
English

JENV V9.0A

Development and Runtime Environment

User Guide

*

June 2018

Table of Contents

 User Guide . 7
1 Introduction . 8

1.1 Objectives and target groups of this manual . 9
1.2 Summary of contents . 10
1.3 Notational conventions . 12

1.3.1 Description of commands . 13
1.3.2 Names of files, commands and programs . 14
1.3.3 Description of execution sequences . 15

1.4 Further information and sources . 16
1.5 License regulations . 17

2 Environment variables . 18
3 Conversion from ASCII to EBCDIC . 20

3.1 Code sets . 21
3.2 Localized streams . 22
3.3 Property files . 23
3.4 Policy files . 24
3.5 PrintStream . 25
3.6 Standard streams . 26
3.7 JAR archives . 29
3.8 Program arguments . 30

4 The Java package JRIO . 31
4.1 Concepts . 32

4.1.1 File systems . 33
4.1.1.1 File names in the DMS file system . 34
4.1.1.2 File names in the UFS file system . 35

4.1.2 File types . 36
4.1.3 Access methods . 37
4.1.4 Access types . 38
4.1.5 Shared update processing . 39
4.1.6 Options and restrictions relating to access types in DMS 40
4.1.7 Drivers . 41
4.1.8 Security . 42

4.2 API overview . 44
4.2.1 Record . 46

4.2.1.1 Constructors . 47
4.2.1.2 General methods . 48
4.2.1.3 Methods for extracting the data of a record . 49
4.2.1.4 Methods for extracting the data fields of a record 50

4.2.1.5 Methods for filling a record with data . 51
4.2.1.6 Methods for filling data fields of a record . 52

4.2.2 RecordFile . 53
4.2.2.1 Basic structure of a file name . 54
4.2.2.2 Constructors . 55
4.2.2.3 Fields . 56
4.2.2.4 General methods . 57
4.2.2.5 Methods for analyzing and transforming path names 58
4.2.2.6 Methods for inquiring file and directory attributes 61
4.2.2.7 Methods for modifying file and directory attributes 63
4.2.2.8 Methods for generating files and directories . 64
4.2.2.9 Methods for deleting and renaming files and directories 65
4.2.2.10 Methods for listing directories . 66

4.2.3 AccessParameter . 67
4.2.3.1 General parameter methods . 68
4.2.3.2 Parameters for SAM in DMS . 69
4.2.3.3 Parameter method for ISAM in DMS . 70
4.2.3.4 Parameter methods for UPAM in DMS . 72

4.2.4 Sequential data processing . 73
4.2.4.1 InputRecordStream . 74
4.2.4.2 FileInputRecordStream . 75
4.2.4.3 ArrayInputRecordStream . 77
4.2.4.4 OutputRecordStream . 78
4.2.4.5 FileOutputRecordStream . 79
4.2.4.6 ArrayOutputRecordStream . 80

4.2.5 RandomAccessRecordFile . 81
4.2.5.1 Opening and closing a file . 82
4.2.5.2 Methods for reading records . 83
4.2.5.3 Methods for writing records . 84
4.2.5.4 Methods for positioning and changing size . 85

4.2.6 Indexed-sequential data processing . 86
4.2.6.1 KeyDescriptor . 87
4.2.6.2 KeyValue . 89
4.2.6.3 KeyedAccessRecordFile . 90

4.3 Implementation details . 93
4.3.1 File-system-specific definitions . 94
4.3.2 Access-method-specific definitions . 96
4.3.3 Default values of the DMS access methods . 99

4.4 Restrictions . 100
4.5 Examples . 101

4.5.1 Sequential data processing . 102
4.5.2 Random data processing . 105
4.5.3 Indexed-sequential data processing . 111

5 Invoking the VM from the BS2000 command interface 115
5.1 INITIALIZE procedure . 116
5.2 START procedure . 117

5.3 DELETE procedure . 120
5.4 Invoking the VM using the invocation API . 121
5.5 Special considerations . 122

6 JNI under BS2000 . 123
6.1 The different variants of JNI . 124
6.2 Java data types in C . 125

6.2.1 Whole numbers . 127
6.2.2 Floating point numbers . 128
6.2.3 Strings . 130

6.3 Dynamic loading of native methods . 133
6.3.1 Shared libraries in Unix systems . 134
6.3.2 Shared libraries in BS2000 . 135
6.3.3 Creation of shared objects . 136
6.3.4 Use of shared objects from Java . 138

6.4 Invocation API . 139
6.4.1 Compiling the C and C++ sources . 140
6.4.2 Linking C and C++ applications with Java and Green Threads 141

6.5 Examples . 142
6.5.1 Implementation of a native method in C . 143
6.5.2 Implementation of a native method in C++ . 146
6.5.3 Use of Java from a C application . 147
6.5.4 Use of Java from a C++ application . 151

7 JCI - Invocation API for COBOL . 154
7.1 Compiling the COBOL source codes . 155

7.1.1 Assigning the JCI-COPY library . 156
7.1.2 Required options/directives . 157

7.2 Linking COBOL applications with Java . 158
7.3 Processing COBOL applications with Java . 159
7.4 Characters and strings . 160
7.5 Floating point numbers . 161
7.6 Object references . 162
7.7 Java handle . 163
7.8 Return code in special register RETURN-CODE . 164
7.9 Arguments and event values of Java methods . 165
7.10 Exceptions . 167
7.11 COPY elements . 168

7.11.1 JCI-CONST - Definition of constants . 169
7.11.2 JCI-TYPEDEFS - Type definitions . 171
7.11.3 JCI-VMOPT - Structure for transferring options . 172
7.11.4 JCI-METHODARGS - Function arguments . 173

7.11.5 JCI-METHODRES - Function result . 174
7.12 Functions . 176

7.12.1 Starting and terminating the Java VM . 177
7.12.1.1 JCI_CreateJavaVM . 178
7.12.1.2 JCI_DestroyJavaVM . 180

7.12.2 Classes and methods . 181
7.12.2.1 JCI_FindClass . 182
7.12.2.2 JCI_GetStaticMethodID . 184
7.12.2.3 JCI_CallStaticMethod . 186
7.12.2.4 JCI_GetMethodID . 189
7.12.2.5 JCI_CallMethod . 190
7.12.2.6 JCI_CallNonvirtualMethod . 191

7.12.3 Object references . 193
7.12.3.1 JCI_DeleteLocalRef . 194
7.12.3.2 JCI_NewLocalRef . 195

7.12.4 Objects . 196
7.12.4.1 JCI_NewObject . 197
7.12.4.2 JCI_GetObjectClass . 200
7.12.4.3 JCI_IsInstanceOf . 201
7.12.4.4 JCI_IsSameObject . 202

7.12.5 Fields . 203
7.12.5.1 JCI_GetStaticFieldID . 204
7.12.5.2 JCI_GetStaticField . 206
7.12.5.3 JCI_SetStaticField . 208
7.12.5.4 JCI_GetFieldID . 210
7.12.5.5 JCI_GetField . 211
7.12.5.6 JCI_SetField . 212

7.12.6 Strings . 213
7.12.6.1 JCI_NewString . 214
7.12.6.2 JCI_GetStringLength . 216
7.12.6.3 JCI_GetString . 217

7.12.7 Arrays . 219
7.12.7.1 JCI_GetArrayLength . 220
7.12.7.2 JCI_NewObjectArray . 221
7.12.7.3 JCI_GetObjectArrayElement . 223
7.12.7.4 JCI_SetObjectArrayElement . 225
7.12.7.5 JCI_NewArray . 227
7.12.7.6 JCI_GetArray . 229
7.12.7.7 JCI_SetArray . 231

7.12.8 Exceptions . 233
7.12.8.1 JCI_ExceptionCheck . 234
7.12.8.2 JCI_ExceptionOccurred . 235
7.12.8.3 JCI_ExceptionDescribe . 236
7.12.8.4 JCI_ExceptionClear . 237

7.12.9 Other functions . 239
7.12.9.1 JCI_GetVersion . 240
7.12.9.2 JCI_GetErrorInformation . 241

7.13 Examples . 243
7.13.1 Java class . 244
7.13.2 Compiling the Java code . 245
7.13.3 COBOL program . 246
7.13.4 Compiling the COBOL program in POSIX . 249
7.13.5 Linking the COBOL program in POSIX . 250
7.13.6 Processing of the COBOL program in POSIX . 251
7.13.7 Compiling the COBOL program under the BS2000 command line interface .
252
7.13.8 Linking the COBOL program under the BS2000 command line interface . 253
7.13.9 Processing of the COBOL program under the BS2000 command line
interface . 254

8 Commands for BS2000 . 255
8.1 mk_shobj . 256
8.2 pr_shobj . 258
8.3 java . 259
8.4 native2ascii . 261
8.5 jconsole . 263
8.6 jdb . 264

9 Appendix: Compatibility with earlier versions and migration 265
9.1 Incompatibilities . 266

10 Related publications . 267
10.1 Texts for Java . 268
10.2 Further literature . 269

JENV V9.0A

 7

User Guide

Comments… Suggestions… Corrections…

The User Documentation Department would like to know your opinion on this manual. Your feedback helps us to
optimize our documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation according to DIN EN ISO 9001:2008

To ensure a consistently high quality standard and user-friendliness, this documentation was created to meet the
regulations of a quality management system which complies with the requirements of the standard DIN EN ISO
9001:2008.

Copyright and Trademarks

Copyright © 2018 Fujitsu Technology SolutionsGmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com

JENV V9.0A

 8

1 Introduction

This documentation for the BS2000 Environment For Java™ (JENV) explains the main points of calling Java
commands insofar as they differ from Oracle’s original description. It also describes the special features which arise
from the conversion from ASCII to EBCDIC, and from working with the Java Native Interface (JNI) within the context
of JENV V9.0A. JENV V9.0A is an implementation of the “Java Platform, Standard Edition” (Java SE™) based on
OpenJDK 9 for BS2000 with the full name “BS2000 Environment for Java™” V9.0A.

The product includes a runtime environment (JRE) that complies with the relevant specifications:

„The Java Language and Virtual Machine Specifications, Java SE 9“
http://docs.oracle.com/javase/specs/

the version specific API specification
„Java™ Platform, Standard Edition 9 API Specification“
http://docs.oracle.com/javase/9/docs/api/

The product also includes a software development kit (JDK) with a range of development tools. These can be used
to develop applications or applets that comply with the above API specification.

JENV V9.0A supports all features of OpenJDK with the following exceptions:

Audio-Features

JDGA (Java Direct Graphic Access)

Class Data Sharing.

JENV V9.0A also includes font files from the DejaVu Fonts Package.

The only VM technology used is the HotSpot client VM.

The OpenJDK demo programs are not contained in the product.

Revoked Java Packages

The packages com.fsc.java.bs2000, com.fsc.java.io and com.fsc.jrio are supported for the last time in JENV V9.0A.
Since JENV V7.0A the functionality has been replaced by the corresponding com.fujitsu.ts. packages.
The affected Java sources will be marked as "deprecated and marked for removal" by a tightening of the
@Deprecated annotation.

Module concept

The packages com.fujitsu.ts.java.bs2000 and com.fujitsu.ts.java.io are included in the module java.base.
The com.fujitsu.ts.jrio package is included in the jdk.jrio module

Optimized variant for S and SQ systems

Optimized platform-dependent variants are provided for S and SQ systems. If required, the /390 variant of JENV
can also be installed and used on SQ systems.

http://docs.oracle.com/javase/specs/
http://docs.oracle.com/javase/9/docs/api/

JENV V9.0A

 9

1.1 Objectives and target groups of this manual

The documentation is intended for all those who wish to use Java for development work and/or in their system TM

environment.

JENV V9.0A

 10

1.2 Summary of contents

Only the special BS2000 features and the special BS2000 parts are described in this manual. Knowledge of the
original description of Oracle is a requirement.

Conversion from ASCII to EBCDIC

Java is a product which was developed in an ASCII world (Unix systems and Windows systems). In an operating
system based on EBCDIC code, therefore, you will notice a number of peculiarities when working with code sets,
localized streams, print streams, and standard streams, for example. These peculiarities are described in this
documentation.

JNI under BS2000

This documentation also describes a number of special features that you as a user of Java Native Interfaces (JNIs)
in BS2000 must take into consideration, such as the use of Java data types in C and the dynamic loading of native
methods.

Contents of the documentation

This manual has the following contents:

The contains a description of the file structure, how to use the classpath and the chapter "Environment variables"
environment variables.

The describes the special issues that need to be taken into account chapter "Conversion from ASCII to EBCDIC"
as a result of the different code set used by BS2000 (EBCDIC).

The describes the interfaces and the implementations of JRIO.chapter "The Java package JRIO"

The describes the procedures , chapter "Invoking the VM from the BS2000 command interface" INITIALIZE
 and .DELETE START

The explains the special issues that users of Java Native Interfaces (JNI) must take chapter "JNI under BS2000"
into account in BS2000.

The describes the particularities, that a user of the Java-COBOL-chapter "JCI - Invocation API for COBOL"
Interface (JCI) in BS2000 must observe.

The describes the and commands that have been chapter "Commands for BS2000" mk_shobj pr_shobj
additionally implemented in JENV and the commands whose description deviates from that in “JDK Tools and

" [].Utilities 11

The describes incompatibilities between chapter "Appendix: Compatibility with earlier versions and migration"
JENV V9.0A and predecessor versions and it describes how to migrate from earlier versions to JENV V9.0A.

Readme file

The functional changes to the current product version and revisions to this manual are described in the product-
specific Readme file.

Readme files are available to you online in addition to the product manuals under the various products at
. You will also find the Readme files on the Softbook DVD. http://manuals.ts.fujitsu.com

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the BS2000 system:

SYSRME.<product>.<version>.<lang>

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

JENV V9.0A

 11

This file contains brief information on the Readme file in English or German (<lang>=E/D). You can view this
information on screen using the /SHOW-FILE command or an editor.

The command shows the userID under which /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product>

the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and using a product version
are contained in the associated Release Notice. These Release Notices are available online at http://manuals.ts.

. fujitsu.com

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

JENV V9.0A

 12

1.3 Notational conventions

This documentation uses the following notational conventions:

JENV V9.0A

 13

1.3.1 Description of commands

The description of the commands keeps - where possible - to a fixed framework:

Syntax

Shows the command syntax.

Description

Meaning, function, and mode of operation of the command. Where necessary, an explanation of the
prerequisites or conditions to be adhered to is provided.

Options

Description of the relevant command line options.

See also

Further sources of information relating to the command described.

Syntax representation

The metasyntax used has the following meaning:

Bold characters

Constants. Bold characters must be entered exactly as shown.

Normal characters

Variables. These strings represent real specifications that you enter or select.

Italics

Variables in options, which you have to replace with real specifications.

[]

Options. Arguments in square brackets are optional. The square brackets themselves must not be entered.

...

The previous expression can be repeated.

{ | }

Selection option. Chose precisely one of the expressions separated by vertical lines. The braces themselves
must not be entered.

JENV V9.0A

 14

1.3.2 Names of files, commands and programs

Names of files, commands, and programs etc. are shown in the text in . If variables occur, they are placed in italics
 brackets.<angle>

JENV V9.0A

 15

1.3.3 Description of execution sequences

Activities are subdivided into individual steps:

Step which is part of the overall operating sequence. This is where you enter a command or perform an action.

JENV V9.0A

 16

1.4 Further information and sources

You will find further information about JavaTM

in the chapter "Related publications"

under the Web page with the URL http://www.fujitsu.com/fts/products/computing/servers/bs2000/software
/programming/javabs2000.html

http://www.fujitsu.com/fts/products/computing/servers/bs2000/software/programming/javabs2000.html
http://www.fujitsu.com/fts/products/computing/servers/bs2000/software/programming/javabs2000.html

JENV V9.0A

 17

1.5 License regulations

JENV V9.0A is Open Source Software.
JENV is based on a port of OpenJDK 9.
All relevant license information can be found in

SYSDOC.JENV.090.OSS

oder on the internet at

http://docs.ts.fujitsu.com/dl.aspx?id=9149a4ae-06ef-42fd-a971-ecff349bcc66.

http://docs.ts.fujitsu.com/dl.aspx?id=9149a4ae-06ef-42fd-a971-ecff349bcc66

JENV V9.0A

 18

2 Environment variables

This section describes the following environment variables:

CLASSPATH

JAVA_HOME

JENV_VMTYPE

JENV_SYSHSI

LD_LIBRARY_PATH

CLASSPATH

The syntactical structure of the environment variable corresponds to that of the environment CLASSPATH PATH
variable and describes the directories and JAR and ZIP archives in which the user classes are searched for.

When using the commands and tools, users must only define this environment variable so that their own java
classes are found. If the environment variable is not set, the search path for user classes is set to the current
directory (except in the case of).appletviewer

Alternatively, the -classpath option can also be used for the JAVA interpreters to define the path to the user classes.

JAVA_HOME

The environment variable describes the installation location of the JAVA runtime environment. It is JAVA_HOME
only needed for application programs which access JAVA using the invocation API.

For a standard installation JAVA_HOME is to be set to /opt/java/jdk-9.0.4. Refer to the Release Notice for the
currently valid name

The Java tools use their own mechanisms to determine their installation location. This environment variable should
thus no be set if the Java Interpreter and the other Java tools are to be used.

JENV_VMTYPE

For user programs which utilize the invocation API no interface exists to select the VM for processing. This
environment variable can be used to request a special VM for such programs. The following values are permitted:

client

Selection of the HotSpot™ client VM

If the variable is not set, the default applies (see subsection "Options for selecting the HotSpot™ VM type" in
section). However, because only one VM implementation is currently available, this variable is not needed."java"

The Java tools do not use this environment variable but evaluate the corresponding command line options.

JENV_SYSHSI

The environment variable specifies the HSI variant to be used for the VM when calling the JENV_SYSHSI java
command (see). The following values are possible:section "java"

s390

JENV V9.0A

 19

The S390 variant of JENV is used (if available).

x86

The X86 variant of JENV is used (if available).

If you don’t specify the variable, the default value is used, as desribed in section "Options for selecting the HSI
. In case you explicitly specify the variant in the command, this value precedes the environment variant" java

variable.

LD_LIBRARY_PATH

The environment variable describes the directories in which a search will be made for “Shared LD_LIBRARY_PATH
Objects” with the user’s native methods. In its syntactical structure it corresponds to the environment variable .PATH

Other mechanisms are used for the search for native methods of Java implementation. With applications that use
the invocation API, they are found using for example.JAVA_HOME

JENV V9.0A

 20

3 Conversion from ASCII to EBCDIC

The Java SE JDK was developed in an ASCII environment (Unix systems and Windows systems). Since the
BS2000 code set is quite different (EBCDIC), therefore, you will notice a number of peculiarities which are
described below.

JENV V9.0A

 21

3.1 Code sets

In ASCII-based operating systems, the partial identity between ASCII and Unicode means that it is not always
necessary to distinguish between text and binary input/output. However, in BS2000 (and other non-ASCII-based
operating systems, such as OS/390), this distinction is extremely important. If this is not taken into consideration in
Java programs, not only will they not be portable, but they will have to be modified if they are to function correctly on
BS2000.

Java works internally in Unicode. For communication with the outside world Java can use any code. For the input
/output of text data, the new classes

 and , which perform the appropriate code conversions, have been InputStreamReader OutputStreamWriter
introduced in JDK 1.1. The standard code conversion which is used here is determined by the value of the system
property . By default this is set to OSD_EBCDIC_DF04_1. When Java is called, this setting can be file.encoding
changed either globally via or else locally through specification of an appropriate code set -Dfile.encoding=XXX
during instantiation of the classes and .InputStreamReader OutputStreamWriter

Supported code sets

The following code sets are additionally supported in BS2000 and accordingly are available in other Java not
implementations:

OSD_EBCDIC_DF04_1

Default code set in BS2000. It is the same as the EBCDIC.DF.04-1 character set, except that the EBCDIC
characters x'15' and x'25' are swapped, so that x'15' is interpreted as the character for newline. This is in
keeping with current practice in POSIX and in C programming in BS2000.

This character set is compatible with the ISO 8859-1 character set, the default character set used in Unix
systems. “Compatible” here means that it contains the same character set and can therefore be mapped 1:1, it
is just that encoding is different.

OSD_EBCDIC_DF03_IRV

EBCDIC.DF.03.IRV (international reference version) character set, in which, once again, x'15' is the character
for newline.

OSD_EBCDIC_DF04_15

This is the same as the EBCDIC.DF.04_15 character set, except that the EBCDIC characters x'15' and x'25'
are swapped, so that x'15' is interpreted as the character for newline. This is in keeping with current practice in
POSIX and in C programming in BS2000.
This character set is fully compatible with the ISO 8859-15 character set. “Compatible” here means that it
contains the same character set and can therefore be mapped 1:1, it is just that encoding is different.

Specification of the code set

The commands , and support the option, which allows you to javac javadoc, appletviewer/ native2ascii -encoding
specify the character set for the files to be accessed by the command.

JENV V9.0A

 22

3.2 Localized streams

For JENV, as for OS/390, various new classes and methods have been implemented for localized streams, with the
result that a number of ASCII/EBCDIC problems have been resolved. As an applications programmer, however, you
are advised to restrict yourself to the and classes defined by Oracle InputStreamReader OutputStreamWriter
America Inc. for inputting and outputting text.

The new classes implemented for this purpose are as follows

com.fujitsu.ts.java.io.LocalizedInputStream

com.fujitsu.ts.java.io.LocalizedOutputStream

com.fujitsu.ts.java.io.LocalizedPrintStream

These classes cannot be instantiated, but they do offer a static method , which converts a specified stream localize()
into a “Localized Stream” if the specified stream is based on a file.

These methods are:

com.fujitsu.ts.java.io.LocalizedInputStream.localize(InputStream)

com.fujitsu.ts.java.io.LocalizedOutputStream.localize(OutputStream)

com.fujitsu.ts.java.io.LocalizedPrintStream.localize(OutputStream)

These methods now actually return an or in BS2000 for which the behavior is modified InputStream OutputStream
in relation to the original stream in such a way that the entire I/O via this steam is subject to code set conversion
from or into the implemented standard code set (value of system property). However this only occurs file.encoding
for streams which are based on files. These methods have no effect on other streams (e.g.).ByteArray

These streams modified in this way thus behave in a similar way to the objects of the new classes
 and , but in contrast to them, remain of data type or InputStreamReader OutputStreamWriter InputStream

, and can thus be used wherever only objects of this type are permitted.OutputStream

There are in-built precautionary features against double conversions. Thus, a stream cannot be “Localized” twice. If
a method is called for a stream which has already been localized, that stream is simply returned. An getLocalized...
instance of or can also be formed from a “Localized Stream” without any InputStreamReader OutputStreamWriter
danger of this causing double conversions.

This JENV-specific extension can be deactivated by setting the system property to the valuejava.localized.streams
. This can be achieved if Java is called via .False -Djava.localized.streams=False

JENV V9.0A

 23

3.3 Property files

Property files can be written and read with the methods and in the class . If the store() load() java.util.Properties
specified streams are file streams, it is assumed in BS2000 that these files are read or created in the default code
set (value of system property).file.encoding

This does not happen if this JENV extension for the “Localized Streams” has been deactivated (see section
). Property files are then always written or expected in the ISO8859-1 encoding (i.e. ASCII "Localized streams"

encoding).

This behavior is compatible with that on IBM systems.

JENV V9.0A

 24

3.4 Policy files

Policy files used by the default policy implementation must be coded in UTF-8 code set. Consequently, policytool
processes and generates only UTF-8 coded policy files. Because the first 127 characters of the UTF-8 code set are
identical to those of the ASCII code set, users can also generate a file in this code set by first creating the file with
the editor in the normal native code set () and then using the tool to convert the OSD_EBCDIC_DF04_1 native2ascii
file to the ASCII code set.

As of version JENV V1.4B the system property is provided which you can use for policy files sun.security.policy.utf8
with native codeset. can have the values or . You therefore can use policy files in sun.security.policy.utf8 true false
native encoding with the following call:

java -Dsun.security.policy.utf8=false...

We however recommend to use UTF-8 encoded policy files.

CAUTION!

When the new file is generated, native2ascii does not transfer the access rights of the old file. If
necessary, these must be changed using .chmod

JENV V9.0A

 25

3.5 PrintStream

The output streams of type are not modified as the default option in the BS2000 port, but are java.io.PrintStream
mentioned here because they can cause special difficulties.

Methods of the java.io.PrintStream class

In accordance with the Java API specification some methods in the class convert their outputs java.io.PrintStream
into the default code set (value of the system property), whereas others do not. With this class it is file.encoding
therefore extremely easy to write programs which apparently function in an ASCII world but do not deliver the
expected results in BS2000. The following simple example will illustrate this point:

Example

...
PrintStream out = new PrintStream(new
 FileOutputStream("test"));
...
out.print("This is a text.");
out.write('\n');
...

In an ASCII-based system the content of file will then be a line ending with newline and containing the above test
text. In BS2000 the file would contain an EBCDIC-encoded version of the text, however the line would not end with
newline but would contain a “smudge” as the last character.

This example shows clearly how important it is for the input/output of text in a new implementation of Java code to
use the new read and write classes (i.e. and).InputStreamReader OutputStreamWriter

In BS2000 an additional option is available which changes the behavior of so that no conversion is PrintStream
performed by any method any more. This can be achieved if Java is called via . With -Djava.localized.print=False
this setting, the class no longer behaves in accordance with the specification; however, this can PrintStream
actually be useful for existing applications.

For the sake of completeness, mention should be made of the fact that the use of “Localized Streams” as the basis
for PrintStreams or the localization of a PrintStream does not result in multiple conversions. However, for
PrintStreams handled in this way it is of course then the case that methods convert.all

Interaction between the readLine() and println() methods

It is often assumed that data written with to a could be reread by the methods of println() PrintStream readLine()
some classes. In BS2000, however, this assumption may result in an error. This is due to the fact that InputStream
although data will be converted to the native code set (OSD_EBCDIC_DF04_1 in BS2000) during output to a

, this is not carried out by any of the methods of the classes during a read PrintStream readLine() InputStream
operation. Instead, you should use the new and classes or use “Localized Streams” for input.Reader Writer

JENV V9.0A

 26

3.6 Standard streams

The class provides three standard streams , , and . By analogy to the solution in OS/390, java.lang.System in out err
these standard streams are “Localized Streams” in JENV. This means that normal text input and output is possible
in BS2000 via these streams.

This can be set selectively for each of the three streams if the following system properties are defined when the
program is started:

System.in -Djava.localized.in=...
System.out -Djava.localized.out=...
System.err -Djava.localized.err=...

These streams are not modified if the extension for “Localized Streams” is deactivated (-Djava.localized.
). Setting or amending these system properties later on has no effect on the currently defined streams=False

standard streams either.

The following values can be specified:

Default

The original streams (which are set when the program is started) are localized. This is the default value.

Full

Both the original streams and also the standard streams which are set later on using etc. are localized.setIn()

None

The standard streams are not modified.

If an application uses the methods , , or in order to assign its own streams, there are two setIn() setOut() setErr()
options for guaranteeing correct operation: either you must ensure that all standard streams are “Localized
Streams” (i.e. text streams), or see to it that a clear distinction is made between text and binary input/output when
using standard streams. The following example shows both options.

The second option is the preferred solution, and should be applied as a matter of principle when working with
standard streams. However, the first option may be necessary if you are working with existing Java classes which
have not been implemented in a portable fashion.

Example

The following code (similar examples of which can be found in the JavaSoft demo programs) would lead to a binary
input/output via these streams, with the result that the output files would be unreadable or the input might be
misinterpreted if text input/output was really intended.

JENV V9.0A

 27

...
public static String read_write() {
 StringBuffer buf = new StringBuffer(80);
 int c;
 try {
 while ((c = System.in.read()) != -1) {
 char ch = (char) c;
 System.out.write(c);
 if (ch == '\n')
 break;
 buf.append(ch);
 }
 } catch (IOException e) {
 System.err.println(e);
 }
 return (buf.toString());
 }
...
System.setIn(new FileInputStream("myinputfile"));
System.setOut(new PrintStream(new FileOutputStream("myoutputfile")));
...
line = read_write();
...

The following program fragment shows the first option, where all standard streams are “Localized Streams” (i.e. text
streams). This solution would have to be implemented by the calling program.

...
System.setIn(com.fujitsu.ts.java.io.LocalizedInputStream.
localize (new FileInputStream("myinputfile")));
System.setOut(com.fujitsu.ts.java.io.LocalizedPrintStream.
localize (new FileOutputStream("myoutputfile")));
...
line = read_write();
...

The code fragment for the second solution could look like this and would have to be implemented by the user of the
standard streams. It involves making a clear distinction between text and binary input/output when using standard
streams.

JENV V9.0A

 28

...
public static String read_write() {
 StringBuffer buf = new StringBuffer(80);
 int c;
 InputStreamReader in = new InputStreamReader(System.in);
 OutputStreamWriter out = new OutputStreamWriter(System.out);
 try {
 while ((c = in.read()) != -1) {
 char ch = (char) c;
 out.write(c);
 if (ch == '\n')
 break;
 buf.append(ch);
 }
 } catch (IOException e) {
 System.err.println(e);
 }
 return (buf.toString());
}
...

JENV V9.0A

 29

3.7 JAR archives

In the context of the problems associated with ASCII/EBCDIC conversion, JAR archives can create special
difficulties because they also constitute an exchange format between different environments (systems). You can
pack applets including all their resources into JAR archives and load them over the network by a browser. Java
offers corresponding methods for accessing the resources packed in this way (see).java.util.ResourceBundle

The typical resources here often also include property files (e.g. with error messages). To ensure interchangeability,
property files which are stored in JAR archives must therefore always be in encoding i.e. they must ISO8859-1

previously be converted into this code set by the creator of such a JAR archive in BS2000.

If the user introduces a manifest file of his/her own into the JAR archive (option):-m

The manifest file is generated by the command itself, this occurs automatically using ISO8859-1 encoding. jar

If the user creates the manifest file himself, it must first be converted into the ISO8859-1 code set.

The methods for accessing these resources in JAR archives are designed so that they also expect ASCII input in
BS2000.

To support the code conversion of files, the command is provided.native2ascii

JENV V9.0A

 30

3.8 Program arguments

The call arguments which are transferred to the method of a Java program are automatically converted from main()
EBCDIC to Unicode.

JENV V9.0A

 31

4 The Java package JRIO

The JRIO package is a collection of Java classes to permit direct handling of files with a record or block structure
and for record- or block-oriented input/output to such files. Naturally these files include above all the BS2000 files of
DMS/DVS.

In contrast to normal Java I/O (), these interfaces also allow operations which cannot be expressed java.io package
with the given Java IO classes (which we cannot extend).

The interfaces and implementations of JRIO are contained in the proprietary package and further com.fujitsu.ts.jrio
subpackages. These will not be available in other Java implementations. However, as far as it makes sense
technically, they are very similar to the corresponding IBM package .com.ibm.recordio

JENV V9.0A

 32

4.1 Concepts

The implementation of JRIO is geared to extensibility. The sections below describe these concepts and their
realization.

JENV V9.0A

 33

4.1.1 File systems

Unlike with the normal Java IO classes, various file systems are supported by concept under JRIO (see section
). The following file systems will supported in future versions:"RecordFile"

the BS2000 file system (referred to as DMS in the following)

the hierarchical file system POSIX (referred to as UFS in the following)

the BS2000 library file system (referred to as LMS in the following)

In this version only DMS will be supported initially.
Each of the file systems has its own syntax for specifying file names. When a object is created this is RecordFile
associated uniquely and permanently with one file system. This allocation can be specified either implicitly or
explicitly by the user and cannot be modified later. The allocation then determines the semantics of most of the
methods of the object.RecordFile

JENV V9.0A

 34

4.1.1.1 File names in the DMS file system

File names in the DMS file system are formed in accordance with this file system’s rules (see manual “Introductory
” []. Partially qualified file names and wildcard specifications are not supported at any of the JRIO Guide to DMS 8

interfaces with the exception of the specifications permissible as a directory and the file identifier in policy files (see
also).section "Security"

Only the specification of a lone catalog ID (Catid) which is enclosed in colons, a user ID (Userid) with a leading
dollar character and a closing period or a combination of the two are regarded as directories in the DMS file system.
The customary special way of specifying the system standard ID is also permitted. Consequently only the following
specifications are possible for directories in DMS:

:catid:
$userid.
:catid:$userid.
$.
:catid:$.

As DMS is a flat file system and actually has no directory concept, directories cannot be set up or deleted with the
interfaces provided here. Neither do they have attributes such as modification date or a size. Only the methods for
listing directory contents are practical for the above-mentioned artificial directories of DMS.

As in the DMS interfaces, the so-called logical system files (SYSFILE environment) are not supported. In addition,
JRIO does not support EAM files, either.

Normalized path names

When generating a object and at locations where the user can specify a file or path name at the JRIO RecordFile
interfaces, not only the syntax and semantics check is performed, but also what is known as normalization. For
DMS files this normalization of the name means that any lower-case letters contained in the name are converted to
upper-case letters. In addition, file names which contain no periods but begin with a dollar character ($) are
converted into names with a leading system standard ID in accordance with the DMS conventions:

Example

$EDT => $.EDT

Absolute path names

A path name in DMS is regarded as absolute if it begins with a catalog ID. Thus when an absolute path name is
generated this means that if a catalog ID is not already contained in the name, the default catalog ID of any user ID
specified or of the calling program is added (see).section "RecordFile"

Canonical path names

A path name in DMS is canonical if it consists only of a catalog ID or contains both a catalog ID and a user ID. Thus
when a canonical path name is generated, this means that (if it is not already included) the default catalog ID of any
specified user ID or that of the calling program (see).section "RecordFile"

JENV V9.0A

 35

4.1.1.2 File names in the UFS file system

The same rules apply for the syntactical structure and the semantic definition as for the . The terms java.io.File class
„“absolute path name”, “canonical path name” and “normalized path name” are also used in the same way at these
interfaces.

