR (*Format).
'E' for the format attribute EXTEND (#Format).

See "kc_user_str, kc_user_fix_str, kc_user_dynl_str and kc_user_dyn2_str user IDs"
(format_attr, format_name) for the meaning of the format attributes.

In format_name you specify the name of the start format. The name can be up to 7
characters long and may only contain alphanumeric characters.

Only on BS2000 systems:

Language environment (locale) of the user ID.

The language environment is relevant if messages and notifications from the application
are to be output in different languages. See the openUTM manual “Generating
Applications” for details of multilingual operation.

In locale_lang_id you specify the language code of the language in which messages
and notifications are to be passed. The code is a maximum of 2 bytes long.

In locale_terr_id you specify the territorial code.
It specifies territorial particularities of the language. It is a maximum of 2 bytes long.

In locale _ccsname you specify the CCS name of the expanded character set (coded ¢
haracter set) to be used for outputting data.

The CSS name can be up to 8 characters long and must belong to a EBCDIC character
set defined on the BS2000 system (see also the XHCS User Manual).

219



openUTM V7.0. Administering Applications. User Guide.

Field name 1

0 | protect_pwl6_lIth

0 | protect_pw_compl

Meaning

Specifies the minimum number of characters a password must contain to be accepted as
such by UTM (minimum length of the password). The password for a user ID can only be
deleted if protect pw16_Ith ='00'.

Maximum value: '16',

The minimum length is dependent on the complexity level specified in protect_pw_compl
. The minimum value for protect pwil6 Ithis:

'0' for protect_pw_compl ='0'

'1' for protect_pw_compl ="1'

'2' for protect_pw_compl ="'2'

'3' for protect_ pw_compl ='3'

Specifies the complexity level that the password for the user ID must meet.

'0'  (NONE)
Any character string may be entered as the password.

‘1" (MIN)
A maximum of 2 characters in a row may be identical in a password. The minimum
length of a password is one character.

‘2" (MEDIUM)
A maximum of 2 characters in a row may be identical in a password. The password
must contain at least one letter and one number and be at least two characters long.

‘3" (MAX)
A maximum of 2 characters in a row may be identical in a password. The password
must contain at least one letter, one humber and one special character. The
minimum length is 3 characters. Special characters are all characters not between a-
z, A-Z, 0-9. The space key is not a special character.

220



openUTM V7.0. Administering Applications. User Guide.

Field name 1 Meaning

0 | protect_pw_time[3] @ Specifies the maximum number of days for which the password remains valid (period of
validity). If protect_pw_time ='0" is specified, then the password is valid for an unlimited
amount of time.

Minimum value: '0', Maximum value: '180'

0 restart Specifies whether UTM saves service data for the user ID so that a service restart is
possible on the next sign-on using this user ID.

'Y':UTM saves service data
'N": UTM does not save any service data.

0 | permit Specifies the administration privileges for the user ID.
‘A" | (ADMIN)
The user ID is to be able to execute administration functions in the local
application.
‘N' | (NONE)

The user ID is not have any administration privileges.
In UTM applications on BS2000 systems, no UTM SAT administration functions
may be executed under this user ID.

'B' | (BOTH)
Only on BS2000 systems: Both administration and UTM SAT administration
functions may be executed under this user ID.

'S" | (SAT)
Only on BS2000 systems: The user ID has UTM SAT administration privileges.

Preselection functions may be executed.

0 satsel Only on BS2000 systems:
Specifies the type of SAT logging for the user ID.

'‘B' ' Both successful and unsuccessful events are to be logged (BOTH).
'S'" ' Only successful events are to be logged (SUCC).

'F' | Only unsuccessful events are to be logged (FAIL).

'N" ' No user-specific SAT logging is defined (NONE).

Logging can only take place if SAT logging is activated for the application. (See the
openUTM manual “Generating Applications” and openUTM manual “Using UTM
Applications” for more information on SAT logging.)

221



openUTM V7.0. Administering Applications. User Guide.

Field name 1

0 | protect_pw_min_time[3]

0 | glev[5]

0 | g_read_acl[8]

0 | g_write_acl[8]

Meaning

Specifies the minimum term of validity in days for the password.

After changing the password, the user must not change it again before the
minimum term of validity is expired.

If a minimum term of 1 day is specified, the password cannot be changed again
before 00.00 hrs of the following day (local time of generation).

If the password is changed by the administrator or following a regeneration, the
user can always change the password, regardless of whether the minimum term of
validity is expired or not.

protect_pw_min_time must not be larger than protect pw_time (maximum term of
validity).

Minimum value: '0'
Maximum value: '180'

Specifies the maximum number of messages that can be stored temporarily in the
user’'s message queue. If the threshold value is exceeded, what happens depends
on the value in the g_mode field.

When glev=0, no messages can be stored temporarily in the queue.

When glev=32767, there is no limit on the length of the queue.

Minimum value: 0, maximum value: 32767

Specifies the rights (name of a key set) that another user requires in order to be
able to read and delete messages from this USER queue.

Another user only has read access to this USER queue if the key set of the user’s
user ID and the key set of the logical terminal via which the user is signed on each
contain at least one key code that is also contained in the specified key set.

If g read acl does not contain a value, all users can read and delete messages
from this queue.

Specifies the rights (name of a key set) that another user requires in order to be
able to write messages to this USER queue.

Another user only has write access to this queue if the key set of the user ID and
the key set of the logical terminal via which the user is signed on each contain at
least one key code that is also contained in the specified key set.

If g_write_acl does not contain a value, all users can write messages to this queue.

222



openUTM V7.0. Administering Applications. User Guide.

Field name 1

0  g_mode

0 principal[100]

1 Allfields in the data structure kc_user_strthat are not listed and all fields that are not relevant to the operating system you are using are to

Meaning

Specifies how UTM responds when the maximum number of not yet executed jobs in the
user’s queue is reached. The possible values are:

'S'" | UTM rejects any further jobs (default).
‘W' | UTM accepts further messages but deletes the oldest messages in the queue.

Only on BS2000 systems:

Specifies that the user is to be authenticated via Kerberos.

Specifying principal excludes the possibility of specifying card and password.
principal must be specified as an alphanumeric string in the form

wi ndowsaccount @NT- DNS- REALM NAME.

wi ndowsaccount : Domain account of the user

NT- DNS- REALM NAME: DNS name of the Active Directory domain

be set to binary zero. The data structure is described in full in chapter "kc_user_str, kc_user_fix_str, kc_user_dynl_str and

kc_user_dyn2_str user IDs".

223



openUTM V7.0. Administering Applications. User Guide.

11.2.3.10 Returncodes

in the retcode field UTM outputs the return code of the call. In addition to the return codes listed in section "Return
codes", the following codes can also be returned. Some of these return codes may arise independently of the object
type specified; others only occur for certain object types.

Main code = KC_MC_DATA_INVALID
A field in the data structure in the data area contains an invalid value.
Subcodes:
KC_SC_NOT_NULL
A field in the data structure that should contain a binary zero contains something else.
KC_SC_NO_INFO

A field in the data structure contains an invalid value.

Main code = KC_MC_REJECTED
The call was rejected by UTM.
Subcodes:
KC_SC_NAME_MISSING
No name was specified for the object to be configured.

KC_SC_TAB_FULL

No more objects of the specified object type can be created because the table spaces reserved during
KDCDEF generation are already filled or because no table spaces for this object type have been reserved.
Please note that the table spaces occupied by objects deleted with delay are not released.

KC_SC_EXISTENT

An object with this object name class already exists with the object name specified (see section "Format and
unigueness of object names"). Please note that the names of deleted objects should not be reused.

KC_SC_OBJ_DEL
The object to be configured was deleted with delay.

KC_SC_INVALID_NAME

The object name begins with 'KDC'.

KC_SC_NO_GLOB_CHANG_POSSIBLE

Only in UTM cluster applications:
No global administration changes are possible since the generation of the node applications is not
consistent at present.

KC_SC_GLOB_CRE_DEL_LOCKED

224



openUTM V7.0. Administering Applications. User Guide.

Only in UTM cluster applications:
It is not possible to generate an object at present because the generation or deletion of an object or the
generation, deletion or activation of an RSA key pair has not yet been completed in a node application.

KC_SC_JCTL_RT_CODE_NOT_OK

Only in UTM cluster applications:
Internal UTM error.
Please contact system support.

Main code = KC_MC_REJECTED_CURR
The call cannot be processed at the present time.

Subcode:

KC_SC_INVDEF_RUNNING

An inverse KDCDEF is currently running or an inverse KDCDEF run is being prepared (asynchronous), see
KC_CREATE_STATEMENTS in chapter "KC_CREATE_STATEMENTS - Create KDCDEF control
statements (inverse KDCDEF)".

Main code = KC_MC_RECBUF_FULL

The buffer containing restart information is full. The buffer size is set using the KDCDEF control statement
MAX, operand RECBUF.
See the openUTM manual “Generating Applications”.

Subcode:

KC_SC_NO_INFO

225



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type = KC_CON:

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_PROCESSOR_MISSING (only on BS2000 systems)

A processor name was not specified in pronam_long. It is mandatory to specify pronam_long in UTM
applications on BS2000 systems.

KC_SC_PROCESSOR_NOT_ALLOWED

In pronam_long a computer name has been specified that is longer than 8 characters and contains no full
stops (".") which means it cannot be a DNS name.

KC_SC_LPAP_MISSING

No LPAP partner was specified.
KC_SC_LPAP_NOT_EXISTENT

The specified LPAP partner does not exist.
KC_SC_BCAMAPPL_NOT_EXISTENT

The application name specified in bcamappl/ does not exist.
KC_SC_TPROT_NOT_ALLOWED (only on Unix, Linux and Windows systems)

A BCAMAPPL is referenced with t_prot=socket.
KC_SC_INVALID_LISTENID (only on Unix, Linux and Windows systems)

The number specified in listener_port is impermissible.
KC_SC_LISTENER_PORT_MISSING (only on Unix, Linux and Windows systems)

No listener_port was specified.

KC_SC_INVALID_BCAMAPPL_PORT (only on Unix, Linux and Windows systems)

The specified port number is invalid.

226



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj _type = KC_KSET:

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_INVALID_KEY_VALUE

An attempt was made to create more keys than are permitted by the maximum value generated in the
application.

Return codes for obj_type = KC_LSES:

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_LPAP_MISSING
No LPAP partner was specified.

227



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type = KC_LTAC:

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_INVALID_WAITTIME

A negative wait time was assigned to the waittime parameter.

KC_SC_INVALID_LTACUNIT

A value less than 0 or greater than 4095 was assigned to the /tacunit parameter.

KC_SC_INVALID_LOCK

The lockcode specified in the LTAC statement is less than O or greater than the permitted maximum value
(KDCDEF statement MAX, KEYVALUE operand).

KC_SC_NOT_ALLOWED

lock _code and access_list cannot be specified together.

KC_SC_INVALID_ACL

The specified key set does not exist.

KC_SC_INVALID_RTAC

When code=INTEGER: The value for recipient_ TPSU_title exceeds the max. permitted value.
When code=PRINTABLE-STRING: The RTAC name is incorrect.

KC_SC_LPAP_NOT_EXISTENT

The specified LPAP, OSI-LPAP or master LPAP partner does not exist.
KC_SC_KSET_DEL

The key referenced via access_list was deleted.
KC_SC_NAME_TOO_LONG

The name assigned to the rtac parameter is too long.
KC_SC_NAME_TOO_SHORT

The name assigned to the rtac parameter is too short.

KC_SC_INVALID_CHAR_IN_STRING

The RTAC name is incorrect.

228



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type = KC_LTERM:

Main code = KC_MC_OK
The call was processed without errors.

Subcode:

KC_SC_INVALID_LEVEL

You have specified values in plev and/or glev that exceed the maximum value allowed. The value specified
is replaced by the default value.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_INVALID_NAME

The name specified for the object begins with "KDC". See section "Format and uniqueness of object names"
for information on object names.

KC_SC_NAME_EXISTENT

The name specified for the object to be created already exists as a TAC name.

KC_SC_INVALID_FORMAT

The format specified in format_name is a #Format, but no sign-on service was generated (there is no TAC
with the name KDCSGNTC).

KC_SC_NO_FORMAT_ALLOWED

A start format was specified in format_name and format_attr but no formatting system was generated
(KDCDEF control statement FORMSYS).

KC_SC_INVALID_FORMAT_ USAGE
A start format was specified in format_name, format_attr although usage type ='O' has been specified.
KC_SC_INVALID_PLEV_RESTART
plev>'0"and restart ='N' has been set.
KC_SC_INVALID_PLEV_QAMSG
plev>'0"and gamsg = 'N' has been set.
KC_SC_INVALID_PLEV_USAGE

plev>'0"and usage_type = 'D' has been set.

KC_SC_INVALID_RESTART_QAMSG

229



openUTM V7.0. Administering Applications. User Guide.

restart ='N' and gamsg = "Y' have been set.
KC_SC_KSET_NOT_EXISTENT
No key set exists for the name specified in kset.

KC_SC_INVALID_USAGE_CTERM

The LTERM partner is to be assigned a printer control LTERM (specified in cterm), although usage_type =
'D" has been specified (dialog partner).

KC_SC_CTERM_NOT_EXISTENT

The name specified in cterm (printer control LTERM) does not exist.

KC_SC_CTERM_DEL

The LTERM partner belonging to the name specified in cterm has been deleted.

KC_SC_INVALID_CTERM_USAGE

The LTERM partner belonging to the name specified in cterm is not a dialog partner (usage_type='D").

KC_SC_INVALID_USER_USAGE

The LTERM partner is to be assigned a user ID (specified in user_gen); however, usage typeis set to 'O’
(printer).

KC_SC_USER_NOT_ALLOWED

A user ID is specified in the user_gen field, but the application was generated without user IDs.

KC_SC_KSET_DEL

The referenced key set was deleted.
KC_SC_USER_NOT_EXISTENT

The user ID specified in user_gen does not exist; the application was generated with user IDs.
KC_SC_USER_DEL

The user ID specified in user_gen has been deleted.

KC_SC_USER_NOT_ADMINISTRABLE

The user ID specified in user_gen cannot be administered because, for example, it is a user ID that was
created internally by UTM.

KC_SC_USER_ALREADY_EXISTS

The application was generated without user IDs.
A user ID created implicitly by UTM already exists with the name you have specified in /t_name (name of the
LTERM partner).

KC_SC_CTERM_IS_TPOOL

230



openUTM V7.0. Administering Applications. User Guide.

The object specified in cterm is an LTERM partner that belongs to an LTERM pool. It cannot be specified as
a printer control LTERM.

KC_SC_CTERM_IS_MUX (only on BS2000 systems)

The object specified in cterm is an LTERM partner that belongs to a multiplex connection. It cannot be
specified as a printer control LTERM.

KC_SC_CTERM_IS_UTM_D

The name specified in cterm belongs to an LPAP or OSI-LPAP partner for the purpose of connecting partner
servers.

KC_SC_INVALID_LOCK

The lock code specified in lock code does not lie in the range between 1 and the maximum value allowed
for the application (KDCDEF command MAX, KEYVALUE operand).

KC_SC_INVALID_BUNDLE_CTERM

The specified CTERM is a master or slave of an LTERM bundle.

KC_SC_PRINCIPAL_AND_KERBEROS

The value 'Y' in kerberos _dialog is not permitted if both MAX PRINCIPAL-LTH and MAX CARDLTH have
the value 0.

231



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type = KC_PROGRAM:

Main code = KC_MC_REJECTED

The call was rejected by UTM.
Subcode:
KC_SC_LMOD_MISSING

No load module / shared object / DLL was specified in load_module.
KC_SC_COMP_MISSING (only on BS2000 systems)

No compiler was specified in compiler.
KC_SC_LMOD_NOT_EXISTENT

The load module / shared object / DLL specified in load_module does not exist.

KC_SC_LMOD_NOT_CHANGEABLE
The load module / shared object / DLL specified in load_module cannot be exchanged.
KC_SC_NO_LMOD

The application was not generated with load modules / shared objects / DLLs. No program unit can be
added dynamically to the configuration using KC_CREATE_OBJECT.

KC_SC_COMP_NOT_GEN

The application does not contain a language connection module that corresponds to the compiler specified
in compiler.

KC_SC_KDCADM_ONCALL_LMOD

The default administration program KDCADM may not be created with the load mode set to ONCALL.

KC_SC_MFCOBOL_AND_NETCOBOL (only on Unix, Linux and Windows systems)

It is not permitted to use programs for MFCOBOL (Micro Focus COBOL) and NETCOBOL simultaneously in
a UTM application.

KC_SC_LANG_ENV_MISSING (only on Unix, Linux and Windows systems)

No language environment is available for MFCOBOL or NETCOBOL

232



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type = KC_PTERM:

Main code = KC_MC_OK
The call was processed without any errors.

Subcodes:

KC_SC_INVALID_USAGE_APPLI_UPIC

The values specified in ptype and usage_type are not compatible. ptype = 'UPIC-..." was specified with
usage type ='0O'. The value in usage_type was automatically set to 'D'.

KC_SC_INVALID_IDLETIME

The value of the idletime parameter was changed because you entered a value between 1 and 59. UTM has
set idletime to the smallest valid value.

KC_SC_INVALID_PROTOCOL
The values specified in ptype and protocol are not compatible. The following cases can arise:

® ptype = 'UPIC-..." or *RSO' and protocol ='S' were specified. The value in protocol/ was automatically set
to 'N".

* ptype="ANY' and protocol ='N' were specified. The value in protocol was automatically set to 'S'.

KC_SC_INVALID_USAGE_AND_PROT

The values specified in ptype, protocol and usage_type are not compatible. ptype = 'UPIC-..." was specified
with usage type ='O' and protocol = 'S'. The value in usage_type was automatically set to 'D’, the value in
protocol was set to 'N'.

Main code = KC_MC_REJECTED
The call was rejected by UTM.
Subcodes:

KC_SC_PROCESSOR_MISSING (only on BS2000 systems)

No computer name was specified in pronam_Jlong. It is mandatory to specify pronam_Ilong in UTM
applications on BS2000 systems.

KC_SC_PTYPE_MISSING (only on BS2000 systems)

No partner type was specified in ptype. It is mandatory to specify it for UTM applications on BS2000
systems.

KC_SC_PROCESSOR_NOT_ALLOWED

In pronam_long a computer name has been specified that is longer than 8 characters and contains no full
stops ('.") which means it cannot be a DNS name,

233



openUTM V7.0. Administering Applications. User Guide.

or - on Unix, Linux and Windows systems - a computer name has been specified in pronam_Jlong although
ptype="TTY', 'PRINTER' or 'UPIC-L' has been set.

KC_SC_INVALID_NAME

The object name specified begins with "KDC". This name is reserved for UTM. See section "Format and
unigueness of object names" for information on the format of object names.

KC_SC_INVALID_STATUS_CONNECT

state = 'N' was specified together with auto _connect ="Y".

KC_SC_INVALID_PROTOCOL_USAGE

protocol = 'N' was specified together with usage_type ='O', and ptype was not assigned to 'RSO' or 'APPLI'
or 'SOCKET".

KC_SC_INVALID_CID_USAGE

A printer ID was specified in cid although usage type ='D' (on BS2000 systems) or ptype='tty' (on Unix,
Linux and Windows systems) was specified.

KC_SC_BCAMAPPL_NOT_EXISTENT

The application name specified in bcamappl does not exist.

KC_SC_INVALID_BCAMAPPL_PORT (only on Unix, Linux and Windows systems)

Invalid listener port

KC_SC_INVALID_BCAMAPPL_PTYPE

The name specified in bcamappl is not identical to the application name (APPLINAME) defined in the
KDCDEF control statement MAX, although ptype ! = 'APPLI", 'SOCKET' or 'UPIC-R".

KC_SC_LTERM_NOT_EXISTENT

The LTERM partner specified in /lterm does not exist.
KC_SC_PTYPE_NO_LTERM

ptype = 'APPLI", 'SOCKET' or 'UPIC-..." was specified, but no LTERM partner was specified in lterm.
KC_SC_INVALID_USAGE_LTERM

The value specified in usage_type is not compatible with the LTERM partner specified in fterm.
KC_SC_INVALID_BUNDLE_USAGE

usage_type='0' not permitted for bundle

KC_SC_INVALID_BUNDLE

usage_type='D' was specified and an LTERM partner was specified in lterm that already has been assigned
a client.

KC_SC_INVALID_GROUP_USAGE

234



openUTM V7.0. Administering Applications. User Guide.

usage_type='0O' not permitted for group

KC_SC_INVALID_PROV_BUNDLE

usage type='D' was specified and an LTERM partner was specified in /term that already has been assigned
a client in this transaction.

KC_SC_LTERM_DEL
The LTERM partner specified in /term has been deleted.

KC_SC_CID_MISSING

No data was specified in cid.
The LTERM partner specified in lterm is assigned a printer control LTERM (specified in cterm).
A printer ID must then be specified for the printer.

KC_SC_INVALID_CID

The printer ID specified in cid already belongs to another printer that has been assigned to the same printer
control LTERM.

KC_SC_CTERM_DEL
The printer control LTERM of the LTERM partner specified in /term has been deleted.
KC_SC_USRT_TAB_FULL

For ptype = 'APPLI', 'SOCKET" or 'UPIC-...": UTM cannot create a connection user ID because all table
spaces reserved for user IDs during generation have been used.

KC_SC _PROCESSOR_NOT_ALLOWED (only on Unix, Linux and Windows systems)

The name of a computer was specified in pronam although ptype = 'TTY', 'PRINTER' or 'UPIC-L' was
specified.

KC_SC_INVALID_MAP_PTYPE (only on Unix, Linux and Windows systems)

map ! = 'U" was specified although ptype ! = 'APPLI' or 'SOCKET' was specified.

KC_SC_INVALID_MAP_AND_PROT (only on BS2000 systems)

map ! = 'U" was specified although ptype ! = 'SOCKET' was specified.

KC_SC_INVALID_CONNECT_PTYPE (only on Unix, Linux and Windows systems)

auto_connect="Y' was specified together with ptype = 'TTY" or 'UPIC-...".

KC_SC_INVALID_AUTOUSER_PTYPE

ptype = 'APPLI', 'SOCKET' or 'UPIC-...":
The connection user ID (user_gen) defined for the LTERM partner specified in lterm is not created in the
same transaction.

KC_SC_INVALID_LTERM_PTYPE

235



openUTM V7.0. Administering Applications. User Guide.

ptype="'APPLI', 'SOCKET' or 'UPIC-...":
The LTERM partner specified in /term is not created in the same transaction.

KC_SC_LTERM_IS_TPOOL

The LTERM partner specified in lterm belongs to an LTERM pool.

KC_SC _LTERM_IS MUX (only on BS2000 systems)

The LTERM partner specified in /term belongs to a multiplex connection, i.e. it has been created implicitly by
UTM for a multiplex connection.

KC_SC_LTERM_IS_UTM_D
The name specified in /term belongs to an LPAP or OSI-LPAP partner for connecting partner servers.
KC_SC_LTERM_IS_MASTER
The specified LTERM is a master Lterm.
KC_SC_LTERM_IS_ALIAS
The specified LTERM is an alias Lterm.
KC_SC_INVALID_GROUP_PTYPE
The specified LTERM is a primary Lterm and the PTYPE is not APPLI or SOCKET.

KC_SC_INVALID_LTERM_SLAVE_PTYP

The specified LTERM is a slave Lterm and the PTYPE is not APPLI or SOCKET.
Only on BS2000 systems: Different PTYPEs within a bundle.

KC_SC_INVALID_APPLI_USER

ptype ='APPLI', 'SOCKET" or 'UPIC-R":

For the LTERM partner specified in the lterm field, no connection user ID has been specified, i.e. user_gen
was not specified when the LTERM partner was added. A user ID with the name of the LTERM partner
exists, but it was not created in the same transaction as the client (see "Adding clients, printers and LTERM
partners").

KC_SC_INVALID_LISTENID (only on BS2000 systems)

The number specified in listener_port is invalid.

KC_SC_PRONAM_NOT_RSO (only on BS2000 systems)

'RSO' was specified in ptype, but pronam_long was not set to *RSO'.
KC_SC _PTYPE_NOT_RSO (only on BS2000 systems)
'RSO' was specified in pronam_long, but ptype was not set to *RSO'.

KC_SC_INVALID_USAGE_APPLI_UPIC

ptype="APPLI", 'SOCKET" or 'UPIC-..." was specified with USAGE='0'".

236



openUTM V7.0. Administering Applications. User Guide.

KC_SC_INVALID_IDLETIME_USAGE

idletime was specified for an output station.

KC_SC_INVALID_AUTOUSER_PTYPE

ptype ='APPLI', 'SOCKET' or 'UPIC-..." was specified, but the USER with the name of the specified LTERM
is not created by the same transaction.

KC_SC_PRINTER_NT_NOT_SUPPORTED (only on Windows systems)

ptype="PRINTER' was specified in the UTM application on Windows systems, however, openUTM on
Windows systems does not support printers.

KC_SC_INVALID_PTYPE_AND_PROT

The PTERM has not been generated with ptype='SOCKET' and the referenced BCAMAPPL has been
generated with TCP/IP.

BS2000 systems: The PTERM has been generated with ptype="SOCKET" and the referenced BCAMAPPL
has not been generated with TCP/IP.

KC_SC_INVALID_TPROT_AND_TPROT (only on Unix, Linux and Windows systems)

The PTERM referenced with ptype="SOCKET' and the referenced BCAMAPPL is not generated with TCP/IP.

KC_SC_INVALID_USP_AND_PROT

A value not equal to NO is contained in the usp_hdr field, and the referenced BCAMAPPL does not have
TCP/IP.

KC_SC_TPROT_NOT_ALLOWED

Transport protocol not permitted.

KC_SC_KEY_NOT_GEN_CREA_IT

An encryption level for which no RSA key pair was created at generation was selected in the
encryption_level field. If a PTERM is to be created with this encryption level, you must first dynamically
generate an RSA key pair with the desired encryption level. Note that this can take quite a long time for
encryption levels 3 and 4.

237



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type = KC_TAC:

Main code = KC_MC_OK
The call was processed without error.

Subcode:

KC_SC_INVALID_VALUE
One or more of the following values were invalid or were set automatically:

* A number was specified in glev that is larger than the maximum number permitted. UTM replaced the
value with the maximum value.

* Atime between '1' and '999' msec was specified in cpu_time_msec. The time was set to '1000'.

* Atime was specified in cpu_time_msec that is larger than the maximum value permitted. The value was
replaced with the maximum value.

® Atime was specified in real_time_sec that is larger than the maximum value permitted. The value was
replaced with the maximum value.

® A priority between 1" and '29' was specified in runprio. The value was set to '30'".

® A value was specified in tacunit that is larger than the maximum value allowed. The value was replaced
with the maximum value.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_ALLOWED

The specification of lock_code and access_list together is not permitted.

KC_SC_PROGRAM_MISSING

No data was entered in program.

KC_SC_INVALID_TYPE

No queues are permitted in UTM-FF.

KC_SC_INVALID_NAME

You tried to generate an administration TAC without setting admin="Y" or the TAC name (tc_name) begins
with "KDC". These names are reserved for UTM. See section "Format and uniqueness of object names" for
information on the format of object names.

KC_SC_TACUNIT_ILL

Invalid value for tacunit.

KC_SC_PROGRAM_NOT_EXISTENT

238



openUTM V7.0. Administering Applications. User Guide.

The program unit specified in program does not exist.

KC_SC_INVALID_EXIT_PROGRAM

The VORGANG exit specified in exit_name belongs to a load module / shared object / DLL generated with
the load mode set to ONCALL. However, this load module does not contain the program unit specified in
program.

KC_SC_NAME_EXISTENT

The transaction code specified in tc_name is already defined as an LTERM partner. The names of
transaction codes and LTERM partners belong to the same name class (see section "Format and
unigueness of object names").

KC_SC_EXIT_NEXT_TAC

A VORGANG exit was specified in exit_name although the transaction code should have been configured
as a follow-up (next) TAC (call_type="N").

KC_SC_PROGRAM_DEL

The program unit specified in program has been deleted.

KC_SC_EXIT_NOT_EXISTENT

The VORGANG exit specified in exit_name does not exist.

KC_SC_INVALID_TCBENTRY

Specifying tcbentry is not allowed.
KC_SC_EXIT_DELETED
The VORGANG exit specified in exit_name has been deleted.

KC_SC_XOPEN_NOT_ALLOWED

A value not equal to 'K' (KDCS) was specified in api and the application was generated without X/Open
TACs. You can only dynamically configure a transaction code for a program unit that uses the X/Open
program interface functions if at least one transaction code of this type was statically generated with
KDCDEF.

KC_SC_INVALID_QMODE
q_mode="W'"is only permitted for TAC queues.
KC_SC_INVALID_QMODE_QLEV
g_mode="W' but glev is not between 1 and 32766.
KC_SC_INVALID_QMODE_FF

Invalid g_mode for UTM-FF.

KC_SC_KSET_DEL

The key set referenced via kset or access_list was deleted.

239



openUTM V7.0. Administering Applications. User Guide.

KC_SC_READ_ACL_DEL
The key set referenced via q_read_acl was deleted.

KC_SC_WRITE_ACL_DEL

The key set referenced via q_write_acl was deleted.

KC_SC_INVALID_LOCK

The lock code specified in lock_code is not between 1 and the maximum value (KEYVALUE operand of the
MAX command) allowed for the application.

KC_SC_INVALID_TACCLASS
The data specified in tacclass and tac_type is incompatible:
® tac type='D' (dialog TAC) was specified and a value was specified in tacclass that is not between '1' and
I8I.
® tac type='A’' (asynchronous TAC) was specified and a value was specified in tacclass that is not between
'9"and '16'.
KC_SC_NO_TACCLASS_GENERATED
Data was specified in the tacclass field, but the application was generated without TAC classes.
KC_SC_PGWT_TACCLASS

'Y' was specified in pgwt. That is not allowed if the TAC-PRIORITIES statement was issued, during the
KDCDEF generation.

KC_SC_PGWT_NO_PGWT TASKS

'Y' was specified in pgwt, but MAX TASKS-IN-PGWT=0 (default) was specified in KDCDEF generation of
the application.

KC_SC_ILLEGAL_STATUS

'K' (Keep) was specified in state, although tac_type='D’ (i.e. the transaction code is not an asynchronous
TAC) and/or call_type! ='F'or 'B' (the transaction code is not defined as the first TAC of a service).

KC_SC_PGWT_YES_NO_TACCLASS

You entered "Y' for pgwt, although the application was generated without TAC classes.
KC_SC_CALLTYPE_N_ENCRYPT

encryption_level unequal 'N' was set, although the TAC is not a service TAC, i.e. call_type=N'.
KC_SC_INVALID_READ_ACL

The key set specified in g_read_acl does not exist.

KC_SC_INVALID_WRITE_ACL

The specified key specified in gq_write_acl set does not exist.

240



openUTM V7.0. Administering Applications. User Guide.

KC_SC_INVALID_ACL

The specified key set specified in access_list does not exist.

KC_SC_DLETQ_YES_NOT_ALLOWED

Invalid value for dead letter q.

241



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type = KC_USER:

Main code = KC_MC_OK
The call was processed without error.
Subcode:
KC_SC_INVALID_PROTECT_PW
The value specified in protect_pw16_Ith and/or in protect_pw_time were larger than the maximum value
allowed. The value was set to the maximum value.
Main code = KC_MC_REJECTED
The call was rejected by UTM.
Subcodes:
KC_SC_CARD_TAB_FULL

The table space reserved for CARD during KDCDEF generation is already occupied or no table spaces
were reserved for CARD.

KC_SC_NO_CARD_ALLOWED (only on Unix, Linux and Windows systems)
card... was specified even though no formatting has been generated.

KC_SC_INVALID_NAME

The user ID (us_name) specified begins with "KDC". These names are reserved for UTM. See section
"Format and uniqueness of object names" for information on the format of the object names.

KC_SC_INVALID_FORMAT (only on BS2000 systems)

The start format specified in format_name and format _attris a #Format, but no sign-on service was
generated (there exists no TAC with the name KDCSGNTC).

KC_SC_NO_FORMAT_ALLOWED (only on BS2000 systems)

A start format was specified in format_name and format_attr, but no formatting system was generated
(KDCDEF control statement FORMSYS).

KC_SC_COMPL_MISSING
The password specified in password does not meet the complexity level required in protect pw_- compl.
KC_SC_KSET_NOT_EXISTENT

No key set exists for the name specified in kset.

KC_SC_INVALID_POSITION (only on BS2000 systems)

The value specified in card_position is invalid.

242



openUTM V7.0. Administering Applications. User Guide.

KC_SC_MIN_LTH_WITHOUT_PASSWORD

No password was specified in password16 although protect pw16 Ith >'0'is set.

KC_SC_APPLICATION_WITHOUT_USER

You cannot create a user ID because the application was generated without user IDs.
KC_SC_INVALID_READ_ACL

The key set specified in g_read_acl does not exist.
KC_SC_INVALID WRITE_ACL

The specified key specified in g_write_acl set does not exist.

KC_SC_INVALID_QMODE_QLEV

gq_mode="W'" but glev is not between 1 and 32766

KC_SC_INVALID_QMODE_FF

Invalid g_mode for UTM-FF

KC_SC_KSET_DEL

The key set referenced via kset was deleted.

KC_SC_READ_ACL_DEL

The key set referenced via q_read_acl was deleted.

KC_SC_WRITE_ACL_DEL

The key set referenced via q_write_acl was deleted.

KC_SC_INVALID_PRINCIPAL (only on BS2000 systems)

A principal was specified and at the same time the CARD or PASSWORD parameter was specified.

KC_SC_INVALID_QLEV_FF

Invalid glev for UTM-FF

KC_SC_PRINCIPAL_AND_PW (only on BS2000 systems)

It is not possible to generate a USER with both a principal and a password.

KC_SC_PRINCIPAL_AND_CARD (only on BS2000 systems)

It is not possible to generate a USER with both a principal and a chip card.

KC_SC_PRINCIPAL_TABLE_FULL (only on BS2000 systems)

The table space reserved for PRINCIPAL during KDCDEF generation is already occupied or no table
spaces were reserved for PRINCIPAL.

KC_SC_PRINCIPAL_TOO_LONG (only on BS2000 systems)

243



openUTM V7.0. Administering Applications. User Guide.

The principal is longer than the value specified in MAX PRINCIPAL-LTH.

KC_SC_INVALID_CLUSTER_RESTART

Only for UTM cluster applications:
Invalid value for restart.

244



openUTM V7.0. Administering Applications. User Guide.

11.2.4 KC_CREATE_STATEMENTS - Create KDCDEF control statements (inverse
KDCDEF)

KC_CREATE_STATEMENTS allows you to start an inverse KDCDEF run during the application run (online). The
inverse KDCDEF creates KDCDEF control statements from the configuration data. In this way, all changes resulting
from dynamically adding, modify and deleting objects can be carried over to a new generation.

The KDCDEF control statements created by the inverse KDCDEF represent a consistent state of the configuration

of the running application in the following sense:

The changes to the configuration data carried out by a transaction are always taken fully into account by an inverse

KDCDEF running simultaneously.

See also the section on inverse KDCDEF runs in the openUTM manual “Generating Applications”.

The inverse KDCDEF allows you to create the following KDCDEF control statements:
CON statements for transport connections to remote LU6.1 applications
KSET statements for all key sets

LSES statements for all LU6.1 sessions

LTAC statements for transaction codes by means of which service programs are started in partner applications.

LTERM statements for all LTERM partners that do not belong to an LTERM pool or a multiplex connection
PTERM statements for all clients and printers that have been explicitly added to the configuration
PROGRAM statements for all program units and VORGANG exits

TAC statements for all transaction codes and TAQ queues in the application

USER statements for all user IDs including their queues

The inverse KDCDEF creates a control statement for each object of the specified type that is contained in the
configuration, irrespective of whether these objects were loaded dynamically or not and whether their properties
have been modified or not. The inverse KDCDEF does not create control statements for objects deleted with
KC_DELETE_OBJECT.

You can find detailed information on the inverse KDCDEF in chapter "Generating konfiguration statements from the

KDCFILE".

245



openUTM V7.0. Administering Applications. User Guide.

Controlling the inverse KDCDEF run

The inverse KDCDEF differentiates between the following seven object groups

First group LTERM partners, clients, printers (object types: KC_LTERM, KC_PTERM)

Second group | program units, transaction codes, TAC queues
(object types: KC_PROGRAM, KC_TAC)

Third group user IDs (object type: KC_USER)
Fourth group  key sets (object type: KC_KSET)

Fifth group transaction codes via which the service programs are started in partner applications (object type:
KC_LTAC)

Sixth group transport connections to LU6.1 applications
(object type: KC_CON)

Seventh LUG.1 sessions (object type: KC_LSES)
group

You can use the KC_CREATE_STATEMENTS call to create KDCDEF control statements for objects of one or more
of these groups.

You must specify the file in which UTM is to write the KDCDEF control statements in the
KC_CREATE_STATEMENTS call. You can have all control statements written into one file or you can specify a file
for each of the object groups. You may also specify in the call whether UTM is to create a new file or append the
data to an existing file.

On BS2000 systems, the control statements can also be written to an LMS library element instead of a file. The
procedure for library elements is similar to the procedure for files.

Execution of an inverse KDCDEF run

The time at which the inverse KDCDEF run is started and execution itself are dependent on the current state of the
application. The following two cases can occur:

®* The inverse KDCDEF run is started asynchronously if transactions that have write access to the configuration
data of the objects are running at the time of the KC_CREATE_STATEMENTS call. The inverse KDCDEF run is
only started after these transactions have been completed. In the case of new transactions that are intended to
change data in the object tables, the corresponding calls to change the configuration data of the application are
rejected until the inverse KDCDEF run is completed (i.e. until the asynchronous job is processed).

The following also applies in UTM cluster applications (Unix, Linux and Windows systems):

In all running node applications, an administration action which applies globally to the cluster results in this type
of transaction which may delay the start on the inverse KDCDEF. Conversely, the execution of a global
administration action at a running node may be delayed if an inverse KDCDEF is currently running there.

246



openUTM V7.0. Administering Applications. User Guide.

® The inverse KDCDEF run is started synchronously if no transactions that have write access to the configuration
data of the objects are running at the time of the KC_CREATE_STATEMENTS call. The run is already finished
when control returns to the administration program. This means that, at this point in time, all of the KDCDEF
control statements requested have been created and written to the files specified.

Results of the inverse KDCDEF runs

After a successful inverse KDCDEF run, the control statements requested are stored in the files specified in the call.
These files can be used as input for the UTM generation tool KDCDEF when regenerating the application. You must
pass each of the files to KDCDEF with the KDCDEF control statement OPTION DATA=filename. The files can be
edited and modified.

