c
cngich FUJITSU

FUJITSU Software

BS2000 OSD/BC V11.0
Utility Routines

User Guide

June 2019

Comments... Suggestions... Corrections...

The User Documentation Department would like to know your opinion on this manual. Your
feedback helps us to optimize our documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
bs2000services@ts.fujitsu.com senden.

Certified documentation according to DIN EN ISO 9001:2015

To ensure a consistently high quality standard and user-friendliness, this documentation was
created to meet the regulations of a quality management system which complies with the
requirements of the standard DIN EN ISO 9001:2015.

Copyright and Trademarks
Copyright © 2019 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:bs2000services@ts.fujitsu.com

Table of Contents

Utility ROULINES 16
L Preface ... 17
1.1 Objectives and target groups of thismanual 19
1.2 Summary of CONteNtS 20
1.3 Changes since the last edition of themanual 21
1.4 Notational CONVeNtioNS i e 22
2 DPAGE Outputting and modifying disk files 24
2.1 Supportfor pubsets 25
2.2 Starting the program run 26
2. 3 StalEMENtS .. 27
2.3.1 BKPT - Interrupt DPAGE 28
2.3.2 DISPLAY - Output page to SYSOUT i 29
2.3.3EDT - Call EDT ... 31
2.3.4 END /HALT - Terminate DPAGE 32
2.3.5 MODIFY - Modify contents of page 33
2.3.6 OPEN - Openfile 35
2.3. 7 PRINT - Print page e 36
23.8READ - Read page 37
2.3.9 WRITE - Write internal work area back tofile 38
2.4 DPAGE MESSagesS 39
3 INIT Initializing (emulated) magnetic tapesii .. 42
3.1 0perating MOdeS 44
3.LINoOrmal mode ... 45
3.1.2C0NS0le MOde 46

B 2 Program FUN . e e e 47
3.2.1 Program Start 48
3.2.2 Initializing a magnetic tape (example) i 49
3.2.3 Program termination 51
3.2.4 Problems in volume initialization 52
3.3 StatementS ... e 53
3.3.1 INIT - Initialize magnetictape i 55
3.3.2 LIST - Read and output magnetic tape labels 61
3.3.3 OPTION - Activate and deactivate optional functions 63
3.3. 4 END - Terminate INIT SESSION e 66
3.3.5 HELP - Outline description of INIT statements 67
3.4 Structure of the labels 68

3.4.1 Volume label VOL1 for magnetictapes 69

3.4.2 File label HDR1 for magnetictapes 70

3.4.3 File label HDR2 for magnetictapes 72
3.4.4 File label HDR3 for magnetictapeso .. 73
4 IORM Dynamic control of /O resourcesc .. 74
4.1 10PT: I/O Priority Handling for Tasks 78
4.1.110PT statements 80
4.1.1.1 Activating and deactivating IOPT 81
4.1.1.2 Defining and querying threshold values for I/O priority classes 82
4.1.1.3 Activating and deactivating disk devices for IOPT 83
4.1.1.4 DEVICE QIOUPS . ottt ettt et e 85
4.1.1.5 Defining threshold values for I/O priority LOW 87
4.1.1.6 Defining threshold values for I/O priority MEDIUM 92
4.1.1.7 Querying threshold values for I/O priorities 96
4.1.1.8 Querying utilization e 98
4.1.1.9Checkmode 101
4.1.2 Typical applications 105
4.2 DPAV: Dynamic Parallel Access Volume 106
4.2.1 StalemeNtS . . . 108
4.2.1.1 Activating and deactivating DPAV 109
4.2.1.2 Activating and deactivating alias devices for DPAV 110
4.2.1.3Checkmode 112
4.2.1.4 Activating and deactivating base devices for DPAV 115
4.2.2 Typical application 117
4.2. 3 FastDPAY .. 118
4.3 DDAL: Optimized Load Balancing in ETERNUS CS HE operation 119
4.4 TCOM: Dynamic Tape COmMpPresSionttt 120
4.5 IOLVM: I/O Limit for Virtual Machines 122
5 JMP Reconstruction of ENTER commands from the JMS job pool 123
5.1 Execution of IMP 124
5.2 StatemMeNtS 125
5.2.1 Overview of IMP statements 126
5.2.2 Description of the statements 127
5.2.2.1 CREATE-PROCEDURE-FILE - Create SAM file with BS2000 procedure 128
5.2.2.2 END - Terminate statement inputc.iiie... 129
5.2.2.3 OPEN-JOBPOOL-FILE - Openjob poolfile 130
5.2.2.4 SHOW-JOBPOOL-STATUS - Output information on the job pool 131
5.3 Notes on reconstructed attributes i 137
5.4 JMP MBS S A0S .. ittt e 146
6 JMU Creating and maintaining the SIMSFILE systemfile 147
6.1 JOb management 148

6.2 Execution of IMU 150

6.3 StatemMeEeNtS . . . 152

6.3.1 Overview of IMU statements 153
6.3.2 Description of the statements 154
6.3.2.1 CREATE-PROCEDURE-FILE - Create SAM file containing BS2000
PrOCEAUIE . .. 155
6.3.2.2 DEFINE-JOB-CLASS - Write job class definitions to SIMSFILE 157
6.3.2.3 DEFINE-JOB-STREAM - Write stream definitions to SIMSFILE 166
6.3.2.4 DELETE-JOB-CLASS - Delete class definitions 170
6.3.2.5 DELETE-JOB-STREAM - Delete stream definitions 171
6.3.2.6 END - Terminate statementinput, 172
6.3.2.7 GRANT-JOB-CLASS-ACCESS - Control access by user IDs to job class 173
6.3.2.8 MODIFY-JOB-CLASS - Modify job class definitions 174
6.3.2.9 MODIFY-JOB-STREAM - Modify stream definitions 176
6.3.2.10 REMOVE-USER - Prohibit access to private job classes 177
6.3.2.11 SET-JOB-CLASS-DEFAULT - Specify default classes forusers 178
6.3.2.12 SET-MODIFICATION-MODE - Set modification mode 179
6.3.2.13 SET-POSIX-JOB-CLASS-DEFAULT - Specify POSIX default classes for
USBIS o ittt e e et 180
6.3.2.14 SHOW-JOB-CLASS - List contents of class definitions or names of classes
.. 181
6.3.2.15 SHOW-JOB-STREAM - List contents of stream definitions or names of
SIS . . . 183
7 LMSCONV Generation and management of libraries 185
7 T I o T - = 189
7.1.1 Logical structure of alibrary 190
7.1.2 Input and output libraries 191
7.1.3 Multiple access to libraries 192
7 2 MM IS o 193
7.2.1 Multiple accessto members 194
7.2.2 Member type definition 195
7.2.3 Convention for member designations 197
7.2.4 Member designations in statements 198
7.2.5 Logging the member designations 199
7.2.6 Selectors for member designations 200
7.2.7 Constructors for member designations 201
7.2.8 Member attributes 203
7.2.9 Type dependencies 204
7.2.10 Version managementt 205
7.2.11 Data protection by OVerwritingt 207
T.2.12 AUItiNG .« . oo 208

7.2.13 Extended Host Code Support (XHCS) i, 209

7.3 LMSCONV fUuNCLIONS e e e 210

7.3.1 Starting LMSCONV 211
7.3.2 Assigning libraries 213
7.3.3 Processing members 214
7.3.4 Controlling the LMSCONV run e 218
7.3.5 Disks without PAM KeY 221
7.3 6 NKA diSKS ... 225
7.3.7 Handling alias names (ACS) i e 227
7.4 S alEMENTS . . 228
7.4.1 Overview of the LMSCONV statements 229
7.4.2 LMSCONYV statements ADD-ELEMENT to MODIFY-ELEMENT 231
7.4.2.1 ADD-ELEMENT - Add membertolibrary 232
7.4.2.2 CLOSE-LIBRARY - Close library 238
7.4.2.3 COPY-ELEMENT - Copy member 239
7.4.2.4 COPY-LIBRARY - Copylibrary i 246
7.4.2.5 DELETE-ELEMENT - Logically delete member 248
7.4.2.6 END - Terminate LMSCONV e 253
7.4.2.7 EXTRACT-ELEMENT - Output membertofile 255
7.4.2.8 MODIFY-DEFAULTS - Modify defaults 261
7.4.2.9 MODIFY-ELEMENT - Modify member 274
7.4.3 Substatements of MODIFY-ELEMENT for member types R, CandL 280
7.4.3.1 ADD-REP-RECORD - Add REP records to object module 281
7.4.3.2 ADD-TEXT-MODIFICATION - Correct text records of an object module . 282
7.4.3.3 DELETE-RECORD-TYPE - Exclude record types from input member ... 284
7.4.3.4 END-MODIFY - Terminate input of substatements 285
7.4.3.5 MODIFY-CSECT-ATTRIBUTES - Modify CSECT attributes 286
7.4.3.6 MODIFY-MODIFICATION-DEFAULTS - Specify global defaults 288
7.4.3.7 REMOVE-MODIFICATION - Cancel corrections 290
7.4.3.8 RENAME-SYMBOLS - Rename symbols 291
7.4.4 Substatements of MODIFY-ELEMENT for text members 292
7.4.4.1 ADD-RECORD - Add recordsuuiiiiii e 293
7.4.4.2 END-MODIFY - Conclude substatements 294
7.4.4.3 REMOVE-RECORD - Delete record or record area in member 295
7.4.5 LMSCONYV statements MODIFY-ELEMENT-ATTRIBUTES to WRITE-
COMMENT . e e 296
7.4.5.1 MODIFY-ELEMENT-ATTRIBUTES - Modify member attributes 297
7.4.5.2 MODIFY-LOGGING-PARAMETERS - Modify logging settings 301
7.4.5.3 OPEN-LIBRARY - Openglobal library 304
7.4.5.4 SHOW-DEFAULTS - Output current default values 306
7.4.5.5 SHOW-ELEMENT - Display contents of member 308

7.4.5.6 SHOW-ELEMENT-ATTRIBUTES - Display member attributes 319

7.4.5.7 SHOW-LIBRARY-ATTRIBUTES - Display library attributes 327
7.4.5.8 SHOW-LIBRARY-STATUS - Display library status 328

7.4.5.9 SHOW-LOGGING-PARAMETERS - Display global LMSCONV parameters
329

7.4.5.10 SHOW-TYPE-ATTRIBUTES - Display attributes of a member type 330
7.4.5.11 SHOW-USER-EXITS - Display LMSCONV version 331
7.4.5.12 WRITE-COMMENT - Write comments to output medium 332
7.5 Example: Modifying alinkload module 333
7.6 Comparison between LMSCONVandLMS 334
8 MSGMAKER Processing of BS2000 Message Files 337
8.1 Execution of MSGMAKER 339
8.1.1 Starting the routine 340
8.1.2 Defining a monitoring job variable L. 341
8.1.3 MSGMAKER operating modes 342
8.1.4 Special character SetsS 343
8.1.5 Messages of MSGMAKER e 344
8.2 MeNU MOde 345
8.2.1 Mask OVeIVIEW 346
8.2.2 Mask SEqQUENCE 347
8.2.3 General mask format 349
8.2.4 Making entriesinmasks 353
8.2.5 Description of fields that occur frequently 354
8.2.6 Description of the masks 356
8.2.6.1 MENU mask - MSGMAKER mainmask 357

8.2.6.2 MSG-FILE-ATTRIBUTES mask - Enter and modify message file attributes . .
362

8.2.6.3 COPY mask - Copy message UnitSouuiinnnennnnnnn. 364
8.2.6.4 MOVE mask - Copy and delete message units 368
8.2.6.5 SHOW mask - Display message filecontents 372

8.2.6.6 SHOW-OUTPUT mask - Output message units and additional information
375

8.2.6.7 ADD-MSG mask - Add message unitccoiiii.. 379
8.2.6.8 MODIFY-MSG mask - Modify message unit 383
8.2.6.9 MSG-TEXT mask - Add or modify messagetext 388

8.2.6.10 MEANING/RESPONSE mask - Add or modify meaning and response text
391

8.2.6.11 INSERT-ATTRIBUTES mask - Add or modify insert attributes 394
8.2.6.12 DELETE-MSG mask - Delete message unit 397
8.2.6.13 ADD-DOCUMENTATION mask - Add documentation lines 401
8.2.6.14 MODIFY-DOCUMENTATION mask - Modify, add and delete documentation

NS . 404

8.2.6.15 DELETE-DOCUMENTATION mask - Delete documentation lines 406

8.3 StatemMeENtS 408

8.3.1 Overview of statements 409
8.3.2 Description of the statements 410
8.3.2.1 ADD-DOCUMENTATION - Add documentationlines 411
8.3.2.2 ADD-MSG - Add message unitc. i 413
8.3.2.3 COPY - Copy message UNitttt 420
8.3.2.4 DELETE-DOCUMENTATION - Delete documentation lines 424
8.3.2.5 DELETE-MSG - Delete message unitcuiuunn. 426
8.3.2.6 END - Terminate MSGMAKER i 428
8.3.2.7 MERGE-MSG-FILES - Merge message files 429
8.3.2.8 MODIFY-DOCUMENTATION - Modify and delete documentation lines .. 431
8.3.2.9 MODIFY-MSG - Modify message unit 434
8.3.2.10 MODIFY-OPTION - Overwrite message unit 443
8.3.2.11 MOVE - Copy and delete message unit 444
8.3.2.12 OPEN-MSG-FILE - Open messagefile 450
8.3.2.13 SHOW - Display message filecontents 453
8.3.3 Special features of statementsinmenumode 456
8.3.3.1 ADD-DOCUMENTATION ... e e e 458
B8.3. 3.2 ADD-MSG ... 459
B.3.3.3 COPY L 461
8.3.3.4 DELETE-DOCUMENTATION e 462
8.3. 3.5 DELETE-MSG 463
B.3. 3.6 END ... 464
8.3.3.7 GO-TO - Branch to specified mask 465
8.3.3.8 MERGE-MSG-FILES e 466
8.3.3.9 MODIFY-DOCUMENTATION e e e 467
8.3.3. 10 MODIFY-MSG e 468
B.3.3. 1L MOVE .. 470
8.3.3. 12 SHOW .. 471
8.3.4 EXample 472
9 PAMCONYV Conversion of fileformats 477
9.1 Starting the program run 480
9.2 Functionality of PAMCONV 481
9.3 Conversion of fileformats i 489
9.3.1 Types Of CONVEISION e 490
9.3.2 System environment requIremMents i 496
9.3.3 Specifying source and targetfiles 497
0.4 RebloCKINg ... o 499
9.4.1 Explicitreblocking 500
9.4.2 Implicitreblocking 501

9.4.3 Reblocking PAM-DATA files without changing the file format 502

9.4.4 Problems when decreasing the blocking factor 503

9.5 Controlling conversion and reblocking 504
9.5.1 Special points relating to conversion e 505
9.5.2 Further notes 0N CONVEISIONt 510

0.6 StatemMENtS 511
9.6.1 Overview of PAMCONYV statements, 512
9.6.2 Description of the statements i, 513

9.6.2.1 CHANGE-TO-SYSTEM-MODE - Switch to systemmode 514
9.6.2.2 CHECK-BLKCTRL-INDICATOR - Check file format consistency and

BLKCTRL INdicator e e 515
9.6.2.3 CLASSIFY-FILE - Classify files according to their convertibility 521
9.6.2.4 CONVERT-FILE - Convertfiles 527
9.6.2.5 END - Terminate PAMCONY i e 535
9.6.2.6 MODIFY-CONVERT-FILE-DEFAULTS - Set default values for CONVERT-
FILE Statement 536
9.6.2.7 MODIFY-LOGGING-OPTIONS - Set logging values 543
9.6.2.8 SHOW-CONVERT-FILE-DEFAULTS - List current default values for
CONVERT-FILE statement e 544
9.6.2.9 SHOW-LOGGING-OPTIONS - List specified logging options 545

9.7 PAMCONYV program execution 546

9.8 Error handling 549

9.9 PAMCONY MESSA0ES .+ o vttt ittt e ettt e e 551

10 PASSWORD Encryption of passwordsoiiiiinn... 552

10.1 Operation and eXeCUtiONttt e 553
10.1.1 PasSSWOIAS .. oottt 554
10.1.2 Program eXeCULION o i 556

10.2 StatemMeNtS 557
10.2.1 Overview of PASSWORD statementsc.c.iinnnn... 558
10.2.2 Description of the statements 559

10.2.2.1 CONVERT - Encrypt most powerful password ofafile 560
10.2.2.2 ENCPASS - Encrypt file password and enter in PASSWORD table 562
10.2.2.3 ENCRYPTD - Encrypt specified file password 563
10.2.2.4 ENCRYPTJ - Encrypt specified LOGON password 564
10.2.2.5 END - Terminate PASSWORD 565
10.2.2.6 HELP - Listoperands e 566
10.2.2.7 JVCONV - Encrypt password for job variable 567
10.2.2.8 MODE - Select encryptionroutine 568
10.2.2.9 PASSWORD - Encrypt specified file password 569
11 PVSREN Renaming pubsets and volumesets 570
11.1 Prerequisites for PVSREN 571

11.1.1 Prerequisites for the execution of PVSREN 572

11.1.2 Prerequisites forrenamingt 573

11.1.3 Prerequisites for renaming mirror pubsets 575
11.1.4 Prerequisites for creating new pubsets from mirror pubsets 576
11.2 PVSREN operation 577
11.3 Restrictions and reworking 580
11.4 Starting and stopping PVSREN 585
11.5 PVSREN MESSages 586
11.6 Statements of PVSREN 587
11.6.1 Overview of PVSREN statements 588
11.6.2 Description of the statements 589
11.6.2.1 CHECK-FILENAME-LENGTH - Check length of file and job variable names
.. 590
11.6.2.2 CREATE-PUBSET-FROM-MIRROR - Create a new pubset from mirror disks
Of @ PUDSEL 592
11.6.2.3 MODIFY-JOINFILE - Modify default catalog ID in user catalog 596

11.6.2.4 MODIFY-LOGGING-OPTIONS - Modify default logging option values .. 597
11.6.2.5 RENAME-PUBSET-OR-VOLUME-SET - Convert pubset notation or rename

SForSMpubsetorvolumeset i 598
11.6.2.6 RESTART-RENAMING - Restart conversion or renaming 601
11.6.2.7 RESTORE-LABELS-OF-PUBSET - Restoring the names of a pubset from
mirror pubsets in double-point notation 602
11.6.2.8 SET-NAME-OF-NEW-VOLUME-SET - Define volume set name when
creating an SM pubset from mirror disks 603
11.6.2.9 SHOW-LOGGING-OPTIONS - List current logging option values 604
12 RMS REP Mounting System e 605
12.1 User groups and operationsiiiiiiiin i 608
12.2 RMS depOt .o 609
12.3 Flexible use of RMS 610
124 RMS Operation 611
12.4.1 Starting and exiting RMS 612
1242 Inputs to RMS . .o 613
12.5 FUNCLION OVEIVIEW . .\ttt e 614
12.5.1 Addition of correction packets 615
12.5.2 LoAder SEIVICES ..ottt 616
12.5.3 Correction management - Notebook 617
12.5.4 Information SEIVICESottt 618
125 5 EditiNg . ..o oo 619
12.5.6 RMS management 620
12.5.7 Overview of functions found on the defaultmenu 621
12.6 Interactive application 622
12.6.1 Addition of correction packets 623

12.6.2 LoAdEr SEIVICES . . o it e e e e e 626

12.6.3 Correction management - Notebook 632

12.6.4 Information SEIVICESottt 635
12.6.4.1 Correction - product and REP information 636
12.6.4.2 Correction - global list 637
12.6.4.3 Notebook - product and REP information 638
12.6.4.4 Notebook - global list 639
12.6.4.5 Comparing REP collections 640
12.6.4.6 Character-oriented search 641

12.6.5 EditiNg . ..o oo 642

12.6.6 RMS management 644
12.6.6.1 Installation 645
12.6.6.2 Startup procedure and basic parameters 646
12.6.6.3 Defining functionality 649
12.6.6.4 Example of a definitionfile 651
12.6.6.5 DEPOT mMaintenancCet 652

12.7 Typical RMS applications e 654

12.7.1 Settingup adepot 655

12.7.2 Inputting a new delivery packet intothedepot 656

12.7.3 Activating optional REPS 657

12.7.4 Building loaders in interactive mode 658

12.7.5 Building loaders using a batchfile 659

12.7.6 Transferring a REP packet to the nextusergroup 660

12.7.7 Rejecting aninvalid REP 661

12.8 StatemeNntS 662

12.8.1 Generating and editing a software configuration 663
12.8.1.1 CREATE-SW-CONF - Create new software configuration 664
12.8.1.2 MODIFY-SW-CONF - Modify software configuration 666
12.8.1.3 DELETE-SW-CONF - Delete software configuration 667

12.8.2 Optional REP selection 668
12.8.2.1 CREATE-OPT-PACKET - Create optional REP selection packet 669
12.8.2.2 MODIFY-OPT-PACKET - Extend optional REP selection packet 670
12.8.2.3 DELETE-OPT-PACKET - Delete optional packet 671

12.8.3 Loader modifications it 672
12.8.3.1 CREATE-MOD-PACKET - Create loader modification element 673
12.8.3.2 MODIFY-MOD-PACKET - Modify loader modification element 674
12.8.3.3 DELETE-MOD-PACKET - Delete loader modification element 675

12.8.4 REPFILE definitions e 676
12.8.4.1 CREATE-REPFILE-DEFINITION - Create new loader definitions 677
12.8.4.2 MODIFY-REPFILE-DEFINITION - Modify loader definitions 679
12.8.4.3 DELETE-REPFILE-DEFINITION - Delete loader definition element 681

12.8.5 Creating the system loaderfile 682

12.8.5.1 SELECT-REPFILE-TO-BUILD - Select system loader definitions 683

12.8.5.2 BUILD-REPFILE - Create and install system loader 685
12.8.6 Transporting correction delivery packets 686
12.8.6.1 INPUT-DELIVERY-PACKET - Accept delivery packet 687
12.8.6.2 MODIFY-DELIVERY-PACKET - Record deviations (notebook) 688
12.8.6.3 CHECK-DELIVERY-PACKET - Check delivery packet 689
12.8.6.4 CREATE-DELIVERY-PACKET - Create delivery packet 690
12.8.7 Information fuNCtioNs e 691
12.8.7.1 CREATE-MATRIX-LIST - Create matrixlist 692
12.8.7.2 COMPARE-REPFILE - Compare REPfiles 693
12.8.7.3 CREATE-RMS-OPTIONS - Modify RMS settings 694
12.8.7.4 CALL-FUNCTION - Callmodule oo .. 696
12.8.8 Control statements 697
12.8.8.1 END - End inputs or exit RMS in batchmode 698
12.9 Reference information i 699
12.9.1 Uses of the function keys 700
12.9.2Usesof the P keys 701
12.9.3JID NOtAtiON . ..ot 702
12.9.4 Naming conventions for inputfiles 703
12.9.5 0utput files 704
12.9.6 Module list 705
12.10 Statements of RMS before V7.0 i 707
12.00. L EXampPles ..o 709
12.10.2 Description of the statements 711
13 SANCHECK Checking the SAN configuration 713
13.1 Prerequisites and installation i 717
13.2 Configuration files 721
13,2 1 INLfile .o 722
13.2.2 SWITCHES file e 729
13.3 Starting and terminating SANCHECK 734
13.4 StatemMeNntS 735
13.4.1 Table of the SANCHECK statements 736
13.4.2 Description of the statements 737
13.4.2.1 SHOW-SAN-CONFIGURATION - Displays information on SAN components
.. 738
13.4.2.2 SHOW-SAN-PATH - Checking and displaying hardware connections in the
SAN L 749
13.5 SANCHECK MEBSSaAQgES .. ittt ittt e e e e 756
13.6 LiCensing ProviSiONS 757
14 SIR Creation of pubsets 765

14.1 Creating pubsets with SIR 766

14.1. 1 VolUME SEES . . . o 767

14.1.2 SM pubSets 769
14.1.3 SF pubSets 773
14.2 Pubset states 776
14.3 Overview of SIR functions and statements 778
14.4 Installing and operating SIR 783
14.5 Copying files with SIR 786
14.6 StatemMeNtS 787
14.6.1 Overview of SIR statements 788
14.6. 2 INpUt rUlES . .. 789
14.6.3 Statement editor 791
14.6.4 Description of the statements 792
14.6.4.1 BEGIN-VOLUME-SET-DECLARATION - Setup avolume set 793
14.6.4.2 COPY - Copy files 797
14.6.4.3 CREATE-CATALOG - Definefilecatalog 801
14.6.4.4 CREATE-IPL-VOLUME - Convertdiskto IPL disk 803
14.6.4.5 CREATE-PAGING-FILE - Create paging file 806
14.6.4.6 CREATE-SNAP-FILE - Create snapshotfile 807
14.6.4.7 CREATE-VOLUME - Initialize disks 808
14.6.4.8 DECLARE-PUBSET - Define pubset and type of processing 812
14.6.4.9 DELETE-IPL-FACILITY - Delete IPL capability and IPL files of disk 818
14.6.410 END - Terminate SIR e 819
14.6.4.11 END-VOLUME-SET-DECLARATION - Terminate statement sequence for
VOIUME St .. 820
14.6.4.12 INITIALIZE-PRIVATE-VOLUME - Initialize private disks 821
14.6.4.13 INITIALIZE-PUBLIC-VOLUME - Initialize publicdisks 823
14.6.4.14 MODIFY-IPL-VOLUME - Modifyingan IPLdisk 825
15 SMPGEN Conversion of SF pubsetsto SMpubsets 828
15. 1 Typical SCEeNAriot e 829
15.2 Requirements for operation of SMPGEN 831
15.3 Check function (consistency check) 833
15.3.1 Whatis checked? 834
15.3. 2 OUIPULS . .ot e 836
15.4 Creating new SM pubsets 840
15.4.1 Determining quotas and other attributes 843
15.4.2 ReSHICONS i 845
15.4.3 OUIPULS ...t e 846
15.5 Extending an existing SM pubset 847
15.5.1 ReStNCONS 850
15.5.2 OUIPULS . .. o 852

15.6 Starting and stopping SMPGEN 853

15.7 StatemMeENntS 854

15.7.1 Overview of SMPGEN statements 855
15.7.2 Description of the statements 856
15.7.2.1 CREATE-SYSTEM-MANAGED-PUBSET - Convert SF pubsets to SM
PUDSEt .. 857
15.7.2.2 MODIFY-SYSTEM-MANAGED-PUBSET - Extending an existing SM pubset
.. 869
15.8 Error behavior 880
159 Outputsto screen masks 882
15.10 SMPGEN MESSAQES . . .o ittt it e e 894
15.11 Attributes of SM pubsets and volumesets 895
16 SPCCNTRL Checking and managing storage allocations on disks 898
16.1 Operating iNStrUCLIONSt teeeeeeeeeeaa 899
16.2 StatemMeENtS . .. 900
16.2.1 Overview of SPCCNTRL statements 901
16.2.2 Description of the statements 902
16.2.2.1 BKPT - Interrupt SPCCNTRL routinet .. 903
16.2.2.2 CHECK - Perform allocation checks 904
16.2.2.3 DISPLAY - Direct output to SYSOUT v, 907
16.2.2.4 END - Terminate SPCCNTRL 914
16.2.2.5 HELP - Describe specified statement or list all SPCCNTRL statements . 915
16.2.2.6 LIST - Direct output to SYSLST 916
16.2.2.7 MODIFY - Modify defaultvalues 920
16.2.2.8 PURGE - Remove dead space and delete catalog entries 921
16.2.2.9 TRACE - Identify and output blocks and entries in system catalog and VTOC
areaof private disk 924
17 TPCOMP2 Comparison of dataontapes 928
17, L FUNCHIONS o 929
17.2 Starting the program run 930
17.3 StatemMeNntS 931
17.3.1 Overview of TPCOMP2 statements i, 932
17.3.2 Description of the statements i 933
17.3.2.1 COM - Compare areas of inputtapes 934
17.3.2.2 END - Terminate TPCOMP2 e 935
17.3.2.3 LIM - Terminate tape comparison after a certain number of blocks 936
17.3.2.4 POS - Position magnetictapesu i, 937
17.3.2.5 RCD - Specify processing of variable-length inputrecords 938
17.3.2.6 STP - Stop TPCOMP?2 in the event of discrepancies between magnetic
LAPES . 939
17.4 Using /ADD-FILE-LINK e e e 940

17.5 TPCOMP 2 MESSaAgeS . .ottt it e et e e e e e e 942

18 VOLIN Initialization of disk storage units 944

18.1 VOLIN program exeCution e 945
18.2 Generating BS2000 labels (label generation) 946
18.3 Program exXeCULIONt 948
18.4 Operating iNStrUCLIONSot e 950
18.5 StatemeNtS 951
18.5.1 Overview of VOLIN statements, 952
18.5.2 Description of the statements i 953
18.5.3 Correspondence between ISP and SDF statements 956

19 Related publications 957

Utility Routines

16

1 Preface

This manual describes the following utility routines for controlling and monitoring the BS2000 operating system:

Name of utility Privilege required Description in section ...

routine
DPAGE For certain "DPAGE Outputting and modifying disk files"
statements
INIT For certain "INIT Initializing (emulated) magnetic tapes"
statements
IORM Yes "IORM Dynamic control of I/O resources"
JMP Yes "JMP Reconstruction of ENTER commands from the JMS job
pool"
JMU Yes "JMU Creating and maintaining the SIMSFILE system file"
LMSCONV No "LMSCONYV Generation and management of libraries”
MSGMAKER No "MSGMAKER Processing of BS2000 Message Files”
PAMCONV No "PAMCONYV Conversion of file formats"
PASSWORD No "PASSWORD Encryption of passwords"
PVSREN Yes "PVSREN Renaming pubsets and volume sets"
RMS Yes "RMS REP Mounting System"
SANCHECK Yes "SANCHECK Checking the SAN configuration”
SIR For certain "SIR Creation of pubsets”
statements
SMPGEN For certain "SMPGEN Conversion of SF pubsets to SM pubsets"
statements
SPCCNTRL For certain "SPCCNTRL Checking and managing storage allocations on
statements disks"
TPCOMP2 No "TPCOMP2 Comparison of data on tapes"
VOLIN Yes "VOLIN Initialization of disk storage units"

The utility routines handle three areas:

® volume processing
® file processing

® controlling of I/O resources (devices, controllers, channels, paths)

The utility routines can be assigned to these three areas as follows:

17

Utility routines for volume processing

DPAGE Output and modification of data in PAM pages
INIT Initialization of tapes
PVSREN Renaming of pubsets and generating of pubsets from pubset mirrors

SMPGEN Conversion of SF pubsets to SM pubsets

SIR Creation of pubsets

SPCCNTRL Checking and management of disk space allocation
TPCOMP2 Comparison of data on tapes

VOLIN Initialization of disk storage units

Utility routines for file processing

DPAGE Output and modification of data in PAM pages
JMP Reconstruction of ENTER commands from the JMS job pool
JMU Generation and maintenance of the file for stream and job class definitions

LMSCONV Generation and management of libraries
MSGMAKER Processing and generation of BS2000 message files
PAMCONV Conversion of file formats

PASSWORD Encryption of passwords

RMS Management, documentation, delivery and mounting of REP packets and preliminary corrections

Utility routines for controlling 1/0O resources

IORM Optimizing the workload of I/O resources

SANCHECK Checking of the I/O devices on the Fibre Channel

18

1.1 Objectives and target groups of this manual

This manual is intended both for privileged and nonprivileged BS2000 users.

19

1.2 Summary of contents

This manual describes the utility routines in alphabetical order.

Readme file

The functional changes to the current product version and revisions to this manual are described in the product-
specific Readme file.

Readme files are available to you online in addition to the product manuals under the various products at
http.//bsZmanuals.ts.fujitsu.com. You will also find the Readme files on the Softbook DVD.

Information under BS2000
When a Readme file exists for a product version, you will find the following file on the BS2000 system:
SYSRME. <pr oduct >. <ver si on>. <l ang>

This file contains brief information on the Readme file in English or German (<lang>=E/D). You can view this
information on screen using the SHOWN FI LE command or an editor.

The / SHOW | NSTALLATI ON- PATH | NSTALLATI ON- UNI T=<pr oduct > command shows the user ID under which
the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and using a product version
are contained in the associated Release Notice. These Release Notices are available online at hitp:/bsZmanuals.ts.
fujitsu.com.

20

http://bs2manuals.ts.fujitsu.com
http://bs2manuals.ts.fujitsu.com
http://bs2manuals.ts.fujitsu.com

1.3 Changes since the last edition of the manual

The following principal changes have been made since the last edition of the “Utility Routines” manual:

The manual has been adjusted for BS2000 OSD/BC V11.0. From BS2000 OSD/BC V11.0B onwards, the file
catalog has been expanded with the NUM-OF-BACKUP-VERS file attribute to support version backup (see
“Introduction to DVS” manual [4]).

All references to SQ servers and the global storage, which are no longer supported, have been removed.
The following modifications have been made to the IORM utility routine:
* New statement for the specification of base devices in the IORM utility routine.

®* From BS2000 OSD/BC V11.0B onwards:
The “FastDPAV” function, an optimized DPAV, is offered for Server Units SU /390 (from SU710 onwards) that
support a modification of the logical unit number (LUN) for alias devices when starting an 1/O (see section "
FastDPAV").

For the JMP utility routine, the CONVERT-JOBPOOL statement is now obsolete and has been removed.

For the LMSCONYV V3.5B utility routine, adaptions to LMS V3.5B have been made, especially in including the
last byte pointers (LBP) and the CCSN for SAM files in Net-Storage (NETCCSN) as well as the new MODIFY-
ELEMENT-ATTRIBUTES statement.

The SANCHECK utility routine can be used on /390 servers. On SE servers, the SE manager offers convenient
functions for the same effect, which can be found under “FC Networks”.

The SIR utility routine also allows the generation of IPL disks with the LARGE- FI LES- ALLONED=* YES attribute.
From now on, SIR only supports the TSOSCAT type EXTRA-LARGE. The operands for specifying the
TSOSCAT type have been removed.

The SIR statements REPAIR and LIST have been removed.

Copying from tape with SIR has been removed.

In the VOLIN utility routine, some obsolete functions have been removed:
® Volume checking, volume formatting, volume repair.
® Statements REPAIR, RETRY, DEFECTS, RECLAIM, OPTION.

21

https://edsys.g02.fujitsu.local:8443/pages/viewpage.action?pageId=58886059

1.4 Notational conventions

For the sake of simplicity and clarity, frequently used names are abbreviated as follows:
® BS2000 servers for the servers with /390 architecture and the servers with x86 architecture. These servers are
operated with the relevant BS2000 operating system.

® /390 server for the Server Unit /390 of the FUJITSU Server BS2000 SE Series and the Business Servers of the
S Series

® x86-Server for the Server Unit x86 of the FUJITSU Server BS2000 SE Series

® SE servers for the FUJITSU Server BS2000 SE Series (Server Units /390 and x86)

® S servers for the Business Servers of the S Series (/390 architecture)

In the examples the strings <dat e>, <t i me> and <ver si on> specify the current outputs for date, time and version
of a software product when the examples are otherwise independent of date, time and version.

The following typographical elements are used in this manual:

For notes on particularly important information

This symbol designates special information that points out the possibility that data can be lost or that other serious damage
may occur.

[] Related publications are referred to in short form throughout the manual. The full titles are listed in the “References” section
at the back of this manual.

I nput Inputs and system outputs in examples are shown intypewriter font.

Messages and their meaning

In this manual, messages are represented in most cases only by their message keys. The message key starts with
3 characters (message class) followed by 4 hexadecimal digits.

You obtain information on the meaning of the messages issued with the BS2000 command HELP-MSG-
INFORMATION.

You will find the messages using an HTML application on our manual server (URL: http.//bsZmanuals.ts.fujitsu.com)
under the current version of BS2000 OSD/BC instead of in the previous manual "System Messages" and on the
DVD “BS2000 SoftBooks".

All messages can be found in the respective message file using the software product MSGMAKER (see
"MSGMAKER Processing of BS2000 Message Files").

22

http://bs2manuals.ts.fujitsu.com

Metasyntax for statements

SDF Format

For the description of the metasyntax in SDF format please refer to the manual ,Commands* [1 (Related
publications)].

ISP format
Statement format in the utility routines DPAGE, INIT, PASSWORD, RMS, SPCCNTRL, TPCOMP2 and VOLIN.

ISP syntax representations have been changed to SDF format. However, additional metacharacters are used and
declarations made, which are described below.

Representation Function

WRPASS Uppercase characters denote constants which must be input exactly as shown.
programname Lowercase characters denote variables which are replaced with current values on input.
{YES/NO} Braces are used to indicate alternatives, i.e. a specification must be selected from the

values shown in the brackets. The alternatives are written one below another.

[1] Square brackets indicate optional specifications that can be omitted. The entire specification
in the brackets must be omitted.

() Parentheses are part of operands and must be input with them.

'BLANK' Means a space (blank).

D2,ALL Commas separating operands must also be entered.

(filenamel),... Three periods mean that the unit in front of the comma can be repeated (possibly only up to

(vsnl, vsn2,...) a specified maximum value).

Table 1: ISP metasyntax

23

2 DPAGE Outputting and modifying disk files

Version: DPAGE V17.0A

Privileges: STD-PROCESSING (for nonprivileged functions)
TSOS (to open a volume)

The DPAGE utility routine enables nonprivileged users, systems support and system programmers to perform the
following functions:

® output files in PAM format to SYSOUT (i.e. the terminal in an interactive task, and a file in a batch task)
® output files in PAM format to SYSOUT (for high-volume printing)
* modify data contained in a PAM page (2048 bytes) or in the PAM key (16 bytes)

Only systems support is permitted to process volumes.

Note

DPAGE requires each volume opened to have PAM pages format, otherwise the results are unpredictable.

It should be noted that public volumes contain IPL (Initial Program Load) and SVL (Standard Volume Label) records

in physical pages 1, 2 and 3.

WARNING! Modifying these pages may render the volume unusable. If the SHAREABLE volume is open,
modifications on page 2 (SVL) are not accepted during WRITE.

24

2.1 Support for pubsets

In a system with several pubsets, each pubset has its own TSOSCAT file catalog. Each of these catalogs is
uniquely identified by its catalog ID (catid). The catalog ID (catid) is part of the file name.

A file name has the format: :catid:$userid.filename

catid Catalog identifier. This has a length of 1-4 characters and must be enclosed in colons.

userid User identification under which the file is cataloged. The user identification must be preceded by a $
sign. It has a maximum length of 8 characters and must be concluded with a period.

filename Name of the file as entered in TSOSCAT. The file name component, including all periods
(designating partial qualification), must not exceed 41 characters.

A fully qualified file name, consisting of catalog ID, user ID and file name, may have a total length of up to 54

characters:

up to 4 characters
2 character
1 character
up to 8 characters
1 character

up to 41 characters

Catalog ID

Colons as delimiters before and after the catalog ID

$ signifying the beginning of the user ID

User ID

. (period) used as delimiter between user ID and file name

File name, including all periods for partial qualification; max. length depends on the length
of the catid and userid

25

2.2 Starting the program run

The program is started with: / START- DPAGE
The BKPT statement, or alternatively a slash, can be used to interrupt DPAGE (i.e. to set a breakpoint). Control is
START-DPAGE Alias: DPAGE

VERSION = *STD / <product-version>
,MONJV = *NONE / <filename 1..54 without-gen-vers>

,CPU-LIMIT = *JOB-REST / <integer 1..32767 seconds>

Alternatively: / START- EXECUTABLE- PROCRAM FROM FI LE=$DPAGE

26

2.3 Statements

Overview of DPAGE statements

Operation Function

BKPT / Interrupt DPAGE or enter a BS2000 command

/[bs-cmd]

DI SPLAY / D Output a specific portion of one or more PAM pages to SYSOUT
EDT /| @ Call the file editor EDT as a subroutine

HALT / H/ Terminate the DPAGE routine

END / E

MODIFY /| M Change the contents of a page or the key in an internal work area
OPEN / O Open a file or a volume

PRINT / P Output a specific portion of one or more PAM pages to SYSLST
READ / R Read a page into an internal work area

WRITE / W Write the page currently in the internal work area back to the file
Formats

The following terms are used in the description of the statements:
page Decimal number of up to 10 digits in the range 1 - 2147483647.

byte,bytel,byte2 Decimal number of up to 4 digits in the range 1 - 2048.
Exception
After opening 4K-formatted volumes, a decimal number in the range 1-4096.

Kn The letter K followed by an integer in the range 1-16.

The page number specified in the statements refers to the Physical Half Page Number (PHP = 2048 bytes).

The page number however refers to the logical 4k block number (contains 2PHP = 4096 bytes) in the following
cases:

* a 4K-formatted volume has been opened

® a 4K file has been opened on a volume without a PAM key (NK2, NK4)

27

2.3.1 BKPT - Interrupt DPAGE

The BKPT statement, or alternatively a slash, can be used to interrupt DPAGE (i.e. to set a breakpoint). Control is
returned to DPAGE via / RESUME- PROGRAM

“I" and “bs-cmd” may be followed by any BS2000 command.
Format

{/[bs-cmd] / BKPT }

Operands

bs-cmd
BS2000 command

28

2.3.2 DISPLAY - Output page to SYSOUT

The DISPLAY statement outputs one or more pages, or parts thereof, to SYSOUT.

Format

DISPLAY /D
page / pagel-page2 / page-$ / *
[,byte / ,bytel-byte2 / K]

Operands

page
Specifies the page of the file (or the volume) to be displayed.

pagel-page2
Specifies a range of pages which is to be displayed (pagel < page?2).

page-$

Specifies that all pages, starting at “page” and continuing through to the end of the file (or volume), are to be
displayed.

*

Specifies that the page currently in the internal work area is to be displayed.

byte
Specifies the byte to be displayed.

bytel-byte2
Specifies the byte range to be displayed (bytel < byte2). Up to 2048 bytes can be used for byte2. For 4K-formatted
volumes up to 4096 bytes.

K
Only the PAM key is to be displayed.

Example

| DI SPLAY 1, 1-224
| *OPEN TEST

: OPEN COVPLETED

| *DI SPLAY 1, 1-224

PAGE: 0000000001 PAMKEY: 57739BDE 01000001 00000138 00010006
001 --> (0001) 7CDr7C602 O02F8F5C1 D7ClDAC5 CAC9E340 @F 90ATEST
011 --> (0017) O00O0057E8 000057E8 F8F7FOF2 F2F50001 Y Y870225

021 --> (0033) 00000000 00000006 00000001 00000000
031 --> (0049) 00010000 00000000 00000000 00000000

041 --> (0065) 00D4010D 00000000 0000000C 027CD7C6 M @F
051 --> (0081) E5F9F04B C1FOF040 40400000 00000000 V90. A0O0
061 --> (0097) 00000000 00000000 D7ClD4AC5 CA4C9E340 TEST

1 =071 --> (0113) 40404040 40404040 40404040 40404040
091 --> (0145) 40000000 00000000 00000000 00000000
0AL --> (0161) 00000000 00000000 40404040 40404040

0B1 --> (0177) 40404040 F1F9F8F7 00000000 00000000 1987
0Cl --> (0193) 00000000 00000000 00000000 E5F2F100 V21
0Dl --> (0209) 00000000 00000000 6CD9D6D6 E3404040 %6001

29

Output "=071"at the beginning of a line means that the following lines that are not explicitly output have
the same contents as 071 and are also filled with blanks.

In the example, line 71 is highlighted ("=71") and line 81 is missing, i.e. line 81 is also filled with blanks.

30

2.3.3 EDT - Call EDT

The EDT statement calls the file editor EDT.
In interactive mode EDT full screen mode is set.
In batch mode the EDT statements are read from SYSDTA.

The EDT statement @RETURN or @HALT returns control to DPAGE - in full screen mode this is also the case
when the K1 button is pressed.

The internal data of EDT (working files, variables) is retained for a possible further call of the EDT. It is released
only when DPAGE is terminated.

Format

EDT/ @

31

2.3.4 END / HALT - Terminate DPAGE
The END or HALT statement terminates DPAGE.
The open file is closed.

Format

HALT/H/END/E

If any error occurred in DPAGE, e.g. syntax error during input of a command, DPAGE is terminated with
TERM UNIT=STEP. In this case, error handling is possible in the procedures.

32

2.3.5 MODIFY - Modify contents of page

This statement modifies the contents of the page currently in the internal work area (see READ).
The original page in the file (on the volume) is not affected here (see WRITE).

Format

MODIFY /M
[bytel / Kn1]

[[X'hex-string' / ,nnX'hex-string' / ,'character-string' / ,nn'character-string' / ,C'character-string' /
,AnC'character-string’]

[,byte2 / ,Kn2]

Operands

First operand

bytel
Specifies the location in the PAM page (1..2048) where the text specified in the second operand is to replace the
original text. All bytes before byte 1 remain unchanged.

Knl
Specifies the position in the PAM key (1-16) where the text specified in the second operand is to replace the original
text. All bytes before Knl remain unchanged.

The default value is 1. The text specified in the second operand changes the original contents of the page, starting
with the first byte.

Second operand

X'hex-string' / nnX'hex-string' / ‘character-string' / nn'character-string' / C'character-string' / nnC'character-
string’

Specifies the text that is to replace the original text. If byte 2 is not specified, the new text replaces the old text for
the length of the new text, starting with byte 1.

“nn” is an integer which specifies a repetition factor for the specified string.

No distinction is made between uppercase and lowercase if C'..." is specified.

Default value: no text is changed.
The text must not extend beyond the PAM page or PAM key.
Third operand

byte2
Specifies the location in the original PAM page where the text which is to be added to the new text begins,
regardless of whether the new text is shorter, longer or equally long.

Kn2
Specifies the location in the original PAM key where the text which is to be added to the new text begins.

The locations which the first and thid operands specify must both be located on the PAM page or in the PAM key.

Modifications in the first 8 bytes of the PAM key will not be transcribed back to the file. Furthermore, in the case of
files without a PAM key, the first 12 bytes of a page (control block field) will not be transferred to the file.

33

Example

The original page is assumed to contain: ' ABCCATDOGXX. . . '
and the original key is assumed to contain: ' 1234DEFCO. . .

MODI FY 5, 'OW, 7

Changes the entire page to: ' ABCCOADOGXX. . . . "
MODI FY 5, ' OW

Changes the page, like the instruction in example a), to: ' ABCCOANDOGXX. . . '
MODI FY , 3X C8Cl', 10

Changes the page to: ' HAHAHAXX. . .

The page will be padded at the end with 3 bytes of hexadecimal zeros (X'000000").
M K1, 16x' 00’

Sets the key to hexadecimal zero.
After the instruction WRITE only bytes 9..16 of the key are written back to the disk. Bytes 1..8 are not changed.

34

2.3.6 OPEN - Open file

The OPEN statement permits an open file or volume to be closed and another one to be opened. Only systems
support is authorized to open a volume.

Format
OPEN/O

{ filename

[INOUT / ,INPUT/ ,PHYSICAL] /

vsn

[,[device-type] [EXCLUSIVE / ,SHAREABLE]] }

Operands
Opening a file
filename

Fully qualified file name or name of a file generation group. The file protection offered by DMS takes effect when the
file is opened (e.g. password, external access, read/write access).

INOUT
The file is opened for reading and writing.

INPUT
The file is opened for reading only. WRITE statements lead to a PAM write error.

PHYSICAL
The file is opened for reading only. WRITE statements lead to a PAM write error. If the file is encrypted, the
subsequent output statements result in the file content being output in encrypted format.

Opening a volume

vsn
The volume serial number, up to six characters long, of a volume (either public or private) is enclosed in single

quotes.

device-type
Defines the volume device type.
See the “System Installation” manual [7 (Related publications)] for possible specifications.

EXCLUSIVE
The volume is opened exclusively for one task.

SHAREABLE
The volume is opened as a public volume.

Example
OPEN ' ABCDEF'

Volume 'ABCDEF' is opened exclusively if it is available.

35

2.3.7 PRINT - Print page

The PRINT statement prints portions of a page or whole pages via the SYSLST file.
Format

PRINT /P

page / pagel-page2 / page-$ / *

[,byte / ,bytel-byte2 / K]

Operands

This statement is identical with the DISPLAY statement except for the fact that output is to SYSLST. The meanings
of the operands are given on "DISPLAY - Output page to the SYSOUT file".

36

2.3.8 READ - Read page

The READ statement reads a page into the internal work area.
The data read in thus exists twice: once in the original PAM page and once in the internal work area.

The MODIFY statement can be used to modify the contents of the PAM page stored in the internal work area. With
the WRITE statement, the data from the internal work area may be written back to the original area.

The internal work area is cleared by means of the HALT statement.
Format

READ /R

[page]
Operands

page
Specifies the logical page number to be read. If no page is specified, the next page is read.

Example

This sequence of statements will cause the DPAGE routine to read pages 7, 8 and 3 consecutively. It should be
noted that only one internal work area is provided.

37

2.3.9 WRITE - Write internal work area back to file

The WRITE statement writes the page currently in the internal work area back to the file (or volume).

The page may have been modified by a MODIFY statement.
Format

WRITE /W

Example

Page 1 is read to memory.
X'FF' is assigned to the tenth byte.
After modification, page 1 is written back to the file.

38

2.4 DPAGE messages

CLCSE ERROR, ERROR- CODE: XXXX

Meaning
Error on closing a file or disk. xxxx is the DMS error code.

Response

For an analysis of the error code xxxx, consult the manual "DMS Macros" or issue the BS2000 HELP

command XXXX.
ERROR | N EDT- CALL

Meaning
Program error in the EDT call. EDT could not be started properly.

| NVALI D BS2000 command

Meaning

The specified BS2000 command is invalid, or an error occurred in the CMD macro call.

I NVALI D COMVAND

Meaning
Invalid command, no action.

| NVALI D OPERAND, COMMAND REJECTED

Meaning
Invalid operand specification, command ignored.

NO PAMKEY AVAI LABLE

Meaning
The file/disk has no PAM key.

OPEN COMMAND MJUST BE G VEN FI RST, COMVAND REJECTED

Meaning
Wrong statement sequence.

Response
Enter OPEN first.

OPEN ERROR, ERROR- CODE: XXXX

Meaning
Error on opening a file or disk. xxxx is the DMS error code.

Response

For an analysis of the error code xxxx, consult the manual "DMS Macros" or issue the BS2000 HELP

command XXXX.
OPEN VOLUME RESTRI CTED TO SYSTEM ADM NI STRATOR

Meaning
Only systems support is allowed to open a disk.

39

PAM READ ERROR, ERROR- CODE: XXXX

Meaning
Error on reading a PAM page. xxxx is the DMS error code.

Response
For an analysis of the error code xxxx, consult the manual "DMS Macros" or issue the BS2000 HELP
command XXXX.

PAM VRl TE ERROR, ERROR- CODE: XXXX

Meaning
Error on writing a PAM page. xxxx is the DMS error code.

Response
For an analysis of the error code xxxx, consult the manual "DMS Macros" or issue the BS2000 HELP
command XXxX.

READ COMMAND MUST BE G VEN FI RST. PAGE NOT DI SPLAYED.

Meaning
DISPLAY was entered, but no page had been read in.

Response
Enter READ first.

READ COMVAND MUST BE G VEN FI RST. PAGE NOT MODI FI ED.

Meaning
MODIFY was entered, but no page had been read in.

Response
Enter READ first.

READ COMMAND MUST BE G VEN FI RST. PAGE NOT PRI NTED.

Meaning
PRINT was entered, but no page had been read in.

Response
Enter READ first, or enter PRINT with page specification.

READ COMVAND MUST BE G VEN FI RST. PAGE NOT WRI TTEN

Meaning
WRITE was entered, but no page had been read in.

Response
Enter READ first.

REQUEST MEMORY ERRCR

Meaning
Error on requesting memory via the REQM macro.

40

SEARCHED STRING NOT FOUND

Meaning
The desired string could not be found.

VOLUME NOT FOUND

Meaning
DPAGE could not find the specified volume.

Response
Enter correct volume serial number or contact the systems support.

ERROR OCCURED | N DPAGE- RUN: TERM UNI T=STEP

Meaning
An error has occurred during the DPAGE run. Jump to next STEP, ENDP, LOGOFF or to error
processing (e.g. IF-BLOCK-ERROR).

Response
Check SYSOUT and SYSLST logs and modify and repeat procedure if necessary.

41

3 INIT Initializing (emulated) magnetic tapes

Version: INIT V20.0A

Privileges: TAPE-PROCESSING (for nonprivileged functions)
TAPE-PROCESSING (for privileged functions)

The INIT utility routine initializes magnetic tapes (magnetic tape cartridges, MTCs) and emulated magnetic tapes.

Initialization is the process of writing a volume label (VOL1) and possibly two file labels (HDR1 and HDR2 of a
dummy file) at the logical start of the volume. The logical start of the volume is the position from which BS2000 can
begin writing data. This is not necessarily the physical start of the volume.

In the case of magnetic tape cartridges, labels are never compressed when written, even if write access with
compression has been specified (volume type TAPE-C4). The volume label (VOL1) is always written unencrypted,
even when encrypted write mode is specified.

Up to 16 volumes can be initialized with one statement.
With all INIT or LIST functions, you can select a defined device that supports the corresponding volume type.

In order to prevent data being overwritten by mistake, each volume is checked for existing labels before new labels
are created. The contents of existing labels are output to SYSOUT for scrutiny by the user. This means that the
user has an opportunity to abort initialization.The read-before-write check is only not performed on magnetic tapes
when the device management has already recognized the volume as empty and the INIT operand NEW has been
specified.

If a volume is checked and a VOL1, HDR1 or HDR3 label is found to contain an access restriction (access pointer,
release date, read or write password, “read-only” flag), a message to this effect is output.

The functions “read labels” (LIST statement) and “write new labels or tape marks” (INIT statement) are not executed
unless the user has the “TAPE-ADMINISTRATION" privilege.

The INIT utility routine offers the following functions:

1. For magnetic tapes:

® Write the volume header label VOL1 and the file header labels HDR1 and HDR2 (followed by two tape
marks).

Contents of tape: VOL1-HDR1-HDR2-TM-TM

® Write only the volume header label VOL1 (followed by two tape marks).
Contents of tape: VOL1-TM-TM

® Write two tape marks at the logical beginning of the volume. No labels are written.
Contents of tape: TM-TM

® Dump the contents of VOL1, HDR1, HDR2 and HDR3 labels, if any, to SYSOUT or the console. New labels
are not written.

®* Format the magnetic tape, if allowed by the volume and the tape device.
2. General:

® Activating or deactivating special functions. The setting remains valid for all INIT and LIST statements for the
duration of the program session or until reset.

® Qutput an outline description of statements and operands.

® Switch input/output to the console after the program is started with an ENTER task.

42

3. Security functions:
® Specifies a check volume serial number. A magnetic tape is not processed unless the VSN in its VOL1 label
tallies with the check VSN.
® FErase the entire contents of the volume before writing new labels (DSE = Data Security Erase).

In this context, erasure means that the volume is overwritten with a devicedependent deletion
pattern. Several newer devices implement deletion only on a logical level by deleting the file
management information on the volume. It may nevertheless still be possible to recover the
information of earlier records using special devices and technically complex procedures. The only
way to be absolutely certain that no unauthorized user reads any residual information left on the
volume is to physically destroy the volume.

® Abort initialization if a read-before-write check finds an access restriction.

® Exclude special characters not defined in DIN 66003 from use in labels.

43

3.1 Operating modes

The functions of the INIT utility routine can be executed in two operating modes: Normal mode or console mode.

44

3.1.1 Normal mode

This is the default operating mode when the INIT program is started with / START- | NI T.

START-INIT Alias: INIT

VERSION = *STD / <product-version>

,MONJV = *NONE / <filename 1..54 without-gen-vers>

,CPU-LIMIT = *JOB-REST / <integer 1..32767 seconds>

To guarantee compatibility with earlier versions, the follwoing command is still supported:

| START- EXECUTABLE- PROGRAM FROM FI LE=$I NI T

Once the program is started, messages are output via SYSOUT. The system awaits inputs from SYSDTA.
The program runs as described in the section “Program run”.
Statements to the INIT routine can be:

® entered at the terminal in interactive mode
® contained within a command procedure (reassignment from SYSDTA to SYSCMD)

® contained in an ENTER job (SYSDTA reassigned by default to SYSCMD)

Examples

Command procedure:

!/ BEG N- PROCEDURE

|/ ASSI G\- SYSDTA TO- FI LE=* SYSCVD
L/ START-INIT

(INIT statenents)

L END

'/ ASSI G\- SYSDTA TO- FI LE=* PRI MARY
! | END- PROCEDURE

' / SET- LOGON- PARAVETERS

!/ START-INIT

: (INIT statenents)
' END

/ EXIT-JOB

45

3.1.2 Console mode

In this operating mode, the INIT utility is controlled by means of a dialog which takes place on the console. For that
purpose an ENTER job must be sent from the console to start the INIT program and OPTION CONS used to direct
outputs to the console.

! | SET- LOGON- PARAVETERS
L/ START-INIT

{ OPTI ON CONS

/ EXI T-JOB

When the job is started, all messages and inputs are handled via the console, with the task sequence number
(TSN) being specified for each operation. The program runs as described in section “Program run”.

The OPTION CONS statement is valid only within a ENTER job; it is always rejected in interactive mode.
Example

<tsn>. | NI T TAPE- C4, VSN=MBK001

<tsn>. LI ST TAPE-C4

<tsn> is the task sequence number

46

3.2 Program run

Typical logs are used below as examples to demonstrate how a magnetic tape is initialized.
Messages marked (OUT) are output to SYSOUT in normal mode. Those preceded by (MSG are always output to

the console.

47

3.2.1 Program start

Example

(1IN Istart-init 1
(aum) %. .. 2.
| (OUT) % NVI0000 PROGRAM | NI T READY 3.
| (OUT) % NVI0001 ENTER COVMAND., (END = TERM NATE | NI T) 4

1. The INIT program is started.

2. Various load messages are output.
3. INIT signals ready ...
4

. ... and requests statement input.

48

3.2.2 Initializing a magnetic tape (example)

(OUT) % NVI 0001 ENTER COVMAND. (END = TERM NATE | NI T)

(IN) INIT TAPE- C4, VSN=TAPE1, ERASE 1.
(MSG) % NKVTO13 MOUNT TAPE ' *SCRAT' ON DEVICE ' T9'; 2.
(USE=' SPECI AL' , WR=" UNDEF' , TYPE=' TAPE- C4' ,

INIT T- C4, VSN=TAPEL) .
"(ETX = YES; M\ N = NO)'?
(IN) OABC. T7

(OUT) % NVI 0003 LABELS ON TAPE (1SO7): 3.
(QUT) % NVI 0004 VOL1 LABEL:
' VOL1TAPEO1 :
. X

(QUT) 9% NvI 0004 HDR1 LABEL:

' HDRLSAMPLE. FI LE ~ TAPE010001000100010'

"0 92104 92104 000000BS2000 '
(QUT) % NvI 0004 HDR2 LABEL:

' HDR2V8000102044 0O P

' .C..04
(OUT) 9% NVI 0004 HDR3 LABEL:

' HDR3TSCOS SAMPLE. FI LE

............ 00

(QUT) % NVI 0007 OVERWRI TE TAPE? 4.
REPLY (YES=YES N=NO)

(IN) YES

(QUT) % NVI 0208 DATA SECURI TY ERASE STARTED 5.

(QUT) % NVI 0209 DATA SECURI TY ERASE COVPLETED

(OUT) 9% NVI 0210 | NI TI ALl ZATI ON OF TAPE ' TAPEL' 6.
ON DEVI CE ' T7' COMPLETED

(QUT) % NVI 0001 ENTER COMVAND. (END = TERM NATE I NI T) 7.

1. To initialize a volume, enter INIT with a unique valid volume type (in this case with ERASE is specified (data
security erase)).

2. Message output via the console requests the operator to mount the volume. Once the volume is mounted (on
device T7 in this case), the operator confirms by specifying the task sequence number (TSN). If the volume is
mounted on the device specified in the MOUNT request (T9), the mnemonic device name (T7) can be omitted.

3. The volume is read and the labels, if any, are output. If the labels are written in ISO7 code, the output includes
a message to this effect. In this example, the contents of the labels are spread over a number of lines and are
delimited by quotation marks. In normal use, the contents of the labels are output as a single string; blanks at
the end of the string are not included.

If the volume has no volume label (VOL1) or the label is invalid, explanatory messages are issued instead of
the labels.

Empty volume:

(OUT) % NVI 0102 NO LABELS ON TAPE. TAPE EMPTY

Tape marks at the beginning of the volume:

(QUT) % NvI 0103 NO LABELS ON TAPE. TAPE MARKS READ
Error when reading VOL1 label :

(QUT) % NVI 0104 1/ O ERROR VWH LE READI NG LABELS

4. This is followed by the question whether or not to overwrite the volume. This is the last opportunity to prevent
the volume being overwritten. If the answer is affirmative, the word YES (for overwrite) must be typed in full. For
safety’s sake, abbreviations are rejected. All other entries (i.e. do not overwrite) are interpreted as negatives.

49

5. If data security erase was requested by the ERASE parameter, the data on the volume is erased. This
procedure can take several minutes or hours, depending on the device and the volume; messages are output to
indicate the start and end of the process.

6. After deletion, the new labels are written and a message is output indicating that initialization is completed. If
initialization is unsuccessful, a message is output indicating the source of the problem and initialization is
aborted.

(QUT) % NVI 0309 TAPE WTH VSN ' ' CANNOT BE USED.
I NI TI ALI ZATI ON ABORTED

7. The system prompts for the next statement.

50

3.2.3 Program termination

L (QUT) % NVI0001 ENTER STATEMENT. (END = TERM NATE INIT) i
C(IN END 1. ;
[(OUT) % NVI0011 PROGRAM | NI T TERM NATED NORMALLY 2. ;

1. The END statement is entered.

2. The INIT program is terminated and a message indicating correct termination is output.

51

3.2.4 Problems in volume initialization

If an error occurs in the read-before-write check that precedes label updating, when data is erased or when labels
are updated, the device error handling system may output messages to the console. These messages contain
useful information indicating the source of the error. If a message requires an answer, the possible answers are
shown in the message text. The response must be entered via the console and must include the task sequence
number. For example, if the answer required is ,NO', the following entry is required:

<t sn>. NO

<tsn> is the current task sequence number.

52

3.3 Statements

Entering INIT statements

INIT reads statements from the system file SYSDTA (by default, from the terminal in interactive mode) or from the
console (in CONSOLE mode).

An INIT statement consists of the operation name (INIT, LIST, etc.) plus operands with operand values, as
applicable. If a statement requires more than one operand, the operands are separated by commas. Blanks are not
permissible between the operand and the operand value or values.

An input line cannot consist of more than 72 characters. Excess characters are truncated without warning. Leading
blanks are ignored.

If necessary, an INIT statement can be continued on a continuation line or lines. A continuation character (hyphen: “-
") must be set at some point in the statement to indicate the presence of continuation lines. INIT then prompts for
continuation of statement input:

(OUT) % NVI 0002 ENTER ADDI TI ONAL OPERANDS

All characters coming after a blank following the continuation character are ignored (line comment). If characters
other than blanks come immediately after a hyphen, the hyphen is not recognized as the continuation character.

Leading blanks in a continuation line are ignored. The operands specified in a continuation line are appended to the
preceding line at the point at which the continuation character occurs.

Even if it extends over a number of continuation lines, an INIT statement cannot consist of more than 240
characters (including permissible blanks, excluding leading blanks and character after a continuation character).

Example
Statement parts Comment
(I'N) INNT 3 TAPE- 4, - I NI TI ALI ZE 3 MAGNETI C TAPE CARTRI DGES
(I'N) VSN=(VSNO1, - VSN 1
(I'N) VSNO2, - VSN 2
(I'N VSNO3) , - VSN 3
(IN) UNI T=A1

This is equivalent to the following input line:
INI'T 3 TAPE- C4, VSN=(VSNO1, VSNO2, VSNO3) , UNI T=A1

If an asterisk (*) appears in the first column of an input line, the contents of the line in question are not evaluated.
By this means, comments can be added to procedures in which the INIT utility routine is called or to a tracer listing.

53

Overview of INIT statements

Statement

END

HELP

INIT

LIST

OPTION

Function
Terminate the program.
Output an outline description of statements and operands

Write the volume header label VOL1 and the file header labels HDR1 and HDR2 or write two tape
marks.

Optional formatting of the volume before writing new labels is possible if the volume type permits
it.

The system privilege TAPE-ADMINISTRATION is required.

Output the contents of existing VOL1, HDR1 , HDR2 and HDR3 labels.
The system privilege TAPE-ADMINISTRATION is required.

Activate and deactivate special functions; the setting remains valid for all INIT and LIST
statements throughout the program session or until reset.

54

3.3.1 INIT - Initialize magnetic tape

The INIT statement writes volume labels to magnet tapes or magnet tape cartridges. The volume type and either
the VSN to be written or the initialization mode in which only tape marks are written are specified.

The user can also choose to define:

® the number of volumes to be listed

® a particular volume

® a specific device

® the code for the labels (ISO7 or EBCDIC)

® the way in which the volume is handled after initialization

Before writing new labels, the INIT routine checks for existing labels. If labels can be read, they are output so that
they can be checked. If OPTION CONS is set, the list is output to the console. If this option is not set, the list is
output to SYSOUT.

i The INIT function is executed only if the task has the system privilege TAPE-ADMINISTRATION.

Format
INIT

[no] voltyp

{,VSN={vsn / (vsnl,vsn2,...vsnl6) / (initval) / *} [, OWN={ name / * }][,ZERQ][,ISO7] /
JWTM }

[LUNIT = mn]

[LNEW / CHECK = vsn]

[LREW / RUN]

[LERASE]

[FORMAT]

Operands

no
Number of volumes to be listed with this statement.
Permissible values: 1, 2, ..., 16.

i The operands “no” and “voltyp” must be separated by at least one blank.

voltyp
Defines the volume type. Defines the volume type, and thus also the recording mode.

You will find the volume types supported in the current in BS2000 version in the “System Installation” manual [7
(Related publications)]. For compatibility reasons, INIT also supports a few more volume types. You can ascertain
the volume types accepted by INIT by means of the HELP statement (see "HELP - Outline description of INIT
statements").

55

i The keywords for volume types can be abbreviated as long as they remain unique, e.g. T-C4 = TAPE-C4.
As new volume types are introduced, however, an abbreviation which was originally unique may become
ambiguous. There are no guaranteed abbreviations.

There is no default value for this operand; the value must always be specified by the user.
INI'T 3 TAPE- C4, VSN=(VSNO1, VSNO2, VSNO3) , UNI T=A1

Volume serial number which is to be entered in the VOL1 label (no default).If two or more volumes are to be
initialized with a single statement, the user must specify either a corresponding number of VSNs or an initial value.

VSN=vsn

Single volume serial number.

A single volume is to be initialized. Consequently, the “no” operand must be either 1 or not specified.
Permissible values: Max. 6 characters (A..Z, 0..9, #,$,@).

The special characters #, $, @ are permitted by INIT but must not be used in labels conforming to DIN 66029,
DIN 66003. If OPTION DIN is active, these special characters are rejected.

VSN=(vsnl,vsn2,...,vsnl6)

Two or more volumes are to be initialized with the specified VSNs. The number of VSNs must tally with the
value specified for the “no” operand.

Permissible values: each value must be a valid VSN (see above).

VSN=(initval)
Two or more volumes, beginning with the VSN initval, are to be initialized. After every successful initialization, the
VSN is automatically incremented by 1. The number of volumes must be specified in the “no” operand.

Permissible values:

initval must be a valid VSN and must contain at least one decimal digit. The number specified as the initial VSN is
read from left to right. The initial value of the VSN to be generated is the first sequence of decimal digits found. If
initval contains more than one sequence of digits separated by other characters (e.g. letters), only the string of
digits furthest left is used as the initial value.

The number of digits in the initial value identified in this way must also be able to accept the highest VSN; if it
cannot, the statement is rejected.

Examples
INNT 5 TAPE- 4, VSN=(A12B12)

The statement initializes volumes with the VSNs A12B12, A13B12, A14B12, A15B12 and A16B12.
INIT 16 TAPE- C4, VSN=(A1B)

The statement is rejected, because only single-digit decimal numbers can be formed.

56

VSN=*

The existing VSN is to be used.

If the volume does not have a readable VOL1 label with a valid VSN, a message to this effect is output and no new
labels are written.

OWN
Valid only if WTM is not specified. Name of the owner to be entered in the VOL1 label.

OWN=name

Name to be entered in the VOL1 label.

Permissible values: Max. 8 characters (A...Z, 0...9, #, $, @, ., -) Default
value:Blanks are entered if nothing is specified.

OWN=*

If an owner’s name already exists in the VOLL1 label, it is to be transferred to the new VOL1 label. If the volume
does not have a legible VOL1 label with a valid owner’s name (blanks are also a valid name), a message to
this effect is output and no new labels are written.

ZERO
In the VOLL1 label (byte 11), the printable character O is entered as the access flag. If this operand is not
specified, a blank is entered as the access flag.

1ISO7
The labels are to be written in ISO 7-bit code.

WTM
Write two tape marks at the logical beginning of the volume. No labels are written.

UNIT=mn
Mnemonic device name for seizure of a particular device. A volume is to be mounted on the specified device.
Unsuitable devices, i.e. devices that cannot process volumes of the specified type, are rejected.

CHECK=vsn

Specifies a check volume serial number.

A volume is not processed unless the VSN in the VOL1 label tallies with the specified VSN. This mechanism
prevents the wrong volume from being overwritten by mistake.

If the CHECK operand is specified and the requested volume is already mounted on the correct device, no MOUNT
request is sent to the operator and the volume is initialized immediately.

Permissible values: Max. 6 characters (A..Z, 0.9, #,$,@).

The special characters #, $, @ are permitted by INIT but must not be used in labels conforming to DIN 66029, DIN
66003. If OPTION DIN is active, these special characters are rejected.

i CHECK can be specified only if not more than one volume is to be initialized with this statement (operand
no=1 or not specified).

57

NEW

The effect of this operand depends on whether the volume already contains data or if it has been recognized as
empty by the tape monitor of the operating system.

If the volume is empty, both the read-before-write check of the labels and the OVERWRITE query are suppressed.
If a volume already contains data, the read-before-write check of the labels is implemented without error handling.

If the NEW operand is not specified, INIT always attempts to read existing labels. This incorporates full error
handling if the tape monitor of BS2000 has not already recognized the tape as empty during mounting. For safety’s
sake, INIT attempts to read without error handling in this event.

REW
Specifies that the magnetic tape or magnetic tape cartridge is to be rewound after listing but not unloaded. If a
single volume is listed, REW is set by default.

RUN

Specifies that the magnetic tape or magnetic tape cartridge is to be rewound and unloaded after listing. If two or
more volumes are to be listed with a single statement (operand

no=2..16), RUN is set by default.

ERASE
All the data on the volume is to be erased before the labels are updated.

i Depending on the device and the volume, this procedure may take several minutes or hours.

If this operand is not specified, only the new labels are written at the beginning of the volume and the logical end of
volume is marked by means of two tape marks. The original contents of the volume behind these marks, however,
is retained, and under certain circumstances it may still be readable (see note under “Security functions” on "INIT
Initializing (emulated) magnetic tapes").

If INIT can read a valid VOLL1 label, this label is retained after erasure. If not, everything from the beginning of the
volume onward is erased.

FORMAT
The volume is formatted, if the volume type and the device permit this. If not, an explanatory message is displayed,
the operand is ignored and the initialization procedure continues.

i It may take several minutes to format a volume.

58

Examples for writing labels

1.

Initializing a volume (specifying minimum parameters):
I NI T TAPE- C4, VSN=VSNOO1

Initializing

® three volumes

® with one statement

* with explicitly specified VSNs

® with special characters in the VSNs:

INI'T 3 TAPE- C4, VSN=(VSN#00, VSN$00, VSN@O0)
Initializing

¢ 8volumes

® with one statement

® with consecutive VSNs:

INIT 8 TAPE- C4, VSN=(VSNO01)

The VSNs assigned to the volumes are VSN001, VSNO002, ...,VSNO008.
Initializing

® avirgin volume

® on a specified device (with mnemonic name M1):

I NI T TAPE- C4, VSN=MBKO1, UNI T=ML, NEW
Initializing

® a particular volume (with volume serial number VSN0O01)
® on a particular device (with mnemonic name T1)

® in 1SO7 bit code

® unloading it after initialization

® with entry of an owner identifier

® with data security erase

® with entry of “0” as access code:

I NI T TAPE-C4, VSN=TAPEO1, CHECK=VSNOO1, UNI T=T1, | SO7, RUN, -
OM=RZ#A0001, ERASE, ZERO

59

Examples for writing two tape marks

1. Writing two tape marks at the beginning of a volume, specifying minimum parameters:
INIT TAPE-C4, WM
2. Writing two tape marks at the start of
® three virgin volumes
® with one statement:
INIT 3 TAPE-C4, WM NEW
3. Writing two tape marks at the start of
® a particular volume
® on a particular device (with mnemonic name M1)
® and with data security erase:
I NI T TAPE-C4, WM UNI T=ML, ERASE
4. Writing two tape marks at the start of
® a particular volume (with volume serial number VSN0O1)
® on a particular device (with mnemonic name M1)
® with data security erase
® and remove after initialization:
INIT TAPE-C4, W'M UNI T=ML, CHECK=VSNOO1, RUN

3.3.2 LIST - Read and output magnetic tape labels

The LIST statement is used in the form described below to read and output volume labels.The user can choose

® the number of volumes to be listed
® a particular volume

® and a particular device.

If OPTION CONS is set, the list is output to the console. If this option is not set, the list is output to SYSOUT.

i The LIST function is executed only if the task has the system privilege TAPE-ADMINISTRATION.

Format

LIST

[no] voltyp
[[VSN =vsn/ (vsnl,vsn2,...,vsn16) / (initval)]
[LUNIT = mn]

[LREW / RUN]

Operands

no
Number of volumes to be listed with this statement.
Permissible values: 1, 2, ..., 16.

i The operands “no” and “voltyp” must be separated by at least one blank.

voltyp
Defines the volume (volume type). Defines the volume type, and thus also the recording mode.

You will find the volume types supported in the current in BS2000 version in the “System Installation” manual [7
(Related publications)]. For compatibility reasons, INIT also supports a few more volume types. You can ascertain
the volume types accepted by INIT by means of the HELP statement (see "HELP - Outline description of INIT
statements").

i The keywords for volume types can be abbreviated as long as they remain unique, e.g. T-C4 = TAPE-CA4.
As new volume types are introduced, however, an abbreviation which was originally unigue may become
ambiguous. There are no guaranteed abbreviations.

There is no default value for this operand; the value must always be specified by the user.

VSN
The labels of the volume with the specified volume serial number are to be output. To list two or more volumes with
a single statement, the appropriate number of volume serial numbers or an initial value must be specified.

Default; If the VSN is not specified, a volume of type “voltyp” with any volume serial number is requested.
In this way, it is possible to read the labels of an unknown volume.

61

VSN=vsn
Single volume serial number. The labels of a single volume are to be output. If a single volume serial number is
specified, the value of the “no” operand must be 1 or “no” must not be specified.

Permissible values: Max. 6 characters (A..Z, 0..9, #£,$,@).
The special characters #, $, @ are permitted by INIT but must not be used in labels (DIN 66029, DIN 66003). If
OPTION DIN is active, these special characters are rejected.

VSN=(vsnl,vsn2,...,vsnl6)

The labels of the volumes with the specified volume serial numbers are to be output. The corresponding volumes
are requested in consecutive order. The number of volumes must tally with the number specified for the “no”
operand. See above and "INIT - Initialize magnetic tape" for a list of possible values.

VSN=(initval)

The labels of multiple volumes beginning with the volume serial number “initval” are to be output. Every time the
labels of a volume are read successfully, the volume serial number is automatically incremented by 1. The number
of volumes must be specified in the “no” operand. See above and "INIT - Initialize magnetic tape" for a list of
possible values.

UNIT=mn
Mnemonic device name for seizure of a particular device. A volume is to be mounted on the specified device.
Unsuitable devices, i.e. devices that cannot process volumes of the specified type, are rejected.

REW
Specifies that the magnetic tape or magnetic tape cartridge is to be rewound after listing but not unloaded.
If a single volume is listed, REW is set by default.

RUN
Specifies that the magnetic tape or magnetic tape cartridge is to be rewound and unloaded after listing.
If two or more volumes are to be listed with a single statement (operand no=2..16), RUN is set by default.

Examples

1. Outputting the labels of a single volume with any volume serial number (specifying minimum parameters):
LI ST TAPE-C4
2. Outputting the labels of three particular volumes with a single statement:
LI ST 3 TAPE- C4, VSN=(TAPEO1, TAPEO2, TAPEO3)
3. Outputting the records of 8 particular volumes with a single statement:
LI ST 8 TAPE- C4, VSN=(VSNO01)
The volumes with the volume serial numbers VSN0O1, VSNO002,...,VSNOO8 are requested one after the other.
4. Outputting the labels
® of a particular volume (with the volume serial number VSNOO01),
® on a particular device (with the mnemonic name M1),
® and remove after initialization:
LI ST TAPE- C4, VSN=VSNOO1, UNI T=ML, RUN

62

3.3.3 OPTION - Activate and deactivate optional functions

The OPTION statement is used to activate and deactivate optional functions; the setting remains valid for all
subsequent INIT or LIST operations. The options are enforced until the program is ended or until reset.

Format

OPTION

CONS / PROT / DIN / NOHDR / NONE

Operands

CONS
Diverts inputs/outputs to the console once the program has been started from the console by means of the ENTER
job.

i CONS is valid only within an ENTER job and is rejected in interactive mode.

PROT
Aborts initialization of a volume if the read-before-write check discovers an access restriction.

Each of the following criteria is a valid access restriction;

® The access flag in the VOL1 volume label permits access to the volume only by the owner (byte 11 in the VOL1
label contains neither “0” nor “ ” (space)).

® The access flag in the file label of the first file permits access to the file only by the owner (byte 54 in the HDR1
label contains neither “0” nor “ ” (space)).

® The expiration date of the first file is not yet reached (bytes 48-53 in the HDR1 label).
® The first file is protected by a read and/or write password (bytes 57-64 in the HDR3 label).
® The first file is write-protected (byte 69 in the HDR3 label contains a “1”).

In all the cases listed above, the labels are read and output, followed by a message defining the situation and a
prompt calling for another statement.

If the user wants to initialize the volume despite the access restriction, the OPTION NONE statement must be used
to revoke the restriction.

DIN
Excludes special characters that do not conform to DIN 66003 from being used in labels. If the user wants to
employ special characters (#, $, @) in labels nevertheless, OPTION NONE must be used to revoke the restriction.

NOHDR

Initializes a volume with the VOL1 volume label only. Once this option is activated, all subsequent initializations are
implemented without HDR labels until the option is reset. In order to resume initialization with the HDR1 and HDR2
labels, OPTION NONE must be used to revoke the NOHDR setting.

NONE
Resets all options.

i Option CONS cannot be reset.

63

Examples

1. OPTION PROT

E(OJT) % NVI 0001 ENTER COVMAND (END = TERM NATE I NI T)

'(IN) OPTION PROT a)
{(QUT) % NVI 0001 ENTER COMMAND (END = TERM NATE | NI T)
C(IN) INIT TAPE- C4, VSN=TESTO1 b)
[(OUT) % NVI0003 LABELS ON TAPE : c)
{(OUT) % NVI0004 VOL1 LABEL:
i ' VOL1DARL5K

. 1

{(OUT) % NVI0004 HDRL LABEL:

i ' HDR1V11. TEST- R. TXT. TEDAR15K0001000100010'

; '0 92104 92107 000000BS2000 '

{(OUT) % NVI0101 EXPI RATI ON DATE OF FIRST FILE NOT YET REACHED d)

E 6 :

{(QUT) % NvI0004 HDR2 LABEL

| ' HDR2V8000102044 0O P
' .C..04

L (OQUT) % NVI 0004 HDR3 LABEL:
= 'HDR3TSOS V11. TEST-R TXT. TESTFI LE. T-C
; 4 00 '

L (QUT) % NVI 0201 TAPE PROTECTED. e)
g | NI TI ALl ZATI ON REQUEST REJECTED

(OUT) % NVI 0001 ENTER COMVAND (END = TERM NATE | NI T)

a. OPTION PROT is set.
b. A volume of type TAPE-C4 is to be initialized.

c. The labels of the volume are output. The expiration date of the first file on the volume has not yet been
reached (bytes 48-53 of the HDR1 label).

d. A message to this effect is output.
e. No new labels are written. Initialization is aborted.
2. OPTION DIN

{(OUT) % NVI0001 ENTER COMMAND (END = TERM NATE I NI T)

[(IN OPTION DIN a)
(QUT) % NVI0001 ENTER COMVAND (END = TERM NATE I NI T)
C(IN) LIST TAPE- C4, VSNET#$@ b)

{(QUT) % NVI0405 | NVALI D OPERAND VALUE ', VSN=T#'

{(QUT) % NVI0001 ENTER COVMAND (END = TERM NATE I NI T)

(I'N) I NI T TAPE- C4, VSN=DAR10A, ONMN=TEST#$@ c)
{(QUT) % NVI0405 | NVALID VALUE ', ONN=TEST#'

(OUT) 9% NVI0001 ENTER COMVAND (END = TERM NATE | NI T)

...

a. OPTION DIN is set.

b. The labels of a volume of type TAPE-C4, whose volume serial number contains special characters, are to
be output. This statement is rejected.

c. Avolume of type TAPE-C4 is to be initialized and the owner’s name entered in the VOLL1 label. The name
in question includes special characters. This statement is rejected.

64

1. OPTION NOHDR

((OUT) % NVI0001 ENTER COMVAND (END = TERM NATE I NI T)

C(IN) OPTI ON NOHDR a).
(QUT) % NVI0001 ENTER COMVAND (END = TERM NATE INIT)

'(IN) INIT TAPE- C4, VSN=TAPEO1, CHECK=TAPEO1 b)
(OUT) % NVI0003 LABELS ON TAPE c)

{(OUT) % NVI0004 VOL1 LABEL: 'VOL1TAPEOL. ..

L (OUT) % NVI0004 HDRL LABEL: ' HDRL .

[(OUT) % NVI0004 HDR2 LABEL: ' HDR2UOOOOL. ..

{(OUT) % NVI0007 OVERWRI TE TAPE ? d)
REPLY (YES=YES N=NO)

‘(1IN YES

{(OUT) 9% NVI 0010 I NI TIALI ZATI ON OF TAPE ' TAPEO1'

ON DEVI CE ' TA' COMPLETED

{(OUT) % NVI0001 ENTER COMMAND (END = TERM NATE | NI T)

'(IN) LIST TAPE- C4, VSN=TAPEO1 e)
L(OUT) % NVI 0003 LABELS ON TAPE : f)
[(OUT) % NVI0004 VOL1 LABEL: ' VOL1TAPEOL. ..

(OUT) % NVI0001 ENTER COWVAND (END = TERM NATE | NI T)

a. OPTION NOHDR is set.

b. A volume is to be initialized.

c. The VOL1, HDR1 and HDR2 labels on the volume are output.
d. The volume is re-initialized.

e. The labels are to be output.

f

. The volume is initialized with a VOL1 label and no others.

65

3.3.4 END - Terminate INIT session

The END statement terminates the INIT utility routine. The INIT subsystem is released for unloading.
In command procedures, the INIT routine is ended even without an END statement as soon as a BS2000 command
is read (beginning with /) or the end of the file is reached.

Format

Once the program is started, messages are output via SYSOUT. The system awaits inputs from SYSDTA.

END/E

66

3.3.5 HELP - Outline description of INIT statements

The HELP statement calls up outline information on all operations and operands in the INIT utility routine.
If OPTION CONS is set, the list is output to the console. If this option is not set, the list is output to SYSOUT.

Format

HELP / H

67

3.4 Structure of the labels

The general format of the labels complies with the DIN 66029 standard (magnetic tapes). These labels are also
used for other volumes that are emulated as magnetic tapes or magnetic tape cartridges in BS2000.

Magnetic tape labels are 80 characters long.

Only the structure and contents of those magnetic tape labels read or written by INIT are described below.

The column headed “Field contents” contains the information that INIT writes into the field in question (or the
possible contents in the case of the HDR3 label).

Key to symbols

X: Current value

Blank

The other fields contain fixed defaults.

68

3.4.1 Volume label VOL1 for magnetic tapes

Byte no. Field name Length Field contents
1-3 Label name 3 VOL
4 Label number 1 1
5-10 Volume serial number <vsn> 6 XXXXXX
11 Access flag <flg> 1 _or0
12 - 37 -reserved - 26 e
38-51 Owner label <owner> 14 L OXXRXXXXX
52-79 -reserved - 28 e
80 Standard flag 1 1
V OL 1 vsn flg _ _ _ _ _

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

owner

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

69

3.4.2 File label HDR1 for magnetic tapes

Byte no. Field name Length Field contents
1-3 Label name 3 HDR
4 Label number 1 1
5-21 File name 17 e
22 - 27 Volume serial number <vsn> 6 XXXXXX
28 - 31 File section number 4 0001
32-35 File sequence number 4 0001
36 -39 Generation number 4 0001
40 - 41 Version number 2 00
42 - 47 Creation date <credat> 6 XXXXXX
48 - 53 Expiration date <reldat> 6 XXXXXX
54 Access flag 1 _
55-60 Block counter 6 000000
61-73 System code 13 e
74-80 -reserved - 7

Format of the creation date and expiration date: cyyijjj

¢ Code for century:
blank = “20th century”; 0 = “21st century”

vy = Year

ji = Jdulian date (number of the day in the year).