JENV V9.0A

 36

4.1.2 File types

The following file types are currently supported in the DMS file system:

SAM files with fixed or variable record length.

ISAM files with fixed or variable record length.

PAM files.

The UFS file system does not distinguish between file types. In particular, there are no defined file types with record
/block structure. Only the content of a file and the processing programs determine what can happen to it or what it is
intended for (see).section "Access methods"

As with , only regular files and directories are supported under JRIO.java.io.File

JENV V9.0A

 37

4.1.3 Access methods

The term access method is normally used to refer to a set of interfaces which permit access to data from files and
thus offer a particular logical view of this data. Generally this logical view will differ to a greater or lesser extent from
the physical storage in the file (the data repository). Here access methods which enable record-oriented processing
of the data in a file are of interest; the logical view is thus restricted. The access methods considered here thus
implement the following:

Definition of a record and mapping of this logical view of the data onto a physical storage form (file type).

Definition of the order of the records from the viewpoint of the user or program; this order need not necessarily
have anything to do with the physical order of the data in the file.

Interfaces to read and write records in their entirety.

Elementary access methods are a special type of access method. These are distinguished by the fact that the file
system (in which they are effective) knows of them and, for example, a file and access method can already be
assigned to each other via file types. Such access methods are provided in DMS, albeit not reversibly unique. Other
file systems (for example UFS) know only a single elementary access method which generally offers the raw
physical view of the data and logically also has no content-oriented file types.

However, there can also be any further access method desired, these generally being implemented using one of the
elementary access methods and offering further logical views of the data. These access methods have one problem
in common. As the file system has no knowledge of them, it is not possible to tell from a file whether and with which
of these access methods it can be successfully processed. Interpretation errors will thus only be recognized during
processing, if at all.

In UFS there is no elementary access method which offers record-oriented processing. However, the following
access methods, for example, are conceivable:

TEXT - Access method which regards text files as record-structured files with records of variable and unlimited
length. The physical record separator would be the new line character, which would be masked out in the logical
view.

CISAM - ISAM-type access method for Unix file systems.

In DMS there are several elementary access methods, of which the following are supported directly in JRIO:

SAM - sequential access method

ISAM - indexed-sequential access method

UPAM - block-oriented access method

In DMS, too, there are access methods which are based on one of the elementary access methods and supply a
different logical view. A prominent example of these is an access method based on ISAM which is used by various
tools (editors, compilers, ...) to render ISAM files usable for normal texts. For this purpose, ISAM files with standard
keys are used. In the logical view these keys (which in ISAM are a part of the record) are masked out, and are
generated by the access method when records are written.

In the JRIO interfaces you always will encounter the access methods when you must take a decision as to how
access to a file is to be implemented.

Currently JRIO only supports the DMS file system, and in this only the access methods SAM, ISAM and UPAM.
However, the JRIO architecture will in future permit extension by the addition of further file systems without the user
interfaces needing to be modified.

JENV V9.0A

 38

4.1.4 Access types

The starting point for designing the JRIO interfaces is an abstract view of the type and manner of data access (of
the sort that is also taken as a basis in the IBM implementation) which is independent of file systems and access
methods.

From the viewpoint of the application, the type and manner of data access can then be classified in the following
access types:

Sequential access

Read access to records/pages takes place sequentially. Write access extends the file at the end.

Random access

In a file processed using this access type any individual records be positioned to before reading or writing.

Keyed access

In a file processed using this access type, individual records can be selected for reading and/or writing by
specifying keys.

JENV V9.0A

 39

4.1.5 Shared update processing

By means of locks, JRIO permits the simultaneous, synchronized processing of a file by multiple applications (
) if this is supported by the particular file system and access method.shared update processing

This type of processing must be explicitly set by the application when the file is opened. It ensures that the
processing steps (e.g. write, delete or a combination of read and write) are protected by locks and cannot be
interfered with by competing applications. may be subject to file system-specific Shared update processing
restrictions. For example, it may not be permitted for certain file types or open modes, or it may not support certain
actions such as increasing or reducing the size of files.

The lock mechanism employed by JRIO in is:shared update processing

record-oriented,

implicit,

deadlock secure.

Record-oriented means that an application locks or releases records only within a file. However, certain file logically
systems or access methods can implement a larger lock granularity. This is not visible to your own physically
applications but competing applications may encounter a lock when they attempt to access a record within the
larger lock granularity although the requested record itself is locked.logically

Implicit means that records are implicitly locked when they are read, written or deleted, and that the lock is implicitly
released after the write or delete operation has been completed. Methods are also offered for the explicit release of
records that are locked for reading but are not to be written.

Deadlock security is achieved by ensuring that an application can only ever logically lock one record per file. Setting
a lock for an operation leads implicitly to the release of any other lock for another record. Some file systems and
access methods are also able to implement deadlock security beyond file boundaries; in other words, only one lock
per application is permitted - regardless of in which file.

In JRIO allows the behavior of the application to be controlled in the event of access shared update processing
conflicts. The application can demand immediate transfer of control (). In the event of access NO_WAIT parameter
conflicts, a corresponding exception () is then generated or the application can wait for RecordLockedException
granting of the lock as a thread (parameter) or at the system interface (THREAD_WAIT APPLICATION_WAIT

). The wait time is unlimited in both cases, i.e. the application waits until a lock is received or until the parameter
application itself is terminated. Waiting as a thread has the advantage that other threads of the application are not
blocked. However, in extreme situations it can happen that the lock is received by a competing application at the
very moment that the waiting application makes a renewed attempt although the lock was available in the
meantime. Not all file systems offer all wait variants. If, however, a variant is offered, the semantics described then
apply.

JENV V9.0A

 40

4.1.6 Options and restrictions relating to access types in DMS

Not all access types are possible with all access methods/file types. The following table provides an overview of the
relationship between access types and access methods/file types:

Access
type

SAM access method ISAM access method UPAM access method

Sequential Reading/writing for SAM files.
Physical record sequence.Shared
update processing is not possible.

Reading/writing for ISAM files.
Record sequence determined by
primary key.Shared update
processing is possible for reading
or adding to opened files.

Reading/writing for
PAM, SAM and ISAM
files.
Physical block
sequence.
Shared update
processing is possible
only for PAM files
opened for reading.

Random Reading/writing for SAM files.
When records of variable length
are overwritten, the record to be
written must be of the same length
as the record to be overwritten.
Shared update processing is not
possible.

Not possible. Reading/writing for
PAM, SAM and ISAM
files.
Shared update
processing is possible
only for PAM files
opened as “INPUT” or
“INOUT”.

Keyed Not possible. Reading/writing for ISAM files.
Shared update processing is
possible for files opened as
“INPUT” or “INOUT”. Only the first
opening application may open
“OUTIN”.

Not possible.

Table 1: Overview of the relationship between access types and access methods/file types inthe DMS file system

JENV V9.0A

 41

4.1.7 Drivers

JRIO has a dynamic driver concept that separates both the file system implementations and the implementations of
the various access methods from the JRIO user interfaces. New file system drivers or access method drivers can
be added without user interfaces needing to be modified.

When an application is started, it is determined dynamically which drivers are available for file systems and access
methods. These are then loaded dynamically as required. However, the associated interfaces (in particular the
driver API) and the configuration mechanisms are currently not to be made accessible to users and are
consequently not described here.

JENV V9.0A

 42

4.1.8 Security

Applications that use JRIO and run under a are started with, for example, the following command:Security Manager

java -Djava.security.manager <application-name>

All accesses to files and directories of the supported file systems are initially rejected by the . Security Manager
Access is granted only to files in the UFS directory that contains the loaded class.

When handled by the , UFS files are subject to the same mechanism in JRIO as offered by Security Manager java.io
. The special features of the DMS file system are therefore described below.

To allow an application to access certain files and directories of the DMS file system under the , Security Manager
appropriate must first be granted in a policy file. The mechanism for selecting the valid policy file is no permissions
different from the usual method in Java; in particular, the policy file can also be specified directly:

java -Djava.security.manager
 -Djava.security.policy= <policy-file> <application>

JRIO features two new that can be granted in the policy file:permissions

com.fujitsu.ts.jrio.DMS.FilePermission

com.fujitsu.ts.java.bs2000.SystemInfoPermission

File permission

com.fujitsu.ts.jrio.DMS.FilePermission controls access to files and directories. The syntax of an entry in the policy
file is as follows:

grant [codeBase ... | signedBy ...] {
 permission com.fujitsu.ts.jrio.DMS.FilePermission
 "file-identifier" , "action-list";
};

The is either a valid BS2000 directory name or a valid BS2000 file name with or without catalog ID andfile identifier
/or user ID , i.e. a catalog ID (in the format ":catid:"), a user ID (in the format "$userid.") or a combination of the two

The last character of the file name may be “ * ”. Access permission then relates to (in the format ":catid:$userid.").
all files whose name begins with the string preceding “ * ”. In this case, it need only be possible to complete the
name part preceding the “ * ” to form a valid file name. For catalog and user IDs you can also use “:*:” or “$*.” to
grant access for all catalog IDs or all user IDs. The abbreviation “$.” for the default system ID is permitted but not
the abbreviation “$file” for “$.file”. Refer to the section ."File names in the DMS file system"

If no user ID is explicitly specified, permission relates to files under the user ID of the caller (who need not be known
by name to the application). If no catalog ID is specified, permission relates to files of the default catalog ID of the
corresponding user ID. The string permits access to all files and directories. Further details are <<ALL FILES>>
provided in the shipped JAVADOC documentation for the class.com.fujitsu.ts.jrio.DMS.FilePermission

You can make entries in the policy file using the or any normal editor. In this manual, the policytool
entries are shown as if they were made using an editor.

Note that the policy file must be available in UTF8 coding.

JENV V9.0A

 43

The is a comma-separated list of the permitted , and . If permission to action-list read write delete actions for the file
perform the action is not granted in this file or directory, any access attempt is rejected with a . SecurityException
This also applies to information functions such as or that require read permission for the underlying list() listFiles()
directory.

SystemInfo permission

Within JRIO, is used to control which information on the DMS file com.fujitsu.ts.java.bs2000.SystemInfoPermission
system the application is allowed to obtain. The syntax is:

grant [codeBase ... | signedBy ...] {
 permission com.fujitsu.ts.java.bs2000.SystemInfoPermission
 "Name";
};

Name is a value formed from , , , , and HomePubset UserName UserPubset DefaultUserName DefaultUserPubset
 or the string with which permission is granted for all named data. If the ForeignUserPubset <<ALL INFO>>

 is granted, the application is allowed to determine the corresponding catalog and user IDs via the permission
, , and interfaces of the class. getCanonicalPath() getCanonicalFile() getAbsolutePath() getAbsoluteFile() RecordFile

Otherwise, any attempt is rejected with a . The names beginning with relate to the ID of SecurityException User...
the caller, the names beginning with to the default system ID, and the names beginning with to Default... Foreign...
all foreign user IDs. Permission relates only to the interfaces that provide access to the corresponding file names
when completed, but not to actual access to the files under these catalog or user IDs.

Example

An application is granted access to the file named under the ID of the caller although the application HUGO
does not have permission to determine the ID of the caller:

grant [codeBase ... | signedBy ...] {
 permission com.fujitsu.ts.jrio.DMS.FilePermission
 "Hugo", "read, write";
};

This setting allows the file to be opened, read and written. However, completing the file name with, for example
 is not permitted., getCanonicalPath(...)

JENV V9.0A

 44

4.2 API overview

The public classes which constitute the JRIO interfaces are shown below:

Class Use

Record Represents a record/block

BufferOverflowException This exception is triggered when records are being read whenever the record
object provided by the user is too small to incorporate the data.

RecordLockedException This exception is triggered in shared update processing when a record that is
locked by another application is accessed and the user has specified that the
application should not wait for the lock to be granted.

RecordNotLockedException This exception is triggered in shared update processing when an attempt is
made to access a record using a method that requires the record to be locked
first but the lock does not yet exist or no longer exists.

RecordFile Represents a file with record/block structure (see).java.io.File

RecordFileFilter Interface for implementing user-specific classes which can be used as filters in
the method of the class (see). listFiles() RecordFile java.io.FileFilter

RecordFilenameFilter Interface for implementing user-specific classes which can be used as filters in
the method of the class (see).list() RecordFile java.io.FilenameFilter

AccessParameter Represents the general parameters which are required for access to a file with
record/block structure when using a particular access method.

DMS/AccessParameterSAM Represents a selection of parameters which are required for access to a file
(in particular generation) using the SAM access method in DMS.

DMS/AccessParameterISAM Represents a selection of parameters which are required for access to a file
(in particular generation) using the ISAM access method in DMS.

DMS/AccessParameterUPAM Represents a selection of parameters which are required for access to a file
(in particular generation) using the UPAM access method in DMS.

DMS/FilePermission Permits the fine-grained granting of access permissions for files and
directories in the DMS file system. This class is normally used only in the
context of entries in the policy file.

InputRecordStream Abstract base class for and Stream FileInputRecordStream ArrayInputRecord
and user-implemented input classes (see).java.io.InputStream

ArrayInputRecordStream Class for sequential reading of records from an array of records (see java.io.
).ByteArrayInputStream

FileInputRecordStream Represents a file with record/block structure that is open for sequential
reading (see).java.io.FileInputStream

OutputRecordStream Abstract base class for and FileOutputRecordStream
 and user-implemented output classes (see ArrayOutputRecordStream java.io.

).OutputStream

JENV V9.0A

 45

ArrayOutputRecordStream Class for sequential writing of records to an array of records (see java.io.
).ByteArrayOutputStream

FileOutputRecordStream Represents a file with record/block structure that is open for sequential writing
(see j).ava.io.FileOutputStream

RandomAccessRecordFile Represents a file with record/block structure that is open for random access
(see).java.io.RandomAccessFile

KeyedAccessRecordFile Represents a file with record/block structure that is open for keyed access.

KeyDescriptor Describes a record key of an indexed-sequential file.

DMS
/PrimaryKeyDescriptorISAM

Describes the primary key of an ISAM file.

DMS
/SecondaryKeyDescriptorISAM

Describes a secondary key of an ISAM file.

KeyValue Represents the concrete value of a record key.

Table 2: Public classes which constitute the JRIO interfaces

The sections below describe the most important of the classes from the JRIO package which are mentioned above,
together with their principal and most common methods and fields. A complete description of the interfaces is
contained in the javadoc documentation provided (please refer to the Installation directory under).doc/jrio

JENV V9.0A

 46

4.2.1 Record

A object represents a logical record of a file and consists of a record buffer which contains the actual data Record
record and the separately administered length of the data within the record buffer.

The class provides methods to access the data in the record buffer and their length, and to set or modify Record
these. No methods are provided for accessing numerical data fields; users can implement these themselves on the
basis of the methods provided.

A object is typically used to store or transfer the data of the record-by-record or pageby-page access Record
operations to files. It is serializable and can therefore be used for Remote Method Interfaces (RMI). The Cloneable
interface is also implemented.

Positions within a record are counted starting with position 0 (the first data byte of a record thus has position 0 and
so on). A logical data record of a file contains only the user data, while the data record stored physically in the file
can contain additional meta information (for example record length). Consequently the numbering of record
positions for example at the DMS macro interfaces of BS2000 (these supply the physical record) can differ from that
at the JRIO interfaces (these supply the logical record).

JENV V9.0A

 47

4.2.1.1 Constructors

When a object is generated, either an empty record buffer of a required size can be created or a buffer Record
provided by the user can be used. If this buffer already contains data, the length of the data can also be transferred.

Typically you should select the size of the buffer so that there will be space in it for the longest expected record. The
object can then always be reused for input/output if the old content is no longer required instead of Record

repeatedly generating new instances.

A constructor is also available which generates a new object from the data of another record. A one-to-Copy Record
one copy of a object can be generated with the method.Record clone()

JENV V9.0A

 48

4.2.1.2 General methods

The method returns the record’s record buffer. You can use this to process or provide the content with getBuffer()
the help of other classes and methods. Note that manipulations on this record buffer modify the object from which
the record buffer originates because this is not a copy of the data. The current length of the data within the record
buffer can be determined using the method.getDataLength()

A record buffer can be replaced using the . If the user’s buffer which is transferred already setBuffer() methods
contains data, the data length can also be transferred.

With the method users can themselves define the occupancy level of the record buffer. No check is setDataLength()
made to see whether the data in the record buffer is useful.

JENV V9.0A

 49

4.2.1.3 Methods for extracting the data of a record

The method enables all the data of a record to be returned in binary format (as bytes).getByteData()

The methods of the family return all the data of a record interpreted as text (string).getStringData()

If no encoding for converting the data to text was specified by the user, the systemdependent standard encoding (in
BS2000 the default value is) is used.OSD_EBCDIC_DF04_1

JENV V9.0A

 50

4.2.1.4 Methods for extracting the data fields of a record

The various methods of the family enable the data of a specified data field (defined by position and getByteField()
length within the record) to be returned in binary format (as bytes).

The methods of the family return the data of a specified data field interpreted as text (string).getStringField()

If no encoding for converting the data to text was specified by the user, the systemdependent standard encoding (in
BS2000 the default value is) is used.OSD_EBCDIC_DF04_1

The method returns, on the basis of a key description, the content of a key field as key value.getKeyField()

JENV V9.0A

 51

4.2.1.5 Methods for filling a record with data

The methods fill a record completely with binary data (bytes); the old content is lost in the process. setByteData()
The data length of the record subsequently corresponds exactly to the length of the data entered.

The methods of the family fill a record completely with text data (string). The data length of the setStringData()
record subsequently corresponds exactly to the length of the data entered.

If no encoding for converting text to data was specified by the user, the system-dependent standard encoding (in
BS2000 the default value is) is used. OSD_EBCDIC_DF04_1

JENV V9.0A

 52

4.2.1.6 Methods for filling data fields of a record

The various methods of the family fill binary data (bytes) into a specified data field (defined by setByteField()
position and length) of a record.

These methods update the data length if the record was lengthened when the record’s data fields were filled. If the
data is shorter than the selected data field, the rest can optionally be filled with a filler byte. If the data is longer than
the selected data field, the length of the data transferred into the record buffer is limited to the length of the data
field.

The methods of the family fill text data (string) into a specified data field. If no encoding for setStringField()
converting text to data was specified by the user, the system-dependent standard encoding (in BS2000 the default
value is) is used.OSD_EBCDIC_DF04_1

These methods update the data length if the record was lengthened when the record’s data fields were filled. If the
data is shorter than the selected data field, the rest can optionally be filled with blanks. If the data is longer than the
selected data field, the length of the data transferred into the record buffer is limited to the length of the data field.

The method fills a record’s key field with a concrete key value.setKeyField()

JENV V9.0A

 53

4.2.2 RecordFile

For record-oriented input/output, the class plays approximately the same role as the class for RecordFile java.io.File
normal Java I/O. It defines the objects of the basic file system(s), in other words normally files and directories.

Unlike with the class, different file systems are actually supported by the class and not just java.io.File RecordFile
one. Consequently a object always consists of a path name (file or directory name) and an associated RecordFile
file system (DMS, UFS, ...).

Thus there can be objects with the same name, especially in different file systems. In BS2000 it is perfectly
conceivable that a file named can exist both in UFS (Posix file system), in DMS (BS2000 file system) and HALLO
also in LMS (as a member of a PLAM library). This approach consequently reflects the actual situation in BS2000
better than the monolithic approach of (see).java.io.File section "File systems"

The class (like , too) provides methods and fields for analyzing and transforming the path RecordFile java.io.File
name. These may be defined differently for each supported file system. For these operations it is normally
unimportant whether the file system actually contains a file or directory with the name in question, because recourse
is generally not made to the basic file system.

In addition, the class also provides methods for accessing, and possibly modifying, the attributes of RecordFile
existing files and directories.

Furthermore, with the class methods are provided for performing typical file system operations. These RecordFile
include renaming and deleting existing files and directories, creating files and directories which do not yet exist, and
listing directory contents.

All methods which actually access the file system should be subject to the restrictions of the active Security Manager
and trigger corresponding exceptions when access to the file system is restricted (see).section "Security"

In the sections below the particular features relating to the UFS file system are generally not referred to. In these
cases what applies for for the Unix file system also applies for the UFS file system.java.io.File

JENV V9.0A

 54

4.2.2.1 Basic structure of a file name

Generally a path name in all of the file systems supported comprises a file system prefix (if present) and no name
part, or a sequence of one or more name parts which may be separated by separator characters. Each name part in
a path name, except the last one, designates a directory. The last name part can designate either a directory or a
file. The empty path name has no prefix and an empty sequence of name parts. Whether an empty path name is
permitted and what the semantics of the path name is depends on the file system

The file system prefix or prefixes are defined on a file-system-specific basis. It is guaranteed that all root directories
returned by are permissible file system prefixes. In the DMS file system each catalog ID is interpreted as listRoots()
a file system prefix in this sense, regardless of whether this catalog ID exists in the file system, and in the UFS file
system the root “/” is the only file system prefix.

If multi-part names are permitted in a file system, a separator is generally (but not always) defined with which the
name parts are separated (for example “/” in UFS). However, the file system involved ultimately defines whether
and how many name parts are permitted and how they are separated.

There is no defined separator for path names in the DMS file system. In addition to the file system prefix (the
catalog ID with colons ':' at the beginning and end), the path name can also contain up to two name parts: a user ID
(with dollar '$' at the beginning and period '.' at the end) and/or a file name. Even if both parts are contained in the
path name, there is no additional separator between them.

The same naming rules are used for path names in the UFS file system as for .java.io.File

JENV V9.0A

 55

4.2.2.2 Constructors

A object is formed from a given path name and a file system specification. Here a check is made to RecordFile
ensure that the given path name satisfies the syntactical rules of the specified file system, and what is termed
normalization of the path name takes place. What this means specifically is defined separately for each file system
supported (see). This normalized path name is then the name of this object and the basis of section "File systems"
all operations on it.

There are constructor variants which permit path name specification in a different form, either simply as a single
string, or separately as two strings which constitute the directory part and the file name part of the path name, or as
a object for the directory part and a string for the file name part. In the latter case the file system RecordFile
specification is omitted because the object already includes this implicitly for the directory part.RecordFile

JENV V9.0A

 56

4.2.2.3 Fields

The separator or (in string form) is defined on a file-system-specific basis. Normally this separatorChar separator
separator is used to separate different name parts within a path name.

Special features of the DMS file system

The DMS file system knows no separators in this sense. Consequently the null character is used for
 and an empty string for . However, this calls for care when it is used because the null separatorChar separator

character is a defined character within character strings.

The or (in string form) is also defined on a filesystem-specific basis. separator pathSeparatorChar pathSeparator
This separator is used in order to separate the individual path names from one another when path name lists are
specified.

Special features of the DMS file system

The separator for path name lists is the comma “ , ”.

Unlike in , the separators are not static fields as several file systems are supported here. During java.io.File
instantiation of a RecordFile object the separators are initialized by the underlying file system.

JENV V9.0A

 57

4.2.2.4 General methods

The method returns the path name of this RecordFile object. The method returns the getPath() getFileSystem()
name of the file system associated with the path name. The string “DMS” is returned for the DMS file system, and
the string “UFS” for the UFS file system (currently not supported by JRIO).

JENV V9.0A

 58

4.2.2.5 Methods for analyzing and transforming path names

The method returns the last name part of the path name of this RecordFile object. The result is formed getName()
by dropping any file system prefix there may be and every name part except the last. If the path name consists only
of a name part and this is not a file system prefix, the object’s path name is returned. If the path name is empty or
consists only of the file system prefix, an empty string is returned.

Special features of the DMS file system

The file system prefix is the catalog ID.

Example

Name Result

:JAVA:$USER.HALLO.JAVA HALLO.JAVA

:JAVA:HALLO.JAVA HALLO.JAVA

$USER.HALLO.JAVA HALLO.JAVA

HALLO.JAVA HALLO.JAVA

:JAVA:$.HALLO.JAVA HALLO.JAVA

:JAVA:$USER. $USER.

:JAVA: empty string ""

$USER. $USER.

The method returns the parent of this path name as a string, or the return value null if the path name getParent()
has no parent. The parent of a path name consists of the file system prefix (if present) and of every name part,
except the last, in the name sequence of the path name. If the name sequence is empty, then the path name has no
parent.

Special features of the DMS file system

The file system prefix is the catalog ID.
Example

Name Result

:JAVA:$USER.HALLO.JAVA :JAVA:$USER.

:JAVA:HALLO.JAVA :JAVA:

$USER.HALLO.JAVA $USER.

HALLO.JAVA null

:JAVA:$.HALLO.JAVA :JAVA:$.

JENV V9.0A

 59

:JAVA:$USER. :JAVA:

:JAVA: null

$USER. null

The method, like the method, returns the parent of this path name, but as a getParentFile() getParent() RecordFile
object. If the path name has no parent, null is returned.

The method returns true if the path name of this object is an absolute path name. What an isAbsolute() RecordFile
absolute path name is defined on a file-system-specific basis (see).section "File systems"

Example

Name Result

:catid:$userid. true

:catid:$. true

$userid. false

$. false

:catid: true

$.HALLO false

$USER.HALLO false

:JAVA:$.HALLO.JAVA true

The method returns the absolute form of this RecordFile object’s path name as a string. If the getAbsolutePath()
RecordFile object was constructed with the aid of an absolute path name, this name is returned. If this is not the
case, the name is supplemented on a filesystem-specific basis (see).section "File systems"

Special features of the DMS file system

In DMS it may not be possible to form the absolute path name for a syntactically correct path name. For
example, a file name consisting of 42 characters with a 5-character user ID is syntactically correct. However, if
it is complemented by a catalog ID comprising 4 characters, a syntactically incorrect (too long) path name
results.

The method returns the absolute form of this RecordFile object’s path name as a RecordFile getAbsoluteFile()
object.

The method returns the canonical form of this RecordFile object’s path name as a string. A getCanonicalPath()
canonical path name is both absolute and unique. The precise definition of the canonical form depends on the file
system (see).section "File systems"

JENV V9.0A

 60

Special features of the DMS file system

In DMS it may not be possible to form the canonical path name for a syntactically correct path name. For
example, a file name consisting of 42 characters with a 4-character catalog ID is syntactically correct.
However, if it is complemented by user ID comprising 5 or more characters, a syntactically incorrect (too long)
path name results.

The method returns the canonical form of this RecordFile object’s path name as a RecordFile getCanonicalFile()
object.

File name completion using the above methods provides the application with an insight into the structure of the file
system and must therefore be monitored by an active . In certain circumstances, file name Security Manager
completion is rejected with a corresponding (see).exception section "Security"

The method compares two path names lexicographically. If the two path names belong to different file compareTo()
systems, first of all the file system names are compared.

The method compares two path names. It returns true only if the specified object is a object equals() RecordFile
which is assigned to the same file system and if the path names of both objects (in the sense of) are compareTo()
equal. Equality is checked on the basis of the path names and not on the basis of the file or directory in the
underlying file system, in other words if different names designate the same existing file, false is still returned.

The method calculates a hash code from the characters of the path name and the file system name. hashcode()
Two objects with the same path names and the same file system name also have the same hash code. RecordFile
However, two objects with the same hash codes do not necessarily have the same path name.RecordFile

JENV V9.0A

 61

4.2.2.6 Methods for inquiring file and directory attributes

The method checks whether the file or the directory exists in the file system. Many of the methods offered exists()
can only be used effectively if the file or directory exists and is visible (for example files are not always visible for the
calling program in foreign user IDs).

Special features of the DMS file system

A file is regarded as existing if it has already been opened once. This means that a catalog entry for the
existence of a file is not sufficient. A directory exists if the specified catalog ID and/or user ID is accessible in
the file system.

The method checks whether the file or the directory for this object exists (in the sense of) and is canRead() exists()
readable for the calling program.

Special features of the DMS file system

true is always returned for existing directories.

The method checks whether the file or the directory for this object exists (in the sense of) and is canWrite() exists()
writable for the calling program.

Special features of the DMS file system

Always returns false for a directory consisting only of the catalog ID if the calling program is not privileged, also
for foreign user IDs.

The method returns true if an existing directory in the associated file system is involved.isDirectory()

The method returns true if a normal file in the associated file system is involved. A file is normal if it is not a isFile()
directory and also meets file-system-specific criteria (for example special files in UFS are not normal files). Every
file generated by a Java application which is not a directory is guaranteed to be a normal file.

The method can be used to determine whether the file or directory is hidden in the file system. What isHidden()
precisely hidden means is defined on a file-system-specific basis.

Special features of the DMS file system

Temporary files in the DMS sense are always regarded as hidden.

The method returns the time of the last modification to the file or directory if the file system supports lastModified()
this.

Special features of the DMS file system

Directories do not have their own modification date. Consequently 0 is always returned.

The method returns the size of a file or directory. How the size of a directory is defined is file-system-length()
specific.

Special features of the DMS file system

For files the number of used (not reserved) PAM pages in the file multiplied by 2048 is returned, and for
directories always the value 0.

The method returns the parameters for accessing this file with the specified access method. getAccessParameter()
The object returned can, for example, be used to generate a new file with the same parameters AccessParameter
and is used internally for file access.

JENV V9.0A

 62

The static method returns the default parameters for the given access method in the getDefaultAccessParameter()
given file system. The user can then, if required, modify these parameters and generate new files with them.

The method returns the name of the preferred access method for an existing file in the getPreferredAccessMethod()
associated file system. It is not guaranteed that the file was generated with this access method, especially if the
access methods in this file system are only a logical view of the file contents and not inquirable file attributes.

The method returns a list of the names of the permitted access methods for an existing getAllowedAccessMethods()
file in the associated file system. It is not guaranteed that the file was generated with one of these access methods,
especially if the access methods in this file system are only a logical view of the file contents and not inquirable file
attributes.

The static method returns a list of the names of all the access methods supported in the getAllAccessMethods()
specified file system.

JENV V9.0A

 63

4.2.2.7 Methods for modifying file and directory attributes

The method sets the modification date to the specified value if the file system supports this.setLastModified()

Special features of the DMS file system

The modification date cannot be set.

The modifies the file attributes so that only read operations are permitted.setReadOnly() method

Special features of the DMS file system

For files the files attribute is set to the value . This attribute cannot be set for directories and ACCESS READ
temporary files in the DMS sense.

JENV V9.0A

 64

4.2.2.8 Methods for generating files and directories

The methods generate a new file with the path name of the object using the specified createNewFile() RecordFile
access parameters or the default parameters of the specified access method.

Special features of the DMS file system

When a file is generated, it is opened exclusively and then closed. Any set in the access shared update option
parameters is ignored. The does not shared update option
takes effect until the file is opened for processing.

The static methods provide the option of creating temporary files using the specified access createTempFile()
parameters. A temporary file has a generated name which definitely does not already exist in the file system. The
file is either created in the specified directory or, if no directory was specified, in a file-system-specific directory. The
file is not automatically deleted; the user must call the method if the file is to be deleted when the deleteOnExit()
application is terminated. The name is formed from the user’s prefix and suffix specifications and a string generated
on a file-system-specific basis.

Special features of the DMS file system

No temporary files in the usual DMS sense are generated, but always permanent files which users must delete
themselves. The file-system-specific directory always refers to the default catalog ID of the calling user. The
directory parameter can be used in the DMS file system to generate temporary files on a different catalog ID
from the default catalog ID.

When a temporary file is generated, it is opened exclusively and then closed. Any set in shared update option
the access parameters is ignored. The does not take effect until the file is opened for shared update option
processing.

The method creates a directory with the name of this object in the associated file system. mkdir()

Special features of the DMS file system

No directories can be created.

The method creates a directory including all the necessary parent directories in the associated file system.mkdirs()

Special features of the DMS file system

No directories can be created.

JENV V9.0A

 65

4.2.2.9 Methods for deleting and renaming files and directories

The method renames this file or directory in the specified path names. The target file may not already renameTo()
exist. Renaming is only possible within a file system.

Special features of the DMS file system

It is not possible to rename directories. Files can only be renamed if the same catalog ID and user ID are used.

The method deletes this file or directory in the associated file system. If the path name designates a delete()
directory, this can only be deleted if it is empty.

Special features of the DMS file system

Directories cannot be deleted.

The method ensures that this file or directory is deleted in the associated file system when the deleteOnExit()
application is terminated. Deletions are only performed if the application terminates normally.

Special features of the DMS file system

Directories cannot be deleted.

The Record-File object itself, stays assigned to the old name, thus it may not represent an existing file
afterwards.

JENV V9.0A

 66

4.2.2.10 Methods for listing directories

The methods return a list of all or selected names of files and directories in the directory which this list() RecordFile
object represents. The file/directory names are returned without parent directories. The order of the names returned
is not defined. The files and directories returned can be selected using a filter (see in chapter RecordfilenameFilter

)."API overview"

Name Results

:JAVA: Only the home user ID, for example , for non-privileged users or all user IDs in the $USER.

pubset for a privileged userJAVA

:JAVA:HALLO.
JAVA

Empty as no directory was specified

$USER. Visible files of the user ID in their default catalog IDUSER

$. Visible files of the standard system ID

:JAVA:$. Visible files of the standard system ID on the pubset JAVA

Table 3: Sample DMS file system

The methods return an array of objects with path names of files or directories in the directory listFiles() RecordFile
which is represented by the path name of this object. The path names created are created from the RecordFile
directory itself and the file and directory names that are ascertained. The order of the names is not defined. The
files and directories returned can be selected using filters (see and in chapter RecordFilenameFilter RecordFileFilter

)."API overview"

The and methods can provide an application with information on file names that do not belong to their list() listFiles()
actual area. These methods are therefore monitored by an active . Consequently, they are Security Manager
allowed only if the application has read permission for the corresponding directory (see).section "Security"

The static method returns a list of all file system prefixes (“roots”) for the specified file system. It is listRoots()
guaranteed that the canonical path name of a file that actually exists physically begins with one of the prefixes
returned by .listRoots()

The method provides an application with information on the structure of the file system. If a listRoots() Security
 is active, only the roots for which read permission has been granted are shown. If you want the application Manager

to be able to determine all roots, you must grant the application read permission for
 (see).<<ALL FILES>> section "Security"

Special features of the DMS file system

A list of all accessible catalog IDs is returned.