The same applies if the control statements on BS2000 systems are written to LMS library elements instead of to
files. However, whether or not elements can be edited depends on their type: only text-type elements can be
modified.

Transaction management / cluster

The KC_CREATE_STATEMENTS call only reads the data in the KDCFILE. For this reason, the call is not subject to
transaction management. The call cannot be undone in the same transaction using an RSET call.

The following applies in UTM cluster applications (Unix, Linux and Windows systems):

The call applies locally to the node, i.e. an inverse KDCDEF run for the generation of control statements from the
configuration data is only started in this node application. It is sufficient for the effect to be local to the node since
the same objects exist in every node application. An effect global to the cluster would simply generate identical
KDCDEF statements.

If node applications with different generations are running (during an online update), then the call is rejected since
the result would otherwise depend on the application at which the call was executed.

Data to be supplied

Function of the Data to be entered in the
call
parameter area identificati = selection | data area
on area area
Create KDCDEF Operation code: e _— Data structure with information on the type
control statements = KC_CREATE_ of control statements to be created as well
online as the names and write modes of the files
STATEMENTS

247



openUTM V7.0. Administering Applications. User Guide.

Parameter settings
Parameter area

Field name Contents
version KC_ADMI_VERSION_1
retcode KC_RC_NIL
version_data KC_VERSION_DATA 11
opcode KC_CREATE_STATEMENTS
id_Ith 0
select_lth 0
data_|[th Length of data in the data area

Identification area

Selection area

Data area

Data structure kc_create_statements_str

KDCADMI call

KDCADMI (&parameter_area, NULL, NULL, &data_area)

Data returned by UTM
Parameter area
Field name | Contents

retcode Return codes

248



openUTM V7.0. Administering Applications. User Guide.

data_lth
In data_Ith you specify the length of the data structure kc_create statements_str.
Data area

In the data area you must specify whether or not UTM is to create the KDCDEF control statements for each of
the object groups. If UTM is to create control statements for an object group, you must also specify the file in
which UTM is to write the control statements and the write mode of the file. The header file kcadminc.h
contains the following data structure definition for passing information to UTM.

Definition of constants

#define KC_FILE_ NAME LTH 54
#define KC_ELEM NAME LTH 64
#define KC_VERSI ON_LTH 24
#defi ne KC_TYPE_LTH 8

Definition of the index constant

typedef enum

{ KC_DEVI CE_STMI
KC_PROGRAM STMT
KC USER STMT =
KC_KSET_STMI =
KC_LTAC_STMI =
KC_CON_STMT =
KC LSES STMTI =
KC_MAX_STMI_TYPE =
KC_DUMW_STMI_TYPE =

} KC_I NVDEF_TYPE;

11
NOOURONEO

Definition of the data structure

struct kc_create_statenents_str
{ struct
{ char «create_control_stnts;

char file_nane[ KC_FILE_NAME_LTH;
char file_node;
char |ib_nanme[ KC_FILE_NAME_LTH;
char el em nane[ KC_ELEM NAME_LTH] ;
char vers[KC_VERSI ON_LTH];
char type[KC_TYPE LTH;

} type_list[(int)KC_MAX_STMI_TYPE + 1];
char stnt_type;
char file_error_code[4];

I

249



openUTM V7.0. Administering Applications. User Guide.

The KC_INVDEF_TYPE index of the type_list array specifies the group to which the objects belong:
KC_DEVICE_STMT

stands for the first group, consisting of the LTERM partners, clients and printers. The KDCDEF
control statements LTERM and PTERM are created in this group.

KC_PROGRAM_STMT

stands for the second group, consisting of the program units, transaction codes and TAC
gueues. The KDCDEF control statements PROGAM and TAC are created in this group.

KC_USER_STMT

stands for the third group, consisting of the UTM user IDs. The KDCDEF USER control
statements are created in this group.

KC_KSET_STMT

Stands for the 4th group, the KSETs. The KDCDEF control statements KSET are generated in
this group.

KC_LTAC_STMT

stands for the 5th group, the transaction codes by means of which service programs are started
in partner applications. The KDCDEF LTAC control statements are created in this group.

KC_CON_STMT

Stands for the 4th group, the transport connections to LU6.1 applications. The KDCDEF control
statements CON are generated in this group.

KC_LSES_STMT

stands for the 7th group, the LU6.1 sessions. The KDCDEF LSES control statements are
created in this group.

The fields in the data structures must be supplied with the following data:

create_control_stmts

You specify here whether or not KDCDEF control statements are to be created for the object
group belonging to KC_INVDEF_TYPE.

Y KDCDEF control statements are to be created for this object group.

"N No KDCDEF control statements are to be created for this object group. You can also specify
the null byte (\0") in place of the 'N'.

file_name The name of the file in which the KDCDEF control statements are to be written. The name may
be up to 54 characters long. It must conform to the file naming conventions of the operating
system under which the application is running.

On Unix, Linux and Windows systems, the file name can be specified as an absolute or relative
path name. A relative file name specification will write the KDCDEF control statements to a file
in the directory in which the application was started.

file_mode Write mode of the file in file_name bor of the element in elem_name

250



openUTM V7.0. Administering Applications. User Guide.

|C|

Create:
UTM is to create a new file with the name file_name or a new element with the name
elem_name.

On BS2000 systems, inverse KDCDEF generates an SAM file or an LMS library element. Here,
the following applies:

® |f a file of the same name already exists then it must be a SAM file. The existing SAM file is
then overwritten.

* |f an element of the same name already exists and if *HIGHEST-EXISTING or *UPPER-
LIMIT is specified for vers=C'<version> then an existing element of the specified version is
overwritten.

Extend:
UTM is to append the KDCDEF control statements to an existing file or to an existing element.

® |f the file with the name file_name does not exist, UTM will create it.

® |f an LMS library is specified in lib_name on BS2000 systems then the library must already
exist. In this case, an existing element of the specified version is extended. If the element
does not yet exist in this version then it is created.

lib_name (only on BS2000 systems)

Name of the LMS library in which the KDCDEF control statements are to be stored. The name
can be up to 54 characters in length. It must comply with the conventions for file names on the
BS2000 system.

If the name is shorter than the field length then it must be padded with spaces.
It is not permissible to specify file_name and lib_name at the same time.

If ib_name is specified then it is also necessary to enter values for elem_name, vers and type.

elem_name (only on BS2000 systems)

Name of the LMS library element to which the KDCDEF control statements are to be written.
The name can be up to 64 characters in length. If the name is shorter than the field length then
it must be padded with spaces. The name must comply with the conventions for LMS element
names

vers (only on BS2000 systems)

Version of the LMS library element to which the KDCDEF control statements are to be written.
The version can be up to 24 characters in length and must comply with the conventions for LMS
version specifications. If the version is shorter than the field length then it must be padded with
spaces.

You can also enter the following character strings as the version:

*HIGHEST-EXISTING

The statements are written to the highest version of the specified element present in the library.

251



openUTM V7.0. Administering Applications. User Guide.

*UPPER-LIMIT

The statements are written to the highest version of the specified element present in the library.
*UPPER-LIMIT

The statements are written to the highest possible version of the specified element. LMS
indicates this version by means of an "@".

*INCREMENT

A new version is created for the specified element. *INCREMENT may only be specified if
file_mode='C'.

These character strings may not be truncated!

type (only on BS2000 systems)

Type of the LMS library element to which the KDCDEF control statements are to be written. The
type can be up to 8 characters in length and must comply with the conventions for LMS type
specifications. If the type is shorter than the field length then it must be padded with spaces.

It is recommended to use the LMS type "S" for type.

i KDCDEF does not check whether the specifications in elem_name, vers or type comply with
the LMS syntax rules. For further information on the syntax rules for the names of LMS
elements and a specification of version and type, see the manual "LMS SDF Format".

stmt_type If a value other than KC_MC_OK is returned as the main code then the field stmt_type contains
the index from KC_INVDEF_TYPE, to which the error message refers.

file_error_code

If the subcode KC_SC_FILE_ERROR is returned when an error occurs then the field
file_error_code contains the DMS error code or (on BS2000 systems) the associated PLAM
error code.

The type_list array is processed in order starting with the first array element (index KC_DEVICE_STMT) and
proceeding to the last array element (index KC_LSES_STMT) when UTM is called.

If UTM is to create KDCDEF control statements for all three object groups, then the create control_stmts
field must be set to Y', the file_name field must be set to the file name and the file_mode field must be set
to the write mode of the file in each array element.

If all of the control statements are to be written to one file, then you should ensure that the correct write
mode has been set.

You can set the write mode to 'C' or 'E' for the first entry of the file or the LMS library element. In the
following array elements, however, the write mode must be set to 'E'. Otherwise, the control statements just
created will be overwritten.

If UTM is not to create control statements for one of the object groups, then create_control_stmts='N' (or
nothing at all) is to be specified in the corresponding array element.

252



openUTM V7.0. Administering Applications. User Guide.

retcode

In the retcode field UTM outputs the return codes of the call. In addition to the codes listed in section "Return
codes", the following return codes can also arise:

Main code = KC_MC_OK
The call was processed without errors.
Subcode:
KC_SC_ASYN_INIT
The job was accepted; the inverse KDCDEF will be started asynchronously as soon as all transactions

that modify configuration data have terminated.

Main code = KC_MC_DATA_INVALID
Invalid or missing data in the data area.

Subcodes:

KC_SC_DATA_MISSING
No data was specified in the data structure passed in the data area.
KC_SC_NO_INFO
Invalid data was specified in the data structure passed in the data area.

KC_SC _FILE_LIBRARY_MISMATCH (only on BS2000 systems)

Both a file name (file_name) and an LMS library (/ib_name) have been specified.
KC_SC_LMS_ELEMENT_MISSING (only on BS2000 systems)

An LMS library (lib_name) was specified but no element name (elem_name).
KC_SC LMS_VERSION_MISSING (only on BS2000 systems)

An LMS library (lib_name) was specified but no element version (vers).
KC_SC_LMS_TYPE_MISSING (only on BS2000 systems)

An LMS library (lib_name) was specified but no element type (type).

KC_SC_LMS_VERSION_MODE_MISMATCH (only on BS2000 systems)

*INCREMENT was specified as LMS version but file_mode is not 'C'.

Main code = KC_MC_MEMORY_INSUFF

There is not enough internal UTM memory available.

253



openUTM V7.0. Administering Applications. User Guide.

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_REJECTED_CURR
The call cannot be processed at the present time.

Subcode:

KC_SC_INVDEF_RUNNING

An inverse KDCDEF is currently running or an inverse KDCDEF run is being prepared asynchronously,
i.e. the job cannot be processed at the present time.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_GEN

KDCDEF control statements are to be generated for objects whose types were not generated, such as
USER commands for an application without user IDs.

KC_SC_FILE_ERROR

One of the files in which the KDCDEF control statements are to be written cannot be written to. A DMS
error code or (on BS2000 systems) a PLAM error code is returned in the field file_error_code. This
code provides ingormation about the error that has occurred

KC_SC_NO_INFO
The page pool used to temporarily store the parameters passed is full.

KC_SC_CLUSTER_CONF_INCONS

Only for UTM cluster applications:
The running node applications have different generations.

254



openUTM V7.0. Administering Applications. User Guide.

11.2.5 KC_DELETE_OBJECT - Delete objects

KC_DELETE_OBJECT allows you to delete objects belonging to one of the following object types from the
configuration:

transport connections to remote LU6.1 applications (KC_CON)

key sets (KC_KSET)

LUG.1 sessions (KC_LSES)

transaction codes by means of which service programs can be started in partner applications (KC_LTAC)
LTERM partners used to connect clients and printers (KC_LTERM)

clients and printers (KC_PTERM)

application program units and VORGANG exits (KC_PROGRAM)

transaction codes and TAC queues (KC_TAC)

user IDs including their queues (KC_USER)

You can find more detailed information on dynamically deleting objects from the configuration in chapter "Changing
the configuration dynamically".

Objects that you are not allowed to delete

LTERM partners that belong to an LTERM pool or multiplex connection

LTERM partners belonging to an LTERM group (group or primary LTERM) or to an LTERM bundle (master or
slave LTERM)

printer control LTERMs

the LTERM partner KDCMSGLT that UTM creates internally for the MSGTAC service
program units that belong to the START, SHUT, FORMAT or INPUT event exits
program units and VORGANG exits that are statically linked into the application program
the KDCMSGTC, KDCSGNTC, KDCBADTC transaction codes of the event services
transaction codes assigned to a transport system access point (BCAMAPPL) as SIGNON-TAC
the dead letter queue KDCDLETQ

statically linked programs with event exits

the KDCSHUT administration command of the KDCADM administration program

the KDCTXCOM and KDCTXRLB transaction codes reserved for XATMI

the KDCMSGUS user ID that UTM creates internally for the MSGTAC service

a user ID assigned to a terminal for automatic KDSIGN or to a UPIC, APPLI or SOCKET client as a connection
user ID

The following must be observed when deleting objects:

A program unit or a VORGANG exit may only be deleted after all the transaction codes belonging to them have
been deleted.

An LTERM partner may only be deleted if no more clients or printers are assigned to it.

A user ID may only be deleted if there are no more users or clients signed on under this user ID, i.e.:

255



openUTM V7.0. Administering Applications. User Guide.

® The user must not be signed on in a standalone application with
SIGNON MULTI-SIGNON=NO.

® In a standalone application with SIGNON MULTI-SIGNON=YES,
® auser with RESTART=YES must not be signed on,
® auser with RESTART=NO must not be signed on via a terminal connection.
® In a UTM cluster application with SIGNON MULTI-SIGNON=NO,
® no genuine user may be signed on,
® aconnection user must not be signed on at the node application at which the administration 'Delete’ call is
executed.
® In a cluster application with SIGNON MULTI-SIGNON=YES,
® no genuine user with RESTART=YES may be signed on,
® aconnection user must not be signed on at the node application at which the administration 'Delete’ call is
executed,
® auser with RESTART=NO may not be signed on via a terminal connection at the node application at which
the administration 'Delete’ call is executed.
® When a client/printer is deleted, it must not be connected to the application.
® A logical connection for distributed processing by means of LU6.1 may not be deleted when it is not set up.

® An LUG6.1 session may only be deleted when it is not set up and is not in the P state (prepare to commit).

Effects of deletion during the application run
We distinguish two methods of deletion:

®* immediate delete (with subopcodel=KC_IMMEDIATE).
This method is only possible in conjunction with user IDs (KC_USER) and transport connections to LU6.1
applications (KC_CON). The immediate deletion of a user ID or a CON object causes the space in the object
table to be freed up and made available for further use immediately. Immediate deletion is only possible for users
IDs (KC_USER) and transport connections to LU6.1 applications (KC_CON). You can generate a new user 1D
using the same name after the deletion.
Immediate deletion is only possible in standalone UTM applications.

® delayed delete (with subopcodel=KC_DELAY)
Delayed deletion has the effect of a “permanent lock”. This process does not free up space in the object table.
The object’s name remains reserved, i.e. you cannot generate dynamically a new object using this name within
the same name class.
The delayed deletion of transport connections to LU6.1 applications (KC_CON) is not possible in standalone
UTM applications.
In UTM cluster applications, only delayed deletion is possible.
In UTM cluster applications, it is possible to delete objects with an update generation without having to terminate
the entire UTM cluster application. To implement this change in all the running node applications, it is necessary
to terminate the individual node applications one after the other and then start them with the new generation.

For details see openUTM manual “Using UTM Applications” subsection "Update generation in a cluster”.

The deletion of an object cannot be undone.

The inverse KDCDEF does not create KDCDEF control statements for deleted objects.

256



openUTM V7.0. Administering Applications. User Guide.

The effects of the deletion of an object on unprocessed asynchronous jobs, asynchronous messages, open dialog
services etc. that relate to that object are described in chapter "Changing the configuration dynamically".

Procedure / period of validity / transaction management / cluster

The call is subject to transaction management. The object is deleted from the configuration only after the program
unit run has ended (for PEND). The call can be rolled back with an RSET call that is executed in the same
transaction.

The deletion remains effective even after the UTM-S- and UTM-F applications have terminated; it cannot be undone.

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The call applies globally to the cluster, i.e. objects are deleted from the configuration in all the node applications.

257



openUTM V7.0. Administering Applications. User Guide.

Data to be supplied

Function of the call

Delete transport connections to
LUG.1 applications

Delete a key set

Delete an LU6.1 session

Delete a transaction code by
means of which service programs
are started in partner applications

Delete an LTERM partner from the
configuration

Delete a client or printer from the
configuration

Delete a program unit from the
configuration

Delete a transaction code or TAC
queue from the configuration

Delete a user ID including its
queue from the configuration

parameter area 1

subopcodel.
KC_DELAY or
KC_IMMEDIATE
(see section "Effects
of deletion during the
application run")
obj_type: KC_CON

subopcodel:
KC_DELAY
obj_type: KC_KSET

subopcodel.
KC_DELAY
obj_type: KC_LSES

subopcodel:
KC_DELAY
obj_type: KC_LTAC

subopcodel.
KC_DELAY
obj_type: KC_LTERM

subopcodel:
KC_DELAY
obj_type: KC_PTERM

subopcodel.
KC_DELAY
obj_type:
KC_PROGRAM

subopcodel:
KC_DELAY
obj type: KC_TAC

subopcodel.
KC_DELAY or
KC_IMMEDIATE
(see section "Effects
of deletion during the
application run")
obj_type: KC_USER

Data to be entered in the

data
area

selection
area

identification area

Name of the partner
application, name of the
computer, name of the local
application

Name of the key set

Local half-session name

Name of the transaction code

Name of the LTERM partner

Name of the client/printer,
computer name, BCAMAPPL
name

Program name

TAC name

User ID

258



openUTM V7.0. Administering Applications. User Guide.

1 The operation code KC_DELETE_OBJECT must be specified in the parameter area in all cases.

Parameter settings

Parameter area
Field name Contents
version KC_ADMI_VERSION_1
retcode KC_RC _NIL
version_data KC_VERSION_DATA 11
opcode KC_DELETE_OBJECT
subopcodel | KC_DELAY / KC_IMMEDIATE
obj_type Object type

obj_number |1

id_lIth Length of the object name in the identification area
select_Ith 0
data_lth 0

Identification area
Object name

Selection area

Data area

KDCADMI call

KDCADMI (&parameter_area, &identification_area, NULL, NULL)

Data returned by UTM
Parameter area
Field name | Contents

retcode Return codes

subopcodel

259



openUTM V7.0. Administering Applications. User Guide.

In subopcodel you specify the method of deletion.
KC_DELAY

if an object is to be marked as deleted, i.e. it is to be permanently locked (delayed delete).
KC_DELAY in obj_type=KC_CON is not permitted in standalone openUTM applications.

KC_IMMEDIATE

is only allowed in standalone openUTM applications with obj type=KC_USER and obj_type
=KC_CON.
You must specify KC_IMMEDIATE, if a user ID or LU6.1 connection is to be deleted immediately.

obj_type

In the obj_type field you must specify the type of object to be deleted.
You can specify the following object types:

KC_CON, KC_KSET, KC_LSES, KC_LTAC, KC_LTERM, KC_PROGRAM, KC_PTERM, KC_TAC (transaction
code including TAC queue) and KC_USER (user ID including associated queue)

obj_number
Only one object can be deleted per call. For this reason, obj_number = 1 must be specified.
id_lth

In the id_Ith field you must specify the length of the object name that you are passing in the identification area
to UTM.

Identification area

In the identification area you must pass the name of the object to be deleted. The full name of the object must
be specified. You must enter the following data:

for obj_type=KC_CON:

in the data structure kc_long_triple_strin the union kc_id_area; the name of the partner application, the name
of the computer on which the application can be found and the name of the local application (BCAMAPPL
name of the CON).

for obj_type=KC_KSET:
the name of the key set (kc_name8 in the union kc_id_area).

for obj_type=KC_LSES:
the name of the local half session (kc_name8 in the union kc_id_area).

for obj_type=KC_LTAC:
the name of the transaction code by means of which remote service programs are started (kc_name8 in the
Union kc_id_area).

for obj_type=KC_PTERM:

in the data structure kc_long_triple_strin the union kc_id_area, the name of the client/printer, the name of the
computer on which it can be found and the name of the local application (i.e. the BCAMAPPL name of the
PTERM).

for obj_type=KC_PROGRAM:
the name of the program unit (kc_name32 in the union kc_id_area).

260



openUTM V7.0. Administering Applications. User Guide.

for obj_type=KC_TAC:
the name of the transaction code or the TAC queue (kc_name8 in the union kc_id_area).

for obj_type=KC_USER:
the name of the user ID (kc_name8 in the union kc_id_area).

retcode

In the retcode field UTM outputs the return codes of the call. In addition to the return codes listed in section
"Return codes", the following codes can also be returned. Some of these return codes may arise
independently of the object type specified; others only occur for certain object types.

Type-independent return codes:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_INVALID_OBJECT

The object specified does not exist.

KC_SC_DELETE_NOT_ALLOWED

The object cannot be deleted, it has already been deleted or it has just been created (in the same
transaction).

KC_SC_JCTL_RT_CODE_NOT_OK

Only in UTM cluster applications:
An internal UTM error occurred during the global deletion of a object.
Please contact system support.

KC_SC_NO_GLOB_CHANG_POSSIBLE

Only in UTM cluster applications:
No global administration changes are possible since the generation of the node applications is not
consistent at present.

KC_SC_GLOB_CRE_DEL_LOCKED

Only in UTM cluster applications:
It is not possible to delete an object at present because the generation or deletion of an object or the
generation, deletion or activation of an RSA key pair has not yet been completed in a node application.

Main code = KC_MC_REJECTED_CURR
The call cannot be processed at the present time.

Subcode:

KC_SC_INVDEF_RUNNING

261



openUTM V7.0. Administering Applications. User Guide.

An inverse KDCDEEF is running, i.e. the job cannot be processed at the present time.

Main code = KC_MC_RECBUF_FULL

The buffer containing the restart information is full. (See the openUTM manual “Generating
Applications”, KDCDEF control statement MAX, parameter RECBUF).

Subcode:

KC_SC_NO_INFO

Return codes for obj_type = KC_CON:

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_CONNECTED

The specified LU6.1 connection cannot be deleted because it is currently set up.

Maincode = KC_MC_PAR_INVALID

An invalid value has been entered or a field has not been set in the parameter area.

Subcode:

KC_SC_SUBOPCODE1

Only in UTM cluster applications:

The specified LU6.1 connection cannot be deleted, deletion with subcode KC_IMMEDIATE not
permitted.

262



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj _type = KC_KSET:

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_KSET_NOT_ADMINISTRABLE

The KDCAPLKS key set cannot be deleted.

Return codes for obj _type = KC_LSES:

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:
KC_SC_CONNECTED

The LUG6.1 session cannot be deleted because it is currently assigned to a connection.
KC_SC_PTC_STATE

The session has the transaction status P (prepare to commit). When it has this status it cannot be deleted.

KC_SC_NOT_ALLOWED

The session is currently occupied (not active).

Return codes for obj_type = KC_LTERM:

Main code = KC_MC_REJECTED

The call was rejected by UTM.
Subcodes:
KC_SC_LTERM_IS_MASTER

The LTERM partner cannot be deleted because it is the master of an LTERM bundle.
KC_SC_LT_DEL_GROUP_MASTER

The LTERM partner cannot be deleted because it is the primary LTERM of an LTERM group.
KC_SC_LT_DEL_SLAVE

The LTERM partner cannot be deleted because it is the slave of an LTERM bundle.
KC_SC_LT_DEL_ALIAS

The LTERM partner cannot be deleted because it is the group LTERM of an LTERM group.

263



openUTM V7.0. Administering Applications. User Guide.

KC_SC_REF_PTERM_NOT_DELETED

The LTERM partner cannot be deleted because a client/printer assigned to the LTERM partner has not yet
been deleted.

KC_SC_LTERM_IS_CTERM

The LTERM partner specified is a printer control LTERM. It cannot be deleted.
KC_SC_OBJECT_TYPE_NOT_LTERM

The object specified cannot be deleted because:

® jtis an LTERM partner that belongs to an LTERM pool or multiplex connection

® the name specified belongs to an LPAP or OSI-LPAP partner.

KC_SC_LTERM_NOT_ADMINISTRABLE

The LTERM partner specified cannot be administered (for example, the LTERM partner KDCMSGLT which
is created internally by UTM for the event service MSGTAC).

Return codes for obj_type = KC_PROGRAM:

Main code = KC_MC_REJECTED
The call was rejected by UTM. The object cannot be deleted.
Subcodes:
KC_SC_REF_TAC_NOT_DELETED
A transaction code belonging to the program unit specified has not yet been deleted.
KC_SC_PROGRAM_IS_STATIC

The program unit cannot be deleted from the configuration because it belongs to a load module with load
mode STATIC.

KC_SC_PROGRAM_IS_USER_EXIT

The object specified is an event exit that was statically configured with the KDCDEF control statement EXIT
(START, SHUT, FORMAT or INPUT exit).

264



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type = KC_PTERM:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_PTERM_CONNECTED

The client/printer specified cannot be deleted because it is currently connected to the application.

KC_SC_OBJECT_TYPE_NOT_PTERM
The object specified cannot be deleted because:

® jtis a client that is connected to the application through an LTERM pool, i.e. that was not configured explicitly

® on a BS2000 system, the specified name was created during KDCDEF generation with a MUX statement
(multiplex connection)

* the name specified belongs to an object that was configured for distributed processing through OSI TP or LU6.
1.

Return codes for obj_type = KC_TAC:

Main code = KC_MC_REJECTED
The call was rejected by UTM.
Subcode:

KC_SC_TAC_NOT_ADMINISTRABLE

The transaction code or the queue specified cannot be administered (KDCMSGTC, KDCBADTC,
KDCSGNTC, for example) or cannot be deleted (the transaction code KDCSHUT and the Dead Letter
Queue).

KC_SC_DELETE_NOT_ALLOWED

The specified transaction code cannot be deleted (for example, a transaction code assigned to a transport
access point as SIGNON-TAC)

265



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type = KC_USER (subopcodel = KC_DELAY or KC_IMMEDIATE):

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:
KC_SC_USER_CONNECTED

A client/user with the user ID specified is currently signed on to the application.
KC_SC_APPLICATION_WITHOUT_USER

The application was generated without user IDs.

KC_SC_USER_NOT_ADMINISTRABLE

The user ID cannot be administered because it is, for example, the user ID KDCMSGUS that UTM creates
internally for the MSGTAC event service.

KC_SC_AUTO_SIGN_USER
The user ID cannot be deleted, because it is assigned to an LTERM partner for automatic KDSIGN or as a

connection user ID.

obj_type = KC_USER and subopcodel = KC_IMMEDIATE:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_ASYN_SERVICE_RUNNING

The user ID currently cannot be deleted because there is still an asynchronous service running under this
user ID.

KC_SC_CLIENT_SIGNED

Immediate deletion of the user ID is currently not possible because a UPIC client, TS application or OSI TP
partner is still signed on with this user ID.

KC_SC_DEADLOCK
Deadlock locking user-specific long-term storage (ULS)
KC_SC_TIMEOUT

Timeout locking user-specific long-term storage (ULS)

KC_SC_OWNER_IN_TA

266



openUTM V7.0. Administering Applications. User Guide.

User-specific long-term storage (ULS) cannot be locked because it is disabled by a transaction in which one
of the KDCS calls PEND KP or PGWT KP was issued.

KC_SC_PTC_STATE

There is a transaction in the state PTC (prepare to commit) for the user ID.

KC_SC_BOTTLENECK

Services are stacked for the user ID, and a memory bottleneck has occurred.

KC_SC_ALREADY_LOCKED
The assigned ULS is locked by another transaction.
KC_SC_NOT_ENOUGH_TASKS
The UTM application does not currently have enough free processes to be able to wait for the lock of user-
specific long-term storage (ULS) locked by a PTC transaction. Attempt to delete the user again later.
Maincode = KC_MC_PAR_INVALID
An invalid value has been entered or a field has not been set in the parameter area.
Subcode:

KC_SC_SUBOPCODE1

Only in UTM cluster applications:
Deletion with subcode KC_IMMEDIATE is not permitted.

267



openUTM V7.0. Administering Applications. User Guide.

11.2.6 KC_ENCRYPT - Create, delete, read RSA key pairs

With KC_ENCRYPT, you can create a new application’s RSA key pair, replace an application’s RSA key pair by a
new pair, delete an RSA key pair or read the public key of an RSA key pair.

i UTM applications on BS2000 systems also support encryption for connections with some terminal
emulations. However, these connections do not use the openUTM RSA key pair. Instead, a key pair
generated by VTSU-B is employed. Consequently, changing the RSA key pair of openUTM has no effect
whatsoever on encryption using VTSU-B.

Prerequisites

You can only use this function, if the encryption functions are available for the application.

Encryption methods

openUTM offers encryption functions for passwords and user data (messages), in order to improve the security for
connections between openUTM server applications and UPIC clients.

You will find further information on encryption in the openUTM manuals “Concepts and Functions” and “Generating
Applications”.

Functional scope of KC_ENCRYPT

An RSA key pair that is valid for a specific encryption level is used for all client connections that use this encryption
level. For reasons of security, you should therefore replace the RSA key pairs of your UTM application by new key
pairs at regular intervals. With Encryption Level 5, the server's RSA key is only used to sign the server's Diffie-
Hellman public key so that the client can uniquely assign this key to the server. This procedure, longer use of the
RSA key is less critical.

For connections with Encryption Level 5, RSA keys with 2048 bits are also used, which corresponds to RSA keys of
Encryption Level 4.

For this purpose, KC_ENCRYPT offers the following functions:

® Create a new RSA key pair

KC_ENCRYPT with subopcode1=KC_CREATE_KEY makes UTM generate a new RSA key pair. However, UTM
does not use this new key pair for encryption, before you activate it by dispatching a further KC_ENCRYPT call
(with subopcodel=KC_ACTIVATE_KEY).
You cannot create a new key pair unless the key pair last created with the same encryption level has already
been activated with subopcode1=KC_ACTIVATE_KEY or has been deleted with subopcodel
=KC_DELETE_KEY, i.e. there must be no not yet activated key pair of the same encryption level for the
application.

® Delete a key pair

You use KC_ENCRYPT with subopcodel=KC_DELETE_KEY to delete a key pair that has not yet been
activated. You use KC_ENCRYPT with subopcodel = KC_DELETE_ACTIVE_KEY to delete an activated key
pair.

You can delete activated key pairs of encryption level 4 only. Activated key pairs of encryption level 3 are always
needed by openUTM.

268



openUTM V7.0. Administering Applications. User Guide.

® Activate a previously created RSA key pair

KC_ENCRYPT with subopcodel=KC_ACTIVATE_KEY causes an RSA key pair currently being used to be
replaced by a RSA key pair created using KC_ENCRYPT, i.e. the next time a connection is established to an
appropriately generated client, the public key of the new RSA key pair is transmitted to the client.

® Read a public key

You can read the public key of an RSA key pair that was last created and that is not activated yet using
KC_ENCRYPT subopcodel=KC_READ_NEW_PUBLIC_KEY. KC_ENCRYPT subopcodel
=KC_READ_ACTIV_PUBLIC_KEY allows you to read the public key of an currently active RSA key pair.

This function gives you added possibilities of increasing data security on your connection:

In order for a client to be able to verify whether the public key received via the connection to the UTM application
actually truly comes from that UTM application, you should read the public key, transfer it to the client using a
different way and deposit it there.

When the UTM application transmits the public key to the client the next time a connection is established, the
client can compare the transmitted key with the one already stored.

It is therefore advisable to transmit the public key of a newly created RSA key pair to all clients involved, i.e. all
clients that support message encryption.

Transaction management / duration of effectiveness / cluster

Creating, activating and deleting a RSA key pair is subject to transaction management. You can create or activate a
new key pair within a transaction. A new public key can only be read after the transaction is terminated.

The RSA key pair remains active until a new pair is created and activated or until the application is regenerated. In
the event of regeneration, UTM automatically generates a new RSA key pair if the OPTION GEN-RSA-KEYS=YES
statement is specified for the KDCDEF run (default setting).

The effect of the call persists beyond the current application run.
Reading the public key is not subject to transaction management.

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The call applies globally to the cluster, i.e.

® if you use the KC_ENCRYPT function to generate a new key pair at a node application then this key pair is also
distributed to the other node applications so that all the node applications possess the same key pairs.

® if you activate or delete a previously generated key pair at a node application then this action is replicated at all
the other node applications.

269



openUTM V7.0. Administering Applications. User Guide.

Data to be supplied

Function of the call

Create RSA key pair

Delete non-activated RSA
key pair

Delete activated RSA key
pair

Activate RSA key pair

Public key of a not yet
activated RSA key pair

Public key of the currently
active RSA key pair

parameter area 1

subopcodel.
KC_CREATE_KEY
subopcodeZ:
encryption level

subopcodel.
KC_DELETE_KEY
subopcode?Z:
encryption level

subopcodel:

Data to be entered in the

identificati | selection
ons area
area

KC_DELETE_ACTIVE_KEY

subopcode2:
encryption level

subopcodel.
KC_ACTIVATE_KEY
subopcode2:
encryption level

subopcodel.

KC_READ_NEW_PUBLIC_KEY

subopcode?:
encryption level

subopcodel.

KC_READ_ACTIV_PUBLIC_KEY

subopcodeZ:
encryption level

Lin all cases, the operation code KC_ENCRYPT must be specified in the parameter area.

data area

Pointer to a data
area into which
UTM can return the
public key.

Pointer to a data
area into which
UTM can return the
public key.

270



openUTM V7.0. Administering Applications. User Guide.

Parameter settings
Parameter area
Field name Contents
version KC_ADMI_VERSION_1
retcode KC_RC_NIL
version_data KC_VERSION_DATA 11
opcode KC_ENCRYPT

subopcodel  KC_CREATE_KEY / KC_ACTIVATE_KEY /
KC_DELETE_KEY/ KC_DELETE_ACTIVE_KEY /
KC_READ_NEW_PUBLIC_KEY / KC_READ_ACTIV_PUBLIC_KEY

subopcode2  KC_ENC_LEV_3/KC_ENC_LEV_4

obj_number | 0

id_Ith 0
select_Ith 0
data_lth length of data area / 0

Identification area

Selection area

Data area

KDCADMI call

KDCADMI (&parameter_area, NULL, NULL, NULL) or
KDCADMI (&parameter_area, NULL, NULL, &data_area)

271



openUTM V7.0. Administering Applications. User Guide.

Data returned by UTM

Parameter area

Field name Field contents

retcode return code

data lIth_ret length of data returned/ 0
Data area

Data structure kc_encrypt_str / kc_encrypt_advanced_str/ —

subopcodel

In the field subopcodel, you must specify which action UTM is to execute. You can enter the following
subcodes:

KC_CREATE_KEY

Generates a new RSA key pair.
KC_ACTIVATE_KEY

Activates a RSA key pair created with KC_ENCRYPT.
KC_DELETE_KEY

Deletes a not yet activated RSA key pair.
KC_DELETE_ACTIVE_KEY

An activated RSA key pair is to be deleted. Only activated keys of encryption level 4 can be
deleted.

This function is permitted only if the key pair has not been used by any object before deletion. It
can be used, for example, after application regeneration and a subsequent KDCUPD to delete
RSA keys that are no longer needed in the newly generated application.

KC_READ_NEW_PUBLIC_KEY
Reads the public key of a previously created and not yet activated RSA key pair.
KC_READ_ACTIV_PUBLIC_KEY
Reads the public key of the active RSA key pair.
subopcode2
In the field subopcode2, you must indicate to which encryption level the action specified in subopcodel applies:
KC_ENC_LEV_3
The action applies for RSA keys with a key length of 1024 bits.
KC_ENC_LEV 4

The action applies for RSA keys with a key length of 2048 bits.

272



openUTM V7.0. Administering Applications. User Guide.

data_lth
In the field data_Ith, you enter the following:

* with subopcode1=KC_CREATE_KEY, KC_DELETE_KEY, KC_DELETE_ACTIVE_KEY or
KC_ACTIVATE_KEY:

data_Ith=0. When you call KDCADMI, you should pass the zero pointer to UTM for &data area.

* with subopcode1=KC_READ_NEW_PUBLIC_KEY or KC_READ_ACTIV_PUBLIC_KEY:
Length of the data area to which UTM is to return the public key of the RSA key pair. This data area must
have the length of data structure kc_encrypt_advanced_str. For existing clients that work with subopcode?
=KC_NO_SUBOPCODE, it must have the length of data structure kc_encrypt_str.
When you call KDCADMI, you must pass the pointer to the data area to UTM.

retcode

In the field retcode, UTM supplies the return code of the call. Beside the return codes listed in section "Return
codes", one of the following return codes can also occur:

273



openUTM V7.0. Administering Applications. User Guide.

Maincode = KC_MC_REJECTED
UTM rejected the call.

Subcode:

KC_SC_NO_ENCRYPTION

Encryption is not supported.

KC_SC_NEW_KEY_ALREADY_EXISTS

With subopcodel= KC_CREATE_KEY:
A new key pair has already been generated for this encryption level.

KC_SC_NO_NEW_KEY_EXISTS

With subopcodel=KC_READ_NEW_PUBLIC KEY, KC_ACTIVATE_KEY, KC_DELETE_KEY:
There is no new key for the specified encryption level.

KC_SC_NO_ACTIV_KEY_EXISTS

With subopcodel= KC_READ_ACTIV_PUBLIC_KEY, KC_DELETE_ACTIVE_KEY:
There is no activated key for the specified encryption level.

KC_SC_IN_USE_DEL_NOT_ALLOWED
With subopcodel=KC_DELETE_ACTIVE_KEY:

® The key pair for the specified encryption level may not be deleted because it is required by at least
one object.

® [tis not permitted to delete a key pair of encryption Level 3 (this key pair is always needed by UTM).

KC_SC_NO_GLOB_CHANG_POSSIBLE

Only in UTM cluster applications:

No global administration changes are possible since the generation of the node applications is not
consistent at present.

Action: Please try again later.

KC_SC_GLOB_CRE_DEL_LOCKED

Only in UTM cluster applications:

It is not possible to generate, delete or activate an RSA key pair at present because the generation or
deletion of an object or the generation, deletion or activation of an RSA key pair has not yet been
completed in a node application.

Action: Please try again later.

274



openUTM V7.0. Administering Applications. User Guide.

Maincode = KC_MC_RECBUF_FULL

Subcode:

KC_SC_NO_INFO

The buffer containing the restart information is full. (See openUTM manual
“Generating

Applications”, KDCDEF control statement MAX, parameter RECBUF)

Maincode = KC_MC_REJECTED_CURR
The call cannot be processed at present.