70

Examples
July 3, 1998: 98185

January 10, 2004: 004010

HDRI1

1 23 456 7 8 9 10111213141516

_____ vsn 00010
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

001 0O0O0O1IO00O0 credat
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

reldat 0 0 0 0 OO |
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

71

3.4.3 File label HDR2 for magnetic tapes

Byte no. Field name Length Field contents
1-3 Label name 3 HDR
4 Label number 1 2
5 Record format 1 U
6-10 Block length 5 00001
11-15 Record length 5 00001
16 -50 -reserved - 35 e

51-52 Buffer displacement 2 00

52-80 -reserved - 28

HDR2UO0OOUO®OT11IO0O0O@OTO?1
1 23 456 7 8 9 10111213141516

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

00

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

72

3.4.4 File label HDR3 for magnetic tapes

The HDRS label is never written as part of initialization. If it exists, however, it is output when the labels are read.

1 =read only

Byte no. Field name Length Field contents
1-3 Label name 3 HDR
4 Label number 1 3
5-12 Owner ID <uid> 8 XXXXXXXX
13-56 File name <fnam> 44 XXX... XXX
57-60 Read password <rpass> 4
61-64 Write password <wpass> 4 xxxx or X' 00000000
65 - 68 Execution password <epass> 4
69 Access type <acc> 1 0 =read + write
70-80 -reserved - 11

H DR 3 uid fnam
1 2 3 4 5 6 7 8 91011121314 1516

fnam
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

fnam
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

fnam rpass wpass
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

epass acc

65 66 67 68 69 70 71 72 73 74 7576 77 78 79 80

XxXxx or X' 00000000’

Xxxx or X' 00000000’

73

4 IORM Dynamic control of I1/O resources

Version: IORM V11.0B

Privileges: TSOS or OPERATING

The IORM utility routine is started using / START- | ORM(TSOS or OPERATING privilege).

The IORM (I/0O Resource Management) utility routine enhances the 1/0 properties of BS2000 in native and VM2000
modes.

The following functions are implemented in IORM for the autonomous, dynamic control of the I/O resources
channel, controller, path and device:

® |OPT: I/O Priority Handling for Tasks

® DPAV (/390 server): Dynamic Parallel Access Volume

® DDAL: Optimized Dynamic Device Allocation in ETERNUS CS HE operation
® TCOM: Dynamic Tape Compression

® IOLVM (/390 server): I/O Limit for certain Virtual Machines

During ongoing operation, IORM collects data on the utilization of the 1/0 resources and controls I/O operation in
accordance with specified threshold values.

The IORM functions IOPT, DPAYV and IOLVM control disk devices.
The IORM functions DDAL and TCOM control tape devices, see "IORM Dynamic control of /O resources".

When IORM is used in the monitor system and in the BS2000 guest systems involved in VM2000 mode, the IORM
subsystems exchange I/O data and control information via an internal interface.

IORM can be used in native mode and under VM2000 on all BS2000 servers. IORM works on a cross-VM but not
on a cross-server basis.

Installation of IORM

IORM is installed using the IMON installation monitor.

SYSLNK. | ORM <ver si on> Module library for /390 servers
SKMLNK. | ORM <ver si on> Module library for x86 servers
SYSMES. | ORM <ver si on> Message file

SYSSDF. | ORM <ver si on> SDF syntax file

SYSSSC. | ORM <ver si on> Subsystem catalog

SYSDAT. | ORM <ver si on> Parameter file

SYSSI 1. 1 ORM <ver si on> Structure information

SYSNRF. | ORM <ver si on> NOREF file

SYSRMS. | ORM <ver si on> RMS delivery packet

SYSRME. | ORM <ver si on>. Y E Readme file (German/English)

74

SYSFGM | ORM <ver si on>. Y E Release Notice (German/English)
Table 2: Delivery components of IORM

Parameter file of IORM

In the parameter file $<user | D>. SYSDAT. | ORM <ver si on> you can enter specifications for IORM which are
processed the first time IORM is started. The parameter file consists of comment lines and value lines with
statements for IORM. When supplied, the parameter file contains comment lines with sample statements for IORM.

IORM subsystem

Before the IORM utility routine is started for the first time, the IORM subsystem must be loaded using:
| START- SUBSYSTEM SUBSYSTEM NAME=| ORM

The subsystem IORM is terminated using:

/ STOP- SUBSYSTEM SUBSYSTEM NAMVE=I ORM

If, at this time, the IORM utility routine is still in use, the subsystem remains in the IN DELETE / WAIT-DISCON
state until usage comes to an end.

Starting the IORM utility routine
The IORM utility routine is started using / START- | ORM(TSOS or OPERATING privilege).

START-IORM Alias: IORM

VERSION = *STD / <product-version>
,MONJV = *NONE / <filename 1..54 without-gen-vers>

,CPU-LIMIT = *JOB-REST / <integer 1..32767 seconds>

The first time the IORM utility routine is started, the actions required for IORM operation are executed under the
user ID where / START- | ORMhas been entered: configuring tables, connecting to the BS2000 I/O system,
processing the statements from the IORM parameter file. IORM then terminates.

In VM2000 mode, IORM should be started in all BS2000 guest systems.

When IORM is started again, you can enter statements for IORM via SYSDTA. These statements control the
execution of IORM. The statements can be entered directly in a dialog or in file form.

75

Example

/ START- SUBSYSTEM SUBSYSTEM NAME=| ORM 1.
ESMD216 FUNCTI ON ' CREATE' STARTED FOR SUBSYSTEM ' | ORM / <ver si on>'
/...
/start-iorm 2.
BLS0523 ELEMENT ' I ORMTU , VERSION '<version>', TYPE 'L' FROM LI BRARY

' SBZ7: $TSCS. SYSLNK. | ORM <ver si on>' | N PROCESS
BLS0524 LLM'I ORM TU , VERSI ON '<version> OF '<date> <tine> LOADED
/start-iorm 3.
BLS0523 ELEMENT ' I ORMTU , VERSION '<version>', TYPE 'L' FROM LI BRARY

' SBZ7: $TSCS. SYSLNK. | ORM <ver si on>' | N PROCESS
BLS0524 LLM'I ORM TU , VERSI ON '<version> OF '<date> <tine> LOADED
* jopt_set_on?

| OPT_SET_ON=NO 4.
*

/ 1 END

/...

/ ASSI G\ SYSDTA TO=SYSDAT. | ORM NI GHT 5.
| START- | ORM

BLS0523 ELEMENT 'l ORMTU , VERSION '<version>, TYPE 'L' FROM LI BRARY
' SBZ7: $TSCS. SYSLNK. | ORM <ver si on>'" | N PROCESS
BLS0524 LLM'IORM TU , VERSI ON ' <version>' OF '<date> <tine> LOADED
/...
/ ASSI GN- SYSDTA TO=SYSDAT. | ORM DAY 6.
/ START- | ORM
BLS0523 ELEMENT 'I| ORM TU , VERSION ' <version>', TYPE 'L' FROM LI BRARY
' SBZ7: $TSCS. SYSLNK. | ORM <ver si on>' | N PROCESS
BLS0524 LLM'I ORM TU , VERSI ON '<version> OF '<date> <tine> LOADED
/...

The IORM subsystem is started.
The IORM utility routine is started for the first time for initialization purposes.
The IORM utility routine is started again to enter statements.

The specifications in the parameter file apply.

a r w0 DN PE

During the night, the IORM subsystem that is already active obtains new specifications from the SYSDAT.
| ORM NI GHT file.

6. The next morning, the IORM subsystem that is still active obtains new specifications from the SYSDAT. | ORM
DAY file.

IORM statements
IORM statements consist of character and numeric strings without blanks.Comment lines begin with *.

IORM knows the following general statements:

END Terminates the IORM utility routine. The IORM subsystem and its functions remain active.

HELP Displays the IORM statements.

IORM_DUMP Creates IORM diagnostic documentation.

The other statements are function-specific and are described together with the function concerned.

76

Hardware dependencies of IORM

IORM supports the following hardware components:

IORM Hardware supported

function

IOPT Disks on all BS2000 servers

DPAV Disks connected to the Fibre Channel of /390 servers

DPAV is not available on the Fibre Channel of x86 servers. IO parallelism is supported here for
emulated disks (RSC).

DDAL Tape devices on all BS2000 servers
TCOM LTO tape devices connected to the Fibre Channel of all BS2000 servers
IOLVM Disks on all BS2000 servers

Behavior in the event of an error, creation of diagnostic documentation

To permit IORM problems to be diagnosed and rectified, it is necessary that sufficient error documents should be
created and stored at the earliest possible time. In the case of reproducible errors, a precise description should be
provided of how an error can be generated.

In addition to the CONSLOG file and the IORM statements, a file with the IORM dump should always be created
using the following statement sequence:

/ ASSI G\ SYSLST TO=<fi | e>
/ START- | ORM

* | ORM_DUMP

* END

/ ASSI G\ SYSLST TO=* PRI MARY

In the event of problems with DPAV or DDAL in VM2000 mode, these documents are also required from the monitor
system and the guest systems involved.

7

4.1 IOPT: I/O Priority Handling for Tasks

An I/O-intensive application with low priority can hinder another, higher-priority application if these application
execute I/Os on the same (logical) device. Operations can also be impaired if the 1/0Os are executed on different
(logical) devices which are located on the same physical device or are connected via the same paths, are
accessible via the same ports or connected to the same channels.

Enhanced priority handling for tasks using IOPT

The IOPT (1/O Priority Handling for Tasks) function enables IORM to detect such conflict situations and to intervene
in 1/0 operation for control purposes.

Here IOPT examines both the utilization level of the I/O units (devices, paths, ports and channels) and the I/O
priorities of the tasks which use them.

I/O priorities for tasks
Three 1/O priorities are available for tasks:

® HIGH (high I/O priority)
* MEDIUM (medium I/O priority)
® LOW (low I/O priority)

The 1/O priority for tasks can be defined in two ways:

® With /MODI FY- TASK- CATEGORI ES, | O PRI ORI TY=*HI GH * MEDI UM * LOW operand. This is the procedure
recommended.

The command defines the I/O priority for the task categories.
In addition to the four standard categories SYS, TP, DIALOG and BATCH, there may be also further categories
whose names are defined in the job class definition.

® With the IORM statements IOPT_PRI_HIGH and IOPT_PRI_MED.
However, these settings only have an effect if | O- PRI ORI TY=* NONE is set in / MODI FY- TASK- CATEGORI ES
(default value).

The IORM statements define the 1/O priority on the basis of the task priorities. The task priorites are defined in
the job class definition and on a user-specific basis in the user catalog.

78

Specifications for the I/O units

The IORM statement IOPT_DEV_ADD enables disk devices to be defined on which IORM priority handling is to be
used.

The IORM statements IOPT_LOW_xxx and IOPT_MED_xxx enable threshold values and I/O shares to be defined
for tasks with the priority LOW or MEDIUM for the 1/O units device (xxx=DEV), path (xxx=PTH), port (xxx=POR) and
channel (xxx=CHN).

The default values set for this in IORM match the specifications in the
SYSDAT. | ORM <ver si on> parameter file which is supplied.

i The fact that the I/O load increases significantly more rapidly on a device than on a path, port or channel,
in particular in the case of a multipath device connection, should be taken into account in the
specifications for the 1/0O units.

It can occur that IORM does not detect a conflict situation on a physical disk quickly enough because the
utilization of the paths, ports, channels and logical devices is still below the specified threshold values. In
this case it can make sense to combine all logical devices on the physical device to a device group in
IORM (IOPT_GRP_ADD).

Execution of IOPT

At first IOPT is deactivated. After it has been activated (IOPT_SET_ON=YES), IOPT constantly collects utilization
values, separated according to the I/O priorities HIGH / MEDIUM / LOW, for all known 1/O units.

IOPT periodically checks whether tasks with the 1/O priority LOW or MEDIUM are hindering higher-priority tasks (I/O
priority MEDIUM or HIGH) in an I/O unit. If this is the case, only a limited utilization level is permitted on the 1/O unit
for tasks with the 1/O priority concerned. This ensures that - in accordance with the utilization of the 1/O unit - tasks
with a lower I/O priority are “held back” from executing 1/0s on devices which were activated beforehand for IOPT
using IOPT_DEV_ADD.

IOPT only has a local effect, both in native mode and on a BS2000 guest system. Only disk devices are concerned
here.
Tasks for FDDRL, ARCHIVE, VOLIN and PAGING are not held back.

79

4.1.1 IOPT statements

Default values in the syntax boxes are underscored.

80

4.1.1.1 Activating and deactivating IOPT

IOPT_SET_ON activates or deactivates IOPT. The current setting can also be queried.

IOPT_SET_ON

IOPT_SET_ON=YES

IOPT_SET_ON=NO

IOPT_SET_ON=CHK

IOPT_SET_ON?

YES IOPT is activated on the system. In VM mode this setting is required on all systems on which IOPT is to
be active.

NO IOPT is deactivated on the system. In VM mode this setting is required on all systems on which IOPT is
to be deactivated.

CHK IOPT runs in check mode, i.e. IOPT does not intervene in I/O handling, but it is possible to ascertain

which interventions IOPT would perform if it were activated.
This enables you to check whether the use of IOPT makes sense, see the section“Check mode”.

The current setting is queried.

81

4.1.1.2 Defining and querying threshold values for 1/O priority classes

IOPT_PRI_HIGH and IOPT_PRI_MED define the threshold values for the tasks with high, medium and low priority.
Here the I/O priority of a task is derived from its task priority. The threshold values that are currently valid can be
gueried.

IOPT_PRI

IOPT_PRI_HIGH=x
IOPT_PRI_MED=y
IOPT_PRI_HIGH?

IOPT_PRI_MED?

X Threshold value for the 1/O priority HIGH. All tasks with a task priority which is less than or equal to x belong
to the class HIGH (prio <= x).
Value range: 0 <= x <= 255
Default value: 155

y Threshold value for the I/O priorities MEDIUM and LOW. All tasks with a task priority which is greater than x
and less than or equal to y belong to the class MEDIUM (x < prio <=). All tasks with a priority which is
greater than y belong to the class LOW (y < prio).

Value range: x <y <= 255
Default value: 205

? The threshold values for the classes HIGH and MEDIUM are queried.

The threshold values are effective only if the | O- PRI ORI TY operand in / MODI FY- TASK- CATEGORI ES has the
value * NONE. However, you are recommended to define the 1/O priorities using / MODI FY- TASK- CATEGORI ES
because the 1/O priority can then be assigned independently of the task priority. You may also want two tasks with
the same task priority to have different 1/O priorities because they differ in their 1/O intensiveness.

82

4.1.1.3 Activating and deactivating disk devices for IOPT
Activating disk devices for IOPT

IOPT_DEV_ADD activates logical devices for IOPT. The devices are then monitored by IOPT.

Once the program is started, messages are output via SYSOUT. The system awaits inputs from SYSDTA.

IOPT_DEV_ADD
|IOPT_DEV_ADD=ALL

IOPT_DEV_ADD=D-R(mn1,mn2)

ALL All devices are activated for IOPT.
D-R(mnl,mn2)

All devices with mnemonic names from mnl to mn2 are activated. If mn1l and mn2 are identical, only one
device is activated.

Deactivating disk devices for IOPT

IOPT_DEV_REM deactivates logical devices for IOPT. The devices are then not (no longer) monitored by IOPT.

|IOPT_DEV_REM
IOPT_DEV_REM=ALL

IOPT_DEV_REM=D-R(mn1,mn2)

ALL All devices are deactivated for IOPT.
D-R(mnl1,mn2)

All devices with mnemonic names from mnl to mn2 are deactivated. If mnl and mn2 are identical, only
one device is deactivated.

83

Querying activated devices

IOPT_DEV_ADD? outputs a list of all devices which were activated for IOPT using IOPT_DEV_ADD.

IOPT_DEV_ADD?

IOPT_DEV_ADD?mask

mask Complete or masked specification of a mnemonic device name. The following specifications are possible:

*

n*

nm*

nml*

nmlo

All activated devices are listed.

All activated devices whose names begin with n are listed.
All activated devices whose names begin with nm are listed.
All activated devices whose names begin with nml are listed.

The device with the name nmlo is listed.

84

4.1.1.4 Device groups

Adding devices to a device group

IOPT_GRP_ADD adds logical devices to a device group. If a group with the specified name does not exist, it is
configured. Only devices which are activated (either beforehand or subsequently) for IOPT using IOPT_DEV_ADD
are also monitored by IOPT. Merely defining a device group is not enough to activate it.

IOPT monitors a device group like a device, in other words it examines the utilization of the entire group. For
example, all logical devices which are assigned to a physical disk can form a device group. In this way IOPT detects
I/O bottlenecks on the disk even if the utilization threshold values have not yet been exceeded for individual logical
devices.

IOPT_GRP_ADD

IOPT_GRP_xxx_ADD=D-R(mn1.mn2)

xxx Three-digit numeric name of the device group.
Value range: 000 < x <= 255
D-R(mnl1,mn2)

All devices with mnemonic names from mnl1 to mn2 are added to the group. If mnl and mn2 are identical,
only one device is added to the group.

Removing devices from a device group

IOPT_GRP_REM removes logical devices from a device group. When the last device is removed from a group, the
group is also deleted.

IOPT_GRP_REM
IOPT_GRP_xxx_REM=ALL
IOPT_GRP_xxx_REM=D-R(mn1,mn2)
xxx Three-digit numeric name of the device group.

Value range: 000 < x <= 255
ALL All devices in the group are removed. The group is deleted.
D-R(mnl1,mn2)

All devices with mnemonic names from mnl to mn2 are removed from the group. If mn1 and mn2 are
identical, only one device is removed from the group.

85

Querying devices of a device group

IOPT_GRP_ADD? displays a list of all the devices which belong to a device group.

IOPT_GRP_ADD?

IOPT_GRP_xxx_ADD?mask

XXX

mask

Three-digit numeric name of the device group.
Value range: 000 < x <= 255

Complete or masked specification of a mnemonic device name. The following specifications are possible:

*

n*

nm*

nml*

nmlo

All devices in the group are listed.

All devices in the group whose names begin with n are listed.
All devices in the group whose names begin with nm are listed.
All devices in the group whose names begin with nml are listed.

The device in the group with the name nmlo is listed.

86

4.1.1.5 Defining threshold values for I/O priority LOW

Defining threshold values for 1/O priority LOW and channels

IOPT_LOW_CHN defines threshold values for channel utilization. As soon as the channel utilization by tasks with
the priorities HIGH and MEDIUM reaches the threshold values, the proportion of tasks with the priority LOW is
restricted.

IOPT_LOW_CHN

IOPT_LOW_CHN_1HM=20 / <integer 0...100>
IOPT_LOW_CHN_2HM=30 / <integer 0...100>
IOPT_LOW_CHN_3HM=40 / <integer 0...100>
IOPT_LOW_CHN_1QH=40 / <integer 0...100>
IOPT_LOW_CHN_2QH=30 / <integer 0...100>
IOPT_LOW_CHN_3QH=20/ <integer 0...100>
IOPT_LOW_CHN_1QM=55 / <integer 0...100>
IOPT_LOW_CHN_2QM=40 / <integer 0...100>

IOPT_LOW_CHN_3QM=30 / <integer 0...100>

IOPT_LOW_CHN_1HM, IOPT_LOW_CHN_2HM, IOPT_LOW_CHN_3HM
Threshold values 1, 2 and 3 for utilization by tasks with the priority HIGH or MEDIUM.
IOPT_LOW_CHN_1QH, IOPT_LOW_CHN_2QH, IOPT_LOW_CHN_3QH

Threshold values 1, 2 and 3 for tasks with the priority LOW in the event of a high proportion of tasks with
the priority HIGH.

IOPT_LOW_CHN_1QM, IOPT_LOW_CHN_2QM, IOPT_LOW_CHN_3QM

Threshold valuesl, 2 and 3 for tasks with the priority LOW in the event of a low proportion of tasks with
the priority HIGH.

The threshold values have the following effects:
® |f utilization by tasks with the priority HIGH or MEDIUM is less than IOPT_LOW_CHN_1HM, the tasks with the
priority LOW are not restricted.

® |[f utilization by tasks with the priority HIGH or MEDIUM is between IOPT_LOW_CHN_1HM and
IOPT_LOW_CHN_2HM, then IOPT_LOW_CHN_1QH or IOPT_LOW_CHN_1QM restricts the proportion of tasks
with the priority LOW:

® |OPT_LOW_CHN_1QH if the proportion of tasks with the priority HIGH is high
®* |OPT_LOW_CHN_1QM if the proportion of tasks with the priority HIGH is low

® |f utilization by tasks with the priority HIGH or MEDIUM is between IOPT_LOW_CHN_2HM and
IOPT_LOW_CHN_3HM, then IOPT_LOW_CHN_2QH or IOPT_LOW_CHN_2QM restricts the proportion of tasks
with the priority LOW:

®* |OPT_LOW_CHN_2QH if the proportion of tasks with the priority HIGH is high
® |OPT_LOW_CHN_2QM if the proportion of tasks with the priority HIGH is low

87

® |f utilization by tasks with the priority HIGH or MEDIUM is greater than IOPT_LOW_CHN_3HM, then
IOPT_LOW_CHN_3QH or IOPT_LOW_CHN_3QM restricts the proportion of tasks with the priority LOW:

® |OPT_LOW_CHN_3QH if the proportion of tasks with the priority HIGH is high
® |OPT_LOW_CHN_3QM if the proportion of tasks with the priority HIGH is low

Defining threshold values for 1/O priority LOW and ports

IOPT_LOW_POR defines threshold values for port utilization. As soon as the port utilization by tasks with the
priorities HIGH and MEDIUM reaches the threshold values, the proportion of tasks with the priority LOW is
restricted.

IOPT_LOW_POR

IOPT_LOW_POR_1HM=20 / <integer 0...100>
IOPT_LOW_POR_2HM=30 / <integer 0...100>
IOPT_LOW_POR_3HM=40 / <integer 0...100>
IOPT_LOW_POR_1QH=40 / <integer 0...100>
IOPT_LOW_POR_2QH=30 / <integer 0...100>
IOPT_LOW_POR_3QH=20 / <integer 0...100>
IOPT_LOW_POR_1QM=55 / <integer 0...100>
IOPT_LOW_POR_2QM=40 / <integer 0...100>

IOPT_LOW_POR_3QM=30 / <integer 0...100>

IOPT_LOW_POR_1HM, IOPT_LOW_POR_2HM, IOPT_LOW_POR_3HM
Threshold values 1, 2 and 3 for utilization by tasks with the priority HIGH or MEDIUM.
IOPT_LOW_POR_1QH, IOPT_LOW_POR_2QH, IOPT_LOW_POR_3QH

Threshold values 1, 2 and 3 for tasks with the priority LOW in the event of a high proportion of tasks with
the priority HIGH.

IOPT_LOW_POR_1QM, IOPT_LOW_POR_2QM, IOPT_LOW_POR_3QM

Threshold values 1, 2 and 3 for tasks with the priority LOW in the event of a low proportion of tasks with
the priority HIGH.

The threshold values have the following effects:
® If utilization by tasks with the priority HIGH or MEDIUM is less than IOPT_LOW_POR_1HM, the tasks with the
priority LOW are not restricted.

® |If utilization by tasks with the priority HIGH or MEDIUM is between IOPT_LOW_POR_1HM and
IOPT_LOW_POR_2HM, then IOPT_LOW_POR_1QH or IOPT_LOW_POR_1QM restricts the proportion of tasks
with the priority LOW:

®* |OPT_LOW_POR_1QH if the proportion of tasks with the priority HIGH is high
®* |OPT_LOW_POR_1QM if the proportion of tasks with the priority HIGH is low

88

® |f utilization by tasks with the priority HIGH or MEDIUM is between
IOPT_LOW_POR_2HM and IOPT_LOW_POR_3HM, then IOPT_LOW_POR_2QH or IOPT_LOW_POR_2QM
restricts the proportion of tasks with the priority LOW:

® |OPT_LOW_POR_2QH if the proportion of tasks with the priority HIGH is high
®* IOPT_LOW_POR_2QM if the proportion of tasks with the priority HIGH is low

® |f utilization by tasks with the priority HIGH or MEDIUM is greater than IOPT_LOW_POR_3HM, then
IOPT_LOW_POR_3QH or IOPT_LOW_POR_3QM restricts the proportion of tasks with the priority LOW:

® |OPT_LOW_POR_3QH if the proportion of tasks with the priority HIGH is high
®* IOPT_LOW_POR_3QM if the proportion of tasks with the priority HIGH is low

Defining threshold values for 1/O priority LOW and paths

IOPT_LOW_PTH defines threshold values for path utilization. As soon as the path utilization by tasks with the
priorities HIGH and MEDIUM reaches the threshold values, the proportion of tasks with the priority LOW is
restricted.

IOPT_LOW_PTH

IOPT_LOW_PTH_1HM=20/ <integer 0...100>
IOPT_LOW_PTH_2HM=30 / <integer 0...100>
IOPT_LOW_PTH_3HM=40 / <integer 0...100>
IOPT_LOW_PTH_1QH=40/ <integer 0...100>
IOPT_LOW_PTH_2QH=30/ <integer 0...100>
IOPT_LOW_PTH_3QH=20/ <integer 0...100>
IOPT_LOW_PTH_1QM=55 / <integer 0...100>
IOPT_LOW_PTH_2QM=40/ <integer 0...100>

IOPT_LOW_PTH_3QM=30 / <integer 0...100>

IOPT_LOW_PTH_1HM, IOPT_LOW_PTH_2HM, IOPT_LOW_PTH_3HM
Threshold values 1, 2 and 3 for utilization by tasks with the priority HIGH or MEDIUM.
IOPT_LOW_PTH_1QH, IOPT_LOW_PTH_2QH, IOPT _LOW_PTH_3QH

Threshold values 1, 2 and 3 for tasks with the priority LOW in the event of a high proportion of tasks with
the priority HIGH.

IOPT_LOW_PTH_1QM, IOPT_LOW_PTH_2QM, IOPT_LOW_PTH_3QM

Threshold values 1, 2 and 3 for tasks with the priority LOW in the event of a low proportion of tasks with
the priority HIGH.

The threshold values have the following effects:

® |f utilization by tasks with the priority HIGH or MEDIUM is less than IOPT_LOW_PTH_1HM, the tasks with the
priority LOW are not restricted.

89

® |f utilization by tasks with the priority HIGH or MEDIUM is between IOPT_LOW_PTH_1HM and
IOPT_LOW_PTH_2HM, then IOPT_LOW_PTH_1QH or IOPT_LOW_PTH_1QM restricts the proportion of tasks
with the priority LOW:

® |OPT_LOW_PTH_1QH if the proportion of tasks with the priority HIGH is high
® |OPT_LOW_PTH_1QM if the proportion of tasks with the priority HIGH is low

® |f utilization by tasks with the priority HIGH or MEDIUM is between IOPT_LOW_PTH_2HM and
IOPT_LOW_PTH_3HM, then IOPT_LOW_PTH_2QH or IOPT_LOW_PTH_2QM restricts the proportion of tasks
with the priority LOW:

* |OPT_LOW_PTH_2QH if the proportion of tasks with the priority HIGH is high
®* |OPT_LOW_PTH_2QM if the proportion of tasks with the priority HIGH is low

® |[f utilization by tasks with the priority HIGH or MEDIUM is greater than IOPT_LOW_PTH_3HM, then
IOPT_LOW_PTH_3QH or IOPT_LOW_PTH_3QM restricts the proportion of tasks with the priority LOW:

®* |OPT_LOW_PTH_3QH if the proportion of tasks with the priority HIGH is high
®* |OPT_LOW_PTH_3QM if the proportion of tasks with the priority HIGH is low

Defining threshold values for I/O priority LOW and devices

IOPT_LOW_DEYV defines threshold values for device utilization. As soon as the device utilization by tasks with the
priorities HIGH and MEDIUM reaches the threshold values, the proportion of tasks with the priority LOW is
restricted.

IOPT_LOW_DEV

IOPT_LOW_DEV_1HM=15 / <integer 0...100>
IOPT_LOW_DEV_2HM=22 / <integer 0...100>
IOPT_LOW_DEV_3HM=30/ <integer 0...100>
IOPT_LOW_DEV_1QH=35/ <integer 0...100>
IOPT_LOW_DEV_2QH=25/ <integer 0...100>
IOPT_LOW_DEV_3QH=10/ <integer 0...100>
IOPT_LOW_DEV_1QM=50 / <integer 0...100>
IOPT_LOW_DEV_2QM=40 / <integer 0...100>
IOPT_LOW_DEV_3QM=30 / <integer 0...100>
IOPT_LOW_DEV_0SU=70 / <integer 0...100>
IOPT_LOW_DEV_0HM=1/ <integer 0...100>

IOPT_LOW_DEV_ORQ=25 / <integer 0...100>

IOPT_LOW_DEV_1HM, IOPT_LOW_DEV_2HM, IOPT_LOW_DEV_3HM
Threshold values 1, 2 and 3 for utilization by tasks with the priority HIGH or MEDIUM.
IOPT_LOW_DEV_1QH, IOPT_LOW_DEV_2QH, IOPT_LOW_DEV_3QH

Threshold values 1, 2 and 3 for tasks with the priority LOW in the event of a high proportion of tasks with
the priority HIGH.

90

IOPT_LOW_DEV_1QM, IOPT_LOW_DEV_2QM, IOPT_LOW_DEV_3QM

Threshold values 1, 2 and 3 for tasks with the priority LOW in the event of a low proportion of tasks with
the priority HIGH.

IOPT_LOW_DEV_0SU, IOPT_LOW_DEV_OHM, IOPT_LOW_DEV_ORQ

Threshold values for restricting the tasks with the priority LOW in the event of high utilization of the device
with, at the same time, relatively low utilization by tasks with the priority HIGH or MEDIUM (i.
e. IOPT_LOW_DEV_1HM is not reached).

The threshold values have the following effects:

If utilization by tasks with the priority HIGH or MEDIUM is less than IOPT_LOW_DEV_1HM, the tasks with the
priority LOW are not restricted.

If utilization by tasks with the priority HIGH or MEDIUM is between IOPT_LOW_DEV_1HM and
IOPT_LOW_DEV_2HM, then IOPT_LOW_DEV_1QH or IOPT_LOW_DEV_1QM restricts the proportion of tasks
with the priority LOW:

® |OPT_LOW_DEV_1QH if the proportion of tasks with the priority HIGH is high
®* |OPT_LOW_DEV_1QM if the proportion of tasks with the priority HIGH is low

If utilization by tasks with the priority HIGH or MEDIUM is between IOPT_LOW_DEV_2HM and
IOPT_LOW_DEV_3HM, then IOPT_LOW_DEV_2QH or IOPT_LOW_DEV_2QM restricts the proportion of tasks
with the priority LOW:

®* IOPT_LOW_DEV_2QH if the proportion of tasks with the priority HIGH is high
®* |OPT_LOW_DEV_2QM if the proportion of tasks with the priority HIGH is low

If utilization by tasks with the priority HIGH or MEDIUM is greater than IOPT_LOW_DEV_3HM, then
IOPT_LOW_DEV_3QH or IOPT_LOW_DEV_3QM restricts the proportion of tasks with the priority LOW:

®* |OPT_LOW_DEV_3QH if the proportion of tasks with the priority HIGH is high
® IOPT_LOW_DEV_3QM if the proportion of tasks with the priority HIGH is low

Utilization by tasks with the priority LOW is restricted by IOPT_LOW_DEV_1QH or IOPT_LOW_DEV_1QM even
if the following conditions are satisfied:

® Total utilization of a device exceeds the value IOPT_LOW_DEV_0SU
® Total utilization by tasks with the priorities HHGH and MEDIUM exceeds the value IOPT_LOW_DEV_0HM
® Ten times the average number of 1/O requests for the device is greater than the value IOPT_LOW_DEV_O0ORQ

If the utilization by tasks with the priority HIGH exceeds the value IOPT_LOW_DEV_2HM or
IOPT_LOW_DEV_3HM, the restrictions defined for these threshold values apply.

If, despite considerably lower total utilization after a restriction has been introduced, the utilization by tasks with
the priority HIGH or MEDIUM does not increase significantly, the restriction is canceled again.

91

4.1.1.6 Defining threshold values for I/O priority MEDIUM

Defining threshold values for 1/O priority MEDIUM and channels

IOPT_MED_CHN defines threshold values for channel utilization. As soon as the channel utilization by tasks with
the priority HIGH reaches the threshold values, the proportion of tasks with the priority MEDIUM is restricted.

IOPT_MED_CHN

IOPT_MED_CHN_1H=20/ <integer 0...100>
IOPT_MED_CHN_2H=30/ <integer 0...100>
IOPT_MED_CHN_3H=40 / <integer 0...100>
IOPT_MED_CHN_1Q=50/ <integer 0...100>
IOPT_MED_CHN_2Q=40 / <integer 0...100>

IOPT_MED_CHN_3Q=30/ <integer 0...100>

IOPT_MED_CHN_1H, IOPT_MED_CHN_2H, IOPT_MED_CHN_3H

Threshold values 1, 2 and 3 for utilization by tasks with the priority HIGH.
IOPT_MED_CHN_1Q, IOPT_MED_CHN_2Q, IOPT_MED_CHN_3Q

Threshold values 1, 2 and 3 for tasks with the priority MEDIUM.
The threshold values have the following effects:

® |f utilization by tasks with the priority HIGH is less than IOPT_MED_CHN_1H, tasks with the priority MEDIUM are
not restricted.

® |f utilization by tasks with the priority HIGH is between IOPT_MED_CHN_1H and IOPT_MED_CHN_2H, then
IOPT_MED_CHN_1Q restricts the proportion of tasks with the priority MEDIUM.

® |f utilization by tasks with the priority HIGH is between IOPT_MED_CHN_2H and IOPT_MED_CHN_3H, then
IOPT_MED_CHN_2Q restricts the proportion of tasks with the priority MEDIUM.

® |If utilization by tasks with the priority HIGH is greater than IOPT_MED_CHN_3H, then IOPT_MED_CHN_3Q
restricts the proportion of tasks with the priority MEDIUM.

Defining threshold values for 1/0O priority MEDIUM and ports

IOPT_MED_POR defines threshold values for port utilization. As soon as the port utilization by tasks with the
priority HIGH reaches the threshold values, the proportion of tasks with the priority MEDIUM is restricted by limits.

IOPT_MED_POR

IOPT_MED_POR_1H=20/ <integer 0...100>
IOPT_MED_POR_2H=30 / <integer 0...100>
IOPT_MED_POR_3H=40/ <integer 0...100>
IOPT_MED_POR_1Q=50 / <integer 0...100>
IOPT_MED_POR_2Q=40 / <integer 0...100>

IOPT_MED_POR_3Q=30/ <integer 0...100>

92

IOPT_MED_POR_1H, IOPT_MED_POR_2H, IOPT_MED_POR_3H

Threshold values 1, 2 and 3 for utilization by tasks with the priority HIGH.
IOPT_MED_POR_1Q, IOPT_MED_POR_2Q, IOPT_MED_POR_3Q

Threshold values 1, 2 and 3 for tasks with the priority MEDIUM.
The threshold values have the following effects:

® |f utilization by tasks with the priority HIGH is less than IOPT_MED_POR_1H, tasks with the priority MEDIUM are
not restricted.

® |f utilization by tasks with the priority HIGH is between IOPT_MED_POR_1H and IOPT_MED_POR_2H, then
IOPT_MED_POR_1Q restricts the proportion of tasks with the priority MEDIUM.

® |f utilization by tasks with the priority HIGH is between IOPT_MED_POR_2H and IOPT_MED_POR_3H, then
IOPT_MED_POR_2Q restricts the proportion of tasks with the priority MEDIUM.

® If utilization by tasks with the priority HIGH is between IOPT_MED_POR_3H, then IOPT_MED_POR_3Q
restricts the proportion of tasks with the priority MEDIUM.

Defining threshold values for 1/O priority MEDIUM and paths

IOPT_MED_PTH defines threshold values for path utilization. As soon as the path utilization by tasks with the
priority HIGH reaches the threshold values, the proportion of tasks with the priority MEDIUM is restricted.

IOPT_MED_PTH

IOPT_MED_PTH_1H=20/ <integer 0...100>
IOPT_MED_PTH_2H=30 / <integer 0...100>
IOPT_MED_PTH_3H=40 / <integer 0...100>
IOPT_MED_PTH_1Q=50 / <integer 0...100>
IOPT_MED_PTH_2Q=40/ <integer 0...100>

IOPT_MED_PTH_3Q=30/ <integer 0...100>

IOPT_MED_PTH_1H, IOPT_MED_PTH_2H, IOPT_MED_PTH_3H
Threshold values 1, 2 and 3 for utilization by tasks with the priority HIGH.
IOPT_MED_PTH_1Q, IOPT_MED_PTH_2Q, IOPT_MED_PTH_3Q
Threshold values 1, 2 and 3 for tasks with the priority MEDIUM.
The threshold values have the following effects:
® |If utilization by tasks with the priority HIGH is less than IOPT_MED_PTH_1H, tasks with the priority MEDIUM are

not restricted.

® |f utilization by tasks with the priority HIGH is between IOPT_MED_PTH_1H and IOPT_MED_PTH_2H, then
IOPT_MED_PTH_1Q restricts the proportion of tasks with the priority MEDIUM.

® |f utilization by tasks with the priority HIGH is between IOPT_MED_PTH_2H and IOPT_MED_PTH_3H, then
IOPT_MED_PTH_2Q restricts the proportion of tasks with the priority MEDIUM.

® |f utilization by tasks with the priority HIGH is greater than IOPT_MED_PTH_3H, then IOPT_MED_PTH_3Q
restricts the proportion of tasks with the priority MEDIUM.

93

Defining threshold values for 1/O priority MEDIUM and devices

IOPT_MED_DEV defines threshold values for device utilization. As soon as the device utilization by tasks with the
priority HIGH reaches the threshold values, the proportion of tasks with the priority MEDIUM is restricted.

IOPT_MED_DEV
IOPT_MED_DEV_1H=15/ <integer 0...100>
IOPT_MED_DEV_2H=22 / <integer 0...100>
IOPT_MED_DEV_3H=30/ <integer 0...100>
IOPT_MED_DEV_1Q=50 / <integer 0...100>
IOPT_MED_DEV_2Q=35 / <integer 0...100>
IOPT_MED_DEV_3Q=25/ <integer 0...100>
IOPT_MED_DEV_0S=70 / <integer 0...100>
IOPT_MED_DEV_0H=1/ <integer 0...100>
IOPT_MED_DEV_0R=25/ <integer 0...100>

IOPT_MED_DEV_1H, IOPT_MED_DEV_2H, IOPT_MED_DEV_3H

Threshold values 1, 2 and 3 for utilization by tasks with the priority HIGH.
IOPT_MED_DEV_1Q, IOPT_MED_DEV_2Q, IOPT_MED_DEV_3Q

Threshold values 1, 2 and 3 for tasks with the priority MEDIUM.
IOPT_MED_DEV_0S, IOPT_MED_DEV_OH, IOPT_MED_DEV_OR

Threshold values for restricting the tasks with the priority MEDIUM in the event of high utilization of the
device with, at the same time, relatively low utilization by tasks with the priority HIGH (i.
e. IOPT_MED_DEV_1HM is not reached).

The threshold values have the following effects:
® |f utilization by tasks with the priority HIGH is less than IOPT_MED_DEV_1H, tasks with the priority MEDIUM are
not restricted.

® |f utilization by tasks with the priority HIGH is between IOPT_MED_DEV_1H and IOPT_MED_DEV_2H, then
IOPT_MED_DEV_1Q restricts the proportion of tasks with the priority MEDIUM.

® |f utilization by tasks with the priority HIGH is between IOPT_MED_DEV_2H and IOPT_MED_DEV_3H, then
IOPT_MED_DEV_2Q restricts the proportion of tasks with the priority MEDIUM.

® |f utilization by tasks with the priority HIGH is greater than IOPT_MED_DEV_3H, then IOPT_MED_DEV_3Q
restricts the proportion of tasks with the priority MEDIUM.

94

® Utilization by tasks with the priority MEDIUM is restricted by IOPT_MED_DEV_1Q even if the following
conditions are satisfied:

® Total utilization of a device exceeds the value IOPT_MED_DEV_0S
® Total utilization by tasks with the priorities HIGH and MEDIUM exceeds the value IOPT_MED_DEV_OH
® Ten times the average number of I/O requests for the device is greater than the value IOPT_MED_DEV_O0OR

If the utilization by tasks with the priority HIGH exceeds the value IOPT_MED_DEV_2H or IOPT_MED_DEV_3H,
the restrictions defined for these threshold values apply.If, despite considerably lower total utilization after a
restriction has been introduced, the utilization by tasks with the priority HIGH does not increase significantly, the
restriction is canceled again.

95

4.1.1.7 Querying threshold values for I/O priorities

Querying threshold values for the I/O priority LOW

IOPT_LOW? supplies the threshold values which currently apply.

IOPT_LOW?

IOPT_LOW?

IOPT_LOW_xxx_iyy?

With no suffix

XXX

iyy

All threshold values and limits for the utilization of the channels, ports, paths and devices are displayed.

Selects whether the threshold values and limits for channels, ports, paths or devices are displayed. The
following specifications are possible:

CHN
POR
PTH
DEV

Channels
Ports
Paths
Devices

Selects whether the first, second or third threshold values or limits are output. The following specifications
are possible:

i 1,2o0r3

vy HM

QH

QM

(Threshold value for the tasks with the 1/O priorities HIGH and MEDIUM)

(Limit for the tasks with the I/O priority LOW in the event of a high proportion of tasks with the
priority HIGH)

(Limit for the tasks with the I/O priority LOW in the event of a low proportion of tasks with the
priority HIGH)

Querying threshold values for the I/O priority MEDIUM

IOPT_MED? supplies the threshold values which currently apply.

IOPT_MED?

|IOPT_MED?

IOPT_MED_xxx_iy?

With no suffix

XXX

All threshold values and limits for the utilization of the channels, ports, paths and devices are displayed.

Selects whether the threshold values and limits for channels, ports, paths or devices are displayed. The
following specifications are possible:

CHN
POR
PTH
DEV

Channels
Ports
Paths
Devices

96

iy Selects whether the first, second or third threshold values or limits are output. The following specifications
are possible:

[1,20r3
y H (Threshold value for the tasks with the 1/O priorities HIGH)

Q (Limit for the tasks with the I/O priority MEDIUM)

97

4.1.1.8 Querying utilization

The IOPT_INF_... statements are used to query the percentage utilization of devices, channels, ports and paths by
tasks with the 1/O priorities HIGH, MEDIUM and LOW. The explicit and, if required, the implicit lock factors for tasks
with the 1/O priorities MEDIUM and LOW are also displayed.

The lock factor is the ratio of the duration of the IORM lock to the 1/O duration.

Tasks with the 1/O priority MEDIUM or LOW are explicitly locked for a channel (or a port, path or device) when the
first threshold value for MEDIUM or LOW for channel utilization (or port, path or device utilization) is exceeded.

Tasks with the I/O priority MEDIUM or LOW are implicitly locked for a device when a channel, port or path to which
the device is connected is explicitly locked.

Devices
IOPT_INF_DEV?

IOPT_INF_DEV?mask

mask Complete or masked specification of a mnemonic device name. The following specifications are possible:

* The utilization of all devices is listed.
n* The utilization of all devices whose names begin with n is listed.
nm* The utilization of all devices whose names begin with nm is listed.

nml* The utilization of all devices whose names begin with nml is listed.

nmlo The utilization of the device with the name nmlo is listed.

Channels

IOPT_INF_CHN?

IOPT_INF_CHN?mask

mask Specifies a channel. The following specifications are possible:
* The utilization of all channels is listed.

nm* The utilization of the channel nm is listed.

Paths

IOPT_INF_PTH?

IOPT_INF_PTH?mask

mask Specifies a path. The following specifications are possible:
* The utilization of all paths is listed.

nmlo/pg The utilization of the path from channel pq to controller nmlo is listed.

98

Ports

IOPT_INF_POR?

IOPT_INF_POR?mask

mask Specifies a port. The following specifications are possible:
* The utilization of all ports is listed.

portname The utilization of the port with the specified name is listed.
The WWPN (World Wide Port Name — 16 characters) of the controller port can be specified
as the port name.

Example

I/Os are active for the devices 3801 and 3803 on the 3800 controller and on channel 50. The FC port connected to
the controller has the WWPN 5006048448586C01.
Querying the utilization on channel 50

| OPT_I NF_CHN?50

Output:
UNI' T NAME | HHG MED LOWN| EXPLICIT DELAY | | MPLICIT DELAY
| % % % | MED LON | VED LOW
------------------ e
50 | 24 19 13| 0 0.01 | 0 0
Query for path 3800/50
| OPT_I NF_PTH?3800/ 50
Output
UNI'T NAME | HHG MED LOW| EXPLICI T DELAY | I MPLICI T DELAY
| % % % | MED LON | VED LOW
R LR R Fomm e me e e aa T T
1 3800/ 50 | 24 19 13| 0 0.01 | 0 0
Query for port 5006048448586C01
| OPT_I NF_POR?5006048448586C01
Output
UNI' T NAME | HHG MED LOW| EXPLICIT DELAY | | MPLICIT DELAY
| % % % | MED LON | VED LOW
R LR S o TS ——
1 5006048448586C01 | 24 19 13 | 0 0.01 | 0 0

...

99

Query for devices 3801 and 3803:
| OPT_I NF_DEV?380*

Output

; UNIT NAMVE | H'G MED LOW| EXPLICIT DELAY | | MPLICIT DELAY
! | % % % | MED LOW | MED LOW

------------------ T R T T

. 3800 | 0 0 o0 | 0 0 | 0 0

. 3801 | 70 0 11 | 0 5.81 | 0 0

. 3802 | 0 0 o0 | 0 0 | 0 0

. 3803 | 0 60 29 | 0 1.62 | 0 0

100

4.1.1.9 Check mode

Before IOPT is activated using IOPT_SET_ON=YES, IOPT means can be used to check whether it makes sense to
use IOPT.

The following requirements apply for check mode:

® |OPT must be activated using the CHK option (IOPT_SET_ON=CHK, see "Activating and deactivating IOPT").

® |/O priority classes must be defined for tasks (/ MODI FY- TASK- CATEGORI ES or IOPT statement IOPT_PRI (see
"Defining and querying threshold values for 1/O priority classes")).

® The threshold values for the utilization by tasks with the various priority classes must be defined (see IOPT
statements IOPT_LOW_... and IOPT_MED_...).

The IOPT_CHK_RESET statement defines the time at which the check should begin. You can subsequently (for
example an hour or day later) use IOPT_CHK_...? statements to query how often IOPT has locked low-priority tasks.

The check period taken into account always begins with the IOPT_CHK_RESET statement and ends at the time a
guery is made.

Starting the check
IOPT_CHK_RESET

IOPT_CHK_RESET

Querying the locks for channels

IOPT_CHK_CHN?

IOPT_CHK_CHN?mask

mask Specifies a channel. The following specifications are possible:
* The locks for all channels is listed.

nm The locks for channel nm are listed.

Querying the locks for paths

IOPT_CHK_PTH?

IOPT_CHK_PTH?mask

mask Specifies a path. The following specifications are possible:
* The locks for all paths are listed.

nmlo/pg The lock for the path from channel pq to controller nmlo is listed.

101

Querying the locks for ports

IOPT_CHK_POR?

IOPT_CHK_POR?mask

mask Specifies a port. The following specifications are possible:
* The locks for all ports are listed.

portname The locks for the port with the specified name are listed.

Querying the locks for devices

IOPT_CHK_DEV?

IOPT_CHK_DEV?mask

mask Complete or masked specification of a mnemonic device name. The following specifications are possible:

* The locks for all devices are listed.

n* The locks for all devices whose nhames begin with n are listed.
nm* The locks for all devices whose names begin with nm are listed.
nml* The locks for all devices whose names begin with nml are listed.

nmlo The lock for the device with the name nmlo is listed.

Example

I/Os are active for the devices 3801 and 3803 on the 3800 controller and on channel 50. The FC port connected to
the controller has the WWPN 5006048448586C01.
Query for channels

| OPT_CHK_CHN?*

Output:
i UNIT NAME | FREQUENCY % ;
femeceoaeciaaaaas . :
i 50 | 73 5
73 % of the lock conditions for channel 50 were satisfied.
Additional quantitative analysis for channel 50:
| OPT_I NF_CHN?50
Output:
UNI T NAME | HHG MED LOWN| EXPLICIT DELAY | | MPLICIT DELAY
| % % % | MVED LOW | VED LOW
------------------ T e T T ey
50 | 22 22 44 | 0 0 | 0 0

...

102

Query for paths
| OPT_CHK_PTH?*

Output:

i UNIT NAME | FREQUENCY % ;
femeceoaeciaaaaas . :
13800/ 50 | 73

73 % of the lock conditions for path 3800/50 (controller/channel) were satisfied.
Additional quantitative analysis for path 3800/50:

| OPT_I NF_PTH?3800/ 50

Output:
UNI' T NAME | HHG MED LOW| EXPLICIT DELAY | | MPLICIT DELAY
| % % % | MED LOW | MED LOW
R R EEE TR S S B TS
13800/ 50 | 22 22 44| 0 0 | 0 0
Query for ports
| OPT_CHK_POR?*
Output:
UNI'T NAME | FREQUENCY %
R R :
55006048448586001 | 73
73 % of the lock conditions for port 5006048448586C01 were satisfied.
Additional quantitative analysis for port 5006048448586CO01.:
| OPT_I NF_POR?5006048448586C01
Output:
UNI T NAME | HG MED LOW| EXPLICIT DELAY | | MPLICIT DELAY
| % % % | MED LOW | MED LOwW
L E T T Fommmeme e Fommme e aeaas .
1 5006048448586C01 | 22 22 44 | 0 0 | 0 0

103

Query for devices

| OPT_CHK_DEV?*

Output:

i UNIT NAVE | FREQUENCY %
e B

: 3801 | 73

13803 | 73

73 % of the lock conditions for devices 3801 and 3803 were satisfied.

Additional quantitative analysis for devices 3801 and 3803:

| OPT_I NF_DEV?380*

Output:

UNI T NANVE | HHG MED LOW| EXPLICIT DELAY | | MPLICIT DELAY
; | % % % | MED LOW | MED Low

R R S S

| 3800 | 0 0 0 | 0 0 | 0 0

3801 | 48 0 48 | 0 0 | 0 0

! 3802 | 0 0 0 | 0 0 | 0 0

. 3803 | 0 48 48| 0 0o | 0 0

With this utilization it makes sense to have the I/Os for devices 3801 and 3803 controlled by IOPT.

104

4.1.2 Typical applications

The following examples show the IOPT statements for two different scenarios.

Example 1

IOPT monitors all devices. The settings of / MODI FY- TASK- CATEGORI ES or the default values of the IOPT

statement IOPT_PRI (see "Defining and querying threshold values for I/O priority classes") apply for the 1/O priority
classes

|/ START-1 ORM

|1 OPT_SET_ON=YES
|| OPT_DEV_ADD=ALL
! END

Here the IOPT statements can be entered in dialog mode or stored in the SYSDAT. | ORM nnn file.

Example 2

The logical devices 8800, 8801, 8810, 8820, 8821 and 8822 are located on a physical device. Applications with 10-
PRIO=HIGH are active on 8800 and 8801, and applications with IO-PRIO=LOW on 8810, 8820, 8821 and 8822.
The applications with I0-PRIO=LOW disturb the applications with I0-PRIO=HIGH. IORM does not recognize a
clash on the logical devices because the utilization of the ports, paths and channels is still below the specified
threshold values. Consequently a device group 001 is defined.

The settings of / MODI FY- TASK- CATEGCORI ES or the default values of the IOPT statement IOPT_PRI (see
Def|n|ng and querying threshold values for I/O priority classes") apply for the I/O priority classes:

; / START- | ORM

{1 OPT_GRP_001_ADD=D- R(8800, 8801)
-1 OPT_GRP_001_ADD=D- R(8810, 8810)
i | OPT_GRP_001_ADD=D- R(8820, 8822)
{END

...

Here the IOPT statements can be entered in dialog mode or stored in the SYSDAT. | ORM nnn file.

105

4.2 DPAV: Dynamic Parallel Access Volume

Parallel disk access is offered on all BS2000 servers via Parallel Access Volumes (“static PAV”) as an alternative to
single disk access (default), see the “Introduction to System Administration” [5 (Related publications)]. PAV enables
the response times to be reduced in the case of high disk utilization.

Static PAV requires planning that anticipates the future device utilization, i.e. the heavily utilized devices must be
assigned the right number of alias devices in advance. When hardware generation takes place in BS2000, it must
be borne in mind that a separate address is required for each alias device. When an alias device is defined for each
device, only 128 devices can be defined for a logical controller because a maximum of 256 devices can be
connected to a logical controller.

I/O load balancing using DPAV

The IORM function DPAV (Dynamic Parallel Access Volume) is offered for disk devices connected to the Fibre
Channel of /390 servers. DPAV reacts to peak loads by assigning alias devices, autonomously and dynamically, to
the devices which profit most from this.

DPAYV dynamically assigns alias devices which have been configured as “DPAV” devices to the heavily utilized
devices. Not as many alias devices need to be generated in total any more. I/O bottlenecks caused by multiple jobs
accessing the same disk are thus eased by automatically attaching alias paths.

DPAV supports Extended PAV (XPAV), see the “Introduction to System Administration” [5 (Related publications)].

i For Server Units that support FastDPAV, it is no longer recommended to use DPAV.

Configuring DPAV devices
DPAV uses only generated alias devices.

As the device number of a base device on a type FC channel must be less than the device number of the
associated alias devices (see the DVC statement in the “System Installation” manual [7 (Related publications)]), it is
advisable to generate alias devices in the “rear” area of a controller.

Example

For a controller with 256 devices (device numbers 8000 through 80FF), the alias devices with the device
numbers 80CO through 80FF satisfy this condition for all base devices (device numbers 8000 through 80BF)
that come into question.

However, if, for example, 8010 was generated as an alias device for 8000, it cannot be switched to a base
device between 8011 and 80FF.

Alias devices on the type FC channel are switched from a base device to another base device by dynamic
modification of the 1/O configuration. To do this, an alias device is temporarily removed from the 1/0O configuration (
/ REMOVE- | O- UNI T) and then entered again with the same logical unit number as the new base device (/ ADD- | &
UNI T). The unit address (alias address) is retained.

Activating DPAV

At first DPAYV is deactivated. The DPAV function is activated using DPAV_SET_ON=YES. DPAV_DEV_ADD is
used to determine alias devices for DPAV use. All alias devices which have been generated but which are not
intended for DPAV can (only) be used for the static PAV.

106

In VM2000 mode the function must be activated in the monitor system and on each BS2000 guest system on which
DPAV is to be active. The actual switchover of alias devices is coordinated and executed by DPAYV in the monitor
system.

107

4.2.1 Statements

® Activating and deactivating DPAV

® Activating and deactivating alias devices for DPAV
Check mode

® Activating and deactivating base devices for DPAV

108

4.2.1.1 Activating and deactivating DPAV
DPAV_SET_ON activates or deactivates DPAV. The current setting can also be queried.

DPAV_SET_ON
DPAV_SET_ON=YES
DPAV_SET_ON=NO

DPAV_SET_ON?

YES DPAV is activated. In VM mode this setting is required on all systems on which DPAYV is to be active.

NO DPAV is deactivated on the system. In VM mode this setting is required on all systems on which DPAV is
not to be active.

? The current setting is queried.

109

4.2.1.2 Activating and deactivating alias devices for DPAV

Activating alias devices for DPAV

DPAV_DEV_ADD activates alias devices for DPAV.

DPAV_DEV_ADD

DPAV_DEV_ADD=ALL[,vm-index]

DPAV_DEV_ADD=D-R(mn1,mn2)[,vm-index]

ALL All alias devices are activated for DPAV.

D-R(mnl1,mn2)

All alias devices with mnemonic names from mnl to mn2 are activated. If mnl and mn2 are identical, only
one device is activated.

vm-index

Identifies a VM.

Special features in VM2000 operation:

* DPAV_DEV_ADD is entered in the monitor system only.

®* When a VM index is specified, DPAV uses the alias devices only for the guest system selected.

® |f no VM index is specified, DPAV uses the alias devices for all guest systems.

Querying activated devices

DPAV_DEV_ADD? displays a list of all alias devices which are activated for DPAV.

DPAV_DEV_ADD?

DPAV_DEV_ADD?mask

mask Complete or masked specification of a mnemonic device name. The following specifications are possible:

*

n*

nm*

nml*

nmlo

All activated alias devices are listed.
All activated alias devices whose hames begin with n are listed.

All activated alias devices whose nhames begin with nm are listed.

All activated alias devices whose names begin with nml are listed.

The alias device with the name nmlo is listed.

110

Deactivating alias devices for DPAV

DPAV_DEV_REM deactivates alias devices for DPAV.

DPAV_DEV_REM
DPAV_DEV_REM=ALL

DPAV_DEV_REM=D-R(mn1,mn2)

ALL All alias devices are deactivated for DPAV.
D-R(mnl,mn2)

All alias devices with mnemonic names from mnl to mn2 are deactivated. If mnl and mn2 are identical,
only one alias device is deactivated.

Special features in VM2000 operation:

* DPAV_DEV_REM may only be specified on the monitor system.

111

4.2.1.3 Check mode

The potential benefit of DPAV can already be checked with the static PAV.

To do this, first of all DPAYV is activated (DPAV_SET_ON=YES).

The DPAV_CHK_RESET statement then defines the time at which a check should begin. The following can be
queried later (for example an hour or a day later):

® Query of all devices for which an additional alias device would have made sense (DPAV_CHK_DEV? statement)
® Query of the existing alias device and their I/O activity (DPAV_CHK_ALI? statement)

The check period taken into account always begins with the DPAV_CHK_RESET statement and ends at the time a
query is made.

As the check takes place in normal DPAV mode, alias names can be activated immediately after a check.
Starting the check

DPAV_CHK_RESET

DPAV_CHK_RESET

Querying the devices for which an alias device would make sense

DPAV_CHK_DEYV checks the devices for which an alias device would have made sense and displays the devices
with the frequency > 0.

DPAV_CHK_DEV?

DPAV_CHK_DEV?mask

mask Complete or masked specification of a mnemonic device name. The following specifications are possible:

* All devices are checked.

n* All devices whose names begin with n are checked.
nm* All devices whose names begin with nm are checked.
nml* All devices whose names begin with nml are checked.
nmlo The device with the name nmlo is checked.

Querying existing alias devices and their I/O activity

DPAV_CHK_ALI? lists existing alias devices and displays their I/O activity (average 1/Os per second). The I/O
activity relates only to the home system. In VM mode, additional I/Os could be active on other guest systems.

DPAV_CHK_ALI?

DPAV_CHK_ALI?mask

112

mask Complete or masked specification of a mnemonic device name. The following specifications are possible:

* All alias devices are listed.
n* All alias devices whose names begin with n are listed.
nm* All alias devices whose names begin with nm are listed.
nml* All alias devices whose names begin with nml are listed.
nmlo The alias device with the name nmlo is listed.

Example

Two I/O requests are always pending for device 3801 which is connected to controller 3800 (devices 3800 ... 38FF);
an alias device 3807 is assigned. Multiple 1/0O requests are often pending for device 3803; however, device 3803 is

not assigned an alias device.
Querying all devices for which an additional alias device would make sense
DPAV_CHK_DEV?*

UNIT NAME | FREQUENCY %

The requirements for an additional device were satisfied 100% for device 3803.
Querying existing alias devices and their I/O activity

In the next step a check is made to see whether alias devices exist on controller 3800:
DPAV_CHK_ALI ?38*

UNIT NAME | 1/0O PER SEC

256

OO0 WOOO0OO0OO0OO0OO0OO0oOOo

2569 1/0s per second are active on alias device 3807; the remaining alias devices show no I/O activity on the
home system.

113

Activating alias devices for DPAV
The following assignment of alias devices is made on the basis of the check that was performed:
DPAV_DEV_ADD=D- R(3804, 3806)
DPAV_DEV_ADD=D- R(3808, 380F)

Alias device 3807 remains permanently assigned to device 3801, the other alias devices on controller 3800
are activated for DPAV.

If no alias devices are generated on the controller, these can be configured (using IOGEN or /ADD-10-UNIT).
Starting another check
The effectiveness of the new assignment of the alias devices is checked by starting a new check period:

DPAV_CHK_RESET
The devices for which an alias device would make sense are then queried again (after a few minutes):

DPAV_CHK_DEV?*

UNIT NAME | FREQUENCY %

Device 3803 is no longer listed.

114

4.2.1.4 Activating and deactivating base devices for DPAV

The following statements can be used to specify base devices for DPAV. In VM2000 mode, the statements have to
be entered in the monitor system.

Directly after loading the IORM subsystem, all base devices for DPAV are allowed/activated.

Activating base devices for DPAV

DPAV_BAS_ADD activates base devices for DPAV.

DPAV_BAS_ADD

DPAV_BAS_ADD=ALL[,number][,vm-index]

DPAV_BAS_ADD=D-R(mnl1,mn2)[,number][,vm-index]

ALL All base devices are activated for DPAV.
D-R(mnl1,mn2)

All base devices with mnemonic names from mn1 to mn2 are activated. If mnl and mn2 are identical,
only one base device is activated.

number
Maximum number of alias devices for a specified base device. Default value: 7.
vm-index

Identifies a VM.

Special features in VM2000 operation:

®* When a VM index is specified, DPAV uses the base devices only for the guest system selected.

* If no VM index is specified, DPAV uses the base devices for all guest systems.

Querying activated base devices

DPAV_BAS_ADD? displays a list of all base devices which are activated for DPAV.

DPAV_BAS_ADD?

DPAV_BAS_ADD?mask

mask Complete or masked specification of a mnemonic device name. The following specifications are possible:

* All activated base devices are listed.
n* All activated base devices whose names begin with n are listed.
nm* All activated base devices whose hames begin with nm are listed.

nml* All activated base devices whose names begin with nml are listed.

nmlo The base device with the name nmlo is listed.

115

Deactivating base devices for DPAV

DPAV_BAS REM deactivates base devices for DPAV.

DPAV_BAS_REM
DPAV_BAS_REM=ALL

DPAV_BAS_REM=D-R(mn1,mn2)

ALL All base devices are deactivated for DPAV.

D-R(mnl1,mn2)

All base devices with mnemonic names from mnl to mn2 are deactivated. If mn1l and mn2 are identical,

only one base device is deactivated.

116

4.2.2 Typical application

In the monitor system

(1) |ORM is started and initialized in the monitor system.
The statements of SYSDAT. | ORM <ver si on> in the monitor system are processed. These statements

look like this:

| DPAV_SET_ONEYES = - = -mmmmmmmmmmmee e e e e (2)
- DPAV_DEV_ADD=D- R(88D8, 88D5) ----------=----=----------------- (3)
' DPAV_DEV_ADD=D- R(88E3, 88E5), 8 - -------=--c=c-czcmcaomcoooo- (4)
! DPAV_DEV_ADD=D- R(88F3, 88F5), 10 - --=--------=zsemmomomoeaa- (5)
VEND e (6)

(2 The DPAV function is activated in the monitor system.

() The alias devices 88D3, 88D4 and 88D5 may be used for DPAV in the monitor system and in all guest
systems.

4 The alias devices 88E3, 88E4 and 88E5 may be used for DPAV in the guest system with the VM index 8.

(®) The alias devices 88F3, 88F4 and 88F5 may be used for DPAV in the guest system with the VM index 10.

(6) All other generated alias devices are not permitted for DPAV. They remain statically assigned to the base
devices.

In the guest systems

| START- SUBSYSTEM | ORM - - = - = == = = <= < m o e e ome e e oo e (7)

[START-1ORM oo e (8)

(M The subsystem IORM is started in the guest system.

(®) |ORM is started and initialized in the guest system.
The statements of SYSDAT. | ORM <version> in the guest system are processed. These statements look
like this:
' DPAV_SET_ONEYES === m s ommm e omome e e e (9)
| END

(®) The DPAV function is activated in the guest system.

117

4.2.3 FastDPAV

The “FastDPAV” function, an optimized DPAYV, is offered for Server Units SU /390 that support a modification of the
logical unit number (LUN) for alias devices when starting an 1/0. For these Server Units, DPAYV is no longer
recommended. For FastDPAV, also see the “System Administration” manual [5].

FastDPAV does not require monitoring of the device utilization and the switchover of alias devices by IORM, but it
requires an activation using DPAV_SET_ON=YES.

Activation of FastDPAYV alias devices (using DPAV_DEV_ADD) is not necessary.
However, querying the 1/O rate for FastDPAYV alias devices (using DPAV_CHK_ALI) is supported.

By default, all FastDPAV base devices are taken into account for using FastDPAYV alias devices. The
DPAV_BAS_REM statement can be used to exclude FastDPAV base devices from using FastDPAYV alias devices.
They can be included again, using DPAV_BAS_ADD. At the same time, the maximum number of aliases per disk
can be modified. The default value is the same as the maximum value of 7.

For FastDPAV, the previously executed IORM statements are entered and executed in the respective local BS2000
system.

118

4.3 DDAL: Optimized Load Balancing in ETERNUS CS HE operation

BS2000 knows two procedures for selecting tape devices:

® Selection of a suitable tape device in the order of generation.
If multiple tape devices are in use at the same time, this can result in unfavorable load balancing. In an
ETERNUS CS HE, for example, a number of devices connected to an ICP (Integrated Channel Processor) can
be in use, while at the same time no devices are active on other ICPs.

® Optimized device allocation for ETERNUS CS HE.
The device management counts the number of active devices for each ICP and takes this counter into account
for device allocation.
The optimized device allocation is set using

/ MODI FY- MOUNT- PARAVETER NEXT- TAPE- MOUNT=* BY- CONTROLLER.

However, in both cases the device management knows only the device reservations within a native system or within
a BS2000 guest system under VM2000.

Optimized device allocation with DDAL

In native mode the BS2000 device management implements optimized device selection for ETERNUS CS HE
independently of DDAL.

In VM2000 mode on /390 servers the DDAL (Dynamic Device Allocation) function implements optimized device
allocation for ETERNUS CS HE over all BS2000 guest systems of a server.

To permit this, IORM must be started on the monitor system and on all BS2000 guest systems, and the DDAL
function must be activated using DDAL_SET ON=YES.

Internal communication ensures that IORM knows the allocation of the ICPs in all BS2000 guest systems of the
server. When a device is allocated, IORM makes the global allocation counters available to the local device
management.

Activating and deactivating DDAL

DDAL_SET_ON activates or deactivates DDAL. The current setting can also be queried.

DDAL_SET_ON

DDAL_SET_ON=YES

DDAL_SET_ON=NO

DDAL_SET_ON?

YES DDAL is activated. In VM mode this setting is required on all guest systems on which DDAL is to be
active.

NO DDAL is deactivated on the system. In VM2000 operation this setting is required on all guest systems on
which DDAL should not be active.

? The current setting is queried.

119

4.4 TCOM: Dynamic Tape Compression

To ensure optimum data backup on LTO tapes, a minimum data transfer rate must be achieved so that the tapes
runs continuously (“streaming mode”).

If the minimum data transfer rate is not achieved, the tape is slowed by the device, rewound a little, and then
repositioned behind the last data written. This procedure (start/stop mode) is not only time-consuming, but also
reduces the service life of the tapes.

The required minimum data transfer rate can be achieved using ARCHIVE and data on high-speed disks and
“large” Raid systems (see the “Introduction to System Administration” [5 (Related publications)]). It is not achieved
with low-speed disks.

“In between” there is an area in which the minimum data transfer rate is achieved if compression on the device is
switched off. The tape capacity is correspondingly lower when compression is switched off.

Selecting the compression using TCOM

Compression on the LTO device is switched on and off using the TCOM (Dynamic Tape Compression) function. By
default, compression (also without IORM) is switched on.

TCOM also enables compression to be switched on and off dynamically, i.e. in accordance with the data transfer
rate. In this case

® compression is switched off when the data transfer rate without compression is above the minimum value
required for streaming mode, but not if compression is used.

® compression is switched on when the data transfer rate is above the minimum value required for streaming mode
even if compression is used.

In the case of /390 servers, the device notifies TCOM directly of the data volume transferred from the server to the
device and from the device to tape. In the case of x86 servers, only the data volume transferred from the server to
the device is known; the data volume transferred from the device to tape is calculated from the compression factor
specified.

120

Controlling compression for LTO devices

TCOM_SET controls whether compression is switched on or off for LTO devices. The setting applies for all LTO
devices in the home system. The current setting can also be queried.

TCOM_SET

TCOM_SET=ON

TCOM_SET=0OFF

TCOM_SET=DYN

TCOM_SET?

ON Switches compression on for LTO devices (default value).

This setting ensures that optimum use is made of the tape capacity. However, when the data transfer
rate is low, the tape often switches to start/stop mode.

OFF Switches compression off for LTO devices.
When the data transfer rate is low, the number of start/stop events can be reduced; the tape capacity
decreases in accordance with the compression rate for the data.

DYN Switches compression on or off for LTO devices in accordance with the data transfer rate. This setting
combines the benefits of optimum tape capacity when the data transfer rate is high and a low humber
of start/stop operations when the data transfer rate is low.

? The current setting is queried.

Defining the compression factor

On x86 servers TCOM_FACTOR defines the compression factor for data which is to be saved for
TCOM_SET=DYN. The current value can be queried.

TCOM_FACTOR

TCOM_FACTOR=n.m

TCOM_FACTOR?

n.m Compression factor on x86 servers and when TCOM_SET=DYN.

Value range: 1.0 <= n.m <=9.9
Default value: 2.0

? The current setting is queried.

121

4.5 I0LVM: I/O Limit for Virtual Machines

In VM2000 mode, less important guest systems which are I/O-intensive can hinder other, more important guest
systems in I/O operations. This can occur when the I/O-intensive guest systems execute 1/0s on the same (logical)
device. It also occurs when 1/Os are executed on different (logical) devices which are located on the same physical
device or are connected over the same paths or can be reached via the same ports or are connected to the same
channels.

IOLVM (I/O Limit for Virtual Machines) can detect conflict situations and specifically slows down I/O operations of
the user’'s own guest system if 10 resources that are used jointly (channel, port, path, disk) exceed the specific 10
limit for the guest system. The 10 limit is specified as a percentage value of the average I/O throughput of the jointly
used 10 resource.

IOLVM only applies for disk devices.

The I/O limit for IOLVM is defined as the maximum I/O performance utilization of the VM in the MAX-1O-
UTILIZATION operand in the VM2000 commands / CREATE- VMor / MODI FY- VM ATTRI BUTES and / CREATE- VM
DEFI NI TI ON or / MODI FY- VM DEFI NI TI ON.

In the VM2000 inquiry commands / SHOM VM ATTRI BUTES, / SHO¥ VM RESOURCES and / SHOW VM
DEFI NI TI QN, the MAX- | Ocolumn shows which value is set for the maximum 1/O performance utilization of the VM.

122

5 JMP Reconstruction of ENTER commands from the JMS job pool

Version: JMP V2.0C

JMP (Jobpool Management Program) reconstructs ENTER-JOB commands from information which the JMS has
saved in the job pool (system file SYSTEM.JOBPOOL) via accepted batch jobs. JMP writes the commands to a file.
From this file they can be called, modified (if needed), and transferred back to the system. You can edit and print
out the job pool information. Compared to previous warm start functions, this provides system administration with
additional options for restarting the processing of batch jobs (after a change of version, for example).

Bear in mind that, as a rule, the reconstructed ENTER-JOB commands cannot be restarted by the job submitter
/system administration without testing and modification. It is not possible to reconstruct all of the job submitters
batch job attributes. Thus, you should read section “Notes on reconstructed attributes”, very carefully.

The program can run in batch mode and dialog mode. You must run it under the privileged user ID TSOS.

123

5.1 Execution of IMP

JMP opens the job pool file (which is in PAM format) and sets up a SAM file (referred to below as a procedure file)
for the ENTER commands to be generated.

JMP either determines the file name of the job pool file via a standard link name (link name SJOBPOOL), or the file
name is explicitly specified in the JMP statement / / OPEN- JOBPOOL- FI LE. When transferring the name of the job
pool file using a link name, you must execute the command / ADD- FI LE- LI NK LI NK- NAVME=SJOBPOCOL, FI LE-
NAME=<f i | ename> prior to calling JMP.

JMP determines the name of the procedure file in the same way, either via the standard link name PJOBPOOL or
via explicit specification in the JMP statement / / CREATE- PROCEDURE- FI LE. The procedure file can be either a
newly created file or an existing file which is overwritten. The program is started with / START- JMP.

START-JMP Alias: JIMP

VERSION = *STD / <product-version>
,MONJV = *NONE / <filename 1..54 without-gen-vers>

,CPU-LIMIT = *JOB-REST / <integer 1..32767 seconds>

JMP is controlled by means of control statements read from SYSDTA.

Notes on the job pool file

The job pool file named SYSTEM.JOBPOOL that is current during the session is located in the home pubset. It is
opened during a session by the job pool task (system task, TSN JOBP) and can therefore not be accessed by the
JMP program.

If the home pubset is imported as a data pubset (after a shutdown), JMP has unlimited access to the job pool file.
However, the file is protected by a read password and must therefore be copied to an unprotected file using / COPY-
FILE ..., | GNORE- PROTECTI ON=* SOURCE, before it can be processed by JMP.

The job pool contains information on all of the jobs currently being processed and the jobs yet to be run. These are
current or interrupted batch jobs and all batch jobs that have not yet been started (with repeat jobs or calendar jobs,
they are the versions that still need to be started). Immediately prior to a planned shutdown, the job pool file should
therefore contain only jobs with a start time that is later than the planned session restart. When the system starts up
again (STARTUP), a new job pool file is started and set up with job pool information from the previous session. All
batch jobs that no longer need to be considered in the new session are removed.

124

5.2 Statements

A statement can span several lines. The hyphen is used as the continuation character. It announces an additional
line. Only spaces are allowed between the hyphen and the end of the lines.

125

5.2.1 Overview of JMP statements

Statement Function
CREATE- PROCEDURE- FI LE Create a SAM file that contains a BS2000 procedure with ENTER commands
OPEN- JOBPOOL- FI LE Open job pool file

SHOW JOBPOOL- STATUS Display information on the contents of a job pool file

END End JMP

126

5.2.2 Description of the statements

® CREATE-PROCEDURE-FILE - Create SAM file with BS2000 procedure
® END - Terminate statement input

OPEN-JOBPOOL-FILE - Open job pool file

® SHOW-JOBPOOL-STATUS - Output information on the job pool

127

5.2.2.1 CREATE-PROCEDURE-FILE - Create SAM file with BS2000 procedure

This statement creates a SAM file that contains a BS2000 procedure with reconstructed ENTER-JOB commands.
The file contents and the format of the reconstructed commands are described below with the help of an example.

The statement can be used only after at least one / / OPEN- JOBPOOL- FI LE has been executed.
Format
CREATE-PROCEDURE-FILE

FILE-NAME = *STD-FILE-LINK / <filename 1..54 without-gen-vers>

,OVERWRITE = *NO / *YES

Operands

FILE-NAME = *STD-FILE-LINK / <filename 1..54 without-gen-vers>
Name of the procedure file to be written. The file must be open for write access.

FILE-NAME = *STD-FILE-LINK

The file name should be read from the Task File Table (TFT). The link name is PJOBPOOL,; this name cannot be
changed by the user.

The user can therefore specify the file name with / ADD- FI LE- LI NK LI NK- NAVE=PJOBPOCL, FI LE-

NAME=<f i | enane> prior to running JMP.

FILE-NAME = <filename 1..54 without-gen-vers>
Fully qualified file name. Specification of a file generation or file generation group, or of a file name in “file(no)”
format (no=version number) is not allowed.

OVERWRITE =
Causes or prevents overwriting of an existing file with the name specified in FILE-NAME=.

OVERWRITE = *NO
Prevents an existing file from being overwritten. The original file remains unchanged. No procedure file is created.
The user sees the message JMP0012.

OVERWRITE = *YES
If a file with the same name already exists, it will be overwritten and a procedure file created.

128

5.2.2.2 END - Terminate statement input

This statement terminates the input of statements to the JMP program.

Format

END

129

5.2.2.3 OPEN-JOBPOOL-FILE - Open job pool file

This statement specifies the job pool to be reconstructed.
Format

OPEN-JOBPOOL-FILE

FILE-NAME = *STD-FILE-LINK / <filename 1..54 without-gen-vers>

Operands

FILE-NAME = *STD-FILE-LINK / <filename 1..54 without-gen-vers>
Name of the job pool to be reconstructed. The file must be open for read access.

FILE-NAME = *STD-FILE-LINK

The file name should be read from the Task File Table (TFT).

The link name is SJOBPOOL,; this name cannot be changed by the user.

The user can therefore specify the file name with / ADD- FI LE- LI NK LI NK- NAVME=SJOBPOCL, FI LE-
NANVE=<f i | enane> prior to running JMP.

FILE-NAME = <filename 1..54 without-gen-vers>

Fully qualified file name. Specification of a file generation or file generation group, or of a file name in “file(no)’

format (no=version number) is not allowed.

130

5.2.2.4 SHOW-JOBPOOL-STATUS - Output information on the job pool

This statement displays information on a subset of the job descriptions in the currently open job pool file.

The jobs are selected by means of the JOB-IDENTIFICATION operand on the basis of job attributes. You can set
the number of attributes displayed by means of the INFORMATION operand. The output destination is set by
means of the OUTPUT operand.

Format
SHOW-JOBPOOL-STATUS

JOB-IDENTIFICATION = *ALL / *NONE / *TSN(...) / *JOB-STATE (...) / *USER-IDENTIFICATION(...) /
*JOB-CLASS(...) / *JOB-NAME(...) / *PUBSET-OF-SYSCMD-FILE(...)
*TSN(...)
| TSN = <alphanum-name 1..4>
*JOB-STATE(...)
| JOB-STATE = *EXECUTING / *WAITING / *DORMANT / *REPEAT / *CALENDAR
*USER-IDENTIFICATION(...)
| USER-IDENTIFICATION = <alphanum-name 1..8>
*JOB-CLASS(...)
| JOB-CLASS = <alphanum-name 1..8>
*JOB-NAME(...)
| JOB-NAME = <alphanum-name 1..8>
*PUBSET-OF-SYSCMD-FILE(...)
| PUBSET-OF-SYSCMD-FILE = <alphanum-name 1..4>
,INFORMATION = *SUMMARY / *JOB-LIST / *FULL
,OUTPUT = list-poss(2): *SYSOUT / *SYSLST

Operands

JOB-IDENTIFICATION = *ALL / *NONE / *TSN(...) / *JOB-STATE (...) / *USER-IDENTIFICATION(...) /
*JOB-CLASS(...) / *JOB-NAME(...) / *PUBSET-OF-SYSCMD-FILE(...)
Selects the jobs about which information is to be output on the basis of the specified parameters.

JOB-IDENTIFICATION = *ALL
Selects all the jobs in the job pool.

JOB-IDENTIFICATION =*NONE
If INFORMATION = *SUMMARY is selected, information on the current job pool file is displayed. Otherwise, there is
no output.

JOB-IDENTIFICATION =*TSN(...)
Selects the job by means of the TSN.

TSN = <alphanum-name 1..4>
TSN of the job to be selected.

131

JOB-IDENTIFICATION = *JOB-STATE(...)
Selects the jobs on the basis of the state or type of the jobs from the viewpoint of JIMS.

JOB-STATE = *EXECUTING
Selects all the active jobs for which there was already a task in the system.

JOB-STATE = *WAITING
Selects all the jobs that are waiting for their system startup under the control of a job stream.

i Waiting repeat job repetitions with a repetition count > 0 are not selected.

JOB-STATE = *DORMANT
Selects all the jobs with an inactive job stream or inactive repeat job repetitions.

JOB-STATE = *REPEAT
Selects all repeat jobs.

JOB-STATE = *CALENDAR
Selects all calendar jobs.

USER-IDENTIFICATION = *USER-IDENTIFICATION(...)
Selects all jobs to run under the specified user ID.

USER-IDENTIFICATION = <alphanum-name 1..8>
User ID under which the selected jobs are to run.

JOB-IDENTIFICATION = *JOB-CLASS(...)
Selects all jobs that belong to the specified job class.

JOB-CLASS = <alphanum-name 1..8>
Job class of the jobs that are to be selected.

JOB-IDENTIFICATION = *JOB-NAME(...)
Selects all jobs with the specified job name.

JOB-NAME = *NONE / <alphanum-name 1..8>
Name of the jobs to be selected. If *NONE is specified, jobs without a name are selected.

JOB-IDENTIFICATION = *PUBSET-OF-SYSCMD-FILE(...)
Selects all jobs whose command file is on the specified pubset.

PUBSET-OF-SYSCMD-FILE = <alphanum-name 1..4>
ID of the pubset containing the command file of the selected jobs.

INFORMATION =*SUMMARY /*JOB-LIST / *FULL
Specifies the amount of information to be output on the selected jobs.

INFORMATION = *SUMMARY

Limits the information that is output to the name and version of the current job pool file and the number of selected
jobs.

If JOB-INFORMATION = *NONE is selected, the number of jobs is not specified (see example 1).

INFORMATION =*JOB-LIST
Displays a header line, a line with 9 attributes for each selected job and a line that summarizes the number of these
jobs (see example 2).

132

INFORMATION = *FULL
Displays the most important job attributes for each selected job in up to 12 output lines. The output is concluded
with a line with the number of jobs (see example 3).

OUTPUT = list-poss(2): *SYSOUT / *SYSLST
Defines the output destination.

OUTPUT = *SYSOUT
Output is to be to SYSOUT.

OUTPUT =*SYSLST
Output is to be to SYSLST.

Example 1
% / show j obpool - st at us *none, *sunmmary

i JOBPOOL : :20S6: $YLA. SYSTEM JOBPOOL. V160
'VERSION : 0SD V3.0 OR H GHER

i The JOBPOOL file shown can be used by OSD versions >= V3.0.

Example 2

% / show j obpool - status *j ob-cl ass(jcj s2xsb), *j ob-1i st

' TSN JNAME USER JCLASS CAT TYPE START REPEAT LTSN
| 0AVX TSOS JCIS2XSB G 2 SOON
| 0AVZ TSOS JCIS2XSB G 1 WI A040809. 2300
| 0AVO TSOS JCIS2XSB G 1 W E041010. 2222
| 0AV2 TSCS JCIS2XSB G 2 w345
| 0AV3 TSOS JCIS2XSB G 1 WI A000809. 1200 CALNDR
| 0AV4 TSOS JCIS2XSB G 1 DO STUP STUP
| 0AV6 RL TSOS JCIS2XSB G 1 DO A040810.1400 DAILY O0AV5
| 0AV5 RL TSOS JCIS2XSB G 1 WI A040809. 1400 DAI LY
| 0AV8 TSOS JCIS2XSB G 1 DO SOON 0234 0AV7
| 0AV7 TSCS JCIS2XSB G 2 SCON 0234
G 1 WI A000809. 1600 CALNDR

L 0AVB TSOS JCIS2XSB
’ 11 JOB(S) DI SPLAYED

Explanations

The JOBPOOL file shown contains 11 job descriptions in the JCJS2XSB job class. The job attributes are output
after a header linen:

TSN The jobs are output in the order in which they appear in the job pool file. The TSNs are therefore
generally not sorted.

JNANE: Job name
USER: User ID
JCLASS: Job class

CAT: Catalog ID of the pubset containing the command file.

133

TYPE: 1 W

2

The job waits to be started in the job stream. This corresponds to the selection
criterion JOB-STATE=*INACTIVE.

waiting repeat job successor (*DORMANT).
The stop was suspended with HOLD-JOB.

The job is in resource HOLD because the calendar file could not be accessed
at scheduling.

The job is active (*ACTIVE).

START: The START attribute in the following formats:

SOON

| MVE

STUP

Whhmm
Ayymrdd. hhmm

Eyynmdd. hhrmm
Lyymdd. hhnmm

IMMEDIATELY
AT-STREAM-STARTUP
WITHIN(HOURS=hh,MINUTES=mm)
AT(DATE=yyyy-mm-dd, TIME=hh:mm)

EARLIEST(.. see AT ..)

LATEST(.. see AT ..)

REPEAT: The REPEAT attribute in the following formats:

DAI LY, WEEKLY

STUP AT-STREAM-STARTUP
hhnmm PERIOD(HOURS=hh,MINUTES=mm)
CALENDR The job is a calendar job.
LTSN: Only for repeat job repetitions whose predecessor was also in the job pool: TSN of the predecessor
(“last” TSN).

® If the job pool file in question was created with MOVE-JOBS, only the version (of the maximum of two versions)
with the highest count was accepted for repeat jobs (the NEXT image in the type 1 DO). It contains the entire
repeat information. In this case, there are generally no jobs with the TSN <LTSN>.
In the case of IMPORT or a warm start, the NEXT image is changed back into its predecessor, which is then
given the TSN <LTSN> (if it is still available).

® Information cannot be obtained on repeat jobs that are made available by / SHOM JOB- STATUS. In particular,
the link from the predecessor to the successor repeat job, which is reflected in the START and NTSN output

parameters, cannot be obtained in the job pool file. The link is only possible from the successor repeat job to the

predecessor repeat job via its TSN (LTSN output parameter).