JENV V9.0A

 67

4.2.3 AccessParameter

The class and the classes derived from it define all parameters required to access record-AccessParameter
oriented files (and which are supported) and contain at least the access method used and the associated file
system, plus the default parameters record format and record length.

The access-method-specific implementations of this class can define additional parameters and then offer methods
for setting and inquiring the values of these parameters. The subsections below describe the general methods
which every implementation must provide, as well as the specific methods for the access methods currently
supported.

Objects of the access-method-specific implementations of the class can be used to create new AccessParameter
files in the corresponding file system using the relevant access method. Internally such objects are also used for
other accesses to files (for example to open files). They can only be used to generate files in the file system from
which they originate.

Objects of this abstract class cannot be generated by the user. However, the class provides the recordFile
 and methods which you can use to have objects of the access-getAccessParameter() getDefaultAccessParameter()

method-specific implementations of this class returned.

Inadmissible values in the individual parameters are generally not discovered when the values are entered in the
 object, but only when this object is used.Parameter

JENV V9.0A

 68

4.2.3.1 General parameter methods

The method returns the name of the associated file system.getFileSystem()

The method returns the name of the access method to which this object belongs.getAccessMethod() Parameter

In addition, each implementation must provide the , , and getRecordFormat() setRecordFormat() getRecordLength()
 methods. These are not dealt with here because the specific details are described in the setRecordLength()

following sections.

The constants , and RECORD_FORMAT_UNKNOWN RECORD_FORMAT_FIXED RECORD_FORMAT_VARIABLE
are used as arguments when calling the method. Their meanings as used in their specific setRecordFormat()
access methods are explained below.

The constants and are used as arguments in NO_WAIT, THREAD_WAIT APPLICATION_WAIT shared update
 when calling the method . Their meanings as used in their specific access methods are processing setWaitMode()

explained below.

JENV V9.0A

 69

4.2.3.2 Parameters for SAM in DMS

The class in the package provides a raft of additional methods for AccessParameterSAM com.fujitsu.ts.jrio.DMS
setting and inquiring further parameters which are specific to this access method.

Objects of this abstract class cannot be generated by the user. However, the class provides the RecordFile
 and methods via which the user can receive objects of this getAccessParameter() getDefaultAccessParameter()

class’s implementation.

Inadmissible values in the individual parameters are generally not discovered when the values are entered in the
 object, but only when this object is used.Parameter

The method returns the record format stored in this parameter object. The getRecordFormat() setRecordFormat()
method sets the record format in this object. and Parameter RECORD_FORMAT_FIXED

 can be specified when SAM is used. This parameter corresponds to the RECORD_FORMAT_VARIABLE
 specification in DMS.RECFORM

The method returns the record length stored in this parameter object. The getRecordLength() setRecordLength()
method sets the record length in this object. This parameter corresponds to the specification Parameter RECSIZE
in DMS. In conjunction with fixed record format, this parameter defines the exact length of each record in a file. With
variable record format it defines the maximum length of each record. The length specification 0 is then permitted
and means unlimited record length. The DMS/SAM-specific restrictions and dependencies on other parameters
(record format, block length) naturally apply as much for JRIO as at other DMS interfaces.

The method returns the block length stored in this parameter. The method sets the getBlockSize() setBlockSize()
logical block length (as a number of PAM blocks) in this parameter object. This parameter corresponds to the

 specification in DMS. The dependencies on the record length naturally apply as much for JRIO BLKSIZE=(STD,n)

as at other DMS interfaces.

The method returns the block format stored in this parameter. This parameter corresponds to the getBlockControl()
 specification in DMS. The method sets the block format in this parameter object. BLKCTRL setBlockControl()

, , , BLOCK_CONTROL_BY_PUBSET BLOCK_CONTROL_DATA BLOCK_CONTROL_NO
, and can be BLOCK_CONTROL_PAMKEY BLOCK_CONTROL_DATA_2K BLOCK_CONTROL_DATA_4K

specified. This parameter is only of significance when new files are generated.

The method returns the value stored in this parameter for the primary space allocation getPrimarySpaceAllocation()
in a file. The method sets the value for the primary space allocation of a file in this setPrimarySpaceAllocation()
parameter object. This parameter corresponds to the first part of the specification in DMS.SPACE

The method returns the value stored in this parameter for the secondary space getSecondarySpaceAllocation()
allocation in a file. The method sets the value for the secondary space allocation in setSecondarySpaceAllocation()
a file in this object. This parameter corresponds to the second part of the specification in DMS.Parameter SPACE

The SAM access method enables a file to be opened simultaneous for read-only access by multiple applications.
For this reason, s is not possible for SAM files.hared update processing

JENV V9.0A

 70

4.2.3.3 Parameter method for ISAM in DMS

The class in the package provides a raft of additional methods for AccessParameterISAM com.fujitsu.ts.jrio.DMS
setting and inquiring further parameters which are specific to this access method.

Objects of this abstract class cannot be generated by the user. However, the class provides the RecordFile
 and via which the user can receive objects of this class’s getAccessParameter() getDefaultAccessParameter()

implementation.

Inadmissible values in the individual parameters are generally not discovered when the values are entered in the
parameter object, but only when this object is used.

The method returns the record format stored in this parameter object. The getRecordFormat() setRecordFormat()
method sets the record format in this object. and Parameter RECORD_FORMAT_FIXED

 can be specified when ISAM is used. This parameter corresponds to the RECORD_FORMAT_VARIABLE
 specification in DMS.RECFORM

The method returns the record length stored in this parameter object. The getRecordLength() setRecordLength()
method sets the record length in this parameter object. This parameter corresponds to the specification in RECSIZE
DMS. In conjunction with fixed record format, this parameter defines the exact length of each record in a file. With
variable record format it defines the maximum length of each record. The length specification 0 is then permitted
and means unlimited record length. The DMS/SAM-specific restrictions and dependencies on other parameters
(record format, block length) naturally apply as much for JRIO as at other DMS interfaces.

The method returns the block length stored in this parameter object. The method sets getBlockSize() setBlockSize()
the logical block length (as a number of PAM blocks) in this parameter object. This parameter corresponds to the
BLKSIZE=(STD,n) specification in DMS. The dependencies on the record length naturally apply as much for JRIO
as at other DMS interfaces.

The method returns the block format stored in this parameter object. This parameter corresponds getBlockControl()
to the BLKCTRL specification in DMS. The method sets the block format in this parameter object. setBlockControl()
BLOCK_CONTROL_BY_PUBSET, BLOCK_CONTROL_DATA, BLOCK_CONTROL_NO,

 and can be BLOCK_CONTROL_PAMKEY, BLOCK_CONTROL_DATA_2K BLOCK_CONTROL_DATA_4K
specified. This parameter is only of significance when new files are generated.

The method returns or depending on whether simultaneous processing of a file by getSharedUpdate() true false
multiple applications (s) is permitted (or is to be permitted) or is prohibited (or is to be hared update processing
prohibited) with the parameter object. The method specifies whether setSharedUpdate() shared update processing
for a file is to be allowed () or not () with the parameter object. The setSharedUpdate(true) setSharedUpdate(false)
parameter is relevant only when a file is opened. It corresponds to the specification in DMS.SHARUPD

The method returns the setting stored in the parameter object to control the behavior of the getWaitMode()
application in the event of conflicts during for a file opened with the parameter object.shared update processing

The method controls the behavior of the application in the event of conflicts during setWaitMode() shared update
 for a file. The specifications , and are possible. processing NO_WAIT THREAD_WAIT APPLICATION_WAIT
 causes the application not to wait for granting of the lock and causes a to be NO_WAIT RecordLockedException

triggered in the event of a lock.

THREAD_WAIT causes the thread to be placed in a wait state. After expiry of a (brief, internally specified) wait time,
repeated attempts are made to receive a lock until this succeeds or the application is terminated.

 causes the entire application to wait at the system interface for the granting of the lock. The APPLICATION_WAIT
wait time at the interface is limited by the operating system to approx. 12 hr. After this period and after expiry of a
(brief, internally specified) wait time, the system call is repeatedly issued until the lock is received or the application

JENV V9.0A

 71

is terminated. This parameter has no direct equivalent in DMS because the wait behavior with ISAM shared update
can only be controlled by means of the mechanism.EXLST

The method returns the value stored in this parameter object for the primary space getPrimarySpaceAllocation()
allocation in a file. The

 method sets the value for the primary space allocation of a file in this parameter setPrimarySpaceAllocation()
object. This parameter corresponds to the first part of the specification in DMS.SPACE

The method returns the value stored in this parameter object for the secondary getSecondarySpaceAllocation()
space allocation in a file. The

 method sets the value for the secondary space allocation of a file in this parameter setSecondarySpaceAllocation()
object. This parameter corresponds to the second part of the specification in DMS.SPACE

The method returns the value stored in this parameter object for the key position of an getPrimaryKeyPosition()
ISAM file. The method sets the value for the key position of an ISAM file in this parameter setPrimaryKeyPosition()
object. This parameter corresponds to the specification in DMS but with the difference that the numbering KEYPOS
of the positions in JRIO deviates from that of other DMS interfaces (see).section "Record"

The method returns the value stored in this parameter for the key length of an ISAM file. getPrimaryKeyLength()
The method sets the value for the key length of an ISAM file in this parameter object. This setPrimaryKeyLength()
parameter corresponds to the specification in DMS.KEYLEN

The method returns the value stored in this parameter for permitting duplication of the getDuplicateKeyIndicator()
same key values in an ISAM file. The

 method sets the value for permitting duplication of the same key values in an ISAM file in setDuplicateKeyIndicator()
this parameter object. This parameter corresponds to the specification in DMS.DUPEKY

JENV V9.0A

 72

4.2.3.4 Parameter methods for UPAM in DMS

The class in the package provides a raft of additional methods for AccessParameterUPAM com.fujitsu.ts.jrio.DMS
setting and inquiring further parameters which are specific to this access method.

Objects of this abstract class cannot be generated by the user. However, the class provides the RecordFile
 and via which the user can receive objects of this class’s getAccessParameter() getDefaultAccessParameter()

implementation.

Inadmissible values in the individual parameters are generally not discovered when the values are entered in the
parameter object, but only when this object is used.

The method returns the record format stored in this parameter object. The getRecordFormat() setRecordFormat()
method sets the record format in this object. Only is permitted in UPAM.parameter RECORD_FORMAT_FIXED

The method returns the record length stored in this parameter object. The getRecordLength() setRecordLength()
method sets the record length in this parameter object. For UPAM, the record length is always identical to the
logical block length in bytes. Thus only values which are multiples of 2048 are permitted.

The method returns the block format stored in this parameter object. This parameter corresponds getBlockControl()
to the BLKCTRL specification in DMS. The method sets the block format in this parameter object. setBlockControl()
BLOCK_CONTROL_BY_PUBSET, BLOCK_CONTROL_DATA, BLOCK_CONTROL_NO,

 and can be BLOCK_CONTROL_PAMKEY, BLOCK_CONTROL_DATA_2K BLOCK_CONTROL_DATA_4K
specified. This parameter is only of significance when new files are generated.

The method returns the value stored in this parameter object for the primary space getPrimarySpaceAllocation()
allocation in a file. The method sets the value for the primary space allocation of a file setPrimarySpaceAllocation()
in this parameter object. This parameter corresponds to the first part of the specification in DMS.SPACE

The method returns the value stored in this parameter object for the secondary getSecondarySpaceAllocation()
space allocation in a file. The method sets the value for the secondary space setSecondarySpaceAllocation()
allocation of a file in this parameter object. This parameter corresponds to the second part of the SPACE
specification in DMS.

The method returns or depending on whether simultaneous processing of a file by getSharedUpdate() true false
multiple applications (s) is permitted (or is to be permitted) or is prohibited (or is to be hared update processing
prohibited) with the parameter object. The method specifies whether setSharedUpdate() shared update processing
for a file is to be allowed () or not () with the parameter object. The setSharedUpdate(true) setSharedUpdate(false)
parameter is relevant only when a file is opened. It corresponds to the specification in DMS.SHARUPD

The method returns the setting stored in the parameter object to control the behavior of the getWaitMode()
application in the event of conflicts during for a file opened with the parameter object. shared update processing
The method controls the behavior of the application in the event of conflicts during setWaitMode() shared update

 for a file. The specifications , and are possible. processing NO_WAIT THREAD_WAIT APPLICATION_WAIT
 causes the application not to wait for granting of the lock and causes a to be NO_WAIT RecordLockedException

triggered in the event of a lock.

THREAD_WAIT causes the thread to be placed in a wait state. After expiry of a (brief, internally specified) wait time,
repeated attempts are made to receive a lock until this succeeds or the application is terminated.

 causes the entire application to wait at the system interface for the granting of the lock. The APPLICATION_WAIT
wait time at the interface is limited by the operating system to approx. 12 hr. After this period and after expiry of a
(brief, internally specified) wait time, the system call is repeatedly issued until the lock is received or the application
is terminated. This parameter has no direct equivalent in DMS because the wait behavior with UPAM shared update
can only be controlled by means of the value.PAMTOUT

JENV V9.0A

 73

4.2.4 Sequential data processing

Separate interface groups for input and output are available for the sequential processing of files or other media
which contain data records. The structure, designation and functionality of these interfaces is based on the classes
known from the normal package for sequential input/output familiar from normal Java I/O.java.io

JENV V9.0A

 74

4.2.4.1 InputRecordStream

The abstract class is the base class for all implementations of classes which permit sequential InputRecordStream
reading of records. The JRIO API provides two implementations of this abstract class, the FileInputRecordStream
class for sequential reading from a file, and the class for sequential reading from an array ArrayInputRecordStream
of objects.Record

The abstract class specifies the implementation of methods for sequential reading and skipping of records and for
closing the file, as well as a method group for elementary repositioning (mark/reset), but which need not necessarily
be supported by implementations.

The methods of the abstract class are not described in more detail here, but explained with the individual
implementations. The API documentation contains this description for users who wish to define their own
implementations.

JENV V9.0A

 75

4.2.4.2 FileInputRecordStream

A object represents a file that has been opened for sequential read access. The file is FileInputRecordStream
opened implicitly when the object is created (see section)."Opening and closing a file"

The class offers methods for reading and skipping records and for closing the file. The FileInputRecordStream
method group for positioning is present, but provides no functionality.

The file that is to be opened must already exist in the underlying file system. The method of the createNewFile()
 class must be used to generate a file.RecordFile

For a file opened for sequential read access a current file position is always defined at which the next read
operation is performed. The current file position is defined by the number of the record in accordance with the order
of the records in this file, the records of a file being numbered starting with 0. After the file has been opened the
current file position is the start of the file.

Opening and closing a file

When a object is constructed, the file specified as object is opened in read mode FileInputRecordStream RecordFile
with the specified access method or with the specified access parameters. The file must exist in the underlying file
system and the access method must belong to this file system and must be permissible for this file. The user must
possess the access rights which permit the file to be read. If a is active and its restrictions do not Security Manager
allow the file to be read, an is triggered (see).exception section "Security"

If access parameters are specified for opening the file, these are taken into account when the file is opened
provided the file parameters do not have priority. After the file has been opened, the parameters are updated with
the corresponding values of the opened file.

The method closes the file. Subsequently no I/O operations can be performed via this close()
 object.FileInputRecordStream

Special features of the DMS file system

Shared update processing (see and) of a section "Shared update processing" section "AccessParameter"
 is possible with the ISAM and UPAM access methods. However, with UPAM only PAM FileInputRecordStream

files can be opened in . Because the file is opened for reading only, all accesses are shared update processing
made without locks. As a result, no access conflicts can arise. However, it must be expected that another
application changes the contents of the record in the meantime.

Methods for reading records

The method is offered in two variants, one in which the record read is provided as a result in a newly read
generated object, and a second in which a object transferred by the calling program as an argument Record Record
is filled with the data of the record read.

When a record buffer is created, it has precisely the same size as the data read. If the calling program provides the
object, it must ensure that the record buffer is large enough to contain the data of the record to be read. If Record

the specified record buffer is too small to contain all the data, an exception is triggered and no data is transferred.

The methods read the record at the current file position. The current file position is subsequently incremented read()
by one, in other words the next record is automatically positioned on.

The method enables the specified number of records in the file to be skipped. It may be the case that it is not skip()
possible to skip exactly the number of records specified (for example if there are no longer enough records in the
file). The return value of specifies the actual number of records that are skipped.skip()

JENV V9.0A

 76

The method returns the minimum number of records that can be read without blocking. But even the available()
result null, which is often returned if it is impossible or difficult to determine whether a read attempt leads to a wait
state (of the thread), does not justify the assumption that the next call of or will actually lead to such a read() skip()
wait state.

Methods for positioning

The method provides information on whether marking or repositioning is supported for this file. As markSupported()
with the class, positioning is currently not supported for objects of this class, in other words java.io.FileInputStream
this method always returns false.

The method is present, but has no function.mark()
Calling results in an exception as this functionality is currently not supported.reset()

JENV V9.0A

 77

4.2.4.3 ArrayInputRecordStream

An object represents an array of objects opened for sequential read access. ArrayInputRecordStream Record
Opening takes place implicitly when an object is generated (see), but has no further meaning "Opening and closing"
here as it would with files.

The class offers methods for reading and skipping records. The method group for ArrayInputRecordStream
positioning is also supported in full.

Within the array from which is read a current read position is always defined at which the next read operation is
performed. The current read position is defined by the number of the record in the array, the numbering of the
records starting with zero. After opening, the current read position is zero.

Opening and closing

When an object is constructed, the calling program provides the array with data records ArrayInputRecordStream
which are to be read later. This array is used directly and not copied, in other words any manipulations on this array
or the records contained in it have a direct affect on the object. With a second variant of ArrayInputRecordStream
the constructor the user can make part of an array with records (defined by offset and length) available for input.

The methods is present, but has no function for this class.close()

Methods for reading records

The method is offered in two variants, one in which the record read is provided as a result in a newly read
generated object, and a second in which a object transferred by the calling program as an argument Record Record
is filled with the data of the record read.

When a record buffer is created, it has precisely the same size as the data read. If the calling program provides the
object, it must ensure that the record buffer is large enough to contain the data of the record to be read. If Record

the specified record buffer is too small to contain all the data, an exception is triggered and no data is transferred.

The methods read the record at the current read position. The current read position is subsequently read()
incremented by one, in other words the next record in the array is automatically positioned on.

The method enables the specified number of records in the array to be skipped. It may be the case that it is skip()
not possible to skip exactly the number of records specified because the array no longer contains enough records.
The return value of specifies the actual number of records that are skipped.skip()

The method returns the number of records which can still be read before the end of the array is reached. available()
Reading from an array of records never leads to wait states.

Methods for positioning

The method provides information on whether marking or repositioning is supported for this data markSupported()
stream. In this class this method always returns true.

The method notes the current read position so as to be able to reposition to it later. The argument envisaged mark()
for is ignored in this implementation and should always be specified as 0.mark()

Calling repositions the pointer to a read position previously noted with .reset() mark()

JENV V9.0A

 78

4.2.4.4 OutputRecordStream

The abstract class is the base class for all implementations of classes which permit sequential OutputRecordStream
writing of records. The JRIO API provides two implementations of this abstract class, the FileOutputRecordStream
class for sequential writing to a file, and the class for sequential writing to an array of ArrayOutputRecordStream

objects.Record

This abstract class specifies the implementation of methods for sequential writing of records and for closing the file.

The methods of the abstract class are not described in more detail here, but explained with the individual
implementations. The API documentation contains this description for users who wish to define their own
implementations.

JENV V9.0A

 79

4.2.4.5 FileOutputRecordStream

A object represents a file that has been opened for sequential write access. The file is FileOutputRecordStream
opened implicitly when the object is created (see section “ ” below).Opening and closing a file

The class offers methods for writing records and for closing the file. In a file opened for FileOutputRecordStream
sequential write access, records are always added at the end.

The file that is to be opened must already exist in the underlying file system. The method of the createNewFile()
 class must be used to generate a file.RecordFile

Opening and closing a file

When a object is constructed, the file specified as object is opened in write FileOutputRecordStream RecordFile
mode with the specified access method or with the specified access parameters. Users can decide whether or not
any content the file may have should be deleted when the file is opened.

The file must already exist in the underlying file system and the access method must belong to this file system and
must be permissible for this file. The user must possess the access rights which permit writing. If a Security Manager
is active and its restrictions mean that writing is not permitted for the file, an is triggered (see exception section

)."Security"

If access parameters are specified for opening the file, these are taken into account when the file is opened
provided the file parameters do not have priority. After the file has been opened, the parameters are updated with
the corresponding values of the opened file.

The method closes the file. Subsequently no I/O operations can be performed via this close()
 object.FileOutputRecordStream

Special features of the DMS file system

Shared update processing (see and) for a section "Shared update processing" section "AccessParameter"
 is only possible with the ISAM access method if an existing file is opened in order to FileOutputRecordStream

add to it. Other applications cannot then also open the file as . You are generally FileOutputRecordStream
advised not to use in conjunction with . In exceptional shared update processing FileOutputRecordStream
cases, simultaneous opening as may be useful.FileInputRecordStream

Methods for writing records

The method writes a record after the last record in the file. A lock is implicitly requested when write() shared update
is used. This can trigger a or, depending on the option set with , processing RecordLockedException setWaitMode()

can cause the thread or the entire application to wait in the event of access conflicts. The lock is released after
completion of the write operation.

The method ensures that all the records written with are actually output into the file, even if the basic flush() write()
access method envisages buffering the outputs. An existing lock for this file is released if shared update processing
is used.

JENV V9.0A

 80

4.2.4.6 ArrayOutputRecordStream

An object represents an array of objects opened for sequential write access. The ArrayOutputRecordStream Record
array is created implicitly when it is opened (see) and expands with the data written into it."Opening and closing"

The class offers methods for reading records. When writing, records are always added ArrayOutputRecordStream
at the end of the array. In addition, this class also offers methods to fetch the entire contents of the data stream, to
delete the contents, or to inquire the size.

Opening and closing

When an object is constructed, an array is provided internally into which records are ArrayOutputRecordStream
later to be written. When doing this, the calling program can specify how many records the array should initially
receive. If it does not do this, a default size is assumed. However, if this size is not sufficient to accommodate the
records, the array is automatically enlarged internally.

The method is present, but has no function.close()

Methods for writing records

The method adds a record after the last record in the array.write()

The method is present, but has no function for this class.flush()

Methods for access to the content of a data stream

The method returns the number of records in the array.size()

The method enables the entire contents of the array to be deleted. The array itself is retained unchanged in reset()
size and is refilled when further calls are made.write()

The method returns the entire current contents of the data stream as an array of . toRecordArray() Record objects
The array returned is, in contrast to the one used internally, of exactly the size required to contain the data. The
individual records are not copied here, which means that manipulation of the record contents has an effect on the
content of the data stream.

The method writes the entire current contents of the data stream into another specified data stream. Every writeTo()
data stream whose implementation is derived from the abstract class is suitable for this.OutputRecordStream

JENV V9.0A

 81

4.2.5 RandomAccessRecordFile

A object represents a file opened for random access. The file is opened implicitly when RandomAccessRecordFile
the object is generated (see below).section "Opening and closing a file"

The class offers methods for reading and writing records and for shortening and RandomAccessRecordFile
extending this file. There are also methods for positioning and for closing the file.

The file that is to be opened must already exist in the underlying file system. The method of the createNewFile()
 class must be used to generate a file.RecordFile

For a file that has been opened for random access a current file position is always defined at which the next read or
write operation takes place. The current file position is defined by the number of the record in accordance with the
sequence of records in this file, the records being numbered starting with zero. The current file position after the file
is opened is the start of file.

When a file is opened for random access, the specific access direction can be restricted and deletion of the
contents of an existing file can be requested.

The following open modes are permitted with this class:

INPUT
After the file has been opened only read operations are permitted.

OUTIN
After the file has been opened both write and read operations are permitted. The entire file contents are deleted
when the file is opened.

INOUT
After the file has been opened both read and write operations are permitted. The file contents remain unchanged
when the file is opened.

After the file has been closed the object should no longer be used.RandomAccessRecordFile

JENV V9.0A

 82

4.2.5.1 Opening and closing a file

When a object is constructed, the file specified as object is opened in the RandomAccessRecordFile RecordFile
specified mode with the specified access method or with the specified access parameters.

The file must already exist in the underlying file system and the access method must belong to this file system and
must be permissible for this file. The user must possess the necessary access rights to the file for the specified
open mode. If a is active and its restrictions for this file conflict with the specified open mode, an Security Manager

 is triggered (see).exception section "Security"

If access parameters are specified for opening the file, these are taken into account when the file is opened
provided the file parameters do not have priority. After the file has been opened, the parameters are updated with
the corresponding values of the opened file.

The method closes the file. Subsequently no I/O operations can be performed via this close()
 object.RandomAccessRecordFile

Special features of the DMS file system

Shared update processing (see and) for a section "Shared update processing" section "AccessParameter"
 is possible with the UPAM access method only for PAM files in the and RandomAccessRecordFile INPUT

 open modes. If the file was opened in open mode, all accesses are made without locks. INOUT INPUT
Consequently, no access conflicts can arise. However, it must be expected that another application changes
the contents of the record in the meantime. In the open mode, read and write accesses are made with INOUT
an implicit lock. In the event of access conflicts the option set using can trigger a setWaitMode()

 or cause the thread or the entire application to wait. Locks are implicitly released RecordLockedException
when the locked record is written but can also be explicitly released using . Details are provided in the flush()
appropriate interface description in the shipped JAVADOC documentation.

JENV V9.0A

 83

4.2.5.2 Methods for reading records

The method is offered in two variants, one in which the record read is provided as a result in a newly read
generated object, and a second in which a object transferred by the calling program as an argument Record Record
is filled with the data of the record read.

When a record buffer is created, it has precisely the same size as the data read. If the calling program provides the
object, it must ensure that the record buffer is large enough to contain the data of the record to be read. If Record

the specified record buffer is too small to contain all the data, an exception is triggered and no data is transferred.

The methods read the record at the current file position. The current file position is subsequently incremented read()
by one, in other words the next record in the array is automatically positioned on.

JENV V9.0A

 84

4.2.5.3 Methods for writing records

The method writes a record into the file at the current file position. Any existing record is overwritten, but only write()
if the restrictions applicable for the access method (for example same record length) are complied with. If the
current file position is the end of file (or after this), the file is extended. After writing, the current file position is the
record after the written record or the end of file.

In , an existing record can only be changed safely (when there are competing shared update processing
applications) if the record lock implicitly set when reading is not released between reading and writing - in particular,
no other record must be read or written in the meantime. You should therefore follow a corresponding sequence of
actions in ; however, no check of this sequence is made.shared update processing

The method ensures that all records written with are output to the file even if the underlying access flush() write()
method provides buffering. also ensures that a lock received for a file by the application Shared update processing
is released.

Special features of the DMS file system

When is used in the DMS file system, information on the current end-of-file cannot shared update processing
be synchronized between participating applications. Simultaneous extension of by RandomAccessRecordFiles
multiple applications is not therefore recommended.

JENV V9.0A

 85

4.2.5.4 Methods for positioning and changing size

The method returns the current file position as a record number.getCurrentRecordNumber()

The method sets the current position of the file to the record with the specified number. setCurrentRecordNumber()
The special constants and can be used to position to the start or end of file.POS_FIRST POS_LAST

The method returns the number of records in the file. That is simultaneously the position of the getRecordCount()
end of file.

The method modifies the size of the file to the number of records specified. If the specified setRecordCount()
number of records is less than the current number of records in the file, the file is shortened so that it only contains
as many records as specified. If in this case the current file position was greater than the new file size, the current
file position is set to the new end of file. If the specified number of records is greater than the current number of
records in the file, the file can be extended. An access method can reject such a file extension, for example for files
with variable record format. When the operation has been executed, the content of the newly added records is
undefined.

Special features of the DMS file system

When is used in the DMS file system, it is not possible to reduce the size of a file. shared update processing
This would trigger an .IOException

When is used in the DMS file system, information on the current end-of-file cannot shared update processing
be synchronized between participating applications. Simultaneous extension of by RandomAccessRecordFiles
several applications is not therefore recommended. Nevertheless, the locks are set as if the file were being
extended by writing individual records on after the other.

JENV V9.0A

 86

4.2.6 Indexed-sequential data processing

Keys play a very central role in indexed-sequential data processing.

Keys define the order of the records within an indexed-sequential file. A key is always part of a record and is
defined by the key field (position and length) within each record of an indexed-sequential file. The content of a key
field is the key value. In addition, a key can have a name if, for example, this is necessary to distinguish different
keys in an implementation.

A distinction is made between primary and secondary keys. Each indexed-sequential file always has precisely one
primary key and can have one or more secondary keys. Secondary keys must always have a unique name. If a file
has several keys, each of these keys may define a different order.

Identical key values in different records are permitted for a key.

Special features of the BS2000 access method ISAM

For ISAM files, an unnamed primary key is always defined. Only for NK-ISAM files can several secondary keys (up
to 30) be defined in addition. The secondary keys must always have a unique name (up to 8 characters). The
restrictions which apply for ISAM (for example regarding key length) must naturally also be taken into account when
the JRIO interfaces are used. Identical secondary keys in different records are only permissible if no identical key
values are permitted in different records for the primary key and if and if identical key values in different records
have already been permitted for all other secondary keys.

The marking options (value flag and logical marking) which ISAM offers are not supported by JRIO.

Note that at the ISAM DMS interfaces, positions within a record, in particular key positions, can be numbered
differently than at the JRIO interfaces (see).section "Record"

JENV V9.0A

 87

4.2.6.1 KeyDescriptor

The class defines the position, length and other attributes of a particular key field within a record of KeyDescriptor
an indexed-sequential file (key definition). It provides methods for accessing these key attributes of an indexed-
sequential file.

A object is used for generating or extracting a concrete key value. Appropriate implementations of KeyDescriptor
this abstract class are provided for ISAM. You can thus generate such objects themselves or have KeyDescriptor
them provided via the methods of the class.KeyedAccessRecordFile

If you are working on an ISAM file with key definitions they have generated themselves, you must naturally ensure
that these fit the keys defined in the file.

A object is serializable and can thus be used for Remote Method Interfaces (RMIs).KeyDescriptor

Methods

The method returns the position of the key field in a record.getPosition()

The method returns the length of the key field.getLength()
The method returns the name of a named key, or null for unnamed keys. Thus with secondary keys the getName()
unique name is always returned. In the case of the primary key, whether or not a name is returned depends on the
implementation.

The method is used to check whether identical key values are permitted in different records for the hasDuplicates()
key concerned.

Whether the key is a primary or secondary key is checked using the or method.isPrimary() isSecondary()

PrimaryKeyDescriptorISAM

The class in the package is an implementation of the abstract PrimaryKeyDescriptorISAM com.fujitsu.ts.jrio.DMS
class and represents the primary key of an ISAM file. The class offers only those methods which the KeyDescriptor
abstract class specifies, as well as constructors for generating the key definitions. The following particular features
apply for ISAM:

The key position must be a value between 0 and 32767. However, this does not mean that these values always
make sense. The values actually used for I/O depend on other factors (block size, record format, key length), but
these cannot be checked by the constructor.

The length of the key must be a value between 1 and 255.

The primary ISAM key does not have a name, and the method therefore always returns null.getName()

SecondaryKeyDescriptorISAM

The class in the package is an implementation of the abstract SecondaryKeyDescriptorISAM com.fujitsu.ts.jrio.DMS
class and represents a secondary key of an ISAM file. The class offers only those methods which the KeyDescriptor
abstract class specifies, as well as constructors for generating the key definitions. The following particular features
apply for ISAM:

The key position must be a value between 0 and 32767. However, this does not mean that these values always
make sense. The values actually used for I/O depend on other factors (block size, record format, key length), but
these cannot be checked by the constructor.

The length of the key must be a value between 1 and 127.

A secondary ISAM key must have a unique name up to 8 characters in length which complies with the DMS
rules. Upper/lower case is ignored in these names, and a name is always returned in upper case by .getName()

JENV V9.0A

 88

JENV V9.0A

 89

4.2.6.2 KeyValue

The class defines an actual key value. Every key value has a key definition associated with it. This class KeyValue
provides methods for manipulating the key value and for inquiring the attributes of the associated key description.

A object can be used to select a record in an indexed-sequential file using this key.A object is KeyValue KeyValue
serializable can thus be used for Remote Method Interfaces (RMIs).

Constructors

When a object is generated, the key value is filled with the user’s data. This data can be specified as a KeyValue
byte array or string. If the user specifies no data or the data specified is shorter than the key, the complete key
value is padded with null bytes or blanks. If the data is longer than the key, only as much data is transferred as will
fit in the key.

If the user specifies the data as a string but specifies no encoding for converting text to data, the system-dependent
standard encoding (in BS2000 the default value is) is used.OSD_EBCDIC_DF04_1

Methods for manipulating the key value

The methods fill the key with the specified user data. If the user specifies no data, the entire key value is setValue()
filled with null bytes. If the data is shorter than the key, the rest is filled with a filler byte. The filler byte can be
supplied by the user, otherwise a null byte is used. If the data is longer than the key, only as much data is
transferred as will fit in the key.

The methods fill the key with the converted data of the specified string. If the user specifies no setStringValue()
data, the entire key value is filled with blanks. If the data is shorter than the key, the rest is filled with blanks. If the
data is longer than the key, only as much data is transferred as will fit in the key.