Subcode:

KC_SC_INVDEF_RUNNING

Only in UTM cluster applications:
An inverse KDCDEF is currently running, i.e. the job cannot be processed at present.

data_Ith_ret
data_Ith_ret contains the data length returned to the data area by UTM.

® With subopcodel=KC_READ_NEW_PUBLIC_KEY and KC_READ_ACTIV_PUBLIC_KEY data Ith ret!=0.
If the value in data_Ith_retis smaller than the data area available (data_Ith), the contents of the data area is
only defined in data_lth_ret.

® |n all other cases data Ith_ret=0

Data area

In the case where subopcodel=KC_READ_ NEW_PUBLIC_ _KEY or. KC_READ_ACTIV_PUBLIC_KEY, UTM
returns the data structure kc_encrypt_advanced_str together with the public key of the specified encryption
level. KC_READ_NEW_PUBLIC_KEY returns the key of the RSA key pair not yet activated.
KC_READ_ACTIV_PUBLIC_KEY returns the key of the activated RSA key pair.

The data structure kc_encrypt_advanced_str is defined as follows:

struct kc_encrypt_advanced_str
char buf _|th[4];
char en_buffer[2048];

char en_key | th[4];

275



openUTM V7.0. Administering Applications. User Guide.

The fields of the data structure have the following meanings:

buf_lth length of the data buffer en_buffer used.
en_buffer  contains the public key that was read.

en_key Ith length of the key (1024 or 2048).

276



openUTM V7.0. Administering Applications. User Guide.

11.2.7 KC_GET_OBJECT - Query information

KC_GET_OBJECT allows you to query information on all objects in the configuration and to query the application
parameters.

Different kinds of information can be queried. You can control the type of information UTM shall return using the
subopcodel parameter.

The following information can be returned by UTM:

® A list of the names of objects of an object type (subopcodel=KC_NAME or KC_NAME_NEXT).

® Properties, status and statistical information on the objects of an object type (subopcodel=KC_ATTRIBUTES or
KC_ATTRIBUTES_NEXT).

Properties are understood here to mean the parameters that have been set during the configuration of the
objects. UTM returns the current values of these parameters, so any modifications by means of administration
functions will be reflected in the data returned.

Status information describes the current status of an object, e.g. whether a connection is currently being set up
or a user is currently signed on.

Statistical information includes counter values and internally measured wait times. UTM returns the following
values, for example: the number of messages that the application has exchanged with a partner application of a
client since its start, the number of messages being stored temporarily in a partner-specific message queue or
the number of program unit runs that have been started using a transaction code.

The properties of an object and status and statistical information on an object are returned by UTM in the data
area in the data structure for the object type (see "Data structures for describing object properties”). If UTM
returns information on several objects, then UTM stores an array of data structures for the object type in the data
area.

Where the properties of an object are discussed in the following text, this refers to object properties, status and
statistical information.

® The current settings for the application parameters
(subopcodel= KC_APPLICATION_PAR)

The values returned by UTM are dependent on the parameter type you have specified in obj_type. You can, for
example, choose between the maximum values of the application set during the KDCDEF generation, the
system parameters, the current timer settings or statistical information on the current application load. In point
obj_type in this chapter is a list of the parameter types you may select from.

For each parameter type there is a data structure in which UTM returns the application parameters queried. The
data structures are described in "Data structures used to describe the application parameters".

Controlling the output of object names and object properties

UTM returns the object names sorted alphabetically. Accordingly, the properties of the objects are also returned in
order of the object names. In subopcodeZ2 you can specify if UTM is to return the names in ascending
(KC_ASCENDING) or descending (KC_DESCENDING) alphabetical order.

Because the amount of information returned from a query of all objects of an object type can be very large, you
should limit the amount of information requested. You have the following options available to limit the amount of
information:

® You can specify the point in the alphabetical list at which output is to start in the identification area. You can enter
any string for this purpose.

277



openUTM V7.0. Administering Applications. User Guide.

If the string does not correspond to any object name of the object type specified, then UTM starts the output at
the next object in the list, meaning the next highest or next lowest object alphabetically, depending on what you
specified in subopcode?2.

If the string in the identification area corresponds to an object name, then the starting point of the output is
dependent on subopcodel.

® for subopcodel=KC_NAME and KC_ATTRIBUTES, the output begins with this object.

® for subopcodel=KC_NAME_NEXT and KC_ATTRIBUTES_NEXT, the output begins with the next object,
meaning the next highest or next lowest object alphabetically, depending on what you specified in subopcode2

The list of names or properties output will extend at most to the last (for subopcode2=KC_ASCENDING) or to the
first (for subopcode2= KC_DESCENDING) object in the alphabetically ordered list of objects.

If the names or properties of the objects are to be read starting with the first object alphabetically of an object
type, then you must specify subopcode2=KC_ASCENDING and set the identification area to binary zero.

If the names or properties of the objects are to be read in alphabetically descending order starting with the last
object of an object type, then you must specify subopcode2=KC_DESCENDING and pass the string X'FF..." in
the identification area.

® In the obj_number field of the parameter area you can specify the maximum number of objects for which UTM is
to return information.

® In the selection area you can pass selection criteria to UTM.

UTM will then only return information on those objects meeting the specified selection criteria. A selection
criterion is an object property. You could then, for example, output all the names of clients/printers that are
currently connected to the application (obj_type =KC_PTERM). A list of all the selection criteria that you can
specify can be found in section "Selection area" in this chapter.

Using selection criteria, you can target specific objects for selection and can therefore limit the amount of data
returned.

The use of selection criteria does, however, influence the performance of the call, especially if only object names
are queried. UTM must then read and check the properties for each object to see if each property satisfies its
selection criterion. This means that, in this case, a call using selection criteria results in much more work than a
call without selection criteria.

The following should be observed when querying information

When querying object names or object properties, information is also returned for objects that have been marked as
deleted. You can limit the output to those objects not deleted using the selection criterion delete="N'. With the
selection criterion delete="Y', you can also output all objects of the object type that have been deleted.

Note in the case of UTM cluster applications (Unix, Linux and Windows systems):

®* |n UTM cluster applications, information is only supplied concerning the objects of the node application at which
the call is executed.

® The specifications KC_NO_READ_GSSBFILE and KC_NO_READ_USERFILE in subopcodeZ2 allow you to
determine whether or not the cluster GSSB file or cluster user file are accessed on follow-up calls for objects of
type GSSB or USER. This makes it possible to improve performance when there are a large number of follow-up
calls.

If subopcode2=KC_NO_READ_GSSBFILE or KC_NO_READ_USERFILE then the objects are always supplied
in ascending order.

278



openUTM V7.0. Administering Applications. User Guide.

This improved performance is coupled with a level of uncertainty regarding the information that is returned by the
follow-up calls. Since the data is not read again from the file, it may not be up-to-date.

Possible applications
You should consider the following points when using the subopcodes KC_... and KC_... NEXT:

® You should use KC_ATTRIBUTES or KC_NAME if you want to check whether or not an object with the object
name specified already exists. To do this, specify the object name you want in the identification area and enter
obj_number=1. The return code, with which you can determine whether an object exists (sub-return code =
KC_SC_SAME) or not (sub-return code = KC_SC_NEXT), is evaluated after the call.

® You can use KC_ATTRIBUTES or KC_NAME as the "starting point" of a succession of queries if you want to
guery the object names starting with a certain string but do not know if an object exists for this string.

For example, the string 'Sbbbbbbb' (b = blank) can be specified as the name if the objects are to be read starting
with the first object name that begins with an "S" (as long as it is ensured that the binary representation of
spaces is lexicographically smaller than the representation of letters and digits).

® In a follow-up call in which you have specified in the identification area that the last object read in the previous
call is to be the new starting point (successive query), then KC_ATTRIBUTES and KC_NAME are not suitable for
use. For these parameter values the object name specified will be returned. If obj_number=1 was specified and
you are executing a successive query, then this same object will always be read.
In this case, you must specify KC_ATTRIBUTES_NEXT or KC_NAME_NEXT. The following object will then be
read as the first object.

You will find an example of a successive query of objects in chapter "KC_GET_OBJECT - Query information".

KDCINF (chapter "KDCINF - Request information on objects and application parameters")
Less information than with the program interface is returned with KDCINF, however.

279



openUTM V7.0. Administering Applications. User Guide.

Data to be supplied

Function of the call

Output the names of
all objects of a certain
object type

Output the names of
all objects of a certain
type with certain
properties

Output properties and
statistical information
of objects of a certain
type with certain
properties

Output properties and
statistical information
of objects of a certain

type

Output application
parameters

1 The operation code KC_GET_OBJECT must be specified in the parameter area in all cases.

Data to be entered in the

parameter area 1 identification
area

subopcodel.

KC_NAME_NEXT or

KC_NAME

subopcode?Z:

output in alphabetically
ascending or descending
order

obj_type: object type
obj_number. maximum
number of object names

subopcodel:
KC_ATTRIBUTES_NEXT or
KC_ATTRIBUTES
subopcodeZ:

output in alphabetically

ascending or descending Na_me Of_ the

order object with

obj_type: object type [after which the

obj_number. maximum output C_)f

number of objects for which = NaMes is to
begin

UTM is to output properties.

subopcodel.
KC_ATTRIBUTES_NEXT or
KC _ATTRIBUTES
subopcode?Z:

output in alphabetically
ascending or descending
order

obj_type: object type
obj_number. maximum
number of objects for which
the UTM properties and
statistical information are to
be output.

subopcodel:
KC_APPLICATION_PAR
obj_type: parameter type
obj_number. 0

selection data
area area
Selection

criteria used

by UTM to limit

the amount of
data output

A pointer to a data
area for the data
returned by UTM
must be passed in
the call.

280



openUTM V7.0. Administering Applications. User Guide.

Parameter settings
Parameter area
Field name Contents
version KC_ADMI_VERSION_1
retcode KC_RC_NIL
version_data KC_VERSION_DATA 11
opcode KC_GET_OBJECT

subopcodel = KC_NAME_NEXT / KC_NAME / KC_ATTRIBUTES_NEXT / KC_ATTRIBUTES
| KC_APPLICATION_PAR

subopcode2  KC_ASCENDING / KC_DESCENDING / KC_READ_NO_GSSBFILE /
KC_READ_NO_USERFILE / binary zero

obj_type Object type / parameter type

obj_number | Number of objects / 0

id_Ith Length of the object name in the identification area / 0
select_Ith Length of the data in the selection area / 0
data_lth Length of the data area

Identification area
Object name/ —
Selection area
Data structure of the object type with selection criteria / —

Data area

KDCADMI call

KDCADMI (&parameter_area, &identification_area, &selection_area, &data_area)
or
KDCADMI (&parameter_area, &identification_area, NULL, &data_area) or
KDCADMI (&parameter_area, NULL, NULL, &data_area)

281



openUTM V7.0. Administering Applications. User Guide.

Field name
retcode
number_ret

data Ith ret

Data returned by UTM

Parameter area (starting from "retcode")

Contents

Return code

Number of objects
Length of the return data

Data area

Data structures of the object or parameter type / array of object names

subopcodel

In subopcodel you specify the type of information to be returned by UTM. You can specify the following values:

KC_NAME

UTM is to return the names of objects of the object type obj_type.

If the string specified in the identification area matches an object name, then the output is to
begin with the name of this object.

If the string in the identification area does not match an object name of the object type
specified, then UTM is to begin the output with the next object, i.e. with the next highest object
alphabetically for subopcode2=KC_ASCENDING or the next lowest object alphabetically for
subopcode2= KC_DESCENDING.

KC_NAME_NEXT

UTM is to return the names of objects of the object type obj_type.

The output is to begin with the object name following the string specified in the identification
area, i.e. with the next highest object alphabetically for subopcode2=KC_ASCENDING or the
next lowest object alphabetically for subopcode2= KC_DESCENDING (see also point).

KC_ATTRIBUTES

UTM is to return properties of objects of the object type obj_type.

If the string specified in the identification area matches an object name, then the output is to
begin with the properties of this object.

If the string in the identification area does not match an object name of the object type
specified, then UTM is to begin the output with the next object, i.e. with the next highest object
alphabetically for subopcode2=KC_ASCENDING or the next lowest object alphabetically for
subopcode?= KC_DESCENDING.

282



openUTM V7.0. Administering Applications. User Guide.

KC_ATTRIBUTES_NEXT
UTM is to return properties of objects of the object type obj_type.

The output is to begin with the object whose name follows the name specified in the string, i.e.
with the next highest object alphabetically for subopcode2=KC_ASCENDING or the next lowest
object alphabetically for subopcode2= KC_DESCENDING.

KC_APPLICATION_PAR
UTM is to return the application parameters of the parameter type specified in obj_type.
subopcode2
The data you must specify in the subopcode? field depends on the value specified in subopcodel.

® For subopcodel=KC_APPLICATION_PAR you must set subopcodeZ to binary zero
(KC_NO_SUBOPCODE).

® For KC_NAME_NEXT, KC_NAME, KC_ATTRIBUTES_NEXT, and KC_ATTRIBUTES, you must specify
one of the two following values in subopcodeZ:

KC_ASCENDING,

UTM returns the information on the objects in alphabetically ascending order according to
object name, i.e. the next highest name alphabetically.

KC_DESCENDING

UTM returns the information on the objects in alphabetically descending order according to
object name, i.e. the next lowest name alphabetically.

KC_READ_NO_GSSBFILE

This value may only be specified in the case of follow-up calls in a UTM cluster application
with object type=KC_GSSB.

If KC_READ _NO_GSSBFILE is specified, then UTM does not access the cluster GSSB file
again but instead uses the data from the last call with KC_ASCENDING. This improves
performance when reading GSSBs, see note below.

UTM returns the information on the GSSBs in ascending object name order.

KC_READ_NO_USERFILE

This value may only be specified in the case of follow-up calls in a UTM cluster application
with object type=KC_USER.

If KC_READ_NO_USERFILE is specified, then UTM does not access the cluster user file
again but instead uses the data from the last call with KC_ASCENDING. This improves
performance when reading large numbers of user IDs, see note.

UTM returns the information on the user IDs in ascending object name order.

i If, in UTM cluster applications, you read in GSSBs or user IDs with subopcode2
=KC_ASCENDING or subopcode2=KC_DESCENDING then all the objects are read in locally
from the cluster GSSB file or cluster user file and sorted. Each time you reread the GSSBs/user
IDs with this subopcode?2, all the GSSBs (max. 30000) or all the user IDs are again read in and
sorted.

283



openUTM V7.0. Administering Applications. User Guide.

If you require a high performance level, only specify KC_ASCENDING for the first call and use
KC_READ_NO_GSSBFILE or KC_READ_NO_USERFILE for all follow-up calls. However, this
means that any changes made after the first call are not displayed.

obj_type

in the obj_type field you must specify the type of the objects or application parameters for which UTM is to
return information. The data you must specify in obj_type depends on the value specified in subopcodel.
Please consult the following table for the values allowed. The meanings of the object/parameter types are
described in chapter "Description of the data areas to be supplied".

284



openUTM V7.0. Administering Applications. User Guide.

Object type / parameter type Permissible specifications for subopcodel =

Object type: KC_ATTRIBUTES,
KC_ABSTRACT_SYNTAX KC_ATTRIBUTES_NEXT,
KC_ACCESS_POINT KC_NAME,
KC_APPLICATION_CONTEXT KC_NAME_NEXT
KC_BCAMAPPL

KC_CON

KC_EDIT (only on BS2000 systems)

KC_GSSB

KC_KSET

KC_LOAD_MODULE

KC_LPAP

KC_LSES

KC_LTAC

KC_LTERM

KC_MESSAGE_MODULE

KC_MUX (only on BS2000 systems)

KC_OSI_ASSOCIATION

KC_OSI_CON

KC_OSI_LPAP

KC_PROGRAM

KC_PTERM

KC_QUEUE

KC_TAC

KC_TPOOL

KC_TRANSFER_SYNTAX

KC_USER

KC_USER_DYN1

KC_USER_DYN2

KC_USER_FIX

Object type:

KC_CHARACTER_SET (on BS2000 Systems only) = KC_ATTRIBUTES,
KC_DB_INFO KC_ATTRIBUTES_NEXT
KC_HTTP_DESCRIPTOR

KC_PTC

KC_SFUNC

KC_SUBNET

KC_TACCLASS

Object type: KC_ATTRIBUTES
KC_CLUSTER_NODE

285



openUTM V7.0. Administering Applications. User Guide.

Object type / parameter type Permissible specifications for subopcodel =

Parameter type: KC_APPLICATION_PAR
KC_CLUSTER_CURR_PAR
KC_CLUSTER_PAR
KC_CURR_PAR
KC_DIAG_AND_ACCOUNT_PAR
KC_DYN_PAR

KC_MAX_PAR
KC_MSG_DEST_PAR
KC_PAGEPOOL
KC_QUEUE_PAR

KC_SIGNON

KC_SYSTEM_PAR

KC_TASKS_ PAR
KC_TIMER_PAR
KC_UTMD_PAR

In the case of obj_type=KC_USER, KC_USER_DYN1, KC_USER_DYN2 and KC_USER_FIX, please note the
following:

® The data structures kc_user_str, kc_user_fix_str, kc_user_dynl1_strand kc_user_dyn2_str are defined for
the object types KC_USER, KC_USER_DYN1, KC_USER_DYN2 and KC_USER_FIX.

In stand-alone UTM applications, the data belonging to a user can always queried using kc_user_str
structure.

The fields present in the three data structures kc_user_fix_str, kc_user_dynl_strand kc_user_dyn2 _str are
also present in the data structure kc_user_str. This subdivision into three data structures was undertaken in
order to make it possible to access specific user information values and consequently improve
performance, in particular when reading user information in UTM cluster applications.

® All the data relating to the cluster user file is located in the data structure kc_user_dynZ2_str.
To read this data, openUTM must access the cluster user file. That is why, when reading user information
in UTM cluster applications, you should preferably use the new object types and only call
KC_USER_DYNZ2 if you currently need the data that this call returns.

Note the following for obj_type=0SI_ASSOCIATION:

® For subopcodel=KC_NAME and KC_NAME_NEXT, UTM returns the names of the OSI TP associations set
during KDCDEF generation. The names consist of an association prefix specified in an OSI-LPAP
command and a serial number.
You can specify an association name in the identification area for these values of subopcodel.

® For subopcodel=KC_ATTRIBUTES and KC_ATTRIBUTES_NEXT, UTM only returns the properties of
associations that belong to a particular partner application and that have been or are currently being
established. For this reason, you must specify the partner application as a selection criterion when calling
the OSI-LPAP partner. You pass the data structure kc_osi_association_str containing the name of the OSI-
LPAP partner in the selection area (see "kc_osi_association_str - Associations to OSI TP partner
applications").

286



openUTM V7.0. Administering Applications. User Guide.

The properties of an association are not stored internally under the association name, but under an
association ID assigned by UTM to an association as long as it is in existence. It is not possible to assign an
association ID to the name of an association. UTM therefore interprets the string specified in the
identification area (field kc_name8 in the union kc_id_area) as an association ID. UTM returns the
properties of the active associations to a partner application sorted according to the association IDs. It is not
possible to query the properties of an association name.

Note the following for obj_type=KC_HTTP_DESCRIPTOR:

® subopcode2 must be set to KC_ASCENDING.
® The identification area can be used.
® The selection area must not be specified.

® The output of the information on the HTTP descriptors is not sorted alphabetically according to the names
but in the order in which the statements are evaluated when an HTTP request arrives.

Note the following for obj_type=KC_CHARACTER_SET:

® subopcode2 must be set to KC_ASCENDING.
® The identification area can be used.
® The selection area must not be specified.

® The output of the Information on character sets is sorted alphabetically according to the names.

Note the following for obj_type=KC_SUBNET:

® subopcode2 must contain binary zero (KC_NO_SUBOPCODE).
® The identification area can be used.
®* The selection area may not be specified.

® The output of the information on the subnets is not sorted according to the subnet names (mapped _name),
but takes place in the order in which the statements were specified during generation - separated according
to IPv4 and IPv6 subnets.

This corresponds to the order in which the SUBNET entries are evaluated when a connection is established
from outside.

obj_number

In obj_number you can specify the number of objects for which UTM is to return information. The following can

be specified:

® For subopcodel=KC_NAME,KC_NAME_NEXT, KC_ATTRIBUTES and KC_ATTRIBUTES_NEXT:
obj_number specifies the maximum number of objects for which UTM is to return information.

If you specify obj_number=0, then UTM will return information on as many objects as will fit in the data area,
or less if there are no more objects of the object type available.

In the case of obj _type=KC_CLUSTER_NODE, please note the following:
If you specify an obj_number > 32, openUTM sets obj_number to 32.

® For subopcodel=KC_APPLICATION_PAR you must always specify obj number=0.

id_lth

The data you must specify in the id_Ith is dependent on the data contained in the subopcodel field:

287



openUTM V7.0. Administering Applications. User Guide.

® For subopcodel=KC_NAME, KC_NAME_NEXT, KC_ATTRIBUTES and KC_ATTRIBUTES_NEXT:
In id_Ith you must specify the length of the data structure you have passed to UTM in the identification area.

®* For subopcodel=KC_APPLICATION_PAR you must always set id_/th=0. The contents of the identification
area are irrelevant.

select_Ith

In select_Ith you must specify a value ! =0 if you want to pass selection criteria to UTM in the selection area.

For subopcode1=KC_APPLICATION_PAR you may not pass any selection criteria to UTM and must therefore
always set select Ith=0 in this case.

For subopcodel= KC_ATTRIBUTES or KC_ATTRIBUTES_NEXT and obj_type= KC_OSI_ASSOCIATION,
you must pass the data structure kc_osi_association_str with the name of an OSI-LPAP partner in the
selection area. In this case, the length of the data structure kc_osi_association_str is to be specified in
select_Ith.

For obj_type=KC_SUBNET and KC_HTTP_DESCRIPTOR, you must always specify select Ith=0.

data_lth

In data_Ith you must specify the length of the data area that you are providing to UTM for returning the
information queried.

® For subopcodel= KC_NAME, KC_NAME_NEXT, KC_ATTRIBUTES and KC_ATTRIBUTES_NEXT, the
following is true:

If you specify obj_number! =0, then the data area provided for returning the number of objects requested
must be large enough. For obj_number=n (see .) you must specify in data _[/th a minimum length of (n*
maximum length of the object name) or (n * length of the data structure of the object type in obj_type).

® For subopcodel=KC_APPLICATION_PAR, you must specify at least the length of the data structure of the
parameter type set in obj_type.

Identification area

The data you must specify in the identification area is dependent on the data contained in the subopcodel field
and the value of obj_type:

* For subopcode1=KC_NAME,KC_NAME_NEXT, KC_ATTRIBUTES and KC_ATTRIBUTES_NEXT:

You must pass a string to UTM in the identification area. The string specifies the object at which UTM is to
begin outputting information.

You can also pass binary zero or a string containing non-printable characters in the identification area. UTM
takes the string as it is and searches for the next highest (for subopcode2=KC_ASCENDING) or next lowest
(for subopcode2= KC_DESCENDING) object name.

You place a kc_id_area union (see section "ldentification area" in chapter "Description of the data areas to
be supplied") in the identification area. The string must be passed in the union element that belongs to the
object type specified in obj_type.
® For obj type=KC_PROGRAM and KC_LOAD_MODULE:
you pass the string in the element kc_name32. The name must be left-justified, and the rest of the field
must either be padded with blanks or end with the null byte (\0).
The string specified does not have to be an object name.

288



openUTM V7.0. Administering Applications. User Guide.

® For obj_type=KC_CON and KC_PTERM:
you must pass the string in the union element kc_long_triple_str. A name triplet (object name, computer
name, name of the local application) can be specified in kc_long_triple_str. The object name and the
name of the local application can be up to 8 characters long, the computer name up to 64 characters.
You can specify any string for each of the three names. The name does not need to exist. It is sufficient
just to specify a string for the object name, you do not need to specify the computer name and the name
of the local application. You may set these to binary zero.
When evaluating the strings in the identification area, UTM interprets the three names as a 80 character
long object name. The starting point of the output is determined accordingly.

® For obj_type=KC_MUX:
you must pass the string in the union element kc_triple_str. A name triplet (object name, computer name,
name of the local application) can be specified in kc_triple_str. Each of the names can be up to 8
characters long.
You can specify any string for each of the three names. The name does not need to exist. It is sufficient
just to specify a string for the object name, you do not need to specify the computer name and the name
of the local application. You may set these to binary zero.
When evaluating the strings in the identification area, UTM interprets the three names as a 24 character
long object name. The starting point of the output is determined accordingly.

® With obj_type=KC_DB_INFO
you can specify a number to identify a database in the union element kc_name2. This number
represents the databases in the order in which they were generated in the KDCDEF run. If you specify a
different string, the call is rejected.

® For obj _type=KC_SFUNC
you can specify a valid function key in the union element kc_named4. If you use a different string, the call
will be rejected.
The following options are valid:
on BS2000 systems: F1 to F20 and K1 to K14
on Unix, Linux and Windows systems: F1 to F20
If you do not make an entry in the identification area, UTM will return data on all function keys.
If you enter a valid function key, UTM will start output with that function key

®* For obj_type = KC_TACCLASS:
you can specify the values of an existing TAC class, a LOW VALUE or a HIGH VALUE in the union
element kc_name?2. If you specify any other string, the call will be rejected.

® For obj type = KC_OSI_ASSOCIATION
you must pass the string in the union element kc_name8.
For subopcode1=KC_NAME and KC_NAME_NEXT,
UTM interprets the string as the name of an OSI TP association.
For subopcodel= KC_ATTRIBUTES and KC_ATTRIBUTES_NEXT,
UTM interprets the string as an association ID. See the description in point obj_type.

® For obj type=KC_CLUSTER_NODE
you must pass LOW VALUE, HIGH VALUE or empty fields in the identification area. Otherwise the call is
rejected. No specific node is addressed. Choose a value for data_Ith that is large enough for information
to be passed to all the nodes.
For all other object types, the string must be passed in the union element kc_name8. The string must be
stored left-justified and the rest of the field is to be padded with blanks.
The string specified does not have to be an object name.

289



openUTM V7.0. Administering Applications. User Guide.

* If the identification area is used for obj_type=KC_SUBNET, the name specified there must be an object
name, i.e. it must correspond to a generated subnet name (mapped_name) as the information on the
subnets is not sorted in alphabetical order when it is stored but in the order specified in the generation. If
no generated mapped_name is specified, KC_MC_NO_ELT is returned as the return code with subcode
KC_SC_NOT_EXISTENT.

® If the identification area is used for obj_type=KC_HTTP_DESCRIPTOR, the name specified there must
be an object name, i.e. it must correspond to a generated HTTP descriptor name as the information on
the HTTP descriptors is not sorted in alphabetical order but in the order they are evaluated when an
HTTP request is received. If no generated name is specified, KC_MC_NO_ELT is returned as the return
code with subcode KC_SC_NOT_EXISTENT.

® For subopcodel=KC_APPLICATION_PAR the null pointer should be passed for the identification area.

Selection area

In the selection area, if select Ith! =0, then you must pass the data structure of the object type to UTM
together with the selection criteria. The rest of the fields in the data structure must be set to binary zero.
The data structures are described in section "Data structures for describing object properties". The name of
each data structure is created as follows: data structure "typ st r " belongs to the object type "TYP", so, for
example, the data structure kc_lterm_str belongs to KC_LTERM.

If select_Ith = 0, the selection area, and therefore the selection criteria, are not evaluated.

A selection criterion is an object property. If selection criteria are specified, then UTM executes a selective
search of the objects. Only information on the objects meeting the selection criteria is returned. The selection
criteria you may specify for each object type is listed in the following text.

Possible selection criteria

® obj type=KC_CON: connections to LU6.1 partner applications

In the selection area you pass the data structure kc_con_str with the selection criteria. The following data
may be specified:

Field name Meaning
connect_mode="Y' UTM returns information on LU6.1 connections currently open.

pronam_long UTM returns information on LU6.1 connections to partner applications that are
running on a certain computer. You specify the name of the computer in
pronam_long.

delete delete="Y"
UTM returns information on LU6.1 connections that were deleted from the
configuration.
delete="N":
UTM returns information on LU6.1 connections that were not deleted from the
configuration.

You can also specify multiple selection criteria together, meaning you can specify multiple fields at the
same time.

® obj type=KC_LPAP: LPAP partner

290



openUTM V7.0. Administering Applications. User Guide.

In the selection area, you pass the data structure kc_Ipap_str with the selection criteria. The following
specifications are permitted:

Field name | Meaning

master master contains the name of a master LPAP in an LPAP bundle.
UTM returns information on the slave LPAPs in this LPAP bundle.

291



openUTM V7.0. Administering Applications. User Guide.

® obj type=KC_LSES: sessions to LU6.1 partner applications

In the selection area you pass the data structure kc_Ises_str with the selection criteria. The following data
may be specified:

Field name Meaning

connect_mode="Y" UTM returns information on sessions for which a transport connection is currently
established.

Ipap UTM returns information on sessions that are assigned to a certain LU6.1 partner
application. You specify the name of the LPAP partner assigned to this partner
application in Ipap.

delete delete="Y"
UTM returns information on sessions that were deleted from the configuration.
delete='N":
UTM returns information on sessions that were not deleted from the configuration.

You can also specify multiple selection criteria, meaning you can specify multiple fields at the same time.
® obj type=KC_LTERM: LTERM partner

In the selection area, you pass the data structure kc_lterm_str with the selection criteria. The following
specifications are permitted:

Field name Meaning

master master contains the name of a master LTERM in an LTERM bundle:
UTM returns information on the slave LTERMs of the LTERM bundle for the specified
master LTERM.
master contains the name of a primary LTERM in an LTERM group:
UTM returns information on the group LTERMSs of the LTERM group for the specified
primary LTERM.

delete delete="Y"
UTM returns information on LTERMSs that were deleted from the configuration.
delete="N":
UTM returns information on LTERMs that were not deleted from the configuration.
You can also specify both selection criteria, meaning you can specify both fields at the same time.
® obj type=KC_MUX: multiplex connections (only on BS2000 systems)

In the selection area you pass the data structure kc_mux_str with the selection criteria. The following data
may be specified:

Field name Meaning

connect_mode="Y' UTM returns information on multiplex connections for which a transport connection
to the message router is currently established.

pronam UTM returns information on multiplex connections that are defined for message
routers on a certain computer. You specify the name of the computer in pronam.

292



openUTM V7.0. Administering Applications. User Guide.

You can also specify both selection criteria, meaning you can specify both fields at the same time.
® obj type=KC_OSI_ASSOCIATION: associations to OSI TP partner applications
For subopcodel= KC_NAME and KC_NAME_NEXT, no selection criterion may be specified.

For subopcodel= KC_ATTRIBUTES and KC_ATTRIBUTES_NEXT, you must pass the following selection
criterion to UTM (see the description under point obj_type). To do this, pass the data structure
kc_osi_association_strin the selection area with the following data:

Field name | Meaning

osi_lpap

UTM returns information on associations that are assigned to a certain OSI TP partner
application. You specify the name of the OSI-LPAP partner assigned to this partner
application in osi_Ipap.

® obj type=KC_OSI_LPAP: Properties of OSI TP partner applications

In the selection area, you pass the data structure kc_osi_Ipap_str with the selection criteria. The following
specifications are permitted:

Field name | Meaning

master

master contains the name of a master LPAP in an OSI-LPAP bundle:
UTM returns information on the slave LPAPs of the LPAP bundle for the specified master
LPAP.

* obj type=KC_PROGRAM: program units

In the selection area you pass the data structure kc_program_str with the selection criteria. The following
data may be specified:

Field name

Meaning

load_module = UTM returns information on program units and VORGANG exits that are linked into a

delete

certain load module / shared object/DLL. You specify the name of the load module /
shared object /DLL in Joad_module.

delete="Y":UTM returns information on program units that have been deleted from the
configuration.

delete='N'": UTM returns information on program units that have not been deleted from the
configuration.

You can also specify both selection criteria, meaning you can specify both fields at the same time.

293



openUTM V7.0. Administering Applications. User Guide.

® obj type=KC_PTERM: clients and printers

In the selection area you pass the data structure kc_pterm_str with the selection criteria. The following data

may be specified:
Field name

Iterm

connect_mode="Y"

pronam_long

delete

Meaning

Is only useful for printers:

UTM is to return information on the printers in a printer pool. The printers in a printer
pool are assigned to the same LTERM partner.

The name of the LTERM partner is to be specified in lterm.

UTM returns information on clients/printers that are currently connected to the
application.

UTM returns information on clients and printers running on a certain computer or
which are connected to this computer. You specify the name of the computer in
pronam_long.

delete="Y":UTM returns information on clients and printers that have been deleted
from the configuration.

delete="'N': UTM returns information on clients and printers that have not been
deleted from the configuration.

You may only specify the selection criterion /term alone. All other fields of the data structure must then be

set to binary zero.

Either connect_mode and pronam_long or pronam_long and delete can be specified together.
connect_mode and delete cannot be set at the same time.

* obj type=KC_USER, KC_USER_DYN1, KC_USER_DYN2, KC_USER_FIX:

user IDs

In the selection area you pass the data structure kc_user_stror kc_user_dynl_str with the selection criteria.
The following data may be specified:

Field name

connect_mode="Y"

delete

Meaning

UTM returns information on user IDs with which a user/client is currently signed on
to the application.

delete="Y":

UTM returns information on user IDs that have been deleted from the configuration.
delete='N"

UTM returns information on user IDs that have not been deleted from the
configuration.

The selection criteria must not be specified together, i.e. only one field may be set per call.

294



openUTM V7.0. Administering Applications. User Guide.

® obj type=KC_LTAC or KC_TAC: transaction codes.

In the selection area you pass the data structure kc_ltac (KC_LTAC) or kc_tac_str (KC_TAC) with the
selection criteria. The following data may be specified:

Field name | Meaning

delete delete="Y":UTM returns information on transaction codes that have been deleted from the

configuration.
delete='N'": UTM returns information on transaction codes that have not been deleted from

the configuration.

retcode

in the retcode field UTM outputs the return codes of the call. In addition to the return codes listed in section
"Return codes", the following return codes can also be returned.

Main code = KC_MC_OK
The call was processed without error.

Subcodes:

KC_SC_SAME

subopcodel = KC_NAME or KC_ATTRIBUTES was set, and an object exists that corresponds to the
object name specified in the identification area.
This object is passed in the data area as the first object.

KC_SC_NEXT

subopcodel = KC_NAME_NEXT or KC_ATTRIBUTES_NEXT was set.

Or subopcodel = KC_NAME or KC_ATTRIBUTES was set but no object exists that corresponds to the
object name specified in the identification area. The next highest or next lowest object (depending on
subopcode?) is passed in the data area as the first object.

295



openUTM V7.0. Administering Applications. User Guide.

Main code = KC_MC_LAST ELT

The call was processed without error, but fewer objects were read than were queried, and the last object
has already been reached.

Subcodes:

KC_SC_SAME

subopcodel = KC_NAME or KC_ATTRIBUTES was specified. An object corresponding to the object name
specified in the identification area exists.

UTM has written object names or properties to the data area, but for fewer objects than were requested in
obj_number or (for obj_number = 0) for fewer objects than could fit in the space provided in the data area
passed. The last or first object, respectively, was reached beforehand.

KC_SC_NEXT

subopcodel = KC_NAME_NEXT or KC_ATTRIBUTES_ NEXT was set.

Or subopcodel = KC_NAME or KC_ATTRIBUTES was set but no object exists that corresponds to the
object name specified in the identification area. The next highest or next lowest object (depending on
subopcode?) is passed in the data area as the first object.

UTM has written object names or properties into the data area, but for fewer objects than were requested in
obj_number or (for obj_number = Q) for fewer objects than could fit in the space provided in the data area
passed. The last or first object, respectively, was reached beforehand.

Main code = KC_MC_NO_ELT

subopcodel = KC_NAME, KC_NAME_NEXT, KC_ATTRIBUTES or KC_ATTRI-BUTES_NEXT was
specified. There is no element or no next element corresponding to the object name specified.

Subcode:
KC_SC _NO_INFO

KC_SC_NOT_EXISTENT (only on Unix, Linux and Windows systems)

The object name specified in the identification area was not found in obj_type.

Main code = KC_MC_MEMORY_INSUFF

UTM cannot execute the function because that would require more internal storage space than UTM has
available.

Subcode:

KC_SC_NO_INFO

296



openUTM V7.0. Administering Applications. User Guide.

Main code = KC_MC_REJECTED
The call was rejected by UTM because no object of the specified type exists.

Subcode:

KC_SC_NOT_GEN

If obj_type=KC_DB_INFO, then no database was generated during the KDCDEF generation.

If obj_type=KC_GSSB, then no global secondary storage areas exist at the present time.

If obj_type = KC_MESSAGE_MODULE, then the application was generated without the KDCDEF control
statement MESSAGE.

If obj_type = KC_UTMD_PAR, then the application was generated without the KDCDEF control statement
UTMD.

If obj_type =KC_TACCLASS, then no TAC class was created during the KDCDEF generation.

If obj_type=KC_SUBNET, then no IP subnet was generated.

KC_SC_NO_F_KEYS_GENERATED

You specified obj_type=KC_SFUNC, but no function keys were generated for the application.
(See the openUTM manual “Generating Applications”)

KC_SC_CCFG_FILE_READ_ERROR

Only in UTM cluster applications:
You have specified obj_type=KC_CLUSTER_PAR or KC_CLUSTER_NODE in order to obtain information
about a UTM cluster application. An error occurred while reading the cluster configuration file.

KC_SC_CCFG_INVAL_NODE_BUFF_LTH

Only in UTM cluster applications:
Internal UTM error.
Please contact system support.

KC_SC_CCFG_FILE_LOCK_ERROR

Only in UTM cluster applications:
The cluster configuration file is locked.

KC_SC_CCFG_RT_CODE_NOT_OK

Only in UTM cluster applications:
Internal UTM error.
Please contact system support.

KC_SC_CUSF_USER_NOT_FOUND

Only in UTM cluster applications:
Specified user does not exist.

297



openUTM V7.0. Administering Applications. User Guide.

KC_SC_CUSF_RT_CODE_NOT_OK

Only in UTM cluster applications:
Internal UTM error.
Please contact system support.

Main code = KC_MC_NOT_EXISTENT
The object specified does not exist.

Subcode:

KC_SC_NO_INFO

obj_type=KC_DB_INFO, KC_SFUNC or KC_TACCLASS:
no valid database ID, function key or TAC class was specified in the identification area.