134

Example 3

RTI ME: <dat e>. <ti nme>

ORI GFI LE: : G $TSCS. 0S232. E

CVD- FI LE: : G $TSCS. S. E. 0AV2. <dat e>. <t i ne>
1 JOB(S) DI SPLAYED

E%/showjobpool-status *t (Oavx), *full
! TSN: 0AVX ;
JOBNANE: TYPE: 2 USER- ENTER 1. ;
USERI D. TSOS ACCNB: ADM NSTR JCLASS: JCIS2XSB i
PRI : 8 230 CPU- MAX: 200 START: SOON i
RERUN: NO FLUSH: NO SPOCOLI N: <dat e>. <t i me> |
CREATOR: TSCS PROTECT: * NONE L OGON: <dat e>. <ti me> 2. i
ORI GFI LE: : G $TSCS. 0S232. E i
CMD- FI LE: * SAVE i
i 1 JOB(S) DI SPLAYED
i /] showj obpool -status *t(Oawb), *full
| TSN: 0AVB ;
JOBNAME: TYPE: 1 WI USER- ENTER i
USERI D: TSCS ACCNB: ADM NSTR JCLASS: JCJS2XSB ;
PRI : 8 230 CPU- MAX: 200 START: A<dat e>. <t i nme> i
RERUN: NO FLUSH: NO SPOOLIN: <dat e>. <ti ne> i
CREATOR: TSOS PROTECT: *NONE L OGON: i
REPEAT: CALENDAR COUNT: 0 LIMT: *STD 3. i
SYMDAT: SYM 16. 00
CAL- NAME: : G $TSCS. ULTI MATI VER. CALENDAR i
ORI GFI LE: : G $TSCS. S. 199. 0AV7. E i
CVMD- FI LE: : G $TSCS. S. E. 0AV7. <dat e>. <t i ne>
MONJ V: 1 G $TSCS. IV ;
i 1 JOB(S) DI SPLAYED ;
E//shO\N-jobpooI-status *t (0ave6), *full
! TSN: 0AV6 ;
JOBNANE: TYPE: 1 DO USER- ENTER ;
USERI D. TSOS ACCNB: ADM NSTR JCLASS: JCIS2XSB i
PRI : 8 230 CPU- MAX: 200 START: A<date>. <ti ne> i
RERUN: NO FLUSH: NO SPOOLIN: <dat e>. <ti ne> |
CREATOR: TSCS PROTECT: *NONE L OGON: i
REPEAT: DAILY COUNT: 1 LTSN: 0AV5 4. i

135

Explanations

Most of the attributes output are based on the output of / SHOW JOB- STATUS but differ in their arrangement. The
essential differences are as follows:
1. After the TYPE output as shown in example 2, the origin of the job is specified:
USER- ENTER: Created with ENTER-JOB or ENTER-PROCEDURE by a user task.

You can recognize ENTER-PROCEDURE from the name of the CMD-FILE: S.E.<tsn>.
<yyyy-mm-dd>.<hh.mm.ss>.

PRI VI LEGED- Created by the system with a privileged ENTER (e.g. the job scheduler tasks).

ENTER:
CONSCLE- Created by a user task with OPERATING privilege using the DEFAULT-FROM-FILE =
ENTER: *YES operand or from a console.

2. CREATOR The ID under which the creating task ran.The job can also be managed from this ID.
PROTECT: * CANCEL : The job was started with the ENTER operand PROTECTION=*CANCEL.

*NONE : The job was started with the ENTER operand PROTECTION=*NONE.

3. REPEAT: Calendar jobs are displayed here in addition to the original repeat attributes.
LIMT: Only output with calendar jobs. Has the same meaning as SHOW-JOB-STATUS.

4. LTSN Refers in repeat jobs to the predecessor (see example 2)

136

5.3 Notes on reconstructed attributes

The following example contains notes on reconstructing individual job attributes and on problem cases. JMP writes
the following commands to the procedure file:

-/ " REJECTED: TSN: OEY4 TYPE: 1 DO REASON: NEXT RPT. | MAGE " 1.
{f SET-JOB-STEP " == - - - e e e e e " 2.
i/ "1 MPORTED: TSN: OEY3 TYPE: 1 DO ORI G N USER- ENTER "3,
/" CALLER TSN: OEY2 USERID: TSCS HOST: "
/" REPETITION. REPCNT: O START: <date>. <tinme>"

!/ ENTER- JOB - 4.

/' FROM FI LE = :2BV: $TSCS. OS27. E - 5.
i/ ,PROC-ADM = *PAR(- 6.
USER-I D = TSCS -

, ACCOUNT = ADM NSTR -

, PASS = 1299?07?77 - 7.
, FI LE- PASS = * NONE - 7.
, DELETE = *NO -

, JOB- CLASS = JCBTSOS -
,JOB-NAME = OS27KF -

, MONJV = *NONE -
,JV-PASS = *NONE -
,JOB-PRIO =5 -
, RERUN- AFTER- CRASH = *NO -

, FLUSH- AFTER- SHUTDOWN = *NO -
, SCHEDULI NG TI ME = * PAR(-

START = *AT (DATE = *TODAY , TIME = 11:00) - 8.
,REP-JOB = *DAILY) -

JLIMT = *STD -

, RESOURCES = * PAR(-
RUNPRIO = 210 -
,CPU-LIMT = 20000 -
,SYSLST-LIM = *NO -
,SYSOPT-LIM = *NO) -

, LOGGE NG = *PAR(-
LISTING = *NO) -

/
/
/
/
/
/
/
/
/
/
/

v

L

i/
/
/
/
/
/
/
/
/
/
/
|, PROTECTI ON= * NONE
/

|/ " REJECTED: TSN OEYR TYPE: 2 REASON: PRI VI LEGED ENTER'
|/ " REJECTED: TSN OEYS TYPE: 2 REASON: PRI VI LEGED ENTER'
/" REJECTED: TSN OEYT TYPE: 2 REASON: PRI VI LEGED ENTER'
/" REJECTED: TSN OEYU TYPE: 2 REASON: PRI VI LEGED ENTER'
{/ SET-JOB- STEP " == == s - m = s mmmmm s m o e e "

/" | MPORTED: TSN OEYZ TYPE: 2 ORI G N USER- ENTER "
/" CALLER TSN OEYX USERI D TSOS HOST: "
|/ ENTER- JOB -

i/ FROM FILE = :2BV: $TSOS. SYSENT. TCP- | P- AP. 031. FTPD -
i/ ,PROC-ADM = *PAR(.

USER-I D = TSCS -

, ACCOUNT = ADM NSTR -

, PASS = ' 2?2?°7277") -

, FI LE- PASS = * NONE -
, DELETE = *NO -
= JCBTSCS -

,JOB-NAME = FTPSR -
, MONJV = *NONE -
,JV-PASS = *NONE -
,JOB-PRIO =5 -

/

/

/

/

/
H
i/ ,JOB- CLASS
H

/

/

/

| , RERUN- AFTER- CRASH = *NO -

137

/
/
/
/
/

:/

H

=/
/
/
/
/
/

A

H

/
/
/
/
/
/
/
/
/
/
/

H

g/
/
/
/
/
/
/
/
/
/
/
/

by

|/ SET- JOB- STEP *

-
i/u

, FLUSH- AFTER- SHUTDOWN = *NO
, SCHEDULI NG TI ME = * PAR(

START = *| MMEDI ATELY
,REP-JOB = *NO)

,LIMT = *STD

, RESOURCES = * PAR(
RUNPRIO = 120
,CPULIMT = *NO
,SYSLST-LIM = *NO
,SYSOPT-LIM = *NO)

, LOGGE NG = *PAR(
LISTING = *NO)
, PROTECTI ON= * NONE

|/ SET- JOB- STEP

ORI A N: USER- ENTER

| MPORTED: TSN: OEYW TYPE: 1 DO
§/" CALLER: TSN: 0AAU USERI D TSOS HOST:
/" REPETITION: REPCNT: 51 START: 0000-00- 00. 0000"
!/ ENTER- JOB
FROM FI LE = : 2BV: $SYSPRI V. SYSENT. HOLD- SAT
, PROC-ADM = * PAR(
USER- I D = SYSPRI V
, ACCOUNT = SYSACC
, PASS = 1 2727272727")
, FI LE- PASS = * NONE
, DELETE = *NO
, JOB- CLASS = JCBSTD
, JOB- NAME = HOLDSAT
, MONJV = *NONE
,JV-PASS = *NONE
,JOB-PRIO =9
, RERUN- AFTER- CRASH = *NO

, FLUSH- AFTER- SHUTDOWN = *NO
, SCHEDULI NG TI ME = * PAR(

START = *AT- STREAM STARTUP

, REP- JOB = *AT- STREAM STARTUP)
,LIMT = *STD
, RESOURCES = * PAR(

RUN-PRIO = 220

,CPU-LIMT = 32000

, SYSLST-LIM = *NO

, SYSOPT-LIM = *NO)
, LOGG NG = * PAR(
LISTING = *NO)
, PROTECTI ON= * NONE

| MPORTED:
CALLER:

i/ ENTER- JOB

H

FROM FI LE
, PROC- ADM
USER- | D

, ACCOUNT =

, PASS
, FI LE- PASS
, DELETE
, JOB- CLASS
, JOB- NAME
, MONJV
, JV- PASS

ORI A N: USER- ENTER

TSN: OEYY TYPE: 2
TSN: OEYX USERID: TSCS HOST:

: 2BV: $TSOS. SYSENT. TCP- | P- AP. 031. TELNETD
* PAR(
TSOS

ADM NSTR
129922277

* NONE
*NO
JCBTSOS

= TELSR
= *NONE

*NONE

138

,JOB-PRI O

5

, RERUN- AFTER- CRASH =
, FLUSH- AFTER- SHUTDOWN =

, SCHEDULI NG TI ME = * PAR(

START

, REP- JCB

,LIMT =

RUN- PRI O

,CPU-LIMT
, SYSLST-LIM
, SYSOPT-LIM =

*NO
*NO

*1 MMEDI ATELY

*NO)
*STD

* PAR(

= 120
* NO
*NO
*’\D)

, LOGG NG = *PAR(
LISTING = *NO)

/
/
/
/
/
/
;/
'/, RESOURCES
=/
/
/
/
/
/
/

, PROTECTI ON= * NONE

E/"REJECTED:

L

/
/
/
/
/
/
/
/
/
/
/

v

H

H
/
/
/
/
/
/
/
/
/
/
/

v

/
il
i
i

/

TSN: OEY6 TYPE 1 DO REASON: NEXT RPT. | MAGE "
S = P Lo = S "
/"1 MPORTED: TSN: OEYs TYPE 1 DO ORIG N USER- ENTER
/" CALLER TSN: OEY2 USERID: TSOS HOST:
{/" REPETITION REPCNT: O START: <date>.<time>"
i/ ENTER- JOB
FROM FI LE = : 2BV: $TSOS. 0S27. E
, PROC-ADM = *PAR(
USER-1D = TSCS
, ACCOUNT = ADM NSTR
,PASS = ' 22272727")
, FI LE- PASS = *NONE
,DELETE = *NO
, JOB- CLASS = JCBTSCS
,JOB-NAVE = OS27KF
, MONOV = *NONE
,JV-PASS = *NONE
,JOB-PRIO =5
, RERUN- AFTER-CRASH = *NO
, FLUSH- AFTER- SHUTDOWN = *NO
, SCHEDULI NG- TI ME = * PAR(
START = *AT (DATE = *TODAY , TIME = 11:00)
, REP-JOB = *WEEKLY)
JLIMT = *STD
, RESOURCES = * PAR(
RUN-PRIO = 210
,CPU-LIMT = 20000
, SYSLST-LIM = *NO
, SYSOPT-LIM = *NO)
, LOGG NG = *PAR(
LISTING = *NO)
./, PROTECTI ON= * NONE
-/ " REJECTED: TSN: OEY8 TYPE 1 DO REASON: NEXT RPT. | MAGE "
I SET-JOB- STEP " - - - com s s s "
/"1 MPORTED: TSN: OEY7 TYPE 1 DO ORI G N USER- ENTER
/" CALLER TSN: OEY2 USERID: TSOS HOST:
/" REPETITION REPCNT: 0 START: <date>. <time>"
|/ ENTER- JOB
FROM FI LE = : 2BV: $TSOS. 0S27. E
, PROC-ADM = *PAR(
USER-1D = TSCS
, ACCOUNT = ADM NSTR
,PASS = ' 22272727")
, FI LE- PASS = *NONE

139

/
/
/
/
/
/
/
/
il
i
)
/
/
/
/
/
/
/
/

iy

, DELETE = *NO
, JOB- CLASS = JCBTSOS
,JOB-NAME = OS27KF

, MONJV = *NONE

,JV-PASS = *NONE
,JOB-PRIO =5

, RERUN- AFTER- CRASH = *NO

, FLUSH- AFTER- SHUTDOWN = *NO
, SCHEDULI NG TI ME = * PAR(

START = *SOON

,REP-JOB = *PERI OD (HOURS = 01, M NUTES = 02))
,LIMT = *STD
, RESOURCES = * PAR(

RUNPRIO = 210

,CPU-LIMT = 20000

, SYSLST-LIM = *NO

, SYSOPT-LIM = *NO)
, LOGG NG = *PAR(
LISTING = *NO)
, PROTECTI ON= * NONE

L/ SET-J0B- STEP " -« m s e e e e e

/"1 MPORTED: TSN. OEY9 TYPE: 1 W ORIG N USER- ENTER
|/" CALLER TSN: OEY2 USERID: TSCS HOST:
|/ ENTER- JOB

/

/
/
/
/
/
/
/
/
/
/
/

H

H

=/
/
/
/
/
/
/
/
/
/
/
/

FROM FI LE = : 2BV: $TSOS. 0S27. E
, PROC- ADM = *PAR(

USER-1D = TSCS

, ACCOUNT = ADM NSTR

, PASS = 1222?0777
, FI LE- PASS = * NONE
, DELETE = *NO

, JOB- CLASS = JCBTSOS
,JOB-NAME = OS27KF

, MONJV = *NONE

,JV-PASS = *NONE
,JOB-PRIO =5

, RERUN- AFTER- CRASH = *NO

, FLUSH- AFTER- SHUTDOWN = *NO
, SCHEDULI NG TI ME = * PAR(

START = *EARLI EST (DATE = <date>, TIME = <tine>)
,REP-JOB = *NO)
,LIMT = *STD
, RESOURCES = *PAR(
RUNPRIO = 210
,CPU-LIMT = 20000
,SYSLST-LIM = *NO

, SYSOPT-LIM = *NO)
, LOGGE NG = *PAR(
LISTING = *NO)
, PROTECTI ON= * NONE

== P T = = 1 = "

T
o
o

| MPORTED: TSN: OEZA TYPE: 2 ORI G N: USER- ENTER
CALLER: TSN: OEY2 USERID: TSCS HOST:
REPETI TI ON: REPCNT: 0 START: <date>. <tinme>"

i/ ENTER- JOB

iy

H
¥
¥

FROM FI LE = : 2BV: $TSCS. 0S27. E
, PROC- ADM = * PAR(
USER-I D = TSCS
, ACCOUNT = ADM NSTR

140

, PASS
, FI LE- PASS
, DELETE
, JOB- CLASS
, JOB- NAME
, MONJV
, JV- PASS
,JOB-PRI O

1299727277

* NONE
*NO
JCBTSOS

= OS27KF
= *NONE

* NONE
5

, RERUN- AFTER- CRASH
, FLUSH- AFTER- SHUTDOWN

CALENDAR- NAME =
, SYMBCLI C- DATE =

,LIMT =

*STD

, RESOURCES = * PAR(
RUN- PRI O

,CPU-LIMT
, SYSLST-LIM
, SYSOPT-LIM =

= 210
20000
*NO
* NO)

, LOGGE NG = *PAR(
LISTING = *NO)

, PROTECTI ON= * NONE

|/ SET- JOB- STEP

/"1 MPORTED:
/" CALLER

‘1" REPETI TI ON:
|/ ENTER- JOB

'/ FROM FILE
i/, PROC- ADM
USER- | D

, ACCOUNT =

, PASS
, FI LE- PASS
, DELETE
, JOB- CLASS
, JOB- NAME
, MONJV
, JV- PASS
,JOB-PRI O

TSN: OEZB TYPE:
TSN: OEY2 USERID: TSCS
START:

REPCNT: 0

: 2BV: $TSCS. 0S27. E

* PAR(
TSOS

ADM NSTR
122222277

*NONE
*NO
JCBTSOS

= OS27KF
= *NONE

= *NONE

5

, RERUN- AFTER- CRASH

, SCHEDULI NG TI ME = * BY- CALENDAR(

CALENDAR- NAME =
, SYMBOLI C- DATE =

,LIMT =

*STD

, RESOURCES = * PAR(
RUN- PRI O

,CPU-LIMT
, SYSLST-LIM
, SYSOPT-LIM =

= 210
20000
*NO
*’\D)

, LOGGE NG = *PAR(
LISTING = *NO)

/
/
/
/
/
/
/
/
/
/
/
]
!, FLUSH AFTER- SHUTDOMN
i
/
/
/
/
/
/
/
/
/
/
/

, PROTECTI ON= * NONE

|/ SET- JOB- STEP

/" | MPORTED:
/" CALLER
|/ ENTER- JOB
'/ FROMFILE

./, PROC- ADM

TSN: OEZC TYPE:
TSN: OEY2 USERI D: TSOS

. 2BV: $TSCS. 0S27. E

* PAR(

*NO
*NO

: 2BV: $TSCS. 0S27. CALENDAR

HEMUL

/
/
/
/
/
/
/
/
/
il
/", SCHEDULI NG TI ME = *BY- CALENDAR(
il
/
/
/
/
/
/
/
/
/
/

*NO
*NO

: 2BV: $TSCS. 0S27. CALENDAR

ELCH

)

ORI G N USER- ENTER
HOST:
<dat e>. <ti me>"

)

ORI A N: USER- ENTER
HOST:

141

USER-I D = TSCS -

, ACCOUNT = ADM NSTR -

, PASS = 1 2???°7277") -

, FI LE- PASS = * NONE -
, DELETE = *NO -

, JOB- CLASS = JCB02000 -
,JOB-NAME = OS27KF -

, MONJV = :2BV: $TSCS. 0s27.JV. 1 -
,JV-PASS = *NONE -
,JOB-PRIO =9 -
, RERUN- AFTER- CRASH = *YES -

, FLUSH AFTER- SHUTDOWN = * YES -
, SCHEDULI NG TI ME = * PAR(-

START = *SOON -
,REP-JOB = *NO) -
,LIMT = *STD -
, RESOURCES = * PAR(-
RUN-PRIO = 210 -
,CPU-LIMT = 2000 -
, SYSLST-LIM = *NO -

, SYSOPT-LIM = *NO) -
, LOGE NG = * PAR(-
LISTING = *NO) -
'/ ,JOB-PAR = -
|/ C VRTLPRVFT' -
i/ , PROTECTI ON= * NONE
) SET-JOB- STEP " == mm s oo s e s oo e e ee e aaoa "

/
/
/
/
/
/
/
/
/
/
/
Hl
H
/
/
/
/
/
/
/
/
/
/
/

/"INPORTED: TSN OEZD TYPE 2 ORIGIN: USER- ENTER
/" CALLER TSN: OEY2 USERID: TSOS HOST:
|/ ENTER- JOB -

/ FROM+FI LE = :2BV: $HEMUL. S. | N. OEZD. 040323. 0913. C - 10.
i/ , PROC- ADM = *PAR(-

/ USER- | D HEMUL -

/ , ACCOUNT = HEMUL -

/ , PASS = ' 272??2277?7") -

! , FI LE- PASS * NONE -

/ , DELETE *YES -

/ , JOB-CLASS = JCB02000 -

/ ,JOB-NAME = HOPPLA -

[/, MONJV = :2BV: $TSCS. 0S27. JV. 2 -

[/, JV- PASS * NONE -

/ ,JOB-PRI O 9 -
: / , RERUN- AFTER- CRASH = *YES -
/ , FLUSH AFTER- SHUTDOWN = *YES -
|

/

/

/

/

/

/

/

/

/

/

/

, SCHEDULI NG TI ME = * PAR(-

START = *SOON -

, REP-JOB = *NO) -

JLIMT = *STD -

, RESOURCES = *PAR(-

RUN-PRIO = 230 -

,CPU-LIMT 2000 -

,SYSLST-LIM = *NO -

,SYSOPT-LIM = *NO) -

, LOGG NG = *PAR(-

LISTING = *NO) -

./ ,JOB-PAR = -

-/ C OCHGOTTCHEN -

-/, PROTECTI ON= * CANCEL

L/ SET-JOB- STEP " -« - mmmmmom e "

142

/" | MPORTED: TSN: OEZE TYPE: 2 ORI A N: USER- ENTER

i/" CALLER TSN: OEY2 USERID: TSCS HOST:
{1 WARNI NG COPY OF SYSCMD- FI LE NOT PGSSI BLE; COPY-RC: 0501" 11.
i / ENTER- JOB -

i/ FROM FILE = :2BV: $HEMUL. S. | N. OEZE. 040323. 0929 -
i/ , PROC-ADM = *PAR(-
/ USER- | D = HEMUL -
/ , ACCOUNT = HEMUL -
/ , PASS = ' 22222?27") -
|, FI LE- PASS = * NONE -
| , DELETE *YES -
/ ,JOB- CLASS = JCB00050 -
! ,JOB-NAME = OS27KF -
!, MONJV = *NONE -
/ ,JV-PASS = *NONE -
/ ,JOB-PRIO =9 -
i/, RERUN- AFTER- CRASH = *YES -
i/ , FLUSH AFTER- SHUTDOWN = *NO -
H
/
/
/
/
/
/
/
/
/
/
/

, SCHEDULI NG TI ME = * PAR(-
START = *EARLIEST (DATE = *TODAY , TIME = 08:00) -
,REP-JOB = *NO) -
JLIMT = *STD -
, RESOURCES = *PAR(-
RUN-PRIO = 233 -
,CPU-LIMT 100 -
, SYSLST-LIM = 2222 -
, SYSOPT-LIM = 3333) -
, LOGGE NG = *PAR(-
LI STING = *YES) -

, PROTECTI ON= * NONE

..

Explanations

1. Not all jobs contained in the job pool are reconstructed. The example already contains the 'next image' for a
repeat job. If this job were reconstructed to an ENTER command and started, it would result in two repeat job
versions. Attention is drawn to such unreconstructed jobs in the form of a command comment with information
about the job and a list of the reasons. Example:

* Next Repeat Image
® Privileged ENTER

2. Start of a reconstructed batch job.

143

. Notes on the reconstructed batch job and attributes that cannot be specified with ENTER command operands.
The information is generally analogous to that of the STATUS command (see the “Commands” manual [1
(Related publications)]).

In this example:
* |IMPORTED: Indication that the job which was accepted with the TSN OEY3 has been reconstructed.
® CALLER: Indicates the initiator of the batch job (TSN, user ID, host name).

®* REPETITION: Repeat counter and designated start time (only for repeat jobs and calendar jobs).

i Scheduled/repeat jobs are reconstructed without regard to the start time. If, for example, the start
time is prior to the reconstruction run and the reconstructed ENTER command is activated without
modification, the command is considered incorrect and will be rejected when accepted again.

. The jobs are always reconstructed in the form of the SDF command

/ ENTER- JOB (regardless of whether the job was started with the ISP command / ENTER or via / ENTER-
PROCEDURE) .

. The command file does not have to be the original file specified by the initiator of the ENTER command. See
also note (10).

. The access control attributes specified with the PROCESSING-ADMISSION operand (user ID, accounting
number, password) are only obligatory if the job submitter ID and runtime user ID are different. If both are the
same, specification is optional. The operand always appears in the reconstructed command, regardless of
whether or not it was specified.

Note that a reconstructed ENTER-JOB command will be returned by the same user ID as the original one
whenever possible. Only in this case will ID-specific default settings continue to be valid. Furthermore, if the job
is to run under a different user ID, it can be administered by the same ID as the original one (commands

/ CANCEL- JOB, / CHANGE- TASK- PRI ORI TY, / SHOW JOB- STATUS).

. Neither the LOGIN password nor any passwords for the ENTER file or monitoring job variables are transferred
to the reconstructed ENTER command. This is not possible for technical reasons, since passwords are not
generally stored in the JMS data structures. When restarting the ENTER command, you must insert the
passwords in non-encrypted format.

. The original values (including *TODAY, for example) are entered without checking. This becomes important
when the original contains fixed dates or attributes such as *WITHIN and *LATEST. The reconstructed values
may be wrong as far as the intended repeat time is concerned.

With repeat jobs, the start attribute may have changed from the original user specification (see also the
descriptions for / ENTER- JOB and / ENTER- PROCEDURE in the “Commands” manual [1 (Related publications)]).
In this case, the program attempts to generate a logical start attribute from the repeat attribute and the start
time of the next repeat (the start attribute determines only the start of the first run of a repeat job).

. As described under (8), JMP does not update start times.

144

10. S.IN/S.E files: IMS creates auxiliary files with this prefix under the followingcircumstances (see also the

11.

description for / ENTER- JOB and / ENTER- PROCEDURE in the “Commands" manual [1 (Related publications)]):

When / ENTER- PROCEDURE is called, an S.E file is created. When / ENTER- JOB is called, the original
command file is copied to an S.IN intermediate file if the system assumes that the original file will no longer be
accessible when the batch job is completed (e.g. if a temporary file was specified as the original command file).
This intermediate file created by JMS is protected with a random password. When the reconstructed ENTER
command is called again, the intermediate file originally created by JMS can therefore not be accessed. JMP
therefore copies the intermediate file into a new intermediate file with no password and the name <or i gi nal
s.in/s.e filenanme>. C

If no copy of the S.IN or S.E file can be created (see note (10)), a command line with the DMS return code
(COPY) is displayed.

145

5.4 JMP messages

The messages of the JMP utility routine have the message class JMP.

See also the section “Messages and their meaning” (Notational conventions).

146

6 JMU Creating and maintaining the SIMSFILE system file

Version: JMU V20.0A

Privileges: TAPE-PROCESSING (for nonprivileged functions)
TSOS (changes in ongoing operation and for $TSOS.SIMSFILE)

The JMU (Job Management Utility) program allows you to create and manage the SIMSFILE system file. The
SJIMSFILE contains the stream and job class definitions, which are stored in an internal table format. The program
can run in batch or interactive mode.

At system initialization (BS2000 startup), the SIMSFILE is read and the job class and stream definitions are copied
to the system.

In addition, JMU can be used to modify specific JIMS data while the system is running:

® You can modify access rights with immediate effect.
® You can assign suitable job classes to new users.

® You can modify, delete and create job classes and job streams.

147

6.1 Job management

The function of job management is to manage jobs until they are started. The job scheduling system, based on job
classes, allows an administrative strategy to be defined for the data center in order to classify users and the system
load.

Jobs that share certain characteristics are assigned to the same job class. This applies to jobs in both batch and
interactive mode. The relevant characteristics are specified by system administration on defining the classes and
determine which user IDs are to be served by a given class.

It is also possible to define default classes, intended for users who have not explicitly specified a class.

By setting a limit for each class and defining class priorities, the data center can improve control over access to the
system and can achieve an optimum mix of jobs, e.g. shortrunning vs long-running jobs, at any time of day.

By means of job classes it is possible to classify jobs, for example on the basis of CPU time required, so as to favor
short-running jobs over long-running ones. It is also possible for system administration to assign privileges to certain
users, such as the right to start scheduled or repeat jobs.

A job management utility (JMU) is available for creating and maintaining the file for stream and job class definitions.
For a description of job streams, see the “Introduction to System Administration” [5 (Related publications)].

148

Figure 1: Creating and updating the SIMSFILE

149

6.2 Execution of JIMU

JMU creates the ISAM file SIMSFILE. The file name is ascertained from the task file table (link name SIMSFILE)
and can be defined with. If the file already exists, JMU updates it:

/ ADD- FI LE- LI NK LI NK- NAME=SJMSFI LE, FI LE- NAME=<f i | enane>

The file need not necessarily exist before / ADD- FI LE- LI NK is executed, or it can exist and be empty. In both
cases, it is created by JMU.

/ ADD- FI LE- LI NK is not mandatory. If the link name SIMSFILE has not been assigned, JMU processes the file
with the file name SIMSFILE as before and automatically assigns the link name SIMSFILE to it.

The user must not assign the link name SIMSFILE to a file which is not to be processed by JMU.

The program is started using / START- JMJ.

START-JMU Alias: IMU

VERSION = *STD / <product-version>
,MONJV = *NONE / <filename 1..54 without-gen-vers>

,CPU-LIMIT =*JOB-REST / <integer 1..32767 seconds>

JMU is controlled by means of control statements read from SYSDTA.

JMU uses the dialog interface SDF (see the “Commands” manual [1 (Related publications)] and the “SDF Dialog
Interface” manual [20 (Related publications)]). Syntax errors in interactive mode cause a correction dialog to be
initiated with the user. A correction dialog is not possible in batch or procedure mode, but SDF does not allow the
statement to be simply ignored. All the statements following an incorrect statement are skipped until the system
encounters a STEP or END statement. Processing then continues with the statement (or command) following the
STEP or END statement. Message CMD0230 is output to inform the user that statements have been omitted.

The SIMSFILE file is updated in the same session in which the control statements were given. However, the
updates do not have any effect until the next session.

The desired changes should be entered in a copy of the SIMSFILE, and the updated file used in a session only
when the changes have been verified as correct

It is advisable to maintain a copy of the SIMSFILE, or a procedure for reconstructing it.

i There is a risk that it will not be possible to process the SIMSFILE file using the job management
systems of operating system versions later than the one used to create the file. It is therefore
recommended that a copy of the JMU control statements be preserved for reconstructing the file in a new
version of the operating system.

150

Use of link names by JMU

JMU evaluates the link names SIMSFILE and SIMUPROC. If the SIMSFILE link name is already defined in the
task file table, the corresponding file is processed by JMU. Otherwise, SIMSFILE is used as the file name.

When the CREATE-PROCEDURE-FILE statement is processed, the link name
SIMUPROC is evaluated and assigned to a file where necessary. This link name should therefore only be used in
the cases described under the CREATE-PROCEDURE-FILE statement.

Compatibility

Inconsistencies may occur when a SIMSFILE is processed by an earlier version of IMU than that under which the
SJSMFILE was created.

151

6.3 Statements

A statement can span several lines. The hyphen is used as the continuation character. It announces an additional
line. Only spaces are allowed between the hyphen and the end of the lines.

152

6.3.1 Overview of JMU statements

Statement

CREATE- PROCEDURE- FI LE

DEFI NE- JOB- CLASS

DEFI NE- JOB- STREAM

DELETE- JOB- CLASS

DELETE- JOB- STREAM

END

GRANT- JOB- CLASS- ACCESS

MODI FY- JOB- CLASS

MODI FY- JOB- STREAM

REMOVE- USER

SET- JOB- CLASS- DEFAULT

SET- MODI FI CATI ON- MCDE

SET- PCSI X- JOB- CLASS- DEFAULT

SHOW JOB- CLASS

SHOW JOB- STREAM

Function

Create a SAM file containing a BS2000 procedure.
Write a new job class definition.

Write a new stream definition into the SIMSFILE.
Delete an existing job class definition.

Delete an existing stream definition.

Terminate the routine.

Grant or prohibit access to a job class for one or more users.

Modify an existing job class definition.
Modify an existing stream definition.
Prohibit access to private job classes.
Define default classes for users.
Change the modification mode.

Define POSIX default classes for users.
List the contents of job class definitions.

List the contents of stream definitions.

153

6.3.2 Description of the statements

® CREATE-PROCEDURE-FILE - Create SAM file containing BS2000 procedure
® DEFINE-JOB-CLASS - Write job class definitions to SIMSFILE

¢ DEFINE-JOB-STREAM - Write stream definitions to SIMSFILE

® DELETE-JOB-CLASS - Delete class definitions

® DELETE-JOB-STREAM - Delete stream definitions

® END - Terminate statement input

® GRANT-JOB-CLASS-ACCESS - Control access by user IDs to job class

®* MODIFY-JOB-CLASS - Modify job class definitions

® MODIFY-JOB-STREAM - Modify stream definitions

® REMOVE-USER - Prohibit access to private job classes

® SET-JOB-CLASS-DEFAULT - Specify default classes for users

¢ SET-MODIFICATION-MODE - Set modification mode

® SET-POSIX-JOB-CLASS-DEFAULT - Specify POSIX default classes for users
¢ SHOW-JOB-CLASS - List contents of class definitions or names of classes

®* SHOW-JOB-STREAM - List contents of stream definitions or names of streams

154

6.3.2.1 CREATE-PROCEDURE-FILE - Create SAM file containing BS2000 procedure

This statement can be used to create a SAM file containing a BS2000 procedure. The procedure contains a START
command for the JIMU program.

When JMU is called during execution of the procedure, a new SIMSFILE system file is written. This replaces and
corresponds to the SIMSFILE being processed before the procedure started.

This statement can be used to save the status of an open SIMSFILE during processing by means of BS2000
procedures.

The CREATE-PROCEDURE-FILE statement can be used to update the format of an SIMSFILE. If an existing
SJIMSFILE is processed with a different version of JMU, its format does not change. An SIMSFILE is only formatted
according to the JMU version used when it is created as a new file.

However, as a result of the functional enhancements to JMU, conversion of the SIMSFILE format is only supported
if the same JMU version is used to execute both the CREATE-PROCEDURE-FILE statement and the BS2000
procedure.

For this reason the JMU version used to create the procedure is recorded for documentation purposes in a
REMARK command. If a different kind of conversion is to be made, the JMU statements in the procedure created
may have to be altered in line with the operating instructions for the JMU version to be called.

Format

CREATE-PROCEDURE-FILE
FILE-NAME = *STD-FILE-LINK / <filename 1..54 without-gen-vers>

,OVERWRITE = *NO / *YES

Operands

FILE-NAME =
Name of the procedure file to be written. The file must be open for write access.

FILE-NAME = *STD-FILE-LINK
The file name should be read from the Task File Table (TFT). The link name, which must not be changed by the
user, is SIMUPROC. The user can thus define the file name before calling JMU using

/ ADD- FI LE- LI NK LI NK- NAME=SIMUPRCC, FI LE- NAME=<f i | enane>
If SIMUPROC is not defined as the link name, JMU uses the name SIMUPROC as the file name.

FILE-NAME = <filename 1..54 without-gen-vers>
A fully qualified file name. Specification of a file generation or file generation group, or of a file name in “file(no)”
format (no=version number) is not allowed.

OVERWRITE =
Overwriting an existing file with the name specified in the FILE-NAME operand can be initiated or prevented.

OVERWRITE = *NO
Overwriting an existing file is prevented. The original file remains unchanged. The user receives the message
JMJ0114.

No procedure file is created.

155

OVERWRITE = *YES
If a file with the same name already exists, it will be overwritten and a procedure file created.

Structure of the created BS2000 procedure

The file name of the SIMSFILE to be created and the JMU load module to be called can be specified as procedure
parameters.

Meaning of the parameters:

&SJIMSFILE stands for the file name of the SIMSFILE to be created. The file named &SJMSFILE is deleted
within the procedure so that JMU can create a new one.
The default value is SIMSFILE.

&JIMU stands for the JIMU load module called in the procedure.
The default value is $.JMU

BS2000 commands within the procedure

Immediately after the procedure header there are a number of /REMARK commands which contain information
about the SIMSFILE to be created: the SIMSFILE file name defined by the CREATE-PROCEDURE-FILE
statement, the date and time this statement was executed, the JIMU version used and various characteristics of the
SIMSFILE.

Then follow the commands and JMU statements required to run the procedure.

JMU statements within the procedure

The JMU statements DEFINE-JOB-STREAM, DEFINE-JOB-CLASS, GRANT-JOB-CLASS-ACCESS, SET-JOB-
CLASS-DEFAULT, SET-POSIX-JOB-CLASS-DEFAULT and END are used to create the SIMSFILE.

The statements must be specified in a particular sequence within the procedure: First of all, the stream definitions
should be specified in alphabetical order. A DEFINE-JOB-STREAM statement is required for each of these. Next,
all job classes are defined, also in alphabetical order. Here, the statements GRANT-JOB-CLASS-ACCESS, SET-
JOB-CLASS-DEFAULT and SET-JOB-CLASS-DEFAULT may be required in addition to the DEFINE-JOB-CLASS
statement to define the user’s access rights for these classes. The JMU run is terminated by the END statement.

156

6.3.2.2 DEFINE-JOB-CLASS - Write job class definitions to SIMSFILE

This statement is used to write a new job class definition to the SIMSFILE or JMS database and define its
characteristics.

Format
DEFINE-JOB-CLASS

NAME = <name 1..8>
,STREAM = *DEFAULT-STREAM / <name 1..8>

,CLASS-LIMIT = <integer 0..4095>
,CLASS-WEIGHT = <integer 1..9>
,CLASS-OPTIMUM = 0/ <integer 0..4095>
,JOB-PRIORITY =*NO / *PARAMETERS(...)

*PARAMETERS(...)
| DEFAULT = <integer 1..9>
| ,MAXIMUM = *NO / <integer 1..9>
,JOB-TYPE = *BATCH / *DIALOG
,TP-ALLOWED = *NO / *YES(...)
*YES(...)
| CATEGORY =TP /<name 1..7>
,DIALOG-ALLOWED = *NO / *YES(...)
*YES(...)
| CATEGORY = DIALOG / <name 1..7>
,BATCH-ALLOWED = *NO / *YES(...)
*YES(...)
| CATEGORY = BATCH / <name 1..7>
,START-ATTRIBUTE = *BATCH / *DIALOG / *TP
,RUN-PRIORITY = *PARAMETERS(...)
*PARAMETERS(...)
| DEFAULT = <integer 30..255>
| ,MAXIMUM = *NO / <integer 30..255>

157

,NO-CPU-LIMIT = *NO / *YES
,CPU-LIMIT = *PARAMETERS(...)
*PARAMETERS(...)
| DEFAULT = *NO-LIMIT / <integer 1..32767>
| ,MAXIMUM = *NO / <integer 1..32767>
,SYSLST-LIMIT = *PARAMETERS(...)
*PARAMETERS(...)
| DEFAULT = *NO-LIMIT / <integer 0..999999>
| ,MAXIMUM = *NO / *NO-LIMIT / <integer 0..999999>
,START = *NO / *PARAMETERS(...)
*PARAMETERS(...)
| DEFAULT = *SOON / *WITHIN(...)
| *WITHIN(...)
| | HOURS =0/ <integer 0..23>
| | ,MINUTES =00 / <integer 0..59>
| ,ALLOWED = list-poss(7): *AT-STREAM-STARTUP / *AT / *EARLIEST / *SOON /
| *LATEST / *WITHIN / *IMMEDIATELY
,REPEAT-JOB = *NO / *PARAMETERS(...)
*PARAMETERS(...)
| DEFAULT = *NO / *AT-STREAM-STARTUP / *WEEKLY / *DAILY / *PERIOD(...)
| *PERIOD(...)
| | HOURS =0/ <integer 0..23>
| | ,MINUTES =00 / <integer 0..59>
| ,ALLOWED = list-poss(5): *NO / *AT-STREAM-STARTUP / *DAILY / *\WEEKLY /
| *PERIOD
,JOB-PARAMETER = *NO / <c-string 0..127>

158

Operands

NAME = <name 1..8>
Name of the new job class definition to be written to the SIMSFILE. The name may consist of between 1 and 8
alphanumeric characters. The first character must be a letter from the set A through Z or the character @ or #.

i The statement is rejected if a job class with the same name already exists.

STREAM = *DEFAULT-STREAM
The default stream defined in the DEFINE-JOB-STREAM statement.

i The default stream in the SHMSFILE must not be identical with that of the system.

STREAM = <name 1..8>
Name of the stream under which the job scheduler to which the job class is assigned runs. The name must not be
$SYSJIS. The name of the stream must already have been defined using the DEFINE-JOB-STREAM statement.

CLASS-LIMIT = <integer 0..4095>
Maximum number of jobs that shall be started in the class.

i It is not advisable to specify a value of 0 except in order to prevent jobs from being started following
system startup. Otherwise, the job scheduler’s performance could be impaired. The specified value is an
absolute limit, but it may be exceeded by express jobs.

CLASS-WEIGHT = <integer 1..9>
Determines the start priority of the class relative to other classes whose jobs are waiting to be started.
1 is the lowest and 9 the highest weight.

CLASS-OPTIMUM =

Specifies the optimum number of jobs that should run in the job class in order to achieve a balanced job distribution
within the system.

CLASS-OPTIMUM influences the sequence in which the class scheduler selects the job classes in order to start the
jobs.

CLASS-OPTIMUM =0/ <integer 0..4095>
The number of jobs. Values from 0 up to the value specified in the CLASS-LIMIT operand can be specified: 0 <=
CLASS-OPTIMUM <= CLASS-LIMIT <= 4095.

JOB-PRIORITY =
Specifies the job scheduling priority for batch jobs; this determines the priority of a job relative to other jobs of the
same class.

JOB-PRIORITY =*NO
This specification is required by the statement format; it has no significance, but must be given if JOB-
TYPE=DIALOG was specified.

JOB-PRIORITY = *PARAMETERS(...)

DEFAULT = <integer 1..9>
Default priority for the job class.
1 is the highest and 9 the lowest priority.

159

If the user has not specified a priority for a job, DEFAULT=<integer...> is used.

If the user has specified a priority no higher than MAXIMUM=<integer...>, the priority specified by the user in
/ ENTER- JOB applies.

The DEFAULT operand in the DEFINE-JOB-CLASS statement must not specify a priority higher than that
given in MAXIMUM, otherwise the statement is rejected with a syntax error.

MAXIMUM = NO / <integer 1..9>

Maximum permitted priority for the job class.

If MAXIMUM=NO is specified, the job is given the priority specified for DEFAULT, irrespective of the priority
given by the user in/ ENTER- JOB .

JOB-TYPE =
Defines the type of job class.

JOB-TYPE =*BATCH
Specifies that the job class is to be an interactive job class. This means that a job belonging to this class must not
be initiated by / SET- LOGON- PARAMETERS in interactive mode.

JOB-TYPE =*DIALOG
Specifies that the job class is to be an interactive job class. A job belonging to this class must not be initiated by
/ ENTER-JOB.

In the case of a POSIX default class (see the SET-POSIX-JOB-CLASS-DEFAULT statement) the JOB-
TYPE is evaluated only when the user attempts to start normal batch or interactive jobs in this class. The
specification has no effect on POSIX-FORK tasks.

TP-ALLOWED = *NO / *YES(...)
Specifies whether the task attribute TP is permitted in the job class.

TP-ALLOWED = *NO

Means that the task attribute TP is not allowed in the job class. Jobs in this class must not be started under this task
attribute; switching to this task attribute by means of the TINF macro is forbidden, unless it is permitted by user
catalog entry.

TP-ALLOWED = *YES(...)

CATEGORY =TP /<name 1..7>

A category name may be assigned to the task attribute TP.

It may be the default category name (TP) or a name freely defined by the user. The standard category name
SYS is not allowed.

Up to twelve further category names may be defined in addition to the four predefined names.

If the database is updated, the default category name TP is used if the specified category is unknown to the
system.

(See “Note for all 3 task attributes:”.)

DIALOG-ALLOWED = *NO / *YES(...)
Specifies whether the task attribute DIALOG is permitted in the job class.

DIALOG-ALLOWED = *NO

Means that the task attribute DIALOG is not permitted in the job class. Jobs in this class must not be started under
this task attribute; switching to this task attribute by means of the TINF macro is forbidden, unless it is permitted by
user catalog entry.

160

DIALOG-ALLOWED = *YES(...)

CATEGORY = DIALOG / <name 1..7>

A category name may be assigned to the task attribute DIALOG.

It may be the default category name (DIALOG) or a name freely defined by the user. The standard category
name SYS is not allowed.

Up to twelve further category names may be defined in addition to the four predefined names.

If the database is updated, the default category name DIALOG is used if the specified category is unknown to
the system.

(See “Note for all 3 task attributes:”.)

BATCH-ALLOWED =*NO / *YES(...)
Specifies whether the task attribute BATCH is permitted in the job class.

BATCH-ALLOWED = *NO

Means that the task attribute BATCH is not permitted in the job class. Jobs in this class must not be started under
this task attribute; switching to this task attribute by means of the TINF macro is forbidden, unless it is permitted by
user catalog entry.

BATCH-ALLOWED = *YES(...)

CATEGORY = BATCH / <name 1..7>

A category name may be assigned to the task attribute BATCH.

It may be the default category name (BATCH) or a name freely defined by the user. The standard category
name SYS is not allowed.

Up to twelve further category names may be defined in addition to the four predefined names.

If the database is updated, the default category name BATCH is used if the specified category is unknown to
the system.

i Note for all 3 task attributes:
The dependencies on the value of the START-ATTR operand must be taken into consideration.

A category name may not be assigned to two different task attributes, e.g. the following specification is
ambiguous and therefore not allowed:
BATCH-ALLOWED=*YES(CATEGORY=HUGO) and DIALOG-ALLOWED=*YES(CATEGORY=HUGO)

START-ATTRIBUTE = *BATCH / *DIALOG / *TP
Defines the task attribute for the job. At the same time the corresponding task attribute must be specified in the TP-,
DIALOG- or BATCH-ALLOWED operand, e.g. START-ATTRIBUTE=TP and TP-ALLOWED=*YES(...).

RUN-PRIORITY =
Specifies the run priority with which a job is started.

RUN-PRIORITY = *PARAMETERS(...)

DEFAULT = <integer 30..255>
Default value for the job class.
DEFAULT must not give a priority higher than MAXIMUM.

MAXIMUM = *NO / <integer 30..255>
Specifies the maximum permitted priority for the job class.

161

Means that a job is given the priority specified by the user, providing it does not exceed the maximum
permitted priority. If, however, the user catalog entry indicates that a higher priority is permitted than that
specified in the MAXIMUM operand, the job may exceed the value of MAXIMUM.

MAXIMUM=*NO means that no maximum task priority is defined. A job is given the priority assigned by the
user providing it does not exceed the value in the user catalog entry.

NO-CPU-LIMIT = *NO / *YES

Specifies whether jobs in this class may run without a time limit (NTL).

NO means that jobs in this class must not run without a time limit (see / SET- LOGON- PARAMETERS). If NO-CPU-
LIMIT=*YES is specified in the user catalog entry for a user, that user can run jobs without a time limit even when
NO-CPU-LIMIT=*NO applies to the job class.

CPU-LIMIT =
CPU time that a job in this class may utilize.

CPU-LIMIT = *PARAMETERS(...)

DEFAULT =*NO-LIMIT
The default setting in this job class is that the jobs run without a time limit. The value is only permitted when
NO-CPU-LIMIT=*YES and MAXIMUM=32767.

DEFAULT = <integer 1..32767>
Default value for the job class.

MAXIMUM = <integer 1..32767>

This is the maximum CPU time that can be explicitly requested for a job of this job class.This value cannot be
exceeded if a numerical value is specified for CPU-LIMIT when a job is created with ENTER-JOB, ENTER-
PROCEDURE or SET-LOGON-

PARAMETERS. The maximum CPU time that can be used for an account number depends on the CPU entry
in the user catalog.

The value specified by DEFAULT must not exceed the value specified for MAXIMUM. In the case of
DEFAULT=*NO-LIMIT the highest possible value (32767) must be assigned to MAXIMUM and NO-CPU-
LIMIT=*YES must be specified. If one of these conditions is violated, the statement is rejected due to a syntax
error.

MAXIMUM = *NO
The job may utilize the CPU time specified in DEFAULT, irrespective of the CPU time the user requested.

SYSLST-LIMIT =
Defines the number of lines for a job when output takes place via SYSLST.

SYSLST-LIMIT = *PARAMETERS(...)

DEFAULT =*NO-LIMIT / <integer 0..999999>

Default number of lines for the job class. *NO-LIMIT means that the number of lines is not limited. The value
specified for DEFAULT must not exceed that specified for MAXIMUM, otherwise the DEFINE-JOB-CLASS
statement is rejected with a syntax error.

MAXIMUM =
Maximum number of lines permitted for the job class.

MAXIMUM = *NO
The job is assigned the permitted number of lines specified in DEFAULT, irrespective of the number actually
requested by the user.

162

MAXIMUM = *NO-LIMIT
There is no limit on the number of lines for a job in this class. The number specified by the user always applies.

MAXIMUM = <integer 0..999999>
Means that the job is assigned the number of lines specified by the user, providing it does not exceed the
value specified for MAXIMUM.

START =
Assigns appropriate start options to job start requests.

START =*NO
This is a formal entry with no significance, except that it is required if the operand JOB-TYPE=*DIALOG is specified.

START = *PARAMETERS(...)

DEFAULT =
This is the default value assumed if a user has not requested a specific start type in / ENTER- JOB. The value
defined for DEFAULT need not be listed under ALLOWED (see below).

DEFAULT =*SOON
The job should be started as soon as possible. If several jobs have requested SOON, the job priority
determines which starts first.

DEFAULT =*WITHIN(...)
The job should be started within the time specified in hours and minutes.

HOURS =0/ <integer 0..23>
Is a value in the range 0 to 23 hours.

MINUTES = 00 / <integer 0..59>
Is a value in the range 0 to 59 minutes.

ALLOWED =
Defines those values which the user may specify for the job class concerned in the START operand of
/ ENTER- JCB.

ALLOWED = *IMMEDIATELY
A job in this job class may be started immediately, even if it delays other jobs having higher priority that were
supposed to be started at this time.

ALLOWED = *SOON
Same meaning as DEFAULT=*SOON, see above.

ALLOWED = *AT
The job may be started on the specified date and precisely at the specified time (hour, minutes) if possible.

ALLOWED =*LATEST
A job may be started at the latest by the specified date and time.

ALLOWED =*EARLIEST
A job may be started at the earliest at the specified date and time.

ALLOWED = *WITHIN
A job may be started within the specified time.

ALLOWED = *AT-STREAM-STARTUP
A job may be started at the time the job scheduler is started.

163

i If an option is not specified under ALLOWED, it is not allowed unless the entry concerned is *SOON or
*WITHIN, defined under DEFAULT as the default value.
A further exception is ALLOWED=*IMMEDIATELY: If the user has specified START=*IMMEDIATELY in
/ SET- LOGON- PARAMETERS, / ENTER- JOB or / MODI FY- JOB, and START-IMMEDIATE=*YES is
specified in the user catalog entry, the job will be started immediately, even if
ALLOWED=*IMMEDIATELY is not specified in the user’s job class.

REPEAT-JOB =
Controls the frequency of repeat jobs at specific time intervals. This is ignored if JOB-TYPE =*DIALOG is specified.

REPEAT-JOB = *NO
This is a formal entry with no significance, except that it is required if the operand JOB-TYPE=*DIALOG is specified.

REPEAT-JOB = *PARAMETERS(...)

DEFAULT =
This is the default value assumed if the user has made no entry for the frequency of job repetition in / ENTER-

JOB or / SET- LOGON- PARAMETERS, i.e. has omitted the REPEAT-JOB or REPEAT operand, or has specified
REPEAT-JOB=STD or REPEAT=STD.

DEFAULT =*NO
Means that the job is not repeated.

DEFAULT =*AT-STREAM-STARTUP
Jobs belonging to this class are run again following each start of the job scheduler, provided the user has
requested this in / SET- LOGON- PARAMVETERS or / ENTER- JOB.

DEFAULT = *WEEKLY
Jobs in this class are started weekly. The exact start time depends on the START operand value in/ ENTER-

JOB.

DEFAULT = *DAILY
Jobs in this class are started daily. The exact start time depends on the START operand value in/ ENTER- JOB.

DEFAULT =*PERIOD(...)
Jobs are repeated each time the specified time interval has elapsed.

HOURS =0/ <integer 0..23>
The time interval in hours may have a value between 0 and 23.

MINUTES = 00/ <integer 0..59>

A value between 0 and 59 minutes may be given.

The total time interval must be greater than 0. The exact start time depends on the START operand value
in/ ENTER- JOB.

ALLOWED =
Specifies the values the user may give in the REPEAT-JOB or REPEAT operand of / ENTER- JOB or / SET-

LOGON- PARAMETERS.

ALLOWED =*NO
Repetition of jobs in this class is not possible, unless a value other than NO has been specified for DEFAULT.

ALLOWED =*AT-STREAM-STARTUP
Jobs may be repeated if required each time the job scheduler is started.

164

ALLOWED =*DAILY

Jobs in this class may be repeated daily. The exact starting time depends on the START operand value in
| ENTER- JCB.

ALLOWED = *WEEKLY
Jobs in this class may be repeated weekly. The exact starting time depends on the START operand value
in / ENTER- JOB.

ALLOWED = *PERIOD
Jobs can be repeated each time the specified time interval has elapsed.

JOB-PARAMETER =
Additional class attributes, evaluated by system exit 32.

JOB-PARAMETER = *NO
No additional class attributes are defined.

JOB-PARAMETER = <c-string 1..127>
This operand defines additional class attributes in free syntax. Here, system-specific information can be stored in
each job class definition.

This operand is not evaluated by the system or by the predefined job scheduler. If it is to be evaluated, systems
support must:

1. create an exit routine to compare what the user specifies in the JOB-PARAMETER operand of / SET- LOGON-
PARAMETERS, / ENTER- JOB or / MODI FY- JOB with what was specified in JOB-PARAMETER and to confirm its
validity or

2. define the scheduling algorithm of the scheduler which is responsible for the job class accordingly.
The exit routine is called during the processing of these commands entered by the user.

Notes

® The CLASS-LIMIT and CLASS-WEIGHT operands are evaluated by the operating system’s class scheduler,
which is independent of the job schedulers, in order to control the job-related portion of the system load (see the
“Introduction to System Administration“ [5 (Related publications)]).

® The significance of the JOB-PRIORITY, START and JOB-PARAMETER operands depends on the job
scheduling algorithm used by the stream, as defined in the STREAM operand.

® The number of job classes is unlimited.

165

6.3.2.3 DEFINE-JOB-STREAM - Write stream definitions to SIMSFILE

This statement writes a new stream definition to the SJIMSFILE file or the JMS database.
Format
DEFINE-JOB-STREAM

NAME = <name 1..8>
,FILE = <filename 1..54> / *LIBRARY-ELEMENT(...)
*LIBRARY-ELEMENT(...)
| LIBRARY = <filename 1..41>
| ,ELEMENT = <name 1..8>
,RUN-PRIORITY = 65 / <integer 30..255>
,DEFAULT = *NO / *YES
,START = *AT-LOAD / *BY-OPERATOR / *AT(...) / *EARLIEST(...)
*AT(...)
| TIME = <time 1..8>
*EARLIEST(...)
| TIME = <time 1..8>
,STOP = *AT-SHUTDOWN / *BY-OPERATOR / *AT(...) /| *AFTER(...)
*AT(...)

| TIME =00:00/ <time 1..8>
*AFTERC(...)
| HOURS =00/ <integer 0..23>
| ,MINUTES = 00 / <integer 0..59>
, STREAM-PARAMETER = *NO / <c-string 1..127>

Operands

NAME = <name 1..8>
Name of the stream definition to be written to SIMSFILE. A string of between 1 and 8 alphanumeric characters may
be specified, starting with the character A-Z, @ or #.

FILE = <filename 1..54>

Name of the ENTER file containing the job that is initiated during the stream start and that activates the job
scheduler.

The job scheduler can only process batch jobs.

166

FILE = *LIBRARY-ELEMENT(...)

LIBRARY = <filename 1..41>
File name of the library.

ELEMENT = <name 1..8>
The library element containing the ENTER file named above.

RUN-PRIORITY = 65 / <integer 30..255>
Specifies the starting priority to be assigned to the stream task under which the job scheduler runs.

DEFAULT =*NO / *YES

Specifies whether the stream involved is to be the default stream for the system.

YES means the stream is to be the default stream for those job classes that have specified that they wish to use the
default stream.

START =
Specifies when the stream is to be started.

START = *AT-LOAD
The stream is to be started automatically when the system is loaded.

START = *BY-OPERATOR
The stream must be started by the operator or system administration using / START- JOB- STREAM

START = *AT(...)

The stream is to be started automatically during each session at the specified time. If a session is started after the
specified time, the stream can be started only within the next 30 minutes after the time specified. A start at a later
point within the current session is not possible.

i If the job stream is to be entered in the JMS database, the following applies: The stream is started when
the START time is not exceeded by more than 5 minutes and the STOP time has not yet been reached.

START = *EARLIEST(...)
The stream is to be started at the earliest at the specified time during each session. If the system is not active at the
time specified, the start is retried until a specified STOP time or until 24:00 hours.

If the job stream is to be entered in the JMS database, the following applies: The stream is started when
the START time is exceeded and the STOP time has not yet been reached.

TIME = 00:00 / <time 1..8>
Time of day in the format hh:mm); i.e. hours and minutes only, seconds are ignored.

STOP =
Specifies when the stream is to be stopped.

STOP = *AT-SHUTDOWN
The stream is to be stopped when the system is shut down.

STOP =*BY-OPERATOR
The stream must be stopped by the operator or system administration by means of / STOP- JOB- STREAM

167

STOP =*AT(...)
The stream is to be stopped automatically at the specified time (hh:mm see START=*AT...).

TIME = 00:00 / <time 1..8>
Time of day in the format hh:mm); i.e. hours and minutes only, seconds are ignored.

STOP =*AFTERC(...)
The stream is to be stopped after the specified time has elapsed.

HOURS =00/ <integer 0..23>
HOURS= between 0 and 23 hours may be specified.

MINUTES = 00/ <integer 0..59>
A value between 0 and 59 minutes may be given.

i If for any reason the system is shut down during the time between system start and the time specified for
stopping the stream, and the system is then restarted before the time the stream was to be stopped, the
stream is also restarted automatically.

STREAM-PARAMETER =

This operand defines special scheduling parameters for the job scheduler in free syntax. The contents of this
operand are not evaluated by the system.

However, the job scheduler involved must understand both the syntax and the meaning of STREAM-PARAMETER
in order to be able to accept the scheduling parameters defined there.

The job scheduler gets this information via the job scheduler interface. The job scheduler interface provides, via a
TU interface, functions required by the job scheduler to carry out its tasks (for further details, see “Introduction to
System Administration” [5 (Related publications)]).

STREAM-PARAMETER = <c-string 1..127>

Sequence of special parameters for the job scheduler.

When the system is started up the information contained in the parameters is transferred to internal tables, where it
can be accessed by the job scheduler.

The default job scheduler knows the following parameters:

S-PAR = '"JOB-PRICRITY = YES / NO
,CPU-TIME = NO/ YES
,VWAIT-TIME = NO/ YES
,JOB-QUOTA = 1 / <integer 1..255>
, LOGA NG = YES / NO
,CATID-LIST = (catidi,...)
,CAT-TIME = m n'

STREAM-PARAMETER = *NO
Means that no special parameters are defined for the job scheduler.

168

Notes

® This statement is rejected if a stream with the specified name is already contained in the SIMSFILE.

® Only one default stream may exist in the system. An attempt to define more than one default stream will be

rejected.

® No more than 16 streams may be defined.

169

6.3.2.4 DELETE-JOB-CLASS - Delete class definitions

This statement can be used to delete an existing class definition from the SIMSFILE or the JMS database.

If the definition in the file is deleted, any jobs of the class in question that are in the job pool when the next system
session starts are lost. If the definition is to be deleted in the system, its status is flagged as “IN-DELETE". The
class definition is not removed from the database until no remaining jobs are assigned to the class.

No new jobs are accepted for job classes flagged as “IN-DELETE”".

Deletion of a default class is not permitted. If a default class is to be deleted, all access rights to it must first be
rescinded.

Format
DELETE-JOB-CLASS
NAME = <name 1..8>

Operands

NAME = <name 1..8>
Name, consisting of from 1 to 8 characters, of an existing class definition that is to be deleted.

170

6.3.2.5 DELETE-JOB-STREAM - Delete stream definitions

This statement deletes a stream definition from the SIMSFILE file and the JMS database.
Format

DELETE-JOB-STREAM

NAME = <name 1..8>

Operands

NAME = <name 1..8>
Name of the job stream to be deleted.

If job classes are assigned to the stream, the delete request is rejected.
If the stream is active and is to be deleted from the JMS database, the delete request is rejected.

171

6.3.2.6 END - Terminate statement input

The END statement terminates input of statements to the JMU routine.
Format

END

This statement has no operands.

172

6.3.2.7 GRANT-JOB-CLASS-ACCESS - Control access by user IDs to job class

This statement is used to control access by user IDs to a job class.

If a job class is defined as the default class for a user (by means of the SET-JOB-CLASS-DEFAULT statement), it is
not necessary to define access once again using the GRANT-JOB-CLASS-ACCESS statement.

If a new user ID is entered in the user catalog during a session, it is immediately granted access to all public
classes.

Format

GRANT-JOB-CLASS-ACCESS
NAME = <name 1..8>
,ACTION = *ADD / *REMOVE

,USER = *ALL / list-poss(255): <name 1..8>

Operands

NAME = <name 1..8>
Name of a job class to which a user ID is to receive or be denied access.

ACTION =
Permits or denies access to a job class.

ACTION =*ADD
The user ID specified under USER= may access the job class.

ACTION = *REMOVE
The user ID specified under USER= is denied access to the job class specified for NAME =.

USER =
Controls access to a job class.

USER =*ALL
Access to the job class specified in NAME is to be defined for all user IDs.

USER = list-poss(255)
Access is granted for the user IDs given in this list.

USER = <name 1..8>

Access is granted to this one user ID with a name consisting of 1 to 8 characters. No check is run to ascertain
whether the specified user ID is entered in the user catalog unless a modification is made in the current session. All
IDs are entered in the SIMSFILE.

173

6.3.2.8 MODIFY-JOB-CLASS - Modify job class definitions

This statement is used to modify an existing job class definition in the SIMSFILE or the JMS database.

Format

MODIFY-JOB-CLASS

NAME = <name 1..8>

, STREAM = *UNCHANGED / *DEFAULT-STREAM / <name 1..8>

,CLASS-LIMIT = *UNCHANGED / <integer 0..4095>
,CLASS-WEIGHT = *UNCHANGED / <integer 1..9>
,CLASS-OPTIMUM = *UNCHANGED / <integer 0..4095>
,JOB-PRIORITY = *UNCHANGED / *PARAMETERS(...)
*PARAMETERS(...)
| DEFAULT = <integer 1..9>
| ,MAXIMUM =*UNCHANGED / *NO / <integer 1..9>
,JOB-TYPE = *UNCHANGED / *BATCH / *DIALOG
,TP-ALLOWED =*UNCHANGED / *NO / *YES(...)
*YES(...)
| CATEGORY =TP/<name 1..7>
,DIALOG-ALLOWED = *UNCHANGED / *NO / *YES(...)
*YES(...)
| CATEGORY = DIALOG / <name 1..7>
,BATCH-ALLOWED = *UNCHANGED / *NO / *YES(...)
*YES(...)
| CATEGORY =BATCH /<name 1..7>

,START-ATTRIBUTE = *UNCHANGED / *BATCH / *DIALOG / *TP

,RUN-PRIORITY = *UNCHANGED / *PARAMETERS(...)
*PARAMETERS(...)
| DEFAULT = <integer 30..255>

| ,MAXIMUM =*UNCHANGED / *NO / <integer 30..255>

,NO-CPU-LIMIT = *UNCHANGED / *NO / *YES

174

,CPU-LIMIT = *UNCHANGED / *PARAMETERS(...)
*PARAMETERS(...)
| DEFAULT = <integer 1..32767>
| ,MAXIMUM = *UNCHANGED / *NO / <integer 1..32767>
,SYSLST-LIMIT = *UNCHANGED / *PARAMETERS(...)
*PARAMETERS(...)
| DEFAULT = *NO-LIMIT / <integer 0..999999>
| ,MAXIMUM =*UNCHANGED /*NO / *NO-LIMIT / <integer 0..999999>
,START = *UNCHANGED / *PARAMETERS(...)
*PARAMETERS(...)
| DEFAULT = *SOON / *WITHIN(...)
| *WITHIN(...)
| | HOURS =0/ <integer 0..23>
| | ,MINUTES =00/ <integer 0..59>
| ,ALLOWED = list-poss(7): *IMMEDIATELY / *AT / *EARLIEST / *LATEST /
| *AT-STREAM-STARTUP / *WITHIN / *SOON
,REPEAT-JOB = *UNCHANGED / *PARAMETERS(...)
*PARAMETERS(...)
| DEFAULT = *NO / *AT-STREAM-STARTUP / *WEEKLY / *DAILY / *PERIOD(...)
| *PERIOD(...)
| | HOURS =0/ <integer 0..23>
| | ,MINUTES = 00 / <integer 0..59>
| ,ALLOWED = list-poss(5): *NO / *AT-STREAM-STARTUP / *DAILY / *WEEKLY /
| *PERIOD
,JOB-PARAMETER = *UNCHANGED / *NO / <c-string 0..127>

For a description of the operands, see the DEFINE-JOB-CLASS statement.

Database updates are ignored for the operands STREAM, JOB-TYPE and START-ATTRIBUTE.
The JOB-TYPE operand must not be modified for default job classes.

175

6.3.2.9 MODIFY-JOB-STREAM - Modify stream definitions

This statement enables an existing stream definition to be modified.
Format
MODIFY-JOB-STREAM

NAME = <name 1..8>
,FILE = *UNCHANGED / <filename 1..54> / *LIBRARY-ELEMENT(...)
*LIBRARY-ELEMENT(...)
| LIBRARY = <filename 1..41>
| ,ELEMENT = <name 1..8>
,RUN-PRIORITY = *UNCHANGED / <integer 30..255>
,DEFAULT = *UNCHANGED / *NO / *YES
,START = *UNCHANGED / *AT-LOAD / *BY-OPERATOR / *AT(...) / *EARLIEST(...)
*AT(...)
| TIME = 00:00 / <time 1..8>
*EARLIEST(...)
| TIME = 00:00 / <time 1..8>
,STOP = *UNCHANGED / *AT-SHUTDOWN / *BY-OPERATOR / *AT(...) / *AFTER(...)
*AT(...)
| TIME = 00:00 / <time 1..8>
*AFTER(...)
| HOURS = 00/ <integer 0..23>
| ,MINUTES = 00/ <integer 0..59>
, STREAM-PARAMETER =*UNCHANGED / *NO / <c-string 1..127>

For a description of the operands, see the DEFINE-JOB-STREAM statement.

When changing the DEFAULT= operand you should bear in mind that there must never be more than one default
stream in the system. Any attempt to define more than one will be rejected.

If the START or STOP operand is changed directly in the JMS database, the job stream is started or stopped in
accordance with the new operand values.

176

6.3.2.10 REMOVE-USER - Prohibit access to private job classes

The REMOVE-USER statement is used to deny specified user IDs access to all private job classes. The statement
is an extension of the system command of the same name which is used to delete user entries in the user catalog.
However, the statement cannot be used to prevent special users accessing public job classes or system default
classes.

Format

REMOVE-USER

USER-IDENTIFICATION = *ALL / list-poss(8): <name 1..8>

Operands

USER-IDENTIFICATION =
Specifies the user IDs to be removed.

USER-IDENTIFICATION = *ALL
This causes all access lists to be deleted. All private job classes are thus prohibited. Any ID-specific default job
classes are reset to the system default settings.

USER-IDENTIFICATION = list-poss(8): <name 1..8>
The specified user ID(s) is (are) to be prevented from accessing all private job classes. Any default job classes
specific to these IDs are reset. Up to 8 user IDs can be specified.

177

6.3.2.11 SET-JOB-CLASS-DEFAULT - Specify default classes for users

This statement is used to specify default classes for users. At the same time, the users are granted access.

If no public default class has been specified for a job type, $SYSJC is the system default class. Since only
privileged users have access to $SYSJC, JMU issues a warning message.

When a new user is entered in the user catalog during a session, he or she receives immediate access to all
system default classes.

Format

SET-JOB-CLASS-DEFAULT
NAME = <name 1..8>
,ACTION = *ADD / *REMOVE

,USER = *ALL / list-poss(255): <name 1..8>
The meaning of the operands is the same as for the GRANT-JOB-CLASS-ACCESS statement.

i Changing the default class always consists of the two statements:

® SET-JOB-CLASS-DEFAULT default-class.old,*\REMOVE,*ALL
® SET-JOB-CLASS-DEFAULT default-class.new,*ADD,*ALL.

It is not advisable to change the default class during the current session, because $SYSJC is entered as
the default class between the two statements.

178

6.3.2.12 SET-MODIFICATION-MODE - Set modification mode

This statement can be used to set a modification mode in the JMU utility routine that permits the following
modifications to be made to JMS files in the current session:

® modify rights of access to job classes

® assign default job classes to new users

® create, delete and modify job class definitions

® create, delete and modify job stream definitions

If desired, these modifications can be implemented with immediate effect.

i The SET-MODIFICATION-MODE statement is permitted only when the caller possesses the TSOS
privilege.

Format

SET-MODIFICATION-MODE

SCOPE = *EILE / *SYSTEM / *ALL

Operands

SCOPE =
Specifies whether the subsequent modifications are to be implemented in the file, the database or both.

SCOPE =*EILE
The modifications are to be implemented in the file only, i.e. they will be effective only as of the next startup.

SCOPE = *SYSTEM
The modifications are to be implemented in the database only, i.e. they are effective only for the current session (for
test purposes).

SCOPE =*ALL
The modifications are to be implemented in the file and in the database.

Notes

® |f SCOPE=*SYSTEM / *ALL is specified, the STREAM, JOB-TYPE and START-ATTRIBUTE operands of the
MODIFY-JOB-CLASS statement are ignored.

® Only the category names already defined can be used for assigning categories.

® |f job classes are deleted in the current system, a class containing jobs that are still active is flagged JOB-CLASS-
IN-DELETE. Jobs already accepted can be completed, but no new jobs are accepted.

® SHOW-JOB-CLASS as a JMU statement outputs only the contents of the SIMSFILE. If SCOPE=*SYSTEM, the
SHOW-JOB-CLASS statement is not executed.

® |f SCOPE=*ALL is specified, a modification is made only if it is possible both in the SIMSFILE and in the
database.

179

6.3.2.13 SET-POSIX-JOB-CLASS-DEFAULT - Specify POSIX default classes for users

This statement is used to specify system-wide and/or user-specific POSIX default classes for POSIX-FORK tasks.

If neither a system-wide POSIX default class nor one which applies for the user concerned has been defined, the
user's POSIX-FORK tasks are started in the default class for batch or interactive jobs which applies for the user.

Format

SET-POSIX-JOB-CLASS-DEFAULT
NAME = <name 1..8>
,ACTION = *ADD / *\REMOVE

,USER = *ALL / list-poss(255): <name 1..8>

The meaning of the operands is the same as for the GRANT-JOB-CLASS-ACCESS statement.

i Changing the POSIX default class always consists of the two statements:

® SET-POSIX-JOB-CLASS-DEFAULT default-class.old,"REMOVE,*ALL
® SET-POSIX-JOB-CLASS-DEFAULT default-class.new,*ADD,*ALL.

If no POSIX default class has been assigned yet, the first statement is omitted.

Unlike with SET-JOB-CLASS-DEFAULT, when a job class is assigned as the POSIX default class, the
selected users are not automatically guaranteed access to this job class. When required, this must be
defined explicitly by the administrator using GRANT-JOB-CLASS-ACCESS. This does not automatically
permit normal interactive and batch jobs to be started in this job class. POSIX-FORK tasks can use the
job class, however.

A POSIX default class defined using USER=*ALL initially applies throughout the system for all user IDs. If
different POSIX default classes are to apply for certain user IDs, this can be defined with further SET-
POSIX-JOB-CLASS-DEFAULT statements, e.g. with the operands NAME=other_class,ACTION=*ADD,
USER-=list_of users.

Default classes already defined with SET-JOB-CLASS-DEFAULT can also be defined as POSIX default
classes.

A POSIX default class can belong to the category interactive or batch. It is relevant for all POSIX-FORK
tasks of the interactive or batch job type.

180

6.3.2.14 SHOW-JOB-CLASS - List contents of class definitions or names of classes

This statement enables the contents of class definitions or the names of classes to be listed. The listing of a class
definition includes the names of all users having access to that class.

Format

SHOW-JOB-CLASS
NAME = *ALL / *ALL-NAMES / list-poss(255): <name 1..8>

,OUTPUT =*SYSOUT / *SYSLST

Operands

NAME =
Name of the class to be listed.

NAME = *ALL
All class definitions are to be listed.

NAME = *ALL-NAMES
All names of classes are to be listed (without the contents of the class definitions).

NAME = <list-poss(255): <name 1..8>
All class definitions whose names are specified in this list are to be listed. A maximum of 255 names may be given.

OUTPUT =
Defines the output destination.

OUTPUT = *SYSOUT
Output is to be to SYSOUT.

OUTPUT =*SYSLST
Output is to be to SYSLST.

CLASS LIMT...: 255
| CLASS OPTI MM : 0

VEIGHT.: 3

EJOB PRI ORI TY. . : DEFAULT=3 MAXI MUME 1

: JOB ATTRI BUTES: JOBTYPE=BATCH ST- ATTR= BATCH
! TP ALLOAED. ...: TP

| DI ALOG ALLOVED: NO
| BATCH ALLOWED. : BATCH

' RUN PRI ORI TY. . : DEFAULT=180 MAXI MUME 30

'NO CPU LIMT..: YES

{CPU LIMT.....:DEFAULT=32767 MAXI MUME 32767

| SYSLST LIMT..: DEFAULT=NO-LIM T MAXI MUME NO-LIM T

| SYSOPT LIMT..: DEFAULT=NO-LIM T MAXI MUME NO-LIM T

| START.........:DEFAULT=SOON ALLOVED= SOON EARLY AT LATE IN | MV STUP
| REPEAT JOB. .. . : DEFAULT=NO ALLOVED= NO STUP DAILY VEEKLY PERI OD

| JOB PARAMETER. : UNDEFI NED
| JCBATCHF |'S AVAI LABLE TO

181

{ ALL USERS
i JCBATCHF |'S A DEFAULT FOR:

' NO USERS

' REQUESTED DETAI LS OF JOB CLASS: JCBSTD
'NAME.:JCBSTD
STREAM:JSSTD1

CLASS LIMT...:50
| CLASS OPTIMUM : 0

CVEIGHT. 8
' JOB PRI ORI TY. . : DEFAULT=9 MAXI MUME 1

| JOB ATTRI BUTES: JOBTYPE=BATCH ST- ATTR= BATCH
‘TP ALLOWED. ...:TP

i DI ALOG ALLOVED: NO
| BATCH ALLOVED. : BATCH

{ RUN PRI ORI TY. . : DEFAULT=220 MAXI MUME 180

{NO CPU LIMT..:YES

{CPU LIMT.....: DEFAULT=32000 MAXI MUME 32767

{SYSLST LIMT..: DEFAULT=NO-LIM T MAXI MUME NO-LIM T

| SYSOPT LIMT..: DEFAULT=ENO- LIM T MAXI MUME NO-LIM T

| START.........:DEFAULT=SOON ALLONED= SOON EARLY AT LATE IN | MM

! REPEAT JOB. . ..: DEFAULT=NO ALLOANED= NO STUP DAI LY WEEKLY PERI OD

{ JOB PARAMETER. : UNDEFI NED

1 JCBSTD IS AVAI LABLE TO
'ALL USERS

EJCBSTD |'S A SYSTEM DEFAULT

182

6.3.2.15 SHOW-JOB-STREAM - List contents of stream definitions or names of streams

This statement is used to list the contents of stream definitions or the stream names themselves.
Format

SHOW-JOB-STREAM

NAME = *ALL / *ALL-NAMES / list-poss(255): <name 1..8>

,OUTPUT =*SYSOUT / *SYSLST

Operands

NAME =
Name of the job stream to be listed.

NAME = *ALL
All stream definitions are to be listed.

NAME = *ALL-NAMES
All stream names are to be listed.

NAME = <list-poss(255): <name 1..8>
All stream definitions whose names are specified in this list are to be listed. A maximum of 255 names may be given.

OUTPUT =
Defines the output destination.

OUTPUT = *SYSOUT
The stream definition(s) or stream names are to be output to SYSOUT.

OUTPUT = *SYSLST
Output is to be to SYSLST.

Example

NAME.:JSSTD

FILE:SYSENT. JOBSCHED. 150
RUN PRIORITY..: 125

DEFAULT.: NO
START.........:AT-LCAD
STOP..........:AT- SHUTDOVW

STREAMPARAM . . : JOB- PRI ORI TY=Y, CPU- TI ME=Y, WAI T- Tl ME=Y, JOB- QUOTA=50, LOGE NG=NO
{ REQUESTED DETAILS OF JOB STREAM JSSTD1

NAME.:JSSTD1

FILE:SYSENT. JOBSCHED. 150
RUN PRIORITY..:130

DEFAULT.: YES
START.........:AT-LCAD
STOP..........:AT- SHUTDOVW

STREAMPARAM . . : JOB- PRI ORI TY=Y, CPU- TI ME=Y, WAI T- Tl ME=Y, JOB- QUOTA=30, LOGE NG=NO
i REQUESTED DETAILS OF JOB STREAM JSSTD2

NAME.:JSSTD2
FILE:SYSENT. JOBSCHED. 150
i RUN PRICRITY. . : 150

' DEFAULT.......:NO

183

STREAMPARAM . . : JOB- PRI G=Y, CPU- TI ME=Y, WAI T- TI ME=N, JOB- QUOTA=20, LOGAE NG=NO
{ REQUESTED DETAILS OF JOB STREAM JSTSCS

NAME.:JSTSCS

FILE:SYSENT. JOBSCHED. 150
RUN PRI ORI TY..: 120

DEFAULT.: NO
START.........:AT-LCAD
STOP..........:AT- SHUTDOVWN

184

7 LMSCONV Generation and management of libraries

Version: LMSCONYV (SDF format) V3.5B

LMSCONV (Library Maintenance System Converter) is a routine for managing libraries and the members they
contain.

LMSCONV performs the following functions:

create libraries

add files as library members
Outputs members in files

copy members to another library
list members

delete members

correct members

Outputting library directories

LMSCONYV supports the processing of files > 32 GB (LARGE OBJECTS).

LMSCONV, a variant of the software product LMS with functional restrictions, is provided with both an ISP interface
and an SDF interface. LMSCONYV (ISP format) remains functionally unaltered as of BS2000/0OSD-BC V2.0. This
chapter describes the functionality of LMSCONV (SDF format).

LMSCONYV (SDF format) is derived from the LMS (SDF format) software product. The functional scope is a subset
of LMS (SDF format). A list of restrictions compared to LMS is given on "Comparison between LMSCONV and LMS"

Notes

LMSCONYV indicates all attributes for libraries, types and members, i.e. including attributes that can only be
modified using LMS.

For the processing of libraries under LMSCONYV, all attributes, i.e. not only those that can be influenced directly
under LMSCONYV, are important. Library processing may therefore only be possible in restricted form (e.g. no
read right for a member).

Members of a defined use type can be processed with LMSCONV.
Library lists and type control can be used.

When installing LMSCONV, it is possible to specify the name which individual product files should receive and
the ID under which they are to be stored. The complete path name of all product files of LMSCONYV can be
determined using /[SHOW-INSTALLATION-PATH.

185

Overview of LMSCONYV statements

Statement

ADD- ELEMENT

CLOSE- LI BRARY

COPY- ELEMENT

COPY- LI BRARY

DELETE- ELEMENT

END

EXTRACT- ELEMENT

MODI FY- DEFAULTS

MODI FY- ELEMENT

MODI FY- ELEMENT-
ATTRI BUTES

MODI FY- LOGGE NG
PARAMETERS

OPEN- LI BRARY

SHOW DEFAULTS

SHOW ELEMENT

SHOW ELEMENT- ATTRI BUTES

SHOW LI BRARY- ATTRI BUTES

SHOW LI BRARY- STATUS

SHOW LOGGE NG- PARAMETERS

SHOW TYPE- ATTRI BUTES

SHOW USER- EXI TS

VIRl TE- COMVENT

Remarks

Adds files as members

Closes libraries

Copies members

Copies a library

Deletes members

Terminates the LMSCONV run
Outputs members in files
Modifies the global default values
Modifies members

Modifies member attributes

Modifies the logging scope

Opens a global library

Shows the global default values
Shows the member contents
Shows the member attributes
Shows the library attributes

Shows the library states

Shows the values for the logging scope

Shows the type attributes
Shows the LMSCONYV version

Writes a comment in the log

186

LMSCONYV input and output stream

The following figure shows the input and output options for LMSCONV:

Figure 2: 1/0 of LMSCONV

LMSCONV reads all statement inputs via the dialog interface SDF. For detailed information, please refer to the
“SDF Dialog Interface” manual [20 (Related publications)].

Example of an LMSCONV run

(1N start-| nsconv

L (aumn % LM20310 LMSCONV VERSI ON ' <versi on>'" STARTED 1.
F(IN) nodi fy- 1 oggi ng- paranmet ers | oggi ng=* naxi mum 2.
(I'N open-library |ibrary=ueb. bi b, rode=updat e 3.
(oum) LI BRARY | S CLEARED AND PREPARED 4.
F(IN) add-el enment fromfile=test, to-elen(el enrtest. ueb,type=s) 5.
L (oun) | NPUT FILE

(NL) QUTPUT LI BRARY= : 10SN: $USER. UEB. BI B

C(NL) ADD : 108N: $USER. TEST AS (S) TEST. UEB/ @ 0001) / <dat e>

COIN) show el enent -attri but es 6.
(aum I NPUT LI BRARY= : 10SN: $USER. UEB. Bl B

C(NL) TYP NAME VER (VAR#) DATE

F(NL) (S) TEST.UEB @ (0001) <date>

F(NL) 1 (S)-ELEMENT(S) IN TH' S TABLE OF CONTENTS 7.
F(IN) show el ement (el enent =t est. ueb, type=s) 8.
(aum I NPUT LI BRARY= : 10SN: $USER. UEB. Bl B

(L) | NPUT ELEMENT= (S) TEST. UEB/ @ 0001) / <dat e>

f(NL) TESTFI LE, CAN BE DELETED AT ANY TI ME !! 9.

(NL) NUMBER OF PROCESSED RECORDS | S 1

187

(I'N end 10.
(aum) % LM20311 LMSCONV VERSI ON ' <versi on>' TERM NATED NORVALLY

1. LMSCONV is called.

2. In addition to error messages, success messages are also logged.

w

The new global library (i.e. assigned by the OPEN-LIBRARY statement) UEB.BIB is created and assigned as
an /O library.

The UEB.BIB library has been created.

The TEST file is added to the library as member TEST.UEB of type S.
The contents of the library UEB.BIB are to be listed.

Contents entry of the UEB.BIB library.

The TEST.UEB member is to be listed.

Contents of the TEST.UEB member.

10. LMSCONYV is terminated.

© © N o g &

LMSCONYV in interactive and batch modes

LMSCONV runs in interactive mode and in batch mode.

Interactive mode

Since members can also be selected using wildcards, it is not possible initially to determine which member is
currently being processed. For statements which delete or overwrite member data, it is thus possible to proceed
“step-by-step”.

For each member, the user is prompted to process or skip the member, or abort the function.
The query mechanism is activated with the operand DIALOG-CONTROL=*YES.
The default value of DIALOG-CONTROL can be modified by the MODIFY-DEFAULTS statement.

The inquiry mechanism can be restricted to error cases by DIALOG-CONTROL = *ERROR. In the following non-
recoverable error cases, the inquiry mechanism is activated in interactive mode even if DIALOG-CONTROL = *NO:

®* when a member cannot be accessed, e.g. because it is locked by another user (temporary exclusive use of a
member for modification, for example)

* when a library cannot be accessed, e.g. because the current access rights do not permit this (temporary
exclusive use of a library).

It is possible to make LMSCONYV behave as if it is running in batch mode, which, among others, totally deactivates
the inquiry mechanism, by setting RUN-MODE=*BATCH in MODIFY-DEFAULTS statement.

Batch mode

If a library, a member or a type is locked, the user can set the number of new attempts and the time between two
attempts using the statement MODIFY-DEFAULTS ..., NEXT-ATTEMPT. By default, no new attempts are made.

188

7.1 Libraries

LMSCONV processes PLAM libraries. PLAM libraries are PAM files in BS2000 that are processed with the library
access method PLAM (Program Library Access Method).

A PLAM library contains members and a table of contents or directory of these stored members. PLAM libraries are
used for the storage of source programs, macros, object modules, phases (load modules), lists, procedures, text etc.

PLAM libraries are also referred to simply as “libraries”.

189

7.1.1 Logical structure of a library

A library is a file with a substructure. It contains members and a directory.

A member (also referred to as “element” in examples and messages) is a logically related set of data, e.g. a
procedure, an object module or a source program. Each member of a library can be referenced individually.

Storing a number of files as members in a library decreases the burden on the file name catalog since each library
has only one catalog entry. Storage space is saved because the members are always stored in compressed form in
the library. Furthermore, elements may also be stored as delta members, but you need LMS to do so.

Figure 3: Logical structure of a library

Each library has a single entry in the system catalog. The user can define the name and other file attributes such as
the retention period or shareability. Catalog entries and changes to them are made by the user with the aid of
system commands.

190

7.1.2 Input and output libraries

LMSCONV processes a library in the form of an input and/or output library:

An input library is assigned globally by means of the LMSCONV statement OPEN-LIBRARY or locally by means of
the operand ELEMENT=*LIBRARY-ELEMENT(LIBRARY=).

An output library is assigned globally by means of the LMSCONYV statement OPEN-LIBRARY or locally by means of
the operand TO-ELEMENT=*LIBRARY-ELEMENT(LIBRARY=).

191

7.1.3 Multiple access to libraries

Multiple access to libraries occurs when several users access the same library at the same time, either in read or in
write mode. Access can take place from different tasks. The tasks can run under different user IDs.

Unrestricted multiple access to libraries is possible under the following conditions:

® the necessary access rights have been granted
® access is not via Remote File Access (RFA).

® for libraries on shared pubsets:
the accessing tasks are running on different systems, that form an XCS network.