If no encoding for converting text to data was specified by the user, the system-dependent standard encoding (in
BS2000 the default value is) is used.OSD_EBCDIC_DF04_1

The methods are used to return the key value of a key. The key value is either transferred to a buffer getValue()
provided by the user or returned as a copy of the value. As the key value is therefore always copied, this means
that manipulations on the result returned have no influence on the object from which the value originates. If the
value in the object is to be modified, the setValue() method must subsequently be used.

With the methods, the key value of a key is returned converted into a string. If no encoding for getStringValue()
converting text to data was specified by the user, the system-dependent standard encoding (in BS2000 the default
value is) is used.OSD_EBCDIC_DF04_1

Methods for determining the key attributes

The method returns the position of the key field in a record.getPosition()

The method returns the length of the key field.getLength()
The method returns the key definition associated with the key value.getKeyDescriptor()

JENV V9.0A

 90

4.2.6.3 KeyedAccessRecordFile

A object represents a file opened for keyed access. The file is opened implicitly when the KeyedAccessRecordFile
object is generated (see section)."Opening and closing a file"

The class offers methods for reading, writing and deleting records in this file. There are KeyedAccessRecordFile
also methods for handling keys and for closing the file.

The file that is to be opened must already exist in the underlying file system. The method of the createNewFile()
 class must be used to generate a file.RecordFile

When a file is opened for keyed access, the specific access direction can be restricted and deletion of the contents
of an existing file can be requested.

The following open modes are permitted with this class:

INPUT
After the file has been opened only read operations are permitted.

OUTIN
After the file has been opened both write and read operations are permitted. The entire file contents are deleted
when the file is opened.

INOUT
After the file has been opened both read and write operations are permitted. The file contents remain unchanged
when the file is opened.

After the file has been closed the object should no longer be used.KeyedAccessRecordFile

Opening and closing a file

When a object is constructed, the file specified as object is opened in the KeyedAccessRecordFile RecordFile
specified mode with the specified access method or with the specified access parameters.

The file must already exist in the underlying file system and the access method must belong to this file system and
must be permissible for this file. The user must possess the necessary access rights to the file for the specified
open mode. gegebenen Open-Modus erforderlichen Zugriffsrechte auf die Datei besitzen. If a is Security Manager
active and its restrictions for this file conflict with the specified open mode, an is triggered (see exception section

)."Security"

If access parameters are specified for opening the file, these are taken into account when the file is opened
provided the file parameters do not have priority. After the file has been opened, the parameters are updated with
the corresponding values of the opened file.

The method closes the indexed-sequential file. Subsequently no I/O operations can be performed via this close()
 object.KeyedAccessRecordFile

Special features of the DMS file system

Shared update processing (see and) of asection "Shared update processing" section "AccessParameter"
 is possible for all open modes (, ,). However, open KeyedAccessRecordFile INPUT INOUT OUTIN OUTIN

mode is permitted only for the application that opened the file first. If the file was opened in open mode, INPUT
all accesses are made without locks. As a result, no access conflicts can arise. However, it must be expected
that another application changes the contents of the record in the meantime. With the other open modes, read
and write accesses are made with implicit locks. In the event of access conflicts, this can trigger a
RecordLockedException or cause the thread or the entire application to wait, depending on the option set

JENV V9.0A

 91

using . Locks are released after writing or deleting the locked record. They can also be released setWaitMode()
explicitly using . When a record is read, an existing lock for another record is also released. Details are unlock()
provided in the appropriate interface description in the shipped JAVADOC documentation.

Methods for reading records

All methods are offered in two variants, one in which the record read is provided as a result in a newly read
generated object, and a second in which a object transferred by the calling program as an argument Record Record
is filled with the data of the record read.

When a record buffer is created, it has precisely the same size as the data read. If the calling program provides the
object, it must ensure that the record buffer is large enough to contain the data of the record to be read. If Record

the specified record buffer is too small to contain all the data, an exception is triggered and no data is transferred.

With the methods in which a or object can be specified, such arguments are only read KeyValue KeyDescriptor
accepted if they are suitable for the file (see the

 and methods).getPrimaryKeydescriptor() getSecondaryKeydescriptor()

The methods read the record which is selected by the specified key value. If there is more than one record read()
with the same key value in the file, the first one is returned. Both a value of the primary key and a value of the
secondary key can be specified as the key value.

The methods read the next record in the order determined by the given argument. There are three readNext()
variants of these methods:

If no order argument is specified, the next record defined by the order of the primary key is read. If this method is
called as the first operation after a file has been opened, the record with the lowest available primary key value is
read. In all other cases this operation reads the record following the last record read, provided the last record
read was also read via the primary key (in other cases the behavior is access-method-specific). This is a method
to permit sequential reading of records which contain the same key value.

If a key definition is specified as an order argument, the next record defined by the order of the primary or
secondary key of the given key definition is read. If this method is called immediately after a file has been
opened, the record with the lowest available key value as defined in the given key definition is read. In all other
cases this operation reads the record following the last record read, provided the last record read was read via
the same key definition (in other cases the behavior is access-method-specific). This is a method to permit
sequential reading of records which contain the same key value.

If a key value is specified as an order argument, the record is read with the next highest key in accordance with
the order of the associated key definition.

The methods read like the , but they read the preceding record rather than the readPrevious() readNext() methods
following record.

Methods for writing and deleting records

When records are written to an indexed-sequential file, the position of a written record is determined by the key
fields contained in the record.

The method writes a record to a file. If a file with the same primary key value already exists and no duplicate write()
keys are permitted for the primary key, the existing record is replaced. If duplicate keys are permitted and the record
already exists, the record is added after the last record with the same primary key value.

The method writes a record to the file, but only if no record with the same primary key exists in the file.writeNew()

The method overwrites a record in the file that was read directly beforehand. Between the read and writeBack()
write operations, no modification may be made to the record’s primary key field. In an shared update processing

JENV V9.0A

 92

existing record is not overwritten unless the lock set in order to read the record still applies. Otherwise, a
 is triggered.RecordNotLockedException

The method deletes the record selected by the specified key value. If there are several records with the delete()
same key value in the file, the first one is deleted. Either a value of the primary key or a value of a secondary key
can be specified as the key value.

Methods for unconditional lock release

The method is used to explicitly release a lock set implicitly by a read operation in unlock() shared update
.processing

Methods for determining key definitions

The method returns the key definition for the primary key of this file.getPrimaryKeyDescriptor()

The method returns the key definition for the secondary key with the specified name.getSecondaryKeyDescriptor()

The method returns a list of the names of all of this file’s secondary keys.getKeyDescriptorNames()

Methods for generating and deleting secondary keys

The methods generate a new secondary key for this indexedsequential file with the specified createSecondaryKey()
parameters. There are two parameter variants. One variant is that all fields of the object (name, key KeyDescriptor
position, key length and the specification as to whether identical key values are permitted in different records for this
key) are specified individually, and the second is that a object is specified for a secondary key. The KeyDescriptor
second variant enables, for example, the attributes of another file’s secondary key to be used in order to generate a
corresponding secondary key in this file.

The method deletes the specified secondary key of this indexedsequential file.deleteSecondaryKey()

The and methods require exclusive access to the file and are createSecondaryKey() deleteSecondaryKey()
therefore not permitted in . They would trigger an .shared update processing IOException

JENV V9.0A

 93

4.3 Implementation details

The attributes marked as implementation-specific in the API descriptions are defined in this section.

JENV V9.0A

 94

4.3.1 File-system-specific definitions

Both in the API descriptions in this document and in the actual API specifications it is specified in various places
that a file system implementation can specify particular definitions.

These definitions are shown in the table below for the file systems supported in this version. The UFS file system is
included merely to complete the picture, although it is currently not supported.

Detail DMS file system UFS file system

Name to be used at the
JRIO interfaces

“DMS” “UFS”

Access methods ISAM, SAM, UPAM Currently none

File system prefixes Catalog IDs (" "):catid: Root directory '/'

Normalization Lower-case letters are converted to
upper-case letters and path names

 to $<name> $.<name>

. and .. directories are cancelled and
double slashes '//' are converted into
single slashes; a '/' at the end of the
path name is deleted

Absolute path name Supplementing the path name with the
catalog ID

Supplementing the current directory for
relative path names

Canonical path name Either only catalog ID or the file name
supplemented by catalog ID and user ID,
if required with cancellation of the
standard system ID

Conversion like absolute path name and
resolution of all symbolic links

Empty path name Standard catalog ID of the user Root directory '/'

Normal file All files are normal files Regular files (for example no special
files)

Hidden files and
directories

Temporary files in the DMS sense All files and directories whose name
begins with a period '.'

Size of a file with the
 methodlength()

Number of PAM pages used * 2048 (last
page pointer)

Size in bytes

Size of a directory with
the length() method

Always 0 Size in bytes

File name See the manual “Introductory Guide to
” []DMS 8

See manual “POSIX, Basics for Users
” []and Systems Administrators 1

Separator between path
name parts

 and separatorChar
separator

Not defined Slash '/' or "/"

Comma ',' or "," Colon ':' or ":"

JENV V9.0A

 95

Separator between path
names

 and pathSeparatorChar
pathSeparator

Default directory when
creating a temporary file
with the

 createTempFile()
method

Default catalog ID of the calling program Default directory which is assigned to
the system property java.io.tmpdir

Generated name part of
a temporary file
(between suffix and
prefix specifications)

String with the length 7 String with the length 7

Shared update
processing

Supported (with restrictions) Not supported

Table 4: File-system-specific definitions

JENV V9.0A

 96

4.3.2 Access-method-specific definitions

Both in the API descriptions in this document and in the actual API specifications it is specified in various places
that an access method implementation can specify particular definitions.

These definitions are shown in the table below for the DMS access methods supported in this version.

Details SAM access
method

ISAM access method UPAM access method

Name to be used at the JRIO
interfaces

“SAM” “ISAM” “UPAM”

Permissible record formats Record format
with variable and
fixed record
length

Record format with variable
and fixed record length

Record format with fixed
record length

Maximum record length
(depending on the record format
(fixed, variable), logical block
format (NO, KEY, DATA) and
block size (1 BS 16) - <= <=

the method of setRecordLength
the ... classes AccessParameter
also accepts greater values
because block size or record
format can be modified later)

fixed, KEY

BS * 2048

fixed, NO, DATA

BS * 2048 - 16

variable, KEY:

BS * 2048 -4

variable, NO,

DATA

BS * 2048 - 20

fixed:

BS * 2048

variable:

BS * 2048 - 4

In the event of full
utilization overflow blocks
may occur

fixed, NO, KEY

BS * 2048

fixed, DATABS * 2048

(the first 12 bytes contain
metadata!)

Permissible values for
() of the setRecordLength
... classesAccessParameter

0 through 32768
(0 means:
variable,
restricted only by
block size)

0 through 32768 (0 means:
variable, restricted only by
block size)

0 through 32768 (0
means: pubset standard)
Values != n*2048 (n=0,,
16) are not permitted

Permissible values for the
, setBlocksize

, setPrimarySpaceAllocation
, setSecondarySpaceAllocation

,setPrimary-KeyPosition
 setSecondaryKeyPosition

methods of the AccessParameter
... classes

See API
documentation
on the
AccessParameter
SAM interface

See API documentation on
the AccessParameter ISAM
interface

See API documentation
on the AccessParameter

 U PAM interface

markSupported() methodFor
marking and repositioning in the
event of sequential reading of
the classFileInputRecordStream

Always false Always false Always false

The write buffer is emptied No function

JENV V9.0A

 97

Writing buffered output to the
output stream with the flush()
method of the

 classFileOutputRecordStream

The write buffer
is emptied

Permissible values when
generating secondary keys with
the createSecondaryKey()
method of the

 classKeyedAccessRecordFile

Not supported Yes

Max. 30 secondary keys,
each max. 127 bytes long.
keyPos <= 32495

Not supported

Name of secondary keys (
method of createSecondaryKey()

the KeyedAccessRecordFile
class)

Not supported 8-character, as per DMS
rules, lower-case letters
may be converted to upper-
case letters

Not supported

Setting the file position with the
 setCurrentRecordNumber()

method of the
 class RandomAccessRecordFile

after the last record (value of
) - or writing at getRecordCount()

such a position

Yes - empty
records (with
variable record
format) or
records with
undefined
contents (with
fixed record
format) may be
added

No Yes - records with
undefined contents may
be added

Overwriting records with the
 methodwrite()

Same record
length at records
with variable
lenght

Possible without
restrictions

Overwriting records with the
 methodwriteBack()

- The primary key may not
be modified

Sequence in the event of
sequential reading with the

 classKeyedAccessRecordFile

- Write or delete operations
modify the file position and
should therefore not be
used between sequential
read operations. With
regard to different keys,
ISAM behavior applies for
the sequence in sequential
read operations (see
themanual “Introductory

” [])Guide to DMS 8

Shared update processing:
general

Not possible Possible as:
, FileInputStream

FileOutputStream
KeyedAccessRecordFile

Only possible for PAM
files as FileInputStream
or as
RandomAccessRecordFile

-

JENV V9.0A

 98

Shared update processing: open
modes

INPUT, or INOUT OUTIN
permitted, FileOutputStream
only to add to a file, OUTIN
only for the first application
that opens the file

INPUT or INOUT
permitted

Shared update processing: lock
granularity

- With , the lock is NK-ISAM
on key level (primary key),
with the lock is on K-ISAM
block level

Lock is on block level

Shared update processing:other
special features

- Locks apply for the entire
application (not only for a
file)

It is not possible to
increase or decrease the
size of a file

Table 5: Access-method-specific definitions

JENV V9.0A

 99

4.3.3 Default values of the DMS access methods

The table below provides an overview of the default values for the access methods in the DMS file system of an
 object that was generated with the method. The overview is AccessParameter getDefaultAccessParameter()

structured according to the methods used for reading.

Method SAM access method ISAM access
method

UPAM access
method

getAccessMethod() “SAM” “ISAM” “UPAM”

getFileSystem() “DMS” “DMS” “DMS”

getRecordFormat() RECORD_

FORMAT_

VARIABLE

RECORD_

FORMAT_

VARIABLE

RECORD_

FORMAT_

FIXED

getRecordLength() 0 0 0

getBlockSize() 0 0 -

getDuplicateKeyIndicator() - false -

getPrimaryKeyLength() - 8 -

getPrimaryKeyPosition() - 0 -

getPrimarySpaceAllocation() 0 0 0

getSecondarySpaceAllocation() -1 -1 -1

getBlockControl() BLOCK-
CONTROL_
BY_PUBSET

BLOCK-
CONTROL_
BY_PUBSET

BLOCK-
CONTROL_
BY_PUBSET

getSharedUpdate() - false false

getWaitMode() - THREAD_WAIT THREAD_WAIT

Table 6: Default values of the DMS access methods

The value 0 with designates the value “variable - only limited by block size” for the SAM and getRecordLength()
ISAM access methods and the “pubset-specific default” for UPAM.

The values 0 with , 0 with and -1 with getBlockSize() getPrimarySpaceAllocation() getSecondarySpaceAllocation()
designate the “pubset-specific default”. If the file has been created, the current values are entered here.

JENV V9.0A

 100

4.4 Restrictions

The following explicit restrictions are defined for DMS under JRIO:

Tape files and private disks are not supported.

EAM and logical system files are not supported.

Not all file parameters can be manipulated or set via JRIO. Only the parameters explicitly named in the API
descriptions are taken into account. Especially when new files are created this results in restrictions when
particularly special attributes are to be used. However, the most common parameters of the various access
methods are already supported with the class and the associated implementations of the AccessParameter
access methods.

Only the access methods shown and the files related to them are supported.

Shared update and locking are not supported in this version.

Reverse reading is supported only for keyed access, not for sequential or random access.

In ISAM the logical value flag is not supported. ISAM files which contain such a flag cannot be processed. ISAM
pools are also not supported.

The undefined record format is not supported. Files with undefined record format cannot be processed.

File generation groups are not supported.

JENV V9.0A

 101

4.5 Examples

The examples in the sections below are designed to show the various access types and general use of the JRIO
interfaces on the basis of one or two (more or less typical) problems.

All the examples given here consist of complete programs which can be executed. The source texts of all sample
programs are supplied with the product and are contained in the subdirectory of the installation directory. demo/jrio
In conjunction with your inline documentation, the programs should be largely self-explanatory.

JENV V9.0A

 102

4.5.1 Sequential data processing

A simple copy program for SAM files is used to demonstrate sequential data processing. The program requires two
parameters: the name of the file which is to be copied and the file name of the copy. If the target file already exists,
it is deleted (take care!) and created again.

The example is so designed that no knowledge of the file attributes, such as record format or record length, of the
file to be copied is required. The error handling in the example is not particularly convenient, simply to prevent the
comprehensive code which would be required for this distracting the reader from the way the interface is actually
used.

The program is contained in the :CopySAM.java file

import java.io.*;
import com.fujitsu.ts.jrio.*;
/**
 * This sample program demonstrates the use of the
 * JRIO interfaces for file handling and sequential
 * input and output.
 *
 * The program creates a copy of a DMS file of type SAM
 * by sequentially copying each record of the file.
 *
 * The interesting part of this program is the method
 * doCopySAM(), all other methods are added to make it
 * a complete executable program.
 */
public class CopySAM
{
 /**
 * The main method, which analyses the program arguments,
 * calls the work method and provides global error
 * handling.
 */
 public static void main(String args[])
 {
 String source = null;
 String target = null;
 for (int i = 0; i < args.length; i++)
 {
 if (source == null)
 source = args[i];
 else if (target == null)
 target = args[i];
 else
 usage();
 }
 if (source == null || target == null)
 usage();
 try {
 doCopySAM(source,target);
 } catch (Exception e) {
 error(e.toString());
 }
 }
 /**
 * Print a usage message and exit with error
 */

JENV V9.0A

 103

 private static void usage()
 {
 error("Usage: CopySAM source target");
 }
 /**
 * Print the given error message and exit
 */
 private static void error(String msg)
 {
 System.err.println(msg);
 System.exit(1);
 }
 /**
 * The work method.
 * This method demonstrates, how the JRIO interfaces
 * may be used to copy a complete SAM file by
 * sequential read and write operations.
 *
 * @param source
 * The name of the file to be copied
 * @param target
 * The name of the copied file
 */
 public static void doCopySAM(String source,String target)
 throws IOException
 {
 Record rec;
 RecordFile sourceFile;
 RecordFile targetFile;
 FileInputRecordStream input;
 FileOutputRecordStream output;
 /**
 * check file names and create RecordFile objects
 */
 sourceFile = new RecordFile(source,"DMS");
 targetFile = new RecordFile(target,"DMS");
 /**
 * check source file existence
 */
 if (!sourceFile.exists())
 error("Source file " + source + " does not exist");
 /**
 * check target file existence
 */
 if (targetFile.exists())
 {
 /**
 * delete the existing file
 */
 if (!targetFile.delete())
 error("Target file " + target
 + " could not be deleted");
 }
 /**
 * create an empty output file with same attributes
 */
 if (!targetFile.createNewFile(
 sourceFile.getAccessParameter("SAM")))
 error("Target file " + target + " still exists");

JENV V9.0A

 104

 /**
 * open source for input
 */
 input = new FileInputRecordStream(sourceFile,"SAM");
 /**
 * open target for output
 */
 output =new FileOutputRecordStream(targetFile,"SAM");
 /**
 * read and write all records
 */
 while ((rec = input.read()) != null)
 output.write(rec);
 /**
 * close all files
 */
 input.close();
 output.close();
 }
}

The program can be compiled with the Java compiler javac and then be run. No particular specifications are
required to make the JRIO interfaces available.

JENV V9.0A

 105

4.5.2 Random data processing

Two examples are used to demonstrate random data processing. The first program solves the problem of deleting
one or more records from a SAM file. For this purpose the program expects as parameters the name of an existing
file and the number or the number range of the records to be deleted. Note that here, too, the records are numbered
consecutively starting with zero.

The example is so designed that no knowledge of the file attributes, such as record format or record length, of the
file to be processed is required. The error handling in the example is not particularly convenient, simply to prevent
the comprehensive code which would be required for this distracting the reader from the way the interface is
actually used.

The program is contained in the file:DeleteRecordsSAM.java

import java.io.*;
import com.fujitsu.ts.jrio.*;
/**
 * This sample program demonstrates the use of the
 * JRIO interfaces for file handling and random
 * access to a file.
 *
 * This program deletes a sequence of specified records
 * from a DMS file of type SAM.
 *
 * The interesting part of this program is the method
 * doDeleteRecordsSAM(), all other methods are added
 * to make it a complete executable program.
 */
public class DeleteRecordsSAM
{
 /**
 * The main method, which analyses the program arguments,
 * calls the work method and provides global error
 * handling.
 */
 public static void main(String args[])
 {
 String file = null;
 String first = null;
 String last = null;
 int firstNum, lastNum;
 for (int i = 0; i < args.length; i++)
 {
 if (file == null)
 file = args[i];
 else if (first == null)
 first = args[i];
 else if (last == null)
 last = args[i];
 else
 usage();
 }
 if (file == null || first == null)
 usage();
 try {
 firstNum = Integer.parseInt(first);
 if (firstNum < 0)

JENV V9.0A

 106

 error("Illegal record number " + firstNum);
 if (last != null)
 {
 lastNum = Integer.parseInt(last);
 if (lastNum < 0 || lastNum < firstNum)
 error("Illegal record number " + lastNum);
 }
 else
 lastNum = firstNum;
 doDeleteRecordsSAM(file,firstNum,lastNum);
 } catch (Exception e) {
 error(e.toString());
 }
 }
 /**
 * Print a usage message and exit with error
 */
 private static void usage()
 {
 error("Usage: DeleteRecordsSAM file first [last]");
 }
 /**
 * Print the given error message and exit
 */
 private static void error(String msg)
 {
 System.err.println(msg);
 System.exit(1);
 }
 /**
 * The work method.
 * Delete all records between the given record
 * numbers in a SAM accessible file using
 * the random access classes of JRIO.
 *
 * @param file
 * The file to modify
 * @param first
 * The first record to delete
 * @param last
 * The last record to delete
 */
 public static void doDeleteRecordsSAM(
 String file,int first,int last)
 throws IOException
 {
 Record rec;
 RecordFile sourceFile;
 RandomAccessRecordFile update;
 ArrayOutputRecordStream buffer;
 Record[] remaining;
 /**
 * check file name and create RecordFile object
 */
 sourceFile = new RecordFile(file,"DMS");
 /**
 * check source file existence and write rights
 */
 if (!sourceFile.exists() || !sourceFile.canWrite())

JENV V9.0A

 107

 error("Source file " + file + " does not exist"
 + " or is not writeable");
 /**
 * open file for update
 */
 update = new RandomAccessRecordFile(sourceFile,"SAM",
 RandomAccessRecordFile.INOUT);
 /**
 * check record numbers
 */
 if (first >= update.getRecordCount())
 {
 /**
 * nothing todo
 */
 update.close();
 return;
 }
 /**
 * position to first record after delete area
 */
 update.setCurrentRecordNumber(last + 1);
 /**
 * read all remaining records into an array
 */
 buffer = new ArrayOutputRecordStream();
 while ((rec = update.read()) != null)
 buffer.write(rec);
 remaining = buffer.toRecordArray();
 /**
 * truncate file
 */
 update.setRecordCount(first);
 /**
 * append the buffered records to the truncated file
 */
 for (int i = 0; i < remaining.length; i++)
 update.write(remaining[i]);
 /**
 * close the file
 */
 update.close();
 }
}

The program can be compiled with the Java compiler javac and then be run. No particular specifications are
required to make the JRIO interfaces available.

The second program outputs a randomly selected “slogan of the day” from a file (SAM) with slogans. For this
purpose the program expects as a parameter the name of the file with the slogans. If this does not yet exist, it is
created with a basic stock of slogans.

The example is also so designed that no knowledge of the file attributes, such as record format or record length, of
the file to be processed is required. The error handling in the example is not particularly convenient, simply to
prevent the comprehensive code which would be required for this distracting the reader from the way the interface
is actually used.

The program is contained in the :SloganOfTheDay.java file

JENV V9.0A

 108

import com.fujitsu.ts.jrio.*;
import java.io.*;
import java.util.Random;
/**
 * This example demonstrates a random access to a SAM file.
 *
 * A randomly selected record (the slogan of the day) is read
 * from the file and written to the standard output stream.
 * If the file with the slogans does not yet exist, it is
 * created and filled with some standard slogans.
 *
 * The interesting part of this program is the method
 * doSloganOfTheDay(), all other methods are added to make it
 * a complete executable program.
 */
public class SloganOfTheDay
{
 /**
 * The main method, which analyses the program arguments,
 * calls the work method and provides global error
 * handling.
 */
 public static void main(String[] args)
 {
 if (args.length != 1)
 usage();
 try {
 doSloganOfTheDay(args[0]);
 } catch (Exception e) {
 error(e.toString());
 }
 }
 /**
 * Print a usage message and exit with error
 */
 private static void usage()
 {
 error("Usage: SloganOfTheDay file");
 }
 /**
 * Print the given error message and exit
 */
 private static void error(String msg)
 {
 System.err.println(msg);
 System.exit(1);
 }
 /**
 * The work method.
 * It demonstrates how the JRIO interfaces may be used
 * for random access to a file.
 *
 * @param filename
 * the file containing the slogans
 */
 public static void doSloganOfTheDay(String filename)
 throws IOException
 {

JENV V9.0A

 109

 /**
 * the random number generator, used to select the
 * slogan
 */
 Random generator = new Random();
 /**
 * some slogans to be written to the slogan file
 * in case it is still empty.
 */
 String[] data = {
 "Schuster bleib bei deinen Leisten.",
 "Es fuehren viele Wege nach Rom.",
 "In ungezaehlten Muehen waechst das Schoene.",
 "It's better to burn out, than to fade away.",
 "Make your ideas work!",
 "Erlaubt ist, was gefaellt.",
 "Der schoenste Morgen bringt uns das Gestern "
 + "nicht zurueck.",
 "Sage nicht immer, was du weisst, aber wisse "
 + "immer, was du sagst.",
 "Alles muss man selber machen - sogar das Lachen."
 };
 /**
 * Definition of the slogan file
 */
 RecordFile rf = new RecordFile(filename, "DMS");
 RandomAccessRecordFile slogfile = null;
 /**
 * The record object used for accessing
 * the slogan file
 */
 Record record = null;
 /**
 * the number of records in the slogan file
 */
 long numOfRecs = 0;
 /**
 * Check if the slogan file is already existing
 */
 if (!rf.exists())
 {
 rf.createNewFile("SAM");
 slogfile = new RandomAccessRecordFile(rf, "SAM",
 RandomAccessRecordFile.OUTIN);
 for (int i = 0; i < data.length; i++)
 {
 record = new Record(data[i].length());
 record.setStringData(data[i]);
 slogfile.write(record);
 }
 }
 else
 {
 slogfile = new RandomAccessRecordFile(rf, "SAM",
 RandomAccessRecordFile.INPUT);
 }
 /**
 * check if there is at least 1 record in the
 * slogan file

JENV V9.0A

 110

 * if not, the modulo function would fail
 */
 if ((numOfRecs = slogfile.getRecordCount()) == 0)
 {
 slogfile.close();
 error("Slogan file is empty!");
 }
 /**
 * Position to a randomly selected record within
 * the file.
 * Thanks to the modulo function (%) we are sure
 * that the position will always be inside the file
 */
 slogfile.setCurrentRecordNumber(
 Math.abs(generator.nextInt() % numOfRecs));
 /**
 * read the record and show the slogan
 */
 record = slogfile.read();
 System.out.println("Slogan of the day: "
 + record.getStringData());
 /**
 * close the slogan file
 */
 slogfile.close();
 }
}

The program can be compiled with the Java compiler javac and then be run. No particular specifications are
required to make the JRIO interfaces available.

JENV V9.0A

 111

4.5.3 Indexed-sequential data processing

To demonstrate indexed-sequential data processing a program is used which monitors the lifetime of files on an ID.
The program expects two parameters: the user ID to be monitored and the name of the file in which the program
can store data. When first called the file should not yet exist. It is then created with the correct attributes for the
program.

The example generates an ISAM file with fixed record length as a database. The error handling in the example is
not particularly convenient, simply to prevent the comprehensive code which would be required for this distracting
the reader from the way the interface is actually used.

The program is contained in the file:FileHistory.java

import java.io.*;
import com.fujitsu.ts.jrio.*;
import com.fujitsu.ts.jrio.DMS.AccessParameterISAM;
import java.util.Date;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
/**
 * The demo program FileHistory provides a
 * simple mechanism to log changes in the files belonging
 * to a given BS2000 userid. In fact, only two dates are
 * logged for each file: date first seen and date last seen.
 *
 * Every time the program is started it synchronizes the
 * current list of filenames with the list of filenames
 * given by the logfile:
 *
 * New filenames are added to the logfile with date first seen
 * and date last seen set to the current date.
 *
 * For filenames of the current list which are already logged
 * the date last seen is updated.
 *
 * Filenames in the logfile which are no more in the current
 * list remain untouched.
 *
 * The program should run once a day, to create a complete
 * history.
 *
 * The interesting part of this program is the method
 * doFileHistory(), all other methods are added to make it
 * a complete executable program.
 */
public class FileHistory
{
 /**
 * The main method, which analyses the program arguments,
 * calls the work method and provides global error
 * handling.
 */
 public static void main(String args[])
 {
 String userid = null;
 String logfilename = null;
 for (int i = 0; i < args.length; i++)
 {

JENV V9.0A

 112

 if (userid == null)
 userid = "$" + args[i] + ".";
 else if (logfilename == null)
 logfilename = args[i];
 else
 usage();
 }
 if (userid == null || logfilename == null)
 usage();
 try {
 doFileHistory(userid,logfilename);
 } catch (Exception e) {
 error(e.toString());
 }
 }
 /**
 * Print a usage message and exit with error
 */
 private static void usage()
 {
 error("Usage: FileHistory userid logfile\n"
 + " - userid without '$' and '.'");
 }
 /**
 * Print the given error message and exit
 */
 private static void error(String msg)
 {
 System.err.println(msg);
 System.exit(1);
 }
 /**
 * The work method.
 * This method demonstrates, how the JRIO interfaces
 * may be used to update records in an ISAM file
 *
 * @param userid
 * the userid (with '$' and '.') to be scanned
 * @param logfilename
 * the file containing the log records
 */
 public static void doFileHistory(String userid,
 String logfilename)
 throws IOException
 {
 /**
 * The current Date as string,
 * to be written to the log record
 */
 DateFormat df = new SimpleDateFormat("yyyy.MM.dd");
 String toDay = df.format(new Date());
 /**
 * The directory to be scanned for additional or
 * deleted files in its canonical form
 */
 RecordFile root =
 new RecordFile(userid,"DMS").getCanonicalFile();
 /**
 * List of filenames within the scanned directory

JENV V9.0A

 113

 */
 String[] rfList = root.list();
 /**
 * Definition of file for logging
 */
 RecordFile logfile =
 new RecordFile(logfilename,"DMS");
 KeyedAccessRecordFile log = null;
 /**
 * key descriptor of the log file
 * and dummy key value (will be filled later
 * and used for reading)
 */
 KeyDescriptor keyDesc = null;
 KeyValue keyVal = null;
 /**
 * Records from the logfile are read into this buffer.
 * It has fixed length: filename (54),
 * date fist seen (10), date last seen (10)
 */
 Record logrec = new Record(54 + 10 + 10);
 /**
 * check if the logfile already exists
 * and prepare access parameter
 */
 AccessParameterISAM accesspar;
 if (!logfile.exists())
 {
 /* No, create it */
 accesspar = (AccessParameterISAM)
 logfile.getDefaultAccessParameter("ISAM");
 accesspar.setPrimaryKeyPosition(0);
 accesspar.setPrimaryKeyLength(54);
 accesspar.setRecordFormat(
 AccessParameter.RECORD_FORMAT_FIXED);
 accesspar.setRecordLength(54 + 10 + 10);
 if (logfile.createNewFile(accesspar) == false)
 error("Cannot create file " + logfilename);
 }
 else
 {
 accesspar = (AccessParameterISAM)
 logfile.getAccessParameter("ISAM");
 }
 /**
 * Open the log file
 */
 log = new KeyedAccessRecordFile(
 logfile,accesspar,KeyedAccessRecordFile.INOUT);
 /**
 * Get the key descriptor of the log file
 */
 keyDesc = log.getPrimaryKeyDescriptor();
 /**
 * Consistency check
 */
 if (keyDesc.getPosition() != 0
 || keyDesc.getLength() != 54)
 {

JENV V9.0A

 114

 log.close();
 error("File " + logfile
 + " is no valid logfile.");
 }
 /**
 * create key value connected with key descriptor
 * proper values will be inserted later
 */
 keyVal = new KeyValue(keyDesc);
 /**
 * loop through the list of filenames
 */
 for (int i = 0; i < rfList.length; i++)
 {
 /**
 * prepare key vaue for reading the
 * log record for this filename
 */
 keyVal.setStringValue(rfList[i]);
 /**
 * check if the filename is already in the log
 */
 if (log.read(keyVal,logrec) > -1)
 {
 /**
 * yes, filename did exist at last run,
 * update 'date last seen' field
 */
 logrec.setStringField(toDay,64,10);
 /**
 * write updated record back to logfile
 */
 log.writeBack(logrec);
 }
 else
 {
 /**
 * filename is new: build a new record
 */
 logrec.setKeyField(keyVal);
 logrec.setStringField(toDay,54,10);
 logrec.setStringField(toDay,64,10);
 /**
 * write new record to log file
 */
 log.write(logrec);
 }
 }
 /**
 * close the logfile
 */
 log.close();
 }
}

The program can be compiled with the Java compiler javac and then be run. No particular specifications are
required to make the JRIO interfaces available.

JENV V9.0A

 115

5 Invoking the VM from the BS2000 command interface

The , and procedures are available in the PLAM library .INITIALIZE DELETE START SYSPRC.JENV.090

INITIALIZE is used to set the environment variables needed to execute the VM.