Main code = KC_MC_SEL_INVALID
Invalid data was specified in the selection area.

Subcode:

KC_SC_NO_INFO

number_ret

After a call with subopcode1=KC_NAME, KC_NAME_NEXT, KC_ATTRIBUTES or KC_ATTRIBUTES_NEXT,
number_ret contains the number of objects for which UTM has returned information in the data area.

If no more objects corresponding to the string specified in the identification area exist, then UTM returns
number_ret=0 and data_Ith_ret=0 and sets the corresponding return code.

After a call with subopcode1=KC_APPLICATION_PAR, UTM always returns number_ret=0.

data_Ith_ret

In data_Ith_ret UTM returns the length of the data that UTM has stored in the data area.
The length of the data returned is:
® for subopcodel=KC_NAME, KC_NAME_NEXT:

number of objects * length of the name field belonging to the object type

® for subopcodel= KC_ATTRIBUTES or KC_ATTRIBUTES_NEXT:
number of objects * length of the data structure of the object type

® for subopcodel=KC_APPLICATION_PAR:
length of the data structure of the parameter type

If no object or no more objects corresponding to the string specified in the identification area exist, then UTM
returns data_Ith_ret=0 and sets the corresponding return code.

298



openUTM V7.0. Administering Applications. User Guide.

Data area
in the data area UTM returns the information queried.

® subopcodel=KC_NAME, KC_NAME_NEXT:

UTM returns an array of object names. The object names are ordered alphabetically in the array in
ascending (for subopcode2=KC_ASCENDING) or descending (for subopcode2=KC_DESCENDING) order.

The length of the individual names corresponds to the length of the name field in the data structure of the
object type.

For obj_type=KC_CON and KC_PTERM, UTM returns an array of name structures with the following format:

struct kc_long_triple_str

char p_nane[ 8];
char pronani 64];
char bcamappl [ 8] ;

For obj_type=KC_MUX, UTM returns an array of name structures with the following format:

struct kc_triple_str

char p_nane[ 8];
char pronani8];
char bcamappl [ 8] ;

The three fields of the data structure contain the following for each of the objects:
p_name
object name, i.e. the name of the connection, client, printer or multiplex connection
pronam
Name of the computer on which the object is located
bcamappl
Name of the local application via which the connection to this object has been established.

For subopcode1=KC_NAME_NEXT the name array always begins with the object name that is the next
highest or next lowest alphabetically, depending on the value of subopcode2, with respect to the string
specified in the identification area.

There are two cases for subopcode1=KC_NAME:

If an object name exists that corresponds to the string you have specified in the identification area, then the
name array begins with this object name. UTM returns the KC_SC_SAME return subcode.

If the string specified in the identification area does not correspond to an object name, then, just as with
subopcode1=KC_NAME_NEXT, the name array begins with the object name that is the next highest or next
lowest alphabetically, depending on the value of subopcode2, with respect to the string specified in the
identification area. UTM returns the KC_SC_NEXT return subcode.

299



openUTM V7.0. Administering Applications. User Guide.

® subopcodel= KC_ATTRIBUTES or KC_ATTRIBUTES_NEXT:

UTM places an array of data structures of the object type in the data area. Each data structure contains the
properties of an object. The data structures are placed one after the other and are put in ascending or
descending alphabetical order according to the object names, depending on the value of subopcode?2.

The data structures are described in section "Data structures for describing object properties”. The name of
each data structure is created as follows: the data structure "typ_str" belongs to the object type "TYP", so,
for example, the data structure kc_Ilterm_str belongs to KC_LTERM.

In the data structures, the fields that were not specified when the object was added to the configuration
contain the default values, blanks or '0'. Fields only relevant to other operating systems are set to binary
zero.

The object with which the array begins depends on the value of subopcodel and on the name specified in
the identification area.

For subopcodel=KC_ATTRIBUTES_NEXT the array begins with the object that is the next highest or next
lowest alphabetically, depending on the value of subopcode2, with respect to the string specified in the
identification area.

There are two cases for subopcodel=ATTRIBUTES:

If an object name exists that corresponds to the string you have specified in the identification area, then the
name array begins with this object name. UTM returns the KC_SC_SAME return subcode.

If the string specified in the identification area does not correspond to an object name, then, just as with
subopcode1=KC_ATTRIBUTES_NEXT, the name array begins with the object name that is the next highest
or next lowest alphabetically, depending on the value of subopcode2, with respect to the string specified in
the identification area. UTM returns the KC_SC_NEXT return subcode.

® subopcodel= KC_APPLICATION_PAR:

UTM places the data structure of the parameter type specified in obj_type in the data area. UTM returns the
application parameters requested in the data structure.

The data structures are described in section "Data structures used to describe the application parameters".
The name of each data structure is created as follows: the data structure "typ _st r " belongs to the object
type "TYP", so, for example, the data structure kc_max_par_str belongs to KC_UKC_MAX_PAR.
Example of a successive query with KC_ATTRIBUTES_NEXT
Task

All information on user IDs whose names begin with "S" is to be read. It is assumed in the following that such user
IDs exist.

Solution

300



openUTM V7.0. Administering Applications. User Guide.

First KC GET_OBJECT call:
(It is assumed that n objects are found by this call, i.e. that n_ret=n.)

Data to be entered in the parameter area:

version=KC_ADMI_VERSION 1
retcode=KC_RC_NIL
version_data=KC_VERSION_DATA 11
opcode=KC_GET_OBJECT
subopcodel=KC_ATTRIBUTES
subopcode2=KC_ASCENDING
obj_type=KC_USER

obj_number=n

id_Ith=8

select_Ith=0

data_lth=n * sizeof(struct kc_user_str)

Data to be entered in the identification area:

'Sbbbbbbb' or 'S\0' (b = blank, \0 = null byte in C)

Data to be entered in the selection area:

none

Data to be entered in the data area:

none
Data returned by UTM:

Data returned in the parameter area:

retcode= KC_MC_OK with subcode KC_SC_SAME or KC_SC_NEXT
number_ret=n_ret

data_Ith_ret=n_ret*sizeof(struct kc_user_str)

Data returned in the data area:

n_ret * data structure kc_user_str with the properties of the user IDs

If the last user ID returned still begins with "S", then another call must be made.

301



openUTM V7.0. Administering Applications. User Guide.

Second KC_GET_OBJECT call:

(Data to be entered which differs from that in the first call is underlined)

Data to be entered in the parameter area:

version=KC_ADMI_VERSION 1
retcode=KC_RC_NIL
version_data=KC_VERSION_DATA 11
opcode=KC_GET_OBJECT
subopcodel=KC ATTRIBUTES NEXT
subopcode2=KC_ASCENDING
obj_type=KC_USER

obj_number=n

id_Ith=8

select_Ith=0

data_lth=n * sizeof(struct kc_user_str)

Data to be entered in the identification area:

Name of the last user ID returned by UTM in the first call

Data to be entered in the selection area:

none
Data to be entered in the data area:
none

Data returned by UTM:

Data returned in the parameter area:

retcode=KC_MC_OK with subcode KC_SC_NEXT 1
number_ret=n_ret (<= n)
data_Ith_ret=n_ret * sizeof(struct kc_user_str)

Data returned in the data area:

n_ret * data structure kc_user_str with the data of the user IDs

1 The return codes KC_MC_LAST_ELT (if less than n objects were found) and KC_MC_NO_ELT (if no further object was found) can also

occur.

The second call is repeated until all user IDs beginning with "S" have been read. Whether or not all user IDs
beginning with "S" have been read can be determined by evaluating the return data. This means that if the name of
the last user ID returned by UTM begins with "S", then the call must be repeated again. If it does not begin with "S"
or if number_ret! = obj_number in the last call, then all user IDs beginning with "S" have been read.

302



openUTM V7.0. Administering Applications. User Guide.

11.2.8 KC_LOCK_MGMT - Release locks in UTM cluster applications

On Unix, Linux and Windows Systems only.

You can use KC_LOCK_MGMT to:

® Sign off all users or an individual user who arel/is signed on at an abnormally terminated node application
(KDCOFF). Any service data for this user that is valid globally in the cluster is lost when you do this.

For this function, you use the sub-opcodes KC_SIGNOFF_ALL and KC_SIGNOFF_SINGLE.

® For all users or an individual user who have/has a service bound to a terminated node application, you can mark
this service for abnormal termination and this way make it possible for the users or user to sign on again at
another node application. The bound service is terminated abnormally the next time the node application to

which it is bound is started.

For this function, you use the sub-opcodes KC_ABORT_BOUND_SERVICE,
KC_ABORT_ALL_BOUND_SERVICES and KC_ABORT_PTC_SERVICE.

® Release a cluster user file lock set on an abnormally terminated KDCDEF run (subopcode KC_UNLOCK_USF).

Period of validity / transaction management /clusters

The call permanently modifies the cluster user file. The modification takes effect immediately and cannot be undone
by rolling back the transaction.

This function is only available for UTM cluster applications.

Field name
version
retcode
version_data
opcode

subopcodel

id_Ith
select_Ith

data_lth

Parameter settings
Parameter area
Contents
KC_ADMI_VERSION_1
KC_RC_NIL
KC_VERSION_DATA_11
KC_LOCK_MGMT

KC_ABORT_ALL_BOUND_SERVICES / KC_ABORT_BOUND_SERVICE /
KC_ABORT_PTC_SERVICE / KC_SIGNOFF_ALL / KC_SIGNOFF_SINGLE /
KC_UNLOCK_USF

0
0
Length of the data structure / 0

Identification area

303



openUTM V7.0. Administering Applications. User Guide.

Selection area

Data area

Data structure / O

KDCADMI-Aufruf

KDCADMI (&parameter_area, NULL, NULL, &data_area)

Data returned by UTM
Parameter area
Field name Content

retcode Return codes

subopcodel
In subopcodel, you specify the action that openUTM is to perform. You can specify the following subcodes:
KC_ABORT_ALL_BOUND_SERVICES

Marks all the services that are bound to a terminated node application for abnormal termination. This
allows the corresponding users to sign on at other node applications (KDCSIGN). The bound
services are terminated abnormally the next time the node application to which they are bound is
started.

KC_ABORT_BOUND_SERVICE

Marks a user service that is bound to a terminated node application for abnormal termination. This
allows the user to sign on at another node application (KDCSIGN). The bound service is terminated
abnormally the next time the node application to which it is bound is started.

KC_ABORT_PTC_SERVICE

Marks a user service that is bound to a terminated node application and has a transaction in PTC
state for abnormal termination. This allows the user to sign on at another node application
(KDCSIGN). The bound service is terminated abnormally the next time the node application to which
it is bound is started.

KC_SIGNOFF_ALL

Sign off all users who are signed on at an abnormally terminated node application so that these
users can sign on at another node application. Service data that is valid throughout the cluster for
these users is lost.

KC_SIGNOFF_SINGLE

Sign off a single user who is signed on at an abnormally terminated node application so that this
user can sign on at another node application. Service data that is valid throughout the cluster for this
user is lost

304



openUTM V7.0. Administering Applications. User Guide.

KC_UNLOCK_USF

data_lth

Releases the lock in the cluster user file after a KDCDEF run was terminated abnormally. It is only
necessary to issue the call with subopcode KC_UNLOCK_USF if a KDCDEF has terminated
abnormally and a subsequent KDCDEF run outputs message K516 with error code 8.

In data_lIth, enter the length of the data structure in the data area or 0.

Data area

In the data area, you must specify the data structure kc_lock_mgmt_str for all subopcodel values excluding
KC_UNLOCK_USF:

The data structure kc_lock_mgmt_stris defined as follows:

struct kc_lock_mgmt_str

char ng_nane[ 8];

char ng_node[ 4] ;

The fields in the data structure have the following meanings:

mg_name

mg_node

Only for subopcodel=KC_SIGNOFF_SINGLE:
Name of the user who is to be signed off.

If subopcode1l=KC_ABORT_BOUND_SERVICE:
Name of the user with service which is bound to a terminated node application and is to be
marked for abnormal termination.

If subopcodel=KC_ABORT_PTC_SERVICE:
Name of the user with a service in the PTC state which is bound to a terminated node
application and is to be marked for abnormal termination.

Other values for subopcodel: irrelevant
You do not need to specify the node number. openUTM identifies this.

Only for subopcodel=KC_SIGNOFF_ALL:
Number of the node from which all the users are to be signed off.

If subopcodel=KC_ABORT_ALL BOUND_SERVICES:

Number of the node that was terminated. All the service bound to this node should be marked for
abnormal termination.

Other values for subopcodel: irrelevant

305



openUTM V7.0. Administering Applications. User Guide.

retcode

openUTM indicates the return code from the call in the retcode field. Alongside the return codes listed in
section "Return codes", the following return codes may also occur:

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_CUSF_TRANSIENT_ERROR (only on BS2000 systems)

For each subopcodel:
Temporary error when accessing the cluster user file; please repeat the call.

KC_SC_CUSF_RT_CODE_NOT_OK

For each subopcodel: Internal UTM error.
Please contact system support.

KC_SC_CUSF_INVALID_STATE

For subopcodel= KC_SIGNOFF_ALL/KC_ABORT_ALL_BOUND_SERVICES:

The specified node application has never been started or is currently running. The call can only be
executed in the node statuses FAIL or ABTERM.

For subopcodel= KC_SIGNOFF_SINGLE:

The node application at which the specified user is signed in is currently running.

If subopcodel= KC_ABORT_BOUND_SERVICE/KC_ABORT_PTC_SERVICE:

The node application to which the service of the specified user is bound is currently running.

KC_SC_CUSF_USER_HAS_NO_BND_SRV

For subopcodel=KC_ABORT_BOUND_SERVICE: The user has no bound service.

KC_SC_CUSF_USER_HAS_NO_PTC

For subopcode1=KC_ABORT_PTC_SERVICE: The user has no node-bound service with a transaction
in the PTC state.

KC_SC_CUSF_USER_HAS_PTC

For subopcode1l=KC_ABORT_BOUND_SERVICE: The user has a node-bound service with a
transaction in the PTC state.

KC_SC_CUSF_USER_NOT_FOUND

For subopcodel1=KC_SIGNOFF_SINGLE/KC_ABORT_BOUND_SERVICE
/KC_ABORT_PTC_SERVICE: The user was not found.

KC_SC_CUSF_USER_NOT_SIGNED

For subopcodel=KC_SIGNOFF_SINGLE: The user is not signed in at any node.

306



openUTM V7.0. Administering Applications. User Guide.

KC_SC_DATA_MISSING

mg_name is not binary zero and subopcode1=KC_SIGNOFF_ALL, KC_ABORT_BOUND_SERVICE or
KC_ABORT_ALL_BOUND_SERVICES.

KC_SC_NOT_NULL

mg_node is not binary zero and subopcodel1=KC_SIGNOFF_SINGLE,
KC_ABORT_BOUND_SERVICE or KC_ABORT_PTC_SERVICE.

307



openUTM V7.0. Administering Applications. User Guide.

11.2.9 KC_MODIFY_OBJECT - Modify object properties and application parameters

KC_MODIFY_OBJECT allows you to modify application parameters and object properties and perform other
operations on application objects. You can make the following modifications:

Actions for the application’s objects

® establish or shut down connections to clients, printers, partner applications
® jnitiate automatic connections to clients, printers, partner applications

® disable and enable clients, printers, partner applications, user IDs, including their queues, transaction codes and
TAC queues

* modify the assignment between client/printer and LTERM partner

* modify the password for a user ID

® change keys in key sets

® alter the timer for monitoring idle states during a session, or deactivate monitoring

® activate or deactivate the UTM BCAM trace for specific objects and users

® replace an application program’s load modules or shared objects / DLLs

® Exchange the master LTERMs of two LTERM bundles or add the LTERM to an LTERM group

® Specify that queued messages are to be stored in the dead letter queue (TAC queue KDCDLETQ)

®* mark load modules on BS2000 systems which are loaded in common memory pools for exchange with
KC_CHANGE_APPLICATION

* modify the maximum number of clients on BS2000 systems that can be connected concurrently to the application
through a multiplex connection

* modify the computer name and filebase name of a node application

* modify the database user ID and password

Actions for the application parameters

® change the application timers

® reset the statistics data

* modify maximum values for the application

® activate and deactivate diagnostic functions (e.g. BCAM trace)

® define the number of processes (TASKS) that are to run for the application

® set the maximum number of processes that asynchronous jobs or services with blocking function calls (e.qg.
KDCS call PGWT) can process concurrently.

* modify the timers for the reciprocal monitoring of the node applications

® in UTM cluster applications, reset the statistics values for the utilization of the cluster page pool

Passing new object properties and application parameter values

Data structures for passing new object properties or application parameters are available in the header file
kcadminc.h. Each object type and each parameter type has its own data structure. The name of the data structure
matches that of the object type/parameter type (in lowercase) with the suffix “_str (objecttyp_str, parametertyp_str).

308



openUTM V7.0. Administering Applications. User Guide.

The following description specifies the fields to which you must pass the new properties. You will find a complete
description of the data structures in section "Data structures used to pass information".

The following points should be noted when modifying object properties or application program parameters

When modifying object properties, you can only modify the properties of one object with one KC_MODIFY_OBJECT
call.

You must specify the full object name in the identification area so that UTM can unambiguously identify the object.
Object names cannot be modified.

When modifying application parameters, you can modify all parameters belonging to the same parameter type, i.e.
which are contained in a single data structure, within a single call.

The transactional modifications specified in a KC_MODIFY_OBJECT call are either made in their entirety or not at
all. This does not apply for changes which are not subject to transaction management.

Period of validity / transaction management / cluster

The time at which a modification takes effect and the period for which it is applicable depend on the type of
modification. The type of modification also determines whether or not it is subject to transaction management.

The following applies in a UTM cluster application (Unix, Linux and Windows systems):

The call can initiate actions which either have an effect either globally in the cluster or locally in the node. Actions
with a global effect apply to all the node applications in the UTM cluster application irrespective of whether they are
currently active or not. Actions with a local effect only apply to the node applications at which they are performed.
Depending on the object, all its parameters apply either globally or locally or have a mixed global/local effect. The
change may continue to apply beyond the current application run or may apply only to the current run. Modifications
which have an impact on the UTM configuration always apply globally to the cluster to ensure that the generation
remains consistent. Global validity is indicated by a "G" in the KC_MODIFY_OBJECT operation code column. If no
"G" is present in the ID then the effect in a UTM cluster application is local to the node.

A detailed description of the scope of validity of the individual parameters of each object can be found in the
description of the data structures.

The following types of modification may occur:
IR/GIR

The modification is not subject to transaction management. It takes effect immediately (Immediate), and
applies only to the current application/UTM cluster application run (Run). A RSET call issued in the same
transaction but after the modification rolls back the modification.

ID/GID

The modification is not subject to transaction management. It takes effect immediately (Immediate) and,
regardless of the generation version (UTM-S or UTM-F), it applies beyond the current application/UTM cluster
application run (Durable). A RSET call issued in the same transaction but after the modification rolls back the
modification.

PR/GPR

The modification is subject to transaction management. It takes effect after the end of transaction (PEND) and
it applies only to the current application/UTM cluster application run (Run). It can be rolled back with a RSET
call issued in the same transaction.

309



openUTM V7.0. Administering Applications. User Guide.

P/GP

The modification is subject to transaction management. It takes effect after the end of transaction (PEND) and
its duration depends on the generation version of the application. In the case of UTM-F, it only applies to the
current application run, with UTM-S, however, it goes beyond the current application run. It can be rolled back
within the same transaction with a RSET call.

PD/GPD

The modification is subject to transaction management. It takes effect after the end of transaction (PEND) and,
independent of the generation version, its effect goes beyond the current application/UTM cluster application
run (Durable). It can be rolled back within the same transaction with a RSET call.

AIGA

This generates an announcement (Announcement), which causes the desired modification (e.g. establishment
of a connection/disconnection or exchange of application program) . When the job is executed depends on the
load on the application. You can only tell whether the job was executed successfully or not in an information
query issued later (e.g. using KC_GET_OBJECT). The job cannot be rolled back.

Note on period of validity in UTM cluster applications (Unix, Linux and Windows systems):

* |f the modification cannot be generated then the administrative modification continues to apply even when a
node application is started with a new generation, but persists no later than the end of the UTM cluster
application run. The UTM cluster application run begins with the start of the first node application and terminates
with the end of the last node application.

® |f the modification can be generated, then the generation value and not the administratively modified value
applies when a node application is started with a new generation.

The description of the possible modifications under section "Data area” tells you to which modification type the
various modifications belong. The abbreviations listed above are used.

C You can also perform some of the modifications using the administration commands. The description
under section "Data area" identifies the commands concerned.

Data to be supplied

Function of the call Data to be entered in the
parameter areal identification = selection  data area
area area

Modification of object obj_type: Name of e Data structure of the object

properties object type object type with the new values of the
properties

Modification of obj_type: —_ e Data structure of the parameter

application parameters = parameter type type with the new parameter
values

1 The operation code KC_MODIFY_OBJECT must always be specified in the parameter area.

310



openUTM V7.0. Administering Applications. User Guide.

Parameter settings

Parameter area
Field name Contents
version KC_ADMI_VERSION_1
retcode KC_RC_NIL
version_data KC_VERSION_DATA 11
opcode KC_MODIFY_OBJECT
subopcodel | KC_NO_SUBOPCODE / KC_IMMEDIATE / KC_DELAY
obj_type Object type / parameter type

obj_number | 1/0

id_lIth Length of object name in identification area / 0
select_Ith 0
data_lth Length of data structure in data area

Identification area
Object name / —

Selection area

Data area

Data structure of object type or parameter type / —

KDCADMI call

KDCADMI (&parameter_area, &identification_area, NULL, &data_area) or
KDCADMI (&parameter_area, NULL, NULL, &data_area) or
KDCADMI (&parameter_area, NULL, NULL, NULL)

Data returned by UTM
Parameter area
Field name Content

retcode Return codes

311



openUTM V7.0. Administering Applications. User Guide.

subopcodel

With obj_type = KC_DB_INFO you must specify KC_IMMEDIATE in the subopcodel field if the change to the
database password is to take effect immediately. With KC_DELAY the change to the database password only
takes effect the next time the application is started. A change to the database user name only ever takes effect
the next time the application is started.

For all other values of obj_type you must specify KC_NO_SUBOPCODE in subopcodel.

obj_type

In the obj_type field you specify the type of object whose properties are to be modified or the type of
application parameters which are to be modified. The following modifications are permissible:

Object types

KC_CLUSTER_NODE

(only possible in a UTM cluster application)

Specify if you want to modify the computer names and/or filebase names of a node application.

You must, for example, specify KC_CLUSTER_NODE if you want to assign actual values for the computer
name of the node and the base name of the node application’s KDCFILE to a reserve node application (see
openUTM manual “Generating Applications” and openUTM manual “Using UTM Applications”).

KC_DB_INFO

Spe_cify_if you want to change the database password and/or the database user name for a XA database.
KC_KSET

Specify if you want to change keys in a key set.

KC_LOAD_MODULE

Specify if you want to replace load modules of a UTM application on BS2000 systems or shared objects

/DLLs of a UTM application on a Unix, Linux or a Windows system, i.e. if you want to load another version
of a load module/shared object/DLL.

KC_LPAP
Specify if you want to perform an operation for an LPAP partner of the application, i.e. if you want to modify
the logical properties of an LU6.1 partner application.

KC_LSES
Specify if you want to modify the properties of a session with an LU6.1 partner application.

KC_LTAC
Specify if you want to modify the local properties of a remote service, i.e. the properties of an LTAC.

KC_LTERM

Specify if you want to modify the properties of an LTERM patrtner.

KC_MUX (only on BS2000 systems)

Specify if you want to modify the properties of a multiplex connection.

KC_OSI_CON

Specify if you want to modify the properties of the connections to an OSI TP partner application.
KC_OSI_LPAP

Specify if you want to perform an operation for an OSI-LPAP partner, i.e. you want to modify the logical
properties of an OSI TP partner application.

KC_PTERM
Specify if you want to perform operations for terminals, printers, client applications or TS applications.

312



openUTM V7.0. Administering Applications. User Guide.

* KC_TAC

Specify if you want to modify the properties of a transaction code which is assigned to a local service or a
TAC queue.

KC_TACCLASS

Specify if you want to modify the maximum number of processes that can process jobs concurrently for a
certain TAC class.

KC_TPOOL

Specify if you want to modify the properties of the LTERM partner or the number of active LTERM partners
of an LTERM pool.

KC_USER

Specify if you want to modify the properties of a user ID or its queue.

Parameter types

KC_CLUSTER_CURR_PAR
Specify if you want to reset the statistics values of the cluster page pool in a UTM cluster application.

KC_CLUSTER_PAR
Specify if, for a UTM cluster application, you want to

* modify the parameters which control the way the individual node applications interact to check their
availability.

* modify the parameters which control node application accesses to the cluster configuration file and the
cluster administration journal.

KC_CURR_PAR

Specify if you want to reset application-specific statistical values.
KC_DIAG_AND_ACCOUNT_PAR

Specify if you want to activate or deactivate diagnostic functions or if you want to modify the UTM
accounting settings.

KC_MAX_PAR

Specify if you want to modify maximum values for applications (the MAX parameter) or, in UTM(BS2000)
applications, if you want to activate or deactivate the supply of data to openSM2.

KC_TASKS_PAR

Specify if you want to modify values relating to the number of application processes, i.e. the total number of
processes, maximum number of processes for executing asynchronous jobs etc.

KC_TIMER_PAR
Specify if you want to modify timer settings.

Point Data area describes which modifications are possible for each object type and parameter type.

obj_number

What you have to specify in the obj_number field is determined by what is entered in the obj_type field:

* specify obj_number=1 when you specify an object type in obj_type (exception: KC_TACCLASS, see below).

* gspecify obj_number=0 when you specify a parameter type in obj_type or if you want to reset values in

obj_type = KC_TACCLASS for all TAC classes.

313



openUTM V7.0. Administering Applications. User Guide.

id_Ith
What you have to specify in the id_Ith field is determined by what is specified in the obj_type field:
® if you specify an object type in obj_type, you must specify the length of the data structure in id_/th which you

pass to UTM in the identification area.
Exception: If obj_type = KC_DB_INFO and KC_TACCLASS you must specify id_Ith=2.

® if you specify a parameter type in obj_type, you must set id_I/th=0.

data_lth
In the data_lIth field you specify the length of the data structure which you are passing to UTM in the data area.
data_Ith=0 is not permitted.

Identification area

In the identification area you pass to UTM the name of the object whose properties you want to modify. This
means that:

® |f you specify an object type in obj_type, then, in the identification area, you must pass the complete name
of the object to UTM.

exceptions.
® If obj_type = KC_TACCLASS and you reset values for all TAC classes then you must enter binary 0.

® With obj _type = KC_DB_INFO you must specify a number to identify a database. This number
represents the databases in the order in which they were generated in the KDCDEF run and are returned
on the administration interface for KC_GET_OBJECT.

Section 7 specifies for each object type the information you must state in the identification area.

® If you specify a parameter type in obj_type, then you do not need to pass any identification area to UTM.
UTM ignores any information specified in the identification area.

Data area

In the data area you pass the data structure of the object or parameter type specified in obj_type. Each
individual object or parameter type has its own data structure, which you must assign via the data area. You
must pass the new property or parameter values to UTM in the data structure. You must complete the
remaining fields of the data structure, i.e. the property or parameter value fields, which you do not wish to or
cannot modify with binary zero before the call.

In openUTM on Unix or Linux systems, it is not always necessary to pass data in the data area for obj_type =
KC_LOAD_MODULE since, when transferring shared objects without any version specification, the name of
the shared object in the identification area is sufficient.

The following tables as of "obj_type=KC_CLUSTER_NODE" describe the modifications that are permitted as a
function of object type/parameter type. You will be able to see from the description which properties
/parameters you are able to modify and how the fields are to be completed. All the data structures are
described in section "Data structures used to pass information".

retcode

UTM writes the return code for the call to the retcode field, see "Return codes".

314



openUTM V7.0. Administering Applications. User Guide.

11.2.9.1 obj_type=KC_CLUSTER_NODE

The modifications relate to a node application in a UTM cluster application (Unix, Linux and Windows systems).

In the identification area, you must specify the internal number in the cluster (index of the entry for this node in
KC_GET_OBJECT for the object KC_CLUSTER_NODE) of the node application (field kc_nameZ2 in union

kc_id_area). In the data area, you must pass the data structure kc_cluster_node_str with the new property values.

You can only modify nodes that are not active.

Enter the following in the data structure kc_cluster_node_str.

Field name

hostname_long

filebase

virtual_host_long

Meaning

hostname_long contains the primary host name of the node on which this node application is
running.
hostname_long can be up to 64 characters in length.

Base name of the KDCFILE, the user log file and the system log file SYSLOG for the node
application. When the node application is started, the UTM system files are expected under
the name specified here. This file structure must be accessible from all node applications.
The name is passed in the element filebase of type kc_file_base:

struct kc_file_base
char length[2];
char fb_nane[42];

fb_name Base name
length Length of the base name

Please note the following when modifying the base name of a node application:

® The base names of the individual node applications of a UTM cluster application must
differ from each other.

® Specify the directory which contains the UTM system files for the node applications. The
name specified here must identify the same directory for all the nodes. It may be up to 27
characters in length.

In UTM cluster applications, this has the same function as the HOSTNAME parameter in the
MAX generation statement. You may not specify MAX HOSTNAME in UTM cluster
applications.

Specifying virtual _host _long permits the specification of the sender address for network
connections established from this node application.

Period of validity / transaction management: type GID ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

The effect is permanent. The information is stored in the cluster configuration file. The modification takes effect
immediately and cannot be undone by rolling back the transaction.

315



openUTM V7.0. Administering Applications. User Guide.

11.2.9.2 obj_type=KC_DB_INFO

The changes relate to a database.

In the identification area, you must specify a number to identify a database (kc_name?2 field for the union kc_id_area
). This number represents the databases in the order in which they were generated in the KDCDEF run and are
returned on the administration interface for KC_GET_OBJECT.

In the data area, you must transfer the data structure kc_db_info_str with the new property values.

Possible modification
For an XA database, you can change the database password and the database user name.

Specify the following in the data structure kc_db_info_str.

Field name Meaning

db_userid In the db_userid field, specify the new user name for this database system. The change takes
effect the next time the UTM application is started.

db_password | In the db_password field, specify the new password for this database system.
Depending on the entry in subcodel the change either takes effect immediately or the next time
the UTM application is started, see "KC_MODIFY_OBJECT - Modify object properties and
application parameters" (under point 'subopcodel’).

Period of validity / transaction management: Type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

316



openUTM V7.0. Administering Applications. User Guide.

11.2.9.3 obj_type=KC_KSET

The changes apply to the keys (key/access codes) of a key set.

In the identification area you must specify the name of the key set (kc_name8 field of the kc_id_area union). In the
data area you must pass the kc_kset _str data structure with the new property values.

Possible modification

With the exception of the MASTER key set, you can change one or more keys in a key set. The key set must exist
in the configuration of the application.

Specify the following in the kc_kset_str data structure:

Field name Meaning

keys[4000] A key or access code is an integer between 1 and the value KEYVALUE, which was specified
in the MAX statement at KDCDEF generation.
keys consist of 4000 field elements (keys[0] to keys[3999]). The contents of the field elements
are to be interpreted as follows:

keys[0]= '0": The key/access code 1 does not belong to this key set.
'1": The key/access code 1 belongs to this key set.

keys[n]= '0": The key/access code n+1 does not belong to this key set.
'1": The key/access code n+1 belongs to this key set.

If n+1 is greater than KEYVALUE, '1' must not be specified.

keys[3999]= '0": The key/access code 4000 does not belong to this key set.
'1": The key/access code 4000 belongs to this key set.

Period of validity/ transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

317



openUTM V7.0. Administering Applications. User Guide.

11.2.9.4 obj_type=KC_LOAD_MODULE

This operation relates to a load module (BS2000) or to a shared object or DLL (Unix, Linux and Windows systems).

You must pass the name of the load module/shared object to UTM in the identification area (field kc_name32 of
union kc_id_area).

You must pass the data structure kc_load_module_strin the data area.

Possible modification

You can exchange a load module, a shared object or a DLL in an application program or mark a load module in the
common memory pool (BS2000 systems) for exchange.

The specified load module/shared object/DLL must exist in the application configuration, i.e. it must have been
statically generated with KDCDEF.

318



openUTM V7.0. Administering Applications. User Guide.

Specify the following in the data structure kc_load_module_str.

Field name

version[24]

Meaning
Pass in version the version of the load module or shared object to be loaded.

The following only applies to BS2000 systems:

In UTM applications on BS2000 systems, you must always specify the version of the load
module to be loaded.

For load modules which are generated with LOAD-MODE=STARTUP the version number of the
old and the new load module may match.

For load modules which are generated with LOAD-MODE=ONCALL or which are located
completely or partially in a common memory pool the new version number must differ from the
old version number.

You can also specify *HIGHEST-EXISTING as the version. UTM then determines the highest
version available in the library and loads it. In this case, after a successful call, UTM returns the
highest element version determined in the version field.

If a load module is generated with LOAD-MODE=POOL, (POOL,STARTUP) or (POOL,
ONCALL) and with the version *HIGHEST-EXISITING, for version only *HIGHEST-EXISTING
can be specified. This kind of module can only be reloaded by an application exchange; the
highest available version is always loaded for a module generated in this way.

If the string *UPPER-LIMIT is specified in the version field, UTM replaces this value with "@” in
the output.

When the exchange is initiated, the library assigned to the load module during KDCDEF
generation (see also lib in kc_load_module_str, "kc_load_module_str - Load modules (BS2000
systems) or shared objects/DLLs (Unix, Linux and Windows systems)"), an element with the
name specified in the identification area and the version specified in version must all be
available. In UTM cluster applications, this applies for all node applications.

If this kind of load module is not available in the program library, the administration call is
rejected and the load module previously loaded remains loaded. In addition, the message K234
is output.

You cannot replace load modules that have the STATIC load mode (load_mode='S").
Neither can load modules with the STARTUP load mode (load _mode='U") and which contain
TCB entries be replaced.

In UTM applications on Unix, Linux or Windows systems, you must specify the version if the
shared object/DLL is generated with ONCALL load mode (load_mode='0").

In the case of shared objects/DLLs with STARTUP load mode (load_mode="U"), specifying the
version is optional if you are not using the version concept.

Period of validity/ transaction management: type GID ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

319



openUTM V7.0. Administering Applications. User Guide.

How exchange is made is determined by the load mode of the load module/shared object/DLL (field load_mode in
kc _load _module_str, see "kc_load _module_str - Load modules (BS2000 systems) or shared objects/DLLs (Unix,
Linux and Windows systems)"):

® Joad mode='U' (STARTUP)

The exchange is executed for each process before the next job is processed, without the current application
program being terminated. Several application processes can be replaced simultaneously. You cannot initiate
any further exchanges until program exchange has been completed by all application processes.

® Joad_mode="0O' (ONCALL)

The exchange is performed for each process only when a program unit from this load module/shared object/DLL
is next called in this process. Exchange can be performed simultaneously be several processes.

® Joad_mode='P', 'T', 'C' (POOL, POOL/STARTUP, POOL/ONCALL, only on BS2000 systems)

A KC_MODIFY_OBJECT call does not result in the exchange of the load module. Instead, the new version of
the load module is marked.

You must explicitly request the exchange of the load module by calling KC_CHANGE_APPLICATION or by
restarting the application. By using several KC_MODIFY_OBJECT calls, you can mark several load modules
which are then replaced when KC_CHANGE_APPLICATION is next invoked. If no
KC_CHANGE_APPLICATION call is made in the same application run, the marked versions are then replaced
when next the application is started.

If you issue a KC_GET_OBJECT call between the KC_MODIFY_OBJECT call and the
KC_CHANGE_APPLICATION call, then the marked version is already output as the current version, even if it
has not yet been loaded. The KC_MODIFY_OBJECT call ensures that the new version of the load module is
entered in the UTM tables as the current version and the currently loaded version is entered as the preceding
version. You can tell from the change necessary field whether a program exchange with
KC_CHANGE_APPLICATION is still necessary in order to load the specified version.

|:(::> KDCPROG ("KDCPROG - Replace load modules/shared objects/DLLs")

320



openUTM V7.0. Administering Applications. User Guide.

11.2.9.5 obj_type=KC_LPAP

These operations relate to an LPAP partner, i.e. to the logical properties of an LU6.1 partner application or to the
connection to this partner application.

You must specify the name of the LPAP partner in the identification area (field kc_name8 of the union kc_id_area).
This is the name that was defined during KDCDEF generation in the LPAP statement for the partner application. In
the data area you must pass the data structure kc_Ipap_str with the new values of the properties.

Possible modifications

® Disable an LPAP partner or release a disabled LPAP partner.
It is no longer possible to establish a connection to the partner application through a disabled LPAP partner.

Specify the following in the data structure kc_Ipap_str.

Field name Meaning

state='N' The LPAP partner is to be disabled. There must be no connection to the partner application in
existence at the time the partner is disabled. You must shut down existing connections before
disabling the partner with connect_mode='N' or quiet_connect="Y".
It is not possible to shut down the connection and disable the LPAP partner in a single call as
shutting down the connection may take a relatively long time.

state="Y" The LPAP partner is to be released, i.e. any existing lock is to be cancelled.

Period of validity/ transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

® Activate or deactivate automatic connection setup.

Automatic connection setup means that, whenever the application starts, UTM attempts to establish a connection
to the partner application.

If automatic connection is defined in both applications (the local application and the partner application), the
connection between the two of them is established automatically as soon as they are both available.

Specify the following in the data structure kc_Ipap_str.

Field name Meaning

auto_connect="Y" As of the next application start, UTM is to attempt to establish the connection to the
partner application automatically whenever it starts.

auto_connect="N' As of the next application start, the connection to the partner application is no
longer to be established automatically.

Period of validity/ transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

321



openUTM V7.0. Administering Applications. User Guide.

® Change the period of time for which UTM monitors the idle state of a session to the partner application; i.e. if the
session is not occupied by a job, UTM waits for this period of time before shutting down the connection.

Specify the following in the data structure kc_Ipap_str:

Field name Meaning

idletime_sec][5] Specify in idletime_sec the time in seconds for which UTM is to monitor the idle state of
a session with the partner application. idletime_sec = '0' means that the idle state is not
monitored.

Maximum value: ‘32767

Minimum value: '60',

In the case of values that are smaller than 60 but not equal to 0 then the value 60 is
used.

Period of validity/ transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

The timer modification only takes effect when the session next reaches the idle state, but not before the end of
the program unit run (PEND) in which the call is processed.