The user can explicitly restrict the use of multiple access with the following commands:
/ ADD- FI LE- LI NK . . ., SUPPORT=* DI SK(SHARED- UPDATE=* NO)
Libraries are opened by default with SHARED-UPDATE=*YES.

/ ADD- FI LE- LI NK SHARED- UPDATE=* NO and the opening of this library with the specified link name
prevents further update accesses.

/ SECURE- RESOURCE- ALLOCATI ON FI LE=
The library is reserved exclusively for this task.
/ MODI FY- FI LE- ATTRI BUTES . . ., PROTECTI ON=
Only users who have the necessary access rights can access the library.

For a description of these commands, see the “Commands” manual [1 (Related publications)].

192

7.2 Members

A member is a set of logically related data, e.qg. a file, procedure, object module or source program. Each member

can be addressed individually in the library by way of its member designation.

The member designation identifies a member and consists of three parts: name, version and type.

Name: Describes the logical contents of the member.

Version: Describes the current development status of the member.
Type: Classifies the member.

Libraries may contain any LMSCONV-supported member types.

193

7.2.1 Multiple access to members

A member can be read simultaneously by several users; it can, however, be written to by one user only. When the
member has been opened for writing, no other access - including read access - to this member can be performed,
but access to other members of the library is possible.

Figure 4: Multiple access to members

As a result of the multiple access options to a library a member may still exist while the directory is being listed, but
be no longer in existence when it is subsequently accessed. Another user has deleted it in the meantime. A listing
of the library’s directory (statement SHOW-ELEMENT-ATTRIBUTES) will therefore only show the current state of
the input library.

194

7.2.2 Member type definition

The member type indicates how the contents of the members are to be interpreted.

Standard types

Standard or predefined types are 1 character long, or start with $ or SYS

C Load modules

D Text data

F IFG format masks

H Compiler result information
J Procedures

L Link and load modules (LLMs)
M Macros

P Data edited for printing

R Object modules

S Source programs

U IFG user profiles

X Data of any format

SYSJ Compiled procedure

$. .. Reserved

SYS. .. Reserved

The maximum record length of stored members is 32 Kbytes (including record header).
Member type C - phases

A phase generated by the linkage editor TSOSLNK is normally stored in a file. LMSCONV can be directed to
write such a file as a C-type member to a library. Alternatively, the phases generated by the linkage editor can
be stored directly in a library.

Member type D - Text data
Any text may be written to D-type members. The same functions are possible as with S-type members.
Member type F - IFG format masks

Members of this type are created by IFG and stored in the libraries.

195

Member type H - compiler result information

Members of this type are generated by the compilers and the assembler and stored in libraries.
Member type J - procedures

In this member type BS2000 procedures can be stored.
Member type L - link and load modules (LLM)

The BINDER (refer to the “BINDER” manual [12 (Related publications)]), and the compilers store the link and
load modules (LLMs) created.

Member type M - Macros
The assembler takes the macro members addressed in the program from the assigned library.
Member type P - List members

Formatted data are referred to a list member. The first character of the record must be a valid line feed
character; this is checked in the system file SYSLST.

Member type R - object modules

LMSCONYV can store object modules created by compilers and the assembler and stored in a temporary EAM
area in the library as members of type R. Optionally the object modules created by compilers and the
assembler can also be stored directly in a library. The object modules and the dynamic link and load modules
are used as inputs for these members.

Member type S - source programs
Source programs in libraries are used as inputs for the compilers and the assembler in compilation runs.
Member type U - IFG user profiles
Members of this type are created by IFG and stored in the libraries.
Member type X - data of any format
The member type X can accept any data.
Text-type member types - Text members

Types S, M, J, P, D, X are designated text-type member types. Text members are members of these types,
provided that they do not contain and block-oriented records.

PAM members

Members with block-oriented records are referred to as PAM members below, since they are generally
produced by adding a file as a member with FILE-
STRUCTURE=PAM.

196

7.2.3 Convention for member designations

Members are identified in libraries by means of a member designation. This is stored in the directory of the library
and can be output using the LMSCONYV statement SHOW-ELEMENT-ATTRIBUTES.

The member designation comprises the following three components:

®* member name for the logical contents of the members
® member version for the current status of the members

®* member type for classification of the members.

197

7.2.4 Member designations in statements

The member designation, i.e. member name, version and type, in the LMSCONYV statements corresponds to the
ELEMENT, VERSION and TYPE operands in the data structure *LIBRARY-ELEMENT (see "Constructors for
member designations").

The specification of the version is optional. If no value is specified for the version in a statement, the member having
the highest value is selected by default. If a different version is to be selected, note that the version specification
must be a substructure of the member name.

I

| ELEMENT = <conposed-name ... >(...)
| <conposed-nane ...>(...)

| | VERSION = ...

| LTYPE = ...

Syntax of the member designations

ELEMENT composed-name 1..64 with-under with-wild(132)(...)
The member name may begin with a catalog ID not exceeding four characters in length.

VERSION composed-name 1..24 with-under with-wild(52)(...)
For further information on possible version entries, with particular regard to the use and meaning of
keywords, see section “Version management”.
'@' is not permitted as a version entry since it is used to represent the version specification
“UPPER-LIMIT".

TYPE alphanum-name 1..8 with-wild(20)

198

7.2.5 Logging the member designations

The member designations are logged as follows with each output from LMSCONV:
(type) nenber nane/ ver si on[(vari ant nunber)]/ date

The variant number is set to (0001) by default and is incremented by 1 by each write access.

199

7.2.6 Selectors for member designations

If certain members are to be selected in the LMSCONYV statements for processing, this can be done in two ways:

through the use of “wildcard” specifications in the ELEMENT, VERSION and TYPE operands.
The “wildcard” syntax is described in the “Commands” manual [1 (Related publications)].

It is also possible to use the keyword *ALL for an individual asterisk (*) in the operands ELEMENT, VERSION
and TYPE.

Negative selection, i.e. exclusion of members, can also be effected through the use of the minus sign.

through the qualification of attributes, e.g. date and time.

Examples of selectors

Selectors
ELEMENT=AB/C*

All members whose names begin with AB, have any character in the 3rd, and a C in the 4th position are
selected. The contents as of the 5th position are freely selectable.

ELEMENT=<:999>(VERSION=B*)

All members having a name length of up to 3 characters and with a B in the first position of the version are
selected.

ELEMENT=*(VERSION=*), CREATION-DATE=*INTERVAL(FROM=2016-01-01)

All members entered since 1.1.2016 are selected.
ELEMENT=AB*(VERSION=*HIGHEST-EXISTING)

The highest version of all members whose name begins with AB is selected each time.
Selectors with limiting values
ELEMENT=A*(VERSION=*HIGHEST-EXISTING),USER-DATE=*INTERVAL(TO=2016-12-31)

All members of the highest version whose names begin with A and which have a date earlier than 1.1.2017
are selected.

ELEMENT=AB<:9>(V=107)

All members whose names begin with AB, are up to 3 characters long and have the version 107 are
selected.

Multiple selection with members for exclusion
ELEMENT=-ABC

All members except member ABC are selected.
TYPE=-S

All members whose names begin with A and whose versions do not begin with B are selected.

200

7.2.7 Constructors for member designations
For those LMSCONV statements which permit a second member designation in addition to the selector, the
designation of the second member can be constructed from the designation of the selector.

The constructor is restricted to the member designation, i.e. to member name, version and type. This corresponds
in the statements to the ELEMENT, VERSION and TYPE operands in the data structure *LIBRARY-ELEMENT. In
each case here like-named operands, which are identified by means of certain wildcard characters, are mapped
onto one another.

The constructor syntax is described in the “SDF Dialog Interface” manual [20 (Related publications)].

Examples of constructors

The examples below illustrate how LMSCONYV forms member names. The member type S is preset using the
MODIFY-DEFAULTS statement. The individual examples are mutually independent, i.e. the result of one example
is not used in another.

The following members are defined:

' TYP NAME VER (VAR#) DATE NANVE VER (VAR#) DATE
'(S) ABC 001 (0001) <date> ABCD 001 (0001) <date> ;
1 (S) ABCDE 001 (0001) <date> X. 1 001 (0001) <date> 5
Statement Effect

/| COPY- ELEMENT (, ELEM= ABC), ABC is copied to ABX

ABCD s not copied

TO ELEM=(, ELEM= ABX) ABCDE is not copied

/ | COPY- ELEMENT (, ELEM= AB*), ABC is copied to XYC(A02)
ABCD is copied to XYCD(A02)

TO ELEM=(, ELEM= XY* (A02))
(() ABCDE is copied to XYCDE(A02)

/1 COPY- ELEMENT (, EL= ABCx<, D>), ABC is copied to AXC
ABCD is copied to AXCD

TO ELEM=(, ELEM= AXC<1>) ABCDE s not copied

/ | COPY- ELEMENT (, ELEM= AB*), ABC is copied to S. ABC
TO ELEM=(, ELEM= S. AB*) ABCD is copied to S. ABCD
ABCDE is copied to S. ABCDE

/] COPY- ELEMENT (, ELEM= *B*), ABC is copied to A. C
TO ELEM=(, ELEME *. *) ABCD is copiedto A. CD
ABCDE is copied to A. CDE

201

/ | COPY- ELEMENT (, ELEM= /B/),
TO ELEM=(, ELEME //)

/| COPY- ELEMENT (, ELEM= *CD*),
TO ELEM=(, ELEMF <1>. <1>)

/ | COPY- ELEMENT (, ELEME /B/),
TO ELEME(, ELEME <2> <1>)

/ | COPY- ELEMENT (, ELEME /B/),
TO ELEME(, ELEME XYZ<2>)

/ | COPY- ELEMENT (, ELEME X.),
TO ELEM=(, ELEME Y.)

Table 3: Effect of the COPY statement

ABC
ABCD
ABCDE

ABC
ABCD
ABCDE

ABC
ABCD
ABCDE

ABC
ABCD
ABCDE

is copied to AC
is not copied
is not copied

is not copied
is copied to AB. AB
is copied to AB. AB

is copied to CA
is not copied
is not copied

is copied to XYZC
is not copied
is not copied

is copiedto Y. 1

i When using selector and constructor structures, please observe the following:

® At least one placeholder of the source member must be present in the constructor specification.

® Several different input names may be mapped to the same output name. Depending on what has been

set for the WRITE-MODE processing operand, the various data may be overwritten. Example: /A/ ->

BA/. Both members XAl and XA2 are mapped to BAX.

® *ALL in the selector specification can be referenced with a * in the constructor specification just like the

single asterisk (*) in the selector specification. *ALL in the constructor specification is not possible.

Example: *ALL -> *B* means the same as * -> *B*

202

7.2.8 Member attributes

All members have certain attributes, regardless of their type:

* CREATION-DATE and CREATION-TIME

* MODIFICATION-DATE and MODIFICATION-TIME

* USER-DATE and USER-TIME

* SECONDARY-NAME and SECONDARY-ATTRIBUTE (reference entry)("})
* CODED-CHARACTER-SET

The values of this attribute are displayed when outputting the contents of a library.

(*1) Reference entries are entries in the secondary directory of the library. They are created when the user
creates reference records (record type 163) of the form
<secondary-name> <secondary-attribute> when writing a member.

The reference entries document the relation “one particular <secondary-name> and <secondary-attribute>
occurs in the member”. This type-based sorting of the reference entries permits the query: “In which
member of type TYPE does the reference entry occur?”.

This is implemented by the following LMSCONYV statement:

/ | SHOM ELEMENT- ATTR (*STD, *, TYPE= ..., SECONDARY- NAME=. ., -
SECONDARY- ATTRI BUTE=. . . ,)

This designation is used for modules (type R or L) as the basis for the autolink function (see the “Binder”
manual [12 (Related publications)]);
reference entries are, for example, <nanme> <CSECT> or <nane> <ENTRY>.

Input format of the date

The input format of the date is as follows:

[YY] YY- MM DD [YY]YY : Year; optionally 2- or 4-digit
MM : Month

DD : Day

If the year is entered in 2-digit form, LMSCONYV adds the century data using the reference year:
YY < 60 --> 20YY

YY >= 60 > 19YY

203

7.2.9 Type dependencies

The following table shows which member types can be used in the various LMSCONYV statements and what type
checks LMSCONYV performs. Only if the conditions specified in the type check apply, will the relevant statement be

executed.

Statement Member type
Source Target Check

SHOW ELEMENT al phanum 1. ..8
SHOW ELEM ATTR al phanum 1...8
DELETE- ELEVMENT al phanum 1...8
COPY- ELEMENT al phanum 1...8 al phanum 1...8 Source = Target
MODI FY- ELEMENT R CL R CL Source = Target

SSMP,D J, X SSMP,DJ, X Source = Target
MOD- LOGGE NG PAR P
ADD- ELEMENT "text "(1)SAMfile SSMP,D,J, X

"bl ocks " PAMfile X

“module " file,*OW R

"phase " PAMfile C
EXTRACT- ELENVENT S,MP,D,J, X (1)SAMfile

X PAM Fi |l e

R (1)SAMfile

C PAM Fi |l e

Table 4: Possible member types for LMSCONYV statements

204

7.2.10 Version management

The version of a member is defined in the member designation and identifies the current state of the member.

The following section describes the possible version designations and provides information on version maintenance
and storage.

Version maintenance and storage

In libraries, a member is uniquely defined by its type, name and version designation. Furthermore, it is possible to
store several versions under one member type and member name.

If the user does not specify the version to be processed, LMSCONYV automatically performs the following actions:
® In read mode that member is sought which has the specified name and the highest version designation. The date
is ignored.
® In write mode the actions depend on the statement:
® // ADD- ELEMENT and MODI FY- LOGE NG- PARAMETERS TEXT- QUTPUT=
The member is generated or overwritten with the highest version X'FF'. LMSCONYV identifies this version by
@.

® Other statements
The output member is given the version designation of the input member.

If an identically named member is overwritten, the internal variant number is incremented by 1. This serves as
a write counter.

Different states of a development object are stored in different members. Initially, only the user is aware of the
relationships between individual members; they are not anchored in the library. Each member is an independent
unit in the context of a library.

Version designations

The member versions which are to be processed by LMSCONV are identified in the LMSCONYV statements by
means of the VERSION operand. A distinction is made between the source version and the target version.

® Source version
If a member is used as the input for a function, e.g. if it is to be copied or changed, the member version is then
called the source version.

The source version can be specified as follows:

® composed-name
The version specified by composed-name is the source version.

¢ *UPPER-LIMIT
This entry selects the highest possible version (represented internally by X FF).

® *HIGHEST-EXISTING
This entry selects the highest existing version of the specified member name.

® Target version
If the member is used as the result of a function, e.g. if it is to be written back, the member version is then called
the target version.

The target version can be specified as follows:

205

* *BY-SOURCE
The source version is also the target version. If the source is not a library member, *UPPER-LIMIT is the
target version.

® *UPPER-LIMIT
The absolute highest version, represented internally by X'FF', is the target version.

® composed-name
The version specified by composed-name is the target version. If “@” is entered, it will be rejected.

206

7.2.11 Data protection by overwriting

Data protection by overwriting means that the user specifically deletes files that are no longer required by
overwriting them. The data is physically deleted by this operation, i.e. overwritten with X'00". Overwriting of data is
controlled locally by the LMSCONYV statement DELETE-ELEMENT or globally in MODIFY-DEFAULTS, by the
DESTROY-DATA operand in each case.

The DESTROY-DATA operand is on the one hand a member attribute, i.e. overwriting automatically acts on this
member, and on the other hand a processing parameter of the LMSCONYV statement DELETE-ELEMENT. As a
processing parameter, DESTROY-DATA causes all members covered by the statement to be overwritten on
deletion.

The data is overwritten with X'00" if one of the following specifications calls for overwriting:

® system parameter DESTLEV
® gpecification for member: value of DESTROY-DATA on last creation or on last write access to the member
® gpecification via the DESTROY-DATA operand in the MODIFY-DEFAULTS statement

207

7.2.12 Auditing

The access method PLAM used by LMSCONYV has an interface with the subsystem SAT (security audit trail) in the
security package SECOS (see the “SECOS” manual [21 (Related publications)]). When SAT is active, the following
events can be selected by the security administrator for logging:

® CREATE ELEMENT

* MODIFY ELEMENT

® READ ELEMENT

® EXECUTE ELEMENT

® CLOSE ELEMENT

® DELETE ELEMENT

* RENAME ELEMENT

® CREATE SECURITY ATTRIBUTES

* MODIFY SECURITY ATTRIBUTES

® DELETE SECURITY ATTRIBUTES

208

7.2.13 Extended Host Code Support (XHCS)

LMSCONV supports the use of special (national) character sets. This coded character set name (CCSN) assigned
to the member is - as far as possible - forwarded to the interfaces and taken into account during output.

If XHCS is not offered at the relevant interface, the default “no code” is always used.

LMSCONV itself does not require a particular character set, and does not even interpret the default setting in the
user ID; internal sorting procedures, e.g. for the member names, are carried out independently of the CCS.

1. Implicit setting of the CCSN for a member
Each member of a library can be assigned a character set. LMSCONYV then always transfers the CCSN of the
source to the target member.
This can happen by adding a file with the ADD-ELEMENT statement by adopting the catalog attribute CCS.
However, the CCSN is not stored extra in the attribute record (record type 164), so as to avoid inconsistencies.

If data is added from the logical system file SYSDTA, the particular character set applicable is determined and
the name is assigned to the member as an attribute.

When adding modules from the EAM file, the modules are assigned the attribute “no code”.
When copying members, the CCSN of the source member is always assigned to the target member.

2. CCSN logging
The SHOW-ELEMENT-ATTRIBUTES statement and the operand INFORMATION= *MAXIMUM provide
information on the assignment of coded character sets to members. Members that have the CCSN “no code”
are not shown in the display.

3. Interpreting and forwarding the CCSN of a member
When members are output to files, the corresponding CCSN of the member is assigned to the file.

The following applies to the output information created by LMSCONV:

When outputting member records to SYSOUT (also formatted) with the SHOW-ELEMENT statement, the CCS
of the corresponding member is used. If SYSOUT is assigned to a file, the user must explicitly assign the
desired character set to this file with /MODIFY-FILE-ATTRIBUTES.

When outputting member records to SYSLST, no CSSN is interpreted. If SYSLST is assigned to a file, the user
can explicitly assign the desired character set to this file with /MODIFY-FILE-ATTRIBUTES .

For SAM node files, the name of the coded character set on Net-Storage (NETCCSN) is a file attribute.
Therefore, only the character set of the element (CCSN) can be changed using the MODIFY-ELEMENT-
ATTRIBUTES statement, but not the file attribute NETCCSN. That means that after changing the CCSN and
extracting a member the resulting SAM node file may eventually not be edited if the required code conversion
cannot be executed. In this case, the correct code table should be set using the MODIFY-FILE-ATTRIBUTES
command.

If the output stream is reassigned to a library member by MODIFY-LOGGING-PARAMETERS, this member
receives the CCSN “no code”.

When outputting directories or other member information created by LMSCONYV, the CCSN “no code” is always
assumed.

4. Extending members and files with WRITE-MODE=*EXTEND
If WRITE-MODE=*EXTEND is used, LMSCONV checks the CCS names of the source and target. If they do not
match, processing is terminated with an error.

209

7.3 LMSCONV functions

This chapter gives an overview of the LMSCONYV functions.

210

7.3.1 Starting LMSCONV

LMSCONV is called with the following command:

/ START- LMSCONV

START Alias: LMSCONV

VERSION = *STD / <product-version>
,MONJV = *NONE / <filename 1..54 without-gen-vers>

,CPU-LIMIT = *JOB-REST / <integer 1..32767 seconds>

Preset options following LMSCONYV startup

Default values come into effect following LMSCONV startup. These apply to certain operands in statements in
which the keyword *DEFAULT may be specified. The default values can be modified using the MODIFY-
DEFAULTS statement.

The following table indicates which statements are affected by the default values, or whether the default values
influence the entire LMSCONV run.

LMSCONYV default Default value Effect on Meaning of the defaults
ELEMENT- ATTRI BUTES Statements with type
specification .
TYPE * UNDEFI NED Specifies member type
*ALL SHOW ELEMENT- ATTR

EL EVENT- VERSI ON Specifies source version

* BY- SOURCE Target version

Specifies target version
TO ELEM VERSI ON

SOURCE- "1 GNORE ADD- ELENENT Handles file attributes
ATTRI BUTES
FI LE- ATTRI BUTES *| SAM EXTRACT- ELEMENT Attributes for target file
DESTROY- DATA *NO DELETE- ELEVENTY Overwrites data
WRI TE- MODE * CREATE ADD- ELEMENT Overwrites members
COPY- ELEMENT

EXTRACT- ELEMENT

MODI FY- ELEMENT

211

DI ALOG CONTROL

| NFORVATI ON
LAYOUT

SORT

QUTPUT- FORM
DELETE- SOURCE
MAX- ERROR- VEEI GHT

NEXT- ATTEMPT

TEXT- | NFORVATI ON

MODULE- | NFORVATI ON

PHASE- | NFORVATI ON

LLM I NFORVATI ON

Table 5: Effect of the default values

*NO

*MEDI UM
*VARI ABLE
* BY- NAMVE
*STD

*NO

*SERI QUS

*NO

*ALL
*ALL
*ALL

*ALL

ADD- ELEMENT
COPY- ELEMENT
DELETE- ELEMENT
EXTRACT- ELEMENT
MCDI FY- ELEMENT

MODI FY- ELEMENT-
ATTRI BUTES

SHOW ELEM ATTR

SHOW ELEMENT
ADD- ELEMENT
alle Anweisungen

Anweisungen mit
* LI B- ELEMANngabe

SHOW ELEMENT

Interactive query-driven interface that
offers each member individually.

Information set
Display

Sort order

Output form
Deletes source file
Spin-off control

Controls attempts to open for file/type
member lock

Info. for text type members
Module information (type R)
Phase information (type C)

LLM information (type L)

1) If the DESTROY-DATA operand is modified with MODIFY-DEFAULTS, it indirectly affects the ADD-ELEMENT, COPY-ELEMENT and EXTRACT-ELEMENT statements as well.

212

7.3.2 Assigning libraries

In LMSCONYV statements, libraries are specified by means of the LIBRARY operand. There are several ways of
assigning a library, all of which ultimately lead directly or indirectly to libraries:

1. Globally defined library (*STD)
2. Direct name of a library
3. Indirectly via a link name

Numbers 2 and 3 of the above options can be used to define the global library.

If a statement uses libraries, LMSCONYV opens the libraries that are used in this statement. LMSCONV closes all
other open libraries, regardless how many libraries have been used before in the current LMSCONYV run. The
statements, which don't use libraries (e.g. SHOW-DEFAULTS), don't influence the states of libraries.

The LMSCONYV statement SHOW-LIBRARY-STATUS provides information on the status of the libraries to be
processed.

Globally defined library (*STD)

The globally defined library is assigned by means of OPEN-LIBRARY and reset to undefined by means of CLOSE-
LIBRARY.

Direct name of a library

The specified file name designates a library. This specification is often used during work with LMSCONV.

Indirectly via a link name

The name <link> specified under *LINK designates a link name. As a rule, the link name is a file link name defined
via /ADD-FILE-LINK, to which a library is assigned in the FILE-NAME operand.

213

7.3.3 Processing members

The following sections provide an overview of the possible ways in which members can be processed with
LMSCONV. LMSCONYV can

add elements to libraries

output elements to files

output elements to other libraries (copy)
list elements

delete elements

correct elements

output the directory of a library

Adding members to alibrary

The following statements add members to the assigned library:
ADD-ELEMENT, COPY-ELEMENT and MODIFY-LOGGING-PARAMETERS.

The WRITE-MODE operand determines whether or not an identically named member in the output library is
overwritten.

ADD-ELEMENT

The ADD-ELEMENT statement (see "ADD-ELEMENT - Add member to library") adds files, modules from the
EAM area and records from the LMSCONYV statement stream to the assigned library as members. If no library
is specified, the library opened by OPEN-LIBRARY is used.

The FIXED and UNDEFINED record formats are converted into the VARIABLE record format, i.e. given a 4-
byte record header. Libraries permit files with a RECORD-SIZE of up to 32 Kbytes (including the record
header) to be stored.

If an ISAM file is added, the SOURCE-ATTRIBUTES operand determines whether the file attributes, the ISAM
key and information on ISAM secondary keys are included.

ISAM keys having a length of up to 255 bytes may then be stored. Members having ISAM keys are suitable
only for archiving (see notes below).

If the operand SOURCE-ATTRIBUTES=*KEERP is set, it is also possible to include files with RECORD-
FORMAT=*FIXED; if not, only RECORD-FORMAT=*VARIABLE is allowed.

The last byte pointer of a PAM file is always retained when the file is added to a library as a member of the
type X. If it is added as a member of the type C, its LBP is only retained if SOURCE-ATTRIBUTES= *KEEP
(KEEP-TYPES=*ALL).

For SAM node files, the coded character set on Net-Storage (NETCCSN) can be preserved if they are added
to the library using ADD-ELEMENT SOURCE-ATTRIBUTES=*KEEP.

The ISAM keys of a source program file should not be included in the member. The compiler cannot
translate the source program from this member without errors if ISAM keys are present.

If system file SYSDTA is assigned to a member which has stored the ISAM key, the ISAM keys are also
read. The ISAM keys must then be removed from the program which carries out the processing.

214

Files can be stored under the following member types:

Figure 5: Adding members with ADD-ELEMENT

COPY-ELEMENT

The COPY-ELEMENT statement (see "COPY-ELEMENT - Copy member") copies members from the input
library to the output library, storing them there with different member designations, if desired:

Figure 6: Adding members with COPY-ELEMENT

MODIFY-LOGGING-PARAMETERS

The statement MODIFY-LOGGING-PARAMETERS TEXT-OUTPUT=*LIBRARY-ELEMENT (see "MODIFY-
LOGGING-PARAMETERS - Modify logging settings") writes the LMSCONYV log in the member specified by
*LIBRARY-ELEMENT:

215

Figure 7: Storing the LMSCONYV log in a member

Outputting members to afile

The members of a library are output to a file by means of the EXTRACT-ELEMENT statement (see "EXTRACT-
ELEMENT - Output member to file") :

Figure 8: Outputting members

File attributes that were stored when adding a member will be restored when outputting the member to a file. This
includes also the last byte pointer (LBP) for PAM files and the coded character set on Net-Storage (NETCCSN) for
SAM node files.

If the LBP is stored when adding a member, the member cannot be extracted to a tape or private disk.
LMS with a version smalller than V3.4C cannot extract C-members with stored file attributes and may
create an empty PAM file and/or output an error message.

Listing members

The SHOW-ELEMENT statement (see "SHOW-ELEMENT - Display contents of member") displays the member
content. It is possible to define the format in which the members are to be output and how much information is to be
displayed.

Deleting members

The DELETE-ELEMENT statement (see "DELETE-ELEMENT - Logically delete member") deletes members in the
assigned library. A distinction is made between logical and physical deletion:

® Logical deletion
The entries in the directory are deleted and storage space for the member concerned is released (this only
affects space within the library, i.e. the size of the library itself is not reduced).

® Physical deletion
In addition to logical deletion, the storage space of the corresponding member is overwritten with binary zeros.
A member of a library is deleted physically if the DESTROY=*YES parameter has been set or if the member
contains a code for physical deletion or if the system parameter DESTLEV requires it.

Correcting members

LMSCONV provides the following correction statement:

216

MODIFY-ELEMENT (see "MODIFY-ELEMENT - Modify member") corrects object modules, link and load modules,
phases and text members via substatements (Member types R, L, C and member types S, M, J, P, D, X.)

Correction of these members is controlled by various substatements. These are read from the statement stream
immediately following MODIFY-ELEMENT up to the END-MODIFY substatement.

The corrected member is then written back to the assigned library. It may receive a new member designation.
For types R, L and C, you may use the following functions:

® correct text records
® cancel corrections
® delete record types from the input member

For type R only, you may also use the following functions:
® generate REP records

® modify control section attributes

® rename symbols

For text members, you may use the following functions:

® insert records

® delete records

Outputting library directories

The SHOW-ELEMENT-ATTRIBUTES statement (see "SHOW-ELEMENT-ATTRIBUTES - Display member
attributes") logs the directory entries of the specified members or of the entire library.

The directory is always output sorted by member type. The remainder of the sort sequence is determined by the
SORT operand. Unless otherwise specified, member designations are output sorted by type, name and version.

To obtain the complete directory of a library, all you have to do is enter the SHOW-ELEMENT-ATTRIBUTES
statement without further operands, provided no individual member type was specified using the MODIFY-
DEFAULTS statement.

Storing procedures
LMSCONV allows the user to store procedures and ENTER jobs as members in libraries (member type J).
Existing procedure files can be added to libraries as members by means of ADD-ELEMENT.

Storing procedures in this way, especially where small command files are concerned, saves storage space. The
number of catalog entries is decreased.

Note, however, that any ISAM keys that have been stored (see "Processing members") must be removed from the
members before the procedure is called.

A library member can also be assigned as the system input file (SYSDTA) by means of /ASSIGN-SYSDTA (see the
“Commands” manual [1 (Related publications)]).

217

7.3.4 Controlling the LMSCONYV run

The following section describes the facilities provided by LMSCONV for controlling the LMSCONYV run.

Controlling log output

The LMSCONYV log contains everything output by LMSCONV, such as the result of the statements, their execution
or abnormal termination, the assigned 1/O libraries as well as lists generated, for example, when members are listed

or compared.

The log may be written to the system file SYSOUT, SYSLST or to a library member. The output medium is specified
by means of the TEXT-OUTPUT= operand of the MODIFY-LOGGING-PARAMETERS statement.

If the log is written to a member, LMSCONV normally creates a P-type member.

Error messages are always output.

The following table shows which operands in which statements control output of the log:

Statement

MODI FY- LOGE NG

PARAMETERS

SHOW ELEMENT

SHOW ELEMENT- ATTRI BUTES

Table 6: Log output control

Operand

LOGAE NG

TEXT- QUTPUT
QUTPUT- LAYCOUT

LI NES- PER-
PAGE

LI NE- SI ZE

EXTRA- FORM
FEED

HEADER- LI NES
QUTPUT- FORM

TEXT-/
MODULE- /

PHASE-/ LLM

| NFORVATI ON
SORT

LAYQUT

| NFORVATI ON

TEXT- QUTPUT

Function

Specifies whether or not positive acknowledgments are
logged

Specifies the output medium for the log
Specifies the output format for the log

Specifies the number of lines on a log page

Specifies the length of a line

Controls the form feed of the log for member change

Specifies whether headers are output
Specifies the record layout when listing member contents.

Specifies the output scope when listing the member
contents.

Specifies the sort mode for the contents
Specifies the log format of the contents
Specifies the log scope of the contents.

Controls the log output

218

Positive and negative acknowledgments

If the operand LOGGING=*MAXIMUM is set in the LMSCONYV statement MODIFY-LOGGING-PARAMETERS, the
execution of each LMSCONYV statement affecting a member will be logged. If the statement is executed
successfully, LMSCONV will issue a positive acknowledgment.

If the statement cannot be executed, LMSCONV will log a negative acknowledgment and, if applicable, a
corresponding LMSCONYV error message.

All success and failure messages have the following format:

[NQ statenent nen{word neni[cause]

Function

NO The statement has not been executed

statement Statement name

mem Member designation or file name (in ADD-ELEMENT and EXTRACT-ELEMENT)
word Keyword: AS, INTO, WITH

cause Result: EXISTING, REPLACED, etc.

Controlling screen overflow

LMSCONYV does not itself perform any screen overflow control. BS2000 handles this function. LMSCONYV outputs
can therefore only be aborted if the program interrupt key (K2) key is pressed and /INFORM-PROGRAM is
subsequently entered and sent, see "MODIFY-DEFAULTS - Modify defaults"”.

Error handling in interactive and procedure modes
LMSCONV differentiates between interactive mode and procedure mode.

® |nteractive mode

In interactive mode, following output of the error message, the prompt // appears, requesting entry of the next
statement.

® Procedure mode

Users can themselves specify what errors are to trigger LMSCONV'’s spin-off mechanism. They control this by
setting the MAX-ERROR-WEIGHT operand (see the MODIFY-DEFAULTS statement). According to the setting
of this operand, serious errors cause LMSCONYV to branch to the next STEP or END statement. If a serious error
occurs during the processing of substatements, the associated main statement is aborted and the spin-off
mechanism is activated. This means that a main statement is always expected to follow STEP. If the spin-off
mechanism is activated in LMSCONYV without a STEP having been read, LMSCONYV then terminates with TERM
UNIT=STEP,MODE=ABNORMAL.

Interrupting the LMSCONV run
The user can interrupt the LMSCONV run by pressing one of the program interrupt keys (e.g. K2).

Continuation of the LMSCONYV run can be controlled by /INFORM-PROGRAM, which may optionally be supplied
with an input text. This input text is subsequently interpreted by LMSCONYV during interrupt handling. The current
function is informed of the type of termination and terminates in the desired way. The possible inputs are described
under the DIALOG-CONTROL operand of the MODIFY-DEFAULTS statement (see "MODIFY-DEFAULTS - Modify
defaults").

219

Termination of LMSCONV due to errors
Error handling is also controlled by means of the STXIT routine.

In the case of program termination, connection failure, or specification of / START- EXECUTABLE- PROGRAM
/ LOAD- EXECUTABLE- PROGRAM / CANCEL-JOB, /LOGOFF, / CANCEL- PROGRAM / ABEND,/ EXI T-JOB, a
check is performed to ensure that the libraries remain consistent.

The following applies to all program termination conditions:

® All STXIT routines in LMSCONYV are deactivated in order to prevent any incorrect continuation of processing by
/INFORM-PROGRAM.
® | MSCONYV simulates an END statement. This causes all open libraries to be closed.

220

7.3.5 Disks without PAM key

New disk formats, particularly the non-key (NK) format, have been introduced to increase the storage capacity and
the data transfer rate of disk storage. A non-key (NK) disk is formatted without PAM key. In order to be able to use
the NK disk, K files must be converted to NK files (PAM key elimination).

BS2000 only supports disks with fixed block size (2 Kbytes, 4 Kbytes, etc.). These fixed block sizes are not readily
compatible with PAM keys. For this reason the PAM keys have been done away with.

There are two different file formats on disk for SAM, ISAM and UPAM files; the previous format tied to the PAM key
(K format) and the non-key format (NK2 and NK4 formats).

The file format is defined by the BLKCTRL value. BLKCTRL can assume the value PAMKEY, DATA, DATAZ2K,
DATA4K or NO. For details on the file formats, please refer to the “Introductory Guide to DMS” [4 (Related
publications)].

Library files

The distinction between K and NK format derives primarily from DMS. This distinction is reflected in the following
ways in the internal file organization of the library:

The PAM key is not required. With regard to files, however, there is difference which is represented by the
BLKCTRL file attribute.

Libraries need not be converted with PAMCONV when migrating between the K and the NK environments.

Member processing

The following diagram provides an overview of the situations which may arise when transferring data between the
file and library members. For members, logical information units are listed; for files, the BLKCTR value is given. The
arrows indicate the transfer direction.

221

Figure 9: Transfer of information between the file and the library members

Use of the ADD-ELEMENT statement
The ADD-ELEMENT statement is used to store file contents in members. Note the following details:

®* SAM/ISAM files

When SAM and ISAM files are added, the BLKCTRL value is also stored if SOURCE-ATTRIBUTES=*KEEP has
been set, i.e. the original file block structure determined by the BLKCTRL value is documented in the attribute
record.

The individual records are read using the SAM/ISAM logical access method and written unchanged to the
member as variable-format records.

The member structure generated is independent of the original BLKCTRL attribute.
* PAM files

When PAM files are added, the BLKCTRL value, too, is always stored. The blocks of the file are read using the
UPAM access method and stored unchanged as a block in the member. If PAM keys are specified, i.e.
BLKCTRL=PAMKEY, these PAM keys are stored in the member.

The generated member thus retains the block structure determined by the BLKCTRL value.
® phases

When phases are added, the BLKCTRL value is not stored. The corresponding format specification is stored on
file in the phase information. In the library, K phases and NK phases have the same format. The PAM key
information is stored in descriptors.

222

ADD file > member File type BLKCTRL entry PAMKEY storage
in attribute record

File resides on NK disk SAM/ISAM --1)
SAM/ISAM from the catalog no
UPAM from the catalog no
File resides on K disk SAM/ISAM -.1) no
SAM/ISAM from the catalog no
UPAM from the catalog for BLKCTRL=PAMKEY

Table 7: BLKCTRL and PAMKEY for ADD-Element

1 Storage can be controlled via the SOURCE-ATTRIBUTES operand

Use of the EXTRACT-ELEMENT statement

The EXTRACT-ELEMENT statement is used to output the contents of members to files. The BLKCTRL value is
determined in accordance with the following hierarchy:

1. The specification in the catalog entry or /ADD-FILE-LINK.

2. BLKCTRL value stored for the member. This is relevant only for files which were original PAM files.

3. Settings of the system parameter BLKCTRL= PAMKEY or NONKEY. This can be displayed by means of
/SHOW-SYSTEM-PARAMETERS.

4. Disk attribute PAMKEY or NONKEY.

If no catalog entry exists and the BLKCTRL value has not been stored, the system parameter and the disk attribute
determine the BLKCTRL value:

Figure 10: Relationship between system parameter and BLKCTRL value

If the system parameter has been set to PAMKEY, LMSCONYV lets the system define the BLKCTRL value, i.e.
BLKCTRL is not specified.

If the system parameter has been set to NONKEY, LMSCONYV sets BLKCTRL=DATA for SAM and ISAM files, and
BLKCTRL=NO for PAM files.

223

Note the following details:

® |SAM files

Variable-length member records are written using the ISAM logical access method. The BLKCTRL value of the
file is determined according to the algorithm described above; in this case, however, point 2 of the hierarchy
above does not apply, as the BLKCTRL value stored for the member is used for documentation purposes only
and is ignored.

® SAM files

If BLKCTRL=DATA is specified, a DMS error occurs if records in the member are longer than 32 Kbytes - 16
bytes. In the K environment, these records may have a length of up to 32 Kbytes - 4 bytes. When selecting
records, LMSCONYV passes those which are too long to DMS without checking them. The BLKCTRL value is
determined in the same way as for ISAM.

®* PAM files

In the NK environment, the PAM keys are lost. In addition, when BLKCTRL=DATA is specified, the first 12 bytes
of each logical block are overwritten by the system. In both cases LMSCONYV issues a warning.

® Phases (C-type members)
Phases (C-type members) are handled in a special way. In addition to the old phase format (K phase), there is a
new “PAM-key-free” phase format (NK phase) for files.

Summary

®* SAM/ISAM files

It is always possible to add and select files. Any BLKCTRL values stored are used for documentation purposes
only.

The internal file format is always determined by the SAM/ISAM access method. This method also converts
records to the internal block format of the file.

* UPAM files

Neither the UPAM access method nor LMSCONYV can be used for the automatic conversion of data, since this
would result in data being lost.

Control rests ultimately with the user.

File type Created / stored BLKCTRL entry
UPAM in the attribute record
PAMKEY DATA NO --
File resides on NK disk 1 ADD ADD
2) EXTRACT EXTRACT EXTRACT
File resides on K disk ADD ADD ADD ---

EXTRACT EXTRACT EXTRACT EXTRACT

Table 8: BLCTRL entry depending on the disk format for UPAM files
1) The value BLKCTRL=PAMKEY is not possible

2) The selection process must be controlled by the user, e.g. by specifying a link name in the statement.

224

7.3.6 NK4 disks

In BS2000 there are two formats for libraries. A 2K-oriented format (NK2 PLAM file) and a 4K-oriented format (NK4
PLAM file). The COPY-LIBRARY statement converts from one format to the other. The user determines the
appropriate format with the aid of /ADD-FILE-LINK ...,BUFFER-LENGTH=*STD(1 or 2). LMSCONYV supports both
library formats. It also supports NK4 disks with the ADD-ELEMENT and EXTRACT-ELEMENT statements.

Adding files with ADD-ELEMENT

Using the ADD-ELEMENT statement, files of any BUFFER-LENGTH can be added to a library.

Outputting files with EXTRACT-ELEMENT
For the EXTRACT-ELEMENT statement, a distinction is made between the following cases:
1. The member has an attribute record with the original BUFFER-LENGTH specification (e.g. following ADD-
ELEMENT with SOURCE-ATTR=*KEEP or for original UPAM files, e.g. also libraries).

a. A BUFFER-LENGTH value is explicitly preset for the target file, either through an entry in the TASK-FILE-
TABLE (TFT) via /ADD-FILE-LINK or directly in the catalog. In this case, the preset value is always used.
When the value is transferred, the following problems may occur:

* SAM/ISAM file
The member records are too long for the preset BUFFER-LENGTH. A DMS error is then reported.
* UPAM file

When creating UPAM files, LMSCONV fills up a logical block (except for the last one) with 2K units and
only then outputs it with UPAM.

With BLKCTRL=DATA, every logical block (BUFFER-LENGTH) begins with a 12-byte block control field
(CF). If the preset BUFFER-LENGTH does not correspond to the stored value, data can be overwritten
with the CF by the DMS. The file is then unusable.

With BLKCTRL=NO, however, unusable files may likewise be generated if the BUFFER-LENGTH is
changed (e.g. PLAM files).

This is why LMSCONYV generally outputs a warning for different BUFFER-LENGTH values (user
specification versus stored value). However, it always attempts to create the file.

b. No BUFFER-LENGTH value is specified or known for the target file. In this case, the value is taken from
the attribute record.

If nin STD(n) is odd, LMSCONYV increments to n+1.
2. The member does not contain any attribute record, e.g. for phase members.
a. The BUFFER-LENGTH value is specified explicitly for the target disk. Procedure as for 1a above.

When creating phases, specifying BUFFER-LENGTH values not equal to STD(1) or STD(2) produces an
error.

b. No BUFFER-LENGTH value is specified or known for the target file.

® For phases, the BUFFER-LENGTH is given by the current environment, i.e. BUFFER-LENGTH=STD(1)
on NK2 disks and BUFFER-LENGTH=STD(2) on NK4 disks. The contents of these phases do not differ.

® Otherwise, BUFFER-LENGTH is calculated on the basis of the maximum record lengths.

All things considered, the following procedure is recommended if files are to be brought onto an NK4 disk via a
library:

225

ok~ 0N

Actions on the NK2 disk:
Extract all “critical” members of the library as files. Critical members are “PAM” members under type X, which,
as a file, have one of the following characteristics:

® BUFFER-LENGTH=STD(n), where n is odd

®* PAM key phases or

® 2K-oriented PLAM files.

Using PAMCONYV, convert all files with an odd BUFFER-LENGTH (except PLAM files) into NK4 files.
Using PAMCONYV, convert all PAM key phases into NK phases.

Using the LMSCONV statement COPY-LIBRARY, convert NK2 PLAM files to NK4 PLAM files.

Then use the ADD-ELEMENT statement to add the NK4 files to an NK4 PLAM file and transfer that file to the
NK4 disk.

226

7.3.7 Handling alias names (ACS)

The ACS (Alias Catalog System) subsystem permits the use of alias names for managing files. How LMSCONV
treats ACS alias names is described below.

Formulation of member names
The file name converted by ACS is always used for building member names.
Example
Alias X becomes file name FILE.X
The LMSCONYV statement ADD-ELEMENT X,(,*BY-SOURCE(001),S) creates the member S/FILE.X/001
Formulation of file names
The current file name is always used for building file names. It is then possibly converted by ACS.
Example
Alias X becomes file name FILE.X
The LMSCONYV statement EXTRACT-ELEMENT (,X,S),*BY-SOURCE creates the file FILE.X

Logging file names

LMSCONYV always logs the fully converted file name.

227

7.4 Statements

¢ Overview of the LMSCONYV statements
® LMSCONYV statements ADD-ELEMENT to MODIFY-ELEMENT
® ADD-ELEMENT - Add member to library
® CLOSE-LIBRARY - Close library
® COPY-ELEMENT - Copy member
® COPY-LIBRARY - Copy library
® DELETE-ELEMENT - Logically delete member
® END - Terminate LMSCONV
¢ EXTRACT-ELEMENT - Output member to file
* MODIFY-DEFAULTS - Modify defaults
® MODIFY-ELEMENT - Modify member
® Substatements of MODIFY-ELEMENT for member types R, C and L
® ADD-REP-RECORD - Add REP records to object module
® ADD-TEXT-MODIFICATION - Correct text records of an object module
® DELETE-RECORD-TYPE - Exclude record types from input member
® END-MODIFY - Terminate input of substatements
® MODIFY-CSECT-ATTRIBUTES - Modify CSECT attributes
* MODIFY-MODIFICATION-DEFAULTS - Specify global defaults
* REMOVE-MODIFICATION - Cancel corrections
* RENAME-SYMBOLS - Rename symbols
® Substatements of MODIFY-ELEMENT for text members
¢ ADD-RECORD - Add records
¢® END-MODIFY - Conclude substatements
¢* REMOVE-RECORD - Delete record or record area in member
® LMSCONYV statements MODIFY-ELEMENT-ATTRIBUTES to WRITE- COMMENT
* MODIFY-ELEMENT-ATTRIBUTES - Modify member attributes
* MODIFY-LOGGING-PARAMETERS - Modify logging settings
® OPEN-LIBRARY - Open global library
¢ SHOW-DEFAULTS - Output current default values
¢ SHOW-ELEMENT - Display contents of member
® SHOW-ELEMENT-ATTRIBUTES - Display member attributes
® SHOW-LIBRARY-ATTRIBUTES - Display library attributes
® SHOW-LIBRARY-STATUS - Display library status
® SHOW-LOGGING-PARAMETERS - Display global LMSCONV parameters
® SHOW-TYPE-ATTRIBUTES - Display attributes of a member type
® SHOW-USER-EXITS - Display LMSCONV version
* WRITE-COMMENT - Write comments to output medium

7.4.1 Overview of the LMSCONV statements

The syntax of the SDF command/statement language is explained in the “Commands” manual [1 (Related
publications)]. The following short forms are used in this manual:

cat-id cat
conpl etion conpl
generation gen

| ower - case | ow
under score under
userid user
version vers
wi | dcar ds wld

The keyword *DEFAULT is no longer described in the individual statements. It always means the value set with the
MODIFY-DEFAULTS statement.

The following also applies to the member type:

The member type is preset to *UNDEFINED. Therefore, MODIFY-DEFAULTS must first be used to define a
member type, since the specification *DEFAULT would otherwise produce an error.

Input rules

The LMSCONYV statements are read via the SDF user interface and processed by the command processor SDF
(System Dialog Facility). Different forms of guided or unguided dialog exist, enabling you to request help menus for
the statements. See the “SDF Dialog Interface” manual [20 (Related publications)].

Continuation lines

It is also possible for statements to extend over more than one record. Splitting is governed by the BS2000
command language conventions. A hyphen (-) is used as the separator character. Statement lines may be up
to 16364 characters long.

Abbreviation options

When entering LMSCONV statements it is permissible to abbreviate statement names, operand names and
keywords.

The following rules then apply:

It is possible in each case to abbreviate from right to left as long as uniqueness is maintained. This applies
both to the name as a whole and to subnames (beginning with a hyphen) and allows for the possibility of the
subname being omitted entirely.

The guaranteed abbreviation options for all statements, operands and operand values are indicated in the
syntax descriptions of the statements by boldface print. It is, however, possible to abbreviate beyond these (so
long as uniqueness is maintained within a structure).

Either no abbreviations or only guaranteed abbreviations should be used in procedures.

229

Positional operands

SDF allows the optional specification of operands as keyword operands or positional operands. However, the
possibility of an operand position changing in a subsequent version cannot be completely ruled out. It is
therefore advisable to avoid using positional operands in procedures.

230

7.4.2 LMSCONV statements ADD-ELEMENT to MODIFY-ELEMENT

® ADD-ELEMENT - Add member to library

® CLOSE-LIBRARY - Close library

® COPY-ELEMENT - Copy member

® COPY-LIBRARY - Copy library

® DELETE-ELEMENT - Logically delete member
® END - Terminate LMSCONV

¢ EXTRACT-ELEMENT - Output member to file
* MODIFY-DEFAULTS - Modify defaults

® MODIFY-ELEMENT - Modify member

231

7.4.2.1 ADD-ELEMENT - Add member to library

ADD-ELEMENT adds files as members to a library. The member data is read from SYSDTA as standard. It can,
however, also be read from an explicitly specified file or *OMF. The files are always added as a member to a library
without a prefix, i.e. without catalog ID or user ID, unless the user has explicitly specified a prefix in the construction
specification.

Files cataloged with RECORD-FORMAT=*UNDEFINED can also be incorporated in libraries. Files having
RECORD-FORMAT=*FIXED can only be stored using SOURCE-ATTRIBUTES=*KEEP. The record formats FIXED
and UNDEFINED are converted into the VARIABLE record format, i.e. are given a 4-byte record header. The record
length, including record header, must not exceed 32 Kbytes.

File generation groups can only be incorporated using link names and a valid LMSCONV member designation.

In the case of the ADD-ELEMENT statement, LMSCONYV adopts the catalog attribute CCS of the file as a member
attribute. If the data is read from SYSDTA, the member generated is given the CCS name set for SYSDTA as an
attribute. If the data is read from *OMF, the member is assigned “no code”.

232

Format
ADD-ELEMENT

FROM-FILE = *STD / *SYSDTA(...) / *ALL / <filename 1..80 without-vers with-wild> / *LINK(...) / *OMF
*SYSDTA(...)
| END ="END'/ <c-string 1..8>
*LINK(...)

| LINK-NAME = <structured-name 1..8>
,TO-ELEMENT = *LIB RARY -ELEM ENT (...)

*LIBRARY-ELEMENT(...)

| LIBRARY =*STD / *LINK(...) / <filename 1..54 without-vers>
| *LINK(...)
| | LINK-NAME = <structured-name 1..8>
| ,ELEMENT =*BY-SOUR CE (...) / <composed-name 1..132 with-under with-wildcard-constr>(...)
| *BY-SOURCE (...
| | VERSION =*DEFAULT / *UPPER-LIMIT / <composed-name 1..24 with-under>
| <composed-name 1..132 with-under with-wildcard-constr>(...)
| | VERSION =*DEFAULT / *UPPER-LIMIT / <composed-name 1..24 with-under>
| ,TYPE =*DEFAULT / <alphanum-name 1..8>
| ,USER-DATE =*TODAY /*BY_SOURCE / <date 8..10 with-compl>
,ELEMENT-ATTRIBUTES = *DEFAULT / *PARAMETERS(...)
*PARAMETERS(...)
| SOURCE-ATTRIBUTES = *DEFAULT /*STD / *IGNORE / *KEEP(...)
| *KEEP(..)
| | KEEP-TYPES =*DEFAULT /*STD/*ALL
,DELETE-SOURCE = *DEFAULT / *NO / *YES
,WRITE-MODE = *DEFAULT / *CREATE / *REPLACE / *EXTEND / *ANY
,DIALOG-CONTROL =*DEFAULT / *NO / *YES / *ERROR

Operands

FROM-FILE =*STD / * SYSDTA(...) / *ALL / <filename 1..80 without-vers with-wild>/*LINK (...) / *OMF
Specifies the file to be added to the library as a member.

FROM-FILE =*STD
Data records are read from the default file, i.e. the system file SYSDTA.
Permissible member types: S, M, P, J, D, X

FROM-FILE =*SYSDTAC(...)
The records are read with RDATA from system file SYSDTA. The records must directly follow the ADD-ELEMENT

233

statement.
Permissible member types:S, M, P, J, D, X, R

END = "*END' / <c-string 1..8>
End criterion for the input. The sequence of records must be concluded with “*END” or a user-defined end
criterion. If the input data contains no end criterion, reading continues to EOF.

i If records are read from the system file SYSDTA (=SYSCMD), they must not begin with “/”. The reason for
this is that the RDATA macro interprets such records as commands and thus passes the return code for
EOF. Therefore it is not possible to pass system commands as records.

FROM-FILE = <filename 1..80 without-vers with-wild >

The data is read from the specified file.

Permissible member types:S, M, P, J, D, X, R, C

Files of the PAM type can be stored only under the member type X.

FROM-FILE = *LINK(...)
The data is read from the file specified via the link name.

LINK-NAME = <structured-name 1..8>
Link name referencing the file.

FROM-FILE = *OMF

Applies only to R-type members.

The data is read from the OMF file. All modules from the OMF file are incorporated. If the EAM area contains more
than one module of the same name, LMSCONYV adds the last module processed to the library.

TO-ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the destination and name under which the member is to be added.

LIBRARY =*STD / *LINK(...) / <filename 1..54 without-vers>
Specifies the library to which the member is to be added.

LIBRARY = *STD
The library opened globally by OPEN-LIBRARY.

LIBRARY = *LINK(...)
The library assigned via a link name.

LINK-NAME = <structured-name 1..8>
Link name of the library.

LIBRARY = <filename 1..54 without-vers>
Name of the library to which the file is to be added as a member.

ELEMENT = *BY-SOURCE(...) /
<composed-name 1..132 with-under with-wildcard-constr>(...)
Name that the new member to be added is to receive. A constructor specification refers to the file name.

ELEMENT =*BY-SOURCE(...)
The member name corresponds to the file name or, in the case of *OMF, to the module name.

VERSION = *DEFAULT / *UPPER-LIMIT / <composed-name 1..24 with-under>Version that the new
member to be added is to receive.

234

VERSION = *DEFAULT
The default value *BY-SOURCE or the current value set MODIFY-DEFAULTS.

VERSION = *UPPER-LIMIT
The highest possible version X'FF' is generated.

VERSION = <composed-name 1..24 with-under>
The text specified here is interpreted as the version designation.

ELEMENT = <composed-name 1..132 with-under with-wildcard-constr>(...)Specifies the name under
which the member is stored.

VERSION = *DEFAULT / *UPPER-LIMIT / <composed-name 1..24 with-under>Version that the new
member to be added is to receive.
For a description of the operands, see above.

TYPE = *DEFAULT / <alphanum-name 1..8>
Type that the new member to be added is to receive. If the value is *DEFAULT and the current value set with
MODIFY-DEFAULTS is *NONE, LMSCONV requires a type specification.

USER-DATE = *TODAY / *BY-SOURCE / <date 8..10 with-compl|>
Date given by the user.

USER-DATE = *TODAY
The current date is given.

USER-DATE = *BY-SOURCE
The CHANGE-DATE of the file is taken over.

USER-DATE = <date 8..10 with-compl>
The date must be specified in the form [YY]YY-MM-DD.

ELEMENT-ATTRIBUTES = *DEFAULT / *PARAMETERS(...)
Determines whether the file characteristics and also the ISAM key are incorporated into the output member..

ELEMENT-ATTRIBUTES = *DEFAULT
The member attributes TYPE=*UNDEFINED, VERSION=*BY-SOURCE and SOURCE-ATTRIBUTES=*IGNORE or
the current value set with MODIFY-DEFAULTS.

ELEMENT-ATTRIBUTES = *PARAMETERS(...)

SOURCE-ATTRIBUTES = *DEFAULT / *STD / *IGNORE / *KEEP(...)

Stores file attributes. This operand has no effect if the data is read from SYSDTA or *OMF. Original attributes
are not stored. If the data is read from a file of the type UPAM, this entry has no effect; it is always as though
*KEEP had been specified.

SOURCE-ATTRIBUTES = *DEFAULT
The default value is *IGNORE (see below) or the current value set via MODIFY-DEFAULTS.

SOURCE-ATTRIBUTES =*STD

No file attributes are stored, and neither is an ISAM key. In this case, it is only possible to add ISAM files to the
member with KEY-POSITION=5, KEY-LENGTH<= 16 and RECORD-FORMAT=*VARIABLE.

For ISAM files a warning is issued that the ISAM key has not been added.

SOURCE-ATTRIBUTES = *IGNORE
As for SOURCE-ATTRIBUTES=*STD, except that no warning is issued.

235

SOURCE-ATTRIBUTES = *KEEP(...)

The following file attributes are stored unchanged in the new member being added: ACCESS-METHOD,
RECORD-FORMAT, RECORD-SIZE, BUFFER-LENGTH, PERFORMANCE, USAGE, ACCESS and USER-
ACCESS. If ACCESS-

METHOD=ISAM is specified, the PADDING-FACTOR, LOGICAL-FLAG-LENGTH, VALUE-FLAG-LENGTH,
PROPAGATE-VALUE-FLAG and the ISAM key and information relating to the ISAM secondary key are also
stored.

KEEP-TYPES = *DEFAULT / *STD / *ALL
Specifies types of members for which file attributes are to be stored.

KEEP-TYPES = *DEFAULT
The default value is *STD (see below) or the current value set with MODIFY-DEFAULTS.

KEEP-TYPES =*STD
Attributes are stored for members of base types S, M, P, D, J, X.

KEEP-TYPES = *ALL
Attributes are stored for members of all base types that are permissible for ADD-ELEMENT.

i For SAM node files LMSCONYV stores the coded character set on Net-Storage (NETCCSN) as
an element attribute. LMSCONYV stores the last byte pointer (LBP) in addition to the previously
stored file attributes

® for PAM members of type X
® for members of type C if KEEP-TYPES = *ALL has been specified

DELETE-SOURCE =*DEFAULT / *NO / *YES
Here, the user can specify whether the original file is to be retained or deleted. This operand has no effect if the
data is read from SYSDTA or *OMF.

DELETE-SOURCE = *DEFAULT
The default value is *NO (see below) or the current value set with MODIFY-DEFAULTS.

DELETE-SOURCE = *NO
The original file will not be deleted.

DELETE-SOURCE = *YES
The original file will be deleted.

WRITE-MODE =*DEFAULT / *CREATE / *REPALCE / *EXTEND / *ANY
Overwriting of a member having the same name. If the member does not exist under this name, it will be created as
a new member.

WRITE-MODE = *DEFAULT
The default value is *CREATE (see below) or the current value set with MODIFY-DEFAULTS.

WRITE-MODE = *CREATE

The target member must not yet exist and is created as a new member.

236

WRITE-MODE = *REPLACE
A member will only be overwritten if a member having the same name is already present. Otherwise ADD-
ELEMENT will be rejected with an error message.

WRITE-MODE = *EXTEND

A member will, however, only be extended if no ISAM keys are stored in the member and the file attributes
ACCESS-METHOD, RECORD-FORMAT and RECORD-SIZE stored in the member match the attributes of the file.
Otherwise ADD-ELEMENT will be rejected with an error message. *EXTEND is not permitted when input is from
SYSDTA.

WRITE-MODE = *ANY
The target member is replaced if it already exists. Otherwise it will be created as a new member.

DIALOG-CONTROL = *DEFAULT / *NO / *YES / *YERROR
This operand specifies whether or not the execution of the statement is carried out interactively with the user.

For more detailed information on dialog control, see the MODIFY-DEFAULTS statement.

DIALOG-CONTROL =*DEFAULT
The default value is *NO or the current value set with MODIFY-DEFAULTS..

DIALOG-CONTROL =*NO
All members are processed without dialog queries, i.e. without the user being able to take control.
Exception: If a member or a library is locked, LMSCONYV inquires whether the attempt to access it shall be repeated.

DIALOG-CONTROL =*YES / *ERROR
See the description in the MODIFY-DEFAULTS statement .

Notes

* |f SOURCE-ATTRIBUTES=*KEEP is specified, the following should be noted: Should any ISAM keys be present,
this can impair subsequent processing such as language processing and /CALL-PROCEDURE. This parameter
value is particularly suited to archiving.

®* When temporary files with wildcards are being added, no constructor specification of the target member name is
permitted, i.e. only ELEM=*BY-SOURCE is permitted.

®* When temporary files are being added with ELEM=*BY-SOURCE, the member receives the internal file name.
This member cannot be output to a file again under another task without explicit specification of a file name.

Example
Adding a member

The file “testmem” is added to library LIB1 under the same name as the member. The type specification must be
specified explicitly here in the ADD-ELEMENT statement since the type is preset to *UNDEFINED as standard.

/start-| msconv
[lopen-library |ibl, *update
/1 add-el ement fromfile=testel emto-elems(type=d)

237

7.4.2.2 CLOSE-LIBRARY - Close library

This statement closes the specified library/libraries. If this statement is specified for a global library, this library is
closed and its name is reset.

If the LMSCONYV output is held in a library member, then the associated library will not be closed and an error
message is issued.

If this statement is specified without parameters, all open libraries are closed and the name of the global library is
reset.

Format
CLOSE-LIBRARY

LIBRARY =*ALL / *STD / <filename 1..54 without-vers> / *LINK(...)
*LINK(...)
| LINK-NAME = <structured-name 1..8>

Operands
LIBRARY =*ALL /*STD / <filename 1..54 without-vers>/*LINK (...)
Specifies the library or libraries to be closed.

LIBRARY =*ALL
All open libraries are closed.

LIBRARY =*STD
The library opened by OPEN-LIBRARY is closed.

LIBRARY = <filename 1..54 without-vers>
Name of the library to be closed.

LIBRARY = *LINK(...)
The library assigned via a link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of /ADD-FILE-LINK prior to the LMSCONYV run.

Examples

All open libraries are closed and the name of the global library is reset.
/lclose-library

The library lib1 is closed.
/lclose-library library=libl

The library that was assigned via the link name lib2 is closed.

[lclose-library library=*link(link-name=lib2)

238

7.4.2.3 COPY-ELEMENT - Copy member

COPY-ELEMENT copies members and libraries one to one. The copied members may receive new member
designations.

The following copy options are available:

® copying one or more members in the same library
® copying one or more members to a different library

® Copy an entire library
Copying with WRITE-MODE=*SUBSTITUTE

Specifying WRITE-MODE=*SUBSTITUTE makes the copied member the only member in the target library with its
type and name. Before copying the member into the target library, LMSCONYV deletes all members having the same
type and name as the target member.

Restrictions

® The input library must not be the same as the output library.

® |f an error occurs during deletion, the statement is aborted.

239

Format

COPY-ELEMENT

ELEMENT = *LIBRARY-EL EMENT (...)
*LIBRARY-ELEMENT(...)
| LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
*LINK(...)
| LINK-NAME = <structured-name 1..8>
,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
*ALL(...)
| VERSION =*HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /

| <composed-name 1..24 with-under with-wild(52)>
<composed-name 1..64 with-under with-wild(132)>(...)
| VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /

| <composed-name 1..24 with-under with-wild(52)>
,TYPE = *DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
*INTERVAL(...)
| FROM = 1900-01-01 / <date 8..10 with-compl>
| ,TO =*TODAY / <date 8..10 with-compl>
,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
*INTERVAL(...)
| FROM = 1900-01-01 / <date 8..10 with-compl>
| ,TO =*TODAY / <date 8..10 with-compl>
,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
*INTERVAL(...)
| FROM = 1900-01-01 / <date 8..10 with-compl>

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| | ,TO =*TODAY / <date 8..10 with-compl>

240

,TO-ELEMENT = *LIBRARY-ELEMENT (...)
*LIBRARY-ELEMENTY(...)
| LIBRARY =*STD / *BY-SOURCE / <filename 1..54 without-vers> / *LINK(...)

*LINK(...)

| LINK-NAME = <structured-name 1..8>
,ELEMENT = *BY-SOURCE (...) / <composed-name 1..132 with-under with-wildcard-constr>(...)

*BY-SOURCE(...)

| VERSION =*DEFAULT /*BY-SOURCE / *UPPER-LIMIT /

<composed-name 1..132 with-under with-wildcard-constr>(...)
| VERSION =*DEFAULT /*BY-SOURCE / *UPPER-LIMIT /
| <composed-name 1..52 with-under with-wildcard-constr>
,TYPE = *BY-SOURCE / *DEFAULT / <alphanum-name 1..20 with-wildcard-constr>
,USER-DATE =*BY-SOURCE / *TODAY / <date 8..10 with-compl>
JWRITE-MODE = *DEFAULT / *CREATE / *REPLACE / *EXTEND / *SUBSTITUTE / *ANY
,DIALOG-CONTROL =*DEFAULT / *NO / *YES / *ERROR

|
|
|
|
|
| | <composed-name 1..52 with-under with-wildcard-constr>
|
|
|
|
|

Operands

ELEMENT = *LIBRARY-ELEMENT(...)

Specifications for the desired member designation.

LIBRARY = *STD / <filename 1..54 without-vers>/ *LINK(...)
Specifies the library containing the members to be copied.

LIBRARY =*STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library from which the members are to be copied.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library.

ELEMENT = *ALL (...)/ <composed-name 1..64 with-under with-wild(132)>(...)
Name of the member to be copied.

VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
<composed-name 1..24 with-under with-wild(52)>
Version of the member to be copied.

VERSION = *HIGHEST-EXISTING
The member with the highest existing version is copied.

241

VERSION = *UPPER-LIMIT
The highest possible version X'FF' in the library under the specified TYPE and name is copied.

VERSION = <composed-name 1..24 with-under with-wild(52)>
The text specified here is interpreted as the version designation.

TYPE =*DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
Type of the member to be copied. If the value is *DEFAULT and the current value set with MODIFY-
DEFAULTS is *NONE, LMSCONV requires a type specification.

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
The member to be copied has any date.

USER-DATE =*TODAY
The member with the current date is copied.

USER-DATE = <date 8..10 with-compl>
The member whose date is entered explicitly in the form [YY]YY-MM-DD is copied.

USER-DATE = *INTERVAL(...)
All members lying in the specified interval are copied.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

TO =*TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
Creation date of the member. For a description of the operands, see the USER-DATE operand of this
statement.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see the USER-DATE operand
of this statement.

TO-ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the destination and name under which the member is to be copied.

LIBRARY = *STD / *BY-SOURCE / <filename 1..54 without-vers>/ *LINK(...)
Specifies the new library name or library to which the member is to be added.

LIBRARY =*STD
The library opened by OPEN-LIBRARY.

LIBRARY =*BY-SOURCE
The member is copied to the library which contains the member being copied.

LIBRARY = <filename 1..54 without-vers>
Name of the library to which the file is to be copied as a member. If the library does not yet exist, it will be
created.

LIBRARY = *LINK(...)
The library assigned via the link name.

242

LINK-NAME = <structured-name 1..8>
Link name of the library.

ELEMENT =*BY-SOURCE(...) /
<composed-name 1..132 with-under with-wildcard-constr>(...)
Name that the new member is to receive.

ELEMENT = *BY-SOURCE(...)
The new name is the same as the old name.

VERSION =*DEFAULT / *BY-SOURCE / *UPPER-LIMIT /
<composed-name 1..52 with-under with-wildcard-constr>
Version that the new member is to receive.

VERSION = *DEFAULT
The default value *BY-SOURCE or the current value set MODIFY-DEFAULTS.

VERSION =*BY-SOURCE
The new member receives the same version as the original member.

VERSION = *UPPER-LIMIT
The highest possible version X'FF' is generated.

VERSION = <composed-name 1..52 with-under with-wildcard-constr>
The new member receives the version specified here.

ELEMENT = <composed-name 1..132 with-under with-wildcard-constr>(...)
Name of the new member to be added. It can also be entered using wildcards.

VERSION = *DEFAULT / *BY-SOURCE / *UPPER-LIMIT /
<composed-name 1..52 with-under with-wildcard-constr>
Version that the new member is to receive.

For a description of the operands, see above.

TYPE = *BY-SOURCE / *DEFAULT /
<alphanum-name 1..20 with-wildcard-constr>
Type that the new member to be added is to receive.

TYPE = *BY-SOURCE
The new member receives the same type designation as the original member.

TYPE = *DEFAULT
If the value is *DEFAULT and the current value set with MODIFY-DEFAULTS is *NONE, LMSCONV requires a
type specification.

USER-DATE = *BY-SOURCE / *TODAY / <date 8..10 with-compl>
Date given by the user.

USER-DATE = *BY-SOURCE
The new member is given the same date as the source member.

USER-DATE =*TODAY
The current date is given.

USER-DATE = <date 8..10 with-compl>
The date must be specified in the form [YY]YY-MM-DD.

243

WRITE-MODE = *DEFAULT / *CREATE / *REPLACE / *EXTEND / *SUBSTITUTE / *ANY
Overwriting of a member having the same name. If the member does not exist under this name, it will be created as
a new member.

WRITE-MODE = *DEFAULT
The default value is *CREATE (see below) or the current value set with MODIFY-DEFAULTS.

WRITE-MODE = *CREATE
The target member must not yet exist and is created as a new member.

WRITE-MODE = *REPLACE
The target member must already exist and is replaced.

WRITE-MODE =*EXTEND
The target member is extended if it already exists. Otherwise it will be created as a new member.

WRITE-MODE = *SUBSTITUTE
All members having the same type and name as the source member are deleted from the target library. The source
member is then copied into the library.

WRITE-MODE = *ANY
The target member is replaced if it already exists. Otherwise it will be created as a new member.

DIALOG-CONTROL =*DEFAULT / *NO / *YES / *ERROR
This operand specifies whether or not the execution of the statement is carried out interactively with the user.
For more detailed information on dialog control, see the MODIFY-DEFAULTS statement.

DIALOG-CONTROL =*DEFAULT
The default value is *NO or the current value set with MODIFY-DEFAULTS..

DIALOG-CONTROL =*NO
All members are processed without dialog queries, i.e. without the user being able to take control.
Exception: If a member or a library is locked, LMSCONYV inquires whether the attempt to access it shall be repeated.

DIALOG-CONTROL =*YES / *ERROR
See the description in the MODIFY-DEFAULTS statement .

Examples

Input library X contains the S-type member A/1. Output library Y contains the S-type member A/2. Following

/ | COPY- ELEM ELEMENT= *LI B(LI B=X, ELEM=FA, TYPE=S), -
TO ELEMENT= *LI B(LI B=Y), WRI TE- MODE=* SUBSTI TUTE

member A/l is then the only member of type S and name A existing in the output library. Member A/2 has
been deleted.

All the members of a product version are located in input library X. These members are to be copied into an existing
output library Y in such a way that, after the copying process is concluded, Y contains only the copied product
version and no other version. This can be done with

/ | COPY- ELEM ELEMENT= *LI B(LI B= X, ELEM= *, TYPE= *), -
TO ELEMENT= *LI B(LI B=Y), WR TE- MODE=* SUBSTI TUTE

244

Copy an entire library

Library libl is copied in its entirety and is given the name lib2. By specifying “*” for member and type, no
knowledge is required of the members contained, i.e. all members are copied one to one to the newly created
library lib2.

/ | COPY- ELEM ELEMENT= *L| B(LI B=Ii b1, ELEM= *, VERSI ON= *, TYPE= *), -
TO ELEMVENT= *LI B(LI B=li b2)

245

7.4.2.4 COPY-LIBRARY - Copy library

The COPY-LIBRARY statement copies a library in its entirety, i.e. together with all its library, type and member
attributes. The target library must either have FILE-STRUCTURE=NONE or not yet exist. The target library is given
the library format corresponding to its value for BUFFER-LENGTH. The statement is thus suitable for converting a
library format.

The file protection attributes of the source library can be taken from the target library. This means that the statement
is suited for reorganizing libraries. The target library is logically identical with the original library and now occupies
the smallest possible amount of disk space.

If an error occurs during processing of the COPY-LIBRARY statement (e.g. insufficient disk space), the target
library is not complete.

Format
COPY-LIBRARY

LIBRARY = <filename 1..54 without-vers> / *LINK(...)
*LINK(...)
| LINK-NAME = <structured-name 1..8>
,TO-LIBRARY = <filename 1..54 without-vers> / *LINK(...)
*LINK(...)
| LINK-NAME = <structured-name 1..8>
,FILE-ATTRIBUTES =*STD / *BY-SOURCE

Operands

LIBRARY = <filename 1..54 without-vers>/ *LINK(...)
Copies the library with the specified name.

LIBRARY = <filename 1..54 without-vers>
Copies the library assigned by means of the name.

LIBRARY =*LINK(...)
Copies the library assigned by means of a link name.

LINK-NAME = <structured-name 1..8>
Link name of the library, which was declared with /ADD-FILE-LINK.

TO-LIBRARY = <filename 1..54 without-vers>/ *LINK(...)
Specifies the target library.

TO-LIBRARY = <filename 1..54 without-vers>
Generates a library with the specified name.

TO-LIBRARY = *LINK(...)
Generates the library assigned by means of a link name.

LINK-NAME = <structured-name 1..8>
Link name of the library, which was declared with /ADD-FILE-LINK.

246

FILE-ATTRIBUTES = *STD / *BY-SOURCE
Attributes of the target library file.

FILE-ATTRIBUTES = *STD
The file attributes of the target library are not changed. New files will be generated with the default values defined
by the file management system.

FILE-ATTRIBUTES = *BY-SOURCE
The file protection attributes of the source library are applied to the target library (analogous to /COPY-FILE ..,
PROTECTION=*SAME).

Examples

Copy a library to an NK4 pubset

E/start-lrrsconv
i//copy-library library=lib,to-library=:nk4:1ib
i//end

‘/add-file-link file-name=nk4lib,|ink-name=nk4, buffer-1|ength=*std(2)
E/start-l nsconv

i//copy-library library=nk2lib,to-Iibrary=*link(nk4)

/1 end

...

i/delete-file file-nane=tolib

i/start-Insconv

i//copy-library library=lib,to-library=tolib,file-attributes=*by-source
‘//end

i/copy-file fromfile=tolib,to-file=lib

‘/delete-file file-name=tolib

247

7.4.2.5 DELETE-ELEMENT - Logically delete member

The DELETE-ELEMENT statement deletes the specified members in the assigned library (logical deletion). The
directory entries are thereby deleted and storage space is released (release is performed only within the library, i.e.
the library as a whole does not become smaller).

A member of a library is deleted physically if the DESTROY=*YES parameter has been set or if the member
contains a code for physical deletion or if the system parameter DESTLEV requires it.

The statement is executed only if a library has been specified explicitly in the statement or the library specified
under OPEN-LIBRARY has been opened with MODE=*UPDAT.

The DELETE-ELEMENT statement is permitted for all member types.

248

Format

DELETE-ELEMENT

ELEMENT = *LIBRARY-ELEMENT (...)
*LIBRARY-ELEMENT(...)
| LIBRARY =*STD / <filename 1..54 without-vers> / *LINK(...)
| *LINK(...)
| | LINK-NAME = <structured-name 1..8>
| ,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
| *ALL(...)
| | VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
| | <composed-name 1..24 with-under with-wild(52)>
| <composed-name 1..64 with-under with-wild(132)>(...)
| | VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
| | <composed-name 1..24 with-under with-wild(52)>
| ,TYPE =*DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
| ,USER-DATE =*ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
| *INTERVAL(...)
| | FROM = 1900-01-01 / <date 8..10 with-compl>
| | ,TO =*TODAY / <date 8..10 with-compl>
| ,CREATION-DATE =*ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
| *INTERVAL(...)
| | FROM = 1900-01-01 / <date 8..10 with-compl>
| | ,TO =*TODAY / <date 8..10 with-compl>
| ,MODIFICATION-DATE =*ANY /*TODAY / <date 8..10 with-compl> / *INTERVAL(...)
| *INTERVAL(...)
| | FROM = 1900-01-01 / <date 8..10 with-compl>
| | ,TO =*TODAY / <date 8..10 with-compl>
,DESTROY-DATA =*DEFAULT / *NO / *YES
,DIALOG-CONTROL =*DEFAULT / *NO / *YES

249

Operands

ELEMENT =*LIBRARY-ELEMENT(...)
Specifies the member to be deleted. Specifications for the desired member designation.

LIBRARY = *STD / <filename 1..54 without-vers>/ *LINK(...)
Specifies the library from which the member is to be deleted.

LIBRARY =*STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library from which the member is to be deleted.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library.

ELEMENT =*ALL(...)/
<composed-name 1..64 with-under with-wild(132)>(...)
Name of the member to be deleted

ELEMENT =*ALL(...)
All members are deleted.

ELEMENT = <composed-name 1..64 with-under with-wild(132)>(...)
Name of the member to be deleted.

VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
<composed-name 1..24 with-under with-wild(52)>
Version of the member to be deleted.

VERSION = *HIGHEST-EXISTING
The member with the highest existing version is deleted.

VERSION = *UPPER-LIMIT
The highest possible version X'FF' in the library under the specified TYPE and name is deleted.

VERSION = <composed-name 1..24 with-under with-wild(52)>
Explicitly specifies the version of the member to be deleted.

TYPE =*DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
Type of the member to be deleted.

TYPE = *DEFAULT
If the value is *DEFAULT and the current value set with MODIFY-DEFAULTS is *NONE, LMSCONV requires a
type specification.

TYPE = *ALL
All types are deleted

TYPE = <alphanum-name 1..8 with-wild(20)>
Only the specified type is deleted.

250

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
The member to be deleted has any date.

USER-DATE =*TODAY
The member with the current date is deleted.

USER-DATE = <date 8..10 with-compl>
The member whose date is entered explicitly in the form [YY]YY-MM-DD is deleted.

USER-DATE = *INTERVAL(...)
All members lying in the specified interval are deleted.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

TO = *TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE =*ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Creation date of the member. For a description of the operands, see the USER-DATE operand of this
statement.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see the USER-DATE operand
of this statement.

DESTROY-DATA = *DEFAULT / *NO / *YES
Deletes the data for all members defined by *LIBRARY-ELEMENT.

DESTROY-DATA = *DEFAULT
The default value is *NO (see below) or the current value set with MODIFY-DEFAULTS.

DESTROY-DATA =*NO
A member of a library is physically deleted only if the member is marked for physical deletion or the system
parameter DESTLEV requires it.

DESTROY-DATA =*YES
Following logical deletion, the data, if present, is deleted physically, i.e. overwritten with X'00".

DIALOG-CONTROL =*DEFAULT / *NO / *YES
This operand specifies whether or not the execution of the statement is carried out interactively with the user.

DIALOG-CONTROL =*DEFAULT
The default value is *NO or the current value set with MODIFY-DEFAULTS..

DIALOG-CONTROL =*NO
All members are processed without dialog queries, i.e. without the user being able to take control.
Exception: If a member or a library is locked, LMSCONYV inquires whether the attempt to access it shall be repeated.

DIALOG-CONTROL = *YES
LMSCONYV prompts for confirmation on each member, e.g. process or skip member, or abort function.

251

For more detailed information on dialog control, see the MODIFY-DEFAULTS statement, where the value *ERROR
which might have been set there has the same effect as *NO. Likewise, the value *ERROR which may have been
set for DIALOG-CONTROL= in /INFORM-PROGRAM has the same effect as *NO with DELETE-ELEMENT.

Example

Member TEST3 is deleted from library LIB1.

E/start-lmsconv
{//open-library libl
E//show-el enent-attri butes

{1 NPUT LI BRARY= : N: $USER. LI B1

{TYP NAME VER (VAR#) DATE NAME VER (VAR#) DATE
(S) TESTL @ (0001) <date> TEST2 @ (0001) <date>
'(S) TEST3 @ (0001) <date> TEST4A @ (0001) <date>

i//del ete-el ement (el enrtest3,type=s)

E//show—el ement-attributes

{1 NPUT LI BRARY= : N: $USER. LI B1

' TYP NAME VER (VAR#) DATE NANVE VER (VAR#) DATE
(S) TESTL @ (0001) <date> TEST2 @ (0001) <date>
i(S) TEST4 @ (0001) <date>

252

7.4.2.6 END - Terminate LMSCONV

END terminates the LMSCONV program. All libraries that are still open are closed.
Format

END

If a monitoring job variable was specified when calling LMSCONV with / START- LMSCONV MONJV= <nane> this
variable is given a value on termination of LMSCONYV. The MONJV value is divided into a 3-byte status display and
a 4-byte return code display. The return code display is split into a 1-byte termination code (TC) and a 3-byte
program information part (PI).

LMSCONV sets the status display and the termination code as follows:

Status display

Status display Termination code TC Program information Remarks
(byte 1 - 3) (byte 4) Pl (byte 5-7)
$T_ Oor1l see below Normal termination
$A 20r3 see below Abnormal termination

Termination code

BC Explanation

0 Normal termination
LMSCONV ran without error.

1 Normal termination
Warnings or error occurred that were weaker than the value set with MAX-ERROR-WEIGHT (see
MODIFY-DEFAULTS).

2 Abnormal termination
An abort criterion set with MAX-ERROR-WEIGHT has been reached(see MODIFY-DEFAULTS).

3 Abnormal termination
The error encountered is so serious that it is no longer possible or expedient to continue the LMSCONV
session.
The LMSCONYV session has been terminated internally.

253

Program information

Pl Explanation

000 BC: 0
LMSCONYV ran without error.

001 BC:1
At most warnings occurred.

002 BC:1lor2
Only errors of class RECOVERABLE occurred, i.e. a member could not be found or overwritten.

003 BC:1lor2
At most errors of class SIGNIFICANT occurred, i.e. no serious errors.

004 BC:2
At most errors of class SERIOUS occurred, i.e. serious errors.

005 BC:3
The error encountered is so serious that it is no longer possible or expedient to continue the LMSCONV
session.
The LMSCONYV session has been terminated internally.

254

7.4.2.7 EXTRACT-ELEMENT - Output member to file

The EXTRACT-ELEMENT statement outputs members to files. LMSCONYV creates the files in accordance with

® the entry in the task file table (TFT), if the file has been assigned via the link name
® the stored file attributes and the FILE-ATTRIBUTES operand
® the catalog entry.

The files can have RECORD-FORMAT=UNDEFINED and arbitrary BUFFER-LENGTH and RECORD-SIZE values.
However, the maximum record length of 32 Kbytes (including the record header) must not be exceeded.

If the ISAM keys of an ISAM file have been included in the member, the ISAM keys are also output when EXTRACT-
ELEMENT is issued.

If a text member is extracted to an existing PAM file, the (possibly implicit) setting of the operand ACCESS-
METHOD determines the new access method (SAM or ISAM) of the output file.

If information on ISAM secondary keys was stored when the file was added, the secondary keys are recreated. If
some or all of the secondary keys cannot be recreated, the file is generated without those keys.

The EXTRACT-ELEMENT statement is permissible for member types S, M, R, J, P, D, X, C. Members of type C,
and PAM members under type X, are created as PAM files.

The file created contains the CCS name of the source member as its CCS catalog attribute.

i Valid member names are not always permitted as file names.

Generating ISAM files
When members are output to ISAM files, LMSCONYV generates the ISAM keys as follows:

® |f the ISAM keys are also added when an ISAM file is included as a library member, LMSCONV generates the
ISAM file with those ISAM keys which have been stored.

® |f no ISAM keys have been stored in the input member, an ISAM file with KEY-POSITION=5 and KEY-
LENGTH=8 is created. LMSCONYV then normally generates ISAM keys with an initial value of 1000 and an
increment of 1000. If the member is too large for this increment (more than 100,000 records), the increment will
be calculated from the number of records.

I R-type members are output up to the END record. Any records which come afterwards are ignored.
® Correction journal records (TXTP) are not included in the output in the case of C-type members.

® RECORD-SIZE is supplied with values only with RECORD-FORMAT=FIXED; with RECORD-
FORMAT=*VARIABLE, the value is 0.

255

Format

EXTRACT-ELEMENT

ELEMENT = *LIBRARY-EL EMENT (...)
*LIBRARY-ELEMENT(...)
| LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
*LINK(...)
| LINK-NAME = <structured-name 1..8>
,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
*ALL(...)
| VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /

| <composed-name 1..24 with-under with-wild(52)>
<composed-name 1..64 with-under with-wild(132)>(...)
| VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /

| <composed-name 1..24 with-under with-wild(52)>
,TYPE = *DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
,USER-DATE =*ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
*INTERVAL(...)
| FROM = 1900-01-01 / <date 8..10 with-compl>
| ,TO =*TODAY / <date 8..10 with-compl>
,CREATION-DATE =*ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
*INTERVAL(...)
| FROM = 1900-01-01 / <date 8..10 with-compl>
| ,TO =*TODAY / <date 8..10 with-compl>
,MODIFICATION-DATE =*ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
*INTERVAL(...)
| FROM = 1900-01-01 / <date 8..10 with-compl>

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| | ,TO=*TODAY / <date 8..10 with-compl>

256

,TO-FILE = *STD / *BY-SOURCE / <filename 1..54 without-gen-vers with-wild-constr> /

*LINK(...)
*LINK(...)
| LINK-NAME = <structured-name 1..8>
,FILE-ATTRIBUTES = *BY-ELEMENT / *BY-CATALOG / *DEFAULT / *PARAMETERS(...)
*PARAMETERS(...)
| ACCESS-METHOD = *DEFAULT / *ISAM / *SAM
,WRITE-MODE = *DEFAULT / *CREATE / *REPLACE / *EXTEND / *ANY
,DIALOG-CONTROL = *DEFAULT / *NO / *YES / *ERROR

Operands

ELEMENT = *LIBRARY-ELEMENT(...)
Specifications for the desired member designation.

LIBRARY = *STD / <filename 1..54 without-vers>/ *LINK(...)
Specifies the library containing the member.

LIBRARY =*STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library containing the member.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library.

ELEMENT =*ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
Name of the members to be extracted from the library.

ELEMENT =*ALL(...)
All members are taken from the library.

ELEMENT = <composed-name 1..64 with-under with-wild(132)>(...)
Name of the member to be extracted from the library and included in a file.

VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
<composed-name 1..24 with-under with-wild(52)>
Version of the member to be output.

VERSION = *HIGHEST-EXISTING
The member with the highest existing version is used.

VERSION = *UPPER-LIMIT
The highest possible version X'FF' in the library under the specified TYPE and name is output.

257

VERSION = <composed-name 1..24 with-under with-wild(52)>
Explicitly specifies the version of the member to be output.

TYPE =*DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
Type of the member to be adopted.

TYPE = *DEFAULT
If the value is *DEFAULT and the current value set with MODIFY-DEFAULTS is *NONE, LMSCONV requires a
type specification.

TYPE =*ALL
All types are adopted.