START is used to start the VM. If is not invoked before , the default values are used.INITIALIZE START

DELETE is used to delete all environment variables set by .INITIALIZE

The procedures are also delivered in a compiled variant so that the user can execute them without the product SDF-
P.

A prerequisite for execution is that the user has permission to run POSIX programs and is authorized to access the
POSIX file system on which the POSIX part of JENV is installed.

JENV V9.0A

 116

5.1 INITIALIZE procedure

The procedure sets the environment variables that are evaluated by the Java VM. This is done by INITIALIZE
setting the corresponding structure elements of the structure variable . Other existing structure elements SYSPOSIX
of this structure remain unchanged. If the structure variable does not already exist, it will be created.SYSPOSIX

Parameters

JAVA-HOME

Determines the value of the environment variable (see). If the JAVA_HOME chapter "Environment variables"
parameter is not specified or is set to , the variable is not assigned. Any existing assignment is cleared.’*STD’

CLASSPATH

Determines the value of the environment variable . If the parameter is not specified or is set to CLASSPATH ’
, the variable is not assigned. Any existing assignment is cleared.*STD’

LD-LIBRARY-PATH

Determines the value of the environment variable . If the parameter is not specified or is LD_LIBRARY_PATH
set to , the variable is not assigned. Any existing assignment is cleared.’*STD’

PWD

Sets the value of environment variable PWD and thereby determines the current working directory . If the
 parameter is not specified or is set to ’*STD’ , the directory set for the user id with the command

 /MODIFY-POSIX-USER-ATTRIBUTES DIRECTORY= ... is used.

DISPLAY

Determines the value of the environment variable . This specifies the address of the screen in which DISPLAY
the X-Windows are displayed. If the application operates without X-Windows, the value of this variable is
irrelevant.If the parameter is not specified or is set to , the variable is not changed.’*STD’

SCOPE

Specifies the scope of the structure variable . The default value is ’ . The parameter is SYSPOSIX *TASK’
passed directly to the operand of the command (see manual “SCOPE DECLARE-VARIABLE SDF-P (BS2000)
” []). Only the and procedures with their sub-operands are meaningful, and ’7 ’*TASK’ ’*PROCEDURE’
*PROCEDURE’ is only meaningful if the procedure is called with .INCLUDE-PROCEDURE

Since the system is case-sensitive, all parameter values must be entered enclosed in single quotes.

In addition to this, the following environment variables are always set implicitly:

PROGRAM_ENVIRONMENT = ’shell’

as the Java VM can only be run in this mode.

HOME

to the home directory which was set for the user id with the command /MODIFY-POSIX-USER-ATTRIBUTES
DIRECTORY=

JENV V9.0A

 117

5.2 START procedure

The function starts the VM with the command and passes the parameters which have START START-PROGRAM
been set. If the structure variable does not already exist, the procedure is first invoked using SYSPOSIX INITIALIZE
the default values. If the structure variable does already exist, will not be called. The internal SYSPOSIX INITIALIZE
environment variables necessary for calling the tool will however be set.

Parameters

CMD

Must be assigned one of the following values:

’appletviewer’
’idlj’
’jar’
’jarsigner’
’java’
’javac’
’javadoc’
’javah’
’javap’
’jconsole’
’jdb’
’jdeps’
'jimage'
’jjs’
'jlink'
'jmod'
’keytool’
’native2ascii’
’orbd’
’pack200’
’policytool’
’rmic’
’rmid’
’rmiregistry’
’schemagen’
’serialver’
’servertool’
’tnameserv’
’unpack200’
’wsgen’
’wsimport’
’xjc’

The values correspond to the shell commands.

Other values:

’?’

’help’ outputs a help text in English.

JENV V9.0A

 118

’hilfe’ outputs a help text in German.

ARGS

The arguments for the command above are to be enclosed in single quotes.

The wildcard substitution function, which is usually available under the shell, is not supported.

REDIRECT

This parameter must be used if input/output is to be redirected. This is done in the same way as for the
corresponding option under the shell. For example: redirects the output of to REDIRECT=’2>MyFile’ stderr

.MyFile

See the section ."Redirection of default streams"

SYSHSI

This parameter must be assigned to one of the following values:

’*STD’
’X86’
’S390’

This parameter specifies, whether the s390 variant of the Java VM or the X86 variant is used.

Default value: ’*STD’

The variant corresponding to the system is used.

INSTALLATION-ID

User ID of the JENV installation. This parameter must only be specified if the object to be started under VM is
not stored under the same user ID as the procedure library in which the procedure is located.START

Redirection of default streams

If is set, the file names into which the default streams are redirected refer to PROGRAM_ENVIRONMENT=’shell’
files in the POSIX file system.

It is possible to redirect the streams to BS2000 files using the usual prefix . To redirect to , /BS2/ SYSDTA SYSOUT
or you must also use this prefix, i.e. , or . If the prefix is SYSLST /BS2/(SYSDTA) /BS2/(SYSOUT) /BS2/(SYSLST)
not used, redirecting to will result in a POSIX file being written with the name .(SYSOUT) (SYSOUT)

The same applies to redirections which indicate special treatment under the shell. Outside the shell everything to
the right of < or > is interpreted as a file name. So, for example, a redirection of creates a file called .2>&1 &1

The redirection of and to the same BS2000 file is not possible, and if these streams are redirected to stdout stderr
the same POSIX file, output data may be lost.

Example

If an applet is to be started via the file and the terminal has the symbolic address /MyDir/MyTest/Test1.html
, this could be achieved as follows:ABCD1234

/CALL-PROCEDURE *LIB($TSOS.SYSPRC.JENV.090,INITIALIZE),
 (PWD='/MyDir/MyTest ',DISPLAY='ABCD1234:0.0')

JENV V9.0A

 119

/CALL-PROCEDURE *LIB($TSOS.SYSPRC.JENV.090,START),
 (CMD='appletviewer',ARGS='Test1.html')

JENV V9.0A

 120

5.3 DELETE procedure

The procedure deletes all elements of the structure variable which are set by the DELETE SYSPOSIX INITIALIZE
procedure. If the structure subsequently contains no elements, it is itself deleted.SYSPOSIX

Parameters

SCOPE

Specifies the scope of the structure variable SYSPOSIX. The default value is The ’*TASK’. ’
 value need only be specified if it was specified in the procedure (see *PROCEDURE’ INITIALIZE section

)."INITIALIZE procedure"

JENV V9.0A

 121

5.4 Invoking the VM using the invocation API

If a C or C++ program which invokes the VM via the invocation API is started using , the START-PROGRAM
environment variables must be set using the procedure. The following operands must be set in the INITIALIZE

 command:START-PROGRAM

PROGRAM-MODE=*ANY,RUN-MODE=*ADVANCED,SHARE-SCOPE=*NONE.

A C/C++ program must be linked with the Java Runtime Adapter and not with the normal CRTE-, C++ or
socket libraries (see).section "Invocation API"

JENV V9.0A

 122

5.5 Special considerations

When invoking a BS2000 program using neither the nor the file of the user is START-PROGRAM /etc/profile .profile
executed. The result of this is that a program may, in some cases, behave differently than if it had been started
under the shell. If the file access rights of newly created files are restricted in the profiles using , this does not umask
apply to programs started using . The result of this is that these programs then create files with START-PROGRAM
more extensive access rights than intended. There is currently no solution available to remedy this. The tools are
also affected because they are called with the command in the procedure.START-PROGRAM START

The environment variable is not set after . The consequence of this is that creating a new PATH START-PROGRAM
process with is not possible under some circumstances when the program to be started cannot be found. fork/exec
It is possible to resolve this problem by setting the SDF-P variable to the value used in the shell SYSPOSIX.PATH
before calling , or by specifying a complete path name in the program for . In Java this START-PROGRAM exec()
problem effects the method .Runtime.exec()

Example

The following instruction can only be excuted if the environment variable was set correctly:PATH

Process child = Runtime.getRuntime().exec("java Myclass");

The following instruction rectifies the problem:

Process child =
Runtime.getRuntime().exec(System.getProperty("java.home") +
"/bin/java Myclass");

Even if the VM is started using the input/output is, by default, directed to files in the POSIX file START-PROGRAM,
system. BS2000 files can be opened using the package JRIO. The class files must be located in the POSIX file
system.

JENV V9.0A

 123

6 JNI under BS2000

This chapter describes the special features which a user of Java native interfaces (JNI) needs to look out for in
BS2000. The chapter will not go in any depth into the general use of the native interfaces (i.e. independent of the
operating system)

Specifications and tutorials on this are available in the internet and on the book market.

The use of the JNI for real applications is not simple, since komplex interaction between the Java and C
environments is possible. Before making the decision to use the JNI, you should discuss the alternatives carefully.

JENV V9.0A

 124

6.1 The different variants of JNI

Only Version 1.2 of JNI is still supported.

JENV V9.0A

 125

6.2 Java data types in C

A mapping, which essentially also applies to BS2000, has been defined between the primitive Java data types and
the native C representation. The following table provides a summary of the data types and any special features:

Java type C type Compatible C type Remarks

boolean jboolean unsigned char JNI_FALSE, JNI_TRUE

byte jbyte signed char

char jchar unsigned short Unicode

short jshort signed short

int jint signed int

long jlong signed longlong from C/C++ V3.0B

float jfloat float IEEE

double jdouble double IEEE

void void void

Table 7: Java data types in C

For complex data types, JNI defines corresponding access and conversion functions which can be used in BS2000
analogously to other operating systems. A special role is played here by strings as the UTF-8 encoding of Unicode
strings which is used by Java, although closely related to ASCII, is quite unlike EBCDIC encoding. A C programmer
in an ASCII environment (Unix systems, Windows systems) will therefore easily succumb to the temptation to use
this similarity, with a result that it will not be possible to use such C programs in BS2000 (i.e. in the EBCDIC
environment) without taking some further measures.

When C code and Java are linked up via the JNI, there will inevitably be instances in BS2000 where different forms
of data encoding coincide. Users must decide for themselves where they want to make corresponding conversion
points between the data representations. The essential and critical conversion points are shown in the following
table:

Data Representation
in Java

Normal
representation
in BS2000

Alternative
representation
in BS2000

Whole numbers 32 and 64 bit 32 bit 32 and 64 bit

Floating point numbers IEEE format /390 format IEEE format

Strings, characters Unicode, UTF-8, ASCII EBCDIC ASCII

Table 8: C code in Java and BS2000

In order that the user can make a free choice of conversion point, appropriate help on the various topics is provided
through the compiler and runtime systems.

Typically, a JNI interface user will implement this conversion point either directly at the JNI interface and have all his
C code run in the normal BS2000 environment or else he will have parts of his C code (or even all of it) run in the
alternative representation which is more closely oriented to Java (and Unix systems) and, for example, only carry
out the relevant conversions in the context of legacy applications (use of well-tried software).

JENV V9.0A

 126

The sections below describe the support available for the various data types.

JENV V9.0A

 127

6.2.1 Whole numbers

The Java data type is a 64-bit data type which is represented in the JNI by the C data types long jlong

The C/C++ compiler (as of version 3.0B) supports the data type or , which is compatible with the longlong int64_t
above mentioned data types (i.e.). This means that this data can be used in C without any further jlong
precautionary measures being required. The scope of the support available through C runtime system functions as
of CRTE V2.1B is explained in the appropriate CRTE documentation.

JENV V9.0A

 128

6.2.2 Floating point numbers

The Java data types and are floating point data types which are represented in the JNI through the C float double
data types and .jfloat jdouble

These data types are formally compatible with the C data types and . However, as they are represented float double
in IEEE format (instead of /390 format) they cannot be used in C without taking precautionary measures.

As well as explicit conversion options, appropriate compiler and runtime system extensions are provided to support
the IEEE format. These allow you to work directly with this number format in C.

Explicit conversion

A number of functions are available for explicit conversion between floating-point numbers in IEEE format and in
/390 format. These are declared in the header file , which is part of the CRTE distribution. These ieee_390.h
conversion functions are described in the manual “ ” [].CRTE 3

Example

The following example shows the use of a conversion function in a native method which performs arithmetic
manipulations on a floating point number. On the Java side the method will be declared as:

public native double manipulate(double arg);

The associated C program could look like this:

#include <jni.h>
#include ".....h" // javah generated Header
#include <ieee_390.h>
JNIEXPORT jdouble JNICALL
Java_..._manipulate(JNIEnv *env, jobject jthis, jdouble num);
{
 double result, arg;
 arg = ieee2double(num);
 result = (arg < 1.7)? arg * 3.4 : arg - 1.0;
 return double2ieee(result);
}

The above code example does not contain any error handling for possible conversion errors.

IEEE floating point numbers in the C code

As of version V3.0B, the C/C++ compiler allows you to generate code for IEEE format as an alternative to /390
format for floating point numbers. The setting, which is controlled via the compiler option , applies to -Kieee_floats
the entire compilation unit (source file).

This option only has an effect on floating point constants in the source code, and on arithmetic, type conversion or
comparison of floating point numbers. It has no effect on the passing of such data to other functions or simple
assignments

Setting this option also has the effect of implicitly permitting the use of C library functions with floating point
arguments and/or floating point result in a variant for IEEE arithmetic.

JENV V9.0A

 129

All the arithmetic is processed using corresponding emulation routines. This applies to SQ systems too, as long as
generation of native code for the corresponding commands via Asstran is not possible. Naturally this has a negative
effect on performance. C programs which make intensive use of floating point arithmetic should therefore not be run
in this mode.

Example

The example shown above could then be implemented as follows:

#include <jni.h>
#include ".....h" // javah generated Header
JNIEXPORT jdouble JNICALL
Java_..._manipulate(JNIEnv *env, jobject jthis, jdouble num)
{
 return (num < 1.7)? num * 3.4 : num - 1.0;
}

The compilation must be carried out using the C compiler option .-Kieee_floats

IEEE floating point numbers in the C runtime system

The C runtime system contains, in addition to the conversion routines which are declared in the , all the ieee_390.h
essential XPG4 functions which work with floating point numbers in a variant for IEEE arithmetic. When the
aforementioned compiler option for using IEEE is selected, the corresponding library functions are normally used
automatically without the user needing to do anything. You can also modify this behavior for mixed mode (see the
manual “ ” []).CRTE 3

Example

The next example illustrates the use of the IEEE version of the C function in a native method for tanh
calculating the hyperbolic tangent in a Java class. On the Java side the method will be declared as:

public native double tanhyp(double arg);

The associated C program could look like this:

#include <math.h>
#include <jni.h
#include ".....h" // javah generated Header
JNIEXPORT jdouble JNICALL
Java_..._tanhyp(JNIEnv *env, jobject jthis, jdouble num)
{
 //printf("tan_hyp called with: %e\n",num);
 return tanh(num);
}

To work correctly it must naturally be compiled in this form using the C compiler option .-Kieee_floats

JENV V9.0A

 130

6.2.3 Strings

The Java data type is provided in JNI as data type . This type cannot be used directly in C; in particular, string jstring
it has no commonality with the C data type . In order to convert the string to a form which can be processed in char *
C, the corresponding JNI interfaces must be used for the conversion (see JNI documentation).

The Java data type is available at the JNI interface as data type . This is compatible with the C data type Char jchar
 and constitutes one character in Unicode representation. The first 256 characters in Unicode are unsigned short

identical to the ISO8859-1 encoding. Unicode characters outside this range are not supported in C/C + + in
BS2000. Processing of these characters must therefore be undertaken by users themselves.

The UTF-8 representation of Unicode, which is partially used by Java in the JNI, plays a special role. In UTF-8
representation, Unicode characters are encoded into one, two or three bytes. Under this encoding, Unicode
characters with codes 1 to 127 are represented with this value in a single byte, corresponding once again exactly to
the ASCII encoding of these characters.

Moreover, UTF-8 byte sequences are always terminated in Java with a NULL byte, which enables them to be
processed as C strings. Here, the Unicode NULL character is encoded into two bytes so as to avoid confusion with
the string delimiter in C, since, unlike in C, it is perfectly acceptable in Java for strings to contain NULL characters.

The following simple rules apply to the processing of UTF-8 byte sequences in C:

The NULL byte marks the end of the byte sequence, and is absolutely essential.

Bytes for which the function returns the value “ ” (1-127) are also in fact ASCII characters as isascii_ascii() true

per ISO8859-1

To represent Unicode characters outside the range 1 to 127, all the other bytes are treated as if they were part of
a multibyte sequence. These have to be interpreted by the user.

As nearly all these conversion functions constitute character sequences at least in a form which is upwardly
compatible with ASCII, code conversion from ASCII to EBCDIC and vice versa does not play a special role in
BS2000. Naturally, this applies not only to strings but also, for example to byte arrays or characters ().jchar

References to “ASCII” in this manual always refer to the ISO8859-1 character set (ISO Latin 1) or its 7 bit offshoot
(ISO 646). “EBCDIC” refers to the character set DF04-1 (international reference version) with swapped 0x15 and
0x25 or its 7 bit offshoot DF03-1.

As well as explicit conversion facilities, to support ASCII strings, appropriate compiler and runtime system
extensions are available which allow you to work directly with ASCII strings and characters in C.

Explicit conversion

The JNI conversion functions (see „ ” []) work in BS2000 exactly as specified. They JavaTM Native Interface 13
always return or else expect Unicode or UTF-8.

Some functions are available in CRTE for explicit conversion between ASCII (8859-1) and EBCDIC (DF04-1).
These are declared in the header file , which is part of the CRTE distribution. These conversion <ascii_ebcdic.h>
functions are described in the manual “ ” [].CRTE 3

Example

The next example illustrates usage in a native method which ascertains the value of an environment variable
and removes the prefix from this. On the Java side the method will be declared as:JAVA_

JENV V9.0A

 131

public native String get_jenviron(String name);

The associated C program could look like this:

#include <jni.h>
#include ".....h" // Header generated by javah
#include <stdlib.h>
#include <ascii_ebcdic.h>
JNIEXPORT jstring JNICALL
Java_..._get_jenviron(JNIEnv *env, jobject jthis,
 jstring name)
{
 const char *utf_name;
 char *ebcdic_name, *ebcdic_value, *utf_value;
 jstring value;
 utf_name = (env*)->GetStringUTFChars(env,name,NULL),
 ebcdic_name = _a2e_dup(utf_name);
 (*env)->ReleaseStringUTFChars(env,name,utf_name);
 ebcdic_value = getenv(ebcdic_name);
 free(ebcdic_name);
 if (ebcdic_value == NULL)
 return NULL;
 if (strncmp(ebcdic_value,"JAVA_",5) == 0)
 utf_value = _e2a_dup(ebcdic_value+5);
 else
 utf_value = _e2a_dup(ebcdic_value);
 value = (*env)->NewStringUTF(env,utf_value);

 free(utf_value);
 return value;
}

The above sample code does not contain any error handling. It is implicitly assumed that in all strings only
characters from the 7 bit ASCII character set will occur. Moreover, this code is naturally very much BS2000-
specific.

ASCII strings in the C code

As of version V3.0B, the C/C++ compiler allows you to generate an equivalent ASCII code as an alternative to the
normal EBCDIC encoding for string and character literals. This setting must apply to a complete compilation unit
(source file) and is controlled via the compiler options and . -Kliteral_encoding_ascii -Kliteral_encoding_ascii_full
The difference between the two options lies in the treatment of octal and hexadecimal sequences in such literals.
With such literal parts are not converted.-Kliteral_encoding_ascii

ASCII strings in the C runtime system

In addition to the above conversion routines, the C runtime system provides further support for the use of ASCII
strings and characters. All key XPG4 functions that work with or return strings or characters are available in a

JENV V9.0A

 132

variant for ASCII coding. When one of the compiler options for ASCII use described in the section "ASCII strings in
 is set, the corresponding library functions are generally used automatically without the need for user the C code"

intervention. You can change this behavior for mixed operation (see the manual “ ” []).CRTE 3

If the compiler option is set at the same time, the combined ASCII/IEEE variants are used (e.g. with -Kieee_floats
).printf

As of C Compiler V3.1A and CRTE V2.4C, the arguments of the vector are passed as ASCII strings when argv[]
compiling the main program with one of the compiler options described in the section . "ASCII strings in the C code"
The global variables of the C runtime system and the strings of are saved as ASCII strings. Explicit tzname environ
conversion of is therefore unnecessary.argv[]

If explicit access is made to the strings of the global variables or , it should be noted that as of JENV tzname environ
V1.4B these are stored as ASCII strings (formerly EBCDIC strings). However, the Technical Standard “the Single
UNIX Specification” warns against explicit access to the variable (see “environ X/Open System Interface (XSI)

” []). Implicit access using and functions as in the past and is compatible with Specification 16 getenv() putenv()
previous versions.

Example

If you use these options, the above C program could look like this:

#include <jni.h>
#include ".....h" // javah generated Header
#include <stdlib.h>

JNIEXPORT jstring JNICALL
Java_..._get_jenviron(JNIEnv *env, jobject jthis,
 jstring name)
{
 const char *utf_name;
 char *utf_value;
 utf_name = (*env)->GetStringUTFChars(env,name,NULL);
 utf_value = getenv(utf_name);
 (*env)->ReleaseStringUTFChars(env,name,utf_name);
 if (utf_value == NULL)
 return NULL;
 if (strncmp(utf_value,"JAVA_",5) == 0)
 return (*env)->NewStringUTF(env,utf_value+5);
 else
 return (*env)->NewStringUTF(env,utf_value);
}

This implementation is exactly the same as one which could also be used on Unix systems This form is
therefore the one most highly recommended for ported code.

JENV V9.0A

 133

6.3 Dynamic loading of native methods

Native methods for Java must be dynamically loadable. The procedure here is very similar to the established
methods in Unix systems (shared libraries). The Unix concepts and the BS2000 implementation will now be
compared. The BS2000 solution and the associated requirements for the user will then be described in detail.

Java applications on Unix platforms require that native methods are produced as shared libraries. The native
methods can then be dynamically loaded and called. The C system functions and are used for this dlopen() dlsym()
purpose.

Although in OSD-POSIX there is now a shared libraries implementation, the analogous mechanism familiar from the
preceding version has been retained. However, not all the functionality of the shared libraries is offered here but
only those functions which are needed in the Java environment.

JENV V9.0A

 134

6.3.1 Shared libraries in Unix systems

Shared libraries contain an object (i.e. a module which can be loaded and executed by the system loader) with a
special structure (a “shared object”). One of the characteristics of shared objects is that they can be dynamically
loaded during program execution.

List of required objects

A shared object can specify other objects which are necessary in order for it to be executed. These objects are
loaded at the same time as a shared object is loaded and are considered during resolution of unresolved external
references. Here again, each of these objects can specify other required objects, so that chains are formed.

Name spaces

When a shared object is loaded, other dynamically loaded shared objects are not accessed unless they are
included in the list of required objects.

An exception here is the context in which the program was loaded on startup (and all the objects which were
dynamically loaded at that time).

This causes the name spaces to be partitioned.

Search sequence

The search for shared objects during program execution is controlled through the environment variable
, in which different directories can be specified which the system will search through in the LD_LIBRARY_PATH

specified sequence, looking for the shared objects which are to be loaded.

Resolution of external references

When a shared object is loaded, any unresolved external references are initially resolved from the primary load
context. The current shared object is then included and finally the objects which were loaded as required objects.
(This is a simplified version. Full details are provided in the interfaces descriptions of and in the dlopen() dlsym()
corresponding Unix manuals).

As the external references within a shared object are not resolved, a function which exists in a shared object can be
overwritten by a function of the primary load context (this is not possible in LLMs!).

Naming convention

Shared libraries always begin with the prefix and end with the suffix , for example, . Often a name lib .so libhello.so
also has a version suffix for the co-existence and unambiguous assignment of different interface versions, for
example, .libXm.so.1.2

JENV V9.0A

 135

6.3.2 Shared libraries in BS2000

As already mentioned, in BS2000 there is no exact correspondence to the familiar shared objects from Unix
systems. The characteristics essential to Java such as dynamic loading, the partitioning of name spaces and the
dynamic determination of function addresses are mapped during the Java port. On the other hand, the naming
property of multiple usage, the implicit loading of shared objects at program start and the subtleties of resolution
cannot be mapped. This would require extension of the linking loader.

As the BS2000 linking loader cannot dynamically load any module from the POSIX file system, native methods
must be created as LLMs and stored in PLAM libraries.

In the LLM there is no means of specifying a “list of required objects”, yet this functionality is necessary for Java and
a search method analogous to Unix systems would appear to be useful in the POSIX file system. Hence, an
additional description file has been implemented. This file contains what amounts to a description of a shared
object. It is stored in the POSIX file system, observes the same naming conventions as shared libraries in Unix
systems and contains all the information needed by Java in order to dynamically load and call the native methods.

This information comprises above all the PLAM library in which the LLM is stored, the name of the module (or
modules) and, if appropriate, the list of required objects.

List of required objects

A list of required objects can be entered in the description file. These objects are dynamically loaded before the
current object. Objects which already exist are not dynamically loaded again. Objects are identified by their POSIX
file names.

These objects are included during loading of the current object to resolve external references.

It is perfectly possible for different shared objects to contain the same objects in their lists of required objects. The
first reference to such an object then leads to dynamic loading

Name spaces (link contexts)

Each object is loaded in a separate link context. Objects are therefore partitioned in their name space.

The BS2000 linking loader now allows 200 link contexts. If more objects are loaded the application is aborted.

Search sequence

The search for shared objects (or rather, for the description files) operates in exactly the same way as in Unix
systems, i.e. it is controlled through the environment variable .LD_LIBRARY_PATH

Resolution of external references

The contexts into which the required objects have been loaded are specified as reference contexts. The default
context is used as reference context with the highest priority.

Searching through the share scope is explicitly prevented as it is not possible at the present time to see to it that
this does not happen until after the reference contexts have been handled.

To resolve any unresolved external references, the system therefore initially searches through the default context
and then through the required objects. All other objects are ignored.

This continues to be different from Unix systems. In particular, all external references in an LLM are
shorted, so that no function in an LLM can be overwritten.

JENV V9.0A

 136

6.3.3 Creation of shared objects

The next few sections explain the procedure for creating a shared object with native methods which can later be
dynamically loaded by the Java VM.

Compilation of source code

To compile the C source code of Java native methods, the C/C++ compiler as of V3.0B must be used for the parts
of the source code which work with the JNI.

When compiling the C or C++ parts, it is essential that the following compiler options are used:

-I <Installation path>/include

This option is necessary in order that the Java distribution header files are found. For the <Installation path>
path in which JENV has been installed must be substituted. For a standard installation, this is /opt/java/jdk-

. Refer to the Release Notice for the currently valid name.9.0.4

-K workspace_stack

This is necessary in order that the Garbage Collector can also find the Java objects used in the C parts and
that the objects can be thread-safe.

-K c_names_unlimited

This is necessary in order that the name mangling correctly functions for native interface functions.

-K llm_keep

This is necessary in order that the name mangling correctly functions for native interface functions and that the
runtime system functions are found.

-K llm_case_lower

This is necessary in order that the name mangling correctly functions for native interface functions and that the
runtime system functions are found.

-D __SNI_THREAD_SUPPORT

This option is mandatory for C++ compilations.

The following compiler options can be useful:

-K ieee_floats

Used when you want the IEEE format for floating point numbers to also be used in the C code.

-K literal_encoding_ascii
-K literal_encoding_ascii_full

Used when you want to use ASCII strings in the C code.

-K enum_long

Should always be set, as the default setting does not conform to the ANSI standard.

Furthermore, it is essential that compilation is performed in ANSI mode (or).-Xa -Xc

JENV V9.0A

 137

Linking a main module

If the implementation of a shared object is to consist of several modules, then these should be linked together into a
main module. This is done using the command or , where the following options must be specifiedcc c89

-r

This option has the effect of linking a main module without adding any standard libraries like (CRTE). Under no
circumstances should these be explicitly linked to it with or .-lc -lsocket

-B llm4

This option cause the linker to create a main module in LLM4 format which is necessary for the long name of
the Java native methods.

Creating an LMS library

The main module created (and held in the POSIX file system) must be stored in a PLAM library as an element with
the element type L. The best way to do this is with the POSIX command , which also creates the library if it bs2cp
does not yet exist.

It is quite in order for several shared objects to be stored in such a PLAM library

Creating the object description

To create the necessary description file for a shared object, the command is available. The command mk_shobj
 is used to view the content of such a description file. Both commands are part of the Java distribution and pr_shobj

are described in detail in .chapter "Commands for BS2000"

C++ objects must be labeled as such (see subsection "Options" of section)."mk_shobj"

The element name of the module in the library must not exceed 32 characters.

JENV V9.0A

 138

6.3.4 Use of shared objects from Java

To dynamically load the user’s native methods, it is necessary in Java to call, for example, the method System.
.loadLibrary()

A new name is formed from the name specified in , under which the library is then searched for. This loadLibrary()
name is lib<name>.so

The library is searched for using the environment variable . The first description file found LD_LIBRARY_PATH
using this method is then used to dynamically load the appropriate module or modules.

The JVM and the native methods of Java are held in separate shared libraries and loaded into separate contexts in
each case. Thus, if JVM interfaces which extend beyond the JNI interface are used (which they should not be), the
corresponding dependencies to the shared Libraries should be entered in the user libraries.

When the first C++ method is started a C++ runtime system is loaded dynamically (including the tools and standard
library) and C++ is initialized, if this has not already been done.

During dynamic loading of shared libraries (BIND macro), at present the system does not search through the “share
scope” to resolve any open external references as this would mean it could no longer be guaranteed that the Java
private CRTE or sockets will be used.

This must likewise be done if the user himself dynamically loads via BIND code, at least when references to the C
runtime system and the sockets exist.

Java native methods and main modules containing them cannot be pre-loaded with the current linking loader.

JENV V9.0A

 139

6.4 Invocation API

The invocation API is a part of the JNI for invoking Java from C/C++ applications. Only Version 1.2 is still supported.

Changes to the invocation API

The invocation API provides no interface which allows you to select which variant of the HotSpot™ VM (client,
server, etc.) is to be used by the program.

In BS2000 the client VM is normally used by default. However, in this implementation it is also possible to use the
environment variable to select another VM variant (if available) (see JENV_VMTYPE chapter "Environment

).variables"

JENV V9.0A

 140

6.4.1 Compiling the C and C++ sources

The compiler options described in section "Implementation of the Java code" of chapter "Implementation of a native
 must be used when compiling the C/C++ parts.method in C"

The HotSpot™ VM handles overflow events itself. To prevent interrupts occurring you must also specify:

-K no_integer_overflow

This option must be set for the main program.

The C/C++ Compiler as of Version 3.1A20 has been changed (and is therefore incompatible) so that if a main
program is compiled with this compiler the argument strings are automatically passed as ASCII strings if the -K

 or option was set. Explicit conversion with, for example, _e2a() literal_encoding_ascii -K literal_encoding_ascii_full
is not needed. If an existing main program already performs this conversion and you do not want to change it, the
following option must be specified for reasons of compatibility:

-K environment_encoding_ebcdic

The argument strings continue to be passed as EBCDIC strings.

JENV V9.0A

 141

6.4.2 Linking C and C++ applications with Java and Green Threads

When linking C/C++ applications the link options described in section "Implementation of a native method in C++"
must be used.

With JENV a runtime adapter is provided which has to be linked with C applications which need to call Java via the
invocation API (part of the JNI). This adapter contains the functions of the Invocation API as well as the adapter to
the thread-safe C and C++ runtime system and to the thread-safe socket library.

The runtime adapter is available in an optimized variant, as is used in . The runtime systems are located in java
PLAM libraries which are part of the scope of delivery of JENV:

For S390:

SYSLNK.JENV.090.GREEN-JAVA.

For X86:

SKULNK.JENV.090.GREEN-JAVA

When linking an application with this runtime adapter, it must also be borne in mind that, due to the long names
which occur in Java, this runtime system is of LLM type 4. It is therefore essential that the compiler option is -B llm4
used during linking. It should also be noted that the C compiler normally automatically links a CRTE during linking
and in the case of C++ a standard library. This must be prevented to avoid any conflict with the thread-safe runtime
system already contained in the runtime adapter. This is achieved with the option. For the same Kno_link_stdlibs
reason, no socket library can be explicitly linked and nor can any tools library. During linking, the options -lc, -lsocket
or should therefore never be used.-ltools

Under POSIX a C application can be linked as follows with JENV:

export BLSLIB00='$.SYSLNK.JENV.090.GREEN-JAVA'
cc -Kno_link_stdlibs -B llm4 -o <program> \
 <objects> -l BLSLIB

The linked program can then be run without further precautions although naturally it needs a completely installed
JENV under the standard installation path. If a Java installed elsewhere is to be used, the environment variable

 must be set to the installation path of the Java runtime environment (see JAVA_HOME chapter "Environment
).variables"

The command implicitly links the POSIX linkage option. If linkage is not carried out under the shell using the cc cc
command, but under the BS2000 command line interface using , this option must be linked from BINDER $.SYSLNK.

.CRTE.POSIX

In order to use the BINDER to obtain the required LLM4 format when using a OSD V3 for production you must
specify the operand

 in . The objects can also run on OSD V3.FOR-BS2000-VERSIONS=*FROM-OSD-V4 SAVE-LLM

This procedure applies equally for C++ applications, in which case the command with the options specified CC
above is to be used for linkage.

An application that explicitly calls the C interfaces of the POSIX sockets may not link the modules of the socket
library but must link the module from (or).LIBSOCKET SYSLNK.JENV.090.GREEN SKULNK.JENV.090.GREEN

JENV V9.0A

 142

6.5 Examples

Four examples will now illustrate the complete process of creating a Java application using the JNI.

JENV V9.0A

 143

6.5.1 Implementation of a native method in C

Our sample application will consist of two Java classes and , each of which contains a native method. Hello Work
One of them issues a greeting message, while the other performs a calculation. This example is highly artificial as
normally no user would have this performed using native methods.