® Set up or shut down the connection to the partner application.
The connection can be shut down in two ways:

® The connection can be shut down immediately, i.e. UTM shuts down the connection irrespective of whether or
not jobs are currently being processed via the connection (connect_mode).

® You can set the connection to QUIET (quiet_connect). QUIET means that UTM shuts down the connection to
the partner application as soon as the sessions generated for the LPAP partner are no longer occupied by
jobs (dialog or asynchronous jobs).

However, no new dialog jobs are accepted for the LPAP partner. New asynchronous jobs are accepted, but
no longer sent; they remain in the output queue.

Field name Meaning

connect_mode="Y" UTM is to establish the connection to the partner application.

If the LPAP partner is disabled, it must be released in a separate transaction before
the connection is established (state="Y").

connect_mode='N’ The connection to the partner application is to be shut down immediately.
If the connection is shut down with connect_mode = 'N', it is possible that services
or conversations may be aborted abnormally. It is better to shut down the
connection with quiet_connect="Y".

Period of validity / transaction management: type A ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

Field name Meaning
quiet_connect="Y" The property QUIET is set for the connection to the partner application.

The property QUIET can be reversed with connect_mode="Y".

322



openUTM V7.0. Administering Applications. User Guide.

Period of validity / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

The fields connect_mode and quiet_connect cannot be set simultaneously within a call. Moreover, connect_mode
='Y' cannot be set simultaneously with state ='N'. If a KC_MODIFY call with connect_mode='N'is transmitted for
a connection which has been set to QUIET, the connection is then shut down immediately.

connect_mode='N' “overwrites” quiet_connect="Y".
® Activate or deactivate the BCAM trace for the connection to the partner application.

The precondition for LPAP-specific activation is that the BCAM trace is not generally activated, i.e. the trace is
either completely deactivated or is only explicitly activated for selected LTERM/LPAP partners or USERS.

The precondition for LPAP-specific deactivation is that the BCAM trace can be deactivated for a specific LPAP
partner only if the BCAM trace is not generally activated.

You will find information about the general activation and deactivation of the BCAM trace in the description of the
data structure kc_diag_and_account_par_str starting from chapter "kc_diag_and_account_par_str - Diagnostic
and accounting parameters".

Field name Meaning

bcam_trace="Y' The BCAM trace is specifically activated for this LPAP partner. Events are logged on
all transport connection to the partner application assigned to this LPAP partner.
When the trace function is activated, each application process creates its own trace
file.

bcam_trace='N' The BCAM trace is explicitly deactivated for this LPAP partner.
The trace files are closed only when the trace function is deactivated generally (object
type KC_DIAG_AND_ACCOUNT_PAR; “obj type=KC_ DIAG_AND_ ACCOUNT_PAR"

).
Period of validity / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

® Enables/disables the saving of asynchronous messages in the dead letter queue for this LPAP partner. This can
prevent the loss of messages for this LPAP partner in case of permanent errors.

Specify the following in the data structure kc_Ipap_str.

Field name Meaning

dead_letter_g="Y" Asynchronous messages to this LPAP partner which could not be sent because of a
permanent error are saved in the dead letter queue, as long as (in case of message
complexes) no negative confirmation job was defined.

dead_letter_g='N' Asynchronous messages to this LPAP partner which could not be sent because of a
permanent error are not saved in the dead letter queue but deleted.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

i If the LPAP is the master LPAP of a LPAP bundle then you can only modify the state field.

323



openUTM V7.0. Administering Applications. User Guide.

KDCLPAP ("KDCLPAP - Administer connections to (OSI-)LPAP partners") / KDCDIAG ("KDCDIAG -
Switch diagnostic aids on and off") for the BCAM trace

324



openUTM V7.0. Administering Applications. User Guide.

11.2.9.6 obj_type=KC_LSES

This modification relates to a session for distributed processing using the LU6.1 protocol.

In the identification area you must pass the session name (LSES name from KDCDEF generation) to UTM (
kc_name8in the union kc_id_area).

In the data area you must pass the data structure kc_Ises_str with the new values of the properties.

Possible modifications

® Establish a transport connection to the partner application for the session.

Field name Meaning

connect_mode="Y" A transport connection is to be established for the session.

con, If a specific transport connection is to be established for a session, then you must
pronam, unambiguously specify this transport connection in con, pronam, bcamappl. To do this,
bcamappl

you must specify the following information:

® in con, the name of the connection defined at creation or generation of the CON object
® in pronam the name of the computer on which the partner application is running

® in bcamapp the name of the local UTM application (BCAMAPPL name) through which
the connection to the partner application is established.

If you do not specify con, pronam, bcamappl, then UTM establishes any of the transport
connections configured dynamically or generated for the partner application with the
KDCDEF control statement CON.

A connection cannot be established if the associated LPAP partner is disabled (see
KC_LPAP state ='N'in chapter "obj_type=KC_LPAP").

If the LPAP partner is disabled, it must be released with an explicit
KC_MODIFY_OBJECT call before the connection is established (KC_LPAP with state
='Y".

Period of validity / transaction management: type A ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

325



openUTM V7.0. Administering Applications. User Guide.

® Shut down the transport connection that exists for the session.

You can instruct UTM to shut down the connection immediately or you can assign the property QUIET to the
connection. QUIET means that UTM shuts down the connection to the partner application as soon as the session
is no longer occupied by jobs (dialog or asynchronous jobs). No further new dialog jobs are accepted. New
asynchronous jobs are accepted, but no longer sent; they remain in the output queue.

Field name Meaning

connect_mode='N' The connection to the partner application that exists for the session is to be shut down
immediately.
Shutting down the connection with connect_mode = 'N' takes immediate effect, with the
result that services or conversations may be terminated abnormally. It is better to shut
down the connection with quiet_connect ="Y".

Period of validity / transaction management: type A ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

Field name Meaning

quiet_connect="Y' Set the property QUIET for the connection to the partner application.
The property QUIET is cancelled with connect_mode="Y".

Period of validity / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

No other field in the data structure can be occupied at the same time as connect_mode='N'. In particular,
connect_mode and quiet_connect cannot be set simultaneously.

If a connection which has previously been set to QUIET is now set to connect_mode='N', the connection is shut
down immediately. The property QUIET is overwritten by connect_ mode='N'.

|:(::> KDCLSES ("KDCLSES - Establish/shut down connections for LU6.1 sessions")

326



openUTM V7.0. Administering Applications. User Guide.

11.2.9.7 obj_type=KC_LTAC

This modification relates to an LTAC, i.e. to a local application transaction code for a service in a partner application.

You must pass the name of the LTAC to UTM in the identification area (kc_name8 in the union kc_id_area).

In the data area you must pass the data structure kc_ltac_str with the new values of the properties.

Possible modifications

® You can modify the maximum time which UTM will wait to access a session when requesting a remote service.
To do this, specify the following in kc_ltac_str.

Field name

accesswait_sec|[5]

Meaning

Specify in accesswait_sec the time in seconds which UTM at most is to wait after the
LTAC call to reserve a session or to establish an association.

When specifying the time, you should remember that the actual transport connection
to the partner application may still have to be established.

In asynchronous LTACSs, accesswait_sec! = 0 means that the job is always entered
in the local message queue for the partner application.

Wait time accesswait_sec=0 means:

In dialog LTACS, the local service that is calling the remote service is immediately
continued with the appropriate return code if no session or association to the partner
application is free or if the local application is the “contention loser” (see kc_Ipap_str
"kc_Ipap_str - Properties of LU6.1 partner applications”; field contwin).

In asynchronous LTACS, the asynchronous job is rejected with a return code at the
FPUT call if no connection to the partner application exists. If there is a connection to
the partner application, the message is entered in the message queue.

Minimum value: '0"; maximum value: '32767"

Period of validity / transaction management: type GPR ("KC_MODIFY_OBJECT - Modify object properties and

application parameters")

® You can modify the maximum time which UTM will wait for a reply from a remote service. To do this, specify the

following in kc_ltac_str.

Field name

replywait_sec[5]

Meaning

Specify in replywait_sec the maximum time in seconds which UTM is to wait for a reply
from the remote service.

By limiting the waiting time, it can be ensured that users do not have to wait indefinitely
at the terminal.

replywait_sec = '0' means: wait without a time limit.

Minimum value: '0'; maximum value: '32767"

Period of validity / transaction management: type GPR ("KC_MODIFY_OBJECT - Modify object properties and

application parameters")

327



openUTM V7.0. Administering Applications. User Guide.

® You can disable the LTAC or release it again. Disabling an LTAC means that no further jobs are accepted from
the local application for the remote service to which the LTAC is assigned. To do this, specify the following in

kc ltac_str.

Field name Meaning

state='N' The LTAC is to be disabled, UTM is to accept no further jobs for the associated remote
service.
state="Y" The (disabled) LTAC is to be released, i.e. the lock is to be cancelled.

Period of validity / transaction management: type GPR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

|:(::> KDCLTAC ("KDCLTAC - Change the properties of LTACs")

328



openUTM V7.0. Administering Applications. User Guide.

11.2.9.8 obj_type=KC_LTERM

This modification relates to an LTERM partner.

You must pass the name of the LTERM partner to UTM in the identification area (kc_name8 in the union kc_id_area

).

In the data area you must pass the data structure kc_lterm_str with the new values of the properties.

Possible modifications

® Disable the LTERM partner or release the disabled LTERM partner. LTERM partners in an LTERM pool cannot
be disabled or released with obj _type=KC_LTERM (see in this connection obj_type= KC_TPOOL,;
"obj_type=KC_TPOOL").

To disable or release an LTERM partner, specify the following in kc_Ilterm_str.

Field name Meaning
state='N' Disables the LTERM partner.

Disabling a dialog partner (usage_type='D") has the following effect:

® A client connection request is performed. The connection is disabled and UTM message
K027 is output. With the exception of KDCOFF, no client/user jobs are performed.

® Any existing connection is maintained. Any input with the exception of KDCOFF is
acknowledged with UTM message K027.
The lock does not take effect until a synchronization point (end of transaction) is reached
on this connection.
If the LTERM partner is disabled, KDCOFF BUT has the same effect as KDCOFF.

If the LTERM partner of a printer is disabled, the print jobs are retained in the message
queue. Print jobs initiated after a disable operation are not rejected; they are entered in the
message queue.

state="Y" Releases the LTERM partner, i.e. cancels a lock.

Period of validity / transaction management: Type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

329



openUTM V7.0. Administering Applications. User Guide.

® Set up or shut down the connection to the client or printer assigned to this LTERM partner.

Field name Meaning

connect_mode="Y" The connection to the client/printer is to be set up.
connect_mode="Y" is not permitted if the LTERM partner you have specified in the
identification area belongs to an LTERM pool or is assigned to a UPIC client.

connect_mode='N' The connection to the client/printer is to be shut down immediately.
A connection shutdown initiated with connect_mode = 'N' takes immediate effect,
with the result that services may be terminated abnormally (PEND ER).
Using connect_mode="N', you can also shut down the connection to a client that is
connected to the application via an LTERM pool, i.e. you can also specify in the
identification area the name of an LTERM partner that belongs to an LTERM pool.

Period of validity / transaction management: type A ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

¢ Only on BS2000 systems:
Assign a new start format to the LTERM partner or delete the start format of the LTERM partners.

You can assign a start format to each LTERM partner that has been configured for connecting terminals. In order
to modify the start format, you must always specify the format name and the format attribute of the new start
format.

A precondition for allocation of a start format is that a formatting system must have been generated (KDCDEF
statement FORMSYS). If the start format is a #format, then a signon service must also have been generated.

Field name Meaning
format_attr Format identifier for the new start format:

‘A’ | for the format attribute ATTR. The format name at the KDCS program interface is
+format_name.

'‘N' | for the format attribute NOATTR. The format name at the KDCS program
interface is *format_name.

‘E' = for the format attribute EXTEND. The format name at the KDCS program
interface is #format_name.

The meanings of the format attributes are described in section "format_attr,
format_name (only on BS2000 systems)" in chapter "kc_lterm_str - LTERM partners".

format_name[7] Name of the start format. The name may be up to 7 characters long and may contain
only alphanumeric characters.

To delete the start format, enter blanks in format_attr and format_name.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

® Activate the BCAM trace for the connections for this LTERM partner.
The BCAM trace function monitors all connection-related activity.

The precondition for LTERM-specific activation is:

330



openUTM V7.0. Administering Applications. User Guide.

The BCAM trace is not generally activated for all LTERM and LPAP partners, i.e. the trace is either completely
deactivated or explicitly activated only for selected LTERM/LPAP partners and USERSs.

The precondition for LTERM-specific deactivation is:

The BCAM trace can only be deactivated for specific LTERM partners if the BCAM trace is not generally
activated.

You will find information about general activation and deactivation of the BCAM trace in the description of the
data structure kc_diag_and_account_par_str starting from "kc_diag_and_account_par_str - Diagnostic and
accounting parameters".

Field name Meaning

bcam_trace="Y' The BCAM trace is explicitly activated for this LTERM partner. All events on the
connection to the client/printer assigned to this LTERM partner are logged.
When the trace function is activated, each application process creates its own trace file.

bcam_trace='N' The BCAM trace is explicitly deactivated for this LTERM partner.
The trace files are closed only when the trace function is deactivated generally (object
type KC_DIAG_AND_ACCOUNT_PAR; "obj_type=KC_DIAG_AND_ACCOUNT_PAR"

).
Period of validity / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")
® Exchange the master LTERMs of two LTERM bundles or add a group LTERM to a different LTERM group.
This function is only permitted in standalone UTM applications.

If the LTERM is the master LTERM of the LTERM bundle, you can replace all the slave LTERMs and the
associated PTERMs with a different master LTERM. In this event, a master LTERM of an LTERM bundle must
be specified in the master parameter.

If the LTERM is a group LTERM of an LTERM group, you can assign it to a different LTERM group. The primary
LTERM that you specify in the master parameter must either be a normal LTERM, a primary LTERM of an
LTERM group or a master LTERM of an LTERM bundle. A normal LTERM must fulfill the following conditions:

* A PTERM with the PTYPE APPLI or SOCKET must be assigned to the LTERM.
® The LTERM must not be a slave LTERM of an LTERM bundle.
® The LTERM must have been generated with USAGE=D.

Specify the following in the data structure kc_lterm_str.

Field name Meaning

master[8] The name of a master LTERM in an LTERM bundle, the name of a primary LTERM in an
LTERM group or the name of the normal LTERM. The name can be up to 8 characters in
length and may only contain alphanumeric characters.

Period of applicability / transaction management: type PD ("KC_MODIFY_OBJECT - Modify object properties
and application parameters")

331



openUTM V7.0. Administering Applications. User Guide.

Some of the modifications can also be performed with KDCLTERM ("KDCLTERM - Change the properties
of LTERM partners") or KDCDIAG ("KDCDIAG - Switch diagnostic aids on and off").

332



openUTM V7.0. Administering Applications. User Guide.

11.2.9.9 obj_type=KC_MUX (BS2000 systems)

This operation relates to a multiplex connection.

You must identify the multiplex connection unambiguously in the identification area. To do this, in the data structure
kc_triple_str of the union kc_id_area, pass the name of the multiplex connection, the name of the computer on
which the associated message router is located, and the name of the UTM application through which the multiplex
connection is to be established.

In the data area you must pass the data structure kc_mux_str with the new values of the properties.

Possible modifications

® Disable a multiplex connection or release a disabled multiplex connection.

No connection between the message router and the UTM application can be set up via a disabled multiplex
connection. Specify the following in the data structure kc_mux_str.

Field name Meaning

state='N' Disables a multiplex connection
There must be no current connection to the multiplex connection. You must shut down any
existing connections with connect_mode="N'".
It is not possible to shut down the connection and disable a multiplex connection in a single
KC_MODIFY_OBJECT call as shutting down the connection can take some time.

state="Y" Releases a multiplex connection, i.e. cancels a lock.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

® |ncrease or reduce the maximum number of clients that can be connected concurrently via this multiplex

connection.
Field name Meaning
maxses|[5] Specify in maxses the maximum number of sessions that can exist between the message

router and the application.

Minimum value:'1;
Maximum value:'65000' (theoretical value)

Period of validity / transaction management: type GPR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")
® Activate or deactivate automatic connection setup to the multiplex connection.

In automatic connection setup, UTM attempts to establish a connection to the multiplex connection automatically
whenever the application starts.

Specify the following in the data structure kc_mux_str.

333



openUTM V7.0. Administering Applications. User Guide.

Field name

auto_connect="Y"

auto_connect="N'

Meaning

As of the next application start, UTM is to attempt to establish the connection to the
multiplex connection automatically.

As of the next application start, UTM is no longer to establish the connection the
multiplex connection automatically. It must then be established explicitly by the
administrator.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and

application parameters")

® Set up or shut down the connection to the message router for the multiplex connection.

Specify the following in the data structure kc_mux_str.

Field name

connect_mode="Y"

connect_mode='N’

Meaning

UTM is to establish the connection to the message router.

If a connection is to be established for a disabled multiplex connection, the multiplex
connection must be released before connection setup with its own
KC_MODIFY_OBJECT call (state="Y"). connect_mode ="Y' cannot be set at the
same time as state ='N' (disable multiplex connection).

The connection to the message router is to be shut down immediately. A connection
shutdown initiated with connect_mode = 'N' takes immediate effect, so it is possible
for sessions to be terminated abnormally.

Period of validity / transaction management: Type A ("KC_MODIFY_OBJECT - Modify object properties and

application parameters")

® Activate or deactivate the BCAM trace for this multiplex connection. Specify the following in the kc_mux_str data

structure:

Field name

bcam_trace="Y'

bcam_trace='N'

Meaning

The BCAM trace is activated explicitly for this multiplex connection. All the events on
the connection to the message router assigned to this multiplex connection are
recorded.

When the trace function is created, every process of the application generates its own
trace file.

The BCAM trace is deactivated explicitly for this multiplex connection.
The trace files are not closed until the trace is deactivated with general validity (object

type KC_DIAG_AND_ACCOUNT_PAR; "obj type=KC_DIAG_AND ACCOUNT PAR"

).

Period of validity / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and

application parameters")

KDCMUX ("KDCMUX - Change properties of multiplex connections (BS2000 systems)") / KDCDIAG (
"KDCDIAG - Switch diagnostic aids on and off") for the BCAM trace

334



openUTM V7.0. Administering Applications. User Guide.

11.2.9.10 obj_type=KC_OSI_CON

This operation relates to a connection for distributed processing via OSI TP.

In the identification area you must specify the name of the connection defined during KDCDEF generation in OSI-
CON (field kc_name8 of the union kc_id_area).

In the data area, you must specify the data structure kc_osi_con_str with the new values of the properties.

Possible modification

You can activate a replacement connection (connection set to inactive) to an OSI TP partner application. Specify
the following in the data structure kc_osi_con_str.

Field name Meaning

active="Y' UTM is to activate the replacement connection. Before UTM activates the replacement
connection, UTM deactivates the previously active connection. No association to the related
partner application may therefore be in existence when the replacement connection is activated.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

|:<::> KDCLPAP ("KDCLPAP - Administer connections to (OSI-)LPAP partners") operand OSI-CON

335



openUTM V7.0. Administering Applications. User Guide.

11.2.9.11 obj_type=KC_OSI_LPAP

This operation relates to an OSI-LPAP partner, i.e. to the logical properties of an OSI TP partner application or to
the connection to this partner application.

In the identification area you must specify the name of the associated OSI-LPAP partner (field kc_name8 of the
union kc_id_area). The name is defined during KDCDEF generation in the OSI-LPAP statement for the partner
application.

In the data area you must pass the data structure kc_osi_Ipap_str with the new values of the properties.

Possible modifications

i If the OSI-LPAP is the master LPAP of an OSI-LPAP bundle, you can only modify the state field.

® Disable an OSI-LPAP partner or release a disabled OSI-LPAP partner.
It is not possible to make a connection to the partner application via a disabled OSI-LPAP partner.

Specify the following in the data structure kc_osi_Ipap_str.

Field name Meaning

state='N' The OSI-LPAP partner is to be disabled.
There must be no current connection to the partner application at the time of the disable
operation. You must shut down existing connections before disabling the partner, using a
separate call with connect_number='0" or quiet_connect="Y".
You cannot shut down the connection and disable the OSI-LPAP partner in a single
transaction.

state="Y" The OSI-LPAP partner is to be released, i.e. there is a lock in existence which is to be
cancelled.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

336



openUTM V7.0. Administering Applications. User Guide.

® Increase or reduce the number of connections to the partner application which UTM automatically establishes

when the application starts.

In automatic connection setup, UTM attempts to establish the required number of connections to the partner
application whenever the application starts.

If automatic connection setup is defined in both applications (the local application and the partner application),

the connection between the two of them is established automatically as soon as both applications are available.

Specify the following in the data structure kc_osi_Ipap_str.

Field name

auto_connect_number

Meaning

Specify in auto_connect_number the number of connections to the partner
application which UTM is to establish automatically when the application next
(and subsequently) starts.

The OSI-LPAP partner via which the partner application connects must not be
disabled.

If you specify auto_connect_number = '0', automatic connection setup does not
occur when the application next starts.

If a number is specified that is greater than the generated maximum number of
parallel connections (see field associations in kc_osi_Ipap_str), then, on the next
start, UTM attempts to establish all generated parallel connections (= number in
associations). The value specified in auto_connect_number must, however be
less than or equal to '32767'.

Minimum value: '0'.
Maximum value: generated maximum number of parallel connections (
associations)

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and

application parameters")

337



openUTM V7.0. Administering Applications. User Guide.

® Increase or decrease the number of parallel connections that should currently exist between the UTM application
and the partner application; i.e. additional connections can be established or some of the existing connections
can be shut down. Setting up additional connections is only possible if the maximum number of parallel
connections to the partner application generated with KDCDEF has not already been established.

Specify the following in the data structure kc_osi_Ipap_str.

Field name Meaning

connect_number Specify in connect_number the total number of connections to the partner application
that should exist. The effect of the call is thus determined by what is specified for
connect_number. Distinctions must be drawn between the following situations:

* If you specify a number in connect_number which is less than the number of
parallel connections that are currently established, UTM shuts down connections to
the partner application until only connect_number connections are in existence.

To begin with, UTM shuts down any connections that are not currently reserved by
jobs. When this has been done, if there are still more connections open than the
number specified in connect_number, then UTM begins to also shut down
connections that are reserved by jobs.

Any currently active services or conversations are aborted when this happens.

If you specify connect_number ="'0', UTM shuts down all connections to the partner
application.

® |f you specify a number in connect_number which is greater than the number of
parallel connections that are currently established, UTM attempts to establish
further connections to the partner application until a total of connect_number
connections are in existence. However, the maximum number of parallel
connections which UTM will establish to the partner application is that established
during KDCDEF generation for the OSI-LPAP partner belonging to the partner
application. This maximum number is returned when information is requested in the
associations field of kc_osi_Ipap_str.
In other words, if connect_number > associations, then UTM only establishes the
generated maximum number of connections.

If connections are to be established to a disabled OSI-LPAP partner, you must re-
enable this partner beforehand (see state field). The OSI-LPAP partner must be
released in a separate KC_MODIFY_OBJECT.

connect_number and quiet_connect cannot be specified together in a single
KC_MODIFY_OBJECT call. Likewise, connect_number must not be specified
together with state='N'.

Minimum value: '0'
Maximum value: the number returned by UTM in associations; a numeric value
greater than '32767" will be rejected.

Period of validity / transaction management: type A ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

® Shut down all parallel connections to the partner application.

You can instruct UTM to shut down all connections immediately or to assign the property QUIET to the
connections. QUIET means that UTM shuts down the connection to the partner application as soon as the

338



openUTM V7.0. Administering Applications. User Guide.

partner application is no longer occupied by jobs (dialog or asynchronous jobs). No further new dialog jobs are
accepted. New asynchronous jobs are accepted, but no longer sent; they remain in the output queue.

Field name Meaning

connect_number='0' If you specify connect_number ="0', UTM shuts down all connections to the
partner application.
The connections are shut down even if there are active services or conversations
on the connection. These are aborted. It is thus better to shut down connections

with quiet_connect="Y".

Period of validity / transaction management: type A ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

Field name Meaning
quiet_connect="Y" The property QUIET is set for the connections to the partner
application.

The property QUIET can be reset with connect_number >'0'.

Period of validity / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

connect_number and quiet_connect cannot be set concurrently within a single KC_MODIFY_OBJECT call.

339



openUTM V7.0. Administering Applications. User Guide.

* Modify the period of time for which the idle state of the UTM application association to the partner application is
monitored. In other words, if the association is not occupied by a job, UTM waits for this period of time before
UTM shuts down the connection.

Specify the following in the data structure kc_osi_Ipap_str:

Field name Meaning

idletime_sec][5] Specify in idletime_sec the time in seconds for which UTM is to monitor the idle state
of an association to the partner application.
idletime_sec ='0' means that the idle state it not monitored.
Maximum value: '32767'
Minimum value: '0’,
In the case of values that are smaller than 60 but not equal to 0 then the value 60 is
used.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

The modification of the timer takes effect when the association next reaches the idle state, but not before the end
of the program unit run (PEND) in which the call is processed.

® Enables/disables the saving of asynchronous messages in the dead letter queue for this OSI-LPAP partner. This
can prevent the loss of messages for this LPAP partner in case of permanent errors.

Specify the following in the data structure kc_osi_Ipap_str.

Field name Meaning

dead_letter_g="Y" Asynchronous messages to this OSI-LPAP partner which could not be sent because
of a permanent error are saved in the dead letter queue, as long as (in case of
message complexes) no negative confirmation job was defined.

dead_letter_g='N' Asynchronous messages to this OSI-LPAP partner which could not be sent because
of a permanent error are not saved in the dead letter queue but deleted.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

|:'§> KDCLPAP ("KDCLPAP - Administer connections to (OSI-)LPAP partners")

340



openUTM V7.0. Administering Applications. User Guide.

11.2.9.12 obj_type=KC_PTERM

This operation relates to a client or printer for the application.

You must identify the client/printer unambiguously in the identification area. To do this, in the data structure
kc_long_triple_str of the union kc_id_area, pass the name of the client printer, the name of the computer on which it
is located, and the name of the UTM application via which the connection is to be established.

In the data area you must pass the data structure kc_pterm_str with the new values of the properties.

Possible modifications

® Change the client/printer assignment to the LTERM partner.

In this way you can modify the logical properties of the client/printer. In particular, you can use them to assign a
printer to a printer pool or to a printer control LTERM.

When the assignment is modified, neither the client/printer nor the LTERM partner to which the client/printer is
assigned may be connected to the application.

Restriction:

Reassignment of the LTERM partner is possible only for terminals and printers. For UPIC clients, TS applications
(APPLI/SOCKET) generated as dialog partners, and clients that connect to the application using an LTERM pool,
it is not possible to change the assignment to an LTERM partner defined at configuration.

When you assign a new LTERM partner to a terminal or printer, the LTERM partner must not be currently
assigned or have been previously assigned to a client/printer of another protocol type. Distinctions are drawn
here between the following four protocol types: terminals, TS applications, printers and RSO printers. It is not
possible, for example,

® to assign an LTERM partner that is or was assigned to a UPIC client or to a TS application to a terminal,

® to assign an LTERM partner on a BS2000 system that is or was assigned to a normal printer to an RSO
printer (and vice-versa).

Field name Meaning

Iterm[8] Specify in lterm the name of the LTERM partner that is to be assigned to this client/printer.
This function is only permitted in standalone UTM applications.

The LTERM partner must exist in the application configuration.

It must not be an LTERM partner of an LTERM pool, a master or slave LTERM of an LTERM
bundle or a group or primary LTERM of an LTERM group.

The maximum length of the name is 8 characters.

For clients, the old assignment of this LTERM partner is implicitly cancelled.

Only printers that have been configured for output (usage_type='0O") can be assigned to
LTERM partners. For printers, the old assignment of LTERM partner specified in /term is not
cancelled if a printer was previously assigned to it. Both printers are combined into a printer
pool. Any required number of printers may belong to a printer pool.

If the LTERM partner is assigned to a printer control LTERM, the printer must have a printer
ID which is unique in the printer control LTERM area, otherwise the call is rejected.
connect_mode and lterm cannot be specified together in a single call.

Period of validity / transaction management: type PD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

341



openUTM V7.0. Administering Applications. User Guide.

® Activate or deactivate automatic connection setup to the client/printer.
With automatic connection setup, UTM attempts to establish the connection to the client/printer automatically.
Exception:

Automatic connection setup cannot be achieved to clients which are connected to the application via an LTERM
pool nor to UPIC clients. In both these cases, connection setup is always initiated by the client and not by the
UTM application.

Specify the following in the data structure kc_pterm_str.

Field name Meaning

auto_connect="Y" As of the next application start, UTM is to establish the connection to the client
/printer automatically, provided that the client/printer is available.
The client/printer must not be disabled (state="N").

auto_connect='N' As of the next application start, UTM is no longer to establish the connection to the
client/printer automatically.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

® Disable a client or printer or cancel an existing lock.

You can disable only those clients and printers that have been entered explicitly and statically in the
configuration, using a PTERM statement, or dynamically as an object of the type KC_PTERM. Clients which
connect via an LTERM pool or a multiplex connection cannot be disabled.

Specify the following in kc_pterm_strin order to disable or release a client/printer:

Field name Meaning

state='N' Disable the client/printer.
A lock on a client does not take effect until the client next attempts to establish a connection
to the UTM application. The connection request is then rejected by UTM. Any connection that
exists at the time of disable operation is maintained.

state="Y" The client/printer lock is to be cancelled.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

342



openUTM V7.0. Administering Applications. User Guide.

® Set up or shut down t the connection to the client/printer.

Field name

connect_mode="Y"

connect_mode='N'

connect_mode='R’

Meaning

The connection to the client/printer is to be established.

Exception:

connect_mode="Y' cannot be specified for clients which are connected to the
application via an LTERM pool, nor for UPIC clients.

The client/printer must not be disabled. A disabled client/printer must be released
prior to setting up the connection (state='Y"). Releasing the client/printer and setting
up the connection cannot be performed in a single call.

The connection to the client/printer is to be shut down immediately.
A connection shutdown initiated with connect_mode = 'N' takes immediate effect. If
the connection is occupied by a job at that time, processing of the job is aborted.

Only on BS2000 systems:

May only be specified for clients which are connected to a UTM application on a
BS2000 system through a multiplex connection.

connect_mode='R' (Release pending connections) instructs UTM to release a
session in the DISCONNECT PENDING state once the timer has expired. The
session cannot be released if the timer has not yet expired.

See openUTM manual “Generating Applications” in relation to the DISCONNECT
PENDING state.

connect_mode and lterm cannot be specified to together in a single call.

Period of validity / transaction management: type A ("KC_MODIFY_OBJECT - Modify object properties and

application parameters")

343



openUTM V7.0. Administering Applications. User Guide.

® Change the maximum period for which UTM will wait for an entry from the client after the end of a transaction or
after the sign-on. When the time is exceeded, the connection to the client is cleared down (only relevant in the
case of dialog partners).

Specify the following in the kc_pterm_str data structure:

Field name Meaning

idletime[5] In idletime you specify the maximum period in seconds for which openUTM waits outside a
transaction (i.e. after the end of a transaction or after signon) for an entry from the client.
When idletime=0 is specified, openUTM waits for an unlimited period.

Maximum value: '32767'
Minimum value: '60'
In the case of values that are smaller than 60 but not equal to 0 then the value 60 is used.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

The modification of the timer takes effect at the next end of transaction but not before the end of the program unit
run (PEND) in which the call is processed.

|:c::> KDCPTERM ("KDCPTERM - Change properties of clients and printers") with the exception of idletime

344



openUTM V7.0. Administering Applications. User Guide.

11.2.9.13 obj_type=KC_TAC

This operation relates to a local service transaction code (tac_type='A' or 'D’) or a TAC queue (tac_type='Q").

In the identification area, you must pass the name of the transaction code or TAC queue (field kc_name8 of the
union kc_id_area). In the data area, you must pass the data structure kc_tac_str with the new values of the
properties.

You can change the status and data access control for transaction codes and TAC queues. For transaction codes
you can also reset TAC-specific statistics values to 0. Statistics values cannot, however, be changed in a
KC_MODIFY_OBJECT call.

Possible modification

® Modifying the status of a transaction code or TAC queue.
You can either disable a transaction code or TAC queue or enable a disabled transaction code or TAC queue
again.
The administration command KDCTAC cannot be disabled.
If you change the status of a transaction code in a call, the statistics values cannot be reset.

Specify the following in kc_tac_strto disable or release the transaction code:

Field name Meaning

state='N' The transaction code/TAC queue is to be disabled.
Lock means that UTM will accept no further jobs for this transaction code or TAC queue.

® tac _type='A'or 'D"
The transaction code is disabled as a service TAC (1st TAC of a service). It is not
disabled as a follow-up TAC in a service (call type='B").
Asynchronous jobs which are in the transaction code’s message queue at the time of
disabling are still started.

® tac type='Q"
The TAC queue is disabled for write accesses; read accesses are possible.

You cannot use state="N' to disable transaction codes for which call_type='N'"is set.

state="H’ The transaction code or TAC queue is to be completely disabled (Halt).

® tac _type='A'or 'D"
The transaction code is disabled both as a service TAC and as a follow-up TAC in an
asynchronous or dialog service.
Asynchronous jobs which are in the transaction code’s message queue at the time of the
disable operation are not started. They remain in the queue until the transaction code is
released again or is set to state='N'.

® fac type='Q"
The TAC queue is disabled for write and read accesses.

345



openUTM V7.0. Administering Applications. User Guide.

Field name Meaning

state='K' This state may only be specified for asynchronous transaction codes (tac_type='A’) that are
also service TACs (call_type='B' or'F") and for TAC queues.
The transaction code or TAC queue is disabled.

® tac type='A"
Jobs for the transaction code are accepted, but they are not processed. They are merely
entered into its job queue. They are not processed until you change the status of the
transaction code to "Y' or 'N'.
® tac type='Q"
The TAC queue is disabled for read accesses; write access is still possible.
You can use state='K' (Keep) to collect jobs that are not to be processed until such time as
the load on the application is reduced (e.g. at night).

state="Y" The transaction code or TAC queue is to be released again. state="Y' resets both state="N',
state='H' and state="K'.

Period of validity / transaction management: type GID ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

If the transaction code KDCMSGTC is disabled, then all UTM messages having a UTM message destination
MSGTAC and which are still located in the page pool are deleted.

|:<::> KDCTAC ("KDCTAC - Lock/release transaction codes and TAC queues")

346



openUTM V7.0. Administering Applications. User Guide.

® Resetting statistical information for the transaction code to O.

You can reset the statistics values to 0 during a run by entering 0 in one of the following fields in kc_tac_str. UTM
will then reset all fields to 0. A value ! = 0 is rejected.

Field name Meaning

used Number of program unit runs with this transaction code

number_errors Number of program unit runs which were terminated with errors.

db_counter Average number of database calls from program units started using this transaction
code.

tac_elap_msec Average runtime of program units started using this transaction code (elapsed time)

db_elap_msec Average time needed to process database calls with this TAC in the program units.

taccpu_msec Average CPU time in milliseconds needed to process this transaction code in the

program unit. The value corresponds to the CPU time used by UTM and by the
database system.

taccpu_micro_sec Average CPU time in microseconds taken to process this transaction code in the
program unit. This corresponds to the CPU time consumed by UTM plus the CPU
time required by the database system.

nbr_ta_commits Number of program unit runs for this TAC that have successfully concluded a
transaction.
number_errors_ex See number_errors.

You can either reset the statistics values for a specific transaction code or for all transaction codes in the
application. If you want to reset the values for a specific transaction code you must enter the name of the
transaction code in the identification area. In all other cases you must supply the identification area with binary
zero.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

347



openUTM V7.0. Administering Applications. User Guide.

® You can modify the data access control for a transaction code. If the transaction code was protected up to now
by a lock code, you can remove the lock code and control data access by means of an access list. The reverse
also applies. Please note that a lock code and access list are mutually exclusive; only one type of data access
control is permitted at any one time.

Field name Meaning

lock_code[4] lock code can be a number between '0' and the upper limit defined in the MAX statement
(KEYVALUE operand).
'0' removes data access control.

access_list[8] In access_list you can specify an existing key set or fill the field with blanks.
Blanks remove the data access control.

A user can only access the transaction code when the key set of the user and the key set of the LTERM partner
by means of which the user is signed on contain at least one key code that:

® corresponds to the lock code or
® s also contained in the key set specified in access_list

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

® You can modify the data access control for a TAC queue. Specify the following in the kc_tac_str data structure:
Field name Meaning

g_read_acl[8] In g_read_acl you specify the name of an existing key set by means of which the queue
is protected against unauthorized reading and deletion.

You can also remove the protection by specifying blanks. In this case, all users can read
and delete messages from this queue.

q_write_acl[8] In g_write_acl you specify the name of an existing key set by means of which the queue
is protected against unauthorized write accesses.

You can also remove the protection by specifying blanks. In this case, all users can write
messages to this queue.

A user only has read (delete) access or write access to this TAC queue if the key set of the user and the key set
of the logical terminal by means of which the user is signed on each contain at least one key code that is also
contained in the specified key set.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

348



openUTM V7.0. Administering Applications. User Guide.

® Specify that queued messages are to be stored in the dead letter queue (TAC queue KDCDLETQ). Specify the
following in the data structure kc_tac_str.

Field name Meaning

dead_letter_g="Y" Messages to this asynchronous TAC or this TAC queue which could not be
processed are backed up in the dead letter queue if they are not redelivered and
(with message complexes) no negative acknowledgement job has been defined.
dead letter_g="Y'is not permitted for KDCDLETQ, KDCMSGTC, all interactive TACs
and asynchronous TACs with CALL=NEXT.

dead_letter_g='N' Messages to this asynchronous TAC or this TAC queue which could not be
processed are not backed up in the dead letter queue but deleted. This value must be
specified for all interactive TACs and for asynchronous TACs with CALL=NEXT, as
well as for KDCMSGTC and KDCDLETQ.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

349



openUTM V7.0. Administering Applications. User Guide.

11.2.9.14 obj_type=KC_TACCLASS

This operation relates to a UTM application TAC class.

In the identification area you must pass the number of the TAC class (field kc_nameZ of the union kc_id_area). In
the data area you must pass the data structure kc_tacclass_str with the new values of the properties.