TYPE = <alphanum-name 1..8 with-wild(20)>
Only the specified type is adopted.

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
The member to be output has any date.

USER-DATE =*TODAY
The member with the current date is selected.

USER-DATE = <date 8..10 with-compl>
The member whose date is entered explicitly in the form [YY]YY-MM-DD is chosen.

USER-DATE = *INTERVAL(...)
All members lying in the specified interval are chosen.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

TO =*TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE =*ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
Creation date of the member. For a description of the operands, see the USER-DATE operand of this
statement.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see the USER-DATE operand
of this statement.

TO-FILE = *STD / *BY-SOURCE / <filename 1..54 without-gen-vers with-wild-constr> / *LINK(...)
Name of the target file.

TO-FILE = *STD
Unless otherwise specified, the member data is output to a file which is given the same name as the member.

TO-FILE = *BY-SOURCE
The file name is the same as the member name.

TO-FILE = <filename 1..54 without-gen-vers with-wild-constr>
Name of the target file. A design specification refers to the member name.

258

TO-FILE = *LINK(...)
The member is output to the file that was assigned via the link name.

LINK-NAME = <structured-name 1..8>
File link name.

FILE-ATTRIBUTES = *BY-ELEMENT / *BY-CATALOG / *DEFAULT / *PARAMETERS(...)

File attributes specified when the file is created. LMSCONYV defines the file attributes in accordance with the
following hierarchy:

® LINK entry

* file attributes stored in the member

® catalog entry

® | MSCONYV default values.

The following specifications take effect only when TO-FILE=*LINK has not been specified.

FILE-ATTRIBUTES = *BY-ELEMENT
The file attributes stored in the member take priority.

FILE-ATTRIBUTES = *BY-CATALOG
The attributes stored in the catalog entry take priority. If there is no catalog entry, specifying *BY-CATALOG has the
same effect as *BY-ELEMENT.

i The file can also be created as a SAM node file on Net-Storage with the NETCCSN that has been stored
as a file attribute.

FILE-ATTRIBUTES = *PARAMETERS(...)

ACCESS-METHOD = *DEFAULT / *ISAM / *SAM
Specifies the access method ISAM or SAM for the target file. The default value is *ISAM or the current value
set with MODIFY-DEFAULTS.

WRITE-MODE =*DEFAULT / *CREATE / *REPLACE / *EXTEND / *ANY
Overwriting of a file having the same name. If the file does not exist under this name, it will be created as a new file.

WRITE-MODE = *DEFAULT
The default value is *CREATE (see below) or the current value set with MODIFY-DEFAULTS.

WRITE-MODE = *CREATE
The new file must not yet exist and is created as a new file.

WRITE-MODE = *REPLACE
The file must already exist and is replaced.

WRITE-MODE =*EXTEND
The file is extended if it already exists. Otherwise it will be created as a new file.

WRITE-MODE = *ANY
The file is replaced if it already exists. Otherwise it will be created as a new file.

DIALOG-CONTROL = *DEFAULT / *NO / *YES / *YERROR
This operand specifies whether or not the execution of the statement is carried out interactively with the user.
For more detailed information on dialog control, see the MODIFY-DEFAULTS statement.

259

DIALOG-CONTROL =*DEFAULT
The default value is *NO or the current value set with MODIFY-DEFAULTS..

DIALOG-CONTROL =*NO
All members are processed without dialog queries, i.e. without the user being able to take control.
Exception: If a member or a library is locked, LMSCONYV inquires whether the attempt to access it shall be repeated.

DIALOG-CONTROL =*YES / *ERROR
See the description in the MODIFY-DEFAULTS statement .

Examples

Member ELEML1 is output by EXTRACT-ELEMENT to file TEST having the specified file attributes.

g/add-fi le-1ink file-nane=test,|ink-nane=out, access- nmet hod=*sam -
il record-format=*variabl e

i{/start-|msconv

E//open-library library=libin

i//extract-elenent (,elentd,s),*link(link-nanme=out)

/1 end

..

If all the members in a library are to be output by name, the following statement must be specified:

/lextract-elenent (elem*all,type =*all)

260

7.4.2.8 MODIFY-DEFAULTS - Modify defaults

The MODIFY-DEFAULTS statement can be used to modify the default values. If an explicit value is used locally in
an LMSCONV statement, this value has priority over the default value.

The reference to the values set here in the LMSCONYV statements is the *DEFAULT specification.

At the beginning of the LMSCONYV run, the values immediately following *UNCHANGED apply. If one of these
values is changed using the MODIFY-DEFAULTS statement, the new setting becomes the current setting. This
setting remains valid for the LMSCONYV session (*UNCHANGED) until a new MODIFY-DEFAULTS statement is
issued for this value.

Format
MODIFY-DEFAULTS

ELEMENT-ATTRIBUTES = *UNCHANGED / *PARAMETERS(...)
*PARAMETERS(...)
| TYPE =*UNCHANGED / *NONE / <alphanum-name 1..8>
| ,ELEMENT-VERSION =*UNCHANGED / *ALL / *HIGHEST-EXISTING
| ,TO-ELEMENT-VERSION =*UNCHANGED / *BY-SOURCE
| ,SOURCE-ATTRIBUTES = *UNCHANGED / *STD / *IGNORE / *KEEP(...)
| *KEEP(...)
| | KEEP-TYPES =*UNCHANGED /*STD / *ALL
,FILE-ATTRIBUTES = *UNCHANGED / *PARAMETERS(...)
*PARAMETERS(...)
| ACCESS-METHOD =*UNCHANGED / *ISAM / *SAM
,DESTROY-DATA =*UNCHANGED / *NO / *YES / *BY-SOURCE
,WRITE-MODE = *UNCHANGED / *CREATE / *REPLACE / *EXTEND / *ANY
,DIALOG-CONTROL = *UNCHANGED / *NO / *YES / *ERROR
,INFORMATION = *UNCHANGED / *MEDIUM / *MINIMUM / *MAXIMUM / *SUMMARY
,LAYOUT =*UNCHANGED / *VARIABLE / *FIXED
,SORT = *UNCHANGED / *BY-NAME / *BY-VERSION / *BY-USER-DATE / *BY-SECONDARY-NAME

261

,OUTPUT-FORM = *UNCHANGED / *STD / *CHARACTER / *HEXADECIMAL / *DUMP
,DELETE-SOURCE = *UNCHANGED / *NO / *YES
,MAX-ERROR-WEIGHT = *UNCHANGED / *SERIOUS / *SIGNIFICANT / *RECOVERABLE
,RUN-MODE =*UNCHANGED / *STD / *BATCH
,NEXT-ATTEMPT = *UNCHANGED / *NO / *YES(...)
*YES(...)
| NUMBER-OF-ATTEMPTS = *UNCHANGED / <integer 1..2147483647>
| ,PERIOD = *UNCHANGED / <integer 1..21599>
,TEXT-INFORMATION = *UNCHANGED / *ALL / *STATISTICS / *FILE-ATTRIBUTES / *PARAMETERS(...)
*PARAMETERS(...)
| INFORMATION = *UNCHANGED / *ALL / list-poss(2): *TEXT / *COMMENT
| ,RECORD-RANGE =*UNCHANGED / *ALL / *RANGE(...)
| *RANGE(...)
| | FROM =*UNCHANGED / <integer 1..2147483647>
| | ,TO =*UNCHANGED /*LAST / <integer 1..2147483647>
| ,RECORD-PART = *UNCHANGED / *ALL / *PART(...)
| *PART(...)
| | START = *UNCHANGED / <integer 1..32764>
| | ,LENGTH = *UNCHANGED / *REST / <integer 1..32764>
| ,RECORD-NUMBER =*UNCHANGED / *BY-OUTPUT / *YES / *NO
,MODULE-INFORMATION = *UNCHANGED / *ALL / *STATISTICS / *PARAMETERS(...)
*PARAMETERS(...)
| INFORMATION = *UNCHANGED / *ALL / *TXT(...) / *TXTP(...) / list-poss(9): *ESD / *ISD /
| *LSD /*RLD / *REP / *INCLUDE / *DSDD / *REF / *END
| *TXT(...)
| | CSECT-NAME = *UNCHANGED / *ALL / <c-string 1..32 with-low> / <text 1..32>
| | ,ADDRESS =*UNCHANGED (...) / <x-string 1..8>(...)
| | *UNCHANGED(...)
| | BASE-ADDRESS = *UNCHANGED / <x-string 1..8>
| <x-string>(...)
| | BASE-ADDRESS =*UNCHANGED / <x-string 1..8>
| ,LENGTH = *UNCHANGED / *REST / <integer 1..2147483647> | <x-string 1..8>

262

| *TXTP(...)
| | MODIFICATION-ID = *UNCHANGED / *ALL / <c-string 1..8 with-low> / *RANGE(...)
| | *RANGE(..)
| | | FROM =*UNCHANGED /*LOWEST / <c-string 1..8 with-low>
| | | ,TO =*UNCHANGED /*HIGHEST / <c-string 1..8 with-low>
,PHASE-INFORMATION = *UNCHANGED / *ALL / *STATISTICS / *PARAMETERS(...)
*PARAMETERS(...)
| SEGMENT = *UNCHANGED / *ALL / *ROOT / <name 1..8>
| INFORMATION = *UNCHANGED / *ALL / *TXT(...) / *TXTP(...) / list-poss(4): *ESD / *ISD /
| *LSD /*RLD
*TXT(...)
| ADDRESS = *UNCHANGED (...) / <x-string 1..8>(...)
| *UNCHANGED(...)
| | BASE-ADDRESS = *UNCHANGED / <x-string 1..8>
| <x-string>(...)
| | BASE-ADDRESS = *UNCHANGED / <x-string 1..8>
| ,LENGTH = *UNCHANGED / *REST / <integer 1..2147483647> / <x-string 1..8>
*TXTP(...)
| MODIFICATION-ID = *UNCHANGED / *ALL / <c-string 1..8 with-low> / *RANGE(...)
| *RANGE(...)
| | FROM =*UNCHANGED / *LOWEST <c-string 1..8 with-low>
| | ,TO =*UNCHANGED /*HIGHEST / <c-string 1..8 with-low>
,LLM-INFORMATION = *UNCHANGED / *ALL / *STATISTICS / *PARAMETERS(...)
*PARAMETERS(...)
| LLM-PART = *UNCHANGED / *ALL / *SLICE(...) / *SUB-LLM(...)
| *SLICE(...)
| | NAME = *UNCHANGED / <structured-name 1..32>
| *SUB-LLMC(...)
| | PATH-NAME = *UNCHANGED / <c-string 1..255 with-low> / <text 1..255>
I
I

,INFORMATION = *UNCHANGED / *ALL / *TXT(...) / *TXTP(...) / *LOGICAL(...) / *PHYSICAL / *REF /
list-poss(4): *RELOCATION / *ESVD / *ESVR / *LRLD

263

| *TXT(...)
| | CSECT-NAME = *UNCHANGED / *ALL / <c-string 1..32 with-low> / <text 1..32>

| | ,ADDRESS =*UNCHANGED (...) / <x-string 1..8>(...)

| | *UNCHANGED(...)

| | BASE-ADDRESS =*UNCHANGED / <x-string 1..8>

| | <x-string>(...)

| | BASE-ADDRESS =*UNCHANGED / <x-string 1..8>

| | LENGTH = *UNCHANGED / *REST / <integer 1..2147483647> | <x-string 1..8>

| *TXTP(...)

| | CSECT-NAME =*UNCHANGED /*ALL / <c-string 1..32 with-low> / <text 1..32>

| | ,MODIFICATION-ID = *UNCHANGED / *ALL / <c-string 1..12 with-low> / *RANGE(...)
| | *RANGE(..)

| | FROM = *UNCHANGED / *LOWEST / <c-string 1..12 with-low>

| | | ,TO =*UNCHANGED /*HIGHEST / <c-string 1..12 with-low>

| *LOGICAL(...)

| | LEVEL =*UNCHANGED /*ALL / *NEXT

Operands

ELEMENT-ATTRIBUTES = *UNCHANGED / *PARAMETERS(...)
Specifies the member type, the member version, the storage form and the file attributes.

TYPE = *UNCHANGED / *NONE / <alphanum-name 1..8>
Specifies the member type.

TYPE = *NONE
No global member type is defined, i.e. the types must be specified locally in the statements.

TYPE = <alphanum-name 1..8>
The name specified here is used as the type in the statement.

ELEMENT-VERSION = *UNCHANGED / *ALL / *HIGHEST-EXISTING
Specifies the member version for SHOW-ELEMENT-ATTRIBUTES.

ELEMENT-VERSION = *ALL
All versions for a member are output.

ELEMENT-VERSION = *HIGHEST-EXISTING
Only the highest version of a member is output.

TO-ELEMENT-VERSION = *UNCHANGED / *BY-SOURCE
Specifies the version of a target members.

TO-ELEMENT-VERSION = *BY-SOURCE
The target member contains the same version as the source member.

SOURCE-ATTRIBUTES = *UNCHANGED / *STD / *IGNORE / *KEEP(...)
Only the ADD-ELEMENT statement is interpreted.

264

SOURCE-ATTRIBUTES =*STD

No file attributes are stored, and neither is an ISAM key. In this case, it is only possible to add ISAM files with
KEY-POSITION=5, KEY-LENGTH 16 and RECORD-FORMAT=*VARIABLE to the member.

For ISAM files a warning is issued that the ISAM key has not been added.

SOURCE-ATTRIBUTES = *IGNORE
As for SOURCE-ATTRIBUTES=*STD, except that no warning is issued.

SOURCE-ATTRIBUTES = *KEEP(...)

The following file attributes are stored unchanged in the new member to be added: ACCESS-METHOD,
RECORD-FORMAT, RECORD-SIZE, BUFFER-LENGTH, PERFORMANCE, USAGE, ACCESS and USER-
ACCESS. If ACCESS-METHOD=ISAM is specified, the PADDING-FACTOR, LOGICAL-FLAG-LENGTH,
VALUE-FLAG-LENGTH, PROPAGATE-VALUE-FLAG and the ISAM key and information relating to the ISAM
secondary key are also stored.

KEEP-TYPES = *UNCHANGED / *STD / *ALL
Specifies types of members for which file attributes are to be stored.

KEEP-TYPES = *STD
Attributes are stored for members of base types S, M, P, D, J, X.

KEEP-TYPES = *ALL
Attributes are stored for members of all base types that are permissible for ADD-ELEMENT.

i For SAM node files LMSCONYV stores the coded character set on Net-Storage (NETCCSN) as an
element attribute. LMSCONYV stores the last byte pointer (LBP) in addition to the previously stored file
attributes

* for PAM members of type X
* for members of type C if KEEP-TYPES = *ALL has been specified

FILE-ATTRIBUTES = *UNCHANGED / *PARAMETERS(...)
File attributes specified when the file is created.

ACCESS-METHOD = *UNCHANGED / *ISAM / *SAM
Specifies the file access method.

ACCESS-METHOD = *ISAM
Create ISAM file.

ACCESS-METHOD = *SAM
Create SAM file.

DESTROY-DATA = *UNCHANGED / *NO / *YES / *BY-SOURCE
Defines whether or not the data is physically deleted, i.e. overwritten with X'00".

DESTROY-DATA = *NO
A member of a library is physically deleted only if the member is marked for physical deletion or the system
parameter DESTLEV requires it.

DESTROY-DATA =*YES
Any data present is physically deleted.

265

DESTROY-DATA = *BY-SOURCE
The flag for overwriting the data is taken from the source member or source file and assigned to the target member
or target file. If the source is missing, *BY-SOURCE has the same effect as DESTROY-DATA=*NO.

WRITE-MODE = *UNCHANGED / *CREATE / *REPLACE / *EXTEND / *ANY
Overwriting of a member having the same name. If the member does not exist under this name, it will be created as
a new member.

If the selected value is not possible for WRITE-MODE in the local statement, the setting WRITE-MODE= *CREATE
applies.

WRITE-MODE = *CREATE
The target member must not yet exist and is created as a new member.

WRITE-MODE = *REPLACE
The target member must already exist and is replaced.

WRITE-MODE =*EXTEND
The target member is extended if it already exists. Otherwise it will be created as a new member.

WRITE-MODE = *ANY
The target member is replaced if it already exists. Otherwise it will be created as a new member.

DIALOG-CONTROL =*UNCHANGED /*NO / *YES / *ERROR
This operand specifies whether or not the execution of the statement is carried out interactively with the user. (This
operand is not applicable in procedure or batch mode.)

DIALOG-CONTROL =*NO
All members are processed without query.

DIALOG-CONTROL =*YES
LMSCONV prompts for confirmation on each member, e.g. process or skip member, or abort function.

DIALOG-CONTROL =*ERROR
If a fatal error occurs during member processing, e.g. overwriting a member, the user is prompted to specify how
LMSCONV should react.

The user now has the following options:

YES Process the member.
NO Do not process the member.
ALL Abort the statements without prompting.

TERMINATE Terminate the statement.

By pressing the K2 key and entering “/INFORM-PROGRAM?", the user can modify the value of the DIALOG-
CONTROL operand. If LMSCONYV is in the middle of member processing, the user can influence the further
processing with:

/1 NFORM PROGRAM ' [N-1 / N-E / C][, DI ALOG CONTROL=*NO / *YES / *ERROR]"

/ 1 NFORM PROGRAM ' NEXT- | NPUT (N-1)"' :the current statement is aborted;
LMSCONV reads a further statement as soon as it becomes active again. An unrecognized or missing text has the
same effect as NEXT-INPUT.

266

/1 NFORM PROGRAM ' NEXT- ELEMENT (N-E) ' : the processing of the current member in the current statement is
aborted; LMSCONYV continues processing with the next member (if available). If no next member is present, NEXT-
ELEMENT has the same effect as NEXT-INPUT.

/ SEND- MSG ' CONTI NUE (C) ' :LMSCONV processing is continued as normal

C,NO The member is to be processed, but interactive mode not activated.
N-E/N-I,NO Member or statement processing is to be aborted, but interactive mode not activated.
C,YES/ERROR The member is to be processed and interactive mode then activated.

N-E/N-I,YES/ERROR Member or statement processing is to be aborted and interactive mode then activated.

i The value set for DI ALOG- CONTROL with / INFORM-PROGRAM applies only to the current statement.

INFORMATION = *UNCHANGED / *MEDIUM / *MINIMUM / *MAXIMUM / *SUMMARY
This parameter defines the scope of directory information to be output.

INFORMATION = *MEDIUM
Outputs the type, name, version, variant number and the date or the member size.

INFORMATION = *MINIMUM
Outputs only the type, name and version.

INFORMATION = *MAXIMUM

In addition to the type, name, version, variant number and the user date, the existing member protection, the
storage form, the assigned character set, as well as the user date, creation date and modification date and time are
logged for all members.

INFORMATION =*SUMMARY
Outputs only the number of members per type.

LAYOUT = *UNCHANGED / *VARIABLE / *FIXED
This parameter defines the format of the directory to be output.

LAYOUT =*VARIABLE
The number of print columns depends on the longest member designation within a member type.

LAYOUT =*FIXED
The directory is printed in a single column in fixed format. Single column means that the entries in the directory
appear one beneath the other.

SORT =*UNCHANGED / *BY-NAME / *BY-VERSION / *BY-USER-DATE / *BY-SECONDARY-NAME
Sort criterion for the directory entries of the selected members. The type is always used as the first sort criterion.

SORT = *BY-NAME
The directory entries of the selected members are sorted on the basis of the following sequence: type, name and
version.

SORT =*BY-VERSION
The directory entries of the selected members are sorted on the basis of the following sequence: type, version and
name.

267

SORT =*BY-USER-DATE
The directory entries of the selected members are sorted on the basis of the following sequence: type, user date,
name and version.

SORT =*BY-SECONDARY-NAME
The directory entries of the selected members are sorted on the basis of the following sequence: type, secondary
name, secondary attribute, name and version.

For more detailed information, refer to the SHOW-ELEMENT-ATTRIBUTES statement.

OUTPUT-FORM =*UNCHANGED /*STD / *CHARACTER / *HEXADEZIMAL / *DUMP
Specifies the display format for the output.

OUTPUT-FORM = *STD
The form of representation is selected dependent on the member type.

OUTPUT-FORM =*CHARACTER
The output is in alphanumeric form.

OUTPUT-FORM = *HEXADECIMAL
The output is in alphanumeric and hexadecimal form, one above the other.

OUTPUT-FORM = *DUMP
The output is in alphanumeric and hexadecimal form, side by side. For member types S, P, D, J and M, this
operand has the same effect as OUTPUT-FORM=*HEXADECIMAL.

DELETE-SOURCE = *UNCHANGED / *NO / *YES
Here, the user can specify whether the original file is to be retained (default value *NO) or deleted (parameter
*YES). This operand has no effect when read by *OMF.

MAX-ERROR-WEIGHT = *UNCHANGED / *SERIOUS / *SIGNIFICANT / *RECOVERABLE
This operand defines the cases in which LMSCONYV is to trigger the spin-off mechanism.

MAX-ERROR-WEIGHT = *SERIOUS
The spin-off mechanism is triggered for serious errors, i.e. errors for which processing of the statement is no longer
possible or useful.

MAX-ERROR-WEIGHT = *SIGNIFICANT
The spin-off mechanism is triggered for *SERIOUS and also for other errors (except when the member could not be
found or overwritten).

MAX-ERROR-WEIGHT = *RECOVERABLE
The spin-off mechanism is triggered for all errors.

RUN-MODE = *UNCHANGED / *STD / *BATCH
When LMSCONYV is running in interactive mode, this operand determines whether LMSCONYV should continue to
run normally or behave as if it is running in batch mode. This operand has no effect in procedures or in batch mode.

RUN-MODE = *STD
LMSCONV shall continue to run normally.

RUN-MODE = *BATCH
LMSCONYV shall behave like running in batch mode.

NEXT-ATTEMPT = *UNCHANGED / *NO / *YES(...)
Controls the open attempts for file, type or member lock in procedure or batch mode.

268

NEXT-ATTEMPT =*NO
No further attempts to open are made.

NEXT-ATTEMPT =*YES(...)
Further attempts to open are made.

NUMBER-OF-ATTEMPTS = *UNCHANGED / <integer 1..2147483647>
Number of further attempts (default: 9 attempts).

PERIOD = *UNCHANGED / <integer 1..21599>
Wait period between attempts in seconds (default: 6 seconds).

TEXT-INFORMATION = *UNCHANGED / *ALL / *STATISTICS / *FILE-ATTRIBUTES / *PARAMATERS(...)
Defines the information scope for all members except member types R, C and L. For PAM members, all values
have the same effect as *ALL, except for *FILEATTRIBUTES.

TEXT-INFORMATION = *ALL
Everything is output.

TEXT-INFORMATION = *STATISTICS
The number of records per record type and the total number of records are output.

TEXT-INFORMATION = *FILE-ATTRIBUTES
Only the stored file attributes are output.

TEXT-INFORMATION = *PARAMETERS(...)
Defines a member extract to be output.

INFORMATION = *UNCHANGED / *ALL / list-poss(2): *TEXT / *COMMENT
The member section to be output.

INFORMATION = *ALL
Outputs all user record types.

INFORMATION = *TEXT
Outputs the text itself, i.e. record type 1.

INFORMATION = *COMMENT
Outputs the separately stored comment, i.e. record type 2.

RECORD-RANGE = *UNCHANGED / *ALL / *RANGE(...)
The section of the member to be processed.

RECORD-RANGE = *ALL
Processes all user record types.

RECORD-RANGE = *RANGE(...)

Specifies the range of record numbers which is to be processed. The record numbers refer not to a record
type, but to the section of the member designated by means of INFORMATION=. Within this section, the
records are numbered consecutively from

1 through n.

FROM = *UNCHANGED / <integer 1..2147483647>
Beginning of the range, specified by the first record number. Record number 1 is the default value.

269

TO = *UNCHANGED / *LAST / <integer 1..2147483647>
End of the range, specified by the last record number. The last record number is used as the default
value.

RECORD-PART = *UNCHANGED / *ALL / *PART(...)
Specifies the part of the record to be processed.

RECORD-PART = *ALL
Processes the entire record.

RECORD-PART =*PART(...)
Specifies the part of the record to be processed. If the default values are not changed, the entire record is
processed.

START = *UNCHANGED / <integer 1..32764>
Beginning of the record part, specified by the first character in the record. The first character is used as
the default value.

LENGTH = *UNCHANGED / *REST / <integer 1..32764>
Length of the record part. The remainder of the record is used as the default value.

RECORD-NUMBER =*UNCHANGED / *BY-OUTPUT / *YES / *NO
Specifies output of the record numbers.

RECORD-NUMBER = *BY-OUTPUT
Only if the output is directed to SYSOUT will no record numbers be output. With any other output medium, the
record numbers are included in the output.

RECORD-NUMBER = *YES
The record numbers are also output to SYSOUT.

RECORD-NUMBER = *NO
No record numbers are included in the output..

MODULE-INFORMATION = *UNCHANGED / *ALL / *STATISTICS / *PARAMETERS(...)
Defines the information scope for object modules (R-type members).

MODULE-INFORMATION = *ALL
Everything is output.

MODULE-INFORMATION = *STATISTICS
The name, length and address of the CSECTS and also the overall length of the module are output.

MODULE-INFORMATION = *PARAMETERS(...)
This parameter determines whether all record types or only selected record types are output.

INFORMATION = *UNCHANGED / *ALL / *TXT(...) / *TXTP(...) / list-poss(9): *ESD / *ISD / *LSD / *RLD /
*REP / *INCLUDE / *DSDD / *REF / *END
The record types listed here can be selected.

INFORMATION = *TXT(...)
Text records are selected.

CSECT-NAME =*UNCHANGED /*ALL / <c-string 1..32 with-low> / <text 1..32>
The text records can be restricted to one CSECT.

270

ADDRESS = *UNCHANGED(...) / <x-string 1..8>(...)
Start address of the text.

BASE-ADDRESS = *UNCHANGED / <x-string 1..8>
The base address specified here is added to the start address.

LENGTH = *UNCHANGED / *REST / <integer 1..2147483647> | <x-string 1..8>
Length of the text.

INFORMATION = *TXTP(...)
TXTP records are output.

MODIFICATION-ID = *UNCHANGED / *ALL / <c-string 1..8 with-low> /*RANGE(...)
Those TXTP records with the specified identification are selected.

MODIFICATION-ID = *RANGE(...)
A group of TXTP records lying in a range can be selected.

FROM =*UNCHANGED / *LOWEST / <c-string 1..8 with-low>
The beginning of the range is by default the lowest identification for the TXTP records, otherwise the
value entered here.

TO = *UNCHANGED / *HIGHEST / <c-string 1..8 with-low>
The end of the range is by default the highest identification for the TXTP records, otherwise the
value entered here.

PHASE-INFORMATION = *UNCHANGED / *ALL / *STATISTICS / *PARAMETERS(...)
Defines the information scope for phases (C-type members).

PHASE-INFORMATION = *ALL
Everything is output.

PHASE-INFORMATION =*STATISTICS
The name, length and address of the segment and also the overall length of the segment are output.

PHASE-INFORMATION = *PARAMETERS(...)
This parameter determines whether all record types or only selected record types are output.

SEGMENT = *UNCHANGED / *ALL / *ROOT / <name 1..8>
Phase segment that is selected.

INFORMATION = *UNCHANGED / *ALL / *TXT(...) / *TXTP(...) / list-poss(4): *ESD / *ISD / *LSD / *RLD
The record types listed here can be selected.

INFORMATION = *TXT(...)
Text records are selected.

ADDRESS = *UNCHANGED (...) / <x-string 1..8>(...)
Start address of the text.

BASE-ADDRESS = *UNCHANGED / <x-string 1..8>
The base address specified here is added to the start address.

LENGTH = *UNCHANGED / *REST / <integer 1..2147483647> | <x-string 1..8>
Length of the text.

271

INFORMATION = *TXTP(...)
TXTP records are output.

MODIFICATION-ID = *UNCHANGED / *ALL / <c-string 1..8 with-low> /*RANGE(...)
Those TXTP records with the specified identification are selected.

MODIFICATION-ID = *RANGE(...)
A group of TXTP records lying in a range can be selected.

FROM = *UNCHANGED / *LOWEST / <c-string 1..8 with-low>
The beginning of the range is by default the lowest identification for the TXTP records, otherwise the
value entered here.

TO =*UNCHANGED / *HIGHEST / <c-string 1..8 with-low>
The end of the range is by default the highest identification for the TXTP records, otherwise the
value entered here.

LLM-INFORMATION =*UNCHANGED / *ALL / *STATISTICS / PARAMETERS(...)
Defines the information scope for link and load modules (L-type members).

LLM-INFORMATION = *ALL
Everything is output.

LLM-INFORMATION = *STATISTICS
General information on the link and load module (name, copyright, ...) is output.

LLM-INFORMATION = *PARAMETERS(...)
This parameter determines whether all record types or only selected record types are output.

LLM-PART =*UNCHANGED / *ALL / *SLICE(...) / *SUB-LLM(...)
Specifies the LLM part to be selected. By default the entire LLM is selected.

LLM-PART = *SLICE(...)
Specifies the slice to be output.

NAME = *UNCHANGED / <structured-name 1..32>
Name of the slice to be output.

LLM-PART = *SUB-LLM(...)
Specifies the sub-LLM to be output.

PATH-NAME = *UNCHANGED / <c-string 1..255 with-low> / <text 1..255>
The sub-LLM to be output is determined by way of its path nhame.

INFORMATION = *UNCHANGED / *ALL / *TXT(...) / *TXTP(...) / *LOGICAL(...) / *PHYSICAL / *REF / list-
poss(3): *ESVD / *ESVR / *LRLD / *RELOCATION
The record types listed here can be selected.

INFORMATION = *TXT(...)
Text records are selected.

CSECT-NAME = *UNCHANGED / *ALL / <c-string 1..32 with-low> / <text 1..32>The text records can
be restricted to one CSECT.

ADDRESS = *UNCHANGED(...) / <x-string 1..8>(...)
Start address of the text.

272

BASE-ADDRESS = *UNCHANGED / <x-string 1..8>
The base address specified here is added to the start address.

LENGTH = *UNCHANGED / *REST / <integer 1..2147483647> / <x-string 1..8>Length of the text.

INFORMATION = *TXTP(...)
TXTP records are output.

CSECT-NAME = *UNCHANGED / *ALL / <c-string 1..32 with-low> / <text 1..32>
The TXTP records can be restricted to one CSECT.

MODIFICATION-ID = *UNCHANGED / *ALL / <c-string 1..12 with-low> / *RANGE(...)
Those TXTP records with the specified identification are selected.

MODIFICATION-ID = *RANGE(...)
A group of TXTP records lying in a range can be selected.

FROM = *UNCHANGED / *LOWEST / <c-string 1..12 with-low>
The beginning of the range is by default the lowest identification for the TXTP records, otherwise the
value entered here.

TO = *UNCHANGED / *HIGHEST / <c-string 1..12 with-low>
The end of the range is by default the highest identification for the TXTP records, otherwise the

value entered here.

INFORMATION = *LOGICAL(...)
Outputs the logical structure of the LLM.

LEVEL=*UNCHANGED / *ALL / *NEXT
Outputs all substructures by default; otherwise, only the next substructure.

INFORMATION = *PHYSICAL
Outputs the physical structure of the LLM.

Example
The file TEST1 is to be added as member of type D in the library LIB3.

The default setting for the member type is changed to the desired value using the MODIFY-DEFAULTS statement.
Thus, it is no longer necessary to specify the member type in the subsequent ADD-ELEMENT statement. To ensure
that LMSCONYV can confirm successful addition of the files, the MODIFY-LOGGING-PARAMETERS statement sets
the scope of the log information to the complete LMSCONYV log.

/start-1nmsconv
/lopen-library |ib3,*update
[/ modi fy-defaults type=d
/1 modi fy-10g- param | oggi ng=*maxi num
/1 add-el ement testl
I NPUT FILE
QUTPUT LI BRARY= : N: $USER. LI B3
ADD TEST1 AS (D) TEST1/ (0001)/<date>

273

7.4.2.9 MODIFY-ELEMENT - Modify member

The MODIFY-ELEMENT statement initiates the modification of members. The modifications themselves are
controlled by way of substatements.

MODIFY-ELEMENT selects the members to be modified.

Once the MODIFY-ELEMENT statement has been sent, LMSCONYV expects a substatement as the next statement.
If another statement is entered instead of a substatement, an error message is issued.

Format
MODIFY-ELEMENT

ELEMENT = *LIBRARY-ELEMENT (...)
*LIBRARY-ELEMENT(...)
| LIBRARY =*STD / <filename 1..54 without-vers> / *LINK(...)
*LINK(...)
| LINK-NAME = <structured-name 1..8>
,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
*ALL(...)
| VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /

| <composed-name 1..24 with-under with-wild(52)>
<composed-name>(...)
| VERSION =*HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
| <composed-name 1..24 with-under with-wild(52)>
,TYPE = *DEFAULT / <alphanum-name 1..8>
,USER-DATE =*ANY / *TODAY / <date 8..10 with-compI>/ *INTERVAL(...)
*INTERVAL(...)
| FROM =1900-01-01 / <date 8..10 with-compl>
| ,TO =*TODAY / <date 8..10 with-compl>

274

| CREATION-DATE =*ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)

| *INTERVALC(...)

| | FROM = 1900-01-01 / <date 8..10 with-compl>

[| ,TO =*TODAY / <date 8..10 with-compl>

| ,MODIFICATION-DATE =*ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)

| *INTERVALC(...)

| | FROM = 1900-01-01 / <date 8..10 with-compl>

| | ,TO =*TODAY / <date 8..10 with-compl>
,TO-ELEMENT = *LIBRARY-ELEMENT (...)

*LIBRARY-ELEMENT(...)

| LIBRARY =*STD / *BY-SOURCE / <filename 1..54 without-vers> / *LINK(...)

| *LINK(...)

| | LINK-NAME = <structured-name 1..8>

| ,ELEMENT = *BY-SOURCE (...) / <composed-name 1..132 with-under with-wildcard-constr>(...)
*BY-SOURCE(...)

| VERSION =*DEFAULT / *BY-SOURCE / *UPPER-LIMIT /

| <composed-name 1..52 with-under with-wildcard-constr>

|
I
I
| <composed-name>(...)
[| VERSION =*DEFAULT / *BY-SOURCE / *UPPER-LIMIT /
| | <composed-name 1..52 with-under with-wildcard-constr>

| ,TYPE =*BY-SOURCE / *DEFAULT / <alphanum-name 1..8>

| USER-DATE =*TODAY / *BY-SOURCE / <date 8..10 with-compl>
,TEXT-PARAMETERS = *NONE / *PARAMETERS(...)

*PARAMETERS(...)

| INPUT-RECORD-ID = *NONE / *RECORD-PART(...)

| *RECORD-PART(...)

[| START = <integer 1..251>

| | ,LENGTH = <integer 1..16>
,WRITE-MODE = *DEFAULT / *CREATE / *REPLACE / *ANY
,DIALOG-CONTROL = *DEFAULT / *NO / *YES / *ERROR

275

Operands

ELEMENT = *LIBRARY-ELEMENT(...)Specifications for the desired member designation.

LIBRARY = *STD / <filename 1..54 without-vers>/ *LINK(...)
Specifies the library containing the member to be modified.

LIBRARY = *STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library containing the member to be modified.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library.

ELEMENT =*ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)

ELEMENT =*ALL(...)
All members are specified.

ELEMENT = <composed-name 1..64 with-under with-wild(132)>(...)
Name of the member to be modified.

VERSION = *HIGHEST-EXISTING / *ALL/ *UPPER-LIMIT /
<composed-name 1..24 with-under with-wild(52)>
Version of the member to be modified.

VERSION = *HIGHEST-EXISTING
The member with the highest existing version is modified.

VERSION = *ALL
All versions of the member are modified.

VERSION = *UPPER-LIMIT
The highest possible version X'FF' in the library under the specified TYPE and name is modified.

VERSION = <composed-name 1..24 with-under with-wild(52)>
Explicitly specifies the version of the member to be modified.

TYPE =*DEFAULT / <alphanum-name 1..8>
Type of the member to be modified. If the value is *DEFAULT and the current value set with MODIFY-
DEFAULTS is *NONE, LMSCONV requires a type specification.

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
The member to be modified has any date.

USER-DATE = *TODAY
The member with the current date is modified.

276

USER-DATE = <date 8..10 with-compl>
The member whose date is entered explicitly in the form [YY]YY-MM-DD is modified.

USER-DATE = *INTERVAL(...)
All members lying in the specified interval are modified.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

TO =*TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE =*ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
Creation date of the member. For a description of the operands, see the USER-DATE operand of this
statement.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see the USER-DATE operand
of this statement.

TO-ELEMENT = *LIBRARY-ELEMENT(...)
Specifies the destination to which and the name under which the corrected member is to be written back.

LIBRARY = *STD / *BY-SOURCE / <filename 1..54 without-vers>/ *LINK(...)
Specifies the library to which the corrected member is to be written back.

LIBRARY =*STD
The library opened by OPEN-LIBRARY.

LIBRARY =*BY-SOURCE
The corrected member is written back to the original library.

LIBRARY = <filename 1..54 without-vers>
Name of the library to which the corrected member is to be added.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library.

ELEMENT = *BY-SOURCE(...) / <composed-name 1..132 with-under with-wildcard-constr>(...)
Name that the corrected member is to receive.

ELEMENT = *BY-SOURCE(...)
The new name is the same as the old name.

VERSION = *DEFAULT / *BY-SOURCE / *UPPER-LIMIT /
<composed-name 1..52 with-under with-wildcard-constr>
Version that the corrected member is to receive.

VERSION =*DEFAULT
The default value is *BY-SOURCE (see below) or the current value set with
MODIFY-DEFAULTS.

277

VERSION = *BY-SOURCE
The corrected member receives the same version as the original member. If the original member has no
version specification, the corrected member receives X'FF' as the version specification.

VERSION = *UPPER-LIMIT
The highest possible version X'FF' is generated.

VERSION = <composed-name 1..52 with-under with-wildcard-constr>
The text specified here is interpreted as the version designation.

ELEMENT = <composed-name 1..132 with-under with-wildcard-constr>(...)
Name of the corrected member. It can also be entered using wildcards.

VERSION = *DEFAULT / *BY-SOURCE / *UPPER-LIMIT /
<composed-name 1..52 with-under with-wildcard-constr>
Version that the corrected member is to receive. For a description of the operands, see above.

TYPE =*BY-SOURCE / *DEFAULT / <alphanum-name 1..8>
Type that the corrected member is to receive.

TYPE = *BY-SOURCE
The corrected member receives the same type designation as the original member.

TYPE =*DEFAULT
If the value is *DEFAULT and the current value set with MODIFY-DEFAULTS is *NONE, LMSCONV requires a
type specification.

USER-DATE = *TODAY / *BY-SOURCE / <date 8..10 with-compl>
Date given by the user.

USER-DATE = *TODAY
The current date is given.

USER-DATE = *BY-SOURCE
The new member is given the same date as the source member.

USER-DATE = <date 8..10 with-compl>
The date must be specified in the form [YY]YY-MM-DD.

TEXT-PARAMETERS = *NONE / *PARAMETERS(...)
Specifies parameters for textual members.

TEXT-PARAMETERS = *NONE
No parameters are specified for textual members.

TEXT-PARAMETERS = *PARAMETERS(...)
Specifies parameters for textual members.

INPUT-RECORD-ID = *NONE / *RECORD-PART(...)
Specifies the location of the record ID (see section “Substatements of MODIFY-ELEMENT for text members”)
in the input record.

INPUT-RECORD-ID = *NONE
No location is specified for the record ID of the input record.

278

INPUT-RECORD-ID = *RECORD-PART(...)
Specifies the beginning and length of the record ID area, where beginning + length 252.

START = <integer 1..251>
Specifies the first character in the record ID to indicate the beginning of the record ID area.

LENGTH = <integer 1..16>
Specifies the length of the record ID.

WRITE-MODE =*DEFAULT / *CREATE / *REPLACE / *ANY
Overwriting of a member having the same name. If the member does not exist under this name, it will be created as
a new member. If the source member is the same as the target member, this operand is ignored.

WRITE-MODE = *DEFAULT
The default value is *CREATE (see below) or the current value set with MODIFY-DEFAULTS.

WRITE-MODE = *CREATE
The name of the corrected member must not yet exist and is created as a new member.

WRITE-MODE =*REPLACE
The corrected member must already exist and is replaced.

WRITE-MODE = *ANY
The corrected member is replaced if it already exists. Otherwise it will be created as a new member.

DIALOG-CONTROL =*DEFAULT / *NO / *YES / *ERROR
This operand specifies whether or not the execution of the statement is carried out interactively with the user.

For more detailed information on dialog control, see the MODIFY-DEFAULTS statement.

DIALOG-CONTROL =*DEFAULT
The default value is *NO or the current value set with MODIFY-DEFAULTS.

DIALOG-CONTROL =*NO
All members are processed without dialog queries, i.e. without the user being able to take control.
Exception: If a member or a library is locked, LMSCONYV inquires whether the attempt to access it shall be repeated.

DIALOG-CONTROL =*YES / *ERROR
See the description in the MODIFY-DEFAULTS statement .

279

7.4.3 Substatements of MODIFY-ELEMENT for member types R, Cand L

They are read from the statement stream until the END-MODIFY substatement is encountered.

The substatements make modifications to object modules, phases and link and load modules.

LMSCONV initially collects these substatements and executes them only after the END-MODIFY substatement has

been entered.

Overview of LMSCONYV substatements

These substatements are dependent on the selected member type and are permitted only for members of types R,

CorlL.

Statement

ADD-REP-RECORD

ADD-TEXT-MODIFICATION

DELETE-RECORD-TYPE

END-MODIFY

MODIFY-CSECT-ATTRIBUTES

MODIFY-MODIFICATION-
DEFAULTS

REMOVE-MODIFICATION

RENAME-SYMBOLS

Table 9: MODIFY-ELEMENT substatements

Member
type

R
R,C,L
R,C,L

R,C.L

R,C.L

R,C,L

Function

Generate REP records
Modify text records
Delete record types
End modification
Modify CSET attributes

Define global parameters in the MODIFY-ELEMENT
statement

Cancel corrections

Rename CSECTs, ENTRYs, EXTRNs and COMMONSs

i Standard SDF statements are also permitted as substatements.

280

7.4.3.1 ADD-REP-RECORD - Add REP records to object module

The ADD-REP-RECORD substatement adds REP records to the object module. These REP records are evaluated
by the dynamic binder loader (DBL).

ADD-REP-RECORD substatement is permitted only for object modules (R-type members).
Format
ADD-REP-RECORD

ADDRESS = <x-string 1..8>(...)

<x-string 1..8>(...)

| BASE-ADDRESS = *MODIFICATION-DEFAULT / <x-string 1..8>
,NEW-CONTENTS = <x-string 1..100> / <c-string 1..50 with-low>

Operands

ADDRESS = <x-string 1..8>(...)
Specifies the address at which the member selected by MODIFY-ELEMENT is to be modified.

BASE-ADDRESS = *MODIFICATION-DEFAULT / <x-string 1..8>

Base address.

BASE-ADDRESS is added to ADDRESS. The resulting correction address must, in the case of prelinked
modules, relate to the prelinked module (and not to the CSECT). The default BASE-ADDRESS is 0.

NEW-CONTENTS = <x-string 1..100> / <c-string 1..50 with-low>

Replacement text specified in character or hexadecimal form.

If the text is specified in character form, it must not exceed 50 characters in length. An apostrophe in the text must
be duplicated.

If the text is specified in hexadecimal form, it must not exceed 100 characters in length.

281

7.4.3.2 ADD-TEXT-MODIFICATION - Correct text records of an object module

The MODIFY-ELEMENT substatement ADD-TEXT-MODIFICATION corrects text records of an object module and
phases. This substatement generates a correction journal record (TXTP record) that contains the original contents
of the text area.

With the MODIFY-MODIFICATION-DEFAULTS statement, you can specify that no correction journal record is to be
created. Corrections without a correction journal record cannot be reversed by the REMOVE-MODIFICATION
substatement.

This substatement may be used only for members of types R, C and L.
Format
ADD-TEXT-MODIFICATION

ADDRESS = <x-string 1..8>(...)
<x-string 1..8>(...)
| BASE-ADDRESS = *MOD IFICATION -DEF AULT / <x-string 1..8>

,NEW-CONTENTS = <x-string 1..100>(...) / <c-string 1..50 with-low>(...)
<x-string 1..100>(...)

| OLD-CONTENTS =*ANY / <x-string 1..100> / <c-string 1..50 with-low>
<c-string 1..50 with-low>(...)
| OLD-CONTENTS =*ANY / <x-string 1..100> / <c-string 1..50 with-low>
,MODIFICATION-ID = *MOD |IFICATION -DEF AULT / *SPACES / <c-string 1..12 with-low>

Operands

ADDRESS = <x-string 1..8>(...)

Specifies the address at which the member selected by MODIFY-ELEMENT is to be modified.
BASE-ADDRESS = *MODIFICATION-DEFAULT / <x-string 1..8>
Base address. The default BASE-ADDRESS is 0.
The base address is added to ADDRESS. The resulting correction address is as follows:

For ... Relative to:

modules start of CSECT
(the desired CSECT is specified via the MODIFY-MODIFICATION-DEFAULTS substatement.)

phases start of phase
LLMs start of CSECT if a CSECT has been specified

start of sub-LLM if a sub-LLM has been specified
(the desired sub-LLM is specified using the MODIFY-MODIFICATION-DEFAULTS
substatement)

start of slice if a slice has been specified
(the desired slice is specified using the MODIFY-MODIFICATION-DEFAULTS substatement)

282

start of LLM if nothing has been specified and the LLM only consists of one slice.
If the LLM consists of more than one slice, you must specify a CSECT, a sub-LLM or a slice.

Table 10: Determining the base address

NEW-CONTENTS = <x-string 1..100>(...) / <c-string 1..50 with-low>(...)
Replacement text specified in character or hexadecimal form.

OLD-CONTENTS = *ANY / <x-string 1..100> / <c-string 1..50 with-low>
Original text of the member. The original text must always be specified with the same length as the
replacement text.

OLD-CONTENTS = *ANY
Any old contents are replaced.

MODIFICATION-ID = *MODIFICATION-DEFAULT / *SPACES / <c-string 1..12 with-low>
Identification which is held in the correction journal record (TXTP record). If SPACES is specified, blanks are used
as the identification. The preset value are blanks or the value set with MODIFY-MODIFICATION-DEFAULTS.

For member types R and C, only 8 characters are allowed.
The identification for types R and C is to have the form 'Annnnnnn’, and the form 'Annnnnnn-jjj* for type L, where
Annnnnnn is a problem report number and jjj is a Julian date.

283

7.4.3.3 DELETE-RECORD-TYPE - Exclude record types from input member

The MODIFY-ELEMENT substatement DELETE-RECORD-TYPE excludes the following record types from the input
member:

® |SD records (applies only to R-type members)

® | SD records (applies only to R-type members)

® REP records (applies only to R-type members)

® INCLUDE records (applies only to R-type members)

® TXTP records (applies only to R-, C- and L-type members)
® DSDD records (applies only to R-type members)

This substatement may be used only for members of types R, C and L.
Format
DELETE-RECORD-TYPE

TYPE = *TXTP(...) / list-poss(5): *ISD / *LSD / *REP / *DSDD / *INCLUDE
*TXTP(...)
| MODIFICATION-ID = *ALL / *SPACES / <c-string 1..12 with-low>

Operands

TYPE = *TXTP(...) / list-poss(5): *ISD / *LSD / *REP / *DSDD / *INCLUDE
Defines the record type that is not to be transferred from the input member to the output member.

MODIFICATION-ID = *ALL / *SPACES / <c-string 1..12 with-low>
Only those TXTP records with the specified identification are deleted.
For member types R and C, only 8 characters are allowed.

This identification applies only to this DELETE-RECORD-TYPE.

i Deleted record types cannot be retrieved.

284

7.4.3.4 END-MODIFY - Terminate input of substatements

Each sequence of substatements is concluded by an END-MODIFY substatement. LMSCONYV then checks that all
statements are executable and executes the statement string.

Format

END-MODIFY

This statement has no operands.

285

7.4.3.5 MODIFY-CSECT-ATTRIBUTES - Modify CSECT attributes

The MODIFY-ELEMENT substatement MODIFY-CSECT-ATTRIBUTES modifies CSECT attributes.
This substatement must be used for object modules (R-type members) only.

At the beginning of the MODIFY-ELEMENT statement, the operands are preset to the value immediately following
*UNCHANGED.

Format

MODIFY-CSECT-ATTRIBUTES

NAME = *ALL / <c-string 1..8 with-low> / <text 1..8>
\VISIBLE = *UNCHANGED / *YES / *NO
,READ-ONLY = *UNCHANGED / *YES / *NO
,PAGE-ALIGNMENT =*UNCHANGED / *YES / *NO
,RESIDENCY-MODE = *UNCHANGED / 24 | *ANY

,ADDRESSING-MODE = *UNCHANGED / 24 / 31 / *ANY

Operands

NAME = *ALL / <c-string 1..8 with-low> / <text 1..8>
Name of the CSECT whose attributes are to be modified. All CSECTs or a specific CSECT can be specified.

VISIBLE = *UNCHANGED / *YES / *NO
Masking (visibility) of the program interface. The preset value is *YES.

VISIBLE = *YES

The specified control sections are not masked (see the “Binder Loader / Starter” manual [13 (Related publications)
]). A secondary name record is created for these sections, and the names are entered in the directory of secondary
names.

VISIBLE = *NO
The specified control sections are masked. No secondary name record is created for these sections, and the names
are not entered in the directory of secondary names. Any secondary name record which may exist is deleted.

If all control sections of an object module are masked, a library member without a secondary name entry is created.
This object module can be located via the primary name only.

The module name can, however, be derived from the initial control section name with the aid of all ESD records,
since masked control sections are also used in this case.

i The linkage editor cannot process object modules which only have masked control sections, e.g. when an
object module is excluded with the autolink function. The VISIBLE operand can also be used on ENTRYSs.

READ-ONLY = *UNCHANGED / *YES / *NO
Specifies the write protection. The preset value is *YES.

READ-ONLY =*YES
Indicates that only read access to the specified control sections is permitted while the program is executing.

286

READ-ONLY =*NO
Enables write access to the specified control sections even while the program is executing.

PAGE-ALIGNMENT = *UNCHANGED / *YES / *NO
Specifies the page alignment. The preset value is *YES.

PAGE-ALIGNMENT = *YES
Indicates that the specified control sections are to be aligned on a page boundary, i.e. the load address should be a
multiple of decimal 4096 or hexadecimal 1000.

PAGE-ALIGNMENT =*NO
Does not take page boundaries into account. The control sections always start at the next doubleword address
produced during the linkage process.

RESIDENCY-MODE = *UNCHANGED / 24 | *ANY
Specifies the residency mode. The preset value is 24.

RESIDENCY-MODE = 24
Indicates that the specified control sections are to be loaded to the address area below the 16-Mbyte limit.

RESIDENCY-MODE = *ANY
No limitation exists.

ADDRESSING-MODE = *UNCHANGED / 24 / 31/ *ANY
Specifies the addressing mode. The preset value is 24.

ADDRESSING-MODE = 24
Indicates that the specified control sections are to be executable in 24-bit mode.

ADDRESSING-MODE = 31
Indicates that the specified control sections are to be executable in 31-bit mode.

ADDRESSING-MODE = *ANY
Any execution mode.

287

7.4.3.6 MODIFY-MODIFICATION-DEFAULTS - Specify global defaults

The MODIFY-ELEMENT substatement MODIFY-MODIFICATION-DEFAULTS defines the global default values
within the MODIFY-ELEMENT statement.

This substatement may be used only for members of types R, C and L.

At the beginning of the MODIFY-ELEMENT statement, the operands are preset to the value immediately following
*UNCHANGED.

Format
MODIFY-MODIFICATION-DEFAULTS

CSECT-NAME = *UNCHANGED / *NONE / <c-string 1..32 with-low> / <text 1..32>
,PHASE-SEGMENT = *UNCHANGED / *ROOT / <name 1..8>
,LLM-PART =*UNCHANGED / *NONE / *SLICE(...) / *SUB-LLM(...)
*SLICE(...)
| NAME = <structured-name 1..32>
*SUB-LLM(...)
| PATH-NAME = <c-string 1..255 with-low> / <text 1..255>
,MODIFICATION-LOGGING =*UNCHANGED / *YES(...) / *NO
*YES(...)
| MODIFICATION-ID = *UNCHANGED / *SPACES / <c-string 1..12 with-low>
,BASE-ADDRESS = *UNCHANGED / <x-string 1..8>

Operands

CSECT-NAME = *UNCHANGED / *NONE / <c-string 1..32 with-low> / <text 1..32>
Name of the CSECT to be corrected. (Relevant only for types R and L.)
The preset value is *NONE.

CSECT-NAME = *NONE
If no CSECT name is specified, in the case of R-type modules the first CSECT name is used.

PHASE-SEGMENT = *UNCHANGED / *ROOT / <name 1..8>
Specifies the phase segment to be corrected. If no segment is specified, the first segment (*ROOT) is used. The
preset value is *ROOT.

288

LLM-PART = *UNCHANGED / *NONE / *SLICE(...) / *SUB-LLM(...)

If no LLM part is specified, the entire LLM is used. The preset value is *NONE.

LLM-PART = *SLICE(...)
Specifies the slice to be corrected.

NAME = <structured-name 1..32>
Name of the slice to be corrected.

LLM-PART = *SUB-LLM(...)
Specifies the sub-LLM to be corrected.

PATH-NAME = <c-string 1..255 with-low> / <text 1..255>
The sub-LLM to be corrected is determined by way of its path name.

MODIFICATION-LOGGING = *UNCHANGED / *YES(...) / *NO
Defines TXTP record generation. The preset value is *YES.

MODIFICATION-LOGGING = *YES(...)
TXTP records are to be generated.

MODIFICATION-ID = *UNCHANGED / *SPACES / <c-string 1..12 with-low>

Identification which is held in the correction journal record (TXTP record). If SPACES is specified, blanks are

used as the identification. The preset value is *SPACES.

For member types R and C, only 8 characters are allowed.

The identification for types R and C is to have the form 'Annnnnnn’, and the form 'Annnnnnn-jjj for type L,

where Annnnnnn is a problem report number and jjj a Julian date.

MODIFICATION-LOGGING =*NO
No TXTP records are to be generated.

BASE-ADDRESS = *UNCHANGED / <x-string 1..8>

Hexadecimal specification of the base address. At the beginning of the MODIFY-ELEMENT statement, base

address 0 is set.

289

7.4.3.7 REMOVE-MODIFICATION - Cancel corrections

The MODIFY-ELEMENT substatement REMOVE-MODIFICATION cancels corrections from a previous correction
run under the following preconditions:

A correction journal record was created with the MODIFY-ELEMENT substatement ADD-TEXT-MODIFICATION, i.
e. the operand MODIFICATION-LOGGING=*YES was set.

This substatement may be used only for members of types R, C and L.
Format

REMOVE-MODIFICATION

MODIFICATION-ID = *ALL / *SPACES / <c-string 1..12 with-low>

Operands

MODIFICATION-ID = *ALL / *SPACES / <c-string 1..12 with-low>

For member types R and C, only 8 characters are allowed.

Only those corrections with the specified identification are canceled. If an identification is specified, correction
journal records for it must exist.

MODIFICATION-ID = *ALL
If no identification is specified, all corrections for which a correction journal record exists are canceled.

290

7.4.3.8 RENAME-SYMBOLS - Rename symbols

The MODIFY-ELEMENT substatement RENAME-SYMBOLS changes the name of a CSECT, ENTRY, EXTRN or
COMMON. Each renaming results in a modification of the ESD records. LMSCONYV checks for the uniqueness of
names within all ESD records, rejecting a new name if that name already exists.

The MODIFY-ELEMENT substatement RENAME-SYMBOLS may be used only for object modules (R-type
members).

Format

RENAME-SYMBOLS
SYMBOL-NAME = <text 1..8>
, SYMBOL-TYPE = *CSECT / *ENTRY / *EXTRN / *COMMON

,NEW-NAME = <text 1..8>

Operands

SYMBOL-NAME = <text 1..8>
Defines the symbol name to be renamed.

SYMBOL-TYPE = *CSECT / *ENTRY / *EXTERN / *COMMON
Defines the type of symbol whose name is to be changed.

NEW-NAME = <text 1..8>

New symbol name.

The name should satisfy the BINDER conventions for the special data type <symbol> (see the “Binder” manual [13
(Related publications)]). LMSCONYV does not check for this convention, however.

i Masked (invisible) CSECT/ENTRY names can also be renamed.

291

7.4.4 Substatements of MODIFY-ELEMENT for text members

These substatements make changes to text members. They are read from the statement stream until the END-
MODIFY substatement is encountered.

Overview of LMSCONYV substatements

Statement Function
ADD-RECORD Add records
END-MODIFY End modification

REMOVE-RECORD Remove records

Table 11: MODIFY-ELEMENT substatement for text members

i Standard SDF statements are also permitted as substatements.
Only member records with lengths <= 251 are processed. Longer records will be truncated. In this case,
LMSCONYV issues a warning.

Definition of record identification for textual members

Record identification may be a record number or a record ID.

Record no.: The record number indicates the relative position of the member record in relation to the
beginning of the member. If the record number specified is greater than the member’s highest
record number, the changes continue after the last member record, i.e. records are appended to
the member.

Record ID: The location and length of the record ID are specified by means of the INPUT-RECORD-ID
operand (see the MODIFY-ELEMENT statement).
This is why it is not permissible to specify a record ID in substatements except when INPUT-
RECORD-ID has a value other than *NONE. If specified, a record ID must have the length
declared in INPUT-RECORD-ID. Only leading zeros may be omitted. If the record ID does not
occur in the input member, the changes are inserted in front of the first record with a higher record
ID.

Record numbers and record IDs may be mixed within substatements. In substatements and data records, they must
always be specified in ascending order.

If an error is detected in interactive mode, the correction must be terminated with END-MODIFY and then restarted.
After an ADD-RECORD substatement, an *END must also be entered.

292

7.4.4.1 ADD-RECORD - Add records

The ADD-RECORD substatement inserts the records following the statement at the specified position. The records
to be inserted must be concluded by an *END record.

Format

ADD-RECORD

RECORD-ID = *NONE / <integer 0..99999999> / <c-string 1..16 with-low>

Operands

RECORD-ID = *NONE / <integer 0..99999999> / <c-string 1..16 with-low>
Specifies the data record to be added.

RECORD-ID = *NONE

If the INPUT-RECORD-ID operand of the MODIFY-ELEMENT statement is set to a value other than *NONE, the
data records following the ADD-RECORD substatement are inserted in the member being modified in accordance
with their record IDs.

If a specified record ID designates a record which already exists, the data record is written over the existing record.
If no record with the specified record ID yet exists, the data record is inserted in front of the first record with a higher
record ID. If INPUT-RECORD-ID=*NONE is set or no record ID is specified for a data record, the record is inserted
at the current position.

RECORD-ID = <integer 0..99999999> / <c-string 1..16 with-low>

Specifies the member position after which the data records following the statement are to be inserted. If the
specified record number or record ID does not exist, the data records are each inserted in front of the first record
with a higher record number/record ID.

293

7.4.4.2 END-MODIFY - Conclude substatements

Each sequence of substatements is concluded by an END-MODIFY substatement.

Format

END-MODIFY

This statement has no operands.

294

7.4.4.3 REMOVE-RECORD - Delete record or record area in member

The REMOVE-RECORD substatement deletes the specified record or record area from the member.
Format
REMOVE-RECORD

RECORD-ID = <integer 0..99999999> / <c-string 1..16 with-low> / *RANGE(...)
*RANGE(...)
| FROM = <integer 0..99999999> / <c-string 1..16 with-low>
| ,TO = <integer 0..99999999> / <c-string 1..16 with-low>

Operands

RECORD-ID = <integer 0..99999999> / <c-string 1..16 with-low>/ *RANGE(...)
Record number or record ID of the record to be deleted.

RECORD-ID = <integer 0..99999999> / <c-string 1..16 with-low>
Record number or record ID of the record to be deleted.

RECORD-ID = *RANGE(...)
Specifies the record area to be deleted.

FROM = <integer 0..99999999> / <c-string 1..16 with-low>
Specifies the first record number or record ID of the area which is to be deleted.

TO = <integer 0..99999999> / <c-string 1..16 with-low>
Specifies the last record number or record ID of the area which is to be deleted.

295

7.4.5 LMSCONV statements MODIFY-ELEMENT-ATTRIBUTES to WRITE- COMMENT

* MODIFY-ELEMENT-ATTRIBUTES - Modify member attributes

* MODIFY-LOGGING-PARAMETERS - Modify logging settings

® OPEN-LIBRARY - Open global library

® SHOW-DEFAULTS - Output current default values

¢ SHOW-ELEMENT - Display contents of member

¢ SHOW-ELEMENT-ATTRIBUTES - Display member attributes

¢ SHOW-LIBRARY-ATTRIBUTES - Display library attributes

¢ SHOW-LIBRARY-STATUS - Display library status

¢ SHOW-LOGGING-PARAMETERS - Display global LMSCONV parameters
® SHOW-TYPE-ATTRIBUTES - Display attributes of a member type
® SHOW-USER-EXITS - Display LMSCONYV version

* WRITE-COMMENT - Write comments to output medium

296

7.4.5.1 MODIFY-ELEMENT-ATTRIBUTES - Modify member attributes

The MODIFY-ELEMENT-ATTRIBUTES statement modifies the Coded Character Set Name (CCSN) for a member.
Format
MODIFY-ELEMENT-ATTRIBUTES

ELEMENT = *LIBRARY-EL EMENTY(...)
*LIBRARY-ELEMENT(...)
| LIBRARY =*STD / <filename 1..54 without-vers> / *LINK(...)
| *LINK(..
| | LINK-NAME = <structured-name 1..8>

| ,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
| *ALL(...)

| | VERSION =*HIGHEST-EXIST ING / *ALL / *UPPER-LIMIT /

| [<composed-name 1..24 with-under with-wild(52)>

| <composed-name 1..64 with-under with-wild(132)>(...)

| | VERSION =*HIGHEST-EXIST ING / *ALL / *UPPER-LIMIT /

| | <composed-name 1..24 with-under with-wild(52)>

| ,TYPE =*DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>

| JUSER-DATE =*ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
| *INTERVALC(...)

| | FROM =1900-01-01 / <date 8..10 with-compl>

| | ,TO=*TODAY / <date 8..10 with-compl>

| ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)

| *INTERVAL(...)

| | FROM =1900-01-01 / <date 8..10 with-compl>

| | ,TO=*TODAY / <date 8..10 with-compl>

| ,MODIFICATION-DATE =*ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)

| *INTERVAL(...)

| | FROM =1900-01-01 / <date 8..10 with-compl>

| | ,TO=*TODAY / <date 8..10 with-complI>

| ,CODED-CHARACTER-SET =*ANY / *NONE / <name 1..8 with-wild(20)>
,NEW-ATTRIBUTES = *PARAMETERS(...)

*PARAMETERS(...)

| CODED-CHARACTER-SET =*BY-SOURCE / *LIBRARY-DEFAULT / *NONE / <name 1..8>

,DIALOG-CONTROL = *DEFAULT / *NO / *YES / *ERROR

297

Operands

ELEMENT = *LIBRARY-ELEMENT(...)
Specifications for the desired member designation.

LIBRARY =*STD / <filename 1..54 without-vers>/ *LINK(...)
Specifies the library containing the member.

LIBRARY =*STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library containing the member.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of an ADD-FILE-LINK command prior to calling
LMSCONV.

ELEMENT =*ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)
Name of the members whose attributes are to be modified.

VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /
<composed-name 1..24 with-under with-wild(52)>
Version of the member.

VERSION = *HIGHEST-EXISTING
The attributes of the member with the highest existing version are modified.

VERSION = *UPPER-LIMIT
The highest possible version X'FF' in the library under the specified TYPE and name is used.

VERSION = <composed-name 1..24 with-under with-wild(52)>
Explicitly specifies the version of the member.

TYPE =*DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
Type of the member.

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
The member has any date.

USER-DATE = *TODAY
The member with the current date is used.

USER-DATE = <date 8..10 with-compl>
The member whose date is entered explicitly in the form [YY]YY-MM-DD is used.

USER-DATE = *INTERVAL(...)
All members lying in the specified interval are used.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

298

TO =*TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE =*ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
Creation date of the member. For a description of the operands, see the USER-DATE operand of this
statement.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see the USER-DATE operand
of this statement.

CODED-CHARACTER-SET = *ANY / *NONE / <name 1..8 with-wild(20)>
Character set assigned to the member.

CODED-CHARACTER-SET = *ANY
Selects members without regard to their assigned character set.

CODED-CHARACTER-SET = *NONE
Selects members which have not been assigned a character set.

CODED-CHARACTER-SET = <name 1..8 with-wild(20)>
Selects the members to which the specified character set has been assigned.

NEW-ATTRIBUTES = *PARAMETERS(...)
Specifies the attributes that the selected members are to receive.

CODED-CHARACTER-SET = *BY-SOURCE / *LIBRARY-DEFAULT / *NONE / <name 1..8>
Character set assigned to the members.

CODED-CHARACTER-SET =*BY-SOURCE
The member is assigned the character set of the source members.

CODED-CHARACTER-SET = *LIBRARY-DEFAULT
The members are assigned the character set of the library containing the member.

CODED-CHARACTER-SET = *NONE
No character set is assigned to the members.

CODED-CHARACTER-SET = <name 1..8>
Specifies the character set which is to be assigned to the members.

DIALOG-CONTROL =*DEFAULT / *NO / *YES / *ERROR
This operand specifies whether or not the execution of the statement is carried out interactively with the user.

For more detailed information on dialog control, see the MODIFY-DEFAULTS statement.

DIALOG-CONTROL =*DEFAULT
The default value is *NO or the current value set with MODIFY-DEFAULTS..

DIALOG-CONTROL =*NO
All members are processed without dialog queries, i.e. without the user being able to take control.
Exception: If a member or a library is locked, LMSCONYV inquires whether the attempt to access it shall be repeated.

DIALOG-CONTROL =*YES /*ERROR
See the description in the MODIFY-DEFAULTS statement .

299

Note

For SAM node files, the name of the coded character set on Net-Storage (NETCCSN) is stored as an element
attribute. It is possible to change the element's coded character cet (CCSN) using the MODIFY-ELEMENT-
ATTRIBUTES statement. But it is not possible to modify the element's NETCCSN. That means that after changing
the CCSN and extracting a member the resulting SAM node file may eventually not be edited if the required code
conversion cannot be executed. In this case, the correct code table should be set using the MODIFY-FILE-
ATTRIBUTES command.

300

7.4.5.2 MODIFY-LOGGING-PARAMETERS - Modify logging settings
The MODIFY-LOGGING-PARAMETERS statement modifies the global settings for the logging scope, output
medium and logging format.

If one of these values is changed by the MODIFY-LOGGING-PARAMETERS statement, this new setting becomes
the current setting. This remains valid for the LMSCONYV run (*UNCHANGED) until a new MODIFY-LOGGING-
PARAMETERS statement for this value or RESET-LOGGING-PARAMETERS is issued. At the beginning of the
LMSCONV run, the values immediately following *UNCHANGED apply.

Format
MODIFY-LOGGING-PARAMETERS

LOGGING = *UNCHANGED / *MINIMUM / *MAXIMUM
,TEXT-OUTPUT =*UNCHANGED / *SYSOUT / *SYSLST(...) / *NONE / *LIBRARY-ELEMENT(...)
*SYSLST(...)
| SYSLST-NUMBER =*STD / <integer 1..99>

*LIBRARY-ELEMENT(...)
| LIBRARY =*STD / <filename 1..54 without-vers> / *LINK(...)
| *LINK(...)
| | LINK-NAME = <structured-name 1..8>
| ,ELEMENT = <composed-name 1..64 with-under>(...)
| <composed-name 1..64 with-under>(...)
| | VERSION =*UPPER-LIMIT / <composed-name 1..24 with-under>
| ,TYPE =P/ <alphanum-name 1..8>
| ,WRITE-MODE = *UNCHANGED / *CREATE / *REPLACE / *EXTEND / *ANY
,OUTPUT-LAYOUT =*UNCHANGED / *PARAMETERS(...)
*PARAMETERS(...)
| LINES-PER-PAGE =*UNCHANGED / <integer 1..9999>
| ,LINE-SIZE = *UNCHANGED /132 /80
| ,EXTRA-FORM-FEED =*UNCHANGED / *NO / *YES
| ,HEADER-LINES = *UNCHANGED / *YES / *NO

Operands

LOGGING = *UNCHANGED / *MINIMUM / *MAXIMUM
Defines the scope of LMSCNV logging.

LOGGING = *MINIMUM
Only error messages and negative acknowledgments are output.

LOGGING = *MAXIMUM
A complete LMSCONYV log is output.

301

TEXT-OUTPUT = *UNCHANGED / *SYSOUT / *SYSLST(...) / *NONE / *LIBARARY-ELEMENT(...)
This parameter defines the output medium. If the medium is changed or if WRITE-MODE=*EXTEND is entered,
page numbering always begins with 1. The preset value is *SYSOUT.

TEXT-OUTPUT =*SYSOUT
The output is written to SYSOUT.

TEXT-OUTPUT = *SYSLST(...)
The output is written to SYSLST.

SYSLST-NUMBER = *STD / <integer 1..99>
Denotes the SYSLST file to which the output is to be written.

SYSLST-NUMBER = *STD
The system file SYSLST is used.

SYSLST-NUMBER = <integer 1..99>
The system file with the specified number from the set SYSLSTO01 through SYSLST99 is used.

TEXT-OUTPUT = *NONE
Except for error messages, output is suppressed.

TEXT-OUTPUT = *LIBRARY-ELEMENT(...)
The output is stored in a library member.

LIBRARY = *STD / <filename 1..54 without-vers>/ *LINK(...)
Specifies the library in which the output is to be stored. Either the library set globally by means of OPEN-
LIBRARY is used as standard, or the explicitly specified library or the library assigned via the link name is used.

LINK-NAME = <structured-name 1..8>
Link name of the library.

ELEMENT = <composed-name 1..64 with-under>(...)
Specifies the member in which the output is to be stored.

VERSION = *UPPER-LIMIT / <composed-name 1..24 with-under>
Specifies the version that the member is to receive.

VERSION = *UPPER-LIMIT
The highest possible version X'FF' is generated.

VERSION = <composed-name 1..24 with-under>
The text specified here is interpreted as the version designation.

TYPE =P / <alphanum-name 1..8>
Specifies the member type.
By default the member in which the output is stored receives type P for print-edited files.

WRITE-MODE = *UNCHANGED / *CREATE / *REPLACE / *EXTEND / *ANY
Overwriting of a member having the same name. If the member does not exist under this name, it will be
created as a new member. The preset value is *CREATE.

WRITE-MODE = *CREATE
The target member must not yet exist and is created as a new member.

WRITE-MODE = *REPLACE
The target member must already exist and is replaced.

302

WRITE-MODE = *EXTEND
The target member is extended if it already exists. Otherwise it will be created as a new member.

WRITE-MODE = *ANY
The target member is replaced if it already exists. Otherwise it will be created as a new member.

OUTPUT-LAYOUT =*UNCHANGED / *PARAMETERS(...)
This parameter defines the LMSCONYV log format.

LINES-PER-PAGE =*UNCHANGED / <integer 1..9999>
This parameter defines the page length.
Default value: 64 lines

LINE-SIZE = *UNCHANGED / 132/ 80
This parameter defines the line length.The preset value is 132.

LINE-SIZE = 132
The line is to be 132 characters long.

LINE-SIZE = 80
The line is to be 80 characters long.

EXTRA-FORM-FEED = *UNCHANGED / *NO / *YES
This parameter controls an extra form feed. The preset value is *NO.

EXTRA-FORM-FEED =*NO
A form feed will only occur when the page is full.

EXTRA-FORM-FEED = *YES
A form feed will occur either when the page is full or when a change of statement or member takes place.

HEADER-LINES = *UNCHANGED / *YES / *NO
This parameter controls the output of headers.The preset value is *YES.

HEADER-LINES = *YES
Headers containing the library and member designations are output.

HEADER-LINES = *NO
No headers are output.

303

7.4.5.3 OPEN-LIBRARY - Open global library

OPEN-LIBRARY is used to define and open a global library. This is referenced in other statements by means of
LIBRARY=*STD.

If two libraries are required in a statement, then the second library must be specified explicitly in the statement or
via a link name.

Global libraries remain assigned until they are explicitly closed by means of the CLOSE-LIBRARY statement or until
a new OPEN-LIBRARY statement is issued.

Global libraries are opened for reading as standard. If they are to be opened for reading and writing, the operand
MODE=*UPDATE must be set. If a new library is set up, it must be generated with MODE=*UPDATE.

Format
OPEN-LIBRARY

LIBRARY = <filename 1..54 without-vers> / *LINK(...)
*LINK(...)
| LINK-NAME = <structured-name 1..8>
,MODE = *READ / *UPDATE(...)

*UPDATE(...)
| STATE = *ANY / *OLD / *NEW

Operands

LIBRARY = <filename 1..54 without-vers> / *LINK(...)
Specifies the library that is to be set up and opened as a global library.

LIBRARY = <filename 1..54 without-vers>
The library with the name specified here is set up as a global library and opened.

LIBRARY = *LINK(...)
The library assigned via the link name is set up as a global library and opened.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of /ADD-FILE-LINK prior to calling LMSCONV.

MODE = *READ / *UPDATE(...)
Library open mode.

MODE =*READ
The library is opened only for reading. It must already exist.

304

MODE = *UPDATE(...)
The library is opened for reading and writing.

STATE = *ANY / *OLD / *NEW
Status of the library to be opened.

STATE =*ANY
The library may exist. If it does not exist, it will be created as a new library.

STATE =*OLD
The library must exist.

STATE =*NEW
The library must not exist. It will be created as a new library.

Examples
Assigning an existing library LIB1 as a global library:
[lopen-library library=libl

Assigning an existing library as a global library via the link name:

E/add-file-link i nk- name=gl ob-1ib, fil e-name=libl
i//start-1msconv

E//open-l i brary library=*link(link-name=gl ob-1ib)

Creating a new library and assigning it as a global library:

/lopen-library library=libl, node=*update

305

7.4.5.4 SHOW-DEFAULTS - Output current default values

This statement outputs the current values of the LMSCONYV defaults. These can be modified by means of the
MODIFY-DEFAULTS statement.

Format
SHOW-DEFAULTS

DEFAULTS = *STD / *ALL / list-poss(2000): *ELEMENT-ATTRIBUTES / *FILE-ATTRIBUTES /

*DESTROY-DATA / *WRITE-MODE / *DIALOG-CONTROL / *INFORMATION / *LAYOUT /
*SORT / *OUTPUT-FORM / *DELETE-SOURCE / *MAX-ERROR-WEIGHT / *RUN-MODE /
*NEXT-ATTEMPT / *TEXT-INFORMATION / *MODULE-INFORMATION /

*PHASE-INFORMATION / *LLM-INFORMATION

Operands

DEFAULTS =*STD

Outputs the default values for the following with their current settings: ELEMENT-ATTRIBUTES, FILE-
ATTRIBUTES, DESTROY-DATA, WRITE-MODE, DIALOG-CONTROL, INFORMATION, LAYOUT, SORT,
OUTPUT-FORM, DELETE-SOURCE, MAX-ERROR-WEIGHT, NEXT-ATTEMPT and PROTECTION.

DEFAULTS = *ALL
Outputs all defaults with their current settings.

DEFAULTS = *ELEMENT-ATTRIBUTES
Outputs the current settings for member type, source and target version, storage form and the file attributes.

DEFAULTS = *FILE-ATTRIBUTES
The current settings for the file access method is output.

DEFAULTS = *DESTROY-DATA
Whether or not data is to be overwritten is output.

DEFAULTS = *WRITE-MODE
The current setting for the write mode is output.

DEFAULTS = *DIALOG-CONTROL
The current setting for the dialog control is output.

DEFAULTS = *INFORMATION
Displays the current setting for the scope of directory information to be output.

DEFAULTS = *LAYOUT
Displays the current setting for the layout of the directory to be output.

DEFAULTS = *SORT
Displays the current setting for the sort criterion of the directory to be output.

DEFAULTS = *OUTPUT-FORM
Displays the current setting for the output form.

DEFAULTS = *DELETE-SOURCE
Outputs whether the source file is to be deleted or kept. Outputs the default setting for source file deletion.

306

DEFAULTS = *MAX-ERROR-WEIGHT
Outputs the default setting for spin-off control.

DEFAULTS = *RUN-MODE
Outputs the default setting for the run mode in which LMSCONV is to be called.

DEFAULTS = *NEXT-ATTEMPT
Outputs the default setting for the control of attempts to open files.

DEFAULTS = *TEXT-INFORMATION
Outputs the default setting for the scope of information for textual members.

DEFAULTS = *MODULE-INFORMATION
Outputs the default setting for the scope of information for object modules.

DEFAULTS = *PHASE-INFORMATION
Outputs the default setting for the scope of information for phases.

DEFAULTS = *LLM-INFORMATION
Outputs the default setting for the scope of information for link and load modules.

Example
E//show-defaults *std

! ELEMENT- ATTRI BUTES
i TYPE = * NONE

i NEXT- ATTEMPT = *NO

ELEMENT- VERSION = *ALL ;

TO ELEM VERSI ON = *BY- SOURCE ;

STORAGE- FORM = *STD i
i SOURCE- ATTRI BUTES = *STD i
| FI LE- ATTRI BUTES 5
j ACCESS- METHOD = *| SAM i
| DESTROY- DATA = *NO
i WRI TE- MODE = * CREATE ;
! DI ALOG- CONTROL = *NO |
| 1 NFORVATI ON = *MEDI UM i
! LAYOoUT = *VARI ABLE ;
! SORT = *BY- NAME ;
| QUTPUT- FORM = *STD i
! DELETE- SOURCE = *NO ;
! PROTECTI ON = *STD i
| MAX- ERROR- VEI GHT = *SERI OUS i
! RUN- MODE = *STD 5

All LMSCONYV default values are output. These values are applicable immediately after the start of LMSCONV.

307

7.4.5.5 SHOW-ELEMENT - Display contents of member

SHOW-ELEMENT displays the contents of a specified member, depending on its type. The contents of text-oriented
members, modules, phases and link and load modules (LLM) can be output. The representation format of the
output is controlled by the OUTPUT-FORM operand. The meaning of the attributes with modules and link and load
modules is explained in the “BINDER” manual [12 (Related publications)].

The statement is permissible for all member types. User-defined types are handled according to their respective
base type. If the base type is unknown to LMSCONV, only the TEXT-INFORMATION and OUTPUT-FORM
operands are effective. The scope of information can be restricted for textual members.

Format

SHOW-ELEMENT

ELEMENT = *LIBRARY-ELEMENT (...)
*LIBRARY-ELEMENT(...)
| LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)

*LINK(...)

| LINK-NAME = <structured-name 1..8>
,ELEMENT = *ALL(...) / <composed-name 1..64 with-under with-wild(132)>(...)

*ALL(...)

| VERSION =*HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /

<composed-name 1..64 with-under with-wild(132)>(...)

| VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT /

|

|

|

|

|

| | <composed-name 1..24 with-under with-wild(52)>
|

|

| | <composed-name 1..24 with-under with-wild(52)>
|

,TYPE = *DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>

308

| ,USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / INTERVAL(...)

| *INTERVALC(...)

| | FROM = 1900-01-01 / <date 8..10 with-compl>

| | ,TO =*TODAY / <date 8..10 with-compl>

| ,CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
| *INTERVALC(...)
|
|
|
|
|

| FROM = 1900-01-01 / <date 8..10 with-compl>
| ,TO =*TODAY / <date 8..10 with-compl>
,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
*INTERVAL(...)
| FROM = 1900-01-01 / <date 8..10 with-compl>
| | ,TO =*TODAY / <date 8..10 with-compl>
,TEXT-INFORMATION = *DEFAULT / *ALL / *STATISTICS / *FILE-ATTRIBUTES / *PARAMETERS(...)
*PARAMETERS(...)
| INFORMATION =*DEFAULT / *ALL / list-poss(2): *TEXT / *COMMENT
| ,RECORD-RANGE = *DEFAULT /*ALL / *RANGE(...)
| *RANGE(...)
| | FROM = *DEFAULT / <integer 1..2147483647>
| | ,TO =*DEFAULT /*LAST / <integer 1..2147483647>
| ,RECORD-PART =*DEFAULT /*ALL / *PART(...)
| *PART(...)
| | START =*DEFAULT / <integer 1..32764>
| | ,LENGTH =*DEFAULT / *REST / <integer 1..32764>
| ,RECORD-NUMBER =*DEFAULT /*BY-OUTPUT / *YES / *NO
,MODULE-INFORMATION = *DEFAULT / *ALL / *STATISTICS / *PARAMETERS(...)
*PARAMETERS(...)
| INFORMATION = *DEFAULT / *ALL / *TXT(...) / *TXTP(...) / list-poss(9): *ESD / *ISD /
| *L.SD /*RLD / *REP / *INCLUDE / *DSDD / *REF / *END
| *TXT(...)
| | CSECT-NAME = *DEFAULT /*ALL / <c-string 1..32 with-low> / <text 1..32>

309

,ADDRESS = *DEFAULT (...) / <x-string 1..8>(...)
*DEFAULT(...)
| BASE-ADDRESS =*DEFAULT / <x-string 1..8>
<x-string 1..8>(...)
| BASE-ADDRESS =*DEFAULT / <x-string 1..8>
,LENGTH = *DEFAULT / *REST / <integer 1..2147483647> | <x-string 1..8>
*TXTP(...)
| MODIFICATION-ID = *DEFAULT / *ALL / <c-string 1..8 with-low> / *RANGE(...)
| *RANGE(...)
| | FROM =*DEFAULT /*LOWEST / <c-string 1..8 with-low>
| | ,TO =*DEFAULT / *HIGHEST / <c-string 1..8 with-low>
,PHASE-INFORMATION = *DEFAULT / *ALL / *STATISTICS / *PARAMETERS(...)
*PARAMETERS(...)
| SEGMENT =*DEFAULT / *ALL / *ROOT / <name 1..8>
INFORMATION = *DEFAULT / *ALL / *TXT(...) / *TXTP(...) / list-poss(4): *ESD / *ISD /
*LSD /*RLD
*TXT(...)
| ADDRESS =*DEFAULT (...) / <x-string 1..8>(...)
| *DEFAULT(...)
| | BASE-ADDRESS =*DEFAULT / <x-string 1..8>
| <x-string 1..8>(...)
I
I

| BASE-ADDRESS = *DEFAULT / <x-string 1..8>
LENGTH = *DEFAULT / *REST / <integer 1..2147483647> | <x-string 1..8>
*TXTP(...)
| MODIFICATION-ID = *DEFAULT / *ALL / <c-string 1..8 with-low> / *RANGE(...)
| *RANGE(...)
| | FROM = *DEFAULT / *LOWEST / <c-string 1..8 with-low>

I
I
I
|
|
I
I
|
|
I
I
I
I
[| | ,TO =*DEFAULT /*HIGHEST / <c-string 1..8 with-low>

310

,LLM-INFORMATION = *DEFAULT / *ALL / *STATISTICS / *PARAMETERS(...)
*PARAMETERS(...)
| LLM-PART = *DEFAULT / *ALL / *SLICE(...) / *SUB-LLM(...)
*SLICE(...)
| NAME =*DEFAULT / <structured-name 1..32>
*SUB-LLM(...)
| PATH-NAME = *DEFAULT / <c-string 1..255 with-low> / <text 1..255>
JINFORMATION = *DEFAULT / *ALL / *TXT(...) / *TXTP(...) / *LOGICAL(...) / *PHYSICAL / *REF /
list-poss(4): *FRELOCATION / *ESVD / *ESVR / *LRLD
*TXT(...)
| CSECT-NAME =*DEFAULT / *ALL / <c-string 1..32 with-low> / <text 1..32>
| ,ADDRESS = *DEFAULT (...) / <x-string 1..8>(...)
| *DEFAULT(..)
| | BASE-ADDRESS =*DEFAULT / <x-string 1..8>
| <x-string 1..8>(...)
| | BASE-ADDRESS = *DEFAULT / <x-string 1..8>
| LENGTH =*DEFAULT / *REST / <integer 1..2147483647> | <x-string 1..8>
*TXTP(...)
| CSECT-NAME =*DEFAULT / *ALL / <c-string 1..32 with-low> / <text 1..32>
| ,MODIFICATION-ID = *DEFAULT / *ALL / <c-string 1..12 with-low> / *RANGE(...)
| *RANGE(...)
| | FROM =*DEFAULT /*LOWEST / <c-string 1..12 with-low>
| | ,TO=*DEFAULT /*HIGHEST / <c-string 1..12 with-low>
*LOGICAL(...)
| | LEVEL =*DEFAULT / *ALL / *NEXT
,OUTPUT-FORM = *DEFAULT / *STD / *CHARACTER / *HEXADECIMAL / *DUMP

Operands

ELEMENT = *LIBRARY-ELEMENT(...)
Specifications for the desired member designation.

LIBRARY =*STD / <filename 1..54 without-vers>/ *LINK(...)
Specifies the library containing the member.

LIBRARY =*STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Name of the library containing the member.

311

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library.

ELEMENT = *ALL(...)/ <composed-name 1..64 with-under with-wild(132)>(...)

ELEMENT =*ALL(...)
Information is output on all members.

ELEMENT = <composed-name 1..64 with-under with-wild(132)>(...)
Name of the member to be displayed.

VERSION = *HIGHEST-EXISTING / *ALL / *UPPER-LIMIT
<composed-name 1..24 with-under with-wild(52)>
Version of the member to be output.