The native methods in both classes are to be stored in a common library called .example1

Implementation of the Java code

In a file called the following Java class is defined:Hello.java

class Hello {
 public native void greetings(String text);
 static {
 System.loadLibrary("example1");
 }
 public static void main(String[] args) {
 new Hello().greetings("Hello");
 new Work().compute();
 }
}

In the file the second Java class is defined:Work.java

import java.io.*;
class Work {
 public native double docompute(double arg);
 public void compute() {
 System.out.println("Resultat 1: " + docompute(1.0));
 System.out.println("Resultat 2: " + docompute(7.0));
 System.out.println("Resultat 3: " + docompute(3.11));
 }
}

If you had wanted to store the native methods in different libraries, each class would have to load its own library
during initialization.

Compiling the Java code

The two Java classes can now be simply compiled using the command

javac Hello.java

The dependent class is created during this compilation.Work

Creation of header files

The header files which are needed in order to implement the native methods can be generated from the class files
using the tool :javah

javah -jni Hello
javah -jni Work

Once this step is complete, the header files and will be available with the prototypes of the native Hello.h Work.h
functions.

JENV V9.0A

 144

Implementation of the C code

The native methods are now typically implemented in corresponding source files. In our example these will be the
files and . Both files include the header which is provided with JENV and in each case the Hello.c Work.c jni.h
associated header previously generated, or . The function definition must match the prototype which Hello.h Work.h
has been generated. The further coding depends on the desired implementation.

The program will now be implemented in the example as follows:Hello.c

#include <jni.h>
#include "Hello.h"
#include <stdio.h>
#include <stdlib.h>
#include <ascii_ebcdic.h>
JNIEXPORT void JNICALL
Java_Hello_greetings(JNIEnv *env, jobject jthis, jstring text)
{
 char *ebcdic_text;
 const char *utf_text;
 utf_text = (*env)->GetStringUTFChars(env,text,NULL);
 ebcdic_text = _a2e_dup(utf_text);
 (*env)->ReleaseStringUTFChars(env,text,utf_text);
 printf("The program responds here %s\n",ebcdic_text); free(ebcdic_text);
}

The file contains the following code:Work.c

#include <jni.h>
#include "Work.h"
JNIEXPORT jdouble JNICALL
Java_Work_docompute(JNIEnv *env, jobject jthis, jdouble num)
{
 return (num < 1.7) ? num * 3.4 : num - 1.0;
}

In the file use has been made of the option of transparent usage of IEEE functions, described in more detail Work.c
above. In file explicit ASCII-EBCDI conversions are carried out.Hello.c

To make the examples clear and at the same time keep them short, detailed error handling has been omitted.

Compiling the C source

The C source code implemented in the section above must now be compiled using the correct compiler options. For
 these are the standard options which are described in more detail above:Hello.c

cc -c -I/opt/java/include \
 -Kllm_keep,llm_case_lower \
 -Kworkspace_stack,c_names_unlimited Hello.c

For the IEEE arithmetic must also be considered:Work.c

cc -c -I/opt/java/include \
 -Kllm_keep,llm_case_lower \
 -Kworkspace_stack,c_names_unlimited \
 -Kieee_floats Work.c

JENV V9.0A

 145

This results in the object files being made available

Creation of the shared object

The previously created objects can be linked to a main module with the following command:

cc -r -B llm4 -o example1.o Hello.o Work.o

The main module created is then stored in a BS2000 library.

bs2cp example1.o bs2:'syslnk.example1(example1,L)'

Finally, a description file which complies with the naming convention is created. This must naturally contain the
correct references.

mk_shobj -l syslnk.example1 -m example1 libexample1.so

Processing of the program

To run the program all that remains now is to set the environment variable so that the created LD_LIBRARY_PATH
shared object is also found. In our example this can be done using

export LD_LIBRARY_PATH=.

The application can now be started with

java Hello

JENV V9.0A

 146

6.5.2 Implementation of a native method in C++

Implementation in C++ is largely identical to the procedure used for implementation in C. The differences from the
example above are as follows:

Program is now implemented as follows:Hello.cpp

#include <jni.h>
#include "Hello.h"
#include <iostream.h>
#include <ascii_ebcdic.h>
#include <stdlib.h>
JNIEXPORT void JNICALL
Java_Hello_greetings(JNIEnv *env, jobject jthis, jstring text)
{
 char *ebcdic_text;
 const char *utf_text;
 utf_text = env->GetStringUTFChars(text,NULL);
 ebcdic_text = _a2e_dup(utf_text);
 env->ReleaseStringUTFChars(text,utf_text);
 cout << "The program responds here" << ebcdic_text << endl;
 free(ebcdic_text);
}

For compilation, instead of using command , use command . For creation of the shared object, the flag cc CC cpp
must be set:

mk_shobj -f cpp -l syslnk.example1 -m example1 libexample1.so

JENV V9.0A

 147

6.5.3 Use of Java from a C application

The next example illustrates the use of the Java invocation API (part of the JNI) for calling Java programs from C.
The example we have chosen is consciously kept simple.

A Java echo program will output all its arguments to standard output. This Java program will then be called from a C
program.

Implementation of the Java code

In the file we define the following class:Echo.java

class Echo {
 public static void main(String[] args)
 {
 for (int i = 0; i < args.length; i++)
 {
 if (i > 0)
 System.out.print(" ");
 System.out.print(args[i]);
 }
 System.out.println("");
 }
}

Compiling the Java code

The above defined Java class can now be simply compiled using the command

javac Echo.java

By calling

java Echo This is a test

you can prove to yourself that the program is working.

Implementation of the C code

In our example, the following C program will call the above Java program and at the same time transfer its call
arguments to it. Once again you should note that all strings transferred to JNI functions must be coded in ASCII.
This example will therefore be implemented and produced completely in ASCII mode.

The file is implemented as follows:Echo.c

#include <jni.h>
int
main(int argc, char *argv[])
{
 JavaVMInitArgs vm_args;
 JavaVMOption options[1];
 JavaVM *jvm;
 JNIEnv *env;
 jint res;
 jclass cls;
 jmethodID mid;

JENV V9.0A

 148

 jobjectArray args;
 int i;
 /*
 ** Prepare VM Options
 */
 options[0].optionString = "-Djava.class.path=.";
 /*
 ** Prepare VM configuration
 */
 vm_args.version = JNI_VERSION_1_4;
 vm_args.nOptions = 1;
 vm_args.options = options;
 vm_args.ignoreUnrecognized = JNI_FALSE;
 /*
 ** Create the Java VM
 */
 res = JNI_CreateJavaVM(&jvm,(void **)&env,&vm_args);
 if (res < 0)
 {
 fprintf(stderr,"Can't create Java VM\n");
 exit(1);
 }
 /*
 ** Get class Echo
 */
 cls = (*env)->FindClass(env,"Echo");
 if (cls == NULL)
 {
 fprintf(stderr,"Can't find Echo class\n");
 exit(1);
 }
 /*
 ** Get main method

 */
 mid = (*env)->GetStaticMethodID(env,cls,"main",
 "([Ljava/lang/String;)V");
 if (mid == 0)
 {
 fprintf(stderr,"Can't find main in Echo\n");
 exit(1);
 }
 /*
 ** Allocate argument array
 */
 args = (*env)->NewObjectArray(env,argc-1,
 (*env)->FindClass(env,"java/lang/String"),NULL);
 if (args == 0)
 {
 fprintf(stderr,"Out of memory\n");
 exit(1);
 }
 /*
 ** Prepare arguments
 */
 for (i=1; i<argc; i++)
 {
 jstring jstr;
 jstr = (*env)->NewStringUTF(env,argv[i]);

JENV V9.0A

 149

 if (jstr == NULL)
 {
 fprintf(stderr,"Out of memory\n");
 exit(1);
 }
 (*env)->SetObjectArrayElement(env,args,i-1,jstr);
 }
 /*
 ** Call Java method
 */
 (*env)->CallStaticVoidMethod(env,cls,mid,args);
 /*
 ** Destroy Java VM
 */
 (*jvm)->DestroyJavaVM(jvm);
 return 0;
}

The program functions in this form only with a standard JENV installation. If you want to run the program with a
private installation, you must set the environment variable accordingly (see JAVA_HOME chapter "Environment

).variables"

Compilation of the C source code

The C source code implemented in the section above must now be compiled using the correct compiler options. For
, in addition to the standard options which have been described in detail above, the ASCII mode must also Echo.c

be considered:

cc -c -I/opt/java/include \
 -Kllm_keep,llm_case_lower \
 -Kworkspace_stack,c_names_unlimited \
 -Kliteral_encoding_ascii
 -Kno_integer_overflow Echo.c

This results in an object file being made available.

Linking and executing the application

When linking the application, it must be remembered that the Java runtime adapter is linked and not the “normal“
runtime systems.

The application can be statically linked with the following commands:

export BLSLIB00='$.SYSLNK.JENV.090.GREEN-JAVA'
cc -Kno_link_stdlibs -B llm4 -o Echo \
 Echo.o -l BLSLIB

The program can be called like any other POSIX program. However, for JENV to execute, it must be installed under
the default installation path. To use a JENV installed elsewhere, you must set the environment JAVA_HOME
variable accordingly (see).chapter "Environment variables"

The call using

Echo This is a Java echo

produces the expected output:

JENV V9.0A

 150

This is a Java echo

The program is run using the default VM described in section "Options for selecting the HotSpot™ VM type" in
section . By selecting the environment variable beforehand you can determine the VM type "java" JENV_VMTYPE
explicitly. For example:

export JENV_VMTYPE=client

This results in the HotSpot™ client VM being used.

JENV V9.0A

 151

6.5.4 Use of Java from a C++ application

The differences as compared to using Java from a C application (see) section "Use of Java from a C application"
are listed below.

Implementation of the C++ code

Let us assume that the file is implemented as follows:Echo.cpp

#include <jni.h>
int
main(int argc, char *argv[])
{
 JavaVMInitArgs vm_args;
 JavaVMOption options[1];
 JavaVM *jvm;
 JNIEnv *env;
 jint res;
 jclass cls;
 jmethodID mid;
 jobjectArray args;
 int i;
 /*
 ** Prepare VM Options
 */
 options[0].optionString = "-Djava.class.path=.";
 /*
 ** Prepare VM configuration
 */
 vm_args.version = JNI_VERSION_1_4;
 vm_args.nOptions = 2;
 vm_args.options = options;
 vm_args.ignoreUnrecognized = JNI_FALSE;
 /*
 ** Create the Java VM
 */
 res = JNI_CreateJavaVM(&jvm,(void **)&env,&vm_args);
 if (res < 0)
 {
 fprintf(stderr,"Can't create Java VM\n");
 exit(1);
 }
 /*

 ** Get class Echo
 */
 cls = env->FindClass("Echo");
 if (cls == NULL)
 {
 fprintf(stderr,"Can't find Echo class\n");
 exit(1);
 }
 /*
 ** Get main method
 */
 mid = env->GetStaticMethodID(cls,"main",
 "([Ljava/lang/String;)V");
 if (mid == 0)

JENV V9.0A

 152

 {
 fprintf(stderr,"Can't find main in Echo\n");
 exit(1);
 }
 /*
 ** Allocate argument array
 */
 args = env->NewObjectArray(argc-1,
 env->FindClass("java/lang/String"),NULL);
 if (args == 0)
 {
 fprintf(stderr,"Out of memory\n");
 exit(1);
 }
 /*
 ** Prepare arguments
 */
 for (i=1; i<argc; i++)
 {
 jstring jstr;
 jstr = env->NewStringUTF(argv[i]);
 if (jstr == NULL)
 {
 fprintf(stderr,"Out of memory\n");
 exit(1);
 }
 env->SetObjectArrayElement(args,i-1,jstr);
 }
 /*
 ** Call Java method
 */
 env->CallStaticVoidMethod(cls,mid,args);
 /*
 ** Destroy Java VM
 */
 (*jvm)->DestroyJavaVM(jvm);
 return 0;
}

Compiling the C++ source

You must now compile the above C++ source using the CC command and the correct compiler options. For Echo.
, you must also take ASCII mode into account in addition to the default options described above. This example cpp

generates an application that can be executed with the X86 variant of JENV on SQ systems:

CC -c -I<installation-path>/include \
 -Kllm_keep,llm_case_lower \
 -Kworkspace_stack,c_names_unlimited \
 -Kliteral_encoding_ascii -Kno_integer_overflow
 -D_SNI_THREAD_SUPPORT Echo.cpp

Linking and executing the application

When you link the application, you must remember that the X86 runtime adapter of Java is linked and not the
“normal” runtime systems.

You can link the application with the following commands:

JENV V9.0A

 153

export BLSLIB00='$.SKULNK.JENV.090.GREEN-JAVA'
CC -Kno_link_stdlibs -B llm4 -o Echo \
 Echo.o -l BLSLIB

The program can be called like any other POSIX program on an SQ system. However, for it to run, a X86 variant of
JENV must be installed under the default installation path. To use a JENV installed elsewhere, you must set the
JAVA_HOME environment variable accordingly (see).chapter "Environment variables"

The call using

Echo This is a Java echo

produces the expected output:

This is a Java echo

The program is executed with the default VM described in "Options for selecting the HotSpot™ VM type" in section
. The VM type can be specified explicitly by setting the environment variable beforehand. For "java" JENV_VMTYPE

example:

export JENV_VMTYPE=client
Echo This is a Java echo

This causes the HotSpot™ Client-VM to be used for execution.

JENV V9.0A

 154

7 JCI - Invocation API for COBOL

The Java-COBOL Interface (JCI) is a collection of functions and COBOL-COPY elements to permit simpler
operation of the interfaces of the from COBOL programs.Java Invocation API

The is part of the (JNI). As it is designed for th language C/C++, its Java Invocation API Java Native Interface
interfaces are inconvenient to operate directly from COBOL programs.

The JCI supports the following functions:

Starting a Java VM

Loading classes

Calling methods

Generating and editing Java objects

Checking whether an exception has been generated

Terminating a Java VM

The option of creating and calling native COBOL methods is not supported.

JENV V9.0A

 155

7.1 Compiling the COBOL source codes

A COBOL2000 compiler Version V1.4A or higher is required to compile a COBOL source code which uses JCI
interfaces.

JENV V9.0A

 156

7.1.1 Assigning the JCI-COPY library

The JCI-COPY elements are contained in the POSIX directory . Here the path under <installationpath>/include
which JENV was installed must be used for . For standard installation this is . <installation-path> /opt/java/jdk-9.0.4
The currently valid name can be found in the Release Notice.

This path must be made known to the compiler under the BS2000 command line interface by means of the S
variable or :SYSIOL-<libname> SYSIOL-COBLIB

DECL-VAR SYSIOL-COBLIB,INIT='*POSIX(<Installations-Pfad>/include)',SCOPE=*TASK

For details, see “ ” [].COBOL2000 (BS2000) User Manual 5

Under POSIX, the environment variable or must be set:<libname> COBLIB

export COBLIB=.: <Installations-Pfad>/include

For details, see “ ” [].COBOL2000 (BS2000) User Manual 5

JENV V9.0A

 157

7.1.2 Required options/directives

As data structures which contain pointers are used at the interface to JCI functions, the option below is required
when the COBOL program is compiled:

SOURCE-PROPERTIES=*PAR(STANDARD-DEVIATION=*YES,...)

Under POSIX, this corresponds to the option:

-C PERMIT-STANDARD-DEVIATION=YES

All JCI functions return an integral return value according to ILCS conventions (i.e. in general register R1). To
enable this value to be used in the COBOL program, it must be made available in the COBOL special register
RETURN-CODE after it has been returned. You can do this as follows:

Specification of the option

SOURCE-PROPERTIES=*PAR(RETURN-CODE=*FROM-ALL-SUBPROGRAMS,...)

or under POSIX

-C ACTIVATE-XPG4-RETURNCODE=YES

or on a targeted basis in the source program by specifying the directive

>>CALL-CONVENTION ILCS-SET-RETURN-CODE

The options apply for the entire source program, the directive only until a directive with a >>CALL-CONVENTION

different value is specified, see “ ” []).COBOL2000 (BS2000) Reference Manual 6

The module generated must be available in LLM format. When compilation takes place under the BS2000
command line interface, the option below is required for this purpose:

COMPILER-ACTION=*MODULE-GENERATION(MODULE-FORMAT=*LLM,...)

When compilation takes place under POSIX, no corresponding options exists as an LLM is always generated there.

JENV V9.0A

 158

7.2 Linking COBOL applications with Java

The JCI functions are provided in two PLAM libraries:

SYSLNK.JENV.090.GREEN-JAVA (for the variant),S390

SKULNK.JENV.090.GREEN-JAVA (for the variant)X86

In addition, these libraries contain the JNI functions called by the JCI, the thread-safe C/C++ runtime system, and
the complete COBOL runtime system, the latter always in format.S390

External references from applications which call JCI functions must be resolved with priority from one of these
libraries.

Under POSIX, the environment variable must be assigned to do this:BLSLIB00

export BLSLIB00='$.SYSLNK.JENV.090.GREEN-JAVA'
cobol -g -M <PROG-ID> -o <program> <objekte> -l BLSLIB

The command implicitly links the POSIX linkage option. If linkage is not carried out under the shell using the cobol

 command, but under the BS2000 command line interface using BINDER, this option must be linked from cobol $.
.SYSLNK.CRTE.POSIX

JENV V9.0A

 159

7.3 Processing COBOL applications with Java

Before an application which calls JCI functions is started from the BS2000 command line interface, the POSIX
environment must be initialized for the run with the procedures (see).INITIALIZE "INITIALIZE procedure"

The COBOL runtime system then mainly behaves as if it had been started under the POSIX shell (see “
” [] and).COBOL2000 (BS2000) User Manual 5 section "Special considerations"

After the application has terminated, the POSIX environment must on all accounts be reset by calling the DELETE
procedure. Otherwise the environment is set incorrectly for further compilations runs.

JENV V9.0A

 160

7.4 Characters and strings

Alphanumeric and national strings are transferred to JCI functions in structures which contain a length field in
addition to the data area.

Example:

01 ANUM.
05 ANUM-LEN PIC S9(9) COMP-5 VALUE 10.
05 ANUM-TEXT PIC X(10) VALUE "ANUM-TEXT".
01 NAT.
05 NAT-LEN PIC S9(9) COMP-5 VALUE 10.
05 NAT-TEXT PIC N(10) VALUE N"NAT-TEXT".

In this chapter, such structures in the formats are referred to as or .Cobvar CobNvar

Whether blanks at the end of the text area are ignored or retained depends on the function called. In some functions
this behavior can be controlled by means of an additional parameter.

Alphanumeric characters and COBOL strings have an EBCDIC representation, while the Java VM expects or
supplies a UTF representation (depending on the interface, UTF8 or UTF16). Necessary conversions are performed
automatically in the JCI functions. For this purpose, it must be possible to represent all characters in EDF03IRV.
National characters (strings) (UTF16 representation) must be used for characters (strings) for which no such
representation exists, otherwise the result is undefined. National strings must also be used for strings which contain
binary zeros. Only convertible characters may be used for interfaces for which no national strings are defined (e.g.
class and method names).

Java strings are available as objects. Conversion between Java strings and COBOL strings takes place
automatically in the JCI functions.

Conversion consists of two partial steps:

Conversion between EBCDIC strings and UTF8 strings (for alphanumeric strings only).

Conversion between UTF8 and UTF16 strings and objects.

If an error occurs in any of these conversions (e.g. lack of memory), the condition variable (COPY ResErrCode

element) is set to the value (error in the first step) or (error JCI-METHODRES RES-ERR-NOMEM RES-ERR-OBJECT

in the second step).

If the length field of the COBOL structure is equal to 0 before the conversion, the text area remains unchanged
when a Java string is converted to a COBOL string. In the case of conversion in the other direction, an object is
created for a null string. If the length field is less than 0 before the conversion, the condition variable ResErrCode

is set to .RES-ERR-LENGTH

JENV V9.0A

 161

7.5 Floating point numbers

The Java floating point types and are represented in IEEE format, while the COBOL floating point types float double
 and are represented in /390 format. The conversion is performed automatically in the JCI COMP-1 COMP-2

functions.

During conversion, the following exceptional situations can occur, which are displayed to the caller as a condition
variable in the field (COPY element) when returning from the JCI function:ResErrCode JCI-METHODRES

COMP-1 ---> IEEE:

RES-ERR-FLOAT-UNDERFLOW

The /390 floating point number is lower than the smallest representable IEEE floating point number.

RES-ERR-FLOAT-OVERFLOW

The /390 floating point number is greater than the largest representable IEEE floating point number.

COMP-2 ---> IEEE:

(none)

IEEE ---> COMP-1:

RES-ERR-FLOAT-INVALID

The IEEE floating point number equals or .NaN infinity

IEEE ---> COMP-2:

RES-ERR-FLOAT-UNDERFLOW

The IEEE floating point number.is less than the smallest representable /390 floating point number.

RES-ERR-FLOAT-OVERFLOW

The IEEE floating point number.is greater than the largest representable /390 floating point number.

RES-ERR-FLOAT-INVALID

The IEEE floating point number equals or .NaN infinity

If bit positions are lost in the conversion, this does not lead to an exceptional situation.

JENV V9.0A

 162

7.6 Object references

Java objects are transferred to the COBOL program as local object references.

To prevent the from removing the referenced objects, the VM registers all the transferred Garbage Collector
references.

The references are valid until a native method returns to Java. However, this is never the case with a COBOL main
program. To release the resources required for the registration and to enable the to remove the Garbage Collector
objects referenced by the object references, the references must therefore be released explicitly by the COBOL
program (see).section "Object references"

For object references, the TYPEDEF is defined in the COPY element .JCI-object JCI-TYPEDEF

JENV V9.0A

 163

7.7 Java handle

Some JCI functions use parameters with an opaque data type. These are referred to as Java handles in the formats.

In the COPY element , the TYPEDEF is defined for Java handles.JCI-TYPEDEF JCI-handle

JENV V9.0A

 164

7.8 Return code in special register RETURN-CODE

All JCI functions are functions which return either a truth value or an error indicator in the special register int

RETURN-CODE.

A separate parameter is used to return other values. Unless described differently, the content of the result field
referenced by this parameter is undefined in the event of an error.

JENV V9.0A

 165

7.9 Arguments and event values of Java methods

Structures are used to transfer arguments and result values between the COBOL program and JCI functions which
call Java methods or edit Java data fields. These must contain all the necessary information. The structures are
defined in the COPY elements and (see sections JCI-METHODARGS JCI-METHODRES "JCI-METHODARGS -

 and). In this chapter they are referred to as Function arguments" "JCI-METHODRES - Function result" MethodArg

or .MethodRes

If nothing else is defined in the function descriptions, the following prerequisites apply for calling functions which
reference an argument of the type or :MethodArg MethodRes

Arguments

Before the function is called, the field must contain the number of arguments to be transferred.CallArgNum

For each argument, an element of the table must be supplied with values in the structure.CallArg

In the field, the condition name which corresponds to the COBOL data type must be set.The ArgType ARG-...

address of a or structure must be specified for strings. If trailing spaces are to be ignored, Cobvar CobNvar

 must also be set. Other arguments must be transferred directly into the structure.IGNORE-TRAILING-SPACES

Result values

For result values, the condition name which corresponds to the COBOL data type must be set in the RES-...

 field, or if no return value is expected. If a string is expected as the return value, the ResType RES-VOID

address of a or structure must be specified with a maximum length for the data area in the Cobvar CobNvar

 field. If the length 0, the result value is not transferred.ResValAddr <=

After returning from the function, a or structure referenced as a return value contains the Cobvar CobNvar

number of transferred characters (maximum entry value) in the length field, and the transferred characters in the
data area. For other data types, the return value is transferred directly into the structure.

If an exceptional situation occurred during the conversion of a floating point data field or string object, the
 field contains the corresponding error code after returning from the function. This can be inquired by ResErrCode

means of the condition variable (see sections and RES-ERR-<condition> "Characters and strings" "Floating

). If an argument was incorrect (RETURN-CODE RET-ERR-EARGUMENT), the field point numbers" ResErrIndex

contains the number of the argument.

The table below provides an overview of the definitions and the corresponding COBOL and Java types. For COBOL
types whose name begins with ' ', a type definition exists in the COPY element A '*' in the last JCI- JCI-TYPEDEF.
column specifies that automatic conversion of the argument or result value will take place in the JCI functions.

Java type COBOL type
or TYPEDEF

Variable
 ResVal ...,
 ArgVal ...

Condition name
 RES- ..., ARG- ...

String Structure CobVar

Structure CobNVar

Addr ANUM-STRING
NAT-STRING

*

byte JCI-byte Byte BYTE

char PIC X Achar ANUM-CHAR *

char PIC N Nchar NAT-CHAR

boolean JCI-boolean Boolean BOOLEAN

JENV V9.0A

 166

short JCI-short Short SHORT

int JCI-int Int INT

long JCI-long Long LONG

float USAGE COMP-1 Float FLOAT *

double USAGE COMP-2 Double DOUBLE *

Java object (also string object) JCI-object Object OBJECT

JENV V9.0A

 167

7.10 Exceptions

Exceptions can be triggered both by the JCI functions and explicitly by a Java method. This can generally not be
recognized from the function’s return value.

JCI functions are available to inquire the existence of an exception, have information output, and to remove the
exception (see).section "Exceptions"

When an exception has been triggered, it must first be removed by calling before the error-JCI_ExceptionClear

free execution of further JCI functions is guaranteed.

JENV V9.0A

 168

7.11 COPY elements

COPY elements are made available for general definitions and structures.

These are contained in the POSIX directory beneath the path under which JENV was installed.include

JENV V9.0A

 169

7.11.1 JCI-CONST - Definition of constants

This element defines the COBOL partial structure which contains all constants which are relevant to JCI-Const

the JCI as data fields:

*> Copyright (c) 2016 Fujitsu Technology Solutions GmbH
*> All Rights Reserved
>>SOURCE FORMAT IS FREE
41 JCI-Const.
42 JCI-Versions.
43 JCI-INTERFACE-VERSION PIC S9(009) USAGE COMP-5 SYNC VALUE 001.
43 JCI-VERSION-1 PIC S9(009) USAGE COMP-5 SYNC VALUE 001.
42 JCI-ReturnValues.
*> success
43 JCI-RET-OK PIC S9(009) USAGE COMP-5 SYNC VALUE 000.
*> truth-value false (from test-functions)
43 JCI-RET-FALSE PIC S9(009) USAGE COMP-5 SYNC VALUE 000.
*> truth-value true (from test-functions)
43 JCI-RET-TRUE PIC S9(009) USAGE COMP-5 SYNC VALUE 001.
*> unspecific error
43 JCI-RET-ERR PIC S9(009) USAGE COMP-5 SYNC VALUE 010.
*> VM not created
43 JCI-RET-ENOVM PIC S9(009) USAGE COMP-5 SYNC VALUE 011.
*> class/method/... not found
43 JCI-RET-ENOTFOUND PIC S9(009) USAGE COMP-5 SYNC VALUE 012.
*> JCI-NULL object not allowed
43 JCI-RET-ENULLOBJ PIC S9(009) USAGE COMP-5 SYNC VALUE 013.
*> JCI-NULL method-id/field-id not allowed
43 JCI-RET-ENULLID PIC S9(009) USAGE COMP-5 SYNC VALUE 014.
*> array-index out of bounds
43 JCI-RET-EINDAOB PIC S9(009) USAGE COMP-5 SYNC VALUE 015.
*> invalid argument
43 JCI-RET-EARGUMENT PIC S9(009) USAGE COMP-5 SYNC VALUE 016.
*> not enough memory
43 JCI-RET-ENOMEM PIC S9(009) USAGE COMP-5 SYNC VALUE 017.
*> VM already created
43 JCI-RET-EEXIST PIC S9(009) USAGE COMP-5 SYNC VALUE 020.
*> invalid version in option structure
43 JCI-RET-EOPTVERS PIC S9(009) USAGE COMP-5 SYNC VALUE 021.
*> invalid option number
43 JCI-RET-OPTNUM PIC S9(009) USAGE COMP-5 SYNC VALUE 022.
*> invalid version in argument structure
43 JCI-RET-EARGVERS PIC S9(009) USAGE COMP-5 SYNC VALUE 101.
*> invalid version in result structure
43 JCI-RET-ERESVERS PIC S9(009) USAGE COMP-5 SYNC VALUE 102.
*> invalid argument number
43 JCI-RET-EARGNUM PIC S9(009) USAGE COMP-5 SYNC VALUE 103.
*> invalid argument-type
43 JCI-RET-EARGTYPE PIC S9(009) USAGE COMP-5 SYNC VALUE 110.
*> invalid result-type
43 JCI-RET-ERESTYPE PIC S9(009) USAGE COMP-5 SYNC VALUE 111.
*> argument conversion error
43 JCI-RET-EARGCONV PIC S9(009) USAGE COMP-5 SYNC VALUE 112.
*> result conversion error
43 JCI-RET-ERESCONV PIC S9(009) USAGE COMP-5 SYNC VALUE 113.
*> pending exception after method-call
43 JCI-RET-EEXCEPT PIC S9(009) USAGE COMP-5 SYNC VALUE 120.
42 JCI-Values.

JENV V9.0A

 170

43 JCI-NULL PIC S9(009) USAGE COMP-5 SYNC VALUE 000.
42 JCI-BooleanValues.
43 JCI-FALSE PIC X(001) VALUE X'00'.
43 JCI-TRUE PIC X(001) VALUE X'01'.

JENV V9.0A

 171

7.11.2 JCI-TYPEDEFS - Type definitions

This element contains all elementary type definitions which are relevant to the JCI:

*> Copyright (c) 2016 Fujitsu Technology Solutions GmbH
*> All Rights Reserved
>>SOURCE FORMAT IS FREE
01 JCI-short TYPEDEF PIC S9(004) USAGE COMP-5.
01 JCI-int TYPEDEF PIC S9(009) USAGE COMP-5.
01 JCI-long TYPEDEF PIC S9(018) USAGE COMP-5.
01 JCI-size TYPEDEF TYPE JCI-int.
01 JCI-object TYPEDEF PIC S9(009) USAGE COMP-5.
01 JCI-handle TYPEDEF PIC S9(009) USAGE COMP-5.
01 JCI-byte TYPEDEF PIC X(001).
01 JCI-boolean TYPEDEF PIC X(001).

JENV V9.0A

 172

7.11.3 JCI-VMOPT - Structure for transferring options

This element contains the partial structure which is required to transfer options when the VM is started:JCI-VMopt

*> Copyright (c) 2016 Fujitsu Technology Solutions GmbH
*> All Rights Reserved
>>SOURCE FORMAT IS FREE
41 JCI-VMopt.
42 PIC S9(009) USAGE COMP-5 SYNC VALUE 001.
42 PIC S9(004) USAGE COMP-5 SYNC

VALUE <max-options>.
42 VMOptNum PIC S9(004) USAGE COMP-5 SYNC VALUE 000.
42 VMOptFlag PIC X(001) VALUE X'00'.
88 IGNORE-UNRECOGNIZED VALUE X'01'
WHEN SET TO FALSE X'00'.
42 PIC X(003) VALUE X'00'.
42 VMOpt OCCURS <max-options>.
43 VMOptVstring USAGE POINTER.
43 VMExtrainf USAGE PROGRAM-POINTER.

This structure is referred to as below.OptArg

Then umber of elements with which the options table is to be expanded (maximum number of arguments) must be
set by the REPLACING entry in the COPY statement:

COPY JCI-VMOPT REPLACING == <max-options> == BY num .

The following statement is required for dynamic initialization of the structure as a whole in order to ensure the
correct values for fields which are reserved internally:

INITIALIZE JCI-VMopt WITH FILLER ALL TO VALUE

JENV V9.0A

 173

7.11.4 JCI-METHODARGS - Function arguments

This element contains the partial structure required for transferring arguments:JCI-MethodArgs

*> Copyright (c) 2016 Fujitsu Technology Solutions GmbH
*> All Rights Reserved
>>SOURCE FORMAT IS FREE
41 JCI-MethodArgs.
42 USAGE COMP-2 SYNC VALUE 000.
42 PIC S9(009) USAGE COMP-5 SYNC VALUE 001.
42 PIC S9(004) USAGE COMP-5 SYNC
VALUE <max-arguments>.
42 CallArgNum PIC S9(004) USAGE COMP-5 SYNC VALUE 000.
42 CallArg OCCURS <max-arguments>.
43 ArgType PIC X(001) VALUE X'00'.
88 ARG-BYTE VALUE X'01'.
88 ARG-ANUM-CHAR VALUE X'02'.
88 ARG-NAT-CHAR VALUE X'03'.
88 ARG-DOUBLE VALUE X'04'.
88 ARG-FLOAT VALUE X'05'.
88 ARG-LONG VALUE X'06'.
88 ARG-INT VALUE X'07'.
88 ARG-SHORT VALUE X'08'.
88 ARG-BOOLEAN VALUE X'09'.
88 ARG-ANUM-STRING VALUE X'0A'.
88 ARG-NAT-STRING VALUE X'0B'.
88 ARG-OBJECT VALUE X'0C'.
43 ArgInd PIC X(001) VALUE X'00'.
*> Indicator for Strings
88 IGNORE-TRAILING-SPACES VALUE X'01'
WHEN SET TO FALSE X'00'.
43 PIC X(002) VALUE ALL X'00'.
43 ArgValAddr USAGE POINTER.
43 ArgValDouble USAGE COMP-2 SYNC VALUE 0.
43 ArgValFloat REDEFINES ArgValDouble USAGE COMP-1.
43 ArgValLong REDEFINES ArgValDouble PIC S9(018) USAGE COMP-5.
43 ArgValInt REDEFINES ArgValDouble PIC S9(009) USAGE COMP-5.
43 ArgValShort REDEFINES ArgValDouble PIC S9(004) USAGE COMP-5.
43 ArgValObject REDEFINES ArgValDouble PIC S9(009) USAGE COMP-5.
43 ArgValBoolean REDEFINES ArgValDouble PIC X(001).
43 ArgValByte REDEFINES ArgValDouble PIC X(001).
43 ArgValAchar REDEFINES ArgValDouble PIC X(001).
43 ArgValNchar REDEFINES ArgValDouble PIC N(001).