® Possible modification

You can increase or decrease the number of processes which may simultaneously process jobs for transaction
codes of the TAC class. To do this, you can:

® Specify the number of processes in absolute terms (tasks), i.e.:

you specify the number of processes which may simultaneously perform jobs for this TAC class. If the nhumber
is specified in absolute terms, the number of processes is independent of the currently set total number of
processes in which the application program is running. This applies provided that the current total number of
process in the application is no less than the number of processes set for the TAC class. If this is case, the
number of processes is reduced accordingly.

® Specify the number of processes in relative terms (tasks_free), i.e.:

you specify the number of processes which must remain free to process jobs for transaction codes of other
TAC classes. If the number is stated in relative terms, the number of processes for this TAC class is
determined by the currently set total number of application processes. If the total number of processes is
reduced, then the maximum number of processes which process jobs for the TAC class is also reduced
implicitly. Similarly, if the total number is increased, the number of processes for this TAC class is also
increased implicitly.

The number of processes of a TAC class can only be modified, if the application was generated without priority
control, i.e. if the KDCDEF generation does not contain a TAC-PRIORITIES statement.

For this modification, you must specify the following in the structure kc_tacclass_str.

Field name Meaning

tasks Specify in tasks the maximum number of processes which may simultaneously perform jobs
for transaction codes of the TAC class. A relative statement previously made by tasks free
for this TAC class is deactivated.

Minimum value of tasks:

For dialog TAC classes (TAC classes 1-8), tasks must be >='1", as dialog services would
otherwise be locked and users would have to wait at the terminal until the processes were
released again.

For asynchronous TAC classes (classes 9-16) tasks may be >="0'.

Maximum value: see table.
If the value specified for tasks is greater than the total number of processes for the
application, then UTM automatically reduces the value to this number.

350



openUTM V7.0. Administering Applications. User Guide.

Field name Meaning

tasks_free Specify the following in tasks_free:

® for dialog TAC classes:
the minimum number of processes which are to be kept free to process jobs for other
TAC classes.
If the number of processes in tasks_free becomes greater than the total number of
processes available to the application program, then one process nevertheless remains
available to this TAC class to process its transaction codes.

® for asynchronous TAC classes:
the minimum number of processes which are to be kept free to process transaction codes
of other asynchronous TAC classes.
If the number of processes in tasks free becomes greater than the total number of
processes which may simultaneously be used for asynchronous processing, then no
further jobs are performed on transaction codes of this TAC class.

Minimum value: '0'
Maximum value: see table.

tasks and tasks_free must not be specified together in a single KC_MODIFY_OBJECT call.
The permitted maximum value for tasks and tasks_free is determined by the following factors:

® whether or not program units with blocking calls (pgwt="Y") can run in the TAC class.

® by the values for TASKS, TASKS-IN-PGWT and ASYNTASKS generated statically in the KDCDEF control
statement MAX.

The following table contains the maximum permitted values for tasks and tasks _free. If you specify greater
values, the KC_MODIFY_OBJECT call is rejected.

TAC class Content Permitted maximum value @ Permitted maximum
of pgwt for tasks value for tasks_free
1 - 8 (dialog TACs) N’ TASKS *) TASKS - 1 %)
Y TASKS-IN-PGWT *) TASKS - 1%)
9 - 16 (asynchronous TACs) 'N' ASYNTASKS *) ASYNTASKS *)
Y the smaller of the values: ASYNTASKS *)
ASYNTASKS, TASKS-IN-
PGWT*)

*) As statically generated in the KDCDEF control statement MAX

Period of validity / transaction management: Type A ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

|:.§> KDCTCL ("KDCTCL - Change number of processes of a TAC class")

® Reset the statistical values “Average wait time of the jobs in the job queues” and “Number of wait situations”.
These two values can only be reset together.

The values can be reset either for the TAC class specified in the Id area or for all the TAC classes:

351



openUTM V7.0. Administering Applications. User Guide.

® If the values are to be reset for all TAC classes then binary zero must be specified in the Id area. In this case,

tasks and tasks_free must not be modified.

® If only a specific TAC class is to be modified then avg_wait_time_msec and nr_waits can be specified
together with tasks and tasks_free.

Specify the following in the kc_tacclass_str data structure:

Field name

avg_wait_time_msec[10]

nr_waits[10]

nr_calls[10]

Meaning

Contains the average wait time of the jobs in the job queues assigned to the
transaction codes of this TAC class. The unit of the avg_wait_time_msec value
is milliseconds.

If there is no process available for the TAC class, UTM accepts jobs for the TAC
class (with free processes that “cannot” process jobs to this TAC class) and
stores them temporarily in the KDCFILE.

This is always the case when there are jobs pending for TAC classes of a higher
priority (in the case of priority control) or when the number of processes is
limited and the maximum permitted number of processes is already processing
transaction codes of the TAC class (see tasks, tasks_free).

The time between the acceptance of a job and the start of its processing is the
wait time displayed here.
You can reset this value to '0'.

Number of wait situations taken into account for the calculation of the value
avg_wait_time_msec.
You can reset this value to '0'".

Number of proram unit runs for this TAC class.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and

application parameters")

352



openUTM V7.0. Administering Applications. User Guide.

11.2.9.15 obj_type=KC_TPOOL

This operation relates to an LTERM pool for the UTM application.

In the identification area you must pass the name of the LTERM pool (LTERM prefix). For this the field kc_name8 of
the union kc_id_area is available.

In the data area you must pass the data structure kc_tpool_str with the new values of the properties.

Possible modification

® You can increase or decrease the number of clients which may be connected concurrently via this LTERM pool, i.
e. you specify how many LTERM partners of the LTERM pool are to be released or disabled. One client can
connect to the application via each enabled LTERM partner in the LTERM pool. The number of LTERM partners
included in the LTERM pool, i.e. the maximum number of LTERM partners which can be permitted for this
LTERM pool, is defined during KDCDEF generation. Specify the following in the data structure kc_tpool_str.

Field name Meaning
state='N' Of the total number of LTERM partners in this LTERM pool (see kc_tpool_str.
state_number=... max_number in chapter "kc_tpool_str - LTERM pools for the application™), the number

specified in state_number is to be disabled. The number of permitted LTERM partners
for this LTERM

pool is consequently:

max_number - state_number.

If the entire LTERM pool is to be disabled, you must specify the value of max_number
in state_number.

If you want to release all the LTERM partners in the LTERM pool, specify
state_number="0'".

Minimum value for state_number. 'O’
Maximum value for state _number.
the maximum number returned in kc_tpool_str.max_number

state="Y" Of the total number of LTERM partners, only the number specified in state_number is
state_number=... to be permitted.

If all the LTERM partners in the LTERM pools are to be permitted, you must specify
the generated maximum value (kc_tpool str.max_number in chapter "kc_tpool_str -
LTERM pools for the application") in state_number.

You can disable the entire LTERM pool if you specify state_number="'0'".

Minimum value for state_number. '0'
Maximum value for state_number.
the maximum number returned in kc_tpool_str.max_number

The fields state and state_number must always be specified together.

If the number in state_number exceeds the generated maximum number of LTERM partners, UTM automatically
resets the value of state_number to this maximum number.

353



openUTM V7.0. Administering Applications. User Guide.

Period of validity / transaction management: type GP ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

Disabling LTERM partners in the LTERM pool has the following effect:

® A connection setup request from a client via this LTERM pool is rejected by UTM as soon as the permitted
number of clients is reached which are connected to the application via this LTERM pool (all permitted
LTERM partners are occupied).

® |f, at the time at which the call is processed by UTM, the number of live connections to this LTERM pool

exceeds the number of permitted LTERM partners for the LTERM pool, all existing connections are initially
maintained.

The lock only comes into effect for new connection setup requests.

If terminal users sign off with KDCOFF BUT, they can sign on again with KDCSIGN, even if at that time more
clients than permitted are connected to the application through the LTERM pool. This is possible because the
connection remains in this case.

|:<::> KDCPOOL ("KDCPOOL - Administer LTERM pools")

® You can change the maximum period for which UTM waits for an entry from the client after the end of a
transaction or after sign-on. If the time is exceeded, the connection to the client is cleared down. Specify the
following in the kc_tpool_str data structure:

Field name Meaning

idletime[5] In idletime you specify the maximum time in seconds that openUTM waits for an entry from
the client outside a transaction (i.e. after the end of a transaction or after sign-on).
When idletime=0 is specified, openUTM waits for an unlimited period.

Maximum value: '32767"
Minimum value: '60',
In the case of values that are smaller than 60 but not equal to 0 then the value 60 is used.

Period of validity / transaction management: type GP ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

The modification of the timer takes effect at the next end of transaction, but not before the end of the program
unit run (PEND) in which the call is processed.

354



openUTM V7.0. Administering Applications. User Guide.

11.2.9.16 obj_type=KC_USER

This operation relates to a UTM application user ID and its queue.

In the identification area you must specify the name of the user ID (field kc_name8 of the union kc_id_area). In the
data area you must pass the data structure kc_user_str with the new values of the properties.

Possible modifications

® |ock or release a user ID.

Neither users nor clients can then sign on to the application under a locked user ID. User IDs with administration
privileges cannot be locked.

Field name

state='N'

state="Y"

Meaning

The user ID is to be disabled.

If the user is signed on to the application at the time at which the user ID is disabled, the user
is not disconnected. The lock does not take effect until the user or client next attempts to sign
on to the application under this user ID.

Read and write accesses to the queue of a locked user ID are possible.

The user ID is to be released, i.e. there is a lock in existence which is to be cancelled.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

® Change the key set assigned to the user ID. Specify the following in the kc_user_str data structure:

Field name

kset[8]

Meaning

In kset you specify the name of an existing key set that sets the access rights of the user ID in
the application. The name of a key set can be up to 8 characters long.

The user or client program can only access a service protected by means of a lock code or an
access list if:
® the key set of the user ID and

® the key set of the LTERM partner by means of which the terminal user or the client
program connects to the application

contain a key/access code that corresponds either to the lock code of the service or to at
least one key of the access list of the service.

If you want to cancel the assignment that has applied up to now, enter blanks.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

® Change or delete the password for a user ID.

When changing a password, you must take account of the level of complexity and minimum password length
defined when the user ID was created. You can ascertain the level of complexity and minimum length using
KC_GET_OBJECT (object type KC_USER). UTM reports the settings in the fields protect pw_compl and

355



openUTM V7.0. Administering Applications. User Guide.

protect_pwl16_Ith of the data structure kc_user_str. The levels of complexity and the criteria which must be
fulfilled by a password of a certain level of complexity are described in chapter "kc_user_str, kc_user_fix_str,
kc_user_dynl_str and kc_user_dyn2_str user IDs".

You can only delete passwords if:
® the minimum password length defined when the user ID was created (protect pw16_Ith) is equal to '0' and
® no particular level of complexity is defined for the user (protect_pw_compl='0").

If a password with a limited period of validity has been defined for a user ID (protect_pw_time! ='0', chapter
"kc_user_str, kc_user fix_str, kc_user_dynl strand kc_user _dyn2_str user IDs"), you cannot use the old
password as the new password when changing the password.

In applications generated with SIGNON GRACE=Y, you can choose one of the following options when changing
the password (protect_pw _time_lef?):

® the generated period of validity is to apply to the new password (from the time the change is implemented) or

® the password is to become invalid immediately and must be changed immediately the next time the user signs
on.

If a password with a limited period of validity is deleted, no period of validity applies. If a new password is issued
subsequently, the period of validity again takes effect.

When changing a password, you must specify both the new password and the password type. Specify the
following in the data structure kc_user_str.

Field name @ Meaning

passwordl16 Specify the new password for this user ID in the password16 field. You must also specify in the
password_type field how UTM is to interpret the value specified in password16.
In the protect_pw_time_left field you can prevent a password with a limited period of validity
from becoming invalid immediately in applications generated with SIGNON GRACE=Y. If the
password is invalid, it is necessary to assign a new password at sign-on.
The password can be up to 16 characters long.
The union kc_pw is available for passing the password (see "obj type=KC USER").

You can specify the password either as a character string or as a sequence of hexadecimal
characters.

On Unix, Linux and Windows systems, a hexadecimal specification is only permitted if an
already encrypted password is passed, i.e. the field pw_encrypted contains the value "Y' or 'A'.

In the case of a hexadecimal password, each half byte is represented as a character. If you
specify a password which consists of less than 16 characters, password16 must be padded to
the right with blanks

(password_type="'C"), or with the hexadecimal value for blanks (password_type='X").

In order to delete a password, specify only blanks in password16 or specify ‘N' in password_type

356



openUTM V7.0. Administering Applications. User Guide.

Field name Meaning

password_type In password_type you must specify how the password in password16 is to be interpreted.
The following values are possible:

® 'C:The password in password16 is to be interpreted as character string.

® 'X" The password in password16 is to be interpreted as hexadecimal string. On Unix,
Linux and Windows systems, this is only permitted if an already encrypted password is
passed (pw_encrypted ='Y' or 'A').

* 'N": No password. Nothing may be specified in password16. An existing password will be
deleted.

®* 'R': Arandom password is created.

® The administrator has to define explicitly a new password before the user generated in
this way is able to sign on.

If you want to delete the password of a user ID, pass 'N' in password_type.
In this case, nothing further need be specified in password

pw_encrypted = This field must be set to the value "Y' or ‘A’ if the password is passed in encrypted format.
This may occur, for example, if the encrypted password results from a K159 message of a
standby application.

® 'N": The password is passed in unencrypted format (default).

®* 'Y'J'A": The password is passed in encrypted format. No complexity check is carried out.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

Field name Meaning

protect_pw_time_left This only applies to applications generated with SIGNON GRACE=Y and for user
IDs whose passwords are generated with a limited period of validity.

In protect_pw_time_left, you can specify whether the generated period of validity is
to apply to the new password:

If you enter protect_ pw_time_left="-1' (right or left-justified) the generated period of
validity applies to the new password (from the time it was implemented).
protect_pw_time_left="-1' only has effect together with password16 and
password_type. protect pw_time_left=-1" without a password is ignored.

If you make no entries for protect_pw_time_left the password immediately
becomes invalid, because the period of validity is expired. The user must change
the password at the next sign-on.

A value other than '-1' is rejected.

357



openUTM V7.0. Administering Applications. User Guide.

® You can change write, read and delete authorization for a USER queue. Specify the following in the kc_user_str
data structure:

Field name Meaning

g_read_acl[8] In g_read_acl you specify the name of an existing key set by means of which the queue
is protected against other users who want to access the queue to read and delete
messages.

You can remove the protection by specifying blanks. In this case, all users can read and
delete messages from this queue.

q_write_acl[8] In g_write_acl you specify the name of an existing key set by means of which the queue
is protected against other users who want write access to it.

You can remove the protection by specifying blanks. In this case, all users can write
messages to this queue.

Another user (! =us_name) can have read (delete) or write access to the USER queue when both the key set of
the user’s user ID and the key set of the LTERM partner by means of which the user is signed on contain at least
one key code of the q_read_acl or q_write_acl key set.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

358



openUTM V7.0. Administering Applications. User Guide.

¢ Only on BS2000 systems:
Assign a new start format to the user ID.

You can assign a specific start format to each user ID. This start format is automatically output after each
successful sign-on if no service is currently open for this user ID. In order to modify the start format, you must
always specify both the format name and the format attribute.

The precondition for assigning a start format is that a formatting system has been generated (KDCDEF
statement FORMSYS). If the start format is a #format, a sign-on service must also be generated.

Field name Meaning
format_attr Format identifier of the new start format:

‘A" | for the format attribute ATTR. The format name at the KDCS program interface is
+format_name.

'N' | for the format attribute NOATTR. The format name at the KDCS program interface
is *format_name.

'E' | for the format attribute EXTEND. The format name at the KDCS program interface
is #format_name.

The meanings of the format attributes are described in chapter "kc_user_str,
kc_user_fix_str, kc_user_dynl_str and kc_user_dyn2_str user IDs".

format_name([7] Name of the start format. The name can be up to 7 characters long and may contain
only alphanumeric characters.
If you want to delete the start format of a user ID, you must specify blanks in format_attr and format_name.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

® Enable or disable the BCAM trace for this user ID.
To allow USER-specific enabling:

The BCAM trace must not be generally enabled for all connections, i.e. the trace is either completely disabled or
only explicitly enabled for certain selected LTERM and LPAP partners or USERs.

Specify the following in the data structure kc_user_str.

Field name Meaning

bcam_trace="Y" The BCAM trace is explicitly enabled for this USER. This is only possible

* jf the BCAM trace is disabled for all connections (see kc_diag _and_account_par_str)
or

* if the BCAM trace has already been enabled for individual USERs.
bcam_trace='N' The BCAM trace is disabled for this USER.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

>

359



openUTM V7.0. Administering Applications. User Guide.

Some modifications can also be performed using KDCUSER ("KDCUSER - Change user properties”) or
KDCDIAG ("Switch diagnostic aids on and off").

360



openUTM V7.0. Administering Applications. User Guide.

11.2.9.17 obj_type=KC_CLUSTER_CURR_PAR
In UTM cluster applications (Unix, Linux and Windows systems), it is necessary to reset the statistics values of the
cluster page pool.

You must enter the data structure kc_cluster_curr_par_str via the data area.

Possible modifications

The following table indicates the values you are able to reset.

Field name Meaning

max_cpgpool_size='0" = Maximum utilization of the cluster page pool.
The counter is reset to 0.

avg_cpgpool_size='0" = Average utilization of the cluster page pool.
The counter is reset to 0.
If you reset one of the two values then the other value is also implicitly reset.

Period of validity / transaction management: type GID ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

Unless explicitly reset, the values continue to apply after the complete cluster application has terminated and are
not reset until the size of the cluster page pool is increased and the UTM cluster files are generated using KDCDE.

361



openUTM V7.0. Administering Applications. User Guide.

11.2.9.18 obj_type=KC_CLUSTER_PAR

You want to modify the circular monitoring settings for the node applications in a UTM cluster application (Unix,
Linux and Windows systems) and/or the settings for node application access to the cluster configuration file and the
administration journal of the UTM cluster application (Unix, Linux and Windows systems).

To do this, you must enter the new property values in the the data structure kc_cluster_par_str via the data area.

Possible modification

The following table indicates the settings that you are able to modify.

Field name

check_alive_timer_sec

communication_retry

communication_reply_timer_sec

Meaning

In a UTM cluster application, every node application is monitored by another
node application (circular monitoring), i.e. each node application monitors the
availability of another node application and is itself monitored by a node
application. To do this, the monitoring node application sends messages to the
monitored node application at defined intervals (check alive_timer_sec). If the
monitored application is available, it acknowledges the message.
check_alive_timer_sec specifies the interval in seconds at which monitoring
messages are sent to the monitored node application.

openUTM also uses this timer in order to access the cluster configuration file
and the administration journal periodically in order to check for possible
updates.

Minimum value: ‘30"
Maximum value: ‘3600

communication_retry specifies how often a node application repeats an
attempt to send a monitoring message if the monitored node application does
not respond within the defined time.

If a value greater than zero is set for communication_retry, then the target
node application is only assumed to have failed if, additionally, no response to
the monitoring message is received after the final retry.

Minimum value; ‘0"
Maximum value: ‘10"

communication_reply timer_sec specifies the maximum time in seconds that
a node application waits for a response after sending a monitoring message.
If the monitored node application does not respond in the defined time, then it
is assumed to have failed (abnormal end of application) and the command
sequence defined in failure_cmd is executed (e.g. a restart).

Minimum value: ‘1'
Maximum value: '60'

362



openUTM V7.0. Administering Applications. User Guide.

Field name

restart_timer_sec

file_lock_timer_sec
file_lock_retry

deadlock_prevention="N'

deadlock_prevention="Y"

Meaning

Maximum time in seconds that a node application requires for a warm start after a
failure.

If a value of 0 is specified, no timer is set for monitoring the restart of a failed node
application.

Minimum value: 0, i.e. restart of the application is not monitored.
Maximum value: 3600

file_lock_timer_sec is the maximum time in seconds that a node application waits for
a lock to be assigned for accessing the cluster configuration file or the cluster
administration journal.

file _lock_retry specifies how often a node application repeats the request for a lock on
the cluster configuration file or the cluster administration journal if the lock was not
assigned in the time specified in file_lock timer_sec.

Note: Do not choose too small a value since a timeout when accessing the cluster
configuration file can lead to the abnormal termination of the application.

file_lock_timer_sec:
Minimum value: ‘10'
Maximum value: ‘60’

file_lock_retry.
Minimum value: ‘1'
Maximum value: ‘10’

UTM does not perform any additional verifications for the GSSB, TLS and ULS data
areas in order to prevent deadlocks. If a deadlock occurs in one of these data areas
then it is resolved via a timeout.

UTM performs additional verifications for the GSSB, TLS and ULS data areas in order
to prevent deadlocks.

In productive operation it is advisable to set this parameter to "Y' only if timeouts occur
frequently when accessing these data areas.

Period of validity / transaction management: type GID ("KC_MODIFY_OBJECT - Modify object properties and

application parameters")

363



openUTM V7.0. Administering Applications. User Guide.

11.2.9.19 obj_type=KC_CURR_PAR

The counters for application-specific statistical values are to be reset. For this you must assign the data structure

kc_curr_par_strto the data area.

Furthermore, you can enable or disable data compression, see section "Enabling/Disabling data compression".

Possible modifications

All the counters listed below can be set in one call. In order to reset the counters you must pass the value '0' to
UTM in the relevant field, unless there is a note to the contrary. You can reset the following counters or statistical

values:

Field name

term_input_msgs="'0'

term_output_msgs="0'

max_dial_ta_per_100sec="0'

max_asyn_ta_per_100sec='0'

max_dial_step_per_100sec='0'

max_pool_size="0'

avg_pool_size='0'

cache_hit_rate='0'

Specification

Number of messages which the application received from clients or partner
applications since the last reset.
The counter is reset to 0.

Number of messages which the application sent to clients, printers or partner
applications since the last reset.
The counter is reset to 0.

Maximum number of dialog transactions carried out within the space of 100
seconds.

The counter is reset to O ("kc_curr_par_str - Current values of the application
parameters").

Maximum number of asynchronous transactions carried out within the space of
100 seconds.
The counter is reset to to O ("kc_curr_par_str - Current values of the application
parameters").

Maximum number of dialog steps carried out within the space of 100 seconds.
The counter is reset to to O ("kc_curr_par_str - Current values of the application
parameters").

Maximum utilization of the page pool in percent since the last reset.
The counter is reset to 0.
If this value is reset then the value of avg _pool _size is also implicitly reset to 0.

Average utilization of the page pool in percent since the last reset of the counter.

The counter is reset to 0.
If this value is reset then the value of max_pool_size is also implicitly set to 0.

Hit rate for pages in the cache memory since the counter was last reset (in
percent).

The counter is reset to 0.

If this value is reset then the values cache _wait_buffer, nr_cache_rqs and
nr_cache_searches are also impicitly reset to 0.

364



openUTM V7.0. Administering Applications. User Guide.

Field name

cache_wait_buffer='0'

abterm_services='0'

deadlocks="0'

periodic_writes="0'

pages_pwrite='0'

logfile_writes="0'

maximum_jr="0'

max_load="'0'

max_wait_resources='0'

max_wait_system_resources='0'

Specification

Percentage of buffer requests in the cache, that led to a wait time.

The counter is reset to 0.

If this value is reset then the values cache_hit rate , nr_cache rgs and
nr_cache_searches are also impicitly reset to 0.

Number of abnormally terminated services since the last reset.
The counter is reset to 0.

Number of known and resolved deadlocks of UTM resources since the last
reset.
The counter is reset to 0.

Number of periodic writes since the last reset (periodic write = backup of all
relevant administration data in the UTM application).
The counter is reset to 0.

Number of UTM pages saved on average in a periodic write.
The counter is reset to 0.

Number of requests to write log records to the user log file (USLOG).
The counter is reset to 0.

In distributed processing only:

Maximum number of remote job receiver services addressed in the local
application at the same time in relation to the generated value MAXJR (see
kc_utmd_par_strin chapter "kc_utmd_par_str - Parameters for distributed
processing"). This is a percent value.

The counter is reset to the value of curr_jr ("kc_curr_par_str - Current values
of the application parameters").

max_load specifies as a percentage the maximum load of the UTM application
registered since the start of the application or the last reset.

The value is reset to the value in curr_load (see "kc_curr_par_str - Current
values of the application parameters").

max_wait_resources specifies the maximum conflict rate for user data locks
over the application run. The value is specified as an amount per thousand.
The counter is reset to 0.

If this value is reset then the values max_wait_system _resources,
nr_res_rqs_for_maxand nr_sys_res _rqs_for_max are also impicitly reset to 0.

max_wait_system_resources specifies the maximum conflict rate for system
resource locks (system locks) across the application run. The value is
specified as an amount per thousand.

The counter is reset to 0.

If this value is reset then the values max_wait_resources, nr_res _rqs_for_max
and nr_sys res rqs_for_max are also implicitly reset to 0.

365



openUTM V7.0. Administering Applications. User Guide.

Field name

nr_cache_rgs='0'

nr_cache_searches="0'

nr_res_rqgs_for_max='0'

nr_sys _res_rqs_for_max='0'

avg_saved_pgs by compr='0'

Specification

Number of buffer requests taken into account to calculate the value

cache wait_buffer.

The counter is reset to 0.

If this value is reset then the values cache_hit_rate, cache_wait_buffer and
nr_cache_searches are also implicitly reset to 0.

Number of search operations for UTM pages in the cache taken into account to
calculate the value cache hit rate.

The counter is reset to 0.

If this value is reset then the values cache hit rate, cache _wait_buffer and
nr_cache_rgs are also implicitly reset to 0.

Number of requests for transaction resources in the 100 second period during
which the maximum conflict rate max_wait_resources was reached.

The counter is reset to 0.

If this value is reset then the values max_wait_resources,
max_wait_system_resources and nr_sys _res _rqs_for_max are also implicitly
reset to O.

Number of requests for system resources in the 100 second period during which
the maximum conflict rate max_wait_system_resources was reached.

The counter is reset to 0.

If this value is reset then the values max_wait_resources,
max_wait_system_resources and nr_res_rqgs_for_max are also implicitly reset to
0.

Average value for the UTM pages saved per data compression.
The counter is reset to 0.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and

application parameters")

i If you wish to reset the statistical values listed above yourself, you should set MAX STATISTICS-MSG
=NONE in KDCDEF generation. This stops UTM resetting the counters to 0 at hourly intervals and
creating the statistics message K081.

366



openUTM V7.0. Administering Applications. User Guide.

Enabling/Disabling data compression

Field name Specification

data_compression="Y' | Data compression is enabled. For this purpose data compression must be permitted by
means of UTM generation, see openUTM manual “Generating Applications”, MAX DATA-
COMPRESSION=

data_compression='"N' | Data compression is disabled.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

367



openUTM V7.0. Administering Applications. User Guide.

11.2.9.20 obj_type=KC_DIAG_AND_ACCOUNT_PAR

Diagnostic functions are to be activated or deactivated. You must pass the data structure
kc _diag _and_account_par_strin the data area.

Possible modifications

® Activate or deactivate the ADMI trace function. The ADMI trace function logs all calls of the KDCADMI program

interface.
Field name Meaning
admi_trace="Y" The ADMI trace function is enabled.
admi_trace='N' The ADMI trace function is disabled.

All ADMI trace files are closed and can be analyzed. For more information, see also
openUTM manual "Messages, Debugging and Diagnostics”.

Period of validity / transaction management: Type IR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

It is also possible to enable the trace via the start parameters when the application is started, see openUTM
manual “Using UTM Applications”. The names of the trace files are also described there.

® Activate or deactivate BCAM trace for all connections to the application, i.e. for all:
® LTERM partners, LPAP partners
® USER
® MUX connections (only on BS2000 systems)

BCAM trace records all connection-related events.

Field name Meaning

bcam_trace="Y' The BTRACE function is activated for all connections.
When the BTRACE function is activated, each application process creates its own trace
file in which it records connection-related events.

bcam_trace='N' The BTRACE function is deactivated for all connections, even if it had previously only
been activated for specific LTERM, LPAP, MUX or USER.
If the BTRACE function is deactivated (for all LTERM, LPAP, MUX partners and
USERS), the trace files are closed and can be evaluated subsequently.
Trace file content and evaluation are described in the openUTM manual "Messages,
Debugging and Diagnostics”.

You can also activate or deactivate the BCAM trace LTERM-, LPAP-, MUX or USER-specifically. Use the object
types KC_LTERM ("obj_type=KC_LTERM"), KC_LPAP ("obj_type=KC_LPAP"), KC_MUX ("obj_type=KC_MUX
(BS2000 systems)") or KC_USER ("obj_type=KC_USER") for this purpose.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

The BCAM trace can be activated by means of start parameters when the application is started.

368



openUTM V7.0. Administering Applications. User Guide.

® Control the CPI-C trace function. The CPI-C trace function logs calls at the X/Open interface CPI-C.

Field name

cpic_trace="T'

cpic_trace='B'

cpic_trace='D'

cpic_trace="A’

cpic_trace='N'

Meaning

The CPI-C trace function is enabled with the level TRACE. The content of the input and
output parameters is output for each CPI-C function call.

Only the first 16 bytes are output from the data buffers. The return codes of the KDCS
calls to which the CPI-C calls are mapped are output.

The CPI-C trace function is enabled with the level BUFFER. This trace level includes the
TRACE level. However, the data buffers are logged in their full length.

The CPI-C trace function is enabled with the level DUMP. This trace level includes the
TRACE level and also writes diagnostic information to the trace file.

The CPI-C trace function is enabled with the level ALL. This trace level includes the
levels BUFFER, DUMP and TRACE.

The CPI-C trace function is disabled (OFF).
All CPI-C trace files are closed and can be analyzed. For more information, see also
openUTM manual “Creating Applications with X/Open Interfaces”.

Period of validity / transaction management: Type IR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

It is also possible to enable the CPI-C trace via the start parameters when the application is started, see
openUTM manual “Using UTM Applications”. The names of the trace files are also described there.

369



openUTM V7.0. Administering Applications. User Guide.

® Activate or deactivate OSI trace functions for all application OSI connections.

The OSI trace functions record all events occurring during distributed processing through OSI TP. The events
recorded are restricted to certain record types, i.e. to events relating to certain components.

It is not possible to deactivate logging for individual record types. If the trace is to be deactivated for individual
record types, it must first be completely deactivated (osi_trace='N') and then reactivated for those record types
that are still to be logged (appropriate specified values in osi_trace_records).

Field name Meaning

osi_trace="Y" The OSI trace function is activated for all record types.
When the OSI trace function is activated, each application process creates its own
trace file.

osi_trace="N' The OSI trace is deactivated for all record types.

All OSl trace files are closed and can be evaluated. See also openUTM manual ”
Messages, Debugging and Diagnostics”.

osi_trace_records[5] Activate the OSI trace function for certain record types.
Nothing further need be specified in the osi_trace field to activate the OSI trace.

Each field element of osi_trace records represents a record type:
1st field, record type “SPI"

2nd field, record type “INT"

3rd field, record type “OSS*

4th field, record type “SERV*

5th field, record type “PROT"

The meaning of the record types is summarized in chapter
"kc_diag_and_account_par_str - Diagnostic and accounting parameters".

To activate trace functions for certain record types, specify ‘Y' in the appropriate
field elements.

The call activates logging for the specified record types in addition to any log files
that may already exist.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

Tracing can be activated by means of start parameters when the application is started.

370



openUTM V7.0. Administering Applications. User Guide.

® Control the TX trace function. The TX trace function logs calls at the X/Open interface TX.

Field name
tx_trace='E'

tx_trace="'

tx_trace='F'

tx_trace='D'

tx_trace='N'

Period of validity / transaction management: Type IR ("KC_MODIFY_OBJECT - Modify object properties and

Meaning
The TX trace function is enabled with the level ERROR. Only errors are logged.

The TX trace function is enabled with the level INTERFACE. The level INTERFACE
includes the level ERROR, and all TX calls are also logged.

The TX trace function is enabled with the level FULL. The FULL level includes the
INTERFACE level. All KDCS calls to which the TX calls are mapped are also logged.

The TX trace function is enabled with the level DEBUG. The level DEBUG includes the
level FULL, and diagnostic information is also logged.

The TX trace function is disabled.
All TX trace files are closed and can be analyzed. For more information, see also
openUTM manual “Creating Applications with X/Open Interfaces”.

application parameters")

It is also possible to enable the TX trace via the start parameters when the application is started, see openUTM

manual “Using UTM Applications”. The names of the trace files are also described there.

371



openUTM V7.0. Administering Applications. User Guide.

® Control the XATMI trace function. The XATMI trace function logs calls at the X/Open interface XATMI.

Field name
xatmi_trace='E'

xatmi_trace="l'

xatmi_trace='F'

xatmi_trace='D'

xatmi_trace='N'

Meaning
The XATMI trace function is enabled with the level ERROR. Only errors are logged.

The XATMI trace function is enabled with the level INTERFACE. The level
INTERFACE includes the level ERROR, and all XATMI calls are also logged.

The XATMI trace function is enabled with the level FULL. The FULL level includes the
INTERFACE level. All KDCS calls to which the XATMI calls are mapped are also
logged.

The XATMI trace function is enabled with the level DEBUG. The level DEBUG includes
the level FULL, and diagnostic information is also logged.

The XATMI trace function is disabled.
All XATMI trace files are closed and can be analyzed. For more information, see also
openUTM manual “Creating Applications with X/Open Interfaces”.

Period of validity / transaction management: Type IR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

It is also possible to enable the XATMI trace via the start parameters when the application is started, see
openUTM manual “Using UTM Applications”. The names of the trace files are also described there.

372



openUTM V7.0. Administering Applications. User Guide.

® Activate and deactivate application test mode.

Test mode should only be activated to generate diagnostic documents. Internal UTM plausibility check routines
also run in test mode and internal TRACE data is recorded.

Field name Meaning
testmode="Y" Test mode is activated (ON).
testmode='N' Test mode is deactivated (OFF).

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

Test mode can be activated by means of start parameters when the application is started.

373



openUTM V7.0. Administering Applications. User Guide.

® You can create a diagnostic dump for defined messages/events.

You can define an event for which, on its occurrence, UTM generates a diagnostic dump which contains an
event-dependent ID. The prerequisite for this is that test mode must be activated (testmode="Y"). Test mode can
be activated and the event defined in a KC_MODIFY_OBJECT call. You can also define the event when test
mode is not activated. However, the diagnostic dump is only written on the occurrence of the event when test
mode is activated.

You can specify the following events:

® the output of a specific K or P message, possibly depending on the inserts in the message

® the occurrence of a specific KDCS return code (KCRCCC or KCRCDC) in a program unit run
® the occurrence of a specific SIGN status when a user signs on

The events are specified in kc_diag _and_accout _par_strin the data structure kc_dump_event_str, which
contains the data structure kc_insert_strin addition to the fields event_type and event.

Any message inserts which further restrict generation of the dump are defined in kc_insert_str. You can specify
up to three inserts. A dump is only generated if all the criteria for the message inserts specified in kc_insert_str

apply.

Data structure kc_dump_event_str

Field name Meaning
event_type[4] Type of event for which a UTM dump is to be generated:

MSG:K or P message

RCDC: Incompatible return code

RCCC: Compatible return code

SIGN: SIGNON status code

NONE: Explicit deactivation of an individual event

event[4] Message number, KDCS return code (CC or DC) or SIGNON status code, depending on
the event _type

Data structure kc_insert_str

Field name Meaning
value[64] value can be specified as follows, depending on value_type:

value_type=N: numeric, integers between 0 and 2311
value_type=C: alphanumeric, maximum of 32 characters
value_type=X: hexadecimal, maximum of 64 characters

UTM represents the string in a union of the type kc_value:
uni on kc_val ue

char x[ 64];

char c[32];

374



openUTM V7.0. Administering Applications. User Guide.

Field name Meaning
value_type value_type specifies how the contents of the field value are to be interpreted:
N: numeric

C:alphanumeric
X:hexadecimal

comp[2] Specifies whether the system is to test for equality or inequality. The possible values are EQ
(equality) or NE (inequality)
In the case of messages K023, K043, K061 or K062, UTM creates a UTM dump only once, namely when the
message next occurs. The message dump function is then automatically deactivated.
In the case of all other UTM message numbers, a UTM dump is created each time the specified event occurs.
This is done until the event is explicitly reset.

In the case of KDCS return codes or SIGNON status codes, the function is automatically deactivated after the
message dump has been generated.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

|:<::> KDCDIAG ("KDCDIAG - Switch diagnostic aids on and off")

375



openUTM V7.0. Administering Applications. User Guide.

® You can activate and deactivate the accounting and calculation phase of UTM Accounting.

See also the openUTM manual “Generating Applications” and the openUTM manual “Using UTM Applications
for information on accounting in UTM.

Field name Meaning

account="Y' Only on BS2000 systems: Activate the accounting phase .
UTM Accounting is always deactivated after a BS2000 accounting failure, even if BS2000
accounting is still available. UTM accounting must then be reactivated with account ='Y".

account="N' Deactivate the accounting phase (OFF).
calc="Y" Activate the calculation phase in UTM accounting (ON).
calc="N' Deactivate the calculation phase of UTM accounting (OFF).

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

After the application is started, the value set in ACCOUNT ACC= during KDCDEF generation applies.
® Activate or deactivate the event monitor KDCMON

See the openUTM manual “Using UTM Applications” in relation to event monitor KDCMON and the UTM tools for
evaluating the measured values (KDCEVAL).

Field Meaning
kdcmon="Y" Activate KDCMON (ON)
kdcmon='N' Deactivate KDCMON (OFF)

Period of validity / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

|:(::> KDCDIAG ("KDCDIAG - Switch diagnostic aids on and off") / KDCAPPL ("KDCAPPL - Change
properties and limit values for an operation™)

376



openUTM V7.0. Administering Applications. User Guide.

® Switch over the log files from the UTM application.

It is possible to switch over the log files for the application (SYSOUT and SYSLST or stderr and stdout) during
live operation. This allows you to avoid a disk bottleneck and permits evaluation and archiving of the log files
while the application is running.

Field name Meaning
sysprot_switch="Y" The log files are switched over.

Period of applicability / transaction management: type GA ("KC_MODIFY_ OBJECT - Modify object properties
and application parameters")

|:<::> KDCAPPL ("KDCAPPL - Change properties and limit values for an operation")

® Only on BS2000 systems: Enable or disable STXIT logging

Field name Meaning
stxit_log="Y" Enables Stxit logging.
stxit_log="N' Disables Stxit logging.

If STXIT logging is enabled, multiple KO99 messages are output to SYSOUT when an STXIT event occurs.

Period of applicability / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

|:<::> KDCDIAG ("KDCDIAG - Switch diagnostic aids on and off")

377



openUTM V7.0. Administering Applications. User Guide.

® Qutput debug information for the database connection.