VERSION = *HIGHEST-EXISTING
The member with the highest existing version is output.

VERSION = *UPPER-LIMIT
The highest possible version X'FF' in the library under the specified TYPE and name is displayed.

VERSION = <composed-name 1..24 with-under with-wild(52)>
Explicitly specifies the version of the member to be displayed.

TYPE =*DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
Type of the member to be output. If the value is *DEFAULT and the current value set with MODIFY-
DEFAULTS is *NONE, LMSCONV requires a type specification.

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl>/ *INTERVALL(...)
Date given by the user.

USER-DATE = *ANY
The member to be output has any date.

USER-DATE =*TODAY
The member with the current date is output.

USER-DATE = <date 8..10 with-compl>
The member whose date is entered explicitly in the form [YY]YY-MM-DD is output.

USER-DATE = *INTERVAL(...)
All members lying in the specified interval are output.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

TO =*TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
Creation date of the member. For a description of the operands, see the USER-DATE operand of this
statement.

312

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see the USER-DATE operand
of this statement.

TEXT-INFORMATION = *DEFAULT / *ALL / *STATISTICS / *FILE-ATTRIBUTES / *PARAMETER(...)
Defines the information scope for all members except member types R, C and L. The default setting is *ALL (see
below) or the current value set with MODIFY-DEFAULTS.

TEXT-INFORMATION = *ALL
Everything is output.

TEXT-INFORMATION = *STATISTICS
The number of records per record type and the total number of records are output. For each record type, the total of
all record lengths (without record length fields) is output, as is the total record length across all record types.

TEXT-INFORMATION = *FILE-ATTRIBUTES
Only the stored file attributes are output.

i For all PAM members (except L-type members), the output includes the last byte pointer (LBP), if it has
been stored as a file attribute. For SAM members, the output includes net coded character set
(NETCCSN), if it has been stored as a file attribute.

TEXT-INFORMATION = *PARAMETERS(...)
Defines a member extract to be output.

INFORMATION =*DEFAULT / *ALL / list-poss(2): *TEXT / *COMMENT
The member section to be output. The default setting is *ALL (see below) or the current value set with
MODIFY-DEFAULTS.

INFORMATION = *ALL
Outputs all user record types.

INFORMATION =*TEXT
Outputs the text itself, i.e. record type 1.

INFORMATION = *COMMENT
Outputs the separately stored comment, i.e. record type 2.

RECORD-RANGE = *DEFAULT / *ALL / *RANGE(...)
The section of the member to be processed. The default setting is *ALL (see below) or the current value set
with MODIFY-DEFAULTS.

RECORD-RANGE =*ALL
Processes all user record types.

RECORD-RANGE = *RANGE(...)

Specifies the range of record numbers which is to be processed. The record numbers refer not to a record
type, but to the section of the member designated by means of INFORMATION=. Within this section, the
records are numbered consecutively from 1 through n.

FROM = *DEFAULT / <integer 1..2147483647>
Beginning of the range, specified by the first record number. Record number 1 is the default value.

313

TO =*DEFAULT / *LAST / <integer 1..2147483647>
End of the range, specified by the last record number. The last record number is used as the default
value.

RECORD-PART = *DEFAULT / *ALL / *PART(...)
Specifies the part of the record to be processed.

RECORD-PART = *ALL
Processes the entire record.

RECORD-PART =*PART(...)
Specifies the part of the record to be processed. If the default values are not changed, the entire record is
processed.

START = *DEFAULT / <integer 1..32764>
Beginning of the record part, specified by the first character in the record. The first character is used as
the default value.

LENGTH = *DEFAULT / *REST / <integer 1..32764>
Length of the record part. The remainder of the record is used as the default value.

RECORD-NUMBER =*DEFAULT / *BY-OUTPUT / *YES / *NO
Specifies output of the record numbers. The default value is *BY-OUTPUT (see below) or the current value set
with MODIFY-DEFAULTS.

RECORD-NUMBER = *BY-OUTPUT
Only if the output is directed to SYSOUT will no record numbers be output. With any other output medium, the
record numbers are included in the output.

RECORD-NUMBER = *YES
The record numbers are also output to SYSOUT.

RECORD-NUMBER = *NO
No record numbers are included in the output..

MODULE-INFORMATION =*DEFAULT / *ALL / *STATISTICS / *PARAMETERS(...)
Defines the information scope for object modules (R-type members). The default setting is *ALL (see below) or the
current value set with MODIFY-DEFAULTS.

MODULE-INFORMATION = *ALL
Everything is output.

MODULE-INFORMATION =*STATISTICS
The name, length and address of the CSECTS and also the overall length of the module are output.

MODULE-INFORMATION = *PARAMETERS(...)
This parameter determines whether all record types or only selected record types are output.

INFORMATION = *DEFAULT / *ALL / *TXT(...) / *TXTP(...) / list-poss(9): *ESD / *ISD / *LSD / *RLD / *REP /
*INCLUDE / *DSDD / *REF / *END

The record types listed here can be selected. The default setting is *ALL or the current value set with MODIFY-
DEFAULTS.

INFORMATION = *TXT(...)
Text records are selected.

314

CSECT-NAME =*DEFAULT / *ALL / <c-string 1..32 with-low> / <text 1..32>
The text records can be restricted to one CSECT. The default setting is *ALL or the current value set with
MODIFY-DEFAULTS.

ADDRESS =*DEFAULT / <x-string 1..8>(...)
Start address of the text. The default setting is X'00000000' or the current value set with MODIFY-
DEFAULTS.

BASE-ADDRESS = *DEFAULT / <x-string 1..8>
The base address specified here is added to the start address. The default setting is X'00000000' or
the current value set with MODIFY-DEFAULTS.

LENGTH =*DEFAULT / *REST / <integer 1..2147483647> [<x-string 1..8>
Length of the text. The default setting is *REST or the current value set with MODIFY-DEFAULTS.

INFORMATION = *TXTP(...)
TXTP records are output.

MODIFICATION-ID = *DEFAULT / *ALL / <c-string 1..8 with-low>/ *RANGE(...)
Those TXTP records with the specified identification are selected. The default setting is *ALL or the
current value set with MODIFY-DEFAULTS.

MODIFICATION-ID = *RANGE(...)
A group of TXTP records lying in a range can be selected.

FROM = *DEFAULT / *LOWEST / <c-string 1..8 with-low>
The beginning of the range is by default the lowest identification for the TXTP records, otherwise the
value entered here.

TO =*DEFAULT / *HIGHEST / <c-string 1..8 with-low>
The end of the range is by default the highest identification for the TXTP records, otherwise the
value entered here.

PHASE-INFORMATION = *DEFAULT / *ALL / *STATISTICS / *PARAMETER(...)
Defines the information scope for phases (C-type members). The default setting is *ALL or the current value set
with MODIFY-DEFAULTS.

PHASE-INFORMATION = *ALL
Everything is output.

PHASE-INFORMATION = *STATISTICS
The name, length and address of the segment and also the overall length of the segment are output.

PHASE-INFORMATION = *PARAMETERS(...)
This parameter determines whether all record types or only selected record types are output.

SEGMENT =*DEFAULT / *ALL / *ROOT / <name 1..8>
Phase segment that is selected. The default setting is *ALL or the current value set with MODIFY-DEFAULTS.

INFORMATION =*DEFAULT / *ALL / *TXT(...) / *TXTP(...) / list-poss(4): *ESD / *ISD / *LSD / *RLD
The record types listed here can be selected. The default setting is *ALL or the current value set with MODIFY-
DEFAULTS.

INFORMATION = *TXT(...)
Text records are selected.

315

ADDRESS =*DEFAULT / <x-string 1..8>(...)
Start address of the text. The default setting is X'00000000' or the current value set with MODIFY-
DEFAULTS.

BASE-ADDRESS = *DEFAULT / <x-string 1..8>
The base address specified here is added to the start address. The default setting is X'00000000' or
the current value set with MODIFY-DEFAULTS.

LENGTH = *DEFAULT / *REST / <integer 1..2147483647> / <x-string 1..8>Length of the text. The
default setting is *REST or the current value set with MODIFY-DEFAULTS.

INFORMATION = *TXTP(...)
TXTP records are output.

MODIFICATION-ID = *DEFAULT / *ALL / <c-string 1..8 with-low>/ *RANGE(...)Those TXTP records
with the specified identification are selected. The default setting is *ALL or the current value set with
MODIFY-DEFAULTS.

MODIFICATION-ID = *RANGE(...)
A group of TXTP records lying in a range can be selected.

FROM =*DEFAULT / *LOWEST / <c-string 1..8 with-low>
The beginning of the range is by default the lowest identification for the TXTP records, otherwise the
value entered here.

TO =*DEFAULT / *HIGHEST / <c-string 1..8 with-low>
The end of the range is by default the highest identification for the TXTP records, otherwise the
value entered here.

LLM-INFORMATION = *DEFAULT / *ALL / *STATISTICS / *PARAMETERS(...)
Defines the information scope for link and load modules (L-type members). The default setting is *ALL (see below)
or the current value set with MODIFY-DEFAULTS.

LLM-INFORMATION =*ALL
Everything is output.

LLM-INFORMATION = *STATISTICS
General information on the link and load module (name, copyright, ...) is output.

LLM-INFORMATION =*PARAMETERS(...)
This parameter determines whether all record types or only selected record types are output.

LLM-PART = *DEFAULT / *ALL / *SLICE(...) / *SUB-LLM(...)
Specifies the LLM part to be selected. By default the entire LLM is selected.

LLM-PART = *SLICE(...)
Specifies the slice to be output.

NAME = <structured-name 1..32>
Name of the slice to be output.

LLM-PART =*SUB-LLM(...)
Specifies the sub-LLM to be output.

316

PATH-NAME = *DEFAULT / <c-string 1..255 with-low> / <text 1..255>
The sub-LLM to be output is determined by way of its path name. The default setting is *ALL or the
current value set with MODIFY-DEFAULTS.

INFORMATION =*DEFAULT / *ALL / *TXT(...) / *TXTP(...) / *LOGICAL(...) / *PHYSICAL / *REF / list-poss
(4): *ESVD / *ESVR / *LRLD / *RELOCATION

The record types listed here can be selected. The default setting is *ALL or the current value set with MODIFY-
DEFAULTS.

INFORMATION = *TXT(...)
Text records are selected.

CSECT-NAME = *DEFAULT / *ALL / <c-string 1..32 with-low> / <text 1..32>The text records can be
restricted to one CSECT.

ADDRESS = *DEFAULT / <x-string 1..8>(...)
Start address of the text. The default setting is X'00000000' or the current value set with MODIFY-
DEFAULTS.

BASE-ADDRESS = *DEFAULT / <x-string 1..8>
The base address specified here is added to the start address. The default setting is X'00000000' or
the current value set with MODIFY-DEFAULTS.

LENGTH =*DEFAULT / *REST / <integer 1..2147483647> | <x-string 1..8>
Length of the text. The default setting is *REST or the current value set with MODIFY-DEFAULTS.

INFORMATION = *TXTP(...)
TXTP records are output.

CSECT-NAME = *DEFAULT / *ALL / <c-string 1..32 with-low> / <text 1..32>
The TXTP records can be restricted to one CSECT. The default setting is *ALL or the current value set
with MODIFY-DEFAULTS.

MODIFICATION-ID = *DEFAULT / *ALL / <c-string 1..12 with-low>/ *RANGE(...)
Those TXTP records with the specified identification are selected. The default setting is *ALL or the
current value set with MODIFY-DEFAULTS.

MODIFICATION-ID = *RANGE(...)
A group of TXTP records lying in a range can be selected.

FROM = *DEFAULT / *LOWEST / <c-string 1..12 with-low>
The beginning of the range is by default the lowest identification for the TXTP records, otherwise the

value entered here.

TO = *DEFAULT / *HIGHEST / <c-string 1..12 with-low>
The end of the range is by default the highest identification for the TXTP records, otherwise the
value entered here.

INFORMATION =*LOGICAL(...)
Outputs the logical structure of the LLM.

LEVEL =*DEFAULT / *ALL / *NEXT
Outputs all substructures by default; otherwise, only the next substructure.

INFORMATION = *PHYSICAL
Outputs the physical structure of the LLM.

317

OUTPUT-FORM =*DEFAULT /*STD / *CHARACTER / *HEXADECIMAL / *DUMP
Specifies the form of representation for the output. The default setting is *STD or the current value set with MODIFY-
DEFAULTS.

OUTPUT-FORM = *STD
The form of representation is selected dependent on the member type.

OUTPUT-FORM =*CHARACTER
The output is in alphanumeric form.

OUTPUT-FORM = *HEXADECIMAL
The output is in alphanumeric and hexadecimal form, one above the other.

OUTPUT-FORM = *DUMP
The output is in alphanumeric and hexadecimal form, side by side. For member types S, P, D, J and M, this
operand has the same effect as OUTPUT-FORM=*HEXADECIMAL.

Examples

The member LETTER.A, which contains the text “Dear ...", is to be output.

/I show el emrent (el enent=letter.a,type=d)

I NPUT LI BRARY= : N: $USER. TEST. LI B

'INPUT ELEMENT= (D)LETTER A/ (0001)/<dat e>
: Dear

Yours sincerely,
{ NUMBER OF PROCESSED RECORDS | S 123

i//showel ement (el ement=net.|bp.2dd, type=x),text-information=file-attributes
I NPUT LI BRARY= : SQGB: $TSCS. BI B. ALI

{INPUT ELEMENT= (X) PTF04/ §(0001)/ <dat e>

ORI G NAL FI LE ATTRI BUTES :

i FI LENAME= : CK33: $TSCS. PTF04

{ FI LSI ZE = 0000009 FCBTYPE = PAM 2ND ALLGC= 00006 LBP = 13312
{SHARE = NO ACCESS = WRITE
{ BLKCTRL = DATA BLKSI ZE = 014336 RECFORM = U RECSI ZE = 00000

{ PERFORM = STANDARD USAGE = NOT- SPEC

..

i//showel ement (el ement=stf03, type=x),text-information=file-attributes
{1 NPUT LI BRARY= : SQGB: $TSCS. Bl B. ALI

{INPUT ELEMENT= (X) STF03/ @ 0001)/ <dat e>

ORI G NAL FI LE ATTRI BUTES :

{ FI LENAME= : CK33: $DMS01. STF03

{FILSI ZE

= 0000032 FCBTYPE = SAM 2ND ALLO= 00016

'SHARE = NO ACCESS = WRITE

' BLKCTRL = DATA BLKSI ZE = 032768 RECFORM = V RECSI ZE = 00000
| PERFORM = STANDARD USAGE = NOT-SPEC NETCCSN = | S088591

318

7.4.5.6 SHOW-ELEMENT-ATTRIBUTES - Display member attributes

SHOW-ELEMENT-ATTRIBUTES outputs the directory entries of the specified members or of the entire library. The
entries are output on the medium specified by the MODIFY-LOGGING-PARAMETERS statement.

The directory is always output sorted by type. The remainder of the sort sequence is determined by the SORT
operand. The default sort sequence is type, name and version.

The INFORMATION and LAYOUT operands are used to specify the scope and format of the directory output. By
default, the type, name, version, variant number and date are output.

With the aid of the SECONDARY-NAME and SECONDARY-ATTRIBUTE operands, the directory can be limited to
the members containing a certain reference entry.

In order to obtain the entire contents of a library (all members with all versions), it is sufficient to specify
only SHOW-ELEMENT-ATTRIBUTES without any operands, provided no specific member type or version
was set using MODIFY-DEFAULTS.

Format

SHOW-ELEMENT-ATTRIBUTES

ELEMENT = *LIBRARY-EL EMENT (...)
*LIBRARY-ELEMENT(...)
| LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
*LINK(...)
| LINK-NAME = <structured-name 1..8>
,ELEMENT = *ALL (...) / <composed-name 1..64 with-under with-wild(132)>(...)
*ALL(...)
| VERSION = *DEFAULT / *ALL / *HIGHEST-EXISTING / *UPPER-LIMIT /

|

|

|

|

|

| | <composed-name 1..24 with-under with-wild(52)>

| <composed-name 1..64 with-under with-wild(132)>(...)

| | VERSION = *DEFAULT / *ALL / *HIGHEST-EXISTING / *UPPER-LIMIT /
| | <composed-name 1..24 with-under with-wild(52)>

|

,TYPE = *DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>

319

| ,USER-DATE =*ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
| *INTERVAL(...)
| | FROM = 1900-01-01 / <date 8..10 with-compl>
| | ,TO =*TODAY / <date 8..10 with-compl>
| ,CREATION-DATE =*ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
| *INTERVAL(...)
| | FROM = 1900-01-01 / <date 8..10 with-compl>
| | ,TO=*TODAY / <date 8..10 with-compl>
| ,MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
| *INTERVALC(...)
| | FROM = 1900-01-01 / <date 8..10 with-compl>
| | ,TO =*TODAY / <date 8..10 with-compl>
| ,USER-TIME = *ANY / <time 1..8>/ *INTERVAL(...)
| *INTERVAL(...)
| | FROM =00:00:00/ <time 1..8>
| | ,TO =23:59:59/<time 1..8>
| ,CREATION-TIME = *ANY / <time 1..8>/ *INTERVAL(...)
| *INTERVAL(...)
| | FROM =00:00:00/ <time 1..8>
| | ,TO =23:59:59/ <time 1..8>
| ,MODIFICATION-TIME = *ANY / <time 1..8>/ *INTERVAL(...)
| *INTERVAL(...)
| | FROM =00:00:00 / <time 1..8>
| | ,TO =23:59:59/<time 1..8>
| ,CODED-CHARACTER-SET = *ANY / *NONE / <name 1..8>/ <composed-name 1..8 with-wild(20)>
| .SECONDARY-NAME = *ANY / <alphanum-name 1..32 with-wild(68)>
| ,SECONDARY-ATTRIBUTE = *ANY / *CSECT / *ENTRY
,INFORMATION = *DEFAULT / *MEDIUM / *MINIMUM / *MAXIMUM / *SUMMARY
,LAYOUT =*DEFAULT / *VARIABLE / *FIXED
,SORT = *DEFAULT / *BY-NAME / *BY-VERSION / *BY-USER-DATE / *BY-SECONDARY-NAME

320

Operands

ELEMENT =*LIBRARY-ELEMENT(...)
Specifications for the desired member designation.

LIBRARY =*STD / <filename 1..54 without-vers> / *LINK(...)
Specifies the library for which the directory is to be output.

LIBRARY =*STD
The library opened by OPEN-LIBRARY.

LIBRARY = <filename 1..54 without-vers>
Outputs the directory of the library specified here.

LIBRARY = *LINK(...)
The library assigned via the link name.

LINK-NAME = <structured-name 1..8>
Link name of the library.

ELEMENT =*ALL(...)/

<composed-name 1..64 with-under with-wild(132)>(...)

Name of the member for which the library entry is to be output.

If the default value “*ALL" is entered, LMSCONYV outputs the library entries for all of the members with the
corresponding version and type.

VERSION = *DEFAULT / *ALL / *HIGHEST-EXISTING / *UPPER-LIMIT /<composed-name 1..24 with-
under with-wild(52)>
Version of the member. The default setting is *ALL or the current value set with MODIFY-DEFAULTS.

VERSION = *ALL
Outputs the library entries of all members selected above, regardless of their respective versions.

VERSION = *HIGHEST-EXISTING
The library entries of all members selected above are output with the highest existing version.

VERSION = *UPPER-LIMIT
The library entries of all members selected above are output with the version X'FF'.

VERSION = <composed-name 1..24 with-under with-wild(52)>
The library entries of all members selected above are output with the version specified here.

TYPE = *DEFAULT / <alphanum-name 1..8 with-wild(20)>
Type of the member which is to be output.
If the LMSCONYV default value for TYPE is *NONE, then *DEFAULT has the same effect as *ALL.

321

USER-DATE = *ANY / *TODAY / <date 8..10 with-compl> / *INTERVAL(...)
Date given by the user.

USER-DATE = *ANY
The member has any date.

USER-DATE = *TODAY
The library entries of all members with the current date are output.

USER-DATE = <date 8..10 with-compl>
The library entries of all members with the date specified here in the form [YY]YY-MM-DD are output.

USER-DATE =*INTERVAL(...)
The library entries of all members lying in the specified interval are output.

FROM = 1900-01-01 / <date 8..10 with-compl>
Beginning of interval.

TO = *TODAY / <date 8..10 with-compl>
End of interval.

CREATION-DATE = *ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
Creation date of the member. For a description of the operands, see the USER-DATE operand of this
statement.

MODIFICATION-DATE = *ANY / *TODAY / <date 8..10 with-compl>/ *INTERVAL(...)
Date of the last modification to the member. For a description of the operands, see the USER-DATE operand
of this statement.

USER-TIME =*ANY / <time 1..8> / *INTERVAL(...)
Time given by the user.

USER-TIME = *ANY
The library entries of all members are output, regardless of the time.

USER-TIME = <time 1..8>
The library entries of all members with the time specified in the form HH:MM:SS are output.

USER-TIME = *INTERVAL(...)
The library entries of all members lying in the specified interval are output.

FROM = 00:00:00 / <time 1..8>
Beginning of interval.

TO = 23:59:59 / <time 1..8>
End of interval.

CREATION-TIME = *ANY / <time 1..8> / *INTERVAL(...)
Creation time of the member. For a description of the operands, see USER-TIME of this statement

MODIFICATION-TIME = *ANY / <time 1..8> / *INTERVAL(...)
Time of the last modification to the member. For a description of the operands, see USER-TIME of this
statement.

322

CODED-CHARACTER-SET = *ANY / *NONE / <name 1..8>/
<composed-name 1..8 with-wild(20)>
Character set assigned to the member.

CODED-CHARACTER-SET = *ANY
Selects members without regard to their assigned character set.

CODED-CHARACTER-SET = *NONE
Selects members which have not been assigned a character set.

CODED-CHARACTER-SET = <name 1..8>/ <composed-name 1..8 with-wild(20)>
Selects the members to which the specified character set has been assigned.

SECONDARY-NAME = *ANY / <alphanum-name1l...32 with-wild(68) >
Secondary name.

If anything other than *ANY is specified here, the selection is made via the secondary directory of the library. If
wildcards are specified, only the first 32 characters of the secondary name are used to determine the selection.

SECONDARY-ATTRIBUTE = *ANY / *CSECT / *ENTRY
Secondary attribute.
If anything other than *ANY is specified here, the selection is made via the secondary directory of the library.

INFORMATION =*DEFAULT / *MEDIUM / *MINIMUM / *MAXIMUM / *SUMMARY

This parameter defines the scope of directory information to be output. It also specifies the scope of the structure
output (see “Parameter dependencies”). The default setting is *MEDIUM or the current value set with MODIFY-
DEFAULTS.

INFORMATION = *MEDIUM
Outputs the type, name, version, variant number and the date or the member size.

INFORMATION = *MINIMUM
Outputs only the type, name and version.

INFORMATION = *MAXIMUM
All the information is output.

INFORMATION = *SUMMARY
Outputs only the number of members per type.

LAYOUT = *DEFAULT / *VARIABLE / *FIXED
This parameter defines the format of the directory to be output. The default setting is *VARIABLE or the current
value set with MODIFY-DEFAULTS.

LAYOUT =*VARIABLE
The number of print columns depends on the longest member designation within a member type.

LAYOUT = *FIXED
The directory is printed in a single column in fixed format. Single column means that the entries in the directory
appear one beneath the other.

323

SORT =*DEFAULT / *BY-NAME / *BY-VERSION / *BY-USER-DATE /

*BY-SECONDARY-NAME

Sort criterion for the directory entries of the selected members. The type is always used as the first sort criterion.
The default setting is *BY-NAME or the current value set with MODIFY-DEFAULTS.

SORT =*BY-NAME
The directory entries of the selected members are sorted on the basis of the following sequence: type, name and
version.

SORT =*BY-VERSION
The directory entries of the selected members are sorted on the basis of the following sequence: type, version and
name.

SORT =*BY-USER-DATE
The directory entries of the selected members are sorted on the basis of the following sequence: type, user date,
name and version.

SORT = *BY-SECONDARY-NAME
The directory entries of the selected members are sorted on the basis of the following sequence: type, secondary
name, secondary attribute, name and version.

i If the SECONDARY-NAME or SECONDARY-ATTRIBUTE operand is specified and if the value of this
operand is other than *ANY, then a header will also be included in the directory output, providing
information on the secondary name and the secondary attribute. The secondary names, however, are not
displayed at maximum length.

Parameter dependencies

The following dependencies exist between the INFORMATION, SORT and LAYOUT operands:
® The current date or the member size only influences the sorting if it, too, is to be included in the directory output.
In this case, the INFORMATION operand must have a setting other than *MINIMUM.

® The LAYOUT operand is effective only if INFORMATION =*MEDIUM/*MINIMUM is specified. For all other
settings, the directory is always output in fixed format.

* |f INFORMATION=*MAXIMUM is specified, the information for each member will be too long for a single line.
The information will then be output in a format independent of layout control.

® OQOutput of the directory is accelerated if the INFORMATION operand is set to *MINIMUM and the selection is
restricted to the ELEMENT, VERSION and TYPE operands. All other operands should be set to the value *ANY.

324

The SORT and INFORMATION operands (except for INFORMATION=*SUMMARY) influence the sort sequence of
the directory. The following table shows these dependencies:

SORT

*BY-NAME

*BY-VERSION

*BY-USER-DATE

*BY-SECONDARY-NAME

with reference?

*BY-SECONDARY-NAME

without reference?

*MINIMUM

1. Type
2. Name

3. Version

1. Type
2. Version

3. Name

1. Type
2. Name

3. Version

Type
Secondary name
Secondary attribute

Name

S

Version

1. Type
2. Name

3. Version

INFORMATION

*MEDIUM / *MAXIMUM

1.

2.

Type

Name

. Version

. Type
. Version

. Name

. Type

. User date

. Name

. Version

. Type

. Secondary name

. Secondary attribute
. Name

. Version

. Type
. Name

. Version

1) with reference means that either the secondary name or the secondary attribute specified for the member name is not equal to the default value *ANY, i.e.:

SECONDARY-NAME = <alphanum-name...> and/or SECONDARY-ATTRIBUTE = *CSECT or *ENTRY

2)

without reference means that neither a secondary name nor a secondary attribute was specified for member selection

325

Example

Outputting the directory for the library USER.BSPLIB. The library contains precisely one member which is displayed
with all its attributes..

/ | SHONM ELEMENT- ATTRI BUTES -
i (LI BRARY=USER. BSPLI B, ELEMENT=* (VERSI ON=*)), | NFORMATI ON=* MAXI MUM
{INPUT LI BRARY= : N: $USER USER BSPLI B

' TYPE = D

' NAME = TEST

' VERSI ON = @ VARI ANT = 0001

R R GENERAL- - = = = == == === m s s e e e
ELEM SI ZE = 12

| STORAGEW = *FULL

| STATE = *I N- HOLD HOLDER = MUBF

R R R TP R HI STORY- = - = = = e e e e e e e e e e
! USER- DATE = <dat e> CRE- DATE = <dat e> MOD- DATE = <dat e>

| USER-TIME = <time> CRE-TIME = <time> MOD-TIME = <tinme>

| ACC- DATE = <dat e>

{ACC-TIME = <tinme>

e SECURI TY- === === wmmmm e e e e e e
! READ- PASS = *NONE READ- USER = * OWNER * GROUP -

| VR-PASS = *NONE VR-PASS = *OMER - -

326

7.4.5.7 SHOW-LIBRARY-ATTRIBUTES - Display library attributes

This statement displays all attributes set for the library. These are as follows:
® library size in 2-K units

® number of 2-K units available (can be removed by copying)

® [ibrary format (NK2/NK4)

®* UPAM protection (Y/N)

Format
SHOW-LIBRARY-ATTRIBUTES

LIBRARY =*STD / <filename 1..54 without-vers> / *LINK(...)

*LINK(...)

| LINK-NAME = <structured-name 1..8>

Operands

LIBRARY =*STD / <filename 1..54 without-vers>/ *LINK(...)
The library whose attributes are to be displayed.

LIBRARY =*STD
The global library opened by OPEN-LIBRARY is displayed.

LIBRARY = <filename 1..54 without-vers>
Name of the library whose status is to be displayed.

LIBRARY = *LINK(...)
The status of the library assigned via a link name is displayed.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of /ADD-FILE-LINK prior to calling LMSCONV.

Example

i//showlibrary-attributes

CINPUT LI BRARY= : X: $USER. LI B

{1 NI T- ELEM P= * NONE

| ADM NI STRAT= * NONE

{FILE-SIZE = 291 FREE- SI ZE
ACCESS- DATE= * NONE WR- CONTROL

62 FORVAT = NK2 UPAM- PROT = N
* NONE STORAGE= * NONE

327

7.4.5.8 SHOW-LIBRARY-STATUS - Display library status

This statement displays the status of the libraries used. LMSCONYV outputs the following information on execution of
the statement:

® name of the library/libraries
® status of the library/libraries (opened or closed)

® assigned link name, if any
Format
SHOW-LIBRARY-STATUS

LIBRARY = *ALL /*STD / <filename 1..54 without-vers> / *LINK(...)

*LINK(...)
| LINK-NAME = <structured-name 1..8>

Operands

LIBRARY =*ALL /*STD / <filename 1..54 without-vers> / *LINK(...)
The library whose status is to be displayed.

LIBRARY =*ALL
All libraries used are displayed.

LIBRARY =*STD
The global library opened by OPEN-LIBRARY is displayed.

LIBRARY = <filename 1..54 without-vers>
Name of the library whose status is to be displayed.

LIBRARY = *LINK(...)
The status of the library assigned via a link name is displayed.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of /ADD-FILE-LINK prior to calling LMSCONV.

Example

Five different libraries were used during the LMSCONYV session. One library was addressed via the link name LIB1:

E//show—l i brary-status

STATUS FI LENAME MODE LI NK
{OPEN : N $USER. LMSPL. LI B UPDATE
{ CLOSED : N: $USER MODUL. LI B LI Bl

| CLOSED : N: $USER. MACRO. LI B
{ CLOSED : N: $USER. QUELL. LI B
{ CLOSED : N: $USER TEST. LI B

328

7.4.5.9 SHOW-LOGGING-PARAMETERS - Display global LMSCONYV parameters

This statement outputs the global LMSCONYV option values currently in force. These values are modified by means
of the MODIFY-LOGGING-PARAMETERS statement.

If this statement is specified without operands, the preset values for all of the parameters are output (see example).
Format

SHOW-LOGGING-PARAMETERS

PARAMETERS = *ALL / list-poss(2000): *LOGGING / *OUTPUT / *TEXT-OUTPUT / *OUTPUT-LAYOUT

Operands

PARAMETERS = *ALL / *LOGGING / *OUTPUT / *TEXT-OUTPUT / *OUTPUT-LAYOUT
The current settings of all the parameters are output

PARAMETERS =*ALL
The current settings of all the parameters are output.

PARAMETERS = *LOGGING / *OUTPUT / *TEXT-OUTPUT
The output medium setting is output.

PARAMETERS = *OUTPUT-LAYOUT
The parameter settings for the LMSCONYV log format are output.

/1 show | oggi ng- par anet ers

{ LOGG NG = *M Nl MUM
| TEXT- QUTPUT = *SysouT
! QUTPUT- LAYOUT
LI NES- PER- PAGE = 60
LI NE- SI ZE = 132
EXTRA- FORM FEED = *NO
HEADER- LI NES = *YES

All global LMSCONV options are output. These values are applicable immediately after the start of LMSCONV.

329

7.4.5.10 SHOW-TYPE-ATTRIBUTES - Display attributes of a member type

This statement outputs all the attributes set for a given member type.
Format
SHOW-TYPE-ATTRIBUTES

LIBRARY = *STD / <filename 1..54 without-vers> / *LINK(...)
*LINK(...)
| LINK-NAME = <structured-name 1..8>
,TYPE = *DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>

Operands

LIBRARY =*STD / <filename 1..54 without-vers>/ *LINK(...)
Specifies the library containing the type whose attributes are to be displayed.

LIBRARY =*STD
The library opened globally is used.

LIBRARY = <filename 1..54 without-vers>
Name of the library whose type attributes are to be displayed.

LIBRARY =*LINK(...)
The type attributes of a library assigned via a link name are displayed.

LINK-NAME = <structured-name 1..8>
Link name of the library; this name was defined by means of /ADD-FILE-LINK prior to calling LMSCONV.

TYPE =*DEFAULT / *ALL / <alphanum-name 1..8 with-wild(20)>
Member type whose attributes are to be output. If the LMSCONYV default value is set to *NONE, *DEFAULT has the
same effect as *ALL.

i If TYPE=* is specified, the statement outputs the attributes for all explicitly declared types and for types
which are embodied by existing members.

Example
The type attributes for member type S are set and then displayed. The library used is the globally set library.

/1 showtype-attributes type=s
I NPUT LI BRARY= : X: $USER. TESTLI B

| TYPE =S
| SUPER- TYPE = *NONE
!BASE-TYPE = S
{ CONVENTI ON = * NONE

L INIT- ELEM P= * NONE
! ADM NI STRAT= * NONE
ESTCR’AGE = *NONE VR- CONTROL = * NONE

330

7.4.5.11 SHOW-USER-EXITS - Display LMSCONYV version

This statement displays the active user exits.
Format

SHOW-USER-EXITS

Operands

This statement has no operands.

331

7.4.5.12 WRITE-COMMENT - Write comments to output medium

This statement is used to write comments to the output medium defined by the statement MODIFY-LOGGING-
PARAMETERS TEXT-OUTPUT=..., unlike the SDF standard statement WRITE-TEXT, which always outputs to
SYSOUT or SYSLST.

Format
WRITE-COMMENT
COMMENT = "BLANK" / <c-string 1..1024 with-low>

Operands

COMMENT = "BLANK" / <c-string 1..1024 with-low>
Comment text. If nothing is specified, a blank "BLANK" is used as the default value, i.e. a blank line is generated.

332

7.5 Example: Modifying a link load module

i/start-lmsconv 1.
{% LMC0310 LMSCONV VERSI ON ' <version>' STARTED

i // modi fy-1 oggi ng- paraneters | oggi ng=* maxi num 2
/lopen-library library=tst.bib, node=*update 3.
i//modi fy-el ement (el enent=tst.ele,type=l) 4,
i//nodi fy-nodification-defaults csect=test 5
[/ add-t ext - nodi fi cati on address=x'e0',

new- cont ent s=' ZZ' (ol d-contents="aa') 6.
i//end-nodify 7.
I NPUT LI BRARY= : 20SX: $USER. TST. BI B

{ OQUTPUT LI BRARY= : 20SX: $USER TST. BI B

{1 NPUT ELEMENT= (L) TST. ELE/ 031(0001) / <dat e>

OUTPUT ELEMENT= (L) TST. ELE/ 031(0002)/ <dat e>

! TEXT- ADR: 000000EQ
| TEXT BEFORE CHANGE: a a
18181

! TEXT AFTER CHANGE: Z Z

{ E9E9

ECCRRECT (L) TST. ELE/ 031(0001)/ <dat e> AS
' (L) TST. ELE/ 031(0002) / <dat e> , OUTPUT REPLACED
/] END 8.

1. LMSCONYV is called.
2. The entire LMSCONV log is output.

3. The TST.BIB library is assigned. It must be opened for reading and writing; otherwise, no modification of the
link load module is possible.

4. The link load module TST.ELE is to be modified.

5. This substatement specifies the CSECT to be corrected.

6. This substatement replaces the original text “aa” at address EO of the CSECT TEST with the replacement text
'ZZ'.

7. The input of the substatement is terminated. The substatements are then executed.

8. LMSCONV is terminated.

333

7.6 Comparison between LMSCONYV and LMS

Global restrictions in LMSCONV compared to LMS:

® No creation of delta-stored members
® No structured output, i.e. no output to S variables
* No modification of library and type attributes

® No support for a start file

The following LMS statements are not supported:

{ ACTI VATE- USER- EXI T

| BEG N- MAKE

! CALL- EDT

! COVPARE- ELEMENT

| DEACTI VATE- USER- EXI T

! EDI T- ELEMENT

! EXECUTE- SYSTEM COMVAND

| FI ND- ELEVENT

! MODI FY- ELEMENT- PROTECTI ON
{ MODI FY- LI BRARY- ATTRI BUTES
| MODI FY- TYPE- ATTRI BUTES

! PROVI DE- ELEMENT

{ REORGANI ZE- LI BRARY

RESET- Anwei sungen

! RETURN- ELENENT

| SHOW STATI STI CS

The following table shows the syntax restrictions compared to LMS:

Statement Restriction

ADD- EL EMENT No *HIGH,*INCR,BASE,STORAGE-FORM for TO-ELEMENT
No PROTECTION

CLCSE- LI BRARY A
COPY- ELEMENT No selection via BASE for ELEMENT
No EXCEPT

No *HIGH,*INCR,BASE,STORAGE-FORM for TO-ELEMENT
No PROTECTION

COPY- LI BRARY .

DELETE- ELEMENT No selection via BASE for ELEMENT
No EXCEPT

END .

EXTRACT- ELEMENT No selection via BASE for ELEMENT
No EXCEPT

No INFORMATION
No PROTECTION

334

MODI FY- DEFAULTS

MODI FY- ELEMENT

MODI FY- ELEMENT- ATTRI BUTES

MODI FY- LOGE NG- PARAMETERS

OPEN- LI BRARY

SHOW DEFAULTS

SHOW ELEMENT

SHOW ELEMENT- ATTRI BUTES

SHOW LI BRARY- ATTRI BUTES

SHOW LI BRARY- STATUS

SHOW LOGGE NG- PARAMETERS

No STORAGE-FORM for ELEMENT-ATTRIBUTES
No DELTA-STRUCTURE for INFORMATION

No PROTECTION

No COMPARE-PARAMETERS

No selection via BASE for ELEMENT
No EXCEPT
No *HIGH,*INCR,BASE for TO-ELEMENT

No selection via BASE for ELEMENT
No EXCEPT

No selection via STATE

No WRITE-MODE

Only CODED-CHARACTER-SET exists for NEW-ATTRIBUTES

No EDT(...) for TEXT-OUTPUT
No BASE for ELEMENT

.

No PROTECTION
No COMPARE-PARAMETERS

No selection via BASE for ELEMENT
No EXCEPT

No selection via BASE for ELEMENT

No EXCEPT

No selection via ACCESS-DATE/TIME

No selection via STATE

No selection via STORAGE-FORM

No selection via ELEMENT-SIZE

No selection via PROTECTION

No selection via DELTA-STRUCTURE for INFORMATION

No *BY-CREATION-DATE,
*BY-MODIFICATION-DATE,
*BY-ACCESS-DATE,
*BY-ELEMENT-SIZE for SORT

No TEXT-OUTPUT
No STRUCTURE-OUTPUT

No TEXT-OUTPUT
No STRUCTURE-OUTPUT

.

.

335

SHOW TYPE- ATTRI BUTES No TEXT-OUTPUT
No STRUCTURE-OUTPUT

SHOW USER- EXI TS .

VIRl TE- COMVENT .

Converting from LMSCONV to LMS

All LMSCONYV statements and operands are valid in LMS, provided that the full statement names or the guaranteed
abbreviations are used. Thus, conversion from LMSCONYV to LMS presents no problem to the user.

336

8 MSGMAKER Processing of BS2000 Message Files

Version:

MSGMAKER V1.2B

MSGMAKER offers the following functions:

® Create message file

¢ Build a message file from message units

Enter new message units (ADD-MSG function)

Modify existing message units (MODIFY-MSG function)
Delete existing message units (DELETE-MSG function)
Display the contents of a message file (SHOW function)

Copy various components of a message file (message units, documentation lines, component
identification) from one message file to another or to a different location within the same file. The source
area of the message file is either retained (COPY function) or deleted (MOVE function)

Document messages of a designated message range (ADD-DOCUMENTATION function)
Modify existing documentation lines (MODIFY-DOCUMENTATION function)
Delete existing documentation lines (DELETE-DOCUMENTATION function)
Message texts, meaning texts and response texts can be defined in up to eight languages

Variable text sections (inserts) can be defined in the message text. Each insert is assigned a number
and a hame and may be assigned a default text

® Merge the contents of several message files into one message file

i Information on the “old” format (MSGEDIT/MSGLIB) of the message file has been removed from this
MSGMAKER description. However, the “old” format can still be used for reasons of compatibility. The
MSGEDIT and MSGLIB programs have been withdrawn.

MSGMAKER is controlled

®* by means of statements (batch jobs and procedures)

® interactively by means of screen masks (menu mode)
It is also possible to enter statements in the command area of the mask (with the exception of the /OPEN-MSG-
FILE statement).

337

The following overview lists the functions provided by MSGMAKER and the statements and screen masks that

implement them.

Function
Modify existing message units

Modify existing documentation
lines

Display contents of a message file

Add or modify a meaning text

Add or modify response text

Add or modify message text

Create message file

Add new message units

Add documentation lines

Define inserts

Copy various components of
message file

Copy and delete various
components of a message file

Delete existing message units

Delete documentation lines

Merge message files

Mask
MODIFY-MSG

MODIFY-
DOCUMENTATION

SHOW

MEANING
/IRESPONSE

MEANING
/IRESPONSE

MSG-TEXT

MSG-FILE-
ATTRIBUTES

ADD-MSG

ADD-
DOCUMENTATION

INSERT-
ATTRIBUTES

COPY

MOVE

DELETE-MSG

DELETE-
DOCUMENTATION

Statement
/IMODIFY-MSG

//IMODIFY-DOCUMENTATION

lISHOW

MEANING operand of the //ADD-MSG and
/IMODIFY-MSG statements

RESPONSE operand of the //ADD-MSG and
//IMODIFY-MSG statements

MSG-TEXT operand of the //ADD-MSG and
/IMODIFY-MSG statements

//OPEN-MSG-FILE

/IADD-MSG

//ADD-DOCUMENTATION

INSERT-ATTRIBUTES operand of the //ADD-MSG
and //MODIFY-MSG statements

/ICOPY

/IMOVE

//DELETE-MSG

/IDELETE-DOCUMENTATION

IIMERGE-MSG-FILES

338

8.1 Execution of MSGMAKER

It can be installed under any desired user ID with the aid of the installation monitor IMON.
The masks and messages of MSGMAKER are output in the language set for the system component MIP.

The command / MODI FY- M5G- ATTRI BUTES TASK- LANGUAGE=<I ang> is used to specify the output language:
English (TASK-LANGUAGE = E) or German (TASK-LANGUAGE = D).

This command cannot be entered in the command area of the masks; it may be issued only at command level (
/MOD...). If no task language is defined before the routine is started, MSGMAKER uses the system default value.

339

8.1.1 Starting the routine
The MSGMAKER routine is started using the / START- MSGVAKER command.

START-MSGMAKER Alias: MSGMAKER

VERSION = *STD / <product-version>

,MONJV = *NONE / <filename 1..54 without-gen-vers>

,CPU-LIMIT = *JOB-REST / <integer 1..32767 seconds>
MSGMAKER can also be called with:

| START- EXECUTABLE- PROGRAM FROM FI LE=* LI B- ELEM
i LI BRARY= $<useri d>. SYSLNK. MSGVAKER. <ver si on>,
EL EMENT=MSGVAKER)

<ver si on> is the current version of MSGMAKER, e.g. 012.

When the routine is started, the operands CPU- LI M T, TEST- OPTI ONS, MONJV, RESI DENT- PAGES and VI RTUAL-
PACES of the / START- EXECUTABLE- PROCRAMcommand are also available to the user, e.g. to be able to monitor
the program run. For a description of these operands, see the / START- EXECUTABLE- PROGRAMcommand in the
“Commands” manual [1 (Related publications)].

The routine runs under any user ID.

MSGMAKER has no subroutine interface, i.e. it cannot be called from another program.

340

8.1.2 Defining a monitoring job variable

A monitoring job variable (MONJV) can be defined when the MSGMAKER routine is started.

While the routine is executing, the operating system sets the status indicator (the first three bytes of the job
variable) to the value

® $R: The routine is running.
Once the routine has terminated, the status indicator can assume the following values:

® $T: The routine was terminated successfully.

® $A: The routine was terminated abnormally due to a program error or a defined error exit.

On termination of the routine, one of the following values is assigned to the fourth byte of the job variable:

® 0: The routine executed without errors or warnings.
® 1: The routine executed without errors but with warnings.

® 3: The routine executed with errors.

MSGMAKER does not assign a value to bytes five through seven of the job variable.

For further information on monitoring job variables, see the “JV” manual [16 (Related publications)].

341

8.1.3 MSGMAKER operating modes

There are two operating modes for the MSGMAKER routine:

1. Interactive mode, referred to below as menu mode (see "Menu mode").
The routine is controlled by means of screen masks or statements entered in the command area of the masks.

2. Batch and procedure mode - see "Statements”. This includes batch mode, batch procedure mode and
interactive procedure mode.
The routine is controlled by means of statements.

The MSGMAKER operating mode is defined by the call environment when the routine is started. You cannot
change the operating mode while the routine is running. To be able to use the routine in another mode, you must
enter /ISTART-MSGMAKER again. This is illustrated in the following example.

Example

Let us assume the following situation:

MSGMAKER has been called in the middle of a procedure. The MSGMAKER statements are also located in this
procedure. MSGMAKER is therefore also started in procedure mode. The routine or procedure is interrupted by
/HOLD-PROGRAM or /[HOLD-PROCEDURE. You are now at command level.

If you return to the routine using /RESUME-PROGRAM, MSGMAKER waits for a statement to be input (you are
shown the prompt //). You are back in guided dialog. Although procedure mode is no longer active, this does not
change the fact that the routine has been called in a procedure.

When this occurs, it is best to abort with K2 or terminate the MSGMAKER routine with the END statement. By
restarting the routine, this time at command level, you will be able to use MSGMAKER in menu mode.

342

8.1.4 Special character sets

In menu mode, messages can be created with special characters from extended character sets (e.g. 8-bit character
sets). The relevant library must be assigned for the screen display before MSGMAKER is started.

/ ADD- FI LE- LI NK LI NK- NAME=MAPLI B, FI LE- NAME=SYSFHS. MSGMAKER. <ver si on>. <code>
<ver si on> contains the current MSGMAKER version and <code> the name of the required character set.

The terminal must also be working in 8-bit mode. The 8-bit code table of the user entry is activated by means of the
/ MODI FY- TERM NAL- OPTI ONS CODED- CHARACTER- SET=8- BI T- DEFAULT command.

343

8.1.5 Messages of MSGMAKER

The messages of the MSGMAKER utility routine have the message class MSM.

See also the section “Messages and their meaning” (Notational conventions).

344

8.2 Menu mode

In menu mode, MSGMAKER provides one or two masks for each function. In each mask, the user can

® select a function by entering alphabetic or numeric characters or marking it with “X” and start the function by
pressing the DUE key

® initiate control functions by pressing the function keys F2, F3, K1, K2 and K3

® deviate from the defined processing sequence of the masks and call any function by entering statements in the
command area. Selective control of the individual masks enables the user to move through the masks more
quickly, thus reducing the time taken to process a message file (see also "//GO-TO - Branch to specified mask").

¢ call any statement with the help of SDF. SDF is in EXPERT mode,; if you enter a question mark, SDF displays all
the available MSGMAKER statements.

345

8.2.1 Mask overview

Function

ADD-DOCUMENTATION

ADD-MSG
COPY

DELETE-
DOCUMENTATION

DELETE-MSG
INSERT-ATTRIBUTES
MEANING/RESPONSE

MODIFY-
DOCUMENTATION

MODIFY-MSG

MOVE
MSG-FILE-ATTRIBUTES
MSG-TEXT

SHOW

Brief description

Add documentation (person responsible, comment) for messages of a specific
range

Add message units
Copy message units and documentation lines

Delete documentation (person responsible, comment) for messages of a specific
range

Delete message units
Add, modify or delete insert attributes
Add, modify or delete meaning and response text

Modify documentation (person responsible, comment) for messages of a specific
range

Modify message units

Copy and delete message units and documentation lines
Add or modify message file attributes

Add, modify or delete message text (and inserts)

Display the contents of a message file (message unit and documentation lines)

346

8.2.2 Mask sequence

The figure 11 shows the order in which the masks appear when the user enters certain operation numbers or
presses certain function keys. The sequence in which the masks appear is governed by the mask hierarchy:

® The main mask MENU appears as soon as MSGMAKER is called.

® The MSG-FILE-ATTRIBUTES, ADD-MSG, MODIFY-MSG, DELETE-MSG, COPY, MOVE, SHOW, ADD-
DOCUMENTATION, MODIFY-DOCUMENTATION and DELETE-DOCUMENTATION masks are called from the
main mask MENU. The SHOW mask allows the user to select the message units to be displayed; a second
mask with the name SHOW-OUTPUT is called to display them. Similarly, the DELETE-MSG mask allows the
user to select the message unit to be deleted. A second mask with the same name then displays this message
unit before the DELETE function is initiated.

® The MSG-TEXT, MEANING-RESPONSE and INSERT-ATTRIBUTES masks follow the ADD-MSG and MODIFY-
MSG masks automatically

347

The numbers in the overview indicate the functions selected in the MENU mask.

Figure 11: Overview of MSGMAKER masks

348

8.2.3 General mask format

Status area

The status area contains the mask title that describes the function of the mask. The statement that corresponds to
this mask also has this name.

Exceptions:
There are no statements called MENU or MSG-FILE-ATTRIBUTES. The functions of these two masks are
combined in the statement //OPEN-MSG-FILE.

Information area

The information area provides any information that is available on the message file or message unit currently being
processed (message code, language, etc.).

Work area

The work area is the area in which the user performs operations. In this area, the user can select functions or enter
values.

Command area / message output area

In the three-line command area, the user can enter a statement or the character “+” or “-". The function key
assignments are displayed in the last line of the mask.

The second and third lines of the command area also serve as the output area for messages issued by the routine
or by the system.

More (- +)

+ In each of the masks MSG-TEXT, INSERT-ATTRIBUTES and SHOW-OUTPUT, a second mask can be
called by entering “+”. The second mask displays all the remaining message texts or inserts that have been
defined.

The user can enter “-” to return to the first mask.

349

Command ==>

The user can enter statements, as described in the sections “Statements” and “Special features of statements
in menu mode”.

i A statement entered in the command area is always executed before the mask function displayed.
Exception: in the MENU mask.

If a complete statement is entered, the function is executed immediately in the background.

In the case of an incomplete statement, i.e. one in which all or some of the operands are missing, the mask
that corresponds to the statement is displayed. Operands that have already been assigned values in the
statement call are transferred to the fields in the mask. Missing operands can be added in the mask. The user
then presses the DUE key to execute the statement and return to the calling mask. The command area of the
mask is now empty and all other mask areas are as they were before the statement was entered.

If the prompt function is applied to a statement, the statement is not executed immediately; Instead the mask
that corresponds to the statement is displayed. The user is able to add any missing operand values. Finally,
the user presses the DUE key to execute the statement. For more information, see the section “Function keys”.

The //GO-TO statement allows the user to call any mask directly (see "GO-TO - Branch to specified mask").

Combined input of “+"/ “-” and statements is not possible.
"Command ==>" appears in the command area only if it is not possible to call a corresponding mask.

If a question mark “?”is entered in the command line and then the DUE key is pressed, a selection menu with
MSGMAKER statements and SDF standard statements appears. By entering the number preceding the
statement in the input field NEXT, the operand form associated with the statement is displayed. Entering
*CANCEL, *EXIT or *EXIT-ALL returns to the last displayed mask function.

Function keys

The function keys F2, F3, K1, K2 and K3 allow the user to perform operations easily and quickly.
F2 = prompt

provides extensive information on a statement that has been entered in the command area.

Pressing the F2 key after making an entry in the command area initiates the prompt function. If the prompt
function is applied to a statement, the mask that corresponds to the statement is called and the operands that
have already been specified are transferred to the mask. If all the operands have been entered, the user
presses the DUE key to execute the statement and return to the calling mask. If some or all of the operands
are missing, pressing the DUE key causes MSGMAKER to branch to the appropriate masks so that the user
can enter the missing operands. MSGMAKER returns to the calling mask.

The statement is no longer displayed in the mask; all other mask areas are as they were before the prompt
function was called.

350

F3 = Exit
The user presses the F3 key to exit the current function. The function is not executed and any entries made

are lost.

Function of F3

ADD-MSG F3 = exit mask
MODIFY-MSG

DELETE-MSG

COPY

MOVE

SHOW

MSG-TEXT

INSERT-ATTRIBUTES

MENU F3 = end MSGMAKER

The F3 key is not available in the following masks:

* MEANING/RESPONSE

® MSG-FILE-ATTRIBUTES

* ADD-DOCUMENTATION

* MODIFY-DOCUMENTATION
¢* DELETE-DOCUMENTATION

In SDF guided mode, F3 causes a statement to be executed immediately.

K1 = cancel/skip

returns the user to the previous mask. All entries made in the mask between DUE and pressing the K1 key are
lost. (K1 = cancel)

If several message units are being processed (in the ADD-/MODIFY-/DELETE-MSG masks), K1 = skip allows
the user to exit the message unit currently being processed and proceed to the next. As in the case with K1 =
cancel, any entries made since the last DUE and pressing the K1 key are lost.

If the skipped message unit is the last one within a set of messages being processed, the function (ADD-
/IMODIFY-/DELETE-MSG) is terminated.

K2 = interrupt

interrupts the MSGMAKER routine and switches to BS2000 command mode. MSGMAKER can be resumed by
means of the /RESUME-PROGRAM command.

K3 = refresh
saves the mask contents that were committed the last time the DUE key was pressed. All entries made in the

mask between DUE and K3 since then are lost.

i Entering a question mark in the command line causes MSGMAKER to switch to guided SDF interactive
mode. During guided mode the function key assignment set for SDF applies.

351

Message output area

This area is used to display error messages, warnings and information which can overwrite the bottom one or two
lines of the command area. The final part of a long statement may be lost.

Messages issued by MSGMAKER start with the message class MSM. If a warning is output, the message text
starts with “WARNING?”; in the case of an error message, the cursor appears in the first incorrect mask field.

352

8.2.4 Making entries in masks

Each input field is identified by a name, which appears to the left of the field. The name of input and output fields in
this part of the manual is in bold.

The user can make the following entries in the fields:

Input of Example Input in field
Text Mask: MENU Work message file: testfile
Letters Mask: MENU Open mode: U

Numbers Mask: MENU Select operation: 5

“X” character Mask: MOVE Information: X messages

The inputs into the fields have to be neither left- nor right-aligned; however, any gaps should be filled with blanks or
null characters.

Symbolic names <name> or actual specifications to the right of the input field tell the user what entries can be made
in the field.

Example
(COPY mask)
Field: First msg-id: (<msg-id> / <partial msg-id>* / *=all)
The “X” character is used to mark and select one or more items in a list.
The user can cancel a selection by overwriting the marked fields with a blank or null character.

Example

(COPY mask)

Field: Information: X messages
X documentation

component identification

353

8.2.5 Description of fields that occur frequently

First msg-id and Last msg-id

A message unit cannot be processed until the message code has been specified. There are various ways of
selecting one or more message units.

Explicit specification of the message code

The user enters a full seven-character message code, e.g. AAA000L, in the First msg-id field.

If the Last msg-id field also contains a full message code, e.g. AAA0005, a range with the lower limit AAA0001 and
the upper limit AAAOOOQS is defined.

The four-character message number can consist of both digits and letters. Note that letters appear before digits in a
sequence, e.g. CCCO1AA, CCCO01AB, ..., CCC01AZ, CCCO01AQ,, CCCO1A09.

Implicit specification of the message code

A message code that begins with an invariable section and ends in one of the wildcard characters * or # is entered
in the First msg-id field. The asterisk (*) indicates that the message code can end in letters or digits; the #
character (which may be specified for the ADD-MSG and MODIFY-MSG functions) stands for digits only.

A full message code is entered in the Last msg-id field to specify the upper limit of a message range. Any partially
gualified message code specified in this field is ignored.

Examples
cccec* stands for CCCAAAA, CCCAAAB, ..., CCCAAAZ
CCCAAAQ, CCCAAAL, .., CCCAAA9
CCCAABA, CCCAABB, ..., CCCAABz
CCC9999
ccx stands for CCA..., CCB..., .., CCZ...
* stands for selects all message units
CCCO1A# stands for CCCO1A0, CCCO1A1, .., CCCO01A9
CCC# stands for CCC0000, CCCO0002, ..., CCCO0009
CCcoo010, cCcco0011, ..., CccCo0019
CCC9990, CCC9991, ..., CCC9999

CC# or C# or # not possible

354

Special keywords
(same)

The word (same) is displayed for information purposes in the Last msg-id or To msgid field. If the user
accepts (same) as the field contents or overwrites it with blanks or null characters, the first and last message
codes are identical (Last msg-id: (same)) or the message codes are not renamed (To msg-id: (same)).

(list)

The word (list) is displayed in the First msg-id and Last msg-id fields if a statement contains several
message codes that cannot be grouped together in a range. (list) is displayed for information purposes only
and cannot be entered in a field.

Language(s)

The word (list) is displayed in the Language(s) fields if a statement contains several message codes that
cannot be grouped together in a range. Each language is identified by a single letter. The letter D is used for
German and E for English. All other languages (up to eight) may have any abbreviation.

No entry means that the entire message unit is to be processed, including the message attributes and texts in
all languages.

Message file

This field contains the name of a message file.
Usually the name in this field is the currently open message file; in some masks this default can be overwritten.

355

8.2.6 Description of the masks

¢® MENU mask - MSGMAKER main mask

® MSG-FILE-ATTRIBUTES mask - Enter and modify message file attributes
® COPY mask - Copy message units

®* MOVE mask - Copy and delete message units

® SHOW mask - Display message file contents

® SHOW-OUTPUT mask - Output message units and additional information
® ADD-MSG mask - Add message unit

® MODIFY-MSG mask - Modify message unit

® MSG-TEXT mask - Add or modify message text

* MEANING/RESPONSE mask - Add or modify meaning and response text
®* INSERT-ATTRIBUTES mask - Add or modify insert attributes

® DELETE-MSG mask - Delete message unit

¢ ADD-DOCUMENTATION mask - Add documentation lines

* MODIFY-DOCUMENTATION mask - Modify, add and delete documentation lines
¢ DELETE-DOCUMENTATION mask - Delete documentation lines

356

8.2.6.1 MENU mask - MSGMAKER main mask

Mask sequence

ISTART-MSG-MAKER
I
I

MENU

This mask is available to the user as soon as the MSGMAKER utility routine has been called.

Function

In this mask, the user enters the message file to be processed. At the same time, the user can specify a number to
select the next operation to be performed on this file.

Operations 1, 5, 6, 7, 9, 10 and 11 cannot be performed unless a message file is specified. Operations 2, 3 and 4
do not require a message file to be entered in the MENU mask.

Mask

Input fields
Message file
Name of a message file. If the input is confirmed with DUE, the fully qualified name appears in the message file.

If a new message file is to be opened, the name of the file that is already open must be overwritten and confirmed
with DUE.

Validity criteria:
Data type: <filename 1..54>

357

Open mode
U (Update): Opens an existing message file so that it can be updated.
R (Read): Opens a message file for read access only.

C (Create): Creates a new message file which becomes the current work file. The MSG-FILE-ATTRIBUTES
mask (see "MSG-FILE-ATTRIBUTES mask - Enter and modify message file attributes") is called
automatically; in it, the user can enter the attributes of the new message file.

If the name of a file that does not yet exist is specified together with U, MSGMAKER outputs error message
MBMDJO01.

Select operation

The user can select one of the following operations by entering the appropriate number:

1 (Message file - modify attributes)
calls the MSG-FILE-ATTRIBUTES mask.
This mask allows the user to modify the attributes of the message file.
File attributes include

® the file type; a distinction is made between customer message files and the BS2000 standard
message files
® the name of the software product for which the message file is created

® the version number of this software product

i If a new message file is created (C = create), the MSG-FILE-ATTRIBUTES mask is called
automatically. The user must enter 1 in order to modify the attributes of an existing message file.

2 (Message file - copy contents)
calls the COPY mask.

This mask allows the user to select components of a message file via their message codes and copy
them from one file to another or to a different location within the same file. The message file currently
open does not have to be the source or target file.

The components of a message file include

® Message unit(s)
® Documentation lines

® component identification and correction information (internal)

358

3 (Message file - move contents)
calls the MOVE mask.

This mask allows the user to select components of a message file via their message codes and move
them from one file to another or to a different location within the same file. Unlike the COPY function,
the MOVE function deletes the source area.

The message file currently open does not have to be the source or target file.

The components of a message file include

® Message unit(s)
® Documentation lines

® component identification and correction information (internal)

4 (Message file - show contents)
calls the SHOW mask.

This mask allows the user to select components of a message file via their message codes and output
them to SYSOUT or to a SYSLST file.

The components of a message file include

® message unit(s), subdivided into
®* Message attributes
® message text in the defined languages
® meaning and response text in the defined languages

® inserts and insert attributes

®* Documentation lines

® component identification and correction information (internal)

5 (Message - Add)
calls the ADD-MSG mask.

This mask allows the user to add new message units to the current work file. The message codes
determine the order in which the new message units appear in the message file.

A message file can be assigned the following attributes:

® MIP access method
® Qutput destination
® Routing code

* Weight code

® Warranty

® | anguage identifier

359

For each defined language, the user must write a message text and may optionally write a meaning
and response text. In addition, inserts may be defined in the message text.

6 (Message - modify)

calls the MODIFY-MSG mask.

This mask allows the user to modify message units in the current work file.

The following attributes of a message file can be modified:

MIP access method
Output destination
Routing code
Weight code
Warranty

Language identifier

In each defined language, the user can modify the message text, meaning text and response text. The
same applies to the inserts and their attributes.

7 (Message - delete)

calls the DELETE-MSG mask.

This mask allows the user to delete message units from the current message file.
The message units are selected via their message codes.

The user can

® display the message units in another mask of the same name before deleting

delete texts in different languages

delete one or more message units

them.

9 (Documentation - add)

calls the ADD-DOCUMENTATION mask.

Messages can be documented in this mask.

The following specifications are possible:

Message code/message range
name of the person responsible for the message
name of the team responsible

Comment

360

10 (Documentation - modify)
calls the MODIFY-DOCUMENTATION mask.
The documentation of messages can be modified in this mask.
The following specifications are possible:

* modification of the message code

* modification of the persons responsible for the message
®* modification of the team responsible

* modification of the comment
Modified message codes are automatically sorted anew into the list.
11 (Documentation - delete)
calls the DELETE-DOCUMENTATION mask.

The documentation forone or more messages can be deleted in this mask.

Command
Special point:
If a message file has been entered in the Work message file field, this file is always opened before any statement

is executed.

i A plus sign “+” is displayed in the command area if a standard message file of the manufacturer is
opened. Hitting “+” scrolls to a second MENU mask which offers functions for internal use.

For further information on

® entering statements, see "General mask format"

® function key assignment, see "General mask format"

Follow-on operations:

MENU | 7

Operation no. 1 - 11: Branch to different input masks.

F3 End MSGMAKER.

361

8.2.6.2 MSG-FILE-ATTRIBUTES mask - Enter and modify message file attributes

Mask sequence

>1->

MENU

MSG-FILE-ATTRIBUTES

Function

The user can enter the message file attributes or modify them by overwriting existing values. By pressing the DUE
key, the user confirms the input and exits the mask.

The user switches to the MSG-FILE-ATTRIBUTES mask by specifying

® anew file with Open mode: C or

® Select operation: 1 for an existing file (Open mode: U) in the MENU mask.
When the mask appears, the cursor is positioned in the Type field.

Mask

Output fields
File name (name of the message file)

The name entered in the main mask MENU is transferred to the MSG-FILE-ATTRIBUTES mask. This name must
not be modified.

362

Input fields
Type (type of message file)

If the message file is associated with a software product developed by the manufacturer, the file type S (standard)
must be entered. The default value C (customer) means that the message file was written for a customer’s own
product.

i It is not possible to convert a standard message file into a customer message file by changing the S entry
to C. However, the user may open a new message file of type C and copy the contents of the standard
message file into this new file. A customer message file can be converted into a standard message file
without restriction. Default setting/display: C (customer)

Product name (name of the software product)

Name of the software product for which the message file is created.

Validity criteria:

Data type: <structured-name 1..15>

A product name is required only if a version number is specified.

The name entered appears in uppercase letters within the message file and the next time the mask is called.

Product version (version number of the product)
Version number of the software product for which the message file is created.

Validity criteria:

<composed-name 3..8> or <c-string 1..8>

If the version number contains letters, these are converted into uppercase letters within the message file and the
next time the mask is called.

If the version number is specified, a product name is also required.

Command

For detailed information on

® entering statements, see "General mask format"

® function key assignment, see "General mask format"

Follow-on operations:

MSG-FILE-ATTRIBUTES >7?

DUE Inputs are confirmed; return to the MENU mask.

K1 Inputs are not confirmed and are lost; return to the MENU mask.

363

8.2.6.3 COPY mask - Copy message units

Mask sequence

>2->

MENU COPY

Function

This mask allows the user to select components of a message file by means of their message codes and copy them
to another file or to a different location within the same file. The current message file does not have to be the source
or target file.

It is possible to call the COPY mask directly from MENU without entering a file name in the main mask. If a
message file name is entered in MENU, this name is transferred to the From file and To filefields of the COPY
mask.

The COPY function is executed when the inputs are confirmed with DUE. If the copying procedure is successful,
MSGMAKER outputs message MSMN100.
Special points concerning the copying procedure

® |f a specified target message unit does not yet exist, a message unit is created with the message and insert
attributes of the source message unit.

* |f the target message unit already contains a text with the same message code and language identifier, the text
of the target message unit is overwritten with the text of the source message unit.

* |f the only difference between the texts is the language identifier (e.g. ABC0O000D, ABCOO0OE), the text is
appended to the contents of the target message unit.

® |f, as a result of the copying procedure, the target message unit contains a new, undefined insert number, the
corresponding insert attributes of the source unit are copied to the target message unit. Conversely, the insert
attributes of inserts that no longer exist are deleted.

i If the entire contents of a message file are copied to another file, it is better to use the /MERGE-MSG-
FILE statement rather than the COPY function. The copying procedure is then actually much more
efficient.

364

Mask

Input fields
First msg-id (first message code of the message range)
The specified message code identifies a message unit or the first message unit of a message range.

Validity criteria:

Seven-character message code or partially qualified message code in which the asterisk (*) can stand for between
one and seven characters.

The first three characters must be letters (message class).

Example

Valid specifications for <partial msg-id>* are:
A*, AB*, ABC*, ABCO*, ABC00*, ABC0O00*

The entry * selects all defined message codes. For further information on message codes, see the “Introduction to
System Administration” [5 (Related publications)].

Last msg-id (last message code of the message range)

The specified message code identifies the last message unit of a message range. Only one message unit is
selected if this message code matches the entry in the First msg-id field or the keyword (same) is transferred.

Validity criteria:
Seven-character message code; if the field is empty, the message code is transferred from the First msg-id field.
For further information on message codes, see the “Introduction to System Administration” [5 (Related publications)].

Display: (same)

365

Information

Message units and documentation lines can be selected from the defined message range and copied to another file
or to a different location within the same file.

Validity criteria:
The file contents must be marked with the character “X”.

Display: X messages

Messages
Message units in the specified languages (see the Lang field) within the defined message range are copied. If
the Lang field is empty, all message units are copied.

documentation
All documentation lines defined within the specified message range are copied. If other defined message
ranges overlap the specified message range, their documentation lines are also copied.

Example
see the description of the /COPY statement.

component identification / correction information
This additional information is available only for BS2000 standard message files.

Language(s) (1-letter language identifier)

Entering the language identifier causes the texts (message, meaning and response) that are entered under the
identifier to be copied to the specified target message unit. The target area may be located either in the source file
or in another message file (see field To file).

Validity criteria: A letter from A through Z can be entered. To ensure correct selection, the letter entered here must
match the identifier defined when the message unit was created.

From file (source file)

Name of the message file whose contents are to be copied. It is possible to overwrite the current message file, i.e.
the file that was opened in the MENU mask and whose name was transferred to the From file field of the COPY
mask. Any existing message file may be specified as the source file.

Validity criteria:
Data type: <filename 1..54>

To msg-id(s) (message code of the target file)

The message area reserved in the target file must be at least as large as the selected area of the source file, as
specified in the First msg-id and Last msg-id fields.
Leaving the To msg-id(s) field empty has the same effect as the entry (same) and causes the message code of the
source file to be transferred unchanged to the target file.
(same) must not be specified if the source file is also the target file. (same) must be specified if
® the First msg-id field contains

® the keyword (list)

® the entry *

® a partially qualified specification containing the wildcard character * (e.g.: AB¥*)

366

® a message range across a number of message classes was defined in the First msgid and Last msg-id fields
(e.g.: ABC0000 - ABC9999).

Validity criteria:
Seven-character message code or partially qualified message code in which the asterisk (*) can stand for between
one and four characters.

Example
Valid specifications for <partial msg-id>* are: ABC*, ABC0O*, ABC0O0*, ABC0O00*

The entry * selects all defined message codes. For further information on message codes, see the “Introduction to
System Administration” [5 (Related publications)].

Display: (same)
To file (name of the target file)

Name of the message file to which the contents of the source file are to be copied. The current message file, i.e. the
message file that was opened in the MENU mask and whose name was transferred to the To file field, can be
overwritten in the COPY mask. Any existing message file can be specified as the target file.

If the message file specified does not yet exist, it is created. The file type (Customer or Standard), product name
and version number are defined as for the source file.

Validity criteria:
Data type: <filename 1..54>

Command
For detailed information on

® entering statements, see "General mask format"

® function key assignment, see "General mask format"

Follow-on operations:

copy | =7

DUE The COPY function is started; the COPY mask is displayed again with its original status. The function
can be called again by entering new values in the now empty “msg-id” fields.

F3 Quits the copy mask without the COPY function being executed. The original MENU mask is displayed.

367

8.2.6.4 MOVE mask - Copy and delete message units

Mask sequence

>3 ->

MENU MOVE

Function

This mask allows the user to select message file components by specifying the message code and move them to
another file or to a different location within the same file. Unlike the COPY function, the MOVE function deletes the
source area. The current message file does not have to be the source or target file. The MOVE mask can be called
directly from MENU without entering a file name. If a message file is entered in MENU, the file name is transferred
to the From file and To filefields of the MOVE mask.

The MOVE function is executed when the input is confirmed with DUE. After a successful move procedure,
MSGMAKER outputs message MSMN100.
Special points regarding transfer (copying + deletion)

If the specified target message unit does not exist, a message unit is created with the message attributes of the
source message unit.

If the target message unit already contains a text with the same message code and language identifier, the text
of the target message unit is overwritten with the text of the source message unit.

If the only difference between the texts is the language identifier (e.g. ABCO000D, ABCOOOOE), the text is
appended to the contents of the target message unit.

If, as a result of transfer, the target message unit contains a new, undefined insert number, the corresponding
insert attributes of the source unit are copied to the target message unit. Conversely, the insert attributes of
inserts that no longer exist are deleted.

If the MOVE function has deleted all the language-dependent parts of a message unit, the remaining message
attributes and thus the message unit itself are deleted automatically.

Mask

368

Input fields
First msg-id (first message code of the message range)

The specified message code identifies a message unit or the first message unit of a message range.

Validity criteria:
Seven-character message code or partially qualified message code in which the asterisk (*) can stand for between
one and seven characters.

Example

Valid specifications for <partial msg-id>* are:
A*, AB*, ABC*, ABCO*, ABC00*, ABC000*

The entry * selects all defined message codes. For further information on message codes, see the “Introduction to
System Administration” [5 (Related publications)].

Last msg-id (last message code of the message range)

The specified message code identifies the last message unit of a message range. Only one message unit is
selected if the message code matches the specification in the First msgid field or the keyword (same) is
transferred.

Validity criteria:
Seven-character message code; if the field is empty, the message code is transferred from the First msg-id field.
For further information on message codes, see the “Introduction to System Administration” [5 (Related publications)].

Display: (same)
Information (selects the message file components that are to be moved)

Message units and documentation lines can be selected from the defined message range and copied to another file
or to a different location within the same file. Unlike the COPY function, the MOVE function deletes the source area.

Validity criteria:
The file contents must be marked with the character “X".

Display: X messages

Messages

Message units in the specified languages (see the Lang field) that are included in the defined message range
are copied to the target area and deleted from the source area. If the Lang field is empty, all message units
are copied.

documentation

All documentation lines defined in the specified message range are copied and then deleted from the source
area. If other defined message ranges overlap the specified message range, their documentation lines are
also copied and then deleted from the source area.

Example
See the description of the /MOVE statement.

component identification / correction information
This additional information is available only for BS2000 standard message files.

369

Language(s) (1-letter language identifier)

Entering the language identifier causes the texts (message, meaning and response) that are entered under the
identifier to be copied to the specified target message unit. Once the texts have been copied, the source area is
deleted.

Validity criteria:
A letter from A through Z can be entered. To ensure correct selection, the letter entered here must match the
identifier defined when the message unit was created.

From file (source file)

Name of the message file whose contents are to be copied. The source area of this file will then be deleted. The
current message file, i.e. the file that was opened in the MENU mask and whose name was transferred to the From
file field, can be overwritten in the MOVE mask. Any existing message file may be specified as the source file.

Validity criteria:
Data type: <filename 1..54>

To msg-id(s) (message code of the target file)

The message area reserved in the target file must be at least as large as the selected area of the source file, as
specified in the First msg-id and Last msg-id fields.
Leaving the To msg-id(s) field empty has the same effect as the entry (same) and causes the message code of the
source file to be transferred unchanged to the target file.
(same) must not be specified if the source file is also the target file. (same) must be specified if
® the First msg-id field contains

® the keyword (list)

® theentry *

¢ a partially qualified specification containing the wildcard character * (e.g.. AB*)

® a message range across a number of message classes was defined in the First msgid and Last msg-id fields
(e.g.: ABC0O000 - ABC9999).

Validity criteria:
Seven-character message code or partially qualified message code in which the asterisk (*) can stand for between
one and four characters.

Example

Valid specifications for <partial msg-id>* are:
ABC*, ABCO*, ABC00*, ABCO0O*

The entry * selects all defined message codes. For further information on message codes, see the “Introduction to
System Administration” [5 (Related publications)].

Display: (same)

370

To file (name of the target file)

Name of the message file to which the contents of the source file are to be transferred. The current message file, i.
e. the message file that was opened in the MENU mask and whose name was transferred to the To file field, can
be overwritten in the MOVE mask. Any existing message file can be specified as the target file.

If the message file specified does not yet exist, it is created. The file type (Customer or Standard), product name
and version number are defined as for the source file.

Validity criteria:
Data type: <filename 1..54>

Command
For detailed information on

® entering statements, see "General mask format"

¢ function key assignment, see "General mask format"

Follow-on operations:

MOVE | 7

DUE The MOVE function is initiated; the MOVE mask is displayed again with its original status. The function
can be called again by entering new values in the now empty “msg-id” fields.

F3 Quits the MOVE mask without executing the MOVE function. The original MENU mask is displayed.

371

8.2.6.5 SHOW mask - Display message file contents

Mask sequence

>4 ->

MENU SHOW

Function

This mask allows the user to select message file components by specifying the message code and output them to
SYSOUT or to a SYSLST file. The message units are displayed classified according to their attributes, their
message, meaning and response texts in the specified languages and their insert attributes. Documentation lines
may also be displayed. These message file components are sorted according to message class. A separate mask
is used for output to SYSOUT (see "SHOW-OUTPUT mask - Output message units and additional information”,
SHOW-OUTPUT mask).

Mask

Input fields
First msg-id (first message code of the message range)
The specified message code identifies a message unit or the first message unit of a message range.

Validity criteria:

Seven-character message code or partially qualified message code in which the asterisk (*) can stand for between
one and seven characters.

The first three characters must be letters (message class).

Example

Valid specifications for <partial msg-id>* are:
A*, AB*, ABC*, ABCO*, ABC00*, ABC0O00*

The entry * selects all defined message codes. For further information on message codes, see the “Introduction to
System Administration” [5 (Related publications)].

372

Last msg-id (last message code of the message range)

The specified message code identifies the last message unit of a message range. Only one message unit is
selected if this message code matches the entry in the First msg-id field or the keyword (same) is transferred.

Validity criteria:
Seven-character message code; if the field is empty, the message code is transferred from the First msg-id field.
For further information on message codes, see the “Introduction to System Administration” [5 (Related publications)].

Display: (same)
Information (message file components to be output to SYSOUT or SYSLST)

Message units and documentation lines can be selected from the defined message range and output to SYSOUT or
SYSLST.

Validity criteria:
The file contents must be marked with the character “X".

Display:

® X message attributes
® X msg-text
® X meaning and response

® X Insert attributes

message attributes

The message attributes of the message units defined in the specified message range are output.
The message attributes include the access method, the output destination, the routing code, the format of the
output text, the weight code and the message warranty.

msg text
The message text is output in the specified languages (see the Lang field). If the Lang field is empty, the
message texts are output in all defined languages.

meaning and response
The meaning and response texts are output in the specified languages. If no language is specified in the Lang
field, the meaning and response texts are output in all defined languages.

insert attributes
The insert attributes are output.

documentation

All documentation lines defined in the specified message range are output. If other defined message ranges
overlap the specified message range, their documentation lines are also output. See the description of the
/[SHOW statement.

component identification / correction information
This additional information is available only for BS2000 standard message files.

373

Lang. (1-letter language identifier)

Entering the language identifier selects the message units that contain texts in this language. The texts are output in
the same order as the language identifiers were input. If no language is specified, all message units are selected. If
this is the case, the texts are output in the alphabetical order of the language identifiers.

If an undefined language is specified for the selected message unit, the message attributes are not displayed, even
if selected (X message attributes).

Validity criteria:
A letter from A through Z can be entered. To ensure correct selection, the letter entered here must match the
identifier defined when the message unit was created.

From file (message file)

Name of the message file whose components are to be output.
The file name transferred from the MENU mask can be overwritten.

Validity criteria:
<filename 1..54 without-gen-vers>

Output (output destination)
The selected message file contents can be output to SYSOUT and/or SYSLST.

Validity criteria:
Must be marked with the character “X".

Display: X sysout

sysout
The selected message file components are output to the user’s data display terminal in the SHOW-OUTPUT
mask (see "SHOW-OUTPUT mask - Output message units and additional information").

syslst
The selected message file components are output to the SYSLST system file. Lines per page = 60.

Command
For detailed information on
® entering statements, see "General mask format"

® function key assignment, see "General mask format”

Follow-on operations:

sHow | 7

DUE The SHOW function is initiated; the requested message units are output.

F3 Quits the SHOW mask without executing the SHOW function. The original MENU mask is displayed.

374

8.2.6.6 SHOW-OUTPUT mask - Output message units and additional information

Function

The SHOW-OUTPUT mask is called after the SHOW mask. The information on the selected message units is
output together with the documentation lines to SYSOUT (and SYSLST) in the order shown below.

If the information is output to SYSOUT, it is possible to page backwards and forwards through the message file
being displayed (see "SHOW-OUTPUT mask - Output message units and additional information").

If message units from several message classes are displayed, the message classes appear in
alphabetical order.

1. Message class
A new message class is indicated by an appropriate text, e.g. “Message Class: This text appears in a three-line
area, enclosed by “#” characters.

2. component identification
Appears only for standard messages (internal).

3. message units
The contents of a message unit are displayed in the following order:

®* Message attributes

® Insert attributes
Language identifier Message texts (and, if defined, meaning and response texts) are displayed for each
language.

® Language identifier
Message texts (and, if defined, meaning and response texts) are displayed for each language.
The “N" separators in the displayed message text have already been converted, i.e. the text that follows
“N" starts on a new line.
The sequence of the languages depends on the order in which the language identifiers were entered in
the SHOW mask; if no language has been entered, the language identifiers are displayed in alphabetical
order.

4. Documentation lines

5. Correction information
Only displayed for standard messages (internal).

Mask (example)

Three message units (AAA0001 to AAA0003) were defined in message file

:N:$USEROO001.TESTFILE with message, meaning and response texts.

The three message units are to be output to SYSOUT. The message units are edited for output and the total edited
information scaled at 100%. The subsequent screen output is the third of a total of four outputs. The information
area of the screen indicates that 76% of the edited information volume has already been output.

375

Output fields
In the information area

File (name of the message file)
Name of the message file whose contents are displayed.
XX% (information volume in %)

The selected message range of a message file is formatted before being displayed. 0% indicates the start and
100% the end of the edited information.

AAA (message class of the displayed information)

The message class is displayed on output of the first message code within a message class or when documentation
lines are output.

AAAXXXX (message code of the first message unit visible in the work area)

A seven-character message code refers to the message unit that is still partially visible in the upper work area.
In the work area

If a new message class is displayed, it is preceded by a three-line comment (see “Function”).
AAAXXXX (message code of the information being displayed)

The letters AAA stand for the message class, XXXX for the message number.

Access (MIP access method)
Destination (message output destinations)
Warranty (message warranty)

Routing Code (routing code)

Text Format (format of the text when output via the MSG7X macro or the /[HELP-MSG-INFORMATION
command)

376

Weight (message priority)

Insert (name and default text of the defined inserts)
attributes

In addition to the insert number, the insert name is output in the Name field and the default text in the Default Value
field, enclosed in single quotes.

The single quotes are not part of the default text. Entry of two successive single quotes " in the Default Value field
corresponds to the specification of DEFAULT-VALUE=*EMPTY-STRING.

The insert name is always output in uppercase letters. This name is a component of the S variable which the user
can declare. The default text forms the default contents of this S variable. Further information is provided in the
"Introduction to System Administration” [5 (Related publications)].

The field Automatic Help indicates whether the automatic help function is available. If a message code or part of a
message code is output using an insert (e.g. in the case of DMS errors only the message number is output), the
automatic help function causes MIP to output the associated message text in addition to the message code. For
further information refer to "ADD-MSG - Add message unit".

In addition to the language identifier, the message text is displayed. The inserts are not replaced in the message
text.

This is followed by the meaning text (indicated by ?) and response text (indicated by !).
Documentation:

AAAXXXX - AAAXXX (message range)

Owner name (person responsible for these messages)

Team (team responsible for these messages)

The comment line is the end of the documentation for every message range.

For standard message files of the manufacturer, the component identification is also output.

Component (component name)

Domain (area of application)

Version (component version)

Owner (person or team responsible for this component)
Date (release date of the message file)

In the command area
More (- + <>> partial-id*)

The following options are available for paging through the information displayed:

-or+ Displays the previous or next mask.
-i or +i Scrolls the screen contents backwards or forwards by i lines.
- or ++ Pages to the start or end of the formatted information.

377

< Pages to the start of an item of information (message unit, documentation) if another part of this
information item is currently being displayed. If the start of the information item is already
displayed, “<” pages to the start of the previous item of information.

> pages to the start of the next information item.

<< Pages to the start of the message class currently being displayed. If the start of the message
class is already displayed, “<<” pages to the start of the previous message class.

>> Pages to the start of the next message class or, if there are no more message classes, to the
end of the formatted information.

>partial-id* If partial-id is more than 3 characters:
Pages to the first message unit whose message code matches the partial message code
specified. If no message code matches this partial message code, the first message unit
following the partial message code is displayed. This message unit may also belong to a new
message class.

If partial-id is less than or equal to 3 characters:

Pages to the first message unit of the specified message class (e.g. >TST*) or to the following
class (e.g. TSU). If there are no more message classes, the end of the formatted text is
displayed.

i The character * is not mandatory.

If a statement is entered in the command area to modify a message unit displayed (e.g. DELETE-MSG), the
formatted information on this message unit is not updated, i.e. modifications made within the message unit do not
appear on the screen. The display is not updated until the next time the SHOW mask is called.

For further information on

® entering statements, see "General mask format"

® function key assignment, see "General mask format"

Follow-on operations:

SHOW-OUTPUT | 7

+/- DUE Pages backward and forward in the formatted information (for more details, see "SHOW-OUTPUT
mask - Output message units and additional information")

K1 Quits the SHOW-OUTPUT mask; the original SHOW mask is displayed.

378

8.2.6.7 ADD-MSG mask - Add message unit

Mask sequence

->5->

MENU ADD-MSG

Function

The ADD-MSG mask is the first of a series of four masks that can be called to add a new message unit to the
current message file. The message range specified determines the number of new message units and the position
at which they are to be inserted in the message file. The inputs in the ADD-MSG mask must be confirmed with
DUE; the routine then branches to the other masks.

A new message unit is not saved until all the necessary specifications (message text, access method, etc.) have
been made for all the defined languages.

It is not possible to add texts in new languages to an existing message unit. If the user enters a message code that
already exists, MSGMAKER assumes that he/she wishes to modify a message unit and automatically displays the
MODIFY-MSG mask.

Mask

Output fields
File (hame of the message file)

The file name entered in the main mask MENU is transferred to the ADD-MSG mask. This name must not be
modified.

Input fields

First msg-id (first message code of the message range)

If a message range (or a wildcard) is specified in the First msg-id field, MSGMAKER finds all the message codes
in this range that are as yet undefined and displays them in turn. It is useful to define a message range if the same
message attributes are to apply to all message units.

379

The attributes are entered in the ADD-MSG mask at the start of the procedure and remain valid for all further
message units of the defined range until the user modifies them. Each time the ADD-MSG, MSG-TEXT, MEANING
/RESPONSE, INSERT-ATTRIBUTES masks have been filled in, MSGMAKER always returns to the ADD-MSG
mask.

MSGMAKER continues with the message code in the defined range that follows the message code just entered by
the user. The message attributes either apply to all further message units on the basis of the entry in the first ADD-
MSG mask or may also be modified as required.

Each message unit is saved to the message file immediately; MSGMAKER does not wait until the entire message
range has been processed.