The number of elements to be used to expand the argument table (maximum number of arguments) must be set by
means of the REPLACING entry in the COPY statement:

COPY JCI-METHODARGS REPLACING == <max-arguments> == BY num .

The following statement is required for dynamic initialization of the structure as a whole in order to ensure the
correct values for both reserved fields and for the table elements:

INITIALIZE JCI-MethodArgs WITH FILLER ALL TO VALUE
 THEN REPLACING ALPHANUMERIC BY ALL X'00'
 THEN TO DEFAULT

JENV V9.0A

 174

7.11.5 JCI-METHODRES - Function result

This element contains the partial structure required for transferring result values and error JCI-MethodRes

information:

*> Copyright (c) 2016 Fujitsu Technology Solutions GmbH
*> All Rights Reserved
>>SOURCE FORMAT IS FREE
41 JCI-MethodRes.
42 USAGE COMP-2 SYNC VALUE 000.
42 PIC S9(009) USAGE COMP-5 SYNC VALUE 001.
*> index to argument/table-element that caused a conversion-error
42 ResErrIndex PIC S9(009) USAGE COMP-5 SYNC VALUE 000.
*> additional information for function return-code
*> JCI-RET-EARGCONV and JCI-RET-ERESCONV
42 ResErrCode PIC S9(004) USAGE COMP-5 SYNC VALUE 000.
*> no error
88 RES-NO-ERROR VALUE 000.
*> not enough memory to create/convert data
88 RES-ERR-NOMEM VALUE 001.
*> object conversion error (object <-> string)
88 RES-ERR-OBJECT VALUE 010.
*> floating-point conversion-errors (S390 <-> IEEE)
88 RES-ERR-FLOAT-UNDERFLOW VALUE 020.
88 RES-ERR-FLOAT-OVERFLOW VALUE 021.
88 RES-ERR-FLOAT-INVALID VALUE 022.
42 PIC X(006) VALUE ALL X'00'.
42 ResultValue.
43 ResType PIC X(001) VALUE X'00'.
88 RES-VOID VALUE X'00'.
88 RES-BYTE VALUE X'01'.
88 RES-ANUM-CHAR VALUE X'02'.
88 RES-NAT-CHAR VALUE X'03'.
88 RES-DOUBLE VALUE X'04'.
88 RES-FLOAT VALUE X'05'.
88 RES-LONG VALUE X'06'.
88 RES-INT VALUE X'07'.
88 RES-SHORT VALUE X'08'.
88 RES-BOOLEAN VALUE X'09'.

88 RES-ANUM-STRING VALUE X'0A'.
88 RES-NAT-STRING VALUE X'0B'.
88 RES-OBJECT VALUE X'0C'.
43 PIC X(003) VALUE ALL X'00'.
43 ResValAddr USAGE POINTER.
43 ResValDouble USAGE COMP-2 SYNC VALUE 0.
43 ResValFloat REDEFINES ResValDouble USAGE COMP-1.
43 ResValLong REDEFINES ResValDouble PIC S9(018) USAGE COMP-5.
43 ResValInt REDEFINES ResValDouble PIC S9(009) USAGE COMP-5.
43 ResValShort REDEFINES ResValDouble PIC S9(004) USAGE COMP-5.
43 ResValObject REDEFINES ResValDouble PIC S9(009) USAGE COMP-5.
43 ResValBoolean REDEFINES ResValDouble PIC X(001).
43 ResValByte REDEFINES ResValDouble PIC X(001).
43 ResValAchar REDEFINES ResValDouble PIC X(001).
43 ResValNchar REDEFINES ResValDouble PIC N(001).

JENV V9.0A

 175

The following statement is required for dynamic initialization of the structure as a whole in order to ensure the
correct values for fields which are reserved internally:

INITIALIZE JCI-MethodRes WITH FILLER ALL TO VALUE

JENV V9.0A

 176

7.12 Functions

The interfaces of the JCI functions are described according to aspects relating to content in this section.

For simplicity’s sake, object references are mainly referred to as objects in the formats.

Class object refers to a reference to an object of the class .java.lang.Class

JENV V9.0A

 177

7.12.1 Starting and terminating the Java VM

This section describes the JCI functions which are required to start and terminate the Java VM.

JENV V9.0A

 178

7.12.1.1 JCI_CreateJavaVM

This function generates, i.e. loads and initializes, the Java VM.
It is equivalent to the JNI function .JNI_CreateJavaVM

Call

CALL 'JCI_CreateJavaVM' USING opt

opt Options for the Java VM

Arguments

opt A structure in the form with the following elements:OptArg

VMOptNum

The number of VM options; the value may not exceed the value specified for (see <max-options>

).section "JCI-VMOPT - Structure for transferring options"

VMOptFlag

Displays whether unknown options are to be ignored (condition name).IGNORE-UNRECOGNIZED

VMOptVstring

For each option, the address of a structure.Trailing spaces at the end of the text are ignoredCobvar

VMExtrainf

Depending on the option, the address of an external function.

All options can be specified which are also permissible in the JNI function .JNI_CreateJavaVM

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-EVERSION

The statically generated version number in is invalid (possibly overwritten).opt

JCI-RET-EOPTNUM

The number of options transferred () is less than 0 or greater than the value specified for VMOptNum <max-

 (see).options> section "JCI-VMOPT - Structure for transferring options"

JCI-RET-EEXIST

A Java VM has already been generated.

JCI-RET-ENOMEM

Not enough memory is available to generate the Java VM.

JENV V9.0A

 179

JCI-RET-ERR

An error which is not specified in more detail has occurred (e.g. invalid option and IGNORE-UNRECOGNIZED

not set).

Notes

Only one can be generated in a program run.JavaVM

No new Java VM can be generated after terminating the VM with , either.JCI_DestroyJavaVM

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
01 OptCP.
05 PIC S9(9) COMP-5 VALUE 30.
05 PIC X(30) VALUE '-Djava.class.path=.'.
01 OptEnc.
05 PIC S9(9) COMP-5 VALUE 40.
05 PIC X(40) VALUE '-Dfile.encoding=OSD_EBCDIC_DF04_15'.
01 JVMOptions.
COPY JCI-VMOPT REPLACING == <max-options> == BY 2.
...
PROCEDURE DIVISION.
*>
*> Prepare VM options
*>
MOVE 2 TO VMOptNum.
SET IGNORE-UNRECOGNIZED TO FALSE.
SET VMOptVstring(1) TO ADDRESS OF OptCP
SET VMOptVstring(2) TO ADDRESS OF OptEnc
*>
*> Create the Java VM
*>
CALL 'JCI_CreateJavaVM' USING JVMOptions
IF RETURN-CODE NOT = JCI-RET-OK
...

JENV V9.0A

 180

7.12.1.2 JCI_DestroyJavaVM

This function releases resources of the Java VM.
It is equivalent to the JNI function .JNI_DestroyJavaVM

Call

CALL 'JCI_DestroyJavaVM'

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-ERR

An error which is not specified in more detail has occurred.

Notes

The function should not be called if the call of the function was not successful.JCI_CreateJavaVM

After the function has been executed correctly, no further JCI functions can be called.

The Java VM is not unloaded.

It is not possible to reboot the Java VM with .JCI_CreateJavaVM

JENV V9.0A

 181

7.12.2 Classes and methods

This section describes the JCI functions which are required to load classes and call methods.

JENV V9.0A

 182

7.12.2.1 JCI_FindClass

This function localizes and loads a class.
It is equivalent to the JNI function .FindClass

Call

CALL 'JCI_FindClass' USING cName cObj

cName Name of the class

cObj Class object returned by the function

Arguments

cName Structure of the type Cobvar

Fully qualified name of the class (i.e. a package-name separated by "/" followed by the name and
class) which is to be searched for. If the name begins with "[" (array signature character), an array
class is returned.
Trailing spaces at the end of the text are ignored.

cObj Data field of the type JCI-object

After the function has been successfully executed, the field contains a class object of the class being
searched for.
In the event of an error, the value JCI-NULL is returned.

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-ENOTFOUND

The class could not be loaded.

Exceptions

The exceptions generated by the function correspond to those of the JNI function .FindClass

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY JCI-TYPEDEFS.
01 JCIConstants.

JENV V9.0A

 183

COPY JCI-CONST.
...
01 className.
02 PIC S9(9) USAGE COMP-5 VALUE 30.
02 PIC X(30) VALUE 'Hello'.
...
01 classObj TYPE JCI-object.
...
PROCEDURE DIVISION.
...
CALL 'JCI_FindClass' USING className classObj
IF RETURN-CODE NOT = JCI-RET-OK
...

JENV V9.0A

 184

7.12.2.2 JCI_GetStaticMethodID

This function returns the method ID (Java handle) for a static method of a class.It is equivalent to the JNI function
.GetStaticMethodID

Call

CALL 'JCI_GetStaticMethodID' USING cObj mName mSig mID

cObj Class object

mName Name of the method

mSig Signature of the method

mID Method ID returned by the function

Arguments

cObj Data field of the type JCI-object

Object of the class in which the method is to be searched for.

mName Structure of the type Cobvar

Name of the method which is to be searched for.
Trailing spaces at the end of the text are ignored.

mSig Structure of the type Cobvar

Signature of the method which is to be searched for.
Trailing spaces at the end of the text are ignored.

mID Data field of the type JCI-handle

After the function has been successfully executed, the field contains the method ID of the method
being searched for.
In the event of an error, the value JCI-NULL is returned.

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-ENULLOBJ

cObj is .JCI-NULL

JCI-RET-EARGUMENT

cObj is not a class object.

JCI-RET-ENOTFOUND

JENV V9.0A

 185

The method could not be found.

Exceptions

The exceptions generated by the function correspond to those of the JNI function .GetStaticMethodID

Notes

The method is identified by the name and the signature. The signature can be received by the statement,

javap -s <class-name>

the being the name of the class identified by .<class-name> cObj

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY JCI-TYPEDEFS.
01 JCIConstants.
COPY JCI-CONST.
...
01 methodName.
05 PIC S9(9) COMP-5 VALUE 30.
05 PIC X(30) VALUE 'hello'.
01 methodSig.
05 PIC S9(9) COMP-5 VALUE 80.
05 PIC X(80) VALUE '(Ljava/lang/String;)V'.
...
01 classObj TYPE JCI-object.
01 methodID TYPE JCI-handle.
...
PROCEDURE DIVISION.
...
CALL 'JCI_GetStaticMethodID' USING classObj methodName
methodSig methodID
IF RETURN-CODE NOT = JCI-RET-OK
...

JENV V9.0A

 186

7.12.2.3 JCI_CallStaticMethod

This function calls a static method.
It is equivalent to the JNI functions . However, it also offers the option of transferring CallStatic<type>Method

or receiving strings directly.

Call

CALL 'JCI_CallStaticMethod' USING cObj mID arg res

cObj Class object

mID Method ID

arg Method arguments

res Method result

Arguments

cObj Data field of the type JCI-object

Class object whose method is to be called.

mID Data field of the type JCI-handle

ID of the method which is to be called. The method ID must be obtained by calling the function
 for the class.JCI_GetStaticMethodID cObj

arg A structure of the form MethodArg

Description of the arguments for the method call (see section "Arguments and event values of Java
).methods"

res A structure of the form MethodRes

Description of the return value for the method call and error information (see section "Arguments and
). If the return value of the method is a NULL object, the length field of the event values of Java methods"

target structure is set to 0 for the types and , and the text area RES-ANUM-STRING RES-NAT-STRING

remains unchanged.

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-ENULLOBJ

cObj is .JCI-NULL

JCI-RET-ENULLID

JENV V9.0A

 187

mId is .JCI-NULL

JCI-RET-EARGUMENT

cObj is not a class object.

JCI-RET-EARGVERS

The statically generated version number in is invalid (possibly overwritten).arg

JCI-RET-ERESVERS

The statically generated version number in is invalid (possibly overwritten).res

JCI-RET-EARGNUM

The number of arguments transferred () is less than 0 or greater than the value used for CallArgNum <max-

 (see).arguments> section "JCI-METHODARGS - Function arguments"

JCI-RET-EARGTYPE

The value of the field is invalid. The field contains the number of the faulty argument.ArgType ResErrIndex

JCI-RET-ERESTYPE

The value of the field is invalid.ResType

JCI-RET-EARGCONV

An error occurred while an argument was being converted.
The field contains the number of the argument, the field a more precise error ResErrIndex ResErrCode

code.

JCI-RET-ERESCONV

An error occurred while the result was being converted.
The field contains a more precise error code.ResErrCode

JCI-RET-EEXCEPT

An exception exists after the method was called. No distinction is made between whether the exception was
generated by this or an earlier function call.
The field corresponding to the method result in the structure is unchanged.res

Exceptions

All exceptions which were generated by the called method.

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
...
01 MethodArgs.
COPY JCI-METHODARGS REPLACING ==<max-arguments>== BY 2.
01 MethodRes.
COPY JCI-METHODRES.

JENV V9.0A

 188

...
01 myName.
05 len PIC S9(9) COMP-5 VALUE 30.
05 txt PIC X(30).
01 classObj TYPE JCI-object.
01 methodID TYPE JCI-handle.
PROCEDURE DIVISION.
...
MOVE 1 TO CallArgNum
SET RES-VOID TO TRUE
SET ARG-ANUM-STRING(1) IGNORE-TRAILING-SPACES(1) TO TRUE
SET ArgValAddr(1) TO ADDRESS OF myName
CALL 'JCI_CallStaticMethod' USING classObj methodId
MethodArgs MethodRes
IF RETURN-CODE NOT = JCI-RET-OK
...

JENV V9.0A

 189

7.12.2.4 JCI_GetMethodID

This function returns the method ID (Java handle) for an instance method of a class or interface.
It is equivalent to the JNI function .GetMethodID

Call

CALL 'JCI_GetMethodID' USING cObj mName mSig mID

cObj Class object

mName Name of the method

mSig Signature of the method

mID Method ID returned by the function

Arguments

See function .JCI_GetStaticMethodID

Return value (RETURN-CODE)

See function .JCI_GetStaticMethodID

Exceptions

The exceptions generated by the function correspond to those of the JNI function .GetMethodID

Notes

The method can be defined in an upper class of the class referenced by and be inherited by the latter.cObj

The method is identified by the name and the signature. The signature can be received by the statement,

javap -s <class-name>

the being the name of the class identified by .<class-name> cObj

JENV V9.0A

 190

7.12.2.5 JCI_CallMethod

This function calls an instance method.
It is equivalent to the JNI functions . However, it also offers the option of transferring or Call<type>Method

receiving strings directly.

Call

CALL 'JCI_CallMethod' USING obj mID arg res

obj Instance object

mID Method ID

arg Method arguments

res Method result

Arguments

obj Data field of the type JCI-object

Instance object for which the method is to be called.

mID Data field of the type JCI-handle

ID of the method which is to be called. The method ID must be obtained by calling the

 function for the class of the object or one of its upper classes.JCI_GetStaticMethodID obj

arg A structure of the form MethodArg

Description of the arguments for the method call (see section "Arguments and event values of Java
).methods"

res A structure of the form MethodRes

Description of the return value for the method call and error information (see section "Arguments and
). If the return value of the method is a NULL object, the length field of the event values of Java methods"

target structure is set to 0 for the types and , and the text area RES-ANUM-STRING RES-NAT-STRING

remains unchanged.

Return value (RETURN-CODE)

JCI-RET-ENULLOBJ

obj is .JCI-NULL

All other values as in .JCI_CallStaticMethod

Exceptions

All exceptions which were generated by the called method.

JENV V9.0A

 191

7.12.2.6 JCI_CallNonvirtualMethod

This function calls an instance method of a predefined class.
It is equivalent to the JNI functions . However, it also offers the option of CallNonvirtual<type>Method

transferring or receiving strings directly.

Call

CALL 'JCI_CallNonvirtualMethod' USING obj cObj mID arg res

obj Instance object

cObj Object of the class in which the method is defined.

mID Method ID

arg Method arguments

res Method result

Arguments

obj Data field of the type JCI-object

Instance object for which the method is to be called.

cObj Data field of the type JCI-object

Object of the class whose method is to be called.

mID Data field of the type JCI-handle

ID of the method which is to be called.
The method ID must be obtained by calling the function for the class. This JCI_GetMethodID cObj
class must match the class of the object or of one of its upper classes.obj

arg A structure of the form MethodArg

Description of the arguments for the method call (see section "Arguments and event values of Java
).methods"

res A structure of the form MethodRes

Description of the return value for the method call and error information (see section "Arguments and
). If the return value of the method is a NULL object, the length field of the event values of Java methods"

target structure is set to 0 for the types and , and the text area RES-ANUM-STRING RES-NAT-STRING

remains unchanged.

Return value (RETURN-CODE)

JCI-RET-ENULLOBJ

obj or is .cObj JCI-NULL

All other values as in .JCI_CallStaticMethod

JENV V9.0A

 192

Exceptions

All exceptions which were generated by the called method.

JENV V9.0A

 193

7.12.3 Object references

This section describes the JCI functions required to manage local object references.

JENV V9.0A

 194

7.12.3.1 JCI_DeleteLocalRef

This function deletes a local object reference.
It is equivalent to the JNI function .DeleteLocalRef

Call

CALL 'JCI_DeleteLocalRef' USING obj

obj Object reference

Arguments

obj Data field of the type JCI-object

Object reference which is to be deleted.

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

Notes

After the function has been called, the object reference may no longer be used.JCI_DeleteLocalRef obj

JENV V9.0A

 195

7.12.3.2 JCI_NewLocalRef

This function generates a new local reference to an object.
It is equivalent to the JNI function .NewLocalRef

Call

CALL 'JCI_NewLocalRef' USING obj newObj

obj Object reference

newObj Object reference returned by the function

Arguments

obj Data field of the type JCI-object

Object reference to the object to which a new reference is to be generated.

newObj Data field of the type JCI-object

New object reference to the object referenced by .obj

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

JENV V9.0A

 196

7.12.4 Objects

This section describes the JCI functions required to generate and edit Java objects.

JENV V9.0A

 197

7.12.4.1 JCI_NewObject

This function generates a new Java object.
It is equivalent to the JNI function . However, it also offers the option of transferring strings directly.NewObject

Call

CALL 'JCI_NewObject' USING cObj mID arg res

cObj Class object

mID Method ID

arg Constructor arguments

res Result

Arguments

cObj Data field of the type JCI-object

Class object for which an object is to be generated. It may not refer to an array class.

mID Data field of the type JCI-handle

ID of the constructor method. The method ID must be obtained by calling the function
 with the name and signature for the class.JCI_GetMethodID <init> (...)V cObj

arg A structure of the form MethodArg

Description of the arguments for the constructor call (see section "Arguments and event values of Java
).methods"

res A structure of the form MethodRes

Return value (new object) and error information (output only, result in). In the event of ResValObject

an error, JCI-NULL is returned.

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENULLOBJ

cObj is .JCI-NULL

JCI-RET-ENULLID

mId is .JCI-NULL

JCI-RET-EARGUMENT

cObj is not a class object or refers to an array.

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-EARGVERS

JENV V9.0A

 198

The statically generated version number in is invalid (possibly overwritten).arg

JCI-RET-ERESVERS

The statically generated version number in is invalid (possibly overwritten).res

JCI-RET-EARGNUM

The number of arguments transferred () is less than 0 or greater than the value used for CallArgNum <max-

 (see).arguments> section "JCI-METHODARGS - Function arguments"

JCI-RET-EARGTYPE

The value of the field is invalid. The field contains the number of the faulty argument.ArgType ResErrIndex

JCI-RET-EARGCONV

An error occurred while an argument was being converted.
The field contains the number of the argument, the field a more precise error ResErrIndex ResErrCode

code.

JCI-RET-ERR

The object could not be generated.

Exceptions

All exceptions generated by the constructor.

The other exceptions generated by the function correspond to those of the JNI function .NewObject

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY JCI-TYPEDEFS.
01 JCIConstants.
COPY JCI-CONST.
...
01 className.
02 PIC S9(9) COMP-5 VALUE 30.
02 PIC X(30) VALUE 'myClass'.
01 methodName.
05 PIC S9(9) COMP-5 VALUE 9.
05 PIC X(10) VALUE '<init>'.
01 methodSig.
05 PIC S9(9) COMP-5 VALUE 80.
05 PIC X(80) VALUE
'(Ljava/lang/String;Ljava/lang/String;)V'.
01 nText.
05 PIC S9(9) COMP-5 VALUE 8.
05 PIC N(20) VALUE N'COBOL'.
01 aText.
05 PIC S9(9) COMP-5 VALUE 8.
05 PIC X(20) VALUE 'Java'.
01 classObj TYPE JCI-object.

JENV V9.0A

 199

01 instanceObj TYPE JCI-object.
01 methodID TYPE JCI-handle.
01 MethodArgs.
COPY JCI-METHODARGS REPLACING ==<max-arguments>== BY 2.
01 MethodRes.
COPY JCI-METHODRES.
...
PROCEDURE DIVISION.
...
CALL 'JCI_FindClass' USING className classObject
IF RETURN-CODE NOT = JCI-RET-OK
...
END-IF
CALL 'JCI_GetMethodID' USING classObj methodName
methodSig methodID
IF RETURN-CODE NOT = JCI-RET-OK
...
END-IF
MOVE 2 TO CallArgNum
SET ARG-NAT-STRING(1) IGNORE-TRAILING-SPACES(1) TO TRUE
SET ArgValAddr(1) TO ADDRESS OF nText
SET ARG-ANUM-STRING(2) IGNORE-TRAILING-SPACES(2) TO TRUE
SET ArgValAddr(2) TO ADDRESS OF aText

CALL 'JCI_NewObject' USING classObj methodId
MethodArgs MethodRes
IF RETURN-CODE NOT = JCI-RET-OK
...
END-IF
MOVE ResValObject TO instanceObject
...

JENV V9.0A

 200

7.12.4.2 JCI_GetObjectClass

This function returns the class object of an object.
It is equivalent to the JNI function .GetObjectClass

Call

CALL 'JCI_GetObjectClass' USING obj cObj

obj Instance object

cObj Class object returned by the function

Arguments

obj Data field of the type JCI-object

Instance object whose class object is to be returned. The object may not be 0.

cObj Data field of the type JCI-object

After the function has been successfully executed, the field contains the class object of the class being
searched for.

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-ENULLOBJ

obj is .JCI-NULL

JENV V9.0A

 201

7.12.4.3 JCI_IsInstanceOf

This function checks whether an object is an instance of a class.
It is equivalent to the JNI function .IsInstanceOf

Call

CALL 'JCI_IsInstanceOf' USING obj cObj

obj Instance object

cObj Class object

Arguments

obj Data field of the type JCI-object

Object which is to be checked. If is , it is an instance of every class.obj JCI-NULL

cObj Data field of the type JCI-object

Class which is to be checked for.

Return value (RETURN-CODE)

JCI-RET-TRUE

obj is an instance of .cObj

JCI-RET-FALSE

obj is not an instance of .cObj

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-ENULLOBJ

cObj is .JCI-NULL

JCI-RET-EARGUMENT

cObj is not a class object.

JENV V9.0A

 202

7.12.4.4 JCI_IsSameObject

This function checks whether two object references refer to the same object.It is equivalent to the JNI function
.IsSameObject

Call

CALL 'JCI_IsSameObject' USING obj1 obj2

obj1 Object

obj2 Object

Arguments

obj1, obj2

Data fields of the type JCI-object

Objects which are to be compared.

Return value (RETURN-CODE)

JCI-RET-TRUE

Both object references refer to the same object or are both .JCI-NULL

JCI-RET-FALSE

The object references refer to different objects.

JCI-RET-ENOVM

No Java VM has been started.

JENV V9.0A

 203

7.12.5 Fields

This section describes the JCI functions which enable fields in Java objects to be edited.

JENV V9.0A

 204

7.12.5.1 JCI_GetStaticFieldID

This function returns the field ID (Java handle) for a static field of a class.It is equivalent to the JNI function
.GetStaticFieldID

Call

CALL 'JCI_GetStaticFieldID' USING cObj fName fSig fID

cObj Class object

fName Name of the field

fSig Signature of the field

fID Field ID returned by the function

Arguments

cObj Data field of the type JCI-object

Object of the class in which the method is to be searched for.

fName Structure of the type Cobvar

Name of the field which is to be searched for.
Trailing spaces at the end of the text are ignored.

fSig Structure of the type Cobvar

Signature of the field which is to be searched for.
Trailing spaces at the end of the text are ignored.

fID Data field of the type JCI-handle

After the function has been successfully executed, the field contains the field ID of the field being
searched for.
In the event of an error, the value JCI-NULL is returned.

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-ENULLOBJ

cObj is .JCI-NULL

JCI-RET-EARGUMENT

cObj is not a class object.

JENV V9.0A

 205

JCI-RET-ENOTFOUND

The field could not be found.

Exceptions

The exceptions generated by the function correspond to those of the JNI function .GetStaticFieldID

Notes

The field is identified by the name and the signature. The signature can be received by the statement,

javap -s <class-name>

the being the name of the class identified by .<class-name> cObj

JENV V9.0A

 206

7.12.5.2 JCI_GetStaticField

This function returns the value of a static field of a class.
It is equivalent to the JNI functions . However, it also offers the option of obtaining GetStatic<type>Field

strings directly.

Call

CALL 'JCI_GetStaticField' USING cObj fID res

cObj Class object

fID Field ID

res Result

Arguments

cObj Data field of the type JCI-object

Class object whose field content is to be returned.

fID Data field of the type JCI-handle

ID of the field whose content is to be returned. The field ID must be obtained by calling the function
 for the class.JCI_GetStaticFieldID cObj

res A structure of the form MethodRes

Description of the return value for the field content and error information (see section "Arguments and
). If the content of the field is a NULL object, the length field of the target event values of Java methods"

structure is set to 0 for the types and , and the text area remains RES-ANUM-STRING RES-NAT-STRING

unchanged.

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-ENULLOBJ

cObj is .JCI-NULL

JCI-RET-ENULLID

fID is .JCI-NULL

JCI-RET-EARGUMENT

cObj is not a class object.

JCI-RET-ERESVERS

JENV V9.0A

 207

The statically generated version number in is invalid (possibly overwritten).res

JCI-RET-ERESTYPE

The value of the field is invalid.ResType

JCI-RET-ERESCONV

An error occurred while the result was being converted.
The field contains a more precise error code.ResErrCode

JENV V9.0A

 208

7.12.5.3 JCI_SetStaticField

This function sets the value of a static field of a class.
It is equivalent to the JNI functions . However, it also offers the option of transferring SetStatic<type>Field

strings directly.

Call

CALL 'JCI_SetStaticField' USING cObj fID arg res

cObj Class object

fID Field ID

arg New value

res Result

Arguments

cObj Data field of the type JCI-object

Class object whose field content is to be set.

fID Data field of the type JCI-handle

ID of the field whose content is to be set. The field ID must be obtained by calling the function
 for the class.JCI_GetStaticFieldID cObj

arg A structure of the form MethodArg

Description of the new value for the field content (see section "Arguments and event values of Java
).methods"

Only the partial structure is required.CallArg(1)

res A structure of the form Error information (output only).MethodRes

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-ENULLID

fID is .JCI-NULL

JCI-RET-ENULLOBJ

cObj is .JCI-NULL

JCI-RET-EARGUMENT

JENV V9.0A

 209

cObj is not a class object.

JCI-RET-EARGVERS

The statically generated version number in is invalid (possibly overwritten).arg

JCI-RET-ERESVERS

The statically generated version number in is invalid (possibly overwritten).res

JCI-RET-EARGTYPE

The value of the field is invalid.ArgType

JCI-RET-EARGCONV

An error occurred while the argument was being converted.
The field contains a more precise error code.ResErrCode

JENV V9.0A

 210

7.12.5.4 JCI_GetFieldID

This function returns the field ID (Java handle) for an instance field of a class.It is equivalent to the JNI function
.GetFieldID

Call

CALL 'JCI_GetFieldID' USING cObj fName fSig fID

cObj Class object

fName Name of the field

fSig Signature of the field

fID Field ID returned by the function

Arguments

See function .JCI_GetStaticFieldID

Return value (RETURN-CODE)

See function .JCI_GetStaticFieldID

Exceptions

The exceptions generated by the function correspond to those of the JNI function .GetFieldID

Notes

See function .JCI_GetStaticField

JENV V9.0A

 211

7.12.5.5 JCI_GetField

This function returns the value of an instance field of an object.
It is equivalent to the JNI functions . However, it also offers the option of obtaining strings directly.Get<type>Field

Call

CALL 'JCI_GetField' USING obj fID res

obj Instance object

fID Field ID

res Result

Arguments

obj Data field of the type JCI-object

Instance object whose field content is to be returned.

fID Data field of the type JCI-handle

ID of the field whose content is to be returned. The field ID must be obtained by calling the function
.JCI_GetFieldID

res A structure of the form MethodRes

Description of the return value for the field content and error information (see section "Arguments and
). If the content of the field is a NULL object, the length field of the target event values of Java methods"

structure is set to 0 for the types and , and the text area remains RES-ANUM-STRING RES-NAT-STRING

unchanged.

Return value (RETURN-CODE)

JCI-RET-ENULLOBJ

obj is .JCI-NULL

All other values as in .JCI_GetStaticField

JENV V9.0A

 212

7.12.5.6 JCI_SetField

This function sets the value of a static field of a class.
It is equivalent to the JNI functions . However, it also offers the option of transferring strings Set<type>Field

directly.

Call

CALL 'JCI_SetField' USING obj fID arg res

obj Instance object

fID Field ID

arg New value

res Result

Arguments

obj Data field of the type JCI-object

Instance object whose field content is to be modified.

fID Data field of the type JCI-handle

ID of the field whose content is to be set. The field ID must be obtained by calling
the function .JCI_GetFieldID

arg A structure of the form MethodArg

Description of the new value for the field content (see section "Arguments and event values of Java
).methods"

Only the partial structure is required.CallArg(1)

res A structure of the form MethodRes

Error information (output only).

Return value (RETURN-CODE)

JCI-RET-ENULLOBJ

obj is .JCI-NULL

All other values as in .JCI_GetStaticField

JENV V9.0A

 213

7.12.6 Strings

This section describes the JCI functions which enable Java strings to be generated and edited.

JENV V9.0A

 214

7.12.6.1 JCI_NewString

This function generates a new Java string object from a COBOL string.It is equivalent to the JNI function
. However, it also offers the option of transferring alphanumeric (EBCDIC) strings directly.NewString

Call

CALL 'JCI_NewString' USING arg res

arg Argument description

res Result description

Arguments

arg A structure of the form MethodArg

Description of the string from which the string object is to be generated (see section "Arguments and event
).values of Java methods"

Only the partial structure is required.CallArg(1)

The only permissible value for is or .ArgType(1) ARG-ANUM-STRING ARG-NAT-STRING

res A structure of the form MethodRes

Return value and error information (output only, result in). In the event of an error, the ResValObject

value JCI-NULL is returned.

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-EARGVERS

The statically generated version number in is invalid (possibly overwritten).arg

JCI-RET-ERESVERS

The statically generated version number in is invalid (possibly overwritten).res

JCI-RET-EARGTYPE

The value of the field is invalid.ArgType

JCI-RET-EARGCONV

An error occurred while the argument was being converted.
The field contains a more precise error code.ResErrCode

JCI-RET-ERR

JENV V9.0A

 215

The object could not be generated.

Exceptions

The exceptions generated by the function correspond to those of the JNI function .NewString

JENV V9.0A

 216

7.12.6.2 JCI_GetStringLength

This function returns the length (number of Unicode characters) of a Java string.
It is equivalent to the JNI function .GetStringLength

Call

CALL 'JCI_GetStringLength' USING sObj len

sObj String object

len Length

Arguments

sObj Data field of the type JCI-object

String object whose length is to be returned.

len Data field of the type JCI-size

After the function has been successfully executed, the field contains the number of Unicode characters in
the string object referenced by .sObj

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-ENULLOBJ

sObj is .JCI-NULL

JCI-RET-EARGUMENT

sObj is not a string object.

JENV V9.0A

 217

7.12.6.3 JCI_GetString

This function copies part of a Java string to a data area provided.
It is equivalent to the JNI function . However, it also offers the option of obtaining alphanumeric GetStringRegion

(EBCDIC) strings directly.

Call

CALL 'JCI_GetString' USING sObj start res

sObj String object

start Start position

res Result description

Arguments

sObj Data field of the type JCI-object

String object whose content is to be copied.

start Data field of the type JCI-size

Position of the first character which is to be returned (beginning with 1).

res A structure of the form MethodRes

Return value and error information (see).section "Arguments and event values of Java methods"
The only permissible value for is or .ResType RES-ANUM-STRING RES-NAT-STRING

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-ENULLOBJ

sObj is .JCI-NULL

JCI-RET-EARGUMENT

sObj is not a string object.

JCI-RET-EINDAOB

start is less than 1 or greater than the number of characters in the Java string.

JCI-RET-ERESVERS

The statically generated version number in is invalid (possibly overwritten).res

JCI-RET-ERESTYPE

JENV V9.0A

 218

The value of the field is invalid.ResType

JCI-RET-ERESCONV

An error occurred while the string was being converted.
The field contains a more precise error code.ResErrCode

Notes

The maximum length of the transfer (length of Java string – + 1) or of the value equals that of the output start len
structure.