You can specify the extent to which calls to the XA interface will be logged and the destination for such logging.

Field name Meaning

xa_debug="Y" Enables XA-DEBUG (ON).
Calls to the XA interface are logged.

xa_debug="A’ Extended XA-DEBUG (ALL).
Specific data areas are output in addition to the calls to the XA interface.
xa_debug='N' Disables XA-DEBUG (OFF).
xa_debug_out='S' Output to SYSOUT/stderr.
xa_debug_out="F' Output to a file.

If you use only the field xa_debug without providing a value for xa_debug_out, any value you specified in the
start parameter when starting the UTM application will be used (see openUTM Manual “Using openUTM
Applications”). Otherwise, the log is written to SYSOUT/stderr.

Period of applicability / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

Eé> KDCDIAG ("KDCDIAG - Switch diagnostic aids on and off")

378



openUTM V7.0. Administering Applications. User Guide.

11.2.9.21 obj_type=KC_MAX_PAR

Application parameters and maximum values for the application are to be modified. You must assign the data
structure kc_max_par_strin the data area.

Possible modifications

All the modifications described below can proceed in a single call.

® You can modify application maximum values, which were defined in the MAX statement during KDCDEF
generation. These modifications may affect application performance (see also "Performance check").

The following table shows which maximum values can be modified and the fields of the data structure
kc_max_par_strto which you must pass the new maximum values.

Field name

bretrynr[5]

cachesize_paging[3]

Meaning

Only on BS2000 systems:

Specify in bretrynr how often UTM is to attempt to pass a message to the
transport system (BCAM) if BCAM cannot immediately accept the message.
The selected value of bretrynr should not be too high because the process
attempting to the pass the message to BCAM is blocked for the duration of the
attempts.

For asynchronous messages to a dialog partner type of the ptype='"APPLI' (TS
application), bretrynr is not relevant (see bretrynr in chapter "kc_max_par_str -
Maximum values for the application (MAX parameters)")

Minimum value: '1'
Maximum value: '32767"

Specify in cachesize _paging the percentage of the cache which is to be written to
the KDCFILE in the event of a bottleneck so that the cache memory can be used
for other data.

UTM replaces at least 8 UTM pages out to cache in a single paging, even if the
value of cachesize_paging is smaller.

Minimum value: '0', i.e. 8 UTM pages are swapped out to cache
Maximum value: '100' (%)

Cache size is defined in the MAX statement during KDCDEF generation and can
be ascertained, for example, by using KC_GET_OBJECT for obj_type
=KC_MAX_PAR (cache_size pages).

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and

application parameters")

379



openUTM V7.0. Administering Applications. User Guide.

Field name Meaning

conn_users[10] By using conn_users you can prevent the application from being overloaded by too
many active users. To do this, specify in conn_users the maximum number of users or
clients that can currently be signed on to the UTM application.

The following situation applies in applications generated with user IDs:

® |f the number specified for conn_users is greater than the number of generated
users, conn_users has no effect.

® User IDs which have been generated with administration privileges can still sign on
to the UTM application after the maximum number of concurrent user IDs has been
reached.

The following situation applies in applications which are generated without user IDs:

® The number of dialog partners which can concurrently be connected to the UTM
application is restricted by conn_users.

® If the number specified for conn_users is greater than the number of generated
dialog LTERM partners, conn_users has no effect. Dialog LTERM partners are all
those LTERM partners entered with usage type='D', LTERM partners of the LTERM
pool and the LTERM partners created internally by UTM for multiplex connections.

If the number of simultaneously active users is not to be restricted or if a restriction is to
be cancelled, specify conn_users="0".

Minimum value: '0' (i.e. no restriction)

Maximum value: '500000'

On Unix, Linux and Windows systems, the maximum value may not exceed the value
generated in the generation parameter MAX ... CONN-USERS.

Period of validity / transaction management: type IR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

380



openUTM V7.0. Administering Applications. User Guide.

® You can define a new destination for the results of the KDCADM administration commands which were called by
KDCADM through asynchronous TACs.

Field name Meaning

destadm|8] Specify in destadm the new recipient for the results of KDCADM administration calls which
have been processed asynchronously (asynchronous KDCADM transaction codes). This
overwrites the old value of destadm.

You can specify the following for destadm:

® the name of an LTERM partner
® an asynchronous transaction code or

® aTAC queue

If you specify blanks for destadm no recipient is defined any longer. The results of the
asynchronous KDCADM transaction code then are lost.

Period of validity / transaction management: type GPD ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

® You can change the number of failed attempts which UTM allows before UTM triggers the silent alarm.

Field name Meaning

signon_fail Specify in signon_fail the number of unsuccessful sign-on attempts (security violations) from
a client following in immediate succession after which a “silent alarm” (K094-UTM message)
is triggered.

Minimum value: '1'
Maximum value: '100'

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

® You can activate or deactivate the supply of data to openSM2;

Field name Meaning

sm2="Y" UTM is to supply data to openSM2 for the purpose of monitoring performance data.
The supply of data can only be activated if it was not excluded at a general level during
KDCDEF generation (MAX statement operand SM2).

sm2="N' The supply of data to openSM2 is to be deactivated.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and
application parameters")

Some of the modifications can also be performed with the administration command KDCAPPL ("KDCAPPL
- Change properties and limit values for an operation").

381



openUTM V7.0. Administering Applications. User Guide.

11.2.9.22 obj_type=KC_TASKS_PAR

The values relating to the number of application processes can to be modified, i.e. the total number of processes,
maximum number of processes for processing asynchronous jobs and for processing program units with blocking
calls and the number of processes reserved for UTM-internal jobs and dialog jobs that do not belong to a TAC class.

You must assign the data structure kc_tasks_par_strin the data area.

Possible modifications

All the modifications described below can be made in a single call.

Field name

mod_max_tasks[3]

mod_max_asyntasks[3]

Meaning
Change the total number of processes running.

In this field you specify the maximum number of processes that are running
for the application. mod_max_tasks is a target value for the current number of
processes.

The number of actually active processes that currently process jobs of the
application is stored in the curr_tasks field (see kc_tasks _par_str as of
"kc_tasks_par_str - Number of processes"). This can differ from
mod_max_tasks for a short period at the startup or termination of a process.

Maximum value: the maximum value (tasks) defined in MAX at KDCDEF
generation
Minimum value: '1'

Modify the maximum number of processes that can process asynchronous
jobs simultaneously.

Specify in mod_max_asyntasks the maximum number of processes that can
simultaneously be used for asynchronous processing.

The number specified here serves as a upper limit value.

The actual maximum number of processes that can be used concurrently for
asynchronous processing (see kc_tasks par_stras of "kc_tasks par_str -
Number of processes", curr_max_asyntasks parameter) may be lower than
the value specified in mod_max_asyntasks, because the actual number is
limited by the number of processes of the application that are currently
running (curr_tasks).

Minimum value: '0'
Maximum value: the maximum value defined in MAX at KDCDEF generation (
asyntasks).

382



openUTM V7.0. Administering Applications. User Guide.

Field name

mod_max_tasks_in_pgwt[3]

mod_free_dial_tasks[3]

Meaning

Modifies the maximum number of processes which may simultaneously
process jobs for program units in which blocking calls are permitted.
Specify in mod_max_tasks _in_pgwt the maximum number of processes in
which program units that have blocking calls can run simultaneously.

The number specified here serves as a upper limit value.

The actual maximum number of processes processing program units with
blocking calls simultaneously (see kc_tasks par_str as of "kc_tasks par_str -
Number of processes", curr_max_tasks_in_pgwt parameter) may be lower
than the value specified in mod_max_tasks _in_pgwt because the actual
number must be at least 1 below the number of currently running processes
of the application (curr_tasks).

mod_max_tasks_in_pgwt='0" is rejected if the application contains transaction
codes or TAC classes with pgwt="Y".

Minimum value: ‘0’
Maximum value: the maximum value defined in MAX during KDCDEF
generation (tasks_in_pgwt).

This value can only be modified if a TAC-PRIORITIES statement was issued
during KDCDEF generation.

In mod_free_dial_tasks, you enter the number of processes in the application
reserved for UTM-internal jobs and for dialog jobs that do not belong to a
specific dialog TAC class.

This portion of the total percentage is then not available for processing jobs to
dialog TAC classes.

If mod_free dial _tasks >= mod_max_tasks after the process figures have
been modified, an application process may still process jobs to dialog TAC
classes.

Minimum value: '0'
Maximum value: value in tasks -1

Period of validity / transaction management: type A ("KC_MODIFY_OBJECT - Modify object properties and

application parameters")

E(::> KDCAPPL ("KDCAPPL - Change properties and limit values for an operation")

383



openUTM V7.0. Administering Applications. User Guide.

11.2.9.23 obj_type=KC_TIMER_PAR

Application timer settings are to be modified. You must enter the data structure kc_timer_par_str in the data area.

Possible modifications

The following table shows which timers can be modified. You can modify as many of these timers as you wish in a

single call.

Field name

conrtime_min[5]

pgwttime_sec|[5]

reswait_ta_sec|[5]

Meaning

Specify here the time in minutes after which UTM is to attempt to re-establish a lost
connection to a printer or a TS application. The precondition is that the connection
must previously have been established automatically by UTM (kc_pterm_str.
auto_connect="Y' or kc_lterm_str.plev > 0).

At conrtime_min="0' UTM makes no attempt to re-establish a lost connection.

Maximum value: '32767"
Minimum value: '0'

The maximum time in seconds which a program unit is to wait for the arrival of
messages after a blocking function call (e.g. PGWT).

During this waiting period, one process remains exclusively reserved by this
program unit.

Maximum value: '32767"
Minimum value: '60'

The maximum time in seconds which a program unit is to wait for a device currently
being used by another transaction.

reswait_ta_sec='0' means that the program unit does not wait. A program unit run
wishing to access a reserved device immediately receives an appropriate return
code.

Maximum value: '32767"
Minimum value: '0'

384



openUTM V7.0. Administering Applications. User Guide.

Field name Meaning

reswait_pr_sec[5] The maximum time in seconds which UTM is to wait for a device currently being
used by another process. If this time is exceeded, the application terminates with a
UTM error message.
It should be noted that the value of reswait_pr_sec must be as long as the longest
(real time) processing time for the following cases:

® In TS applications that are not SOCKET applications (clients with
PTYPE=APPLI) the devices are locked for the duration of a processing stage,
including a VORGANG exit at the beginning and/or end of the service.

® Atthe end of the service, the devices are reserved for as long as the VORGANG
exit program is running.

Minimum value: '300', Maximum value: '32767'
If you specify a value of < 300, the call is rejected.

termwait_in_ta_sec[5] The maximum time in seconds in a multi-step transaction (i.e. in the PEND KP
program) which may elapse between an output to a dialog partner and the
subsequent dialog response.

If the time termwait_in_ta_sec is exceeded, the transaction is rolled back.
The devices reserved by the transaction are released. The connection to the partner
is shut down.

Maximum value: '32767"
Minimum value: '60'

logackwait_sec|[5] Only on BS2000 systems:
The maximum time in seconds which UTM is to wait for a logical print confirmation
from the printer or a transport confirmation for an asynchronous message to another
application (created using the KDCS call FPUT).
If the confirmation does not arrive after this time, e.g. due to a printer being out of
paper, UTM shuts down the logical connection to the device.

Minimum value: '10'
Maximum value: '32767"

385



openUTM V7.0. Administering Applications. User Guide.

Field name

Meaning

The following timers are relevant only in the context of UTM applications with distributed processing via LU 6.1 or

OSI TP.

conctimel_sec[5]

conctime2_sec[5]

ptctime_sec|[5]

The time in seconds for monitoring the setup of a session (LU6.1) or association
(OSI TP). If the session or association is not established within the specified time,
UTM shuts down the transport connection to the partner application.

conctimel_sec='0' means:

® for LUG.1 connections: session setup is not monitored (UTM will wait indefinitely).

® for OSI TP connections: UTM waits up to 60 seconds for an association to be set
up.

Minimum value: '0'
Maximum value: '32767'

The maximum waiting time in seconds for a confirmation from the recipient when
transferring an asynchronous message. Once the time conctime2_sec has expired,
UTM shuts down the transport connection. The asynchronous job is not lost, but
remains in the local message queue.

conctime2_sec = '0' means that monitoring is not performed.

Minimum value: '0'
Maximum value: '32767'

This timer is relevant only in the context of distributed processing via LU6.1
connections. ptctime_sec defines the maximum time in seconds which a local job-
receiving service will wait in the PTC state (prepare to commit, transaction status P)
for a confirmation from the job-submitting service.

When the time expires, the connection to the job submitter is shut down, the
transaction in the job-receiving service is rolled back and the service terminated.
This may possibly result in a mismatch.

If KDCSHUT WARN or GRACE has already been issued for the application and the
value of ptc_time_sec is not 0, then the waiting time is chosen independently of
ptc_time_sec in such a way that the transaction is rolled back before the application
is terminated in order to avoid abnormal termination of the application with ENDPET
if possible.

ptctime_sec ='0' means that UTM waits indefinitely for a confirmation.

Minimum value: '0'
Maximum value: '32767"

See also "kc_timer_par_str - Timer settings” for further information.

Period of validity / transaction management: type GIR ("KC_MODIFY_OBJECT - Modify object properties and

application parameters")

386



openUTM V7.0. Administering Applications. User Guide.

The modifications do not take effect on timers which are already running; they only apply to timers started after the
modification.

Some of the modifications can also be performed with the administration command KDCAPPL ("KDCAPPL
- Change properties and limit values for an operation").

387



openUTM V7.0. Administering Applications. User Guide.

11.2.9.24 Return codes

In addition to the return codes listed in section "Return codes", the following codes can also occur. Some of these
return codes may occur independently of the specified object type; others occur only for certain object types.

Type-independent return codes:

Main code = KC_MC_DATA_INVALID

Information is missing from the data structure in the data area or a field contains an invalid value.
Subcodes:
KC_SC_DATA_MISSING

Data is missing from the data structure. Possible causes:

® The field to be modified was not specified.

® Several fields must be specified together for the requested modification, and one of these values is
missing (e.g. obj_type=KC_TPOOL.: state and state_number).

KC_SC_INVALID_MOD
A field in the data structure which can be modified was completed with an invalid value.

KC_SC_NOT_NULL

A field in the data structure which cannot be modified was not completed with binary zero.

Main code = KC_MC_REJECTED_CURR
The call cannot be processed at the present time.
Subcode:

KC_SC_INVDEF_RUNNING

An inverse KDCDEF is currently running and configuration data cannot be changed during the run.

Main code = KC_MC_NOT_EXISTENT

No object of the type specified in obj_type exists under the name or name triplet passed in the identification
area.

Subcode:

KC_SC_NO_INFO

Main code = KC_MC_DELETED
The specified object has been deleted. Its properties cannot be modified.

Subcode:

KC_SC_NO_INFO

388



openUTM V7.0. Administering Applications. User Guide.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_NOT_GEN

No explicitly generated object of the object type specified in obj_type exists. Implicitly generated objects
might, however, exist, e.g. user IDs for clients with ptype="APPLI'".

KC_SC_JCTL_RT_CODE_NOT_OK

Only in UTM cluster applications:
An internal UTM error occurred during the global modification of an object.
Please contact system support.

KC_SC_NO_CLUSTER_APPLI

This action is only possible in a UTM cluster application.

KC_SC_NO_GLOB_CHANG_POSSIBLE

No global administration changes are possible since the generations of the node applications are not
consistent at present.

KC_SC_NOT_ALLOWED_IN_CLUSTER

The administration action is not permitted in a UTM cluster application.

Main code = KC_MC_RECBUF_FULL
The buffer with recovery information is full (see KDCDEF control statement MAX, operand RECBUF).

Subcode:

KC_SC_NO_INFO

389



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type=KC_CLUSTER_NODE:

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_CCFG_NO_CLUSTER_APPLI

The specified application is not a UTM cluster application

KC_SC_CCFG_FILE_NOT_OPEN

Internal UTM error.
Please contact system support.

KC_SC_CCFG_RT_CODE_NOT_OK

Modification was not performed. Possible cause, e.g. timer expired.
KC_SC_CCFG_FILE_LOCK_ERROR

Cluster configuration file is locked.
KC_SC_CCFG_FILE_READ_ERROR

Error reading the cluster configuration file.

KC_SC_CCFG_FILE_WRITE_ERROR

Error writing the cluster configuration file.

KC_SC_CCFG_INVALID_BUFFER_LTH

Internal UTM error.
Please contact system support.

KC_SC_CCFG_INVALID_NODE_INDEX

Internal UTM error.
Please contact system support.

KC_SC_CCFG_INVALID_NODE_STATE

Invalid node application status.
Note: You may not make any modifications for a running node application.

KC_SC_CCFG_INVAL_FILEBASE_NAME

Base name of UTM cluster invalid.

KC_SC_CCFG_INVALID_HOSTNAME

The host name is invalid.

390



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type = KC_DB_INFO:

Maincode = KC_MC_REJECTED
The call was rejected by UTM.
Subcode:
KC_SC_NOT_GEN
No database is generated for the application.
KC_SC_INVALID_TYPE
The database selected in the identification area is not an XA database.
KC_SC_NO_INFO

Internal error in UTM when encoding the new password.

Maincode = KC_MC_NOT_EXISTENT
The object specified in the identification area does not exist.

Subcode:

KC_SC_NO_INFO

Return codes for obj_type=KC_KSET:

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_ALLOWED

It is not permissible to modify the KDCAPLKS or MASTER key set.

391



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type=KC_LOAD_MODULE (program exchange):

Main code = KC_MC_REJECTED CURR

The call cannot be processed at the present time.
Subcode:
KC_SC_CHANGE_RUNNING

A program exchange is running.

Main code = KC_MC_REJECTED
The call was rejected by UTM.
Subcodes:

KC_SC_NOT_CHANGEABLE

The load module / shared object / DLL specified in the identification area is not interchangeable.
Possible reasons include, for example:

® the load module has the load mode STATIC.

* the load module contains TCB entries.

KC_SC_SAME_VERSION

load_mode ! ='U' (not STARTUP):
The currently loaded version of the load module was specified in version.

KC_SC_LMOD_NOT_EXISTENT (only on BS2000 systems)
No module with the specified version could be found in the library.
KC_SC_INVALID_VALUE (only on BS2000 systems)

The load module is generated with LOAD-MODE=POOL, (POOL,STARTUP) or (POOL,ONCALL) and with
version *HIGHEST-EXISTING, but in version was specified a value not equal *HIGHEST-EXISTING.

Return codes for obj_type=KC_LPAP:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_CONNECTED

state ='N": There is a connection to the partner application. The partner application thus cannot be disabled.

Before the partner application is disabled, all connections to it must be shut down.

KC_SC_NOT_ALLOWED

392



openUTM V7.0. Administering Applications. User Guide.

Possible causes:

® you have attempted to establish a connection to a disabled partner application (state = 'N') with
connect_mode ="'Y', or

® you have set state = 'N' together with connect_mode ='Y', or

® you have specified connect_mode and quiet_connect together, or

® the value specified in bcam_trace is not permissible.

KC_SC_NOT_EXISTENT

The specified object does not exist.

393



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type=KC_LSES:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_ALLOWED
Possible causes:

® The combination of the specified modifications is not permitted, i.e. both connect_mode and
quiet_connect were set.

® There is no connection to the partner application and it is not possible to establish one because the LPAP
partner of the partner application is disabled. The LPAP partner must first be enabled in a separate
transaction.

KC_SC_INVALID_CON

The connection specified by (con, pronam, bcamappl) is invalid. It does not exist or is intended for another
partner application (LPAP partner).

KC_SC_CONNECTED

A connection to be established was specified in (con, pronam, bcamappl). However, the session already has
another connection.

Maincode = KC_MC_NOT_EXISTENT
The specified object does not exist.

Subcode:

KC_SC_NO_INFO

No LU6.1 connection was created or generated.

Return codes for obj_type=KC_LTAC:

There are no type-specific return codes for KC_LTAC.

394



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type=KC_LTERM:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_POOL_LTERM

The LTERM partner specified in the identification area belongs to an LTERM pool. The requested
modification is not permissible for this LTERM partner.

KC_SC_NO_PTERM

connect_mode ="'Y' was set:

UTM cannot establish a connection because no client/printer is currently assigned to the LTERM partner or

the associated client/printer is disabled.

KC_SC_NOT_ALLOWED

Possible causes:

an attempt was made to define a start format for an LTERM partner with usage type='0".
format_attr='E' (#format) was specified, but no sign-on service is defined.
an inadmissible value was specified in bcam_trace.

The replacement of two master LTERMs was rejected because one of the LTERMs is not a master
LTERM or the same master was specified for both. The replacement of two master LTERMs is not
permitted in a UTM cluster application.

KC_SC_NO_FORMAT_ALLOWED

Values specified in format_name and format_attr (modifying the start format) are not permitted as no
formatting system has been generated for the application.

KC_SC_INVALID_ALIAS

The primary LTERM is itself an alias LTERM.

KC_SC_INVALID_ALIAS_CTERM

The primary LTERM is a CTERM.

KC_SC_INVALID_ALIAS_BUNDLE

The primary LTERM is a slave LTERM in an LTERM bundle.

KC_SC_ALIAS_STATE_ILL

The primary LTERM has been generated with RESTART=NO or QAMSG=NO.

395



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type=KC_MUX (BS2000 systems):

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_CONNECTED

state='N'": There is a connection to the multiplex connection. It therefore cannot be disabled.
connect_mode ="'Y": There is already a connection to the multiplex connection.

KC_SC_NOT_ALLOWED

You have tried to establish a connection to a disabled multiplex connection, or the value specified in
bcam_trace is not permitted.

Return codes for obj_type=KC_OSI_CON:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_CONNECTED

There is a connection to the partner application. It is only possible to switch to a replacement connection if
no active association to the partner application currently exists.

396



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type=KC_OSI_LPAP:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_CONNECTED

Specified value state = 'N': a connection to the partner application exists. The OSI-LPAP partner of the
partner application therefore cannot be disabled. All connections to the partner application must be shut
down before the disable operation.

KC_SC_NOT_ALLOWED
Possible causes:

® you have attempted to establish a connection (connect_number>0) to a disabled partner application (OSI-
LPAP partner) or to a partner application for which no connection is set to active (see kc_osi_con_str field
active)

® you have set state = 'N' together with connect_number, or
® you have set state = 'N' together with quiet_connect, or

® you have set quiet_connect together with connect_number.

397



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type=KC_PTERM:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_ALLOWED
Possible causes:

® an attempt was made to establish a connection to a disabled client/printer, or
® connect_mode = 'R' is not permitted for the client specified in the identification area, or
* the fields lterm and connect_mode were specified together.

® state ='N'and auto_connect = 'Y' were specified together.

KC_SC_POOL_PTERM

The requested modification is not permitted for clients connected via an LTERM pool.

KC_SC_UPIC_PTERM

The requested madification is not permitted for clients with ptype="UPIC-R' or 'UPIC-L' (on Unix, Linux and
Windows systems).

KC_SC_TTY_PTERM (only on Unix, Linux and Windows systems)

The requested modification is not permitted for a terminal (ptype="TTY").

KC_SC_MUX_DIS_PENDING (only on BS2000 systems)

The specified client is connected to the application via a multiplex connection and the session is in the state
DISCONNECT PENDING.

An attempt was made either to establish or shut down the session (connect_mode=Y" or 'N') or to release
the session explicitly while the timer was still running (connect_mode='R").

KC_SC_LTERM_NOT_EXISTENT

The client/printer assignment to the LTERM partner cannot be modified as the LTERM partner specified in
Iterm does not exist.

KC_SC_LTERM_DEL

The client/printer assignment to the LTERM partner cannot be modified as the LTERM partner specified in
Iterm has been deleted.

KC_SC_LTERM_NOT_ALLOWED

The client/printer assignment to the LTERM partner cannot be modified.
Possible causes:

® The LTERM partner specified in lterm belongs to an LTERM pool.

398



openUTM V7.0. Administering Applications. User Guide.

® The specified LTERM partner has been configured for connection to a client with ptype="UPIC-..." and
cannot be assigned to any other client.

* KDCMSGLT was specified in fterm. KDCMSGLT is generated internally by UTM for the event service
MSGTAC. It cannot be assigned to any client/printer.

KC_SC_CONNECTED

The client/printer assignment to the LTERM partner cannot be modified.
Possible causes:
® The client/printer which is to be assigned to the LTERM partner is currently connected to the application.

® A client which is connected to the application is currently assigned to the LTERM partner.
The old assignment of the LTERM partner cannot be cancelled as one of the two clients is entered as a
dialog partner (usage_type='D").

KC_SC_OUT_PTERM_DIAL_LTERM

The name of an output medium (usage_type='0") was stated in the identification area, but the LTERM
partner specified in /term is configured as a dialog partner.
An output medium cannot be assigned to a dialog LTERM partner.

KC_SC_DIAL_PTERM_TO_BUNDLE

The new client/printer assignment to the LTERM partner cannot be created.
The name of a dialog partner (usage _type='D'") was passed in the identification area, but the LTERM partner
specified in lterm belongs to a printer pool.

KC_SC_PTYPE_APPLI

The new client/printer assignment to the LTERM partner cannot be created.

The name of a client having ptype="APPLI' or 'SOCKET' was specified in the identification area.

The LTERM partner specified in /term is not suitable for this client because no user ID has been generated
for the LTERM partner.

KC_SC_PTERM_WITHOUT_CID

The new client/printer assignment to the LTERM partner cannot be created.
The specified LTERM partner is assigned to a printer control LTERM, but no printer ID (CID) has been
defined for the specified printer.

KC_SC_CID_AMBIGUOUS

The new client/printer assignment to the LTERM partner cannot be created.
The specified LTERM partner is assigned to a printer control LTERM, but the printer ID defined for the
specified printer is not unambiguous at the level of the printer control LTERM.

KC_SC_NO_LTERM

connect_mode ="'Y" is not permitted: no LTERM partner is assigned to the specified client/printer, so no
connection can be established.

KC_SC_INVALID_PROTOCOL_USAGE

399



openUTM V7.0. Administering Applications. User Guide.

PTYPE and protocol cannot be combined.

KC_SC_BUNDLE_NOT_ALLOWED

It is not possible to make the new assignment between the client and the LTERM partner because the
LTERM partner belongs to an LTERM bundle.

KC_SC_GROUP_NOT_ALLOWED

It is not possible to make the new assignment between the client and the LTERM partner because the
LTERM partner belongs to an LTERM group.

KC_SC_NOT_ALLOWED_IN_CLUSTER

This function is not permitted in a UTM cluster application, e.g. KDCSWTCH or replacement of two bundle
masters

400



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type=KC_TAC:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcode:

KC_SC_NOT_ALLOWED

Possible causes:

An attempt was made to modify state and to reset statistics values at the same time.

It is possible that an attempt was made to modify the lock code and access_list parameters.
It is not permitted to modify access_listif lock_code is generated.

It is not permitted to modify access_listin the case of the TACs KDCBADTC, KDCMSGTC and
KDCSGNTC.

An attempt was made to disable KDCTAC.

A TAC generated with the NEXT property should be disabled with state="N'. This is not permissible.

Disabling it has no effect.

In the case of a TAC that is not of the type 'Q’, an attempt was made to modify 'q_read_acl' or
'q_write_acl'.

An attempt was made to set dead_letter g = "Y' for an interactive or asynchronous TAC with
CALL=NEXT or for a KDCDLETQ or KDCMSGTC TAC.

KC_SC_INVALID_READ_ACL

The key set specified in g_read_acl does not exist.

KC_SC_INVALID_WRITE_ACL

The key set specified in g_write_acl does not exist.

KC_SC_INVALID_ACL

The key set specified in access_list does not exist.

KC_SC_READ_ACL_DEL

The key set was deleted.

KC_SC_WRITE_ACL_DEL

The key set was deleted.

Return codes for obj_type=KC_TACCLASS:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

401



openUTM V7.0. Administering Applications. User Guide.

KC_SC_NOT_ALLOWED

® An invalid number of processes was specified in tasks or tasks_free.
® Both tasks and tasks_free were specified.

KC_SC_NOT_CHANGEABLE

tasks and tasks_free cannot be modified because the application was generated with priority control (TAC-
PRIORITIES).

Return codes for obj_type =KC_TPOOL:

There are no type-specific return codes for KC_TPOOL.

402



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type=KC_USER:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_TOO_SIMPLE

The requested password change was not performed as the new password is not of the complexity level (
protect_pw_compl) defined for the user ID.

KC_SC_OLD_PW

The requested password change was not performed as the old password was specified in password16 and
a limited period of validity is defined in the user ID for the password (protect_p-w_time! ='0"). The old
password cannot be specified as the new password for this user ID.

KC_SC_NOT_ALLOWED

The requested modification was not performed. Possible causes:

state='N'": you have attempted to disable a user ID that has administration privileges (permit="A" or 'B").

you have attempted to modify a user ID which is assigned to a client having ptype="APPLI', 'SOCKET' or
'UPIC-...".

you have attempted to modify the user ID KDCMSGUS which UTM has generated internally for the event
exit MSGTAC.

you have specified format_attr='E' (#format), but no sign-on service has been defined.
It is only permitted to enable or disable the BCAM trace if the BTRACE module is set to SELECT mode.

KC_SC_NO_FORMAT_ALLOWED

It is not permitted to specify information in format_name and format_attr (modifying the start format), as no
formatting system has been generated for the application.

KC_SC_INVALID_READ_ACL

The key set specified in g_read_acl does not exist.

KC_SC_INVALID_WRITE_ACL

The key set specified in g_write_acl does not exist.

KC_SC_READ_ACL_DEL

The referenced key set was deleted.

KC_SC_WRITE_ACL_DEL

The specified key set was deleted.

KC_SC_KSET_DEL

403



openUTM V7.0. Administering Applications. User Guide.

The referenced key set was deleted.
KC_SC_KSET_NOT_EXISTENT
The specified key set does not exist.

KC_SC_INVALID_PRINCIPAL (only on BS2000 systems)

Error on sign-on with principal.

Return codes for obj_type=KC_CLUSTER_PAR:

Maincode = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_CCFG_NO_CLUSTER_APPLI
The application is not a UTM cluster application.
KC_SC_CCFG_RT_CODE_NOT_OK

Modification was not performed.
Internal UTM error.
Please contact system support.

KC_SC_CCFG_FILE_LOCK_ERROR

Cluster configuration file is locked.

KC_SC_CCFG_FILE_WRITE_ERROR

Error writing the cluster configuration file.

KC_SC_CCFG_FILE_READ_ERROR

Error reading the cluster configuration file.

KC_SC_INVALID_BUFFER_LTH

Internal UTM error.
Please contact system support.

KC_SC_CCFG_FILE_NOT_OPEN

Internal UTM error.
Please contact system support.

Return codes for obj _type=KC_DIAG_AND_ACCOUNT:

Main code = KC_MC_REJECTED

404



openUTM V7.0. Administering Applications. User Guide.

The call was rejected by UTM.

Subcodes:

KC_SC_NOT_AVAILABLE

The event monitor KDCMON cannot be activated. It is not available.
KC_SC_KDCMON_ERROR

Possible causes:

® The KDCMON sub system was not started

* The KDCMON event monitor was not started or has been terminated in the meantime.

KC_SC_NOT_GEN

The OSI trace is to be activated although no objects have been generated for distributed processing through
OSI TP.

KC_SC_SYSPROT_SWITCH_RUNNING

A log file is currently in the process of being switched over to the next log file. It is therefore not possible to
execute a new switchover command.

KC_SC_TRCFILE_HANDLING_RUNNING

Trace files are currently being opened or closed, with the result that it is not possible to modify the trace
settings at present.

405



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type=KC_MAX_PAR:

Main code = KC_MC_REJECTED
The call was rejected by UTM.
Subcodes:
KC_SC_NOT_GEN
Data supply to openSM2 was not generated, i.e. it cannot be activated or deactivated.
KC_SC_NOT_AVAILABLE
openSM2 is currently unavailable.
KC_SC_NOT_ALLOWED

An invalid destination was specified when modifying destadm (recipient of results from KDCADM
asynchronous TACs). Possible causes:

® an LTERM partner which has been disabled or deleted was specified in destadm.
® atransaction code which has been disabled or deleted was specified in destadm.

® adialog TAC was specified in destadm, but only an asynchronous TAC or an LTERM partner may be
specified as the recipient.

®* an LTERM partner was specified in destadm to which a client of the type UPIC _... is assigned.

KC_SC_NOT_EXISTENT

Invalid information in destadm. The specified name belongs neither to an LTERM partner nor to a
transaction code.

Return codes for obj_type=KC_TASKS_PAR:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_NOT_ALLOWED

® The number of processes specified in mod_max_tasks, mod_max_asyntasks or mod_max_tasks_in_pgwt

is greater than the value generated in the KDCDEF statement MAX.

®* mod_max_tasks_in_pgwt="0"is not allowed, since the application allows blocking call, i.e. transaction
codes or TAC classes with pgwt="Y"' were generated.

406



openUTM V7.0. Administering Applications. User Guide.

Return codes for obj_type=KC_TIMER_PAR:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_NO_UTMD

An attempt was made to set a timer for distributed processing through LU6.1 or OSI TP, although no objects
have been generated for distributed processing.

407



openUTM V7.0. Administering Applications. User Guide.

11.2.10 KC_ONLINE_IMPORT - Import application data online

In a UTM cluster application (Unix, Linux and Windows systems), following the normal termination of a node
application, another running node application can import messages to LTERMs, (OSI) LPAPs, asynchronous TACs,
TAC queues and open asynchronous services from the terminated node application provided that its KDCFILE
comes from the same generation run. The imported data is deleted in the terminated node application. Prior to
import, a check is performed to determine whether an online import is running. If it is, the new import is rejected.
Online import is only possible in UTM-S applications. Open asynchronous services are not imported if the service
contains database transactions with SESAM/SQL.

Execution / period of validity / transaction management / clusters

KC_ONLINE_IMPORT initiates the online import of the application data, i.e. an online import job is generated.
When control returns to the program unit, the online import has not yet been performed. Online imports are not
subject to transaction management. It cannot be rolled back by a subsequent RSET call in the same transaction.
Online import is performed by a process in the application.

When the job has been processed, UTM issues a message informing you of the success or failure of the online
import. If the import was successful but it was not possible to import all the data due to a temporary resource
bottleneck, another online import can be run to import the outstanding data into another node application or, once
the bottleneck has been cleared, into the same node application.

This function is only permitted in cluster operation. The online import operation is performed in the node application
in which the call is made.

408



openUTM V7.0. Administering Applications. User Guide.

Parameter settings
Parameter area

Field name Contents
version KC_ADMI_VERSION_1
retcode KC_RC_NIL
version_data KC_VERSION_DATA 11
opcode KC_ONLINE_IMPORT
subopcodel | KC_ALL
id_lIth 0
select_lth 0
data_lth Length of the data structure

Identification area

Selection area

Data area

Data structure

Data returned by UTM
Parameter area
Field name Content

retcode Return codes

409



openUTM V7.0. Administering Applications. User Guide.

subopcodel

With subopcode1=KC_ALL, you specify that all messages, i.e. messages to (OSI) LPAPs, asynchronous
TACs, TAC queues and open asynchronous services are to be imported.

data_lth
In data_Ith, you enter the length of the data structure in the data area.
Data area

Specify the data structure kc_online_import_strin the data area.

In kc_online_import_str, specify the number of the node from which the application data is to be imported.

The data structure kc_online_import_stris defined as follows.

struct kc_online_import_str

char inport_node[4];

The field in the data structure has the following meaning:
import_node

Number of the node from which the application data is to be imported.

410



openUTM V7.0. Administering Applications. User Guide.

retcode

openUTM indicates the return code from the call in the retcode field. Alongside the return codes listed in
section "Return codes", the following return codes may also occur:

Maincode = KC_MC_REJECTED
The call was rejected by openUTM.
Subcode:
KC_ONLINE_IMPORT_RUNNING
An attempt has been made to start an online import while an online import is already running.
KC_SC_CCFG_INVALID_NODE_INDEX

The number of the node application from which the application data is to be imported is invalid. The
number is either the number of the local node application or a number that does not belong to the UTM
cluster application.

KC_SC_CCFG_INVALID_NODE_STATE

The node application from which the application data is to be imported has a status that is not valid for
online imports. An invalid status means that the node application

® has either never been started, or
® has been terminated abnormally, or

® s not running

Maincode = KC_MC_NOT_EXISTENT

The number of the node application from which the import is to be performed lies outside of the valid
range of values from 1 to 32.

Subcode:

KC_SC_NO_INFO

411



openUTM V7.0. Administering Applications. User Guide.

11.2.11 KC_PTC_TA - Roll back transaction in PTC state

KC_PTC_TA rolls back a transaction that is in the state PTC (prepare to commit).

The transaction’s identification data consists of a triad of elements: the service index, service number and
transaction number. You can obtain this data by first issuing a KC_GET_OBJECT call with operation code KC_PTC.

Execution / period of validity / transaction management / cluster
This call rolls back the local element of a distributed transaction.

The distributed transaction itself cannot be be rolled back using the administration capabilities. Only the local
element of such a transaction can be rolled back. This type of administrative rollback is a heuristic decision
concerning the result of the transaction and may in certain cases lead to inconsistencies in the distributed data
stock if the distributed transaction is committed by the Commit Coordinator.

412



openUTM V7.0. Administering Applications. User Guide.

Parameter settings

Parameter area

Field name Content
version KC_ADMI_VERSION 1
retcode KC_RC_NIL

version_data =~ KC_VERSION_DATA_11
opcode KC_PTC_TA

subopcodel KC_ROLLBACK

id_lIth 25
select_lth 0
data_lth 0

Identification area
Triad with the transaction’s identification data

Selection area

Data area

Data returned by UTM
Parameter area
Field name Content

retcode Return codes

413



openUTM V7.0. Administering Applications. User Guide.

subopcodel

With subopcode1=KC_ROLLBACK, you specify that the transaction is to be rolled back.
id_lth

You specify the length of the data structure kc_ptc _id_strin the id_[th field.
Identification area

In the identification area, you specify the data structure kc_pct id_str.

kc_ptc_id _str must be filled with the values returned by the call KC_GET_OBJECT with operation code
KC_PTC in the structure ptc_ident. ptc_identis present in the data structure kc_ptc_str, see "kc_ptc_str -
Transactions in PTC state". The data structure kc_ptc_id_stris defined as follows.

struct kc_ptc_id_str

char vg_i ndx[ 10];
char vg_nr[10];

char ta_nr_in_vg[5];

vg_indx is the index of the service, vg_nrthe number of the service and ta_nr_in_vg the number of the
transaction in the service.