If no specification is necessary for a message code offered by MSGMAKER, the user can skip that code by
pressing K1.

Validity criteria:

Seven-character message code or partially qualified message code in which the asterisk * can stand for between
one and seven characters and the # character can stand for between one and four digits. The first three characters
must be letters (message class).

Example

Valid specifications for <partial msg-id>* or # are: A*, AB*, ABC*, ABCO*, ABC00*, ABC000*
ABCH#, ABCO#, ABCO0#, ABCO00O#

The entry * selects all defined message codes. For further information on message codes, see the “Introduction to
System Administration” [5 (Related publications)].

Last msg-id (last message code of the message range)

The specified message code identifies the last message unit of a message range. Only one message unit is
selected if this message code matches the entry in the First msg-id field or the keyword (same) is transferred.

Validity criteria:
Seven-character message code; if the field is empty, the message code is transferred from the First msg-id field.
For further information on message codes, see the “Introduction to System Administration” [5 (Related publications)].

Access method(s) (MIP message access methods)

Indicates the methods used by the system component MIP to access the messages. It is possible to select more
than one access method; however, the ISAM and DLAM methods and the ISAM and LOCAL-DLAM methods must
not be combined.

Validity criteria:
The access methods must be marked with the character “X”.

Default setting/display: X ISAM

ISAM
MIP searches for messages via the ISAM key.

DLAM

This access method is used for particularly frequent messages. If a message file that contains a DLAM
message is activated, the DLAM message is loaded into main memory. MIP can output the DLAM message
directly without accessing the message file.

LOCAL-DLAM / MINIMIP / BAMR
These access methods are reserved for internal use with the manufacturer.

380

Destination(s) (message output destinations)

This specification allows the user to document the output destinations. The MSG7X macro and the /HELP-MSG-
INFORMATION command do not evaluate this specification.

Validity criteria:
The output destination must be marked with the character “X".

Default setting/display: X user-task

user-task
The message output destination is SYSOUT, SYSLST or a user-specific memory area.

console
The message output destination is a console. The routing code is evaluated as a destination specification if
subsidiary consoles are used in addition to the main console as message destinations.

Routing code

A routing code must be specified if in the Destination(s) field, the output destination console was selected.
Further information is provided in the "Introduction to System Administration” [5 (Related publications)].

Validity criteria:
Data type: <alphanum-name 1..1>

Weight (message priority)

A message weight must be specified if in the Destination(s) field, the output destination console was selected.
Further information is provided in the "Introduction to System Administration” [5 (Related publications)].

Validity criteria:
Data type: <integer 0..99>

Warranty (message warranty)

The message attribute “Warranty” is evaluated by MIP. The warranty declaration indicates that specific parts of the
message will not be modified in future BS2000 versions.

The following message components are guaranteed:

® message code

®* numbering and meaning of inserts

The message text is not guaranteed.

MIP creates S variables for warranty messages. Further information is provided in the "Introduction to System
Administration” [5 (Related publications)].

381

Language(s) (1-letter language identifier)
A 1-letter identifier is used as an abbreviation for each language. D should be used for German and E for English.

Validity criteria:
The letters “A” through “Z”.

The order in which entries are made here influences the order in which they are displayed in subsequent masks.
Edit (text selection)

At least one message text must be defined for each message unit. Meaning and response texts can be entered as
required.

Validity criteria:
The texts must be marked with the character “X".

Default setting/display: X msg text

msg text

The ADD-MSG mask is followed by the MSG-TEXT mask, which allows the user to enter the message texts in
the different languages. For a description of the MSG-TEXT mask, see "MSG-TEXT mask - Add or modify
message text".

meaning + response

The MSG-TEXT mask is followed by the MEANING/RESPONSE mask, which allows the user to enter the
meaning and response texts. For a description of the MEANING/RESPONSE mask, see "MEANING
/RESPONSE mask - Add or modify meaning and response text".

Insert attributes
The MSG-TEXT and MEANING/RESPONSE masks are followed by the INSERT-ATTRIBUTES mask, in
which names and default texts are assigned to the inserts that were defined in the message text. For a
description of the INSERT-ATTRIBUTES mask, see "INSERT-ATTRIBUTES mask - Add or modify insert
attributes”.

Command

For detailed information on

® entering statements, see "General mask format"

® function key assignment, see "General mask format"

Follow-on operations:

ADD-MSG | 7

DUE The ADD-MSG function is initiated; MSGMAKER branches to the MSG-TEXT mask.

K1 If a message range is entered in the ADD-MSG mask, MSGMAKER offers the skip function K1 as of the
second message code of the range. The user can then skip this message code. Following this, an ADD-
MSG mask appears with the next message code.

F3 The ADD-MSG function is aborted; MSGMAKER returns to the original MENU mask.

382

8.2.6.8 MODIFY-MSG mask - Modify message unit

Mask sequence

->6->

MENU

MODIFY-MSG

Function

The MODIFY-MSG mask is the first of a series of four masks that can be called to modify a message unit in the
current message file.

Once the message file to be processed has been entered in the main mask MENU and function 6 (Modify) has
been selected, MSGMAKER displays the MODIFY-MSG mask.

The first message unit is displayed once a message range has been entered in the First msg-id (and, if applicable,
the Last msg-id) field and confirmed by pressing the DUE key.Only then can the message attributes of the
message unit be modified in the MODIFY-MSG mask. If the texts are also to be modified (by inserting, appending,
deleting or replacing lines of text), highlighting the following fields (and then pressing DUE) calls the relevant masks.

X msg-text MSG-TEXT mask
X meaning + response MEANING / RESPONSE mask

X Insert attributes INSERT-ATTRIBUTES mask

If the modifications only affect the message attributes, they must be confirmed in the MODIFY-MSG mask with DUE
and saved to the message file. More complex modifications within a message unit (message text, inserts, ...) are
only saved to the message file once the user has run through all the necessary masks.

If a message unit is not to be modified within the selected message range, the user can skip that message code
with K1. The function key is offered in the mask as soon as the user has read the message units into the message
file with DUE.

Mask

383

Output fields
File (hame of the message file)

The name entered in the main mask MENU is transferred to the MODIFY-MSG mask. This name must not be
modified.

The selected message range is displayed at the right-hand edge of the information area. (Note: this is not shown in
the mask)

Input fields
First msg-id (first message code of the message range)

If a message range is entered in the First msg-id field and confirmed by pressing the DUE key, all defined
message codes of this message range are displayed in turn. The cursor is positioned on the Access method(s)
field to enable the message unit to be processed.

Validity criteria:

Seven-character message code or partially qualified message code in which the asterisk * can stand for between
one and seven characters and the # character can stand for between one and four digits. The first three characters
must be letters (message class).

Example
Valid specifications for <partial msg-id>* or # are:
A+, AB*, ABC*, ABCO*, ABCOO*, ABCOOO*
ABC#, ABCO#, ABCOO#, ABCO00#

The entry * selects all defined message codes. For further information on message codes, see the “Introduction to
System Administration” [5 (Related publications)].

Last msg-id (last message code of the message range)

The specified message code identifies the last message unit of a message range. Only one message unit is
selected if the message code matches the specification in the First msgid field or the keyword (same) is
transferred.

Validity criteria:

Seven-character message code; if the field is empty, the message code is transferred from the First msg-id field.
For further information on message codes, see the “Introduction to System Administration” [5 (Related publications)].
Display: (same)

Access method(s) (MIP message access methods)

Indicates the methods used by the system component MIP to access the messages. It is possible to select more
than one access method; however, the ISAM and DLAM methods and the ISAM and LOCAL-DLAM methods must
not be combined.

Validity criteria:
The access methods must be marked with the character “X".

384

An access method can be deselected by overwriting the “X” with a blank or a null character. A new access method
must be selected again using “X”". If no further changes to the message attributes or texts are required, the user can
confirm the changes made by pressing the DUE key. The next message unit within the specified message range is
displayed.

ISAM
MIP searches for messages via the ISAM key.

DLAM

This access method is used for particularly frequent messages. If a message file containing a DLAM message
is activated, the DLAM message is loaded into main memory. MIP can output the DLAM message directly
without accessing the message file.

LOCAL-DLAM / MINIMIP / BAMR
These access methods are reserved for internal use with the manufacturer.

Destination(s) (message output destinations)

This specification allows the user to document the output destinations. The MSG7X macro and the /HELP-MSG-
INFORMATION command do not evaluate this specification.

Validity criteria:
The output destination must be marked with the character “X".

Entries can be deleted by overwriting the fields with blanks or null characters, and selected again using “X".

user-task
The message output destination is SYSOUT, SYSLST or a user-specific memory area.

console
The message output destination is a console. The routing code is evaluated as a destination specification.

Routing code

A routing code must be specified if in the Destination(s) field, the output destination console was selected. Further
information is provided in the "Introduction to System Administration” [5 (Related publications)].

Validity criteria:
Data type: <alphanum-name 1..1>

Weight (message priority)

A message weight must be specified if in the Destination(s) field, the output destination console was selected.
Further information is provided in the "Introduction to System Administration” [5 (Related publications)].

Validity criteria:
Data type: <integer 0..99>

385

Warranty (message warranty)

The message attribute “Warranty” is evaluated by MIP.
The warranty declaration indicates that specific parts of the message will not be modified in future BS2000 versions.

The following message components are guaranteed:

® message code

®* numbering and meaning of inserts

The message text is not guaranteed.

MIP creates S variables for warranty messages. Further information is provided in the "Introduction to System
Administration” [5 (Related publications)].

Language(s) (1-letter language identifier)

A 1-letter identifier is used as an abbreviation for each language. The letter D stands for German and E for English.
If a language identifier is displayed in the MODIFY-MSG mask, the user can neither modify it by overwriting it with
another letter nor delete it by overwriting it with a blank.

The language identifier can be modified only in the MSG-TEXT mask (see the description on "MSG-TEXT mask -
Add or modify message text"). The MSG-TEXT and DELETE-MSG masks allow the user to delete the language
identifier and thus also the message text.

Validity criteria:
The letters “A” through “Z".

Edit (text selection)
Selects the texts to be modified.

Validity criteria:
The texts must be marked with the character “X".

msg text

The MODIFY-MSG mask is followed by the MSG-TEXT mask, which allows the user to modify the message
texts in the different languages. For a description of the MSG-TEXT mask, see "MSG-TEXT mask - Add or
modify message text".

meaning + response

The MSG-TEXT mask is followed by the MEANING/RESPONSE mask, which allows the user to modify the
meaning and response texts. For a description of the MEANING/RESPONSE mask, see "MEANING
/RESPONSE mask - Add or modify meaning and response text".

insert attributes

The MSG-TEXT and MEANING/RESPONSE masks are followed by the INSERT-ATTRIBUTES mask, which
allows the user to modify the insert attributes. For a description of the INSERT-ATTRIBUTES mask, see
"INSERT-ATTRIBUTES mask - Add or modify insert attributes".

386

Command

For detailed information on

® entering statements, see "General mask format"

® function key assignment, see "General mask format"

Follow-on operations:

MODIFY-MSG

> 7

DUE The MODIFY-MSG function is initiated; modifications to message attributes are saved to the message

K1

F3

file; for text modifications MSGMAKER branches to the selected masks.

If a message range is entered in the MODIFY-MSG mask and confirmed with DUE, MSGMAKER offers

the skip option K1. The user can then skip this message code. After that, the MODIFY-MSG mask
appears with the next message code.

The MODIFY-MSG function is aborted; modifications to previously edited messages are stored in the

message file and modifications to the current message code are lost. MSGMAKER returns to the original
MENU mask.

387

8.2.6.9 MSG-TEXT mask - Add or modify message text

Mask sequence

MENU | = 5/6 > | ADD-MSG/MODIFY-MSG | = | MSG-TEXT

Function

The user calls the MSG-TEXT mask by selecting the field “Edit: X msg text” in the ADD-MSG or MODIFY-MSG
mask. The MSG-TEXT mask allows the user to enter, modify or delete message texts in defined languages.

The message code of the current message unit is displayed in the Msg-id field, but cannot be modified. If several
languages have been defined, the corresponding message texts can be entered one after the other in the mask.
The MEANING/RESPONSE and INSERT-ATTRIBUTES masks are then called if they were also selected in the
ADD-MSG or MODIFY-MSG mask. It is also possible to enter the message text in only one language in the MSG-
TEXT mask and then branch immediately to the other two masks. Once these masks have been processed,
MSGMAKER automatically redisplays the MSG-TEXT mask, in which the message texts can be entered in the
remaining languages.

The message units that have been added or modified are not saved to the message file until the user has made all
the necessary entries in the MSG-TEXT, MEANING/RESPONSE or INSERT-ATTRIBUTES mask and pressed DUE
after completing the last of these masks.

Mask

Output fields
Msg-id (message code of the message unit to be processed)

The message code entered in the ADD-MSG or MODIFY-MSG mask is transferred to the MSG-TEXT mask and
cannot be modified.

388

Input fields
Text output format (output format of the message text)

Specifies the format of the message text when output via the MSG7X macro or the /HELP-MSG-INFORMATION
command. The default texts for inserts and the texts that are specified via the MSG7X macro are likewise adapted
to this format.

Validity criteria:

The letter “U” or “L".

“U” stands for uppercase (the message text is output in uppercase letters) and “L” stands for lowercase (the
message text is output as it is entered in the MSG-TEXT mask).

i The message text format selected in the MSG-TEXT mask is also the format in which the message text is
stored in the message file.

Default setting/display: U
Language (1-letter language identifier)

Previous mask was ADD-MSG:
If language identifiers were entered in the Language(s) field in the ADD-MSG mask, they are transferred to the
MSG-TEXT mask. If not, the language identifiers can be entered directly in the MSG-TEXT mask.

Previous mask was MODIFY-MSG:
All languages displayed in the MODIFY-MSG mask are transferred to the MSG-TEXT mask. The following options
are now available:

® The language identifier remains unchanged.
The user may modify the message text.

® The user may redefine the language identifier by overwriting it.
The corresponding message text is then stored under a different language.

® The user may delete the language identifier by overwriting it with a blank.The message text must also be
deleted. If only one language was defined in the message unit, MSGMAKER prompts the user to enter another
language (and message text).

Text (message text)

The message text is stored internally as a single line (not three lines, as in the screen display). The separator “*”
can be used to split the text over several lines when it is output via the MSG7X macro or the /[HELP-MSG-
INFORMATION command. Null characters within the text are replaced with blanks. For further information on the
structure of the message text, see the “Introduction to System Administration” [5 (Related publications)].

Validity criteria:
Up to 220 characters of pure message text, including the unreplaced strings ((&00) ... (&29).

389

More (+ -) Displays another mask.

+ If more than four languages are stored in the message unit or if a fifth language is to be added, the user can
enter “+” to call a second MSG-TEXT mask for displaying or entering further texts.

- The user enters “-" to return to the first MSG-TEXT mask.

Validity criteria:
The character “-" or “+".

Command
For further information on

® entering statements, see "General mask format"

® function key assignment, see "General mask format"

Follow-on operations:

MSG-TEXT | =7

DUE The inputs in the MSG-TEXT mask are confirmed and depending on what was previously selected, the
routine branches to the MEANING/RESPONSE, INSERT-ATTRIBUTES masks or returns to the original
ADD-MSG or MODIFY-MSG mask.

K1 Returns to the original ADD-MSG or MODIFY-MSG mask. Modifications which were confirmed in the
MSG-TEXT mask with DUE are stored and can be used again. The previously modified data is displayed
when the user returns to the MSG-TEXT mask with DUE.

In this mask K1 has the effect of K3 = refresh.

F3 Processing of the current message texts is aborted. Modifications to previously edited messages are
stored in the message file and modifications to the current message code are lost. MSGMAKER returns
to the original ADD-MSG or MODIFY-MSG mask.

390

8.2.6.10 MEANING/RESPONSE mask - Add or modify meaning and response text

Mask sequence

MENU | = 5/6 > | ADD-MSG/MODIFY-MSG | = | MEANING/RESPONSE

Function

When the user selects the field “Edit:X meaning + response” in the ADD-MSG or MODIFY-MSG mask,
MSGMAKER branches to the EDT subroutine and calls a modified EDT work screen as the MEANING/RESPONSE
mask. For detailed information on EDT refer to the manual “EDT* [14 (Related publications)].

The user can add, modify or delete meaning and response texts using one or more masks.All EDT statement codes
can be used to create meaning and response texts. These statement codes must be entered in the mark column
(column 1) of the screen. EDT statements can also be entered in the last line (statement line) of the screen.

The screen is divided into two areas. The meaning text is entered in the upper area and the response text in the
lower area. If the meaning text contains more than nine lines, new lines must be added to the upper area, since any
text entered in the lower area is interpreted automatically as response text.

The information lines that appear on the screen by default cannot be overwritten. These lines are not part of the
meaning or response text.

The meaning and response texts for all other defined languages can be entered in the EDT screens numbered O
through 7 and confirmed with DUE, F1 or F2. All EDT screens that are not used for text input are available as work
screens. If texts are defined for eight languages, EDT screens 8 and 9 may be used as work screens.

The @RET[URN] or RETURN statement entered in the statement line terminates EDT. All processed languages (=
EDT screens) are transferred together to the MSGMAKER routine. The meaning and response texts that have been
entered are not saved until the user has completed all the masks required for processing the message unit.

Mask

391

Output fields
Language (1-letter identifier for the current language)
Language (identifiers for all other defined languages)
EDT screen (EDT screens in which the user can enter texts for all other language identifiers)

Msg text (current message text for the language identifier entered under Language)
Input fields

i Before text can be entered or modified, the displayed lines must be made overwritable using the function
key F2. It is possible to select individual lines for processing by entering an “x” in the mark column.

The separator “*"

If this character is used within the meaning or response text, any text that follows it is written on a new line
after the DUE, F1 and F2 keys have been pressed. This separator is valid only in EDT and is not part of the
meaning and response text. It therefore differs from the separator “*’ that can be used in the message text.

ME A NIN G (maximum 256 lines) (meaning text)

Validity criteria:

The meaning text may consist of up to 256 lines of 74 characters each. Characters entered in columns 75 through

80 are truncated automatically after the DUE key is pressed and the message EDT2267 is output. Lines consisting
of null characters or blanks are suppressed. Null characters within the text are replaced with blanks. If the meaning
text is to be longer than nine lines, new lines must be added to the upper screen area.

Display: Msg-id (current message code)
Language (1-letter identifier for the current language)
The message code of the current message unit and the current language identifier (as displayed in the Language
field) are displayed.
RE S P ONSE (maximum 256 lines) (response text)

Validity criteria:

The response text may consist of up to 256 lines of 74 characters each. Characters entered in columns 75 through
80 are truncated automatically after the DUE key is pressed and the message EDT2267 is output. Lines consisting
of null characters or blanks are suppressed. Null characters within the text are replaced with blanks.

Display: Msg-id (current message code)

Language (1-letter identifier for the current language)

The message code of the current message unit and the current language identifier (as displayed in the Language
field) are displayed.

392

Command area

Function keys

The keys F1, F2 and F3 do not have the same function in EDT as they have in the MSGMAKER routine.
F1 corresponds to the DUE key.

F2 If the user confirms the screen contents by pressing F2, all the lines become overwritable, i.e. text can be

entered or modified in the upper and lower screen areas. Information lines are protected against
overwriting.

F3 If a search operation is started with the “@ON FIND” statement, the F3 key can be used to jump to the

next or previous search string.

For further information on the K2 and K3 keys, see "General mask format".
For further information on the editing functions, see the “EDT” manual [14 (Related publications)].

Follow-on operations:

MEANING/RESPONSE | =7

@RET[URN] The inputs are confirmed and, depending on what was previously selected, the routine
branches to the MSG-TEXT, INSERT-ATTRIBUTES masks or returns to the original ADD-
MSG or MODIFY-MSG mask.

K1 Aborts screen input in EDT. No modifications (new or modified text) are passed on to the

MSGMAKER routine unless the inputs were first confirmed by pressing DUE, F1, F2 or F3.

After pressing K1, the last mask displayed in the MSGMAKER routine is called again.

For all other operations, see “Function keys” above.

393

8.2.6.11 INSERT-ATTRIBUTES mask - Add or modify insert attributes

Mask sequence

MENU | = 5/6 > | ADD-MSG/MODIFY-MSG | = | INSERT-ATTRIBUTES

Function

The user calls the INSERT-ATTRIBUTES mask by selecting the field ,Edit: X insert attributes” in the ADD-MSG or
MODIFY-MSG mask. The INSERT-ATTRIBUTES mask allows the user to add, modify or delete names and default
texts for the inserts defined in the message texts. The modifications are confirmed by hitting DUE. The inserts
defined in the message unit are common to all the defined languages.

Mask

Output fields

Msg-id (message code of the current message unit)
Language(s) (identifiers for all languages defined in the message unit)

Msg text (In the “language sequence” the first message text in which inserts are defined)

The message text in which one or more inserts have been defined is output as a reference text. Unlike the language
identifier, the message text cannot be modified. The user can define a new language for the message text displayed
by overwriting the letter in the Lang field.

Input fields
Insert .. of .. to .. (Insert number)

Insert numbers can be modified, deleted or added only in the message text itself (see the MODIFY-MSG mask on
"MODIFY-MSG mask - Modify message unit").

394

The scope xx to yy indicates the lowest and highest insert numbers defined in the message text. Entering a new
insert number causes a further insert to be output. If individual insert numbers from this range are not defined, they
are not output.

Name (Insert name)

Name of the inserts defined in the message texts. Insert names are evaluated by MIP and used to generate S
variables. Further information is provided in the "Introduction to System Administration” [5 (Related publications)].

Default text (Default Text)

This default text is inserted in the message text in place of the insert, provided that no current text has been defined
in the MSG7X macro.

Default text: Y There is a default text for an insert text

Default text: N There is no default text for an insert text

If the ADD-MSG function is being used, it is possible to specify whether a default text is to be displayed or whether
an empty string is output. For information on entering an empty string, refer to the operand description for
DEFAULT-VALUE = *EMPTY-STRING on "ADD-MSG - Add message unit".

If the MODIFY function is being used, default texts that have already been defined are output.

Validity criteria:
data type: <c-string 1..54 with-low>

The default text in the INSERT-ATTRIBUTES mask is not enclosed in single quotes. Single quotes within the
default text do not have to be specified twice. The text entered in the input field is the input text. The input text may
also be a null string or blank characters. So the default text can be deleted by overwriting with null characters not
with blanks.

Output format of the default text depends on the MSG-TEXT-OUTPUT operand.
Automatic help (Automatic help function)

If a message code or part of a message code is output using an insert (e.g. in the case of DMS errors only the
message number is output), the automatic help function causes MIP to output the associated message text in
addition to this message code; see also "ADD-MSG - Add message unit".

Auto help The message code and the message text are output

'Y

Prefix Message class, message number, etc., refer to PREFIX operand on "ADD-MSG - Add message
: unit"

Auto help Only the message code is output. The Prefix field may contain only null characters or blanks

'N

Entering “+” or “-" scrolls (pages) to the next insert number or previous insert number defined for this message.
Entry of a new insert number takes precedence over the “paging” function.

Entry of new insert attributes or modification of insert attributes takes precedence over the “paging” function or
modification of the insert number.

395

Command

For further information on

® entering statements, see "General mask format"

® function key assignment, see "General mask format”

Follow-on operations:

INSERT-ATTRIBUTES | =7

DUE The inputs are confirmed and, depending on what was previously selected, the routine branches to the
MSG-TEXT, MEANING/RESPONSE masks or returns to the original ADD-MSG or MODIFY-MSG mask.

F3 The function is aborted. Modifications to previously edited messages are stored in the message file.
Modifications to the current message (message/meaning/response text) are lost. The routine returns to
the original ADD-MSG or MODIFY-MSG mask, even if there are message units still waiting to be
processed.

K1 Returns to the MSG-TEXT or MEANING/RESPONSE mask. Entries in the INSERT-ATTRIBUTES are
lost. On returning to the INSERT-ATTRIBUTES mask, new values must be entered.

396

8.2.6.12 DELETE-MSG mask - Delete message unit

Mask sequence

>7->

MENU DELETE-MSG

Function

This mask allows the user to select message units to be deleted by specifying the message code and the language
identifier.

A second mask with the same name is called if the message attributes and message texts of the selected message
units are to be displayed once again before the message units are deleted.

Mask 1

Output fields
Message file (current message file)

The current message file is displayed. It was opened in the MENU mask. The file name cannot be modified in the
DELETE-MSG mask.

397

Input fields
First msg-id (first message code of the message range)
The specified message code identifies a message unit or the first message unit of a message range.

Validity criteria:

Seven-character message code or partially qualified message code in which the asterisk (*) can stand for between
one and four characters.

The first three characters must be letters (message class).

Example

Valid specifications for <partial msg-id>* are:
ABC*, ABC0O*, ABC00*, ABC0O00*

Last msg-id (last message code of the message range)

The specified message code identifies the last message unit of a message range. This message code must belong
to the same message class as the first message code. Only one message unit is selected if this message code
matches the entry in the First msg-id field or the keyword (same) is transferred.

Validity criteria:
Seven-character message code; if the field is empty, the message code is transferred from the First msg-id field.
For further information on message codes, see "Description of fields that occur frequently".

Display: (same)
Language(s) (1-letter language identifier)

The identifiers to be entered here correspond to the abbreviations defined when the message unit was created.

If no language is entered in the Language(s) field, the texts in all languages and the attributes of the message unit
are deleted.

If all the message units of a message file have been deleted in this way, the message file itself is not automatically
deleted, since its file attributes and any additional information (e.g. documentation lines) remain intact.

Validity criteria:
The letters “A” through “Z”.

Display msg (displays the message unit)

Entering “Y” (yes) in the Display msg field calls the second DELETE-MSG mask, in which the message attributes
and message texts of the message unit to be deleted are displayed.If “N” (no) is entered, all the specified message
units or message texts of a message unit are deleted immediately without being displayed again.

Validity criteria:
The letters “N” and “Y”.

Default setting/display: Y

398

Command
For detailed information on

® entering statements, see "General mask format"

® function key assignment, see "General mask format"

Follow-on operations:

DELETE-MSG 1| 7

DUE The inputs are confirmed and

* for Display msg: N = message unit is deleted

® for Display msg: Y routine branches to second DELETE-MSG mask.

F3 The DELETE-MSG function is aborted.

Mask 2

This mask is called if “Meldung anzeigen: Y” was specified in the first DELETE-MSG mask.The message code and
the letters identifying the selected languages are displayed in the information area of the mask.

The work area of the mask contains the message attributes and no more than the first three message texts in the
selected languages.

399

Output fields
In the information area

Msg-id (message code of the current message unit)

Language (identifiers for all languages selected in the previous mask)
In the work area
Language (1-letter language identifier)

Text (message text in the relevant language)

Command

For further information on assignment of the function keys K2 and K3, see "General mask format".

Follow-on operations:

DELETE-MSG 2| 7

The last line of the work area offers the user the following three options for continuing with mask processing:

The following actions can be performed:
DUE The message unit currently displayed (message texts in all selected languages) is deleted immediately. If
a message range has been defined, the next message unit is then displayed.

K1 The message unit currently displayed is not deleted. If a message range has been defined, the next
message unit is displayed.

F3 The DELETE function is terminated. The message unit currently displayed and all the other message
units specified in the message range are not deleted. Control returns to the DELETE-MSG 1 mask.

400

8.2.6.13 ADD-DOCUMENTATION mask - Add documentation lines

Mask sequence

->9->

MENU ADD-DOCUMENTATION

Function

This mask allows message units to be documented. The documentation is assigned to the message units via
message codes (e.g. AAA0001) or via a message range (e.g. AAA0002-AAA0015).

The following specifications are possible:

® Message code/message range

® Name of person responsible for these messages (20 characters)

®* Name of the team responsible for these messages (15 characters)
® Comment (60 characters)

The message codes can be entered in the mask in any order. If they are confirmed with DUE, the codes are sorted
alphabetically and the documentation lines are stored in the message file.

In this mask, by contrast with MODIFY-DOCUMENTATION, the documentation lines must be appended to already

existing ones. The latter being overwrite-protected.

i The specified message codes and the contents of the documentation lines are not checked for errors.

If an already documented message range is input, MSGMAKER outputs the following message:

MSMQLOO DOCUMENTATI ON LI NE ' <nessage range>" ALREADY EXI STS
(COWENT=' <conmrent >'). OVERWRI TE? REPLY (Y=YES; N=NO)? N

If the user responds with N, the documentation line is displayed again and can be modified.

Using the COPY or MOVE function, documentation lines can be copied or moved within a message file or between
two files.
The SHOW function can be used to output to SYSOUT or SYSLST.

401

Mask

Output fields

Message file

The current message file is displayed. It was opened in the MENU mask. The file name cannot be modified in the
ADD-DOCUMENTATION mask.

If documentation lines have already been written for this message file, the last message range, alphabetically
speaking, is displayed in the first line of the documentation area. The cursor is located at the beginning of the next
line.

The “-" character (in the command line) can be used to page back to message ranges that have already been
documented.

Input fields
Msg-id, interval (message code/message range)

This field is used to input a message code or message range which is documented in the subsequent fields. When
the input is confirmed with DUE, a single message code is repeated as the upper range limit (e.g. AAA00O1-
AAAQ001).

Validity criteria:
Seven-character message code, of which the first three characters must be letters (message class). The limit
values for a message range must belong to the same message class.

The tab key can be used to jump to the next field.

402

Comment (comment on the messages)

Validity criteria:
Maximum 60 characters, including spaces.

The tab key can be used to jump to the next field.
Owner (person responsible for these messages)

Validity criteria:
Maximum 20 characters, including spaces.

The tab key can be used to jump to the next field.
Owner team (team responsible for these messages)

Validity criteria:
Maximum 15 characters, including spaces.

The tab key can be used to jump to the next field.
Command
For detailed information on

® entering statements, see "General mask format"

® function key assignment, see "General mask format"

Follow-on operations:

ADD-DOCUMENTATION

DUE The inputs are confirmed and the routine returns to the MENU mask.

K1 The ADD-DOCUMENTATION function is aborted. The inputs are lost, even if the user previously paged
to another ADD-DOCUMENTATION mask with “+” and then pressed DUE.

403

8.2.6.14 MODIFY-DOCUMENTATION mask - Modify, add and delete documentation lines

Mask sequence

MENU | 10>

MODIFY-DOCUMENTATION

Function

This mask allows the user to modify or delete documentation lines that were written for one or more message units.
New lines can also be added. By contrast with ADD-DOCUMENTATION, here the user can access all
documentation lines.

The documentation lines are displayed in alphabetical order. Each line can be modified as follows:

* modified by overwriting

® deleted by typing in spaces or null characters.

Modifications in the code field are not saved to the message file until the input is finally acknowledged with DUE.
The message codes and message ranges are then re-sorted in the list.

DUE together with “+” or “-” pages forward and backward in the mask. Modifications to the documentation lines are
not saved.

Mask

Output fields

Message file

The current message file is displayed. It was opened in the MENU mask. The file name cannot be modified in the
MODIFY-DOCUMENTATION mask.

404

Input fields

Msg-id, interval (message code/message range)

A message code can be modified, deleted or added in this field.
If the code field is deleted without the documentation line being deleted, MSGMAKER outputs the following

message: MSM FO1

Only when the documentation line is completely deleted is no further error message output. A message range

without documentation does not result in an error message.

Validity criteria:

Seven-character message code, of which the first three characters must be letters (message class). The limit
values for a message range must belong to the same message class.

The tab key can be used to jump to the next field.
Comment (comment on the messages)

Validity criteria:
Maximum 60 characters, including spaces.

The tab key can be used to jump to the next field.
Owner (person responsible for these messages)

Validity criteria:
Maximum 20 characters, including spaces.

The tab key can be used to jump to the next field.
Owner team (team responsible for these messages)

Validity criteria:
Maximum 15 characters, including spaces.

The tab key can be used to jump to the next field.
Command
For detailed information on

® entering statements, see "General mask format"

® function key assignment, see "General mask format”

Follow-on operations:

MODIFY-DOCUMENTATION | =7

DUE The inputs are confirmed and the routine returns to the MENU mask.

K1 The MODIFY-DOCUMENTATION function is aborted. The inputs are lost, even if the user previously
paged to another MODIFY-DOCUMENTATION mask with “+” or “-” followed by DUE.

405

8.2.6.15 DELETE-DOCUMENTATION mask - Delete documentation lines

Mask sequence

->11 >

MENU DELETE-DOCUMENTATION

Function

This mask allows documentation lines that were written for one or more message units to be deleted. Unlike the
MODIFY-DOCUMENTATION mask, this mask only permits lines to be deleted that are marked with an “x” in the S
column. The documentation lines themselves are overwrite-protected.

When DUE is pressed, the selected lines are deleted without the user being asked for confirmation.

i DUE together with “+” or “-” pages forward or backward in the mask. A selected documentation line is not
deleted.

Mask

i Note on the mask

Here, before finally deleting documentation line AAA0030-AAA0030, the '+' in the command line must be
deleted. Only then will DUE also delete "Delete documentation line".

406

Output fields

Message file

Msg-id, interval (message code/message range)
Comment (comment on the messages)

Owner (person responsible for these messages)

Owner team (team responsible for these messages)

Description see "MODIFY-DOCUMENTATION mask - Modify, add and delete documentation lines".

Input fields

S (mark column)

Validity criteria:
Letter 'X'".

Command

For detailed information on

® entering statements, see "General mask format"

® function key assignment, see "General mask format"

Follow-on operations:

DELETE-DOCUMENTATION | ?

DUE The inputs are confirmed and the DELETE-DOCUMENTATION function is started; the routine returns to

the MENU mask.

K1 The DELETE-DOCUMENTATION function is aborted and the routine returns to the MENU mask.

407

8.3 Statements

In batch jobs and procedures, message processing is controlled by means of statements. The operands and their
possible values correspond in most cases to the mask fields and their entries.
Most statement names are the same as the corresponding mask titles.

Once MSGMAKER has been called, message processing usually begins with the /OPEN-MSG-FILE statement.
Once opened, the message file can be processed using all the other functions. The COPY, MOVE, SHOW and
MERGE-MSG-FILES functions can be called directly for processing the message file.

408

8.3.1 Overview of statements

The following overview contains all the statements that the MSGMAKER utility routine offers for message

processing:

MSGMAKER statements

//ADD-DOCUMENTATION

/IADD-MSG

/ICOPY

/IDELETE-DOCUMENTATION

/IDELETE-MSG

/[END

/IMERGE-MSG-FILES
/IMODIFY-DOCUMENTATION
/IMODIFY-MSG
/IMODIFY-OPTION

/IMOVE

//IOPEN-MSG-FILE

/[SHOW

Function

Add documentation (person responsible for messages, comment) for
messages

Add one or more message units to the current message file.

Copy components of a message file (message units, documentation lines)
from one message file to another or to a different location within the same
message file.

Delete the documentation (person responsible for messages, comment) for
messages

Delete one or more message units from the current message file.
Terminate MSGMAKER; the open message files are closed.

Merge the entire contents of two or more message files in one message file
Modify the documentation for messages

Modify one or more message units in the current message file.

Specify whether (parts of) message units may be overwritten.

copy components of a message file (message units and documentation
lines) from one message file to another or to a different location within the
same message file. Unlike the //COPY statement, this statement also
deletes the source area.

Open a message file.

Output message units and the corresponding documentation lines to
SYSOUT or SYSLST.

In addition, the general SDF statements may be used. These statements are described in detail in the “SDF Dialog
Interface” [20 (Related publications)].

409

8.3.2 Description of the statements

¢ ADD-DOCUMENTATION - Add documentation lines

® ADD-MSG - Add message unit

® COPY - Copy message unit

¢ DELETE-DOCUMENTATION - Delete documentation lines
® DELETE-MSG - Delete message unit

® END - Terminate MSGMAKER

®* MERGE-MSG-FILES - Merge message files

* MODIFY-DOCUMENTATION - Modify and delete documentation lines
® MODIFY-MSG - Modify message unit

® MODIFY-OPTION - Overwrite message unit

® MOVE - Copy and delete message unit

® OPEN-MSG-FILE - Open message file

® SHOW - Display message file contents

410

8.3.2.1 ADD-DOCUMENTATION - Add documentation lines

Function

The //ADD-DOCUMENTATION statement allows message units to be documented. The documentation lines are
assigned to the message units via the message code. In addition to the persons responsible for the message file, a
60-character comment can also be entered.

The correctness of the documentation and its relation to the messages are not checked.

If messages that have already been documented are documented again, the default setting in the /MODIFY-
OPTION statement determines whether the documentation can be overwritten.
Differences compared with the //ADD-DOCUMENTATION statement in menu mode

The //ADD-DOCUMENTATION statement which can be entered in the command area of the screen mask differs
from the //ADD-DOCUMENTATION statement in command procedures in that in menu mode, the operand value
*PANEL-REQUEST can be assigned to any operand.

For further details, see section “Special features of statements in menu mode”.
Format
ADD-DOCUMENTATION

MSG-ID = *INTERVAL(...) / <name 7..7>
*INTERVAL(...)
| FROM =<name 7..7>
| ,TO =<name 7..7>
,OWNER = *NONE / *PARAMETERS(...)
*PARAMETERS(...)

| NAME = *NONE / <c-string 1..20>
| ,TEAM = *NONE / <c-string 1..15>
,COMMENTS = *NONE / <c-string 1..60>

Operands

MSG-ID = *INTERVAL(...) / <name 7..7>
Name of one or more message units to be documented.

MSG-ID = <name 7..7>
The full message code, consisting of the three-character message class and the four-digit message number, must
be entered.

MSG-ID = *INTERVAL(...)
Designates a message range. The limit values of the range must belong to the same message class.

FROM = <name 7..7>
Designates the lower limit value of the message range (full message code).

TO =<name 7..7>
Designates the upper limit value of the message range (full message code).

411

OWNER = *NONE / *PARAMETERS(...)
Designates the persons responsible for the message file.

OWNER = *NONE
No specifications are made regarding the persons responsible.

OWNER = *PARAMETERS(...)

NAME = *NONE / <c-string 1..20>
Designates the person responsible for the message file.

TEAM = *NONE / <c-string 1..15>
Designates the team responsible for the message file.

COMMENTS = *NONE / <c-string 1..60>

Comment on the selected messages, comprising up to 60 characters.

412

8.3.2.2 ADD-MSG - Add message unit

Function
The //ADD-MSG statement adds a new message unit to the message file that is currently open.

In addition to the message code, which represents the address of the message unit within the message file, the
user must define the message attributes, language identifiers and texts.

Message attributes include the access methods, output destination, routing code, weight code and message
warranty. A message text must be written for each defined language identifier; meaning and response texts,
however, can be entered as required. If the message text contains inserts, names and default texts can be assigned
to these inserts in the INSERT-ATTRIBUTES operand. The message attributes and insert attributes are defined
only once and are common to all the texts and languages of a message unit.

It is not possible to add texts in a new language to an existing message unit. If it were, the //ADD-MSG statement
would cause the existing message unit to be overwritten. In batch mode and in interactive procedures, spinoff is
triggered if the message is not overwritable (see the OVERWRITE operand of the //ADD-MSG and //MODIFY-
OPTION statements).

Differences compared with the //ADD-MSG statement in menu mode

The //ADD-MSG statement that can be entered in the command area of the screen mask differs from the //ADD-
MSG statement in command procedures in that

® in menu mode, the operand value *PANEL-REQUEST can be assigned to any operand
® additional values can be specified in the MSG-ID operand

* the OVERWRITE operand is not available in menu mode.

For further details, see section “Special features of statements in menu mode”.

413

Format
ADD-MSG

MSG-ID = <name 7..7>
,/ACCESS-METHODS = *ISAM / list-poss(4): *ISAM / *DLAM / *LOCAL-DLAM / *MINIMIP / *BAMR

,DESTINATIONS = *USER-TASK / *ALL(...) / list-poss(2): *USER-TASK / *CONSOLE(...)
*ALL(...)
| ROUTING-CODE = <alphanum-name 1..1> / *MAIN-CONSOLE / *CONSLOG
CONSOLE(...)
| ROUTING-CODE = <alphanum-name 1..1> / *MAIN-CONSOLE / *CONSLOG
,WEIGHT = *NONE / <integer 0..99>

,WARRANTY = *NO / *YES
,MSG-TEXT-OUTPUT = *UPPER-CASE / *LOWER-CASE
,LANGUAGES = list-poss(8): <name 1..1>(...)
<name 1..1>(...)
| MSG-TEXT = <c-string 1..220 with-low>
| ,MEANING = *NONE / list-poss(256): <c-string 1..74 with-low>
| ,RESPONSE = *NONE / list-poss(256): <c-string 1..74 with-low>

JINSERT-ATTRIBUTES = *NONE / list-poss(30): <integer 0..29>(...)
<integer 0..29>(...)
| NAME = *NONE / <structured-name 1..20>
| ,DEFAULT-VALUE = *NONE / <c-string 1..54 with-low> / *EMPTY-STRING

| ,AUTOMATIC-HELP = *NO / *YES(...)

| *YES(...)

| | PREFIX = *BY-INSERT-VALUE / <name 3...7>
,OVERWRITE = *STD / *YES / *NO

Operands

MSG-ID = <name 7..7>
Identifies the message unit to be added. The full message code, consisting of the threecharacter message class
and the four-digit message number, must be entered.

ACCESS-METHODS = *ISAM / list-poss(4): *ISAM / *DLAM / *LOCAL-DLAM / *MINIMIP / *BAMR
Specifies the methods that MIP uses to access the messages. Up to three methods can be specified; a combination
of *ISAM and *DLAM, and *ISAM and *LOCAL-DLAM, however, is not permitted.

ACCESS-METHODS = *ISAM
MIP searches for messages via the ISAM key (= message code).

414

ACCESS-METHODS = *DLAM
The DLAM access method is used for particularly frequent messages. If a message file containing a DLAM

message is activated, the DLAM message is loaded into main memory. MIP can output the DLAM message directly
without accessing the message file.

ACCESS-METHODS = *LOCAL-DLAM / *MINIMIP / *BAMR
These access methods are reserved for internal use with the manufacturer.

DESTINATIONS = *USER-TASK / *ALL(...) / list-poss(2): *USER-TASK / *CONSOLE
This operand allows the creator of the message to document its possible output destinations. The output destination
proper is determined in the DEST (destination code) operand of the MSG7X macro.

DESTINATIONS = *USER-TASK
The message output destination is SYSOUT, SYSLST or a user-specific memory area.

DESTINATIONS = *ALL(...)
All output destinations are possible.

ROUTING-CODE = <alphanum-name 1..1> / *MAIN-CONSOLE / *CONSLOG
The one-character routing code is evaluated as a destination specification for console outputs. The meanings
of the routing codes are given in the “Introduction to System Administration” [5 (Related publications)].

ROUTING-CODE = <alphanum-name 1..1>
Any letter, digit or one of the special characters #, $ and @ can be specified as the routing code. The

meanings of the preassigned routing codes are given in the “Introduction to System Administration” [5 (Related
publications)].

ROUTING-CODE = *MAIN-CONSOLE
The message’s destination is the special routing code *, which is always allocated to the main console at least.

ROUTING-CODE =*CONSLOG

Messages that do not require a response are only logged in the CONSLOG file. ROUTING-CODE =
*CONSLOG has the same effect as ROUTING-CODE = @.

DESTINATION = *CONSOLE(...)

The message output destination is a console. Further information is provided in the "Introduction to System
Administration” [5 (Related publications)].

ROUTING-CODE = <alphanum-name 1..1>/ *MAIN-CONSOLE / *CONSLOG
The one-character routing code is evaluated as a destination specification for console outputs. The meanings
of the routing codes are given in the “Introduction to System Administration” [5 (Related publications)].

ROUTING-CODE = <alphanum-name 1..1>
Any letter, digit or one of the special characters #, $ and @ can be specified as the routing code. The

meanings of the preassigned routing codes are given in the “Introduction to System Administration” [5 (Related
publications)].

ROUTING-CODE = *MAIN-CONSOLE
The message’s destination is the special routing code *, which is always allocated to the main console at least.

ROUTING-CODE = *CONSLOG

Messages that do not require a response are only logged in the CONSLOG file. ROUTING-CODE =
*CONSLOG has the same effect as ROUTING-CODE = @.

415

WEIGHT = *NONE / <integer 0..99>

The weight code specifies the priority of a message.

A weight must be specified only for messages whose output destination is a console. Otherwise, *NONE is the
default value. For further information on weight codes, see the “Introduction to System Administration” [5 (Related
publications)].

WARRANTY =*NO / *YES
The message attribute “Warranty” is evaluated by MIP. The warranty declaration indicates that specific parts of the
message will not be modified in future BS2000 versions.

The following message components are guaranteed:

® message code

®* numbering and meaning of inserts

The message text is not guaranteed.
MIP creates S variables for warranty messages.
Further information is provided in the "Introduction to System Administration” [5 (Related publications)].

MSG-TEXT-OUTPUT = *UPPER-CASE / *LOWER-CASE
Specifies the output format of the message text. The default texts for inserts and the texts that are specified via the
MSG7X macro are likewise adapted to this format. This does not apply to the meaning text and response text.

The possible output destinations are:

® SYSOUT
® a SYSLST file
® a user-specific memory area

® aconsole

The texts are output via the MSG7X macro or the /HELP-MSG-INFORMATION command.

MSG-TEXT-OUTPUT = * UPPER-CASE
The message text and the insert texts (default or current) are always converted into uppercase letters.

MSG-TEXT-OUTPUT = *LOWER-CASE
The message text and the insert texts (default or current) are output exactly as they are entered in the operand
LANGUAGES = ...(MSG-TEXT="..").

LANGUAGES = list-poss(8): <name 1..1>(...)

Identifies the language in which the message, meaning and response texts are entered and output. The identifier
consists of one letter; E stands for English and D for German. There are no conventions for other languages. The
texts can be entered in up to eight different languages.

MSG-TEXT = <c-string 1..220 with-low>
A message text must be written for each message, which may be up to 220 characters long. This includes the
strings (&00) through (&29) but not including the default texts that replace these strings on message output.

Separator “N

The message text is entered as a continuous line of text. To structure the message text, the separator “*’ can
be used at any position in the message text as often as required. The text that follows the separator is output
on the next line. Text output by the MSG7X macro or by the /[HELP-MSG-INFORMATION command can be
checked with the //SHOW statement.

416

Example
MSG TEXT =' THI S MESSAGE | S QUTPUT TO '' (&04)'' N I N THE FOLLOW NG
LANGUAGES; ''(&00)'', ''(&01)'' AND ''(&03)'""
The following text is output:
% ABC1234 THI S MESSAGE | S QUTPUT TO ' SYSQUT
IN THE FOLLOWN NG LANGUAGES; 'E', 'D AND 'F

For further information on the format of the message text, see the “Introduction to System Administration” [5
(Related publications)].

MEANING = *NONE / list-poss(256): <c-string 1..74 with-low>

A meaning text may be written in the corresponding language for each message. This text can contain up to
256 lines of 74 characters each. Further information is provided in the "Introduction to System Administration” [
5 (Related publications)].

RESPONSE = *NONE / list-poss(256): <c-string 1..74 with-low>

A response text may be written in the corresponding language for each message. This text can contain up to
256 lines of 74 characters each. Further information is provided in the "Introduction to System Administration” [
5 (Related publications)].

INSERT-ATTRIBUTES = *NONE / list-poss(30): insert-number <integer 0..29>(...)
Describes the inserts defined in the message text.

INSERT-ATTRIBUTES = *NONE
No attributes are assigned to the inserts.

INSERT-ATTRIBUTES = list-poss(30): insert-number <integer 0..29>(...)
Specifies the number of the insert for which a default text is defined. Further information is provided in the
"Introduction to System Administration” [5 (Related publications)].

NAME = *NONE / <structured-name 1..20>

Specifies the insert name. Insert names are evaluated by MIP. MIP uses them to create S variables. The value
specified in the DEFAULT-VALUE operand or the current value (MSG7X) becomes the contents of these S
variables. Further information is provided in the "Introduction to System Administration” [5 (Related
publications)].

The letters of the names entered here are converted to uppercase.

Example
The inserts with numbers 0 and 4 are to be given the names “LANGUAGE" and “DESTINATION":

| NSERT- ATTRI BUTES=(0(NAVME=LANGUAGE) , 4(NAVE=DESTI NATI ON))

417

DEFAULT-VALUE = *NONE / <c-string 1..54 with-low> / *EMPTY-STRING

Defines the default text to be inserted in the message text in place of the insert if no current text is defined in
the MSG7X macro. DEFAULT-VALUE = *NONE means that there is no default text for the insert. DEFAULT-
VALUE = *EMPTY-STRING specifies an empty string as the insert text.

DEFAULT-VALUE = *NULL (= *EMPTY-STRING) continues to be supported in batch jobs and procedures for
compatibility reasons. Output format of the default text depends on the MSG-TEXT-OUTPUT operand.

Example
The inserts with the numbers 4, 0 and 1 are to be assigned the texts “F”, “E” and “D”:
| NSERT- ATTRI BUTES=(4(DEF="F'), O(DEF="E'), 1(DEF='D))

AUTOMATIC-HELP =*NO / *YES(...)

If a message code or part of a message code is output using an insert (e.g. in the case of DVS errors only the
message number is output), the automatic help function causes MIP to output the associated message text in
addition to this message code.

AUTOMATIC-HELP =*NO
Only the message code is output.

AUTOMATIC-HELP =*YES(...)
The message code and the message text are output.

PREFIX = *BY-INSERT-VALUE / <name 3...7>
The complete message text is output for an insert included in the error message or for an explicitly
specified message number.

PREFIX = *BY-INSERT-VALUE
Possible outputs:
® message code with seven characters

® DMS error code with “0..."at the beginning. The DMS error class is prefixed by /[HELP-MSG-
INFORMATION

® four-character message code that is converted to a seven-character message code.

MSGMAKER does not check whether the default insert value contains a valid message code or a valid
message number. If there is no valid message code, MIP issues the message “MESSAGE UNDEFINED”

The following rules are applicable to the length of the insert values and standard insert values

Length < 4: value is left-padded with “0” up to four characters
Length > 4 and < 7: value is truncated at the last 4 characters

Length > 7: value is truncated at the last 7 characters.

PREFIX = <name 3...7>

For output in the command /HELP-MSG-INFORMATION the message code is formed from the prefix and
insert value or default insert text. The first three characters indicate the message class and must be
letters.

418

If the prefix corresponds to a full message code, the automatic help function is applied to it directly,
irrespective of insert value.

The insert value is either padded with “0” or truncated to the left so that the result corresponds to a
message code with seven characters.

Example

Prefix Insert value /HELP-MSG-INFORMATION

ABC 12 ABC0012
ABCX 123 ABCX123
ABCX 1234 ABCX234

ABCO01 XYZ1234 ABC0134

ABCO01 <none> ABCO01 (error)

If an insert number is defined repeatedly in a message text, the automatic help function is applied
once only to this insert number.

In messages that require a response, MIP outputs the message a second time after executing the
automatic help function. Automatic help is not activated if the message is sent to a user buffer.

OVERWRITE = *STD / *YES / *NO
Specifies whether the current message unit can overwrite an existing message unit with an identical message code.

OVERWRITE = *STD
The default value *STD refers to the last OVERWRITE specification made in the //MODIFY-OPTION statement (see

"MODIFY-OPTION - Overwrite message unit").

OVERWRITE = *YES
The current message unit overwrites the existing message unit in its entirety.

OVERWRITE = *NO
The current message unit does not overwrite the existing message unit.

Example
MIP reports the DMS error code:

% DVBO5F8 DMS error code ' 0533'. Command processing aborted.
I N SYSTEM MODE: / HELP- MSG DMS(0533)

Using the automatic help function the appropriate message text is output

DVS0533 REQUESTED FI LE NOT CATALOGED I N PUBSET ' (&00)'. COWAND TERM NATED

419

8.3.2.3 COPY - Copy message unit

Function

The //COPY statement copies message units, with or without the associated documentation lines, from one
message file to another or to a different location within the same message file. The copying procedure does not
change the message unit in the source file.

Each message unit is identified by means of its message code. It is possible to copy more than one message unit at
a time by specifying a message class or message range in the MSG-ID operand. If the value *DOCUMENTATION
is specified in the INFORMATION operand, the documentation lines defined in the specified message range are
copied.

If the source file for the copying procedure is identical to the target file, new message codes must be defined in the
TO-MSG-ID operand.

It is possible to copy message units between any two message files, irrespective of the file that is currently open.
The FROM-FILE and TO-FILE operands permit access to these files; the current message file remains open and, if
it is neither the source file nor the target file, is not changed.

If languages are specified explicitly in the INFORMATION=*MESSAGES(...) operand, only the texts (message,
meaning and response) in these languages are copied to the target message unit. If the target unit does not exist, it
is created with the message attributes (access methods, output destination, ...) of the source message unit.

If the target message unit already contains a text with the same message code and language identifier, the text of
the target message unit is overwritten with the text of the source message unit.

If this occurs in interactive mode, an error message is issued asking the user whether or not the existing message
unit is to be overwritten.

In batch jobs and procedures, the specified message file components are not copied and processing is continued,
unless OVERWRITE=*YES was specified in the //COPY or //MODIFY-OPTION statement.

If the only difference between the texts is the language identifier, the text is appended to the contents of the target
message unit.

i If the entire contents of a message file are to be copied to another file, the /IMERGE-MSG-FILES
statement should be used rather than the /COPY statement (see the //MERGE-MSG-FILES statement on
page "MERGE-MSG-FILES Merge message files").

Differences compared with the /COPY statement in menu mode

The /ICOPY statement that can be entered in the command area of the screen mask differs from the //COPY
statement in command procedures in that

® in menu mode, the operand value *PANEL-REQUEST can be assigned to any operand
® an additional value can be specified for the MSG-ID operand

* the OVERWRITE operand is not available in menu mode.

For further details, see section “Special features of statements in menu mode”.

420

Format
COPY

MSG-ID = *ALL / *CLASS(...) / *INTERVAL(...) / list-poss(2000): <name 7..7>
*CLASS(...)
| MSG-CLASS = <name 3..3>
*INTERVAL(...)
| FROM =<name?7..7>
| ,TO =<name 7..7>
,INFORMATION = *MESSAGES (...) / *ALL / list-poss(4): *DOCUMENTATION / *COMPONENT-ID /
*CORRECTION-INFO / *MESSAGES(...)
*MESSAGES(...)
| LANGUAGES =*ALL / list-poss(8): <name 1..1>
,FROM-FILE = *CURRENT / <filename 1..54>
,TO-MSG-ID = *SAME / *CLASS(...) / <alphanum-name 4..7 with-wild>
*CLASS(...)
| MSG-CLASS = <name 3..3>
,TO-FILE = *CURRENT / <filename 1..54> (...)
<filename 1..54>(...)
| FILE-FORMAT = *NEW / *OLD 1)
,OVERWRITE = *STD / *YES / *NO

1) The FILE-FORMAT operand is obsolete. It can still be specified for reasons of compatibility.

Operands

MSG-ID = *ALL / *CLASS(...) / *INTERVAL(...) / list-poss(2000): <name 7..7>

Specifies the message code of one or more message units of the opened message file that are to be copied.

If INFORMATION =*DOCUMENTATION is specified, the documentation lines defined for the message codes are
also copied.

MSG-ID = *ALL
All the message components defined in the INFORMATION operand are copied. In this case, the TO-MSG-ID
operand must be assigned the value *SAME.

MSG-ID = *CLASS(...)
All components of the messages in the specified message classes are copied.

MSG-CLASS = <name 3..3>
Specifies the 3-letter message class.

421

MSG-ID = *INTERVAL(...)

All components of the messages within the specified message range are copied.

If the message range contains more than one message class, the value *SAME must be assigned to the TO-MSG-
ID operand.

FROM = <name 7..7>
Specifies the first message code of the message range.

TO =<name 7..7>
The full seven-character message code must be specified.

MSG-ID = list-poss(2000): <name 7..7>
Specifies the full seven-character message code. If a list of message codes is specified, the TO-MSG-ID operand
must be assigned the value *SAME.

INFORMATION = *MESSAGES(...) / *ALL / list-poss(3): *MESSAGES(...) / *DOCUMENTATION /
*CORRECTION-INFO / *COMPONENT-ID
Specifies the message file components to be copied.

INFORMATION = *MESSAGES(...)
Specifies message units to be copied. The message units are selected via the MSG-ID operand.

LANGUAGES = *ALL / list-poss(8): <name 1..1>
Specifies the language identifiers. Message, meaning and response texts in these languages are copied.

LANGUAGES =*ALL
The entire message unit is copied, including all message attributes, inserts, insert attributes and texts.

LANGUAGES = list-poss(8): <name 1..1>

Message texts and/or meaning and response texts in the selected language(s) are copied. The message
attributes and insert attributes of the source message unit are only copied if the target message unit does not
already exist. Otherwise the following the message MSME108 is output.

INFORMATION = *ALL
All message file components (message units and documentation lines) are copied. If MSG-ID = *ALL is specified,
all the contents of the message file are copied.

INFORMATION = *DOCUMENTATION
All documentation lines whose message codes are within the selected range (MSG-ID operand) are copied. If other
defined message ranges overlap the specified message range, their documentation lines are also copied.

Example

MSG-ID = *INTERVAL (TST1500-TST1599).
The documentation lines of the message ranges (TST1500-TST1510), (TST1000-TST1999), (TST1000-
TST1500), TST1510, ... are copied.

INFORMATION = *CORRECTION-INFO / *COMPONENT-ID
These operands are reserved for internal use with the manufacturer.

FROM-FILE = *CURRENT / <filename 1..54>

Name of the message file from which the specified components (MSG-ID operand) are to be copied.

The operand value *CURRENT refers to the current message file, i.e. the message file last opened using the
/IOPEN-MSG-FILE statement.

422

TO-MSG-ID = *SAME / *CLASS(...) / <alphanum-name 4..7 with-wild>
Specifies the new message codes of the copied message components in the target area.

TO-MSG-ID = *SAME

When copied, the message components retain their original message code.

The value *SAME must not be specified if message components are being copied to another location within the
same file. The value *SAME must be specified if the MSG-ID operand is assigned a list of message codes, the
value *ALL or message codes from more than one message class.

TO-MSG-ID = *CLASS(...)
Specifies a new message class for the copied message components. The message numbers remain unchanged.

MSG-CLASS = <name 3..3>
Specifies the new three-letter message class.

TO-MSG-ID = <alphanum-name 4..7 with-wild>

The new message code is specified either in full or as a partially qualified name containing wildcards.

The partial name determines the first part of the new message code; the remaining characters, symbolized by *, are
transferred unchanged from the original message code.

Example

Old message code: MSG-ID = ABC1234;
TO-MSG-ID = TSTO* changes the first four characters of the new message code to TSTO but retains the
remaining three characters from the old message code. Result: TST0234.

TO-FILE = *CURRENT / <filename 1..54>(...)
Specifies the message file to which the message components are to be copied.

TO-FILE = *CURRENT The target file is the last message file opened with the /OPEN-MSG-FILE statement. As a
target file it must be opened in UPDATE mode.

TO-FILE = <filename 1..54>

Explicit specification of the message file into which the message components are copied. If a target file does not
exist, it is created and the file type (customer or standard), product name and product version are defined as for the
source file.

OVERWRITE = *STD / *YES / *NO

Specifies whether the message components of the source file may overwrite an existing area of the target file.
The default value *STD corresponds to the value last specified in the OVERWRITE operand of the /MODIFY-
OPTION statement.

Example

/1 COPY MSG- | D=TSTO000, | NFORMATI ON=MESSAGE(LANGUACE=E) , -
FROM FI LE=SYSMES. TSTFI LE, TO- MSG- | D=* CLASS(TTO)

423

8.3.2.4 DELETE-DOCUMENTATION - Delete documentation lines

Function

The //DELETE-DOCUMENTATION statement is used to delete documentation lines for message units. The
documented messages are selected using the message code.
Differences compared with the //DELETE-DOCUMENTATION statement in menu mode

The //IDELETE-DOCUMENTATION statement which can be entered in the command area of the screen mask
differs from the //DELETE-DOCUMENTATION statement in command procedures in that in menu mode, the
operand value *PANEL-REQUEST can be assigned to any operand.

For further details, see section “Special features of statements in menu mode”.
Format
DELETE-DOCUMENTATION

MSG-ID = *ALL / *CLASS(...) / *INTERVAL(...) / <name 7..7>
*CLASS(...)
| MSG-CLASS = <name 3..3>
*INTERVAL(...)
| FROM =<name 7..7>

| ,TO=<name?7..7>

| ,DELETE-SUBSETS =*NO /*YES

Operands

MSG-ID = *ALL / *CLASS(...) / *INTERVAL(...) / <name 7..7>
Name of one or more message units whose documentation is to be deleted.

MSG-ID = *ALL
All documentation lines of the currently open message file will be deleted.

MSG-ID = *CLASS(...)
MSG-CLASS = <name 3..3>

The documentation lines which were written for the messages of the message class specified here will be
deleted.

MSG-ID = *INTERVAL(...)
The documentation lines which were written for the messages of the range indicated here will be deleted. The limit
values of the range must belong to the same message class.

FROM = <name 7..7>
Designates the lower limit value of the message range (full message code).

TO =<name 7..7>
Designates the upper limit value of the message range (full message code).

424

DELETE-SUBSETS =*NO / *YES
Enables precise determination of the documentation lines to be deleted which are defined in this message
range.

DELETE-SUBSETS = *NO
Only those documentation lines will be deleted which were defined precisely for the message range
designated by FROM, TO. The message range is documented in an allocation.

/ | ADD- DOCUMENTATI ON MSG- | D=* | NTERVAL (FROMFAAA0001, TO=AAA0020) ,

| OMER=* PARAMETERS(NAME=' Smi t h' , TEAME' TST0815'),

i COWENTS=' docunent ati on for messages AAA0001 to AAA0020

i / | DELETE- DOCUMENTATI ON MSG- | D=* | NTERVAL(FROMEAAA0001, TO=AAA0020,
DELETE- SUBSETS=NO)

DELETE-SUBSETS = *YES
All documentation lines are deleted that lie within the message range defined by FROM and TO. The message
range is documented via several allocations.

!/ | ADD- DOCUMENTATI ON MBG- | D=* | NTERVAL (FROVEAAA0001, TO=AAA0008) ,

' OWNER=* PARAMETERS(NAME=' St h', TEAME' TST0815'),

: COMMENTS=' docunent ati on for messages AAAQ0001 to AAA0008'

!/ | ADD- DOCUMENTATI ON MBG- | D=AAA0010, OWNER=* PARAVETERS(NAME=' Sni t h' ,

: TEAME' TST0815'), COWMENTS=' docunentation for message AAA0010'

i /| ADD- DOCUVENTATI ON MSG- | D=*| NTERVAL (FROVEAAA0015, TO=AAA0019) ,
OMNNER=* PARAMETERS(NAME=' Snmith', TEAME' TST0815'),

; COMMENTS=' docunent ati on for messages AAA0015 to AAA0019

i | | DELETE- DOCUMENTATI ON MSG- | D=* | NTERVAL(FROMEAAAO0001, TO=AAA0020,
DELETE- SUBSETS=* YES)

MSG-ID = <name 7..7>
The documentation for the full message code designated here will be deleted.

..

/ | ADD- DOCUMENTATI ON MSG- | D=* | NTERVAL(FROMFAAA0001, TO=AAA0020) ,
OMNER=* PARAMETERS(NAME=' Snith', TEAM=' TST0815'),

i COMMENTS=' docunent ati on for nmessages AAA0001 to AAA0020'

i / | DELETE- DOCUMENTATI ON MSG- | D=* | NTERVAL(FROMEAAAD001, TO=AAA0020,
DELETE- SUBSETS=NO)

425

8.3.2.5 DELETE-MSG - Delete message unit

Function

The //DELETE-MSG statement deletes one or more message units from the opened message file.

Itis also possible to delete language-dependent message components such as message, meaning and response
texts. The user should note, however, that the entire message unit is deleted automatically once all its texts have
been deleted.

Differences compared with the /DELETE-MSG statement in menu mode

The //IDELETE-MSG statement that can be entered in the command area of the screen mask differs from the
/IDELETE statement in command procedures in that

® in menu mode, the operand value *PANEL-REQUEST can be assigned to any operand.
® an additional value can be specified for the MSG-ID operand.

For further details, see section “Special features of statements in menu mode”.

Format

DELETE-MSG

MSG-ID = *ALL / *CLASS(...) / *INTERVAL(...) / list-poss(2000): <name 7..7>
*CLASS(...)
| MSG-CLASS = <name 3..3>
*INTERVAL(...)
| FROM = <name 7..7>
| ,TO =<name 7..7>

,LANGUAGES = *ALL / list-poss(8): <name 1..1>

Operands

MSG-ID = *ALL / *CLASS(...) / *INTERVAL(...) / list-poss(2000): <name 7..7>
Designates one or more message units which are to be modified.

MSG-ID = *ALL
All message units of the current message file are deleted.

MSG-ID = *CLASS(...)
Message units whose message code begins with the specified message class are deleted.

MSG-CLASS = <name 3..3>
Specifies the three-letter message class.

MSG-ID = *INTERVAL(...)
All message units whose message code is within the defined message range are deleted. The specified range limits
must belong to the same message class.

FROM = <name 7..7>
Specifies the first message code of the message range.

TO =<name 7..7>
The full seven-character message code must be specified.

426

MSG-ID = list-poss(2000): <name 7..7>
The message unit to be deleted is specified by means of a full message code. A list of message codes may be
specified.

LANGUAGES =*ALL / list-poss(8): <name 1..1>
Specifies the identifiers for the defined languages. Message, meaning and response texts in the specified language
are deleted.

LANGUAGES = *ALL
The entire message unit is deleted, including all message attributes, insert attributes and texts.

LANGUAGES = list-poss(8): <name 8..8>
Up to eight language identifiers may be specified; the texts in these languages are deleted.

Example

/ | DELETE- M5SG MSG | D=* CLASS(TST) , LANGUAGE=E

427

8.3.2.6 END - Terminate MSGMAKER

Function

The //END statement terminates MSGMAKER.
Differences compared with the /END statement in menu mode

The //END statement can be used in the command area of the screen mask in exactly the same way as it is used in
command procedures.

When using the //END statement to terminate MSGMAKER in menu mode, however, the user should note that the
current screen function will be aborted.

Format

END

428

8.3.2.7 MERGE-MSG-FILES - Merge message files

Function

The /IMERGE-MSG-FILES statement allows the total contents of two or more message files to be merged into a
new message file which should be empty or not cataloged. The total contents means that all messages, including
the documentation lines, are included in the merge run. The LANGUAGES operand can be used to restrict the
merge run to messages in specific languages.

Special points relating to a merge run

If the message files contain messages with the same message codes, MSGMAKER recognizes this. The following
message is displayed:

% MSMQ 00 | DENTI CAL OBJECTS IN FILES 1="filename 1' AND 2='filename 2'.
PRI ORI TY? REPLY (1;2; T=TERM NATE) .

In this query, the user decides which message file should be given priority in terms of the message code. The same
guery is output each time two files are found with the same code; indeed, the query is also output when messages
from different files are stored with the same message code but in different languages.

The identical messages in the non-prioritized file are not included in the target file.

In batch jobs and procedures, the message file named first in the FILE-NAMES operand is given priority if message
codes are found to coincide. A message is output to inform the user when this happens.

The same check procedure is applied to identical documentation lines and decided on the basis of the specified

priority.

i If the total contents of two or more message files are to be merged to make a new message file or if a
message file is to be copied to another file, the /MERGE-MSG-FILES statement should always be used
instead of the COPY function. Furthermore, the merged message file requires less memory space than a
file created with COPY.

No screen is available at present which corresponds to the //MERGE-MSG-FILES statement. The
statement can be entered in the command line of the mask and started with DUE or F2.

Format

MERGE-MSG-FILES

FILE-NAMES = list-poss(2000): *CURRENT / <filename 1..80 with-wild> /
<partial-filename 2..79 with-wild>

,LANGUAGES = *ALL / list-poss(8): <name 1..1>

,TO-FILE = *CURRENT / <filename 1..54>

Operands

FILE-NAMES = list-poss(2000): *CURRENT / <filename 1..80 with-wild> /<partial-filename 2..79 with-wild>
Designates one or more message files which are to be merged. If only one name is specified, this amounts to the
same as copying the file to the file specified by TO-FILE.

*CURRENT denotes the last file opened using the //OPEN-MSG-FILE statement is specified.

If a file is named more than once, MSGMAKER ignores all mentions of it except the first one.

429

LANGUAGES =*ALL / list-poss(8): <name 1..1>
Designates the languages in which the messages are stored.

LANGUAGES =*ALL
Die Meldungsdatei soll vollstandig, d. h. alle Meldungen in allen Sprachen, fir den Mischvorgang verwendet werden.

LANGUAGES = list-poss(8): <name 1..1>
Only the messages from the message file in the specified languages are to be used in the merge run.

TO-FILE = *CURRENT / <filename 1..54>
Output file in which the contents of the input files are merged. *CURRENT designates the last file opened in
MSGMAKER.

The output file must be empty or not yet cataloged. The following rules apply to the file attributes:

®* The data type of the output file is based on the data type of the input file. If there is at least one input file of the
standard type, the output file assumes this file type. Input files of the customer type also result in an output file of
the customer type.If the output file is assigned the customer type with the //OPEN-MSG-FILE statement and
there is at least one input file of the standard type, MSGMAKER displays the warning MSMAJO1:

® |f there are several input files, the file attributes product name and product version of the output file are not
defined.
If there is only one input file, its file attributes are transferred to the output file. In other words, the output file is
the copy of the input file.

Example

/ | OPEN- MBG- FI LE FI LE- NAVE=SYSMES. EKP. 112, MODE=CREATE(TYPE=STANDARD,
PRODUCT=BS2000(V200))

/ | MERGE- MBG- FI LES FI LE- NAVES=(SYSMES. | NT*. 200, SYSVES. COMP*. / /],
SYSMES. SPECI AL. 123), TO- Fl LE=* CURRENT

430

8.3.2.8 MODIFY-DOCUMENTATION - Modify and delete documentation lines

Function
The //MODIFY-DOCUMENTATION statement is used to process documented messages in the following ways:
* Modify documentation lines

® Delete documentation options (only the variable options are deleted)

The documented messages are selected using the message code.
Differences compared with the //MODIFY-DOCUMENTATION statement in menu mode

The //IMODIFY-DOCUMENTATION statement which can be entered in the command area of the screen mask
differs from the //MODIFY-DOCUMENTATION statement in command procedures in that in menu mode, the
operand value *PANEL-REQUEST can be assigned to any operand.

For further details, see section “Special features of statements in menu mode”.
Format
MODIFY-DOCUMENTATION

MSG-ID = *INTERVAL(...) / <name 7..7>
*INTERVAL(...)
| FROM =<name 7..7>
| ,TO=<name 7..7>
,OWNER = *UNCHANGED / *NONE / *PARAMETERS(...)
*PARAMETERS(...)
| NAME = *UNCHANGED / *NONE / <c-string 1..20>
| ,TEAM = *UNCHANGED / *NONE / <c-string 1..15>
,COMMENTS = *UNCHANGED / *NONE / <c-string 1..60>

Operands

MSG-ID = *INTERVAL(...) / <name 7..7>
Designates one or more message units which are to be modified.

MSG-ID = <name 7..7>

The full message code, consisting of the three-character message class and the four-digit message number, must

be entered.

MSG-ID = *INTERVAL(...)
Designates a message range. The limit values of the range must belong to the same message class.

FROM = <name 7..7>
Designates the lower limit value of the message range (full message code).

TO =<name 7..7>
Designates the upper limit value of the message range (full message code).

431

OWNER = *UNCHANGED / *NONE / *PARAMETERS(...)
Designates the persons responsible for the message file.

OWNER = *UNCHANGED
The specifications regarding the persons responsible will not be changed.

OWNER = *NONE

No specifications are made regarding the persons responsible. Existing specifications are deleted.

OWNER = *PARAMETERS(...)

NAME = *UNCHANGED / *NONE / <c-string 1..20>
Designates the person responsible for the message file.

NAME = *UNCHANGED
The specifications regarding this person will not be changed.

NAME = *NONE
The specifications regarding this person will be deleted.

NAME = <c-string 1..20>
The specifications regarding this person will be modified.

TEAM = *UNCHANGED / *NONE / <c-string 1..15>
Designates the team responsible for the message file.

TEAM = *UNCHANGED
The specifications regarding the team will not be modified.

TEAM = *NONE
The specifications regarding the team will be deleted.

TEAM = <c-string 1..15>
The specifications regarding the team will be modified.

COMMENTS =*UNCHANGED / *NONE / <c-string 1..60>
Designates the comment for the selected messages.

COMMENTS = *UNCHANGED
The comment will not be changed.

COMMENTS = *NONE
The comment will be deleted.

COMMENTS = <c-string 1..60>
The comment will be modified.

432

Example

The message ranges (AAA0001-AAA0010) and (AAA0021-AAA0030) are documented as follows:

!/ | ADD- DOCUMENTATI ON -
| MBG | D=*| NTERVAL(FROMEAAAO001, TO=AAA0010) , -
OWNER=* PARANVETERS(NAME=' John M Il er', TEAME' ABC 0001'), -
: COWMENTS=' messages for test product'’
| | ADD- DOCUVENTATI ON -
MBG- | D=* | NTERVAL(FROVEAAA0021, TO=AAA0030) , -
OWNER=* PARAVETERS(TEAME' ABC')

Output to SYSOUT or SYSLST:

The documentation is to be modified:

* AAA0001-AAA0010: Name to be modified to Harry Miller; Comment to be modified to “device errors”
* AAA0021-AAA0030: Specification regarding team to be deleted

i/ / MODI FY- DOCUMENTATI ON -
' MSG- | D=* | NTERVAL (FROMEAAAQ001, TO=AAA0010) , -
OWNER=* PARANETERS(NAVE=' Harry M | | er', TEAM=* UNCHANGED) , -
! COMMVENTS=' devi ce errors'
/| MODI FY- DOCUVENTATI ON -
MSG- | D=* | NTERVAL (FROVEAAAQ021, TO=AAA0030) , -
OMNER=* PARANVETERS(TEAM=* NONE)

Output to SYSOUT or SYSLST:

433

8.3.2.9 MODIFY-MSG - Modify message unit

Function

The //MODIFY-MSG statement modifies a message unit of the message file that is currently open. One or more
message units can be accessed by specifying a message code or a message range. In addition to the message
attributes, it is possible to modify message, meaning and response texts, inserts and insert attributes. This
statement allows the user not only to modify existing operand values but also to assign new values to the operands
or to delete operand values.

Differences compared with the /MODIFY-MSG statement in menu mode

The //IMODIFY-MSG statement that can be entered in the command area of the screen mask differs from the
/IMODIFY-MSG statement in command procedures in that

® in menu mode, the operand value *PANEL-REQUEST can be assigned to any operand.
® an additional value can be specified for the MSG-ID operand

® an additional value can be specified for the LANGUAGES operand

For further details, see section “Special features of statements in menu mode”.
Format

MODIFY-MSG

MSG-ID = *CLASS(...) / *INTERVAL(...) / list-poss(2000): <name 7..7>
*CLASS(...)
| MSG-CLASS = <name 3..3>
*INTERVAL(...)
| FROM =<name 7..7>
| ,TO=<name?7..7>
,/ACCESS-METHODS = *UNCHANGED / list-poss(4): *ISAM / *DLAM / *LOCAL-DLAM / *MINIMIP / *BAMR
,DESTINATIONS = *UNCHANGED (...) / *ALL(...) / list-poss(2): *USER-TASK / *CONSOLE(...)
*UNCHANGED(...)
| ROUTING-CODE =*UNCHANGED / <alphanum-name 1..1> / *MAIN-CONSOLE / *CONSLOG
*ALL(...)
| ROUTING-CODE =*UNCHANGED / <alphanum-name 1..1> / *MAIN-CONSOLE / *CONSLOG
CONSOLE(...)
| ROUTING-CODE =*UNCHANGED / <alphanum-name 1..1> / *MAIN-CONSOLE / *CONSLOG
\WEIGHT = *UNCHANGED / *NONE / <integer 0..99>
,WARRANTY = *UNCHANGED / *NO / *YES
,MSG-TEXT-OUTPUT = *UNCHANGED / *UPPER-CASE / *LOWER-CASE

434

LANGUAGES = *UNCHANCHED / list-poss(8): <name 1..1>(...)

<name>(...)

| MSG-TEXT = *UNCHANGED / <c-string 1..220 with-low>

| ,MEANING = *UNCHANGED / list-poss(2000): *ADD(...) / *INSERT(...) /

| *REPLACE(...) / *REMOVE(...)
*ADD(...)

| TEXT = list-poss(2000): <c-string 1..74 with-low>
*INSERT(...)

| LINE-NUMBER = <integer 1..256>

| ,TEXT = list-poss(2000): <c-string 1..74 with-low>
*REPLACE(...)

| LINE-NUMBER = <integer 1..256>

| ,TEXT = <c-string 1..74 with-low>
*REMOVE(...)

| LINE-NUMBERS = *ALL / list-poss(2000): <integer 1..256>

,RESPONSE = *UNCHANGED / list-poss(2000): *ADD(...) / *INSERT(...) /
*REPLACE(...) / *REMOVE(...)

*ADD(...)

| TEXT = list-poss(2000): <c-string 1..74 with-low>
*INSERT(...)

| LINE-NUMBER = <integer 1..256>

| ,TEXT = list-poss(2000): <c-string 1..74 with-low>
*REPLACE(...)

| LINE-NUMBER = <integer 1..256>

| ,TEXT = <c-string 1..74 with-low>
*REMOVE(...)

I
|
I
I
I
|
I
I
I
I
I
I
|
I
I
I
I
I
I
|
I
[| LINE-NUMBERS = *ALL / list-poss(2000): <integer 1..256>

435

JINSERT-ATTRIBUTES = *UNCHANGED / *NONE / list-poss(30): <integer 0..29>(...)
<integer 0..29>(...)
| NAME = *UNCHANGED / *NONE / <structured-name 1..20>
| ,DEFAULT-VALUE = *UNCHANGED / *NONE / <c-string 1..54 with-low> / *EMPTY-STRING
| ,AUTOMATIC-HELP = *UNCHANGED / *NO / *YES(...)
| *YES(...)
| | PREFIX =*BY-INSERT-VALUE / <name 3...7>

Operands

MSG-ID = *CLASS(...) / *INTERVAL(...) / list-poss(2000): <name 7..7>
Specifies the message codes of one or more message units of the open message file that are to be modified.

MSG-ID = *CLASS(...)
All message units whose message code begins with the specified message class can be modified.

MSG-CLASS = <name 3..3>
Specifies the 3-letter message class.

MSG-ID = *INTERVAL(...)
All message units within this message range are modified.

FROM = <name 7..7>
Specifies the first message code of the message range.

TO =<name 7..7>
Specifies the last message code of the message range.

MSG-ID = list-poss(2000): <name 7..7>
Specifies the full message code of a message unit that is to be modified. A list of message codes may be specified.

ACCESS-METHODS = *UNCHANGED / list-poss(4): *ISAM / *DLAM / *LOCAL-DLAM / *MINIMIP / *BAMR
A new MIP message access method can be specified. Any declarations that were specified previously are deleted
when the access method is modified.

ACCESS-METHODS = *UNCHANGED
The access methods remain unchanged.

ACCESS-METHODS = *ISAM
MIP searches for messages via the ISAM key.

ACCESS-METHODS = *DLAM<

The DLAM access method is used for particularly frequent messages. If a message file containing a DLAM
message is activated, the DLAM message is loaded into main memory. MIP can output the DLAM message directly
without accessing the message file.

ACCESS-METHODS = *LOCAL-DLAM / *MINIMIP / *BAMR
These access methods are reserved for internal use with the manufacturer.

436

DESTINATIONS = *UNCHANGED(...) / *ALL(...) / list-poss(2): *USER-TASK / *CONSOLE(...)

This operand allows the message creator to document new, possible output destinations for the message. This
specification is used for documentation purposes only. The output destination proper is determined in the DEST
(destination code) operand of the MSG7X macro.

DESTINATIONS = *UNCHANGED(...)
The message output destination remains unchanged.

ROUTING-CODE = *UNCHANGED / <alphanum-name 1..1>/ *MAIN-CONSOLE / *CONSLOG
The one-character routing code is evaluated as a destination specification for console outputs. Further
information is provided in the "Introduction to System Administration” [5 (Related publications)].

ROUTING-CODE = *UNCHANGED
The routing code remains unchanged.

ROUTING-CODE = <alphanum-name 1..1>

Any letter, digit or one of the special characters #, $ and @ can be specified as the routing code. The asterisk *
must not be used. Further information is provided in the "Introduction to System Administration” [5 (Related
publications)].

ROUTING-CODE = *MAIN-CONSOLE
The message’s destination is the special routing code *, which is always allocated to the main console at least.

ROUTING-CODE = *CONSLOG
Messages that do not require a response are only logged in the CONSLOG file. ROUTING-CODE =
*CONSLOG has the same effect as ROUTING-CODE = @.

DESTINATIONS = *ALL(...)
Messages may be output to any destination.

ROUTING-CODE = *UNCHANGED / <alphanum-name 1..1>/ *MAIN-CONSOLE / *CONSLOG
The one-character routing code is evaluated as a destination specification for console outputs. Further
information is provided in the "Introduction to System Administration” [5 (Related publications)].

ROUTING-CODE = *UNCHANGED<
The routing code remains unchanged.

ROUTING-CODE = <alphanum-name 1..1>

Any letter, digit or one of the special characters #, $ and @ can be specified as the routing code. The asterisk *
must not be used. Further information is provided in the "Introduction to System Administration” [5 (Related
publications)].

ROUTING-CODE = *MAIN-CONSOLE
The message’s destination is the special routing code *, which is always allocated to the main console at least.

ROUTING-CODE = *CONSLOG
Messages that do not require a response are only logged in the CONSLOG file. ROUTING-CODE =
*CONSLOG has the same effect as ROUTING-CODE = @.

DESTINATIONS = *USER-TASK
The new message output destination is SYSOUT, SYSLST or a user-specific memory area.

437

DESTINATIONS = *CONSOLE(...)

The message output destination is a console. If *CONSOLE is specified as the new operand value, a routing code
must be defined. If *CONSOLE is replaced by other output destinations, the associated routing code is suppressed
automatically.

ROUTING-CODE = *UNCHANGED / <alphanum-name 1..1>/ *MAIN-CONSOLE / *CONSLOG
The one-character routing code is evaluated as a destination specification for console outputs. Further
information is provided in the "Introduction to System Administration” [5 (Related publications)].

ROUTING-CODE = *UNCHANGED
The routing code remains unchanged.

ROUTING-CODE = <alphanum-name 1..1>

Any letter, digit or one of the special characters #, $ and @ can be specified as the routing code. The asterisk *
must not be used. Further information is provided in the "Introduction to System Administration” [5 (Related
publications)].

ROUTING-CODE = *MAIN-CONSOLE
The message’s destination is the special routing code *, which is always allocated to the main console at least.

ROUTING-CODE = *CONSLOG
Messages that do not require a response are only logged in the CONSLOG file. ROUTING-CODE =
*CONSLOG has the same effect as ROUTING-CODE = @.

WEIGHT = *UNCHANGED / *NONE / <integer 0..99><

The weight code specifies the priority of a message. A weight must be specified for messages whose output
destination is a console (DESTINATION = *CONSOLE(...)/*ALL was specified). Further information is provided in
the "Introduction to System Administration” [5 (Related publications)].

WEIGHT = *UNCHANGED
The weight code remains unchanged.

WEIGHT = *NONE
The message is not assigned a weight.

WEIGHT = <integer 0..99>
The message is assigned a value between 0 and 99. 99 represents the highest priority for a message.

WARRANTY = *UNCHANGED / *NO / *YES
The message attribute “Warranty” is evaluated by MIP.

The following message components are guaranteed:

® message code
® numbering and meaning of inserts
The message text is not guaranteed.

MIP creates S variables for warranty messages. Further information is provided in the "Introduction to System
Administration” [5 (Related publications)].

438

MSG-TEXT-OUTPUT = *UNCHANGED / *UPPER-CASE / *LOWER-CASE

Specifies the format of the message text when output to SYSOUT, a SYSLST file, a console or a user-specific
memory area via the MSG7X macro or the /HELP-MSG-INFORMATION command. The default texts for inserts and
the texts that are specified via the MSG7X macro are likewise adapted to this format.

MSG-TEXT-OUTPUT = *UNCHANGED
The format of the message text remains unchanged.

MSG-TEXT-OUTPUT = *UPPER-CASE
The message text entered is output in uppercase letters.

MSG-TEXT-OUTPUT = *LOWER-CASE
The message text is output exactly as it is entered in the operand LANGUAGES = ...(MSG-TEXT ="...").

LANGUAGES = *UNCHANGED / list-poss(8): <name 1..1>(...)
Specifies language identifiers for languages that are already defined. The user can modify message, meaning and
response texts in these languages.

LANGUAGES = *UNCHANGED
No language identifiers are specified; the message, meaning and response texts are not to be modified.

LANGUAGES = list-poss(8): <name 1..1>(...)
The message, meaning and response texts in the languages represented by these identifiers are to be modified.

MSG-TEXT = *UNCHANGED / <c-string 1..220 with-low>
Specifies the message text that was written in the specified language.

MSG-TEXT = *UNCHANGED
The message text remains unchanged.

MSG-TEXT = <c-string 1..220 with-low>
Defines a new message text for the specified language.

MEANING = *UNCHANGED / list-poss: *ADD(...) / *INSERT(...) / *REPLACE(...) / *REMOVE(...)