414



openUTM V7.0. Administering Applications. User Guide.

retcode

openUTM returns the return code for the call in the retcode field. Alongside the return codes listed in section
"Return codes", the following return codes may also occur

Maincode = KC_MC_REJECTED
The call was rejected by openUTM.

Subcode:

KC_SC_NO_MORE_PTC

The transaction is no longer in the PTC state.

KC_SC_END_TA_ALREADY_INITIATED

The termination of the transaction has already been initiated. There may be the following reasons for
this:

Maincode = KC_MC_REJECTED
The call was rejected by openUTM.
Subcode:

® The partner of the distributed transaction that determines the result of the transaction (Commit
Coordinator) has initiated the termination of the transaction

® The termination of the transaction has been initiated by the administration functions.

KC_SC_PARTNER_CONNECTED

The connection has been established to the partner of the distributed transaction that determines the
result of the transaction (Commit Coordinator). This initiates termination of the transaction.

415



openUTM V7.0. Administering Applications. User Guide.

11.2.12 KC_SEND_MESSAGE - Send message (BS2000 systems)

Using KC_SEND_MESSAGE, you can send a message to one or more or all active terminals of a UTM application
on a BS2000 system. The message text may be up to 74 characters in length and it is passed to UTM in the data
area. UTM then sends the message as UTM message K023 with the specified message as an insert. By default,
the message is output in the system line on the terminal. However, the message destination of message K023 can
also be changed. If the message destination PARTNER is selected for the UTM message K023 (see the openUTM
manual "Messages, Debugging and Diagnostics”), you can also send the message to one or more or all connected
TS applications. The message only goes to dialog partners (LTERM with USAGE=D).

Using KC_SEND_MESSAGE, you can:

® send a message to all terminals currently connected to the application. This also applies to terminals connected
to the application via an LTERM pool.

® send a message to all TS applications connected to the UTM application, provided the message destination
PARTNER is generated for KO23.

® send a message to a certain terminal user or, provided the message destination PARTNER is generated, to a
specific TS application. In this case, you must specify in the identification area the name of the LTERM partner
via which the terminal is connected to the application. The precondition for delivery of the message is that the
terminal must be connected to the application at the time the KC_SEND_MESSAGE call is issued.

If you want to send a message to a certain user, you can ascertain the LTERM partner through which the user is

signed on to the application in the following manner:

First, using KC_GET_OBJECT, request information about the user ID under which the user has signed on to the

application (object type KC_USER).

UTM then returns the properties of the user ID in the data structure kc_user_str. If, at the time of the request, the

user is connected to the application, the field lterm_curr contains the name of the LTERM partner through which

the user is signed on. This is the name which you pass in the identification area when sending the message with

KC_SEND_MESSAGE.

Execution / transaction management

A KC_SEND_MESSAGE call is not subject to transaction management. It cannot be rolled back by an RSET in the

same transaction.

If you do not specify a recipient in the identification area and the parameter area to number=0, UTM identifies all
currently active LTERM partners entered with usage type='D' and sends them the message. The message will
already have been sent when control is returned to the program unit.

If you specify the name of an LTERM partner in the identification area and set the parameter area to number=1,
successful processing of the KC_SEND_MESSAGE call means that the message has been sent to this LTERM
partner. If the LTERM partner cannot currently be reached, UTM returns an appropriate return code.

[§> KDCSEND ("KDCSEND - Send a message to LTERM partners (BS2000 systems)")

416



openUTM V7.0. Administering Applications. User Guide.

Data to be supplied

Function of the call Data to be entered in the
parameter area ! identification area | selection data area
area
Send message to all active LTERM obj_number. 0 e e Message
partners
Send message to one LTERM partner | obj_number. 1 Name of LTERM e Message
partner

1 The operation code KC_SEND_MESSAGE must always be specified in the parameter area.
Parameter settings
Parameter area
Field name Content
version KC_ADMI_VERSION_1
retcode KC_RC_NIL
version_data KC_VERSION_DATA 11
opcode KC_SEND_MESSAGE
obj_number | 1/0
id_Ith Length of object name / 0
select_lth 0
data_lth Length of message
Identification area
Object name / —

Selection area

Data area

Message

KDCADMI call

KDCADMI (&parameter_area, &identification_area, NULL, &data_area) or
KDCADMI (&parameter_area, NULL, NULL, &data_area)

417



openUTM V7.0. Administering Applications. User Guide.

Data returned by UTM
Parameter area
Field name Content

retcode Return codes

obj_number

Specify in obj_number whether the message is to be sent to all currently active LTERM partners or only to a
specific LTERM patrtner.

® obj_number=0 means:
The message is to be sent to all active LTERM partners. The null pointer must be passed as the address of
the identification area.

® obj_number=1 means:
The message is to be sent to only one LTERM partner. The name of the LTERM partner must be passed in
the identification area.

id_Ith
The length of the identification area must be specified in id_Ith, i.e.:

® for obj_number=0 you must specify id _[th=0.

* for obj_number=1 you must specify in id_Ith the length of the object name which is passed in the
identification area.

data_lth

Length of the message to be sent. You must pass the message in the data area. The following must apply: 1
<= data_lth<=74.

Identification area
How you have to complete the identification area depends on the value set for obj_number.

® for obj_number= 0 you must pass the null pointer in the KC_SEND_MESSAGE call.

® for obj_number= 1 you must specify in the identification area the union kc_id_area with the name of the
LTERM partner (field kc_name8), to which the message is to be sent.

Data area

The message which UTM is to send is to be passed in the data area. The message must be no more than 74
characters in length.

retcode
UTM writes the return codes for the call to the retcode field.

In addition to the return codes listed in section "Return codes", the following codes can also occur.

418



openUTM V7.0. Administering Applications. User Guide.

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcodes:

KC_SC_NOT_EXISTENT
The name specified in the identification area is unknown, no LTERM partner with this name exists.
KC_SC_NOT_ALLOWED

The operation is not allowed for the LTERM partner specified in the identification area or for the client
assigned to this LTERM partner.

Possible reasons for rejection are:

® there is currently no connection to the client; the LTERM partner is not active

® no client is currently assigned to the LTERM partner

® the specified LTERM partner is not a dialog partner, i.e. it has been configured with usage type='0O'

® the client assigned to the specified LTERM partner has been deleted from the configuration.

KC_SC_DELETED

The specified LTERM partner no longer exists, it has been deleted from the application configuration.

419



openUTM V7.0. Administering Applications. User Guide.

11.2.13 KC_SHUTDOWN - Terminate the application run

Using KC_SHUTDOWN you can terminate the current application run.

In UTM cluster applications (Unix, Linux and Windows systems), you can specify whether the application run is to
be terminated at all nodes or only at the node at which the call is issued.

The following options are open to you:

® You can terminate the application run normally. UTM terminates the application run as soon as all running dialog
steps have terminated (KC_NORMAL).

® You can schedule the application to terminate after a specified period (KC_WARN).

® You can terminate the application run once all the UTM-D dialogs have been terminated and all the UTM-D
connections have been disconnected and at the latest, however, after a specified period (KC_GRACEFUL).

® You can abort the application run, i.e. immediately terminate (KC_KILL).

See also the openUTM manual “Using UTM Applications” for more information on terminating a UTM application
run.

Please note the following when aborting the application:

Aborting the application (KC_KILL) cannot be handled as an asynchronous service: it is only permitted as a dialog.
A call containing subopcode1=KC_KILL in an asynchronous service is rejected by UTM.

Please note the following when shutting down applications involving distributed processing:

You should preferably terminate applications with distributed processing with KC_GRACEFUL, alternatively with
KC_WARN. When doing this, you should specify a time that is greater than the maximum period that a distributed
transaction remains in the state PTC (i.e. transaction status P). This reduces the probability of distributed
transactions still being in this state at the end of the application and of the application being terminated abnormally
with ENDPET.

The following generally applies:

An application involving distributed processing is not terminated normally if, at the time of the abort operation, there
are still services with transaction status P ('preliminary end of transaction’) or if confirmations have not yet been
received for asynchronous messages to a partner server. UTM then outputs UTM message K060 stating ENDPET
as the cause of the abort. No dumps are generated.

Execution / period of validity / transaction management / cluster
The KC_SHUTDOWN call is not subject to transaction management. It cannot be rolled back by an RSET call.
Aborting an application run (KC_KILL) takes immediate effect, there is no return to the program unit.

If the application is to be terminated (KC_NORMAL, KC_WARN and KC_GRACEFUL), the call originates a job, i.e.
actions leading to shutdown are initiated.

The shutdown sequence, i.e. how and when UTM terminates the application run is determined by the value
specified for subopcodel in the parameter area. The shutdown sequence is described in section subopcodel.

420



openUTM V7.0. Administering Applications. User Guide.

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The effect of the call may be either global to the cluster or local to the node, i.e. the current application run may be
terminated at all nodes or only at the node at which the call was issued.

|:(::> KDCSHUT ("KDCSHUT - Terminate an application run")

Data to be supplied

Function of the call

Abort application run immediately
(only as dialog)

Terminate application run normally

Terminate application run normally on
expiry of a timer

openUTM on a BS2000 system outputs
a standard UTM message to all active
users)

Terminate application run on a BS2000
system normally after expiration of a
message and send a UTM message to
all active users

Terminate the application run normally
after all UTM-D connections have been
cleared, and at the latest after the timer
has expired.

Data to be entered in the

parameter area ! identificatio = selection
n area area

subopcodel: _— e
KC_KILL

subopcodel. —_— —_—
KC_NORMAL

subopcodel: e e
KC_WARN

subopcodel. e e
KC_WARN,

subopcodeZ:

KC_USER_MSG

subopcodel: _— e
KC_GRACEFUL

1 The operation code KC_SHUTDOWN must always be specified in the parameter area.

data area

or
kc_shutdown_str

or
kc_shutdown_str

kc_shutdown_str

kc_shutdown_str

kc_shutdown_str

421



openUTM V7.0. Administering Applications. User Guide.

Parameter settings
Parameter area

Field name Content
version KC_ADMI_VERSION_1
retcode KC_RC_NIL
version_data KC_VERSION_DATA 11
opcode KC_SHUTDOWN
subopcodel = KC_GRACEFUL / KC_KILL / KC_NORMAL / KC_WARN

subopcode?2 = KC_USER_MSG/—

id_Ith 0
select_Ith 0
data_lth Length of data in data area / 0

Identification area

Selection area

Data area

Data structure kc_shutdown_str / —

KDCADMI call

KDCADMI (&parameter_area, NULL, NULL, &data_area) or
KDCADMI (&parameter_area, NULL, NULL, NULL)

Data returned by UTM
Parameter area
Field name Content

retcode Return codes

422



openUTM V7.0. Administering Applications. User Guide.

subopcodel

Specify in subopcodel how UTM is to terminate the application. You can choose from the following options:

KC_GRACEFUL

KC_KILL

UTM prepares for the shutdown. The application is terminated as soon as all UTM-D dialogs
have terminated and all UTM D connections have been disconnected or, at the latest, when the
specified timer has expired. You must pass the value of the timer in the data area.

The application is always terminated after the specified timer has expired. If there are no UTM-D
connections, the application is immediately terminated normally.The following applies after the
KC_GRACEFUL call has been processed:

® |tis only possible for users with administration authorization to sign on. Signon attempts from
other users will be rejected.

® |tis only possible to call transaction codes for administration programs and the UTM user
commands other than KDCOUT. No other services will be started by UTM.

® All active connections to LPAP and OSI-LPAP partners are set to QUIET.

The application run is aborted, i.e. it is terminated immediately. Open services are no longer
terminated. A UTM dump is created for all processes stating REASON=ASIS99.

KC_NORMAL

KC_WARN

The application run is terminated normally.
Shutdown is initiated immediately. The following applies after the KC_SHUTDOWN call:
® Users/clients can no longer sign on to the application.

® No further jobs are accepted from partner servers. Users/clients which are already signed on
cannot start any new services.

®* New dialog inputs are no longer processed. If the new dialog input is part of a multi-step
transaction, the multi-step transaction is rolled back to the last synchronization point.

® All logical connections to clients, printers and partner applications are shut down.Open
services can be further processed after the next application start.

UTM prepares for shutdown. The application is terminated once the specified timer has expired.
You must pass the timer value in the data area. The following applies once the
KC_SHUTDOWN call has been processed:

® Only users having administration privileges can sign on. Sign-on attempts by other users are
rejected

® Only administration program transaction codes and UTM user commands other than
KDCOUT can still be called. UTM will no longer start any other services.

® All active connections to LPAP and OSI-LPAP partners are set to QUIET.

423



openUTM V7.0. Administering Applications. User Guide.

subopcode2

subopcode? is only relevant if it specifies subopcode1=KC_WARN. In any other case, nothing may be
specified in subopcode?2.

Specify subopcode2= KC_USER_MSG if UTM is to send a message to all currently active users in
preparation for shutdown. You must pass the message which UTM is to send in the data area.

The message is accepted in UTM applications on Unix, Linux and Windows systems, but no warning
messages are output.

If you do not specify subopcode2 with KC_WARN on BS2000, all active users are informed by a standard
UTM message of the forthcoming shutdown and the time remaining until shutdown.

data_lth

Specify in the data_lth field, the length of the data area which you are passing to UTM.

® for subopcodel=KC _KILL, KC_NORMAL:

No data is passed to/from UTM in the data area (data_/th="0"), or the length of the data structure
kc_shutdown_str which you pass in the data area.

® for subopcodel= KC_GRACEFUL, KC_WARN:

Specify in the data_Ith field the length of the data structure kc_shutdown_str which you are passing to UTM
in the data area.

Data area

For subopcode1=KC_WARN and subopcode1=KC_GRACEFUL, you must pass the data structure
kc_shutdown_strto UTM in the data area. kc_shutdown_str must contain the size of the timer and, if
subopcode2= KC_USER_MSG, the message to be sent as a warning to all terminal users.

In the case of standalone UTM applications, values only need to be entered for KC_WARN and
KC_GRACEFUL in the data area. The field scope in kc_shutdown_str is not evaluated.

The following applies in UTM cluster applications: For each subopcodel: In the data structure
kc_shutdown_str, you can use the scope field to control whether only the local node application is to be
terminated or whether you want to terminate the entire UTM cluster application, i.e. all the node applications.
If you want to initiate a global shutdown of the UTM cluster application, you must enter scope='G' in the data
structure kc_shutdown_str . If you do not specify any data structure in the cluster then a local shutdown is
performed.

The data structure kc_shutdown_str has the following structure:

struct kc_shutdown_str
char time_mn[3];
char user _nessage[ 74] ;

char scope;

424



openUTM V7.0. Administering Applications. User Guide.

time_min

Specify in time_min the time in minutes after which UTM is to terminate the application run normally.

You should specify a time that is greater than the maximum period that a distributed transaction
remains in the state PTC (i.e. transaction status P).

In job receiver services, this is the time generated with MAX PTCTIME and in LU6.1 job submitter
services, it is the generated time time2 of the WAITTIME operand in the employed LTAC.

Minimum value: '1'
Maximum value: '255'

The entry time_min='0"is rejected by UTM. If the application is to be terminated normally without any
delay, you must specify subopcodel=KC_NORMAL.

Features specific to UTM applications on BS2000 systems

® time_minis always output to active terminals together with the shutdown warning.

* Inlarge UTM applications on BS2000 systems (configurations with many clients), UTM requires a
certain amount of time to output the shutdown notice. The selected value of time_min should thus
not be too small.

® In addition, you should define a sufficiently large value for cpu_time_msec (see kc_tac_strin
chapter "kc_tac_str - Transaction codes of local services") for the transaction code by means of
which the program unit is started with this KC_SHUTDOWN call.
cpu_time_msec specifies the maximum CPU time which the program unit run may take up. If the
time selected is too short, the shutdown may be aborted.

user_message

scope

Only relevant for subopcode?=KC_USER_MESSAGE. If no subopcode?2 was specified, this area is
ignored.

Using user_message you can pass your own message which UTM is to send to all terminal users as
a warning before shutdown. Maximum message length is 74 characters.

openUTM on BS2000 systems

® |f you do not pass your own warning message in user_message, UTM outputs UTM message
K023 with the following inserts to all terminal users currently connected to the application:

'hour":'minutes’:'seconds’
APPLICATION 'name' WILL BE TERMINATED IN 'minutes' MINUTES
openUTM on Unix, Linux and Windows systems

®* No warning messages are output on Unix, Linux and Windows systems.

Determines whether the local node application is terminated or the entire UTM cluster application, i.e.
all the node applications. scope is only evaluated for UTM cluster applications.

‘L' Only the local node application is terminated.

'G'" All the node applications in the cluster and thereforealso the entire UTM cluster application are
terminated.

425



openUTM V7.0. Administering Applications. User Guide.

426



openUTM V7.0. Administering Applications. User Guide.

retcode

UTM writes the return codes for the call to the retcode field. In addition to the return codes listed in section
"Return codes", the following codes may also occur:

Main code = KC_MC_REJECTED
The call was rejected by UTM.

Subcode:

KC_SC_NOT_ALLOWED

subopcodel = KC_KILL has been used in an asynchronous service.

KC_SC_NO_GLOB_CHANG_POSSIBLE

The generation of the node applications is not currently consistent. You should first shut down the node
applications with an old generation..

Main code = KC_MC_DATA_INVALID
A field in the data structure in the data area contains an invalid value.

Subcode:

KC_SC_INVALID_MOD

Only for subopcodel=KC_GRACEFUL and subopcode1=KC_WARN:
The application run was not terminated because the time specified in time_min is invalid.

Maincode = KC_MC_REJECTED_CURR
The call cannot be processed at present.
Subcode:
KC_SC_INVDEF_RUNNING
Only in UTM cluster applications:

An inverse KDCDEEF is currently running, i.e. the job cannot be processed at present.

Maincode = KC_MC_RECBUF_FULL
Only in UTM cluster applications:

Subcode:

KC_SC_NO_INFO

The buffer containing the restart information is full (see openUTM manual “Generating Applications”,
KDCDEF control statement MAX, parameter RECBUF).

427



openUTM V7.0. Administering Applications. User Guide.

11.2.14 KC_SPOOLOUT - Establish connections to printers

Using KC_SPOOLOUT you can establish connections to printers. You can:
® establish connections to all printers for which there are print jobs in the associated message queue and to which
no connection yet exists.

® establish a connection to the printers which are assigned to a certain LTERM partner. The name of the LTERM
partner must be passed in the identification area.

Execution / transaction management / cluster
The KC_SPOOLOUT call is not subject to transaction management. It cannot be rolled back by an RSET call.

Connection setup is triggered by the call, i.e. a job is merely initiated; this fact, however, gives no information as to
whether and when a connection will actually be established. You can subsequently ascertain the existence of the
connection with an information query (e.g. KC_GET_OBJECT with obj type=KC_LTERM).

The following applies in UTM cluster applications (Unix, Linux and Windows systems):
The call applies locally to the node, i.e. the connections to the printers are only established in the node application
at which the call is issued.

Duration of a connection

Connections to printers for which no print level (PLEV) has been defined remain in existence until they are shut
down explicitly (see KC_MODIFY_OBJECT) or the application run is terminated. Connections to printers for which a
print level has been defined

(PLEV > 0) are shut down after printing.

|:(::> Using KDCAPPL SPOOLOUT=0N ("KDCAPPL - Change properties and limit values for an operation") you
can establish connections to all printers for which print jobs exist.

Data to be supplied

Function of the call Data to be entered in the
parameter area 1 identification area selection | data
area area
Establish a connection to a printer or to obj_number. 1 Name of the LTERM — —_—
the printers of a printer pool partner assigned to the

printer or printer pool

Establish connections to all currently obj_number. 0 e e —_—
unconnected printers for which there are
print jobs

1 The operation code KC_SPOOLOUT must always be stated in the parameter area.

428



openUTM V7.0. Administering Applications. User Guide.

Parameter settings
Parameter area
Field name Content
version KC_ADMI_VERSION_1
retcode KC_RC_NIL
version_data KC_VERSION_DATA 11
opcode KC_SPOOLOUT

obj_number | 1/0

id_Ith Length of object name in identification area / 0
select_lth 0
data_lth 0

Identification area
Object name / —

Selection area

Data area

KDCADMI call

KDCADMI (&parameter_area, &identification_area, NULL, NULL) or
KDCADMI (&parameter_area, NULL, NULL, NULL)

Data returned by UTM
Parameter area
Field name Content

retcode Return codes

429



openUTM V7.0. Administering Applications. User Guide.

obj_number
The values specified in obj_number have the following meanings:

® obj_number=0:
UTM is to establish a connection to all printers to which connection currently exists and for which there are
print jobs.

® obj _number=1:
UTM is to establish a connection to the printer or printer pool assigned to a certain LTERM partner. You
must pass the name of the LTERM partner in the identification area.

id_lth

You must specify in id_Ith the length of the object name which you are passing to UTM in the identification
area.

® for obj_number = 0 you should specify id_[th=0.

® for obj_number = 1 you should specify in id_Ith the length of the name which is passed in the identification
area.

Identification area
The information you must specify in the identification area is determined by obj _number.

® obj number=0:
You may not specify any object name in the identification area. In the KDCADMI call you must pass the null
pointer.

®* obj number=1.:
In the identification area, pass the name of the LTERM partner assigned to the printer or printer pool. To do
this, assign the union kc_id_area through the identification area and pass the name of the LTERM partner
in the kc_namea8 field.

430



openUTM V7.0. Administering Applications. User Guide.

retcode

UTM writes the return codes for the call to the retcode field. In addition to the return codes listed in section
"Return codes", the following codes may also occur:

Main code = KC_MC_REJECTED

The call was rejected by UTM.

Subcodes:

KC_SC_NOT_EXISTENT

The LTERM partner specified in the identification area does not exist.

KC_SC_NOT_ALLOWED

The operation is not allowed for the stated LTERM partner.
Possible reasons are:

the LTERM partner is a dialog partner, i.e. it is not defined for printers (usage type! ='0")
no printer/printer pool is currently assigned to the LTERM partner
the LTERM partner or the associated printer is currently disabled

the printer belonging to the LTERM partner has been deleted from the configuration

there are no messages for the specified printer, i.e. the LTERM partner’'s message queue is empty.

KC_SC_DELETED

The specified LTERM partner has been deleted from the configuration.

431



openUTM V7.0. Administering Applications. User Guide.

11.2.15 KC_SYSLOG - Administer the system log file

Using KC_SYSLOG you can administer the system log file SYSLOG during operation. The extent of the functions
available to you to administer SYSLOG is determined by whether SYSLOG was created as a simple file or as a file
generation group (BS2000 systems) or file generation directory (Unix, Linux and Windows systems). The
abbreviation FGG (File Generation Group) is used hereafter to refer to both file generation directories and file
generation groups.

See also the openUTM manual “Generating Applications” and the relevant openUTM manual “Using UTM
Applications” in relation to SYSLOG.

The following functions are available to you, irrespective of whether SYSLOG is maintained as a simple file or as an
FGG:

® \Write the content of the UTM-internal message buffer to SYSLOG.

This function is useful if the SYSLOG file, which was created as a simple file, is to be evaluated during operation.
All UTM messages with the destination SYSLOG that have been generated by UTM up to this time are then
taken into account in the evaluation.

If SYSLOG was created as an FGG, the following applies:

When SYSLOG switches over to the next file generation, UTM automatically writes the UTM message buffer to
the “old” SYSLOG file generation before switching.

® Have information about the SYSLOG file displayed.

You can also use the following functions if SYSLOG was created as an FGG:

® Activate and deactivate automatic SYSLOG size control.
Automatic size control means that UTM automatically switches SYSLOG over to the next file generation of the
SYSLOG FGG as soon as the size of the current SYSLOG file generation exceeds a certain control value.

® Modify the control value for size monitoring.

® Switch SYSLOG over to the next file generation of the SYSLOG FGG.

SYSLOG size control can even be activated if SYSLOG was not generated with KDCDEF.

Procedure when switching SYSLOG to another file generation

Before switching over to a new file generation, UTM writes the UTM messages still stored in the internal UTM
message buffer to the old file generation. All UTM messages generated before switching over are thus written to the
“old” SYSLOG. UTM ensures that UTM messages generated after the switch-over time (successful execution of the
KC_SYSLOG call) are no longer written to the “old” SYSLOG file generation.

The following should be noted in UTM applications on BS2000 systems:

® |tis possible that the old file generation may not be available immediately after switchover (i.e. successful
processing of the KC_SYSLOG call). The old file generation may still be kept open for a relatively long period by
UTM processes, e.g. because the processing of a program unit which was started before the switchover has not
yet been concluded and no UTM message with the UTM message destination SYSLOG has yet been written
from the associated process.

® Using subopcodel=KC_INFO, you can enquire which SYSLOG file generations have already been closed by all
UTM processes. These are all file generations that have a generation number of less than lowest _open _gen
(see kc_syslog_stron "KC_SYSLOG - Administer the system log file").

432



openUTM V7.0. Administering Applications. User Guide.

Period of validity / transaction management / cluster

The call is not subject to transaction management. It takes immediate effect, and the operations initiated by the call
will already have been performed when control is returned to the program unit. The call cannot be rolled back.

Modifications to the SYSLOG file size threshold remain in effect until the end of the application run.

If the base of the SYSLOG FGG is within the valid range for the SYSLOG FGG (between the first and last file
generation), UTM initially logs in the base file generation in the next application run. If the base is outside the valid
range, UTM creates a new file generation for logging as of the next start. The base is specified in the data structure
kc_syslog_strin the base_gen field.

The following applies in UTM cluster applications (Unix, Linux and Windows systems):

The call applies globally to the cluster, i.e. the system log file SYSLOG is administered for each node application.
The size monitoring persists beyond the current UTM cluster application run. Switching or writing of the buffer apply
only to the current UTM cluster application run, i.e. to all the node applications that are currently running.

|:<::> KDCSLOG ("KDCSLOG - Administer the SYSLOG file")

433



openUTM V7.0. Administering Applications. User Guide.

Data to be supplied

Function of the call

Provide information about SYSLOG

Set or modify the control value for
automatic size control

Switch SYSLOG over to the next file
generation of the FGG

Modify the control value for automatic
size control and switch SYSLOG over to
the next file generation of the FGG

Write UTM message buffer to SYSLOG

parameter area

subopcodel.
KC_INFO
data_lth:

Length of the data
area for the return

from UTM

subopcodel.

KC_CHANGE_SIZE

data_lth:

length of the data in

the data area

subopcodel.
KC_SWITCH
data_Ith: 0

subopcodel:

KC_SWITCH_AND_

CHANGE

data_lth:

Length of the data in

the data area

subopcodel.

KC_WRITE_BUFFER

data Ith: 0

1

Data to be entered in the

identification
area

1 The operation code KC_SYSLOG must always be specified in the parameter area.

selection
area

data area

(when the call
is made you
must pass the
pointer to a
data area for
the returns from
UTM (
kc_syslog_str).)

Data structure
kc_syslog_str
with the new
control value

Data structure
kc_syslog_str
with the new
control value

434



openUTM V7.0. Administering Applications. User Guide.

Parameter
settings

Parameter area

Field name Content

version KC_ADMI_VERSION_1

retcode KC_RC_NIL

version_data KC_VERSION_DATA 11

opcode KC_SYSLOG

subopcodel KC_INFO / KC_CHANGE_SIZE / KC_SWITCH / KC_SWITCH_AND_CHANGE /

KC_WRITE_BUFFER

id_Ith 0
select_Ith 0
data_|Ith Length of the data structure / length of the data area / 0
Identification area
Selection area
Data area
Data structure kc_syslog_str / —
KDCADMI call

KDCADMI (&parameter_area, NULL, NULL, &data_area)
KDCADMI (&parameter_area, NULL, NULL, NULL)

435



openUTM V7.0. Administering Applications. User Guide.

Data returned by UTM
Parameter area
Field name @ Content
retcode Return codes
data_Ith_ret = Length of the data supplied in the data area
Data area

Data structure kc_syslog_str

436



openUTM V7.0. Administering Applications. User Guide.

subopcodel

You must specify the operation UTM is to perform in the subopcodel field. You can specify the following
subopcodes:

KC_WRITE_BUFFER

KC_INFO

All UTM messages output with a SYSLOG message destination and which are still stored in the
UTM-internal message buffer are immediately written to the current SYSLOG file. If the buffer is
empty, the call has no effect.

Specify if UTM is to return information about the SYSLOG file or SYSLOG FGG. In this case, you
must specify in the data_Ith field the length of the data area which you are making available to
UTM to pass the information. For the KDCADMI call you must pass the pointer to this data area.

You may specify the following values for subopcodel only if SYSLOG was created as an FGG.

KC_CHANGE_SIZE

Specify whether you want:

* to modify the control value for automatic size control. You must pass the threshold in the data
area.

® to activate automatic size control. To do this, pass a control value of > ‘0" in the data area.

® to deactivate automatic size control. To do this, pass the control value ‘0" in the data area.

KC_SWITCH

Specify whether UTM is to switch the SYSLOG file over to the next file generation. If this file
generation does not yet exist, UTM creates it.

KC_SWITCH_AND_CHANGE

data_lth

Corresponds to a combination of the functions of KC_CHANGE_SIZE and KC_SWITCH. Using
KC_SWITCH_AND_CHANGE you can switch

SYSLOG over to the next file generation and simultaneously modify the control value for
automatic size control. UTM ensures in this case that either both operations are performed
successfully or neither is performed; i.e. only if SYSLOG switching was successful does UTM set
the new control value.

If UTM cannot switch over to the following file generation, the control value is not modified. Size
control is suspended and UTM ignores the new control value. Size control can be reactivated only
by a subsequent successful switch-over attempt (repeated KC_SYSLOG call). If a new control
value was not specified, UTM carries over the “old” control value.

Specify the following in the data_Ith field.

437



openUTM V7.0. Administering Applications. User Guide.

® for subopcodel=KC_INFO:
the length of the data area to which UTM is to return the information. When calling KDCADMI, you must
pass the pointer to the data area to UTM.

® for subopcodel= KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE:
the length of the data in the data area which you are passing to UTM. Pass the data structure kc_syslog_str
with the new size control value in the data area.

® for subopcodel= KC_SWITCH or KC_WRITE_BUFFER:
data_Ith =0.
When calling KDCADMI you must specify the null pointer for &data_area.

Data area

The information which you must specify in the data area is determined by subopcodel:

® subopcodel=KC_WRITE_BUFFER or KC_SWITCH:
You must not pass any data to UTM in the data area.

® subopcodel=KC_INFO:
You may not pass any data to UTM in the data area. You must, however, make a data area available to
UTM to which it can return the requested information.

® subopcodel=KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE:
You must pass the data structure kc_syslog_str with the new control value to UTM in the data area.
Specify the control value in the size_control_utmpages field. The value is specified as the number of UTM
pages. Permitted values are between 0 and 2311 (specified as char). However, UTM automatically
replaces values of between ‘1' and ‘99" with ‘100'".
By using size _control_utmpages ='0' you deactivate automatic size control. You must complete the
remaining fields of kc_syslog_str with binary zeroes. kc_syslog_stris described in chapter "KC_SYSLOG -
Administer the system log file".

retcode

UTM writes the return code for the call to the retcode field. In addition to the return codes listed in section
"Return codes", the following codes may also occur:

438



openUTM V7.0. Administering Applications. User Guide.

Main code = KC_MC_OK
The call was processed without errors.

Subcodes:

KC_SC_MIN_SIZE

For subopcodel = KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE:
While the size control value was indeed modified, the value specified in size_control_utmpageswas too low
(< 100). The minimum control value of 100 UTM pages was thus set.

KC_SC_BUFFER_EMPTY

For subopcodel = KC_WRITE_BUFFER:
The UTM message buffer is empty and is thus not written to SYSLOG.

KC_SC_SWITCHED

The UTM message buffer could not be written to SYSLOG until SYSLOG had been switched to a new file
generation.

Main code = KC_MC_REJECTED
The call was rejected by UTM.
Subcodes:
KC_SC_NO_FGG
The requested operation cannot be performed as SYSLOG was not created as an FGG.
KC_SC_NO_INFO
The operation cannot be performed.
KC_SC_NO_GLOB_CHANG_POSSIBLE

Only in UTM cluster applications:
No global administration changes are possible since the generation of the node applications is not
consistent at present.

439



openUTM V7.0. Administering Applications. User Guide.

Main code = KC_MC_DATA_INVALID
A field in the data structure in the data area contains an invalid value.

Subcodes:

KC_SC_INVALID_MOD

For subopcodel = KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE:
The size control value specified in size_control_utmpages is invalid (number too high or no number or not
printable). The control value has thus not been modified.

KC_SC_DATA_MISSING

For subopcodel = KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE:
No size control value was specified in size_control_utmpages. The control value has thus not been modified
and (for KC_SWITCH_AND_CHANGE) SYSLOG has not been switched.

KC_SC_DATA_NOT_NULL

For subopcodel = KC_CHANGE_SIZE or KC_SWITCH_AND_CHANGE:
A field that cannot be set in the data structure kc_syslog _str, was not supplied with binary zeros.

Maincode = KC_MC_RECBUF_FULL

Subcode:

KC_SC_NO_INFO

The buffer containing the restart information is full (see openUTM manual “Generating Applications”,
KDCDEF control statement MAX, parameter RECBUF).

Maincode = KC_MC_REJECTED_CURR
The call cannot be processed at present.

Subcode:

KC_SC_INVDEF_RUNNING

Only in UTM cluster applications:
An inverse KDCDEEF is currently running, i.e. the job cannot be processed at present.

data_lth_ret
data_Ith_ret contains the lengths of the data which UTM returns to the data area.

® for subopcodel=KC_INFO returns the information about SYSLOG in the data area (kc_syslog_str).
data_Ith_ret! = 0 applies.

® |f the length in data_Ith retis less than the data area provided (data_/th), the content of the data area is
only defined in the length data_Ith ret.

® for subopcodel! = KC_INFO data_Ith_ret = 0 applies

440



openUTM V7.0. Administering Applications. User Guide.

Data area

Where subopcodel=KC_INFO, UTM returns the data structure kc_syslog_str with information about SYSLOG
to the application in the data area. The data structure has the following fields:

struct kc_syslog_str

char

char

char

char

char

char

char

char

char

char

char

char

char

char

char

char

The data structure fields have the following meanings:

file_name[54];
curr_size_utnpages[ 10];
curr_size_kbyte[10];

curr_size_percent[3];

fag;
| ast _switch_ok;
si ze_control _engaged,;

si ze_control _suspended,;

si ze_control _ut npages[ 10] ;
size_control kbyte[ 10];
start_gen[ 4];

curr_gen[4];

| owest _open_gen[ 4] ;
base_gen[4];
first_valid_gen[4];

| ast _valid _gen[4];

file_name

Name of the current SYSLOG file or file generation in which logging is currently being

performed.

curr_size_utmpages

Contains the current size of the SYSLOG file or file generation in which logging is currently being
performed. The size is specified as the number of UTM pages occupied by the file or file

generation.

curr_size_kbyte

441



openUTM V7.0. Administering Applications. User Guide.

Contains the current size of the SYSLOG file or file generation in which logging is currently being
performed. The size is specified in kbytes.

curr_size_percent

fog
'

N’

If automatic size control is activated, curr_size_percent contains the percentage utilization of the
SYSLOG file relative to the specified size control value. If size control has been suspended by
UTM or deactivated by means of administration functions, utilization of the SYSLOG file can
exceed 100%. In this case, UTM returns blanks in curr_size percent.

If size control has not been defined (either by generation or by means of administration
functions), UTM fills curr_size_percent with blanks.

Indicates whether SYSLOG was created as an FGG or as a simple file.
SYSLOG was created as an FGG.

SYSLOG was created as a simple file

All the following items of information are only relevant if SYSLOG was created as an FGG. If SYSLOG was
created as a simple file, the following fields will not contain any relevant information.

last_switch_ok

States whether UTM’s last attempt to switch over to the next file generation executed without
errors. This relates only to switching attempts within the current application run. The following
values are possible:

The last switch attempt executed without errors.

An error occurred during UTM'’s last switch attempt.

UTM could not switch to the next file generation.

(Blank) No switch attempt has yet been made in the current application run or SYSLOG was not
created as an FGG.

size_control_engaged

v

N’

States whether automatic size control is activated. The following values are possible:
Size control is activated

Size control is deactivated

size_control_suspended

States whether automatic size control has been suspended by UTM.

The last attempt to switch over to another file generation failed. Size control has, accordingly,
been suspended. UTM no longer attempts to switch over to the next file generation even if the
defined size control value is exceeded.

Remedy:
You can explicitly attempt to switch the SYSLOG. If switching proceeds without error, size
control is reactivated by UTM.

442



openUTM V7.0. Administering Applications. User Guide.

INI

Size control is not suspended.

size_control_utmpages

Contains the control value set for automatic size control. The control value is output as the
number of UTM pages.

size_control_utmpages = '0' means that size control is deactivated.

For subopcodel = KC_CHANGE_SIZE and KC_SWITCH_AND_CHANGE, pass the new size
control value in size_control_utmpages.

Minimum value: '0'
Maximum value: 231 -1 (specified as char)

If you specify size_control_utmpages = '0', automatic size control is deactivated. UTM
automatically replaces values between ‘1' and ‘99" with ‘100'.

size_control_kbyte

start_gen

curr_gen

Contains the control value set for automatic size control. The control value is output in kilobytes.

For very large thresholds, the kilobyte value is not displayed (e.g. for 231 kb).

size_control_kbyte = 0 means that the kilobyte value cannot be displayed because it is too high
or that high size control is deactivated.

Contains the number of the first SYSLOG file generation written by UTM in the current
application run.

Number of the file generation in which UTM is currently logging data.

lowest_open_gen

base gen

first_valid_gen

last_valid_gen

Contains the number of the oldest SYSLOG file generation which is still kept open by an
application process.

Generation number of the defined base for the SYSLOG FGG.

Number of the first valid file generation of the SYSLOG FGG.

On BS2000 systems, this corresponds to the specification FIRST-GEN from the SHOW-FILE-
ATTRIBUTES command.

Generation number of the last valid file generation of the SYSLOG FGG.

On BS2000 systems, this corresponds to the specification LAST-GEN from the SHOW-FILE-
ATTRIBUTES command.

443



openUTM V7.0. Administering Applications. User Guide.

11.2.16 KC_UPDATE_IPADDR - Update IP addresses

With KC_UPDATE_IPADDR, while the UTM application is running, you can update the IP addresses stored in the
application’s object tables using the IP addresses in the hostname database. The host name database that applies
to your system can be the hosts file (on Unix, Linux and Windows systems), the DNS (domain name service) or on
BS2000 systems the pro