Specifies the meaning text written in the specified language that will be displayed via the /HELP-MSG-
INFORMATION command. Further information is provided in the "Introduction to System Administration” [5
(Related publications)].

Each line of the meaning text (up to 256 lines) can be modified or deleted. In addition, new lines can be
appended or inserted. The lines of the meaning text are numbered internally from 1 through to a maximum of
256 and can be addressed individually via these numbers.

MEANING = *UNCHANGED
The meaning text remains unchanged.

MEANING = *ADD(...)
One or more new lines can be appended to the meaning text.

TEXT = list-poss: <c-string 1..74 with-low>
Meaning text consisting of one or more lines that is to be appended to the existing text.

MEANING = *INSERT(...)
One or more new lines can be inserted into the meaning text. Once all changes have been made, all the
subsequent lines are renumbered.

439

LINE-NUMBER = <integer 1..256>
The new text is inserted between the line number specified here and the previous line number.

TEXT = list-poss: <c-string 1..74 with-low>
Specifies the new meaning text.

MEANING = *REPLACE(...)
The meaning text in the specified line is replaced by the new text entered.

LINE-NUMBER = <integer 1..256>
Specifies the number of the line containing text to be replaced.

TEXT = <c-string 1..74 with-low>
Specifies the text that is to replace the meaning text in the specified line.

MEANING = *REMOVE(...)
Lines can be deleted from the meaning text. Once all changes have been made, all subsequent lines are
displaced and renumbered.

LINE-NUMBERS = *ALL / list-poss: <integer 1..256>
Specifies the line numbers.

Examples for the MEANING operand

Meaning text:

Line 1: ' texttext 1'
Line 2:'texttext 2'
Line 3:'texttext 3

Example 1

This example inserts a new line into the meaning text given above, replaces one line of text with another
and appends a line to the meaning text.

MEANI NG=(*I NSERT(2, 'texttext 1 ext'),*REPLACE(2, 'texttext 2 new),
*ADD(' texttext 4')

Meaning text with renumbered lines:
Line 1: ' texttext 1'
Line2:'texttext 1 ext'

Line 3:"texttext 2 new

Line 4: ' texttext 3'

Line 5: ' texttext 4

Example 2

This example deletes the first line of the original meaning text and replaces the second line with a new
line.

MEANI NG=(* REMOVE(1) , * REPLACE(2, ' texttext' 2 new))

Meaning text with renumbered lines:
Line 1: ' texttext 2 new
Line 2:"texttext 3

440

RESPONSE =*UNCHANGED / list-poss: *ADD(...) / *INSERT(...) / *REPLACE(...) / *FREMOVE(...)
Specifies the response text written in the specified language that will be displayed via the /[HELP-MSG-
INFORMATION command. Further information is provided in the "Introduction to System Administration” [5
(Related publications)].

Each line of the response text (up to 256 lines) can be modified or deleted. In addition, new lines can be
appended or inserted. The lines of the response text are numbered internally from 1 through to a maximum of
256 and can be addressed individually via these numbers. For examples, see the MEANING operand.

RESPONSE = *UNCHANGED
The response text remains unchanged.

RESPONSE = *ADD(...)
One or more new lines can be appended to the response text.

TEXT = list-poss: <c-string 1..74 with-low>
Response text consisting of one or more lines that is to be appended to the existing text.

RESPONSE = *INSERT(...)
One or more new lines can be inserted into the response text. Once all changes have been made, all
subsequent lines are renumbered.

LINE-NUMBER = <integer 1..256>
The new text is inserted between the line number specified here and the previous line number.

TEXT = list-poss: <c-string 1..74 with-low>
Defines the new response text.

RESPONSE = *REPLACE(...)
The response text in the specified line is replaced by the new text entered.

LINE-NUMBER = <integer 1..256>
Specifies the number of the line containing text to be replaced.

TEXT = <c-string 1..74 with-low>
Specifies the text that is to replace the response text in the specified line.

RESPONSE = *REMOVE(...)
Lines can be deleted from the response text. Once all changes have been made, all subsequent lines are
displaced and renumbered.

LINE-NUMBERS = *ALL / list-poss: <integer 1..256>
Specifies the line numbers.

INSERT-ATTRIBUTES = *UNCHANGED / *NONE / list-poss(30): <integer 0..29>(...)
The attributes of the specified inserts are not added, modified or deleted.

INSERT-ATTRIBUTES = *UNCHANGED
The attributes of the specified inserts are not modified.

INSERT-ATTRIBUTES = *NONE
All attributes of the specified inserts are deleted.

INSERT-ATTRIBUTES = <integer 0..29>(...)
The attributes of the specified inserts (numbered 00 through 29) can be added, modified or deleted; see also the
/IADD-MSG statement.

441

NAME = *UNCHANGED / *NONE / <structured-name 1..20>
The insert name is to be modified. Insert names are evaluated by MIP.

DEFAULT-VALUE = *UNCHANGED / *NONE / <c-string 1..54 with-low> / *EMPTY-STRING
Modification of the default text that is inserted in the message text in place of the insert if no current text is
defined in the MSG7X macro.

DEFAULT-VALUE = *UNCHANGED
The default text remains unchanged.

DEFAULT-VALUE = *NONE
The default text is deleted.

Example

| NSERT- ATTRI BUTES=(0(NAVE=* | DENTI FI ER) , 4(NAVE=* NONE) ,
2(DEFAULT- VALUE=* NONE) , 1(AUTO- HELP=* YES(CMD)))

DEFAULT-VALUE = <c-string 1..54 with-low>
Defines a new insert text. Note the length restrictions for message texts. Further information is provided in the
"Introduction to System Administration” [5 (Related publications)].

DEFAULT-VALUE = *EMPTY-STRING
Defines an empty string. For compatibility reasons the DEFAULT-VALUE = *NULL operand value continues to
be supported in batch jobs and procedures.

Example

| NSERT- ATTRI BUTES=(0(DEFAULT- VALUE = *EMPTY- STRI NG,
1(DEFAULT- VALUE =' $TSOS'), 4(DEFAULT- VALUE=* NONE))

AUTOMATIC-HELP = *UNCHANGED / *NO / *YES(...)

If a message code or part of a message code is output using an insert (e.g. in the case of DMS errors only the
message number is output), the automatic help function causes MIP to output the associated message text in
addition to this message code, see "ADD-MSG - Add message unit".

AUTOMATIC-HELP = *NO
Only the message code is output.

AUTOMATIC-HELP =*YES(...)
The message code and the message text are output

PREFIX = *BY-INSERT-VALUE / <name 3...7>
The complete message text is output for an insert included in the error message or for an explicitly
specified message number.

442

8.3.2.10 MODIFY-OPTION - Overwrite message unit

Function
The //IMODIFY-OPTION statement is available only in batch jobs and procedures.

When MSGMAKER is started, the //MODIFY-OPTION statement is used to define whether or not (parts of)
message units may be overwritten. This setting remains valid for all subsequent //ADD-DOCUMENTATION, //ADD-
MSG, //ICOPY and //IMOVE statements until the next time a //MODIFY-OPTION statement is entered.

Format

MODIFY-OPTION

OVERWRITE = *UNCHANGED / *YES / *NO

Operands

OVERWRITE = *UNCHANGED / *YES / *NO
Specifies whether or not (parts of) message units or documentation lines may be overwritten. The OVERWRITE
operand has the value *NO when the routine is started.

443

8.3.2.11 MOVE - Copy and delete message unit

Function

The //IMOVE statement allows the user to copy message units, with or without the associated documentation lines,
from one message file to another or to a different location within the same file. Unlike the COPY function, the MOVE
function also deletes the source area.

Each message unit is identified by means of its message code. It is possible to move more than one message unit
at a time by specifying a message class or a message range in the MSG-ID operand. If the value
*DOCUMENTATION is specified in the INFORMATION operand, the documentation lines defined in the specified
message range are also moved.

If the source file for the MOVE procedure is identical to the target file, new message codes must be defined in the
TO-MSG-ID operand. It is possible to move message units between any two message files, irrespective of the file
that is currently open. The FROM-FILE and TO-FILE operands permit access to these files; the current message
file remains open and, if it is neither the source file nor the target file, is not changed.

If languages are specified explicitly in the operand INFORMATION=*MESSAGES(...), only the texts (message,
meaning and response) in these languages are moved to the target message unit. If the target unit does not exist, it
is created with the message attributes (access methods, output destination, ...) of the source message unit. If the
target message unit already contains a text with the same message code and language identifier, the text of the
target message unit is overwritten with the text of the source message unit.

If this occurs in interactive mode, an error message is issued asking the user whether or not the existing message
unit is to be overwritten.

In batch jobs and procedures, the specified message file components are not moved and processing is continued,
unless OVERWRITE=*YES was specified in the //MOVE or //MODIFY-OPTION statement.

If the only difference between the texts is the language, the text is appended to the contents of the target message
unit.

Once all the language-dependent components have been deleted from a message unit by the /MOVE statement,
the remaining message attributes and thus the message unit itself are deleted automatically.
Differences compared with the /MOVE statement in menu mode

The //IMOVE statement that can be entered in the command area of the screen mask differs from the /MOVE
statement in command procedures in that

® in menu mode, the operand value *PANEL-REQUEST can be assigned to any operand
® an additional value can be specified for the MSG-ID operand

* the OVERWRITE operand is not available in menu mode.

For further details, see section “Special features of statements in menu mode”.

444

Format
MOVE

MSG-ID = *ALL / *CLASS(...) / *INTERVAL(...) / list-poss(2000): <name 7..7>
*CLASS(...)
| MSG-CLASS = <name 3..3>
*INTERVAL(...)
| FROM =<name7..7>
| ,TO=<name7..7>
,INFORMATION = *MESSAGES(...) / *ALL / list-poss(4): *DOCUMENTATION / *COMPONENT-ID /
*CORRECTION-INFO / *MESSAGES(...)
*MESSAGES(...)
| LANGUAGES = *ALL / list-poss(8): <name 1..1>
,FROM-FILE = *CURRENT / <filename 1..54>
,TO-MSG-ID = *SAME / *CLASS(...) / <alphanum-name 4..7 with-wild>
*CLASS(...)
| MSG-CLASS = <name 3..3>
,TO-FILE = *CURRENT / <filename 1..54>
,OVERWRITE = *STD / *YES / *NO

Operands

MSG-ID = *ALL / *CLASS(...) / *INTERVAL(...) / list-poss(2000): <name 7..7>
Specifies the message codes of one or more message units of the open message file that are to be copied and then
deleted from the source file.

If INFORMATION=*DOCUMENTATION is specified, the documentation lines defined for these message codes are
also moved.

MSG-ID = *ALL
All message components defined in the INFORMATION operand are moved. This operand value may be specified
only if the TO-MSG-ID operand is assigned the value *SAME.

MSG-ID = *CLASS(...)
All message components of the specified message class are moved.

MSG-CLASS = <name 3..3>
Specifies the three-letter message class.

445

MSG-ID = *INTERVAL(...)
All message components within this message range are moved. If the message range contains more than one
message class, the value *SAME must be assigned to the TO-MSG-ID operand.

FROM = <name 7..7>
Specifies the first message code of the message range.

TO =<name 7..7>
The full seven-character message code must be specified.

MSG-ID = list-poss(2000): <name 7..7>

Specifies the full message code of a message component that is to be moved. If a list of message codes is
specified, the TO-MSG-ID operand must be assigned the value *SAME. Several message codes may be specified
as a list.

INFORMATION = *MESSAGES(...) / *ALL / list-poss(2000): *MESSAGES(...) *"DOCUMENTATION /
*COMPONENT-ID / *CORRECTION-INFO
Specifies the message components to be moved.

INFORMATION = *MESSAGES(...)
Specifies message units that are to be moved. The message units are selected via the MSG-ID operand.

LANGUAGES =*ALL /list-poss(8): <name 1..1>
Specifies the languages of the message, meaning and response texts to be moved.

LANGUAGES = *ALL
The entire message unit is moved, including all message attributes, inserts, insert attributes and texts.

LANGUAGES = list-poss(8): <name 1..1>

Message texts and/or meaning and response texts in the selected language(s) are moved. The message
attributes and insert attributes of the source message unit are moved to the target message unit only if the
latter does not already exist. Otherwise the following the message MSME108 is output.

INFORMATION = *ALL
All message file components (message units and documentation lines) are moved. If MSG-ID = *ALL is specified,
all the contents of the message file are moved.

INFORMATION = *DOCUMENTATION
All documentation lines whose message codes are within the selected range (MSG-ID operand) are transferred. If
other defined message ranges overlap the specified message range, their documentation lines are likewise moved.

Example

MSG-ID = *INTERVAL (TST1500-TST1599).
The documentation lines of the message ranges (TST1500-TST1510), (TST1000-TST1999), (TST1000-
TST1500), TST1510, ... are moved.

MESSAGES = *CORRECTION-INFO / *COMPONENT-ID
These operands are reserved for internal use with the manufacturer.

446

FROM-FILE = *CURRENT / <filename 1..54 without-gen-vers>
Name of the message file from which the specified message components (MSG-ID operand) are to be transferred.

The operand value *CURRENT refers to the current message file, i.e. the message file last opened using the
/IOPEN-MSG-FILE statement. The file must have been opened in UPDATE mode.

TO-MSG-ID = *SAME / *CLASS(...) / <alphanum-name 4..7 with-wild>
Specifies the new message code for the message components once they have been moved to the target area.

TO-MSG-ID = *SAME

Once moved, the message components retain their original message code. The value *SAME must not be specified
if message components are being moved to a different location within the same message file. The value *SAME
must be specified if the MSG-ID operand is assigned a list of message codes, the value *ALL or message codes
from several message classes.

TO-MSG-ID = *CLASS(...)
Specifies a new message class for the message components to be moved. The message numbers remain
unchanged.

MSG-CLASS = <name 3..3>
Specifies the new three-letter message class.

TO-MSG-ID = <alphanum-name 4..7 with-wild>

The new message code is specified either in full or as a partially qualified name containing wildcards. The partial
name determines the first part of the new message code; the remaining characters, symbolized by *, are transferred
unchanged from the original message code.

Example
See the TO-MSG-ID operand of the //COPY statement and the following examples.

TO-FILE = *CURRENT / <filename 1..54 without-gen-vers>
Specifies the message file to which the message components are to be moved.

TO-FILE = *CURRENT
The assignment TO-FILE = *CURRENT defines the message file last opened with the /OPEN-MSG-FILE
statement as the target file. The target file must have been opened in UPDATE mode.

TO-FILE = <filename 1..54 without-gen-vers>
Explicit specification of the message file into which the message components are to be moved.

OVERWRITE = *STD / *YES / *NO

Specifies whether the message component of the source file may overwrite an existing area of the target file. The
default value *STD corresponds to the value last specified in the OVERWRITE operand of the /MODIFY-OPTION
statement.

Example

/I MOVE MSG- | D=*| NTERVAL(TST000, TST0009), -
| NFORMATI ON=(MESSAGE, DOCUMENTATI ON), TO MSG | D=TTT*, OVERWRI TE=* NO

447

Examples for the MSG-ID and TO-MSG-ID operands
Example A:

The statement has the following effect:

/I MOVE MSG- | D=*| NTERVAL(CCCA000, CCCl 999), TO MSG- | D=DDDO*

CCCAQ01, CCCA002, ... -> DDDO0001, DDD000Z, ...
CCCBAAA, CCCBAAB, ... -> DDD1AAA, DDD1AAB, ...
CCCELQQ, CCCE101, .. -> DDDA4100, DDD4101, ...
CCCI998, CCCI999 -> DDD8998, DDD8999

The message class or partially qualified message code defined in the TO-MSG-ID operand is transferred to the new
message code. The remaining part of the original message code appears in place of the wildcard character *.
Example B:

The statement has the following effect:
/I MOVE MSG | D = *| NTERVAL(CCCAO00, CCC1 999), TO MSG | D=CCC0*

The four message codes <CCCA010, CCCA800, CCCD033, CCCHO000> to be renamed as <CCC0010, CCCQ800,
CCC3033, CCC7000> and not as <CCC0010, CCC0800, CCC1033, CCC2000>.

If necessary, the part of the message number that belongs to the defined part of the new message code (in
“CCCO0*", this is “0"), is incremented automatically by the predefined amount. The message class is not incremented.

448

Example C:

The following combinations are possible:

MSG-ID

*CLASS(CCC)

(CCCH403,
CCCH503,
CCCH603)

*INT(CCCO0000-
CCC4999)

*INT(CCCO0000,
CCC0599)

TO-MSG-ID

*CLASS(DDD)/
DDD*

*SAME

*CLASS(DDD)/
DDD*

CCC5*
CCC50*

*CLASS(DDD)/
DDD*

DDD5*
DDD55*

DDD555*

Function

New message class

Insufficient range
specification

Message numbers are retained

*SAME

DDDO0000,
DDDO0000,

CCC5000,
CCC5000,

DDDO0000,
DDDO0000,

DDD5000,
DDD5500,

DDD5600,
DDDG6A00,
DDD5550,
DDD56A0,
DDDG6AAO,

DDDO*
All entries
except *SAME

,DDD4999 CCcCo6*/

,DDD4999 CCCh1*

,CCC9999

,CCCY999

,DDDO0599 DDD95*

,DDD0599

,DDD5599

,DDD5599

,DDD5599

,DDD6A99

,DDD5599

,DDD5999

,DDD6BE9

The message range of the target file must be at least as large as that of the source file.

449

8.3.2.12 OPEN-MSG-FILE - Open message file

Function
The //OPEN-MSG-FILE statement opens a message file for processing.
The message file remains open until another file is opened or until MSGMAKER is terminated.

The //OPEN-MSG-FILE statement does not always have to be issued before a file can be processed. In the COPY,
MOVE and SHOW functions, a message file can be accessed directly by means of the FROM-FILE operand and in
MERGE-MSG-FILES functions by means of the FILE-NAMES and TO-FILE operands.

Differences to menu mode

This statement cannot be entered in menu mode since only one message file can be open at any one time.
Format
OPEN-MSG-FILE

FILE-NAME = <filename 1..54>
,MODE = *UPDATE(...) / *CREATE(...) / *READ
UPDATE(...)
| TYPE =*UNCHANGED /*CUSTOMER / *STANDARD
| ,PRODUCT = *UNCHANGED (...) / <structured-name 1..15>(...) / *NONE
| *UNCHANGED(...)
| | VERSION =*UNCHANGED / <composed-name 3..8>/ <c-string 1..8> / *NONE
| <structured-name 1..15>(...)
| | VERSION =*UNCHANGED / <composed-name 3..8>/ <c-string 1..8> / *NONE
CREATE(...)
| TYPE =*CUSTOMER /*STANDARD

| ,PRODUCT = *NONE / <structured-name 1..15>(...)
| <structured-name 1..15>(...)

[| VERSION = *NONE / <composed-name 3..8> / <c-string 1..8>

Operands

FILE-NAME = <filename 1..54>
Specifies the name of the message file that is to be opened for processing. This file remains the current file until
another file is opened.

MODE = *UPDATE(...) / *CREATE(...) / *READ
Specifies the mode in which the message file is to be opened.

450

MODE = *UPDATE(...)
The message file is already cataloged and is to be updated.

TYPE = *UNCHANGED / *CUSTOMER / *STANDARD
Specifies the type of an existing message file.

TYPE = *UNCHANGED
The message file type remains unchanged.

i It is not possible to convert a standard message file into a customer message file by specifying
MODE=*UPDATE(TYPE=*CUSTOMER).A customer message file, however, can be converted into a
standard message file without restrictions.

TYPE = *CUSTOMER
The message file is assigned to a customer product.

TYPE = *STANDARD
The message file is associated with a software product developed by the manufacturer.

PRODUCT = *UNCHANGED(...) / <structured-name 1..15>(...) / *NONE
Name and version of the software product with which the current message file is associated. The letters
entered are always converted to uppercase.

PRODUCT = *UNCHANGED(...)
The name of the software product remains unchanged.

VERSION = *UNCHANGED / <composed-name 3..8> / <c-string 1..8> / *NONESpecifies the product
version. Letters entered are always converted to uppercase.

PRODUCT = <structured-name 1..15>(...)
New name of the product with which the current message file is associated.

VERSION = *UNCHANGED / <composed-name 3..8> / <c-string 1..8> / *NONE
Specifies the product version. Letters entered are always converted to uppercase.

PRODUCT = *NONE
No name or version is assigned to the product.

MODE = *CREATE(...)
A new message file is cataloged and becomes the current work file.

TYPE = *CUSTOMER / *STANDARD
Specifies whether the message file is associated with a customer product or a BS2000 product.

TYPE = *CUSTOMER
The message file is associated with a customer product.

TYPE = *STANDARD
The message file is associated with a software product developed by the manufacturer.

451

PRODUCT = *NONE / <structured-name 1..15>(...)
Specifies the name and version of the product with which the current message file is associated.

PRODUCT =*NONE
No name or version is assigned to the product.

PRODUCT = <structured-name 1..15>(...)
Name of the product with which the message file is associated.

VERSION = *NONE / <composed-name 3..8>/ <c-string 1..8>
Specifies the product version. The letters entered are always converted to uppercase.

MODE = *READ
The message file is opened for read access only and must not be modified.

Example
Generate message file:

/ | OPEN- MSG- FI LE FI LE- NAVE=SYSMVES. TSTFI LE, MODE=CREATE(TYPE=STANDARD, -
PRODUCT=TSTPROD(VERSI ON=VO1. 0A10))

Update message file:

/ | OPEN- MSG- FI LE SYSMES. TSTFI LE, (PRODUCT=* UNCHANGED(' V1. 0A10'))

452

8.3.2.13 SHOW - Display message file contents

Function

The //[SHOW statement outputs the contents of a message file to the screen or to a printer. The message units are
sorted by message class and transferred with or without documentation lines to SYSOUT or SYSLST. For more
information on the output format of the message file, see "'SHOW-OUTPUT mask - Output message units and
additional information".

Differences compared with the SHOW statement in menu mode

The //ISHOW statement that can be entered in the command area of the screen mask differs from the //SHOW
statement in command procedures in that

® in menu mode, the operand value *PANEL-REQUEST can be assigned to any operand
® an additional value can be specified for the MSG-ID operand
For further details, see section “Special features of statements in menu mode”.

Format
SHOW

MSG-ID = *ALL / list-poss(2000): *CLASS(...) / *INTERVAL(...) / <name 7..7>
*CLASS(...)
| MSG-CLASS = <name 3..3>
*INTERVAL(...)
| FROM =<name 7..7>
| ,TO=<name?7..7>
,INFORMATION = *MESSAGES (...) / *ALL / list-poss(4): *MESSAGES(...) / *DOCUMENTATION /
*COMPONENT-ID / *CORRECTION-INFO
MESSAGES(...)
| LANGUAGES = *ALL / list-poss(8): <name 1..1>

| ,ELEMENTS = *ALL / list-poss(2000): *ATTRIBUTES / *MSG-TEXT /
| *MEANING-RESPONSE / *INSERT-ATTRIBUTES
,FROM-FILE = *CURRENT / <filename 1..54>
,OUTPUT =*SYSOUT / *ALL / list-poss(2): *SYSOUT / *SYSLST

Operands

MSG-ID = *ALL / list-poss(2000): *CLASS(...) / *INTERVAL(...) / <name 7..7>

Specifies the message codes of one or more message units of the open message file that are to be output.
If INFORMATION=*DOCUMENTATION is specified, the documentation lines defined for these message codes are
also output.

MSG-ID =*ALL
All message components defined in the INFORMATION operand are output.

453

MSG-ID = *CLASS(...)
All message units whose message code begins with the specified message class are displayed, with or without
documentation lines (depending on the value specified in the INFORMATION operand).

MSG-CLASS = <name 3..3>
Specifies the three-letter message class.

MSG-ID = *INTERVAL(...)
All message units whose message code is within the specified message range are displayed, with or without
documentation lines (depending on the value specified in the INFORMATION operand).

FROM = <name 7..7>
Specifies the first message code of the message range.

TO =<name 7..7>
The full seven-character message code must be specified.

MSG-ID = <name 7..7>
Specifies the full message code of a message unit that is to be displayed with or without documentation lines
(depending on the value specified in the INFORMATION operand).

INFORMATION = *MESSAGES(...) / *ALL / list-poss: *MESSAGES(...) / *DOCUMENTATION / *COMPONENT-ID
/ *CORRECTION-INFO
Specifies the message file components to be displayed.

INFORMATION = *MESSAGES(...)
One or more message units are to be displayed.

LANGUAGES = *ALL / list-poss(8): <name 1..1>
Specifies the identifiers for the languages in which the message, meaning and response texts were defined.

LANGUAGES = *ALL
All language-dependent elements of a message unit are displayed in alphabetical order.

LANGUAGES = list-poss(8): <name 1..1>

Up to eight language identifiers may be specified. The elements of the message unit that were defined in these
languages are displayed in the order in which the language identifiers are specified here.

ELEMENTS = *ALL / list-poss: *ATTRIBUTES / *MSG-TEXT /

*MEANING-RESPONSE / *INSERT-ATTRIBUTES

Specifies elements of a message unit. The operand values *ATTRIBUTES and *INSERT-ATTRIBUTES do not
depend on the definition of a language.

ELEMENTS =*ALL
All defined elements of a message unit are output, including the message attributes, insert attributes and
message, meaning and response texts.

ELEMENTS =*ATTRIBUTES
All defined message attributes of the message unit are output.

ELEMENTS = *MSG-TEXT
The message text is output.

ELEMENTS = *MEANING-RESPONSE
The meaning and response texts are output.

454

ELEMENTS = *INSERT-ATTRIBUTES
All defined insert attributes are output.

INFORMATION = *ALL
All message file components defined in the message range (MSG-ID operand) are output. If the MSG-ID operand is
assigned the value *ALL, all the contents of the message file are displayed.

INFORMATION = *DOCUMENTATION
Documentation lines in the specified message range (MSG-ID operand) are output. Documentation lines in
message ranges that only partially overlap the specified message range are also displayed.

Example

If MSG-ID = *INTERVAL(TST1500-TST1599) is specified, all the documentation lines of the defined message
ranges (TST1500-TST1510), (TST1000-TST1999), (TST1000-TST1500) and TST1510 are displayed.

INFORMATION = *CORRECTION-INFO / *COMPONENT-ID
These operands are reserved for internal use with the manufacturer.

FROM-FILE = *CURRENT / <filename 1..54 without-gen-vers>

Name of the message file whose message components are to be displayed.
The operand value *CURRENT refers to the message file that is currently open.

OUTPUT = *SYSOUT / *ALL / list-poss: *SYSOUT / *SYSLST
Specifies the output destination for the message file components defined above.

OUTPUT = *SYSOUT
The message file components are output to SYSOUT.

OUTPUT =*ALL
The message file components are output to SYSOUT and SYSLST.

OUTPUT =*SYSLST
The message file components are output to SYSLST. When MSGMAKER is terminated, the SYSLST file can be
printed out using the BS2000 command /PRINT-DOCUMENT. Lines per page = 60.

Example

/1 SHOW MSG- | D=*| NTERVAL (TSTAAA, TTT9999),
| NFORVATI ON=MESSACES(LANGUACES=(E, F) , ELEMENTS=(ATTI BUTES, M5G- TEXT)),
FROM FI LE=SYSMES. TSTFI LE. QUTPUT=* SYSLST

455

8.3.3 Special features of statements in menu mode

In menu mode, the user enters statements in the three-line command area of the mask. The user can enter the
operands consecutively, without continuation characters in these lines. The input is confirm by pressing the DUE
key. Once all the operands have been entered correctly, the function is executed in the background; the fields of the
current mask remain unchanged.

If a statement is entered with incorrect syntax, the user has the opportunity to correct the input in an SDF guided
dialog.

Similarly, MSGMAKER reacts to missing operands by branching either to the SDF guided dialog or to the
corresponding masks to allow the user to enter the required values. Once the function has been executed
successfully, the calling mask is redisplayed

It is possible to apply the prompt function to the statement names entered instead of entering operands directly in
the command area. In other words, pressing function key F2 after making an entry in the command area calls the
mask that corresponds to the statement. It allows the user to specify the missing operands in the mask. The user
then presses DUE to confirm the input and execute the statement. For further information on the prompt function,
see "General mask format".

Calling the mask and executing the statement does not change the fields of the original mask.

Statements that can be entered in the command area of the screen mask differ from the statements that can be
used in batch jobs and procedures with regard to certain operands or operand values.

Notes on the operand value *PANEL-REQUEST

It is possible to assign the *PANEL-REQUEST operand value to all operands of the statements entered in the
command area of the screen mask.

*PANEL-REQUEST switches to the mask whose "panel-id" is, in most cases, the same as the statement name. The
current value of the operand is displayed in the mask and can be modified using further statements or screen
functions.

*PANEL-REQUEST is always the default value if no other default value (underscored value) is specified for the
operands described in the section “Statements”.

Example
The following statement calls the MODIFY-MSG mask:
[/ MODI FY- MSG MSG- | D = TST0001, LAN=* PANEL- REQUEST

This mask displays all the message attributes, language identifiers and texts associated with the message
code TSTO001 that can be modified in the next operation.

The rest of this section describes only those statements whose operands can be assigned different or additional
operand values in menu mode.

® |f an additional operand value is available, this is indicated as follows: e.g. ... / <al phanum nane 1..7
with-wild>/ ... Alloperands which are not listed (indicated by ...) are available both in menu mode and
in batch jobs and procedures.

® |f an operand value in menu mode differs fundamentally from the operand value available in batch jobs and
procedures, this is indicated clearly in the operand description.

456

Restrictions

® The //MODIFY-OPTION and //OPEN-MSG-FILE statements are available only in command procedures.

® Entering a question mark in the command area of a mask and then hitting DUE causes SDF to produce a
selection from all available statements.

If a standard message file of the manufacturer is open, it includes the following statements, which are reserved
for internal use:

* //ADD-COMPONENT-ID

* //IDELETE-COMPONENT-ID

* //MODIFY-COMPONENT-ID

* //ADD-CORRECTION-INFORMATION

¢ //IDELETE-CORRECTION-INFORMATION
¢ //IMODIFY-CORRECTION-INFORMATION
* /IGENERATE-CSECT

457

8.3.3.1 ADD-DOCUMENTATION

The //ADD-DOCUMENTATION statement is the same in menu mode and in command procedures except for the
operand value *PANEL-REQUEST.

458

8.3.3.2 ADD-MSG

If the user attempts to add an existing message unit using the //ADD-MSG statement in menu mode, MSGMAKER
switches automatically to the MODIFY-MSG mask and issues a warning.

Format (operands in menu mode)
ADD-MSG

MSG-ID = *CLASS(...) / *INTERVAL(...) / <alphanum-name 1..7 with-wild> / list-poss(2000): <name 7..7>
*CLASS(...)
| MSG-CLASS = <name 3..3>
*INTERVAL(...)
| FROM = <alphanum-name 1..7 with-wild>

| ,TO =<name 7..7>

The OVERWRITE operand no longer exists

Operands

MSG-ID = *CLASS(...) / *INTERVAL(...) / <alphanum-name 1..7 with-wild> /list-poss(2000): <name 7..7>
Specifies the message code of the message unit.

Unlike the //ADD-MSG statement in batch jobs and procedures, ADD-MSG in menu mode allows the user to specify
a message class, a message range or a partially qualified message code. It is also possible to specify a list of
message codes.

MSG-ID = *CLASS(...)
Defines a message class.

MSG-CLASS = <name 3..3>
Specifies the three-letter message class.

MSG-ID = *INTERVAL(...)
Defines a message range.

FROM = <alphanum-name 1..7 with-wild>
Specifies the first message code of the message range. The seven-character message code may be fully or
partially qualified, the first three characters, however, must always be letters (message class). The asterisk (*)
can stand for between one and seven characters, and the character # can stand for between one and four
digits.
Example

Valid specifications for <alphanum-name 1..7 with-wild> are:

, A, AB*, ABC*, ABCO*, ABC00*, ABCOOO*
ABC#, ABCO#, ABCOO#, ABCO00#

TO =<name 7..7>
The full seven-character message code must be specified. The seven-character message code can be fully or
partially qualified.

MSG-ID = <alphanum-name 1..7 with-wild>
The seven-character message code may be fully or partially qualified, the first three characters, however, must

459

always be letters (message class). The asterisk (*) can stand for between one and seven characters, and the
character # can stand for between one and four digits.

Example
See the operand MSG-ID=*INTERVAL(FROM=<alphanum-name 1..7 with-wild>)

MSG-ID = list-poss(2000): <name 7..7>
A list of full message codes can be specified.

460

8.3.3.3 COPY

Format (operands in menu mode)
COPY

MSG-ID = ... / <alphanum-name 1..7 with-wild> / ...
*INTERVAL(...)

| FROM = <alphanum-name 1..7 with-wild>

The OVERWRITE operand no longer exists

Operands

MSG-ID = <alphanum-name 1..7 with-wild>

In addition to the values that can be specified for the MSG-ID operand in batch jobs and procedures, the message
code can be defined in fully or partially qualified form in menu mode.

The first three characters of the seven-character message code (message class) must always be letters. The
asterisk (*) can stand for between one and seven characters.

Example

Valid specifications for <alphanum-name 1..7 with-wild> are:
, A, AB*, ABC*, ABCO*, ABC00*, ABCO00*

MSG-ID = *INTERVAL(...)
Defines a message range.

FROM = <alphanum-name 1..7 with-wild>

Specifies the first message code of the message range. The seven-character message code may be fully or
partially qualified, the first three characters, however, must always be letters (message class). The asterisk (*)
can stand for between one and seven characters.

Difference compared with the operand in batch jobs and procedures; in batch jobs and procedures, the
message code must be fully qualified (FROM = <name 7..7>).

Example

See operand MSG-ID=<alphanum-name 1..7 with-wild>

461

8.3.3.4 DELETE-DOCUMENTATION

The //DELETE-DOCUMENTATION statement is the same in menu mode and in command procedures except for
the operand value *PANEL-REQUEST.

462

8.3.3.5 DELETE-MSG

i The MSG-ID operand cannot be assigned the value *ALL in menu mode.

Format (operands in menu mode)
DELETE-MSG

MSG-ID = ... / <alphanum-name 4..7 with-wild>/ ...

Operands

MSG-ID = <alphanum-name 4..7 with-wild>

In addition to the values for the MSG-ID operand in batch jobs and procedures (with the exception of *ALL), the
message code may be defined in fully or partially qualified form in menu mode. The asterisk (*) can stand for
between one and four characters.

Example

Valid specifications for <alphanum-name 4..7 with-wild> are:
ABC*, ABCO*, ABC00*, ABCO0O*

463

8.3.3.6 END

The //END statement is the same in menu mode and in command procedures.

464

8.3.3.7 GO-TO - Branch to specified mask

The //GO-TO statement is available only in menu mode.

This statement allows the user to deviate from the path set out by MSGMAKER (mask overview) and call any mask
directly.

The //GO-TO statement can be entered in the command area of any mask and is initiated by pressing DUE. GO-TO
is executed immediately, aborting the function of the current screen mask. Any data entered in this mask is lost.

Exception: MENU Mask

If a message file is entered in the MENU mask and not confirmed with DUE, the message file is still opened
first and then the routine branches to the mask specified by GO-TO.

Format (operands in menu mode)

GO-TO/GOTO

PANEL-ID = *MENU / *MSG-FILE-ATTRIBUTES / *ADD-MSG / *MODIFY-MSG / *DELETE-MSG /
*COPY / *MOVE / *SHOW / *ADD-DOCUMENTATION / *MODIFY-DOCUMENTATION /
*DELETE-DOCUMENTATION

Operands

PANEL-ID = *MENU / *MSG-FILE-ATTRIBUTES / *ADD-MSG / MODIFY-MSG / *DELETE-MSG / *COPY /
*MOVE / *SHOW / *ADD-DOCUMENTATION /*MODIFY-DOCUMENTATION / *DELETE-DOCUMENTATION
Name of the mask to which the user wishes to branch. The name can be abbreviated in accordance with SDF
conventions.

Restriction

The //GO-TO statement cannot be used to branch to the MSG-TEXT,
MEANING/RESPONSE or INSERT-ATTRIBUTES mask.

Example

GO-TO add-msg corresponds to GO-TO a-m

465

8.3.3.8 MERGE-MSG-FILES

The /IMERGE-MSG-FILES statement is the same in menu mode and in command procedures.

There is currently no mask in which the MERGE-MSG-FILES function can be executed. The operand value
*PANEL-REQUEST is therefore not available in menu mode.

The /IMERGE-MSG-FILES statement can be started in menu mode either with F2 or with DUE.

466

8.3.3.9 MODIFY-DOCUMENTATION

The //IMODIFY-DOCUMENTATION statement is the same in menu mode and in command procedures except for
the operand value *PANEL-REQUEST.

467

8.3.3.10 MODIFY-MSG

Format (operands in menu mode)
MODIFY-MSG

MSG-ID = ... / <alphanum-name 1..7 with-wild> / ...
*INTERVAL(...)
FROM = <alphanum-name 1..7 with-wild>
,LANGUAGES = .../ *ANY(...) / ...
*ANY(...)
| MSG-TEXT = *UNCHANGED
| ,MEANING = *UNCHANGED
| ,RESPONSE = *UNCHANGED

Operands

MSG-ID = <alphanum-name 1..7 with-wild>
In addition to the values that can be specified for the MSG-ID operand in batch jobs and procedures, the message
code can be defined in fully or partially qualified form in menu mode.

The first three characters of the seven-character message code (message class) must always be letters. The
asterisk (*) can stand for between one and seven characters, and the character # can stand for between one and
four digits.

Example

Valid specifications for <alphanum-name 1..7 with-wild> are:
, A, AB*, ABC*, ABCO*, ABC0O0*, ABCO0O*
ABC#, ABCO#, ABCOO#, ABCO00#

MSG-ID = *INTERVAL(...)
Defines a message range.

FROM = <alphanum-name 1..7 with-wild>

Specifies the first message code of the message range. The seven-character message code may be fully or
partially qualified, the first three characters, however, must always be letters (message class). The asterisk (*)
can stand for between one and seven characters, and the character # can stand for between one and four
digits.

Difference compared with the operand in batch jobs and procedures; in batch jobs and procedures, the
message code must be fully qualified (FROM = <name 7..7>).

Example
See operand MSG-ID=<alphanum-name 1..7 with-wild>

LANGUAGES = *ANY(...)

In addition to the values that can be specified for the LANGUAGES operand in batch jobs and procedures, the
operand value *ANY can be specified here. Within the structure initiated by *ANY, the operands MSG-TEXT,
MEANING and RESPONSE may be assigned only the value *UNCHANGED or *PANEL-REQUEST. If
LANGUAGES = *ANY is specified, no texts may be entered.

468

MSG-TEXT = *UNCHANGED
The message text is to remain unchanged. The contents of the MSG-TEXT mask can be modified only if the
value *PANEL-REQUEST is specified.

MEANING = *UNCHANGED
The meaning text is to remain unchanged. The contents of the MEANING/RESPONSE mask can be modified
only if the value *PANEL-REQUEST is specified.

RESPONSE = *UNCHANGED
The response text is to remain unchanged. The contents of the MEANING/RESPONSE mask can be modified
only if the value *PANEL-REQUEST is specified.

469

8.3.3.11 MOVE

Format (operands in menu mode)
MOVE

MSG-ID = ... / <alphanum-name 1..7 with-wild> / ...
*INTERVAL(...)

| FROM = <alphanum-name 1..7 with-wild>

The OVERWRITE operand no longer exists

Operands

MSG-ID = <alphanum-name 1..7 with-wild>

In addition to the values that can be specified for the MSG-ID operand in batch jobs and procedures, the message
code can be defined in fully or partially qualified form in menu mode.

The first three characters of the seven-character message code (message class) must always be letters. The
asterisk (*) can stand for between one and seven characters.

Example

Valid specifications for <alphanum-name 1..7 with-wild> are:
, A, AB*, ABC*, ABCO*, ABC00*, ABCO00*

MSG-ID = *INTERVAL(...)
Defines a message range.

FROM = <alphanum-name 1..7 with-wild>

Specifies the first message code of the message range. The seven-character message code may be fully or
partially qualified. The first three characters, however, must always be letters (message class). The asterisk (*)
can stand for between one and seven characters.

Difference compared with the operand in batch jobs and procedures; in batch jobs and procedures, the
message code must be fully qualified (FROM = <name 7..7>).

Example

See operand MSG-ID=<alphanum-name 1..7 with-wild>

470

8.3.3.12 SHOW

Format (operands in menu mode)
SHOW

MSG-ID = ... / <alphanum-name 1..7 with-wild> / ...
*INTERVAL(...)

| FROM = <alphanum-name 1..7 with-wild>

Operands

MSG-ID = <alphanum-name 1..7 with-wild>

In addition to the values that can be specified for the MSG-ID operand in batch jobs and procedures, the message
code can be defined in fully or partially qualified form in menu mode.

The first three characters of the seven-character message code (message class) must always be letters. The
asterisk (*) can stand for between one and seven characters.

Example
Valid specifications for <alphanum-name 1..7 with-wild> are: *, A*, AB*, ABC*, ABC0*, ABC00*, ABC000*

MSG-ID = *INTERVAL(...)
Defines a message range.

FROM = <alphanum-name 1..7 with-wild>

Specifies the first message code of the message range. The seven-character message code may be fully or
partially qualified. The first three characters, however, must always be letters (message class). The asterisk (*)
can stand for between one and seven characters.

Difference compared with the operand in batch jobs and procedures; in batch jobs and procedures, the
message code must be fully qualified (FROM = <name 7..7>).

Example

See operand MSG-ID=<alphanum-name 1..7 with-wild>

471

8.3.4 Example

In the TEST.MSG procedure the MSGMAKER routine first creates a message fileand a message unit is entered.
Messages from the message file SYSMES.MSG.010 are copied to the new message file and modified. The
contents of the newly created and subsequently modified message file SYSMES.TSTFILE are output to a SYSOUT
file and a SYSLST file. You will find an example of the SYSOUT log after the description of the individual procedure
steps.

TEST.MSG procedure

| / BEG N- PROCEDURE

|/ ASSI G\- SYSLST TO=TEST. MSG. SYSLST
i/ ASSI GN- SYSQUT TO=TEST. M5G. SYSOUT
'/ ASSI G\ SYSDTA * SYSCVD

E/REI\/ARK Rk R o bk S b S R R R o O b Sk R R R S b S S kO R Rk S o Ok O
1

E/REI\/ARK ** Part 1 : Create a new message file

i
:/RE'\MRK ESE R R I S S S S R S S

E/START- MBGVAKER (1)
|1 | REMARK

E// RE'VARK khkkhkkhkhkhkkhkkhkhkhkkhkdhkhkhkkhhhhkhkhdkkkx G)E'\l_ IVBG_ FI LE khkkhkkhkkhkhkkhkkhkhkhkhkkhkdhkhkkhkkhkdhhkkhkhdhhhkdxxk
i/ 1 REMARK

E//ODEN- MSG- FI LE FI LE- NAME=SYSMES. TSTFI LE, -

i /| MODE=CREATE(TYPE=C, PRODUCT=TSTPROD(VERSI ON=VO01. 0A10)) —(2)

|/] REMARK

i// RE'VARK EE R R I I I Am |\/SG khkkhkkhkhkhkhkkhkhkhkhkhkhhkhrhkhkhkdkhkhrhkdhkhrhhkhkdhxkd*x
'/ | REMARK

-1/ ADD- MBG MBG- | D=TST0000, - (3)
i/ ACCESS- METHCDS=I SAM -

i /] DESTI NATI ONS=CONSOLE(ROUTI NG- CODE=A) , -

{11 \\EI GHT=30, -

|1/ LANGUAGES=(E(-

i// MBG-TEXT='Text in english with inserts ''(&00)'"' and ''(&&801)'"'",-

{11 MEANI NG=(' First neaning line',-

E// 'second meaning line'), -

{// RESPONSE=' Response line'-

),

-

i/] MBG TEXT='Text in Deutsch mit Inserts ''(&01)'' und ''(&R00)'"",-

‘11 NMEANING=(' Erste Bedeutungszeile', -

i/ ' Zweite Bedeutungszeile'), -

/] RESPONSE=('Erste Massnahneszeile', -

/] ' Zweite Massnahmeszeile')-

)-

), -

/1 1 NSERT- ATTRI BUTES=(0(NAVME=NAMD, DEFAULT- VALUE=' defaul t0'), -

' /] 1(NAVE=NAML, DEFAULT- VALUE=' defaul t1'))

i/ REMARK

i//RE'vARK EE R IR S S I R R I Sk I I S Sl_D/v*************************************
|1 1 REMARK

i /] SHOW MBG- | D=* ALL, OUTPUT=* ALL (4)
' //END

i EE R O Sk O
i [REMARK

E/REMARK ** Part 2 : Messages from anot her nessage file

EIREIVARK khkkkhkkhkhkhkkhkkhkhhkhkhkkhhhhkhkhdhhhkkhdhhhkhhdhhhkddhhkhhdhhhkddhhkhhkdhdrhkddhrhhkkhkddxrkdddxxx*k
|/ REMARK

{ | START- MSGVAKER (5)

|/] REMARK

472

i//RE'vARK R I R S I O O S'_O/v(other flle) EE R R S
-/] REMARK

'/ / SHOW MSG- | D=(PEP0001, PEP0002, PEP0004) , - (6)
i/ | NFORMATI ON=(MESSAGES(LANGUAGES=E, ELEMENTS=(MSG- TEXT, MEAN- RESP)), -

-/ DOCUMENTATION) , -

'/ FROM FI LE=SYSMVES. MSG 010, -

i1/ OUTPUT=*ALL

i | | REMARK

i// RE'VARK R I S I O ODEN_ IVSG_ Fl LE EE R R S I O S I o O
i 1 1 REMARK

i/ | OPEN- MSG- FI LE SYSMES. TSTFI LE, (PRODUCT=* UNCHANGED(' VO1. 1A10')) ——(7)

|/ 1 REMARK

i//RE'vARK *k kK %k (:ODY (fromthe Ot her fl I e) EE R R I S I
-/] REMARK

i // COPY MSG | D=(PEP0001, PEP0002, PEP0004) , - (8)
i1/ | NFORMATI ON=* ALL, -

'/ FROW FI LE=SYSES. MSG. 010

' | | REMARK

E// RE'VARK EE R S I I I S I Am |VSG khkkhkhkhkhkhkkhkhkhkhkhkhhkhrhkhhkdkhkhrhkdhkrhhkhkdhxkd*k
' | | REMARK

'/ / ADD- MSG MSG- | D=PEP000S5, - (9)
i1/ LANGUAGES=(E(-

'/l MG TEXT='File "' (&&05)'" does not exist', -

1)

(-

'/1 MBG TEXT='Datei ''(&&05)'' nicht vorhanden', -

1)

1)

-/ | REMARK

i// RE'VARK EE R IR S S I R S I I Sk I I I I I\m FY_ '\/SG R IR IR S S I S I S I S I S o I I S I
i/ / REMARK

/] REMARK +++++ Modi fy the message attributes +++++

|/ | REMARK

i /1 MODI FY- MBG MSG- | D=(PEP0001, PEP0002) , - (10)
{1/ ACCESS- METHODS=DLAM -

|1/ DESTI NATI ONS=(USER- TASK, -

{// CONSOLE(ROUTI NG- CODE=* MAI N- CONSOLE)), -

- /1 | NSERT- ATTRI BUTES=1(DEFAULT- VALUE= ' E')

i | | REMARK

{// REMARK +++++ Modify the texts +++++

-/ | REMARK

'/ / MODI FY- MSG - (11)
i1/ NMBG- | D=PEP0001, -

/1 LANG=E(-

{11 MEANI NG=(-

i1/ *REPLACE(-

/1 LI NE- NUVBER=1, -

E// TEXT='For nore detailed information about the DV5 error code-

i1/ enter /HELP-MSGin'), -

E// *ADD(' system node or see the BS2000 nanual '' System

i// Messages''.')-

-

)

' | | REMARK

i//RE,vARK EE R I I I O R S |\/O\/E (renan-e a n-essage) *hkkhkkhkkkkkhkhkhkkkkhhkkkkk
i | | REMARK

'/ / MOVE MBG- | D=PEP0004, - (12)
{1/ | NFORVATI ON=(MESSAGES(LANGUAGES=E)) , -

/1 TO MSG | D=TST*, -

473

/1 OVERWRI TE=NO

/ | REMARK

//RE,\/ARK EE R IR S O I S I S I SI_D/V(neW n-essage flle) *hkkkhkkhkhhkhkhkkhkkkx*k
/ | REMARK

/ | SHOW MBG- | D=(* CLASS(PEP) , - (13)
/1 TST0004), -

/1 | NFORVATI ON=(MESSAGES, DOCUVENTATI ON) | -

/1 OUTPUT=*ALL

/ | REMARK

//RE'\/ARK EE R IR Sk S I R S I I S I I S I I S I DELETE_'\/BG R IR I S b I S I Sk I I Sk I R I R I 2
/ | REMARK

/ | DELETE- MSG MSG- | D=* CLASS(TST) , LANGUAGES=(D, E) (14)

/ | END

/ END- PROCEDURE

Explanation

1. MSGMAKER is called.
2. Message file SYSMES.TSTFILE is opened for the TSTPROD product with version VO1.0A10.

3. A message with message code TSTO000O is entered in the newly opened message. Apart from message
attributes (access method, output target, weight code), the message, meaning and response texts are entered
in English and German. The message texts contain inserts (&00) and (&01). If the inserts are to be enclosed in
single quotes for the message output, double quotes must be input in the statement. Please note also that the
ampersand character (&) is written twice.

4. The contents of the SYSMES.TSTFILE message file are output to SYSOUT and SYSLST.
5. MSGMAKER is called again.

6. Three messages from the message file SYSMES.MSG.010 are output to SYSOUT and SYSLST. The output
includes the English message, meaning and response texts, as well as the documentation lines.

7. The message file SYSMES.TSTFILE is opened again, this time with a different version specification (V01.1A10).

8. Three messages, including documentation, are copied from the message file SYSMES.MSG.010 to the
SYSMES.TSTFILE file.

9. The new message PEPO0OS5 is entered in the SYSMES.TSTFILE message file.

10. The access method, the output destination and the default text for insert (&01) are modified for the two
messages PEP0001 and PEP0002.

11. The English meaning text is modified for message PEPOO0O01. The first line is replacedby a new text and a
second line is added.

12. All the English texts of message PEP0004 are stored under message code TST0004.
13. The messages of message class MSM and message TST0004 are output to SYSOUT and SYSLST.
14. The English and German texts of message TST0004 are deleted.

474

Output to SYSOUT

T
HHHEHRERREE Me s s a g e c | a s s T ST HHHHHHHEHIHIY
R
fee TSTO000 - == - mmm o m e m e e e e e e e e e e e e e e eeeeaa

EAccess . | SAM
i Destination: CONSCLE Routing code: A Wi ght: 30
iWarranty : NO Text format : UPPER CASE

ilnsert attributes:
i (&00) Nanme: NAMD
i Defaul t value: 'defaultO
1 (&01) Name: NAML
§ Default value: 'defaultl'
{D Text in Deutsch mit Inserts '(&01)' und ' (&00)
! ? Erste Bedeut ungszeil e

Zwei t e Bedeutungszeil e

! Erste Massnahnezeil e

: Zwei te Massnahnezeil e
{E Text in english with inserts '(&00)' and ' (&01)
! 2 First meaning line

second neaning |line
i ! Response line
596 MBMN60OO MSGVAKER TERM NATED NORMALLY

HHHHHBHHHH B H BB H R A AR A R R R A AR R AR R
| B Me s sage ¢l as s P E P #uas#a#a#######iH
|
f oo PEPOOOL == == m = = s = m o m o o m o e o e e o e e e
{E MESSAGE W TH | NSERT (&01)

! ? meaning for pep0001
i ! response for pep0001
= m PEPOOO2 - - - - - - mmmmm i mm e e oo
{E MESSAGE W TH | NSERT (&01)
{2 meaning for pep0002
i | response for pep0002
fom PEPOOO4 - - oo omm o
'E MESSAGE W TH | NSERT (&01)
? nmeani ng for pep0004
I response for pep0004

i DOCUMENTATI ON
{ PEO001- PEP0004 Omner nane: MNAl ER Team TEAML
i product = DVB-ERR

475

HHHHBH AR AR H R AR R R R R R AR AR R R AR R R AR

E################### Message <cl ass: P E P #uas#########H#HHHH
| HRRR R R R R R R R B R R R B R R R R R R
0100
Access . DLAM

i Destination: USER TASK, CONSOLE Routing code: * (main console) Wei ght: 99
iwarranty : NO Text format : UPPER CASE

‘Insert attributes:
{(&01) Default value: 'E
{E MESSAGE W TH | NSERT (&01)
{2 For more detailed information about the DVB error code enter /HELP-MSG
in system nbde or see the BS2000 nmnual ' System Messages'.
I response for pep0001

f oo PEPOO02 - === m = s m s m s s ioiooiooaooo-
i Access : DLAM

i Destination: USER- TASK, CONSOLE Routing code: * (main console) Wight: 99
‘Warranty @ NO Text format : UPPER CASE

ilnsert attributes:
{(&01) Default value: 'E
'E MESSAGE W TH | NSERT (&01)
¢ ? nmeaning for pep0002
I response for pep0002

L= = PEPDOOS == == == === s s s s s s s s s e
i Access : | SAM

! Destination: USER- TASK Routi ng code: Wi ght: 99
Warranty : NO Text format : UPPER CASE

iD Datei '(&05)' nicht vorhanden
'E File '(&05)' does not exist

: DOCUMENTATI ON =====================
PEP0O001- PEPO004 Omner nane: Ml ER Team TEAML

§ product = DMB- ERR

|

E################### Me s s age cl ass: TST HHHHHBH BRI RHRHIH
HHHHHBHA R RSB H R R R R R R R R A R R R R R R
foe TSTO004 - - - - wmmm = e e e m oo e e
Access . | SAM

i Destination: USER TASK Routi ng code: Wi ght: 99
iWarranty : NO Text format : UPPER CASE

'E MESSAGE W TH I NSERT (&01)
i ? meaning for pep0004
! response for pep0004

Output to SYSLST
Output of the contents of the message file to SYSLST is almost the same as the output to SYSOUT.

Output of the messages and documentation lines is identical. Column 1 of the SYSLST log is, however, reserved for
EBCDIC control characters to enable the output to be sent to a printer. The new page is headed by an information
line containing the date, time, product name, product version and page number.

476

9 PAMCONV Conversion of file formats

Version: PAMCONV V12.1D

The PAMCONV utility routine is used for converting files from K format to NK format or vice versa.
Files encrypted with a crypto password are also supported (see "Functionality of PAMCONV").

In K format, the DMS management information is stored in a PAM key which is prefixed to the data block. This file
format is referred to as key format, or K format for short.

In NK format, which does not use the PAM key, the DMS management information is either integrated in the data
blocks or it is left out. This file format is known as nonkey format, or NK format for short.

The term NK file serves as a generic term for NK2 and NK4 files.
These file formats (K, NK2 and NK4) were created so as to be enable the data management system to make the
best possible use of the existing disk formats.

The minimum transfer unit between the disk and main memory as well as the size of the smallest file (minimum
allocation unit=min. AU) are depending on the file format.

Files on NK4 disks must always be in NK4 format. PAMCONYV offers the possibility of converting K or NK2 files to
NK4 format.

Disk formats

A disk format is defined by the criteria “with/without PAM key”, “minimum allocation unit (min. AU)” and “minimum
transfer unit (min. TU)".

The disk format within any one pubset is homogeneous (except SM pubsets).
For private disks the only formats supported are the K and NK2 disks with a minimum allocation unit of 6 Kbytes.

The following disk formats are supported:

Disk PAM key min. AU min. TU
format with without 6KB 8KB 64KB 2KB 4KB
K disk X X X

NK2 disk X X X

NK2 disk X X X

NK2 disk X X X

NK4 disk X X X
NK4 disk X X X

477

The diagram below shows which file formats can be stored on the supported disk formats without the file formats
first having to be converted using PAMCONV.

Figure 12: File formats that can be stored on certain disk formats without conversion

The primary purpose of PAMCONYV is to convert K files into NK files so that the latter can be stored in NK pubsets.

Conversion options with PAMCONV

The conversion options provided by PAMCONYV for the individual file structures are listed in the table below.

478

Conversion options with PAMCONV

File structure

ISAM

SAM

PAM

Load module

File formatl <--> file format2

K-ISAM <---> NK2-ISAM
K-ISAM <---> NK4-ISAM
NK2-ISAM <---> NK4-ISAM

K-SAM <---> NK2-SAM
K-SAM <---> NK4-SAM
NK2-SAM <---> NK4-SAM

K-PAM <---> NK-PAM
K-PAM <---> NK4-PAM
NK2-PAM <---> NK4-PAM

K module <---> NK2 module
K module <---> NK4 module
NK2 module <---> NK4 module

479

9.1 Starting the program run

The program PAMCONYV is started with / START- PAMCONV.
START-PAMCONV

VERSION = *STD / <product-version>
,MONJV = *NONE / <filename 1..54 without-gen-vers>

,CPU-LIMIT = *JOB-REST / <integer 1..32767 seconds>

Command statements of the routine can be entered once the program is running.

PAMCONYV is terminated using the END statement.
It can also be called as follows:

| START- EXECUTABLE- PROGRAM FROM FI LE=$PAMCONV

Alias: PAMCONYV

480

9.2 Functionality of PAMCONV
The PAMCONV utility routine provides the user with two basic functions for adapting files to the available disk
format.

® File format conversion

One of the functions of the PAMCONYV routine is to convert files from K format to NK format (and vice versa). File
format conversion is performed using statements, specifically the CONVERT-FILE statement.

® Reblocking

PAMCONYV can be used to convert the blocking factor of a file from an odd number to an even number. Only files
with an even-numbered blocking factor can be stored on an NK4 disk.

Functionality of PAMCONV
The following tables provide an overview of the conversion options for ISAM, SAM, PAM and load module files.

In addition, the basic directions of conversion are shown in diagram form for each file structure. The block structure
of the file is shown before and after conversion.

ISAM file
An ISAM file that is to be converted with PAMCONYV may have one of the following three block structures.

®* PAMKEY: the file is a K-ISAM file.
® DATAZ2K: the file is an NK2-ISAM file; the blocking factor n may be odd or even.
®* DATAA4K: the file is an NK4-ISAM file; the blocking factor n is even.

The table below summarizes all conversion options for an ISAM file:

Conversion options for an ISAM file

Source Conversion options Target

PAMKEY - > DATA2K
PAMKEY - > DATA4K
DATA2K === > PAMKEY
DATA2K === > DATA4K
DATA4AK - > PAMKEY
DATA2K <---e- > DATA2K
DATA4K <momeem > DATA4K
DATA4K - > DATA2K

MLU macro libraries are ISAM files and must be converted as such.

481

What block structure an ISAM file has before and after file format conversion is illustrated for the following directions
of conversion:

Source Conversion options Target

PAMKEY - > DATA2K
PAMKEY - > DATA4K
DATA2K - > DATA4K
Key:
* 16 bytes block management information

BLKSIZE Logical block length

Index bl. Index block

482

SAM file

A SAM file that is to be converted with PAMCONYV may have either of the following two block structures:
* PAMKEY: the file is a K-SAM file.

® DATA: the file is an NK2-SAM file if the blocking factor n is odd, or an NK4-SAM file if n is even.

The table below summarizes all conversion options for a SAM file:

483

Conversion options for a SAM file

Source Conversion options Target

PAMKEY - > DATA
DATA - > PAMKEY
DATA S > DATA

What block structure a SAM file has before and after file format conversion is illustrated for the following direction of
conversion:

Source Conversion options Target

PAMKEY - > DATA
Key:
* 16 bytes block management information

BLKSIZE |ogical block length; in the case of NK-SAM files the 16 bytes are deducted onlyonce per logical block
length

484

PAM file
A PAM file that is to be converted with PAMCONY may have one of the following three block structures:

®* PAMKEY: the file is a K-PAM file.

® DATA: the file is an NK2-PAM file if the blocking factor n is odd, or an NK4-PAM file if n is even.

® NO: the file is an NK2-PAM file if the blocking factor n is odd, or an NK4-PAM file if n is even. No block
management information is stored.

The table below summarizes all conversion options for a PAM file:

485

Conversion options for a PAM file

Source Conversion options Target

PAMKEY - > NO

NO e > PAMKEY
NO <mmme- > NO
DATA S > DATA

PAM-DATA files cannot be converted into K format. If NONKEY-TO-KEY conversion is selected nevertheless,
processing is rejected with message PEA2212.

PLAM libraries are PAM files that do not use the PAM key. They can be converted.

What block structure a PAM file has before and after file format conversion is illustrated for the following directions
of conversion:

Source Conversion options Target

PAMKEY - > NO

NO > NO

DATA - > DATA
Key:

* 12 bytes block management information

BLKSIZE Logical block length

486

Load module file

A load module is a specific type of PAM file. In the PAM file name (K-PAM or NK-PAM file), “PAM” is replaced by
“load module”. Reference is therefore made to K, NK2 and NK4 load module files.

NK2 load module files have the file format with the block structure NO, i.e. no block control information is stored.
The logical block length is (STD,1), i.e. 2048 bytes.

NK4 load module files have a logical block length of (STD,2), i.e. 4096 bytes. Any other block length specifications
are rejected with an error message.

Conversion options for a load module file

Source Conversion options Target
PAMKEY S > NO

NO S, NO

Source files encrypted with a crypto password

Files encrypted with a crypto password are supported.

First a check is made to see whether the source file is encrypted. If it is encrypted,
PAMCONYV also checks whether the crypto password involved is entered in the local task’s crypto password table.
(The entry is made using / ADD- CRYPTO- PASSWORD)) If it is not, PAMCONYV terminates conversion and issues an

error message.

If the source file is encrypted and the password involved is entered in the crypt password table, the target file is
assigned the same encryption.

The encryption is not adopted for the target file in the following cases:

® The target file is located on the home pubset under the TSOS user ID.

® The source file is a single file generation.

487

® The conversion is effected via an intermediate file (see “Conversion via an intermediate file” (Types of
conversion)).

488

9.3 Conversion of file formats

® Types of conversion
® System environment requirements

® Specifying source and target files

489

9.3.1 Types of conversion

Standard conversion
It is assumed that the source and target files for a conversion are stored on public volumes.

This might be called the standard case. Enough space for both files must be available. If this is not the case,
conversion must be effected via an intermediate file.

Conversion via an intermediate file

® General

During file conversion, the target file requires about the same amount of disk space as the source file. A “self-
contained” conversion without the need for additional space is not supported by PAMCONYV. This means that
enough disk space must be available for the target file. If this is not the case, conversion can be effected using
an intermediate file on magnetic tape or private disk.

When conversion takes place via an intermediate file, the FILE-DISPOSAL operand of the CONVERT-FILE
statement (which specifies how the generated file is to be handled after conversion) is ignored.

For this type of conversion, file convertibility is checked before an intermediate file is generated. This avoids a
situation where the intermediate file would not be convertible into a target file.

® Two-step conversion using an intermediate file
This type of conversion is performed explicitly by means of two CONVERT-FILE statements.
The two statements may be issued in the same program run or in separate program runs.
® Stepl
Conversion of the source (disk) file on magnetic tape or private disk.

® Step 2
Conversion of the intermediate file from magnetic tape or private disk into the target file.

® One-step conversion using an intermediate file

Two-step conversion as described above is combined into one operation here, which means that only one
CONVERT-FILE statement is needed. This is achieved by entering DISK or TAPE for the DEVICE-FOR-
TEMPFILE operand.

After successful conversion from the source file to the intermediate file, the source file is deleted to obtain space
for the target file.

The intermediate file is assigned a name with the following format:
SYSTMP. <t sn>. PAMCONV. <ss>. <cpusec>

This intermediate file is erased after it has been successfully converted to the target file; otherwise further
processing of the file is possible via this name.

i Internally, conversion is implemented in two steps as mentioned above. However, the user is not
requested to make a new input until both conversion steps have been concluded.

490

Specification of the conversion options

The conversion variants are selected on the basis of the source and target file specifications and the entry in the
DEVICE-FOR-TEMPFILE operand of the CONVERT-FILE statement:
® DEVICE-FOR-TEMPFILE=*NONE

No intermediate file is stored on a private volume, unless this is specified via / ADD- FI LE- LI NK.

The following options exist:

® The source file is specified as a disk file and there is no catalog entry or / ADD- FI LE- LI NK for the target file,
or the target file is specified as a disk file.

Conversion from source file on magnetic disk to target file on magnetic disk. (Standard conversion)
® The source file is specified as a disk file and the target file is specified as a tape file.

Conversion from source file on magnetic disk to intermediate file on magnetic tape. (Two-step conversion via
intermediate file on magnetic tape: Step 1.)

® The source file is specified as a tape file and there is no catalog entry or / ADD- FI LE- LI NK for the target file,
or the target file is specified as a disk file.

Conversion from source file on magnetic tape (must be an intermediate file generated by PAMCONYV) to
target file on magnetic disk.
(Two-step conversion via intermediate file on magnetic tape: Step 2.)

Specifying both source file and target file as magnetic tape files is not permitted.

i This implies that a file on magnetic tape must always be a PAMCONYV intermediate file, otherwise
conversion is rejected.

* DEVICE-FOR-TEMPFILE=*TAPE

An intermediate file on magnetic tape is generated in each case. The source and/or target file must not
simultaneously be specified as a tape file via / ADD- FI LE- LI NK.

The following options exist:

®* The source file is specified as a disk file and there is no catalog entry or / ADD- FI LE- LI NK for the target file,
or

® the target file is specified as a disk file:

Conversion from source file on magnetic disk to target file on magnetic disk. (Onestep conversion via
intermediate file on magnetic tape.)

¢ DEVICE-FOR-TEMPFILE=*DISK

An intermediate file on private disk is generated in each case. The source and/or target file must not
simultaneously be specified as a tape file via / ADD- FI LE- LI NK. If the source and/or target file is defined by
means of / ADD- FI LE- LI NK (for private disk), the volume specified in this command must not be identical to the
private disk volume identified in the DEVICE-FOR-TEMPFILE operand.

The following options exist:

® The source file is specified as a disk file and there is no catalog entry or / ADD- FI LE- LI NK for the target file,
or

® the target file is specified as a disk file:

491

Conversion from source file on magnetic disk to target file on magnetic disk. (Onestep conversion using an
intermediate file on magnetic disk.)

Format of the intermediate file on magnetic tape
The source (disk) files may be SAM, ISAM or PAM files.

The ISAM access method is not defined for tapes. A standard format is therefore used for the intermediate file on
tape. This is a SAM file containing the data records of the source file (ISAM: sorted by keys in ascending order). For
general PAM files and load modules, a record consists of an 8-byte field with the user part of the PAM key and a
2048-byte field with the PAM block.

Additional file attributes are stored in a separate user header label (UHL).

Such an intermediate file is merely intended as a temporary file for conversion purposes. Magnetic tapes with
standard labels must be used.
® Two-step conversion via intermediate file on tape

If several files are to be converted at the same time, / ADD- FI LE- LI NK with SUPPORT=TAPE(FILE-
SEQUENCE =...) must be issued; otherwise the intermediate file on tape will be overwritten.

® File attributes

An intermediate file on magnetic tape has the following attributes:

FCBTYPE = SAM
BLKSI ZE = (STD, 16)
RECFORM = VARI ABLE
LABEL = STD
BLKCTRL = PAMWKEY

Otherwise the default values from the FCB macro apply.

As can be seen from the following diagram, an intermediate file on tape is always a K-SAM file, regardless of the
key format or FCB type of the source and target files.

492

Figure 13: Intermediate file on magnetic tape

® User labels

For the registration of the source file attributes, the user header label UHL1 with the following format is used.
Positions Contents Function
1.4 UHL1 user header label identification
5.12 PAMELA-I ID for ISAM intermediate file
5..12 PAMELA-S ID for SAM intermediate file

5..12 PAMELA-P ID for PAM intermediate file

13..66 CL54 Name of source file
67 AL1(b) BLKSIZE=(STD,b)
68 X'02' RECFORM=VARIABLE
68 X'04' RECFORM=FIXED
69..70 AL2(r) RECSIZE=r
71..72 AL2(p) KEYPOS=p
73 AL1(k) KEYLEN=k
74 X'00' VALPROP=MIN

493

74 X'o1' VALPROP=MAX

75 AL1(f1) LOGLEN=f1

76 AL1(f2) VALLEN=f2

77 X'80' DUPEKY=YES

77 X'00' DUPEKY=NO
78..80 XL3'00' not used

Format of the intermediate file on private disk

In contrast to an intermediate file on tape, an intermediate file on private disk has no special format. It is always a
copy of the source/target file, depending on the conversion direction. The intermediate file is always generated as
an NK file. This makes it independent of the private disk’s key mode.

i In the case of SAM files, the RECSIZE value of the copy (intermediate file) may differ from that of the NK
source file. If the RECSIZE value of the NK source file is zero, the maximum possible value is used for
the intermediate file.

The following diagram shows in which format the intermediate file is created on private disk and from which file the
copy is made (depending on the conversion direction).

494

Figure 14: Intermediate file on private disk

495

9.3.2 System environment requirements

Tape peripherals

Magnetic tapes which are to store intermediate files must be equipped with standard labels.

Disk peripherals

If a system contains pure NK disk peripherals (without key simulation), creation of K disk files is not possible. As a
consequence, NONKEY-TO-KEY conversion is impossible in such systems.

If, generally speaking, both the source and the target file are to be situated within one pubset, care must be taken to
provide enough space so that both files can be accommodated during conversion. The target file may need more
space than the source file. If this is not possible, conversion should be effected via an intermediate file.

ACS (Alias Catalog Service)

Alias names may be used when specifying the source and target files for conversion. These names must be
specified in precisely the form in which they are entered in the alias catalog. Otherwise it is impossible to establish
the connection to the correct file name.

Diagnostic documentation

If problems occur in a PAMCONYV run (unexpected messages, dump, ...), the following documents are required for
diagnostic purposes:

® SYSLST log
The log is designed to show the factors affecting the PAMCONYV run (e.g. inputs made immediately before the
error occurred).

® |nput file in which the error occurred. The developers may then be able to find the cause of the problem which
may not lead to an abort until considerably later.

496

9.3.3 Specifying source and target files

The source file and the corresponding target file can be specified in one of three ways:

Specifying fully qualified file names

Source and target files can be selected by specifying fully qualified file names. A single file generation can also be
specified in this way.

In this case, the file attributes of the source file are transferred internally from the catalog entry.
The file attributes of the source file likewise apply to the target file.
The following file attributes are registered (see / ADD- FI LE- LI NK):

® access method

® record format

® record length

® data block length

® key length in ISAM files

® key position in ISAM files

®* multiple keys in ISAM files

® |ength of logical markers in ISAM files
® |ength of value markers in ISAM files

® character set

Specifying selection criteria

The source file is specified in the form of a partial qualification with or without additional selection criteria (operand
SELECT=*BY-ATTRIBUTES(...) of the CONVERT-FILE statement with CREATION-DATE, LAST-ACCESS-DATE,
SIZE, FILE-STRUCTURE, BLKSIZE, BLKCTRL).

This information is used to determine all files to be converted (see / SHOWN FI LE- ATTRI BUTES in the manual
“Commands” [1 (Related publications)]).

The names of the target files may include wildcards (see / SHOW FI LE- ATTRI BUTES).

The remaining attributes of the target file are the same as for the source file.

i If LMR module libraries were included in the specification of selection criteria for PAM files, the module
libraries could be destroyed.
To avoid this, a check is performed prior to conversion of a PAM file. LMR module libraries are then
recognized and not converted. LMR module libraries can be converted using the ISP-LMS (/EXEC $LMS).

PAM files which are load modules are recognized as such and converted to the appropriate load module
file format.

497

Specifying a reference via a link name

The reference is established via the link name to a previous / ADD- FI LE- LI NK specifying the file.
The link name is specified in the *LINK(LINK-NAME-=...) operand of the CONVERT-FILE statement.

This method can also be used to select a single file generation.

The link name is mandatory if the target file is to have specific attributes which cannot be taken from the catalog

entry of the source file. These include in particular:

SPACE definitions

index/data separation (for K-ISAM files only)
PAD factor (normally the default value is used)
RETPD specification

WROUT=NO (WROUT=YES is standard)
WRCHK=YES (WRCHK=NO is standard)

498

9.4 Reblocking

Only files with an even blocking factor can be stored on NK4 disks. PAMCONYV therefore offers the reblocking
function, which allows files with an uneven blocking factor to be stored on NK4 disks. It is implemented in the TO-
FILE-BLKSIZE operand of the CONVERT-FILE, MODIFY-CONVERT-FILE-DEFAULTS and SHOW-CONVERT-
FILE-DEFAULTS statements.

499

9.4.1 Explicit reblocking

The user initiates reblocking in the TO-FILE-BLKSIZE operand. This defines the logical block size of the target file.
If the block size of the source file is uneven and the user explicitly specifies the block size of the target file, an error
message is issued when the file is opened on an NK4 disk.

500

9.4.2 Implicit reblocking

If TO-FILE-BLKSIZE=*STD/*NK4 is specified, reblocking is carried out by PAMCONV.

® Increasing the blocking factor implicitly with TO-FILE-BLKSIZE=*STD

The blocking factor of the target pubset applies; if necessary, PAMCONYV increases the blocking factor implicitly.
The block size remains unchanged for NK2 pubsets. In the case of NK4 pubsets, the blocking factor of the target
file is increased if the blocking factor of the source file is uneven.

® |ncreasing the blocking factor implicitly with TO-FILE-BLKSIZE=*NK4
If the blocking factor of the source file is uneven, the blocking factor of the target file is increased, regardless of
the target pubset blocking factor.

PAMCONYV does not decrease the blocking factor implicitly.

501

9.4.3 Reblocking PAM-DATA files without changing the file format

Another function of PAMCONV is reblocking NK-PAM-DATA files without changing the file format, i.e. both the
source and the target file have the attribute BLKCTRL=DATA. Reblocking without conversion is supported by the
specification DIRECTION=*TO-NONKEY and by the TO-FILE-BLKSIZE operand.

The blocking factor of a PAM-DATA file is increased only if the block size of the target file (TO-FILE-BLKSIZE) can
be divided by the block size of the source file without leaving a remainder. Modulo(target-BLKSIZE / source-
BLKSIZE)=0

If the remainder is not zero, reblocking is aborted with an error message.

When increasing the blocking factor of PAM-DATA files, only the block control field of the first block in each logical
block is written to the target file. All other control fields in the same logical block are filled to 12 bytes with X'00'".

The blocking factor of PAM-DATA files is decreased only if the block size of the source file can be divided by the
block size of the target file without leaving a remainder.

Modulo(source-BLKSIZE / target-BLKSIZE)=0

If the remainder is not zero, reblocking is aborted with an error message.

When the blocking factor is decreased, a check is made as to whether the control fields contain X'00'. If not,
reblocking is aborted with an error message.
The blocking factor is decreased only if the blocking factor of the file has already been increased.

If the source PAM-DATA file has the block size BLKSIZE=(STD,1), PAMCONYV performs implicit reblocking. Since
this changes the file structure, a warning is issued.

Restrictions

* PAMCONY cannot convert NK2-PAM-DATA files with a BLKSIZE greater than (STD,8).

® The “reblocking” function for PAM-DATA files is executed for the TO-NONKEY conversion direction only. If
NONKEY-TO-KEY is specified, conversion is aborted with message PEA2212, because PAM-DATA files cannot
be converted to KEY.

502

9.4.4 Problems when decreasing the blocking factor

Decreasing the blocking factor can cause the record length (RECSIZE) of the source file to exceed the block size of
the target file.
® Fixed record length (RECFORM=F)

PAMCONYV checks the record length of the source file and compares it with the record length of the target file,
calculated from the block size of the target file. If the record length of the source file is greater than that of the
target file, processing is aborted with a message.

® Variable or undefined record length (RECFORM=V/U)

PAMCONYV assumes that the record length of the target file is not exceeded and starts processing. If the record
length of the target file is nevertheless exceeded, DMS informs PAMCONYV and processing is aborted with a
message.

Increasing the blocking factor does not cause any problems relating to the record length of the target file.

503

9.5 Controlling conversion and reblocking

The CONVERT-FILE statement is used to control the conversion and reblocking of files. Other PAMCONV
statements are used to set or query the user-defined PAMCONYV environment.

The following subsections describe special points relating to the conversion of ISAM and PAM file structures and to

the conversion procedure.

504

9.5.1 Special points relating to conversion

Special points relating to the conversion of ISAM files

The TO-FILE-BLKCTRL operand of the CONVERT-FILE or MODIFY-CONVERT-FILE-DEFAULTS statement can
be used to define the file format for ISAM files if the conversion direction TO-NONKEY is selected.

This particular case is subject to certain restrictions with regard to compatibility between the logical block size (TO-
FILE-BLKSIZE) and the file format (TO-FILE-BLKCTRL) of an ISAM target file.

The assignment TO-FILE-BLKCTRL=*STD means that the block control information is set according to the target
pubset. With NK2 pubsets, the file format is DATA2K; with NK4 pubsets, it is DATA4K.
If TO-FILE-BLKCTRL=*NK4 is specified, the block control information is assigned the value DATA4K.

TO-FILE-BLKSIZE defines the logical block size of the target file:
® TO-FILE-BLKSIZE=*STD:
the logical block size is set according to the target pubset.

® TO-FILE-BLKSIZE=*NK4:
the logical block size is always even.

® TO-FILE-BLKSIZE=<integer 1..16>:
the target file is generated with a logical block size equal to the value specified here.

The following table shows the compatibility between the logical block size TO-FILE-BLKSIZE and the file format TO-
FILE-BLKCTRL of an ISAM target file.

TO-FILE-BLKSIZE

TO-FILE- STD NK4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
BLKCTRL

STD XD X X X X X X X X X X X X X X X X X
NK4 X X X X X X X X X

1 In this table X means that both specifications are supported; otherwise, an error message is used.

Special points relating to the conversion of PAM files (not load modules)

In order to ascertain whether a PAM file with a PAM key actually uses this key, the user part of the PAM key is
checked.

If the user part contains 8 X'00' bytes in each PAM block, the file is considered to be convertible.

Conversion to NK format consists in dropping the PAM key information (which is not in use); the BLKCTRL indicator
field (see “Defining block control information during conversion” below) is assigned the value NO.

If the user part does not contain X'00', the file is assumed to use the PAM key. Such a file is classified as
inconvertible, and conversion is aborted.

PAM files whose PAM key user part contains X'01' or X'80' in byte 1 but otherwise zero are an exception. With such
files it is assumed that the PAM key is not used but that the user part was erroneously supplied with the above-
mentioned values as a result of a DMS error. Such files are therefore classified as convertible to NONKEY format. A
message pointing out this exception is displayed during conversion.

If a K-PAM file contains gaps, these are replaced by “zero blocks” (2048 X'00' bytes) in the NK-PAM file during
conversion.

505

Conversion of file generations

The file generations making up a file generation group can be converted by issuing a separate CONVERT-FILE
statement for each file generation.

Fully automatic conversion of a file generation group with all its file generations in one pass is not possible; any
such attempt is rejected with an error message.

Defining block control information during conversion

When converting from K to NK format, the block control information is set for the target file, depending on the
relevant access method:

If the file name is specified by means of a link name and the BLKCTRL parameter is used, the BLKCTRL
specification must be correct.

Converting an NK file into NK format

For compatibility reasons, the conversion of a file into NK format when the source file is already in NK format
continues to be supported. But the function only copies the source file to the target file.

Transfer of file protection attributes after conversion

Following successful conversion, the file protection attributes of a source file can be transferred to the target file. To
do this, the PROTECTION operand must be specified with the *SAME value in the CONVERT-FILE statement. If
the user does not specify this value, the target file will be created without the file protection and file security features
of the source file.

File protection attributes are transferred in accordance with the specification PROTECTION=*SAME in / COPY- FI LE
(see the “Commands” manual [1 (Related publications)]).

In order to be able to convert a protected file, before the PAMCONV run the user must specify all access
authorizations (e.g. issuing of passwords) with the corresponding commands. The conversion algorithm itself is then
executed in the usual way, without change. At the end of a successful conversion procedure, the protection
attributes of the source file are transferred to the target file.

® Transfer of file protection attributes according to user ID
The list below is based on direct conversion (without intermediate medium) from disk to disk.

® Conversion within any user ID

The following protection attributes are transferred:

Protection attribute Description

ACCESS Standard access control; specifies whether write access (implicit read
access) is permitted for the file, or read access only.

BACKUP-CLASS specifies the frequency of automatic file saving with the ARCHIVE or
HSMS backup system.

NUM-OF-BACKUP-VERS specifies whether the file is part of the version backup and, if yes, also
the maximum number of file versions to be saved in the version
backup archive.

BASIC-ACL Basic access control list; access control for the file is implemented via
a BASIC-ACL entry. The read, write and execute access rights can be
distributed among various user groups.

506

DESTROY-BY-DELETE Files that are no longer required are overwritten with X'00". This
increases data protection.

ENCRYPTION Password encryption

GUARDS Access control via GUARDS; GUARDS is a functional unit of the
SECOS software product.

LARGE Extent of automatic file saving with the ARCHIVE or HSMS backup
system.
MIGRATE Files are migrated to another storage level if they have not been

accessed for a certain length of time.

OPNBACK specifies whether database files can also be saved with ARCHIVE
even when they are open.

RETENTION-PERIOD defines a protective deadline up until which only read access to the file
is allowed, i.e. it must not be modified or deleted.

USER-ACCESS controls access to the file via other user IDs.

Passwords cannot be transferred as part of conversion within any user ID. This is only possible during
conversion under the system administration ID (TSOS).

® Conversion under the system support ID (TSOS)

Read (READ-PASSWORD), write (WRITE-PASSWORD) and execute passwords (EXEC-PASSWORD) are
transferred, as are all protection attributes described above.

® Conversion of a source file from another user ID to the user’s own ID

The file saving attributes LARGE, BACKUP, NUM-OF-BACKUP-VERS, MIGRATE and OPNBACK and the file
security attributes DESTROY-BY-DELETE, RETENTION-PERIOD, READ-PASSWORD, WRITE-
PASSWORD, EXEC-PASSWORD and ENCRYPTION are transferred.

BASIC-ACL or GUARDS entries in the source file are not transferred to the target file. These entries are
assigned default values in the target file, as is the file protection attribute ACCESS. If an existing target file
already has protection entries, they will be reset before the source file entries are transferred.

® Conversion of a source file from the user’'s own ID to another user ID

The protection attributes of the source file are not transferred to the target file, even if the user is authorized to
create the target file.

® Restrictions applying to the transfer of file protection attributes when converting via an intermediate medium

The transfer of file protection attributes is only supported within “one-step conversion using an intermediate file”.
The file protection attributes are not transferred in the event of “two-step conversion using an intermediate file”. If
PROTECTION=*SAME is specified in the CONVERT-FILE statement, it is ignored.

® QOne-step conversion using an intermediate medium

The protection attributes of the source file are transferred because neither the PAMCONYV run nor the current
conversion statement CONVERT-FILE are interrupted. The following processing steps are executed:

® conversion from a public disk to an intermediate medium
® release of the source file’s storage space

® internal transfer from the intermediate medium to the public disk

507

® gsetting of protection attributes

® deletion of the source file

508

® Two-step conversion using an intermediate medium

With this method of conversion both the PAMCONYV run and the conversion statement may be interrupted.
The file protection attributes cannot be transferred when the intermediate file is output on magnetic tape or
disk, for the following reasons:

® The second conversion step (from magnetic tape or private disk to the target file) could take place at an
arbitrary later time, on an arbitrary system. This may result in incompatibilities, because the transfer of the
NK file from the intermediate medium to a public data medium does not have to be executed with
PAMCONV. Other transfer routines do not receive any information about the transfer of file protection
attributes.

® The user label of the magnetic tape on which the intermediate file is to be stored must be retained, for
compatibility reasons; since further file characteristics cannot be included due to lack of space, it is
impossible to transfer the protection attributes.

® Procedure with the target file after conversion

The procedure with the target file after conversion is governed by the FILE-DISPOSAL operand in the
CONVERT-FILE statement. The file protection attributes are transferred as shown below when the following
operand values are specified:

FILE-DISPOSAL = Meaning for transfer of file protection attributes

KEEP Default setting. Source and target files are retained. The file protection attributes
are transferred without problems.

RENAME The source file is deleted after conversion. The protection attributes are transferred
before deletion. If an error occurs during transfer, the source file is not deleted and
the process is aborted with an error. The file protection attributes are therefore
retained.

REPLACE The source file is deleted after conversion and the target file is recataloged in
accordance with the source file. The protection attributes are transferred before
deletion. If an error occurs during transfer, the source file is not deleted and the
process is aborted with an error. The file protection attributes are therefore retained.

INPLACE After conversion, the source file is overwritten with the target file. The file protection
attributes are transferred.

509

9.5.2 Further notes on conversion

To facilitate decision-making, PAMCONYV offers the CLASSIFY-FILE statement, which checks files for their
convertibility.

510

9.6 Statements

PAMCONYV reads one statement at a time and executes it immediately. If link names are specified for a conversion,
the associated TFT entries are not deleted following conversion, so that the link names can be used again.

511

9.6.1 Overview of PAMCONYV statements

Statement Function

CHANGE-TO-SYSTEM-MODE Switch to system mode

CHECK-BLKCTRL-INDICATOR Check file format and BLKCTRL indicator for consistency, show file
format

CLASSIFY-FILE Classify files according to their convertibility

CONVERT-FILE Convert ISAM/SAM/PAM files or load module files

END Terminate the PAMCONYV program

MODIFY-CONVERT-FILE- Change the current default values for the CONVERT-FILE statement

DEFAULTS

MODIFY-LOGGING-