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY JCI-TYPEDEFS.
01 JCIConstants.
COPY JCI-CONST.
...
01 sObj TYPE JCI-object.
01 sPos PIC S9(9) COMP-5 VALUE 0.
01 sLen PIC S9(9) COMP-5 VALUE 0.
01 aText.
05 alen PIC S9(9) COMP-5 VALUE 80.
05 atxt PIC X(80) VALUE SPACE.
...
01 MethodRes.
COPY JCI-METHODRES.
...
PROCEDURE DIVISION.
...
CALL 'JCI_GetStringLength' USING sObj sLen
IF RETURN-CODE NOT = JCI-RET-OK
...
END-IF.
SET RES-ANUM-STRING TO TRUE
SET ResValAddr TO ADDRESS OF aText
MOVE LENGTH OF atxt TO alen
*> loop to output the complete java-string
PERFORM VARYING sPos FROM 1 BY alen UNTIL sPos > sLen
CALL 'JCI_GetString' USING sobj sPos MethodRes
IF RETURN-CODE NOT = JCI-RET-OK
...
END-IF
DISPLAY aTxt(1:aLen) UPON T
END-PERFORM
...

JENV V9.0A

 219

7.12.7 Arrays

This section describes the JCI functions which enable Java arrays to be generated and processed.

JENV V9.0A

 220

7.12.7.1 JCI_GetArrayLength

This function is equivalent to the JNI function .GetArrayLength

Call

CALL 'JCI_GetArrayLength' USING aObj num

aObj Array object

num Number of elements

Arguments

aObj Data field of the type JCI-object

Array object whose number of elements is to be returned.

num Data field of the type JCI-size

After the function has been successfully executed, the field contains the number of elements of the array
object referenced by .aObj

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-ENULLOBJ

aObj is .JCI-NULL

JCI-RET-EARGUMENT

aObj is not an array object.

JENV V9.0A

 221

7.12.7.2 JCI_NewObjectArray

This function generates an array object for object elements.
It is equivalent to the JNI function .NewObjectArray

Call

CALL 'JCI_NewObjectArray' USING num cObj eObj res

num Number of elements

cObj Element class

eObj Element initil value

res Result description

Arguments

num Data field of the type JCI-size

Number of elements in the array.

cObj Data field of the type JCI-object

Class object for the class of the array elements.

eObj Data field of the type JCI-object

Initial value for the array elements (may also be JCI-NULL).

res A structure of the form MethodRes

Return value (new object reference) in . In the event of an error, the value JCI-NULL is ResValObject

returned.

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENULLOBJ

cObj is .JCI-NULL

JCI-RET-EARGUMENT

cObj is not a class object.

JCI-RET-EINDAOB

num is less than 0.

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-ERESVERS

JENV V9.0A

 222

The statically generated version number in is invalid (possibly overwritten).res

JCI-RET-ERR

The array object could not be generated.

Exceptions

The exceptions generated by the function correspond to those of the JNI function .NewObjectArray

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY JCI-TYPEDEFS.
01 JCIConstants.
COPY JCI-CONST.
...
01 className.
05 len PIC S9(9) COMP-5 VALUE 40.
05 txt PIC X(40) VALUE SPACE.
01 classObj TYPE JCI-object.
01 initObj TYPE JCI-object.
01 arrayObj TYPE JCI-object.
01 numElements PIC S9(9) COMP-5.
...
...
01 MethodRes.
COPY JCI-METHODRES.
...
PROCEDURE DIVISION.
*>
*> Create array of 10 String-elements
*>
MOVE 'java/lang/String' TO txt IN className
CALL 'JCI_FindClass' USING className classId
IF RETURN-CODE NOT = JCI-RET-OK
...
END-IF.
MOVE 10 TO numElements
MOVE JCI-NULL TO initObj
CALL 'JCI_NewObjectArray' USING numElements classId
initObj MethodRes
IF RETURN-CODE NOT = JCI-RET-OK
...
END-IF.
MOVE ResValObject TO arrayObj
...

JENV V9.0A

 223

7.12.7.3 JCI_GetObjectArrayElement

This function returns an element of an object array.
It is equivalent to the JNI function . However, it also offers the option of obtaining GetObjectArrayElement

strings instead of string objects.

Call

CALL 'JCI_GetObjectArrayElement' USING aObj index res

aObj Array object

index Array index

res Result description

Arguments

aObj Data field of the type JCI-object

Array object whose element is to be returned.

index Data field of the type JCI-size

Position of the element in the array which is to be returned (beginning with 1).

res A structure of the form MethodRes

Return value and error information (see).section "Arguments and event values of Java methods"
The only permissible values for are , , and ResType RES-OBJECT RES-ANUM-STRING RES-NAT-

. If the array element is a NULL object, the length field of the target structure is set to 0 for the STRING

types and , and the text area remains unchanged.RES-ANUM-STRING RES-NAT-STRING

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-ENULLOBJ

aObj is .JCI-NULL

JCI-RET-EARGUMENT

aObj is not an array object.

JCI-RET-ERESVERS

The statically generated version number in is invalid (possibly overwritten).res

JCI-RET-ERESTYPE

JENV V9.0A

 224

The value of the field is invalid.ResType

JCI-RET-ERESCONV

An error occurred while the element was being converted.
The field contains a more precise error code.ResErrCode

JCI-RET-EINDAOB

index is less than 1 or greater than the number of elements in the array.

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY JCI-TYPEDEFS.
01 JCIConstants.
COPY JCI-CONST.
...
01 arrayObj TYPE JCI-object.
01 arrayIndex PIC S9(9) COMP-5.
01 natText.
05 nlen PIC S9(9) COMP-5 VALUE 80.
05 ntxt PIC N(80) VALUE SPACE.
...
01 MethodRes.
COPY JCI-METHODRES.
...
PROCEDURE DIVISION.
MOVE 7 TO arrayIndex
SET RES-NAT-STRING TO TRUE
SET ResValAddr TO ADDRESS OF natText
CALL 'JCI_GetObjectArrayElement' USING
arrayObj arrayIndex MethodRes
IF RETURN-CODE NOT = JCI-RET-OK
...
END-IF.
DISPLAY FUNCTION DISPLAY-OF(ntxt(1:nlen)) UPON T
...

JENV V9.0A

 225

7.12.7.4 JCI_SetObjectArrayElement

This function sets an element of an object array.
It is equivalent to the JNI function . However, it also offers the option of transferring SetObjectArrayElement

strings instead of string objects.

Call

CALL 'JCI_SetObjectArrayElement' USING aObj index arg res

aObj Array object

index Array index

arg Argument description

res Result description

Arguments

aObj Data field of the type JCI-object

Array object which is to be modified.

index Data field of the type JCI-size

Position of the element in the array which is to be set (beginning with 1).

arg A structure of the form MethodArg

Description of the new value for the array element (see section "Arguments and event values of Java
).methods"

Only the partial structure is required.CallArg(1)

The only permissible values for are , , and ArgType(1) ARG-OBJECT ARG-ANUM-STRING ARG-NAT-

.STRING

res A structure of the form MethodRes

Error information (output only).

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-ENULLOBJ

aObj is .JCI-NULL

JCI-RET-EARGUMENT

aObj is not an array object.

JENV V9.0A

 226

JCI-RET-EARGVERS

The statically generated version number in is invalid (possibly overwritten).elem

JCI-RET-ERESVERS

The statically generated version number in is invalid (possibly overwritten).res

JCI-RET-EARGTYPE

The value of the field is invalid.ArgType

JCI-RET-EARGCONV

An error occurred while the argument was being converted.
The field contains a more precise error code.ResErrCode

JCI-RET-EINDAOB

index is less than 1 or greater than the number of elements in the array.

Exceptions

The exceptions generated by the function correspond to those of the JNI function .SetObjectArrayElement

JENV V9.0A

 227

7.12.7.5 JCI_NewArray

This function generates an array object for non-object elements which is initialized with binary zeros.
It is equivalent to the JNI functions .New<PrimitiveType>Array

Call

CALL 'JCI_NewArray' USING num arg res

num Number of elements

arg Element description

res Result description

Arguments

num Data field of the type JCI-size

Number of elements in the array.

arg A structure of the form MethodArg

Type description of the array elements.
Only the field is required.ArgType(1)

 may not be , , or .ArgType(1) ARG-OBJECT ARG-ANUM-STRING ARG-NAT-STRING

r A structure of the form MethodRes

Return value (new object reference) in . In the event of an error, the value JCI-NULL is ResValObject

returned.

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-EINDAOB

num is less than 0.

JCI-RET-EARGVERS

The statically generated version number in is invalid (possibly overwritten).elem

JCI-RET-ERESVERS

The statically generated version number in is invalid (possibly overwritten).res

JCI-RET-EARGTYPE

The value of the field is invalid.ArgType

JENV V9.0A

 228

JCI-RET-ERR

The array object could not be generated.

Exceptions

The exceptions generated by the function correspond to those of the JNI functions
.New<PrimitiveType>Array

JENV V9.0A

 229

7.12.7.6 JCI_GetArray

This function copies elements of a Java array to a COBOL table provided.It is equivalent to the JNI functions
.Get<PrimitiveType>ArrayRegion

Call

CALL 'JCI_GetArray' USING aObj start num res

aObj Array object

start Start position

num Number

r Result description

Arguments

aObj Data field of the type JCI-object

Array object whose elements are to be copied.

start Data field of the type JCI-size

Position of the first element in the Java array which is to be transferred (beginning with 1).

num Data field of the type JCI-size

Maximum number of elements which are to be transferred.
After the call, contains the number of elements which were actually transferred.num

r A structure of the form MethodRes

Return value and error information (see).section "Arguments and event values of Java methods"
 must be set in accordance with the COBOL data type of the table elements. Neither ResType RES-

 nor nor is permissible.OBJECT RES-ANUM-STRING RES-NAT-STRING

The address of the COBOL table to which the elements are to be copied is always transferred in the
 field, regardless of the data type.ResValAddr

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

JCI-RET-ENULLOBJ

aObj is .JCI-NULL

JCI-RET-EARGUMENT

aObj is not an array object.

JENV V9.0A

 230

JCI-RET-EINDAOB

num is less than 0 or is less than 1 or greater than the number of elements in the array. start

JCI-RET-ERESVERS

The statically generated version number in is invalid (possibly overwritten).res

JCI-RET-ERESTYPE

The value of the field is invalid.ResType

JCI-RET-ERESCONV

An error occurred while the table elements were being converted.
The field contains the number of the COBOL table element (beginning with 1), the ResErrIndex

 field a more precise error code.ResErrCode

All elements up to the faulty element are transferred; all subsequent fields of the COBOL table remain
unchanged.

Notes

A maximum of (number of array elements - + 1) or elements are transferred.start num

JENV V9.0A

 231

7.12.7.7 JCI_SetArray

This function copies a COBOL table to the elements of a Java array.It is equivalent to the JNI functions
.Set<PrimitiveType>ArrayRegion

Call

CALL 'JCI_SetArray' USING aObj start num arg res

aObj Array object

start Start position

num Number

arg Argument description

r Result description

Arguments

aObj Data field of the type JCI-object

Array object whose elements are to be set.

start Data field of the type JCI-size

Position of the first element in the Java array which is to be overwritten (beginning with 1).

num Data field of the type JCI-size

Maximum number of elements which are to be transferred.
After the call, contains the number of elements which were actually transferred, and in the case of num
an error 0.

arg A structure of the form MethodArg

Description of the array elements.
Only the and fields are required.ArgType(1) ArgValAddr(1)

 must be set in accordance with the COBOL data type of the table elements. Neither ArgType(1) ARG-

 nor nor is permissible.OBJECT ARG-ANUM-STRING ARG-NAT-STRING

The address of the COBOL table from which the elements are to be copied is always transferred in the
 field, regardless of the data type.ArgValAddr(1)

r A structure of the form MethodRes

Error information (output only).

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

JCI-RET-ENOVM

No Java VM has been started.

JENV V9.0A

 232

JCI-RET-ENULLOBJ

aObj is .JCI-NULL

JCI-RET-EARGUMENT

aObj is not an array object.

JCI-RET-EARGVERS

The statically generated version number in is invalid (possibly overwritten).elem

JCI-RET-ERESVERS

The statically generated version number in is invalid (possibly overwritten).res

JCI-RET-EARGTYPE

The value of the field is invalid.ArgType

JCI-RET-EARGCONV

An error occurred while the table elements were being converted.
The field contains the number of the COBOL table element (beginning with 1), the ResErrIndex

 field a more precise error code.ResErrCode

If a conversion error occurs in an element, no transfer takes place, i.e. all fields of the Java array remain
unchanged.

JCI-RET-EINDAOB

num is less than 0 or is less than 1 or greater than the number of elements in the array. start

Notes

A maximum of (number of array elements - + 1) or elements are transferred.start num

JENV V9.0A

 233

7.12.8 Exceptions

This section describes the JCI functions required to process Java exceptions.

JENV V9.0A

 234

7.12.8.1 JCI_ExceptionCheck

This function checks whether a pending exception exists.
It is equivalent to the JNI function .ExceptionCheck

Call

CALL 'JCI_ExceptionCheck'

Return value (RETURN-CODE)

JCI-RET-TRUE

An exception is pending.

JCI-RET-FALSE

No exception is pending.

Notes

If the function is called without the Java VM being started, is returned.JCI-RET-FALSE

JENV V9.0A

 235

7.12.8.2 JCI_ExceptionOccurred

This function checks whether a pending exception exists, and returns the associated exception object.
It is equivalent to the JNI function .ExceptionOccurred

Call

CALL 'JCI_ExceptionOccurred' USING eObj

eObj Exception object

Arguments

eObj Data field of the type JCI-object

Reference to the pending exception object.
If no object was created, is returned.JCI-NULL

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

Notes

If the function is called without the Java VM being started, and are returned.JCI-NULL JCI-RET-OK

JENV V9.0A

 236

7.12.8.3 JCI_ExceptionDescribe

This function outputs information in English about a pending exception to .It is equivalent to the JNI function stderr

.ExceptionDescribe

Call

CALL 'JCI_ExceptionDescribe'

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

Notes

This function may also be called when no Java VM has been started.

If the VM has not been started or no exception is pending, the output does not take place.If the program was started
from the BS2000 command line interface, the output is directed to SYSOUT.

JENV V9.0A

 237

7.12.8.4 JCI_ExceptionClear

This function removes any pending exception.
It is equivalent to the JNI function .ExceptionClear

Call

CALL 'JCI_ExceptionClear'

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

Notes

This function may also be called when no Java VM has been started or no exception is pending.

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY JCI-TYPEDEFS.
01 JCIConstants.
COPY JCI-CONST.
...
01 className.
02 PIC S9(9) USAGE COMP-5 VALUE 30.
02 PIC X(30) VALUE 'hello'.
...
01 classObj TYPE JCI-object.
...
PROCEDURE DIVISION.
...
CALL 'JCI_FindClass' USING className classObj
IF RETURN-CODE NOT = JCI-RET-OK
CALL 'JCI_ExceptionCheck'
IF RETURN-CODE = JCI-RET-TRUE
CALL 'JCI_ExceptionDescribe'
CALL 'JCI_ExceptionClear'
END-IF
ELSE
...
END-IF.
...

If the class does not exist, the output looks roughly as follows:hello

Exception in thread "main" java.lang.NoClassDefFoundError: hello
Caused by: java.lang.ClassNotFoundException: hello

JENV V9.0A

 238

at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:332)
at java.lang.ClassLoader.loadClass(ClassLoader.java:358)

JENV V9.0A

 239

7.12.9 Other functions

This section described all JCI functions for which there are no equivalent JNI functions.

JENV V9.0A

 240

7.12.9.1 JCI_GetVersion

This function returns the version of the Java COBOL interface module.

Call

CALL 'JCI_GetVersion' USING vers

vers Version

Arguments

vers Data field of the type JCI-int

Data field to which the version number of the JCI is to be transferred.

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

Notes

The version of the COPY elements used in the COBOL application is defined in as JCI-CONST JCI-interface-

. This may not be greater than the version returned by .version JCI_GetVersion

JENV V9.0A

 241

7.12.9.2 JCI_GetErrorInformation

This function returns more precise error information.

Call

CALL 'JCI_GetErrorInformation' USING eInf

eInf Error information

Arguments

eInf A structure of the type Cobvar

Structure to which the at most 256-character-long error information of the JCI is to
be transferred.
The transfer occupies at most the length of the length field. If this is less than or
equal to 0 or no error information exists, it is set to 0, and no transfer takes place.
If no error information is available, the length field in is set to 0, and the text area eInf
remains unchanged.

Return value (RETURN-CODE)

JCI-RET-OK

The call was successful.

Notes

This function can always be called, even when the call of JCI functions is described as invalid, as in, for instance,
.section "Exceptions"

In the event of an error, more precise information on this error is stored in a joint field by all JCI functions which can
supply an error return code. If no error occurs, the field is deleted. As a result, only the information of the function
called most recently is ever available. The text is in English and only intended to be displayed to the user.

After the function has been called, the error information is no longer available for JCI_GetErrorInformation

further calls.

Example

DATA DIVISION.
WORKING-STORAGE SECTION.
01 eInf.
02 len PIC S9(9) USAGE COMP-5 SYNC VALUE 256.
02 txt PIC X(256).
...
PROCEDURE DIVISION.
...
CALL 'JCI_GetErrorInformation ' USING eInf

JENV V9.0A

 242

IF len IN eInf > 0
DISPLAY txt IN eInf(1:len IN eInf) UPON T
END-IF
...

JENV V9.0A

 243

7.13 Examples

In this example, all Java sources are available in the directory./myhome/jcitest

JENV is installed in the directory under the ID./myjava $MYJAVA

JENV V9.0A

 244

7.13.1 Java class

The following class is defined in the file:Hello.java

class Hello {
public static void hello(String arg)
{
System.out.println(">> Hello " + arg + "!");
}
}

JENV V9.0A

 245

7.13.2 Compiling the Java code

The Java class defined above can now be simply compiled using the command

javac /myhome/jcitest/Hello.java

The call generates the file in the directory.Hello.class /myhome/jcitest

Calling

javap -s -cp /myhome/jcitest Hello

returns, among other things, the signature of the method:hello

public static void hello(java.lang.String);
descriptor: (Ljava/lang/String;)V

JENV V9.0A

 246

7.13.3 COBOL program

The COBOL program is implemented in the file as follows:HELLO Hello.cob

>>SOURCE FREE
>>IMP LISTING-OPTIONS MERGE-DIAGNOSTICS
ID DIVISION.
PROGRAM-ID. HELLO.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
ARGUMENT-NUMBER IS ARGNUM
ARGUMENT-VALUE IS ARGVAL
TERMINAL IS T.
DATA DIVISION.
WORKING-STORAGE SECTION.
*> Types and constants
COPY JCI-TYPEDEFS.
01 JCIConstants.
COPY JCI-CONST.
*> Constant strings
01 optCP.
05 PIC S9(9) COMP-5 VALUE 80.
05 PIC X(80) VALUE '-Djava.class.path=.:/myhome/jcitest'.
01 OptEnc.
05 PIC S9(9) COMP-5 VALUE 40.
05 PIC X(40) VALUE '-Dfile.encoding=OSD_EBCDIC_DF04_15'.
01 className.
05 PIC S9(9) COMP-5 VALUE 30.
05 PIC X(30) VALUE 'Hello'.
01 methodName.
05 PIC S9(9) COMP-5 VALUE 30.
05 PIC X(30) VALUE 'hello'.
01 methodSig.
05 PIC S9(9) COMP-5 VALUE 80.
05 PIC X(80) VALUE '(Ljava/lang/String;)V'.
LOCAL-STORAGE SECTION.
*> JCI structures
01 JVMOptions.
COPY JCI-VMOPT REPLACING == <max-options> == BY 2.
01 MethodArgs.
COPY JCI-METHODARGS REPLACING == <max-arguments> == BY 4.
01 MethodRes.
COPY JCI-METHODRES.
*> String structures
01 myName.
05 len PIC S9(9) COMP-5 VALUE 30.
05 txt PIC X(30).
*> Objects and handles
01 classObj TYPE JCI-object.
01 methodId TYPE JCI-handle.
*> Error handling
01 ErrIdent PIC X(10) VALUE SPACE.
01 RetcodeSave PIC S9(9) COMP-5 VALUE 0.
01 errorInf.
05 len PIC S9(9) COMP-5 VALUE 300.
05 txt PIC X(300).
PROCEDURE DIVISION.

JENV V9.0A

 247

>>CALL-CONVENTION ILCS-SET-RETURN-CODE
*>
*> get name from terminal
*>
DISPLAY ">> Please enter name" UPON T
ACCEPT txt IN myName FROM T
*>
*> Prepare VM options
*>
MOVE 2 TO VMOptnum.
SET IGNORE-UNRECOGNIZED TO FALSE.
SET VMOptVstring(1) TO ADDRESS OF optCP
SET VMOptVstring(2) TO ADDRESS OF optEnc
*>
*> Create the Java VM
*>
CALL 'JCI_CreateJavaVM' USING JVMOptions
IF RETURN-CODE NOT = JCI-RET-OK
MOVE 'CreateVM' TO ErrIdent
GO TO ERROR-EXIT
END-IF.
*>
*> Get class Hello
*>
CALL 'JCI_FindClass' USING className classObj
IF RETURN-CODE NOT = JCI-RET-OK
MOVE 'FindClass' TO ErrIdent
GO TO ERROR-EXIT
END-IF.
*>
*> Get method hello
*>
CALL 'JCI_GetStaticMethodID' USING classObj methodName
methodSig methodId
IF RETURN-CODE NOT = JCI-RET-OK
MOVE 'GetMethod' TO ErrIdent
GO TO ERROR-EXIT
END-IF.
*>
*> Call Java method
*>
MOVE 1 TO CallArgNum
SET RES-VOID TO TRUE
SET ARG-ANUM-STRING(1) IGNORE-TRAILING-SPACES(1) TO TRUE
SET ArgValAddr(1) TO ADDRESS OF myName
CALL 'JCI_CallStaticMethod' USING classObj methodId MethodArgs MethodRes
IF RETURN-CODE NOT = JCI-RET-OK
MOVE 'CallMeth' TO ErrIdent
GO TO ERROR-EXIT
END-IF.
*>
*> Destroy Java VM
*>
CALL 'JCI_DestroyJavaVM'
IF RETURN-CODE NOT = JCI-RET-OK
MOVE 'DestroyVM' TO ErrIdent
GO TO ERROR-EXIT
END-IF.
GOBACK.

JENV V9.0A

 248

*>
*> Error exit
*>
ERROR-EXIT.
MOVE RETURN-CODE TO RetcodeSave
CALL 'JCI_GetErrorInformation' USING errorInf
IF len IN errorInf > 0
DISPLAY 'Message from ' ErrIdent ': "' txt IN errorInf(1:len IN errorInf) '"'
UPON T
END-IF
CALL 'JCI_ExceptionCheck'
IF RETURN-CODE = JCI-RET-TRUE
CALL 'JCI_ExceptionDescribe'
CALL 'JCI_ExceptionClear'
END-IF
CALL 'JCI_DestroyJavaVM'
MOVE RetcodeSave TO RETURN-CODE
GOBACK.
END PROGRAM HELLO.

JENV V9.0A

 249

7.13.4 Compiling the COBOL program in POSIX

In this example, the COBOL source program resides in the POSIX directory ./myhome/jcitest

The following commands are needed to compile the COBOL program :HELLO

export COBLIB='/myjava/include'
cobol -c -C PERMIT-STANDARD-DEVIATION=YES \
/myhome/jcitest/Hello.cob

The object file is available as the result.Hello.o

JENV V9.0A

 250

7.13.5 Linking the COBOL program in POSIX

When linking the application, it must be remembered that the runtime routines for the languages C/C++ and COBOL
are linked from the Java runtime library and not from the CRTE.

The application can be linked with the following commands:

export BLSLIB00='$MYJAVA.SYSLNK.JENV.090.GREEN-JAVA'
cobol -M HELLO -o Hello Hello.o -l BLSLIB

JENV V9.0A

 251

7.13.6 Processing of the COBOL program in POSIX

As the standard installation path of JENV is not to be used for this example, the environment variable JAVA_HOME

must be set before calling the program.

The call and processing are then as follows:

export JAVA_HOME=/myjava/jre
Hello
>> Please enter name
Susanne
>> Hello Susanne!

JENV V9.0A

 252

7.13.7 Compiling the COBOL program under the BS2000 command line interface

In this example, the COBOL source program resides in the LMS library , but the JCI-COPY elements in SRC.LIB

the POSIX directory ./myjava/include

Consequently the following commands are required for compilation:

/DECL-VAR SYSIOL-COBLIB,INIT='*POSIX(/myjava/include)',
SCOPE=*TASK
/START-COBOL2-COMP SO=*LIB(SRC.LIB,HELLO.COB),
SOURCE-PROPERTIES=*PAR(ST-DEV=*YES),
COMPILER-ACTION=*MOD-GEN(MOD-FORM=*LLM),
MODULE-OUTPUT=*LIB(MOD.LIB,HELLO),
RUNTIME-OPTIONS=*PARAMETERS(ENABLE-UFS-ACCESS=*YES)

JENV V9.0A

 253

7.13.8 Linking the COBOL program under the BS2000 command line interface

In addition to functions and CRTE from the Java runtime library, the POSIX options must also be linked:

/START-BINDER
//START-LLM-CREATION HELLO
//INCLUDE LIB=MOD.LIB,ELEM=HELLO
//INCLUDE LIB=$.SYSLNK.CRTE.POSIX
//RESOLVE LIB=$MYJAVA.SYSLNK.JENV.090.GREEN-JAVA
//SAVE-LLM LIB=LLM.LIB,ELEM=HELLO
//END

JENV V9.0A

 254

7.13.9 Processing of the COBOL program under the BS2000 command line interface

Before the application is started, the POSIX environment must be initialized for processing. The COBOL runtime
system then behaves as if it had been started under the POSIX shell (see „ “ [COBOL2000 (BS2000) User Manual 5
]).

After the application has terminated, the POSIX environment must on all accounts be reset by calling the DELETE
procedure. Otherwise the environment is set incorrectly for further compilations runs.

The call and processing are then as follows under the $MYHOME ID:

/CALL-PROCEDURE *LIB($MYJAVA.SYSPRC.JENV.090,INITIALIZE),
 (PWD='myhome/work',JAVA-HOME='/myjava/jre')
/START-PROGRAM *MODULE(LIBRARY=LLM.LIB,ELEMENT=HELLO,
PROGRAM-MODE=ANY,RUN-MODE=*ADVANCED(SHARE-SCOPE=*NONE))
% BLS0523 ELEMENT 'HELLO', VERSION '@', TYPE 'L' FROM LIBRARY
':LUNB:$MYHOME.LLM.LIB' IN PROCESS
% BLS0524 LLM 'HELLO', VERSION ' ' OF '2016-04-13 15:17:10' LOADED
>> Please enter name
Susanne
>> Hello Susanne!
/CALL-PROCEDURE *LIB($MYJAVA.SYSPRC.JENV.090,DELETE)

JENV V9.0A

 255

8 Commands for BS2000

The tools belonging to the JDK are described in “ " []. JENV supports all the tools listed JDK Tools and Utilities 11
there for Solaris with the following exceptions:

Monitoring und Management Tools jps , jstat , jstatd

Troubleshooting Tools jcmd , jinfo , jhat , jmap , jsadebugd , jstack

Scripting Tool .jrunscript

This chapter only includes the commands which differ from the description in “ " [], namely:JDK Tools and Utilities 11

The and commands mk_shobj pr_shobj
JENV offers these is in addition to supporting the shared object description files.

The commandjava
Its options differ from those described for Solaris.

The commandnative2ascii
This is described in more detail because of its greater importance in the EBCDIC environment.

The , commandsjconsole jdb

JENV V9.0A

 256

8.1 mk_shobj

The command creates and processes descriptive files for shared objects.mk_shobj

Syntax

mk_shobj [...] FilenameOptions

Options ...

One or more command line options, separated by spaces.

Filename

Description file for shared objects in the POSIX file system which is to create.mk_shobj

Description

The command creates and processes descriptive files for shared objects in the POSIX file system. These mk_shobj
descriptive files are evaluated by the Java interpreter if native methods are loaded (methods or loadLibrary() load()
of the classes and).runtime system

The names of the descriptive files must be put together in such a way that they can be found by the VM using the
search procedure described under the use of shared objects from Java, or in other words, beginning with the prefix

 and ending with the suffix .lib .so

Options

-? Outputs help information for the command.

-l lib Specifies the PLAM library (in BS2000) in which the LLM to be loaded is located.

-o userid BS2000 user ID, under which the PLAM library is installed. Where “ ” stands for the current lib .
user ID and “ ” stands for the system ID and the form indicates, that the user ID to be $ %name
used at runtime can be taken from the environment variable and any other specification name
stands for the names of user IDs.

Default: current user ID

-m
modulename

Specification of the module which is to be loaded. This option can be specified several times,
and then all specified modules can be loaded dynamically. The module name may not be longer
than 32 characters.

-n filename Specifies the required shared objects (descriptive file). The shared object specified here is
loaded before the primary shared object. This option can be specified several times, and all the
required shared objects are loaded before the current shared object.

-u The specified descriptive file must exist and is updated using the specified information. This can
be used, for example, to subsequently modify the user ID. If the option is not specified, the -u
descriptive file is generated again.

-f cpp

JENV V9.0A

 257

If the shared object has been implemented in C++, this flag must be set to ensure that the
required runtime libraries can be loaded and initialized.

-d If this flag is set, the module is loaded in the default context .LOCAL#DEFAULT

-c ctxt The module is loaded in the specified context.

Example

The command

mk_shobj -l syslnk.hello -m helloworld libhello.so

creates the file in the current file directory of the POSIX file system, and specifies that when is libhello.so hello
loaded the module is to be dynamically loaded from the PLAM library of the current user ID. helloworld syslnk.hello
When is loaded the Java interpreter expands to read .hello loadLibrary(hello) libhello.so

JENV V9.0A

 258

8.2 pr_shobj

The command outputs the contents of a shared object descriptive file.pr_shobj

Syntax

pr_shobj Filename

Filename

Descriptive file for which the contents is to be output.

Description

The command outputs the contents of a shared object descriptive file to .pr_shobj stdout

Example

pr_shobj libhello.so

Output:

Library: syslnk.hello
UserID : .
Module : helloworld

JENV V9.0A

 259

8.3 java

Options for selecting the HotSpot VM typeTM

-client

The HotSpot client VM is used. This VM optimizes the generated object code for short-running programs TM

(default).

-server

The option is not supported.

-d32
-d64

The options are not supported.

Options for selecting the HSI variant

-
s390

The S390 variant of JENV is used (if available). This option is useful only if both the S390 variant and the
X86 variant of JENV are installed on one system and you want to explicitly select one of them for
execution.
This option overrides any specification in the environment variable (see the JENV_SYSHSI chapter

)."Environment variables"

The variant that matches your system is used by default, i.e. if no value has been assigned to the
environment variable either.JENV_SYSHSI

-x86 The X86 variant of JENV is used (if available). This option is useful only if both the S390 variant and the
X86 variant of JENV are installed on one SQ system and you want to explicitly select one of them for
execution.
This option overrides any specification in the environment variable (see the JENV_SYSHSI chapter

)."Environment variables"

The variant that matches your system is used by default, i.e. if no value has been assigned to the
environment variable either.JENV_SYSHSI

Non-standard options

-Xmaxjitcodesize size

In contrast to the original description, the cache size is specified without an equals sign, e.g.:

-Xmaxjitcodesize48m

Controlling the Java heap memory

The following options allow the user to control heap expansion or reduction. Since the standard settings for heap
expansion are suitable for most applications, it is not necessary to use these options in most situations. You should

JENV V9.0A

 260

only use them if you understand the effects of the options on the applications concerned. Deliberately setting these
options can just as easily adversely affect system performance as improve it.

In BS2000 the maximum size of heap memory is always requested by the system right from the start and always
remains reserved in this size. Option merely controls how much of the heap memory is to be used currently. -Xms
The smaller this area is, the faster garbage collection proceeds since only the area currently being used must be
searched. On the other hand it can be that garbage collection has to be called unnecessarily frequently if there is
only a small amount of space for new objects in the currently used area.

Minimum and default values which differ from the original description are defined for these options:

-Xsssize

Minimum value: 512K
Default value: 1M

-Xmssize

Minimum value: 1M
Default value: 3.5M

-Xmxsize

Minimum value: 1M
Default value: 64M

The specified value is rounded off the next multiple of 2M.

JENV V9.0A

 261

8.4 native2ascii

This command converts a file from any code set into the US-ASCII (7 bit ASCII) code set.

Syntax

native2ascii [...] [input file[output file]]Options

Options ...

One or more command line options, separated by blanks.

Input file

File which is to be converted. If is not specified, the input is expected on .input file stdin

Output file

Destination file for the conversion. If is not specified, output is on .output file stdout

output file and may also be the same.input file

Description

The command converts text available in any code set (e.g OSD_EBCDIC_DF04_1) into US-ASCII (7-native2ascii
bit ASCII); non-printable characters in ASCII are printed in portable Unicode (\uxxxx). Conversion in the reverse
direction is also possible. Portable Unicode is interpreted, for example, when property files are loaded.

If property files are stored in JAR archives, they must be present in code set ISO8859-1. The same applies to
manifest files or other texts. This command makes it possible to prepare the corresponding files for this because the
full US-ASCII code set is included in ISO8859-1.

As of JENV V1.4A policy files, which are used by the standard policy implementation, must be encoded in the UTF-
8 codeset. native2ascii can be used for the conversion, as the UTF-8 codeset concurs with the first 127 characters
of the US-ASCII codeset.

Options

-encoding character set

Specifies the character set from which or into which the command converts. If the option is not specified, the
value set via the system property is used. Since JENV V1.2A the default value for this system file.encoding
property is OSD_EBCDIC_DF04_1. Permitted values can be found in the Specification entitled “Supported

” []. The character sets additionally supported since JENV V1.2A are described in Encodings 14 section "Code
.sets"

-reverse

The conversion is performed in the reverse direction: A text which is present in character set US-ASCII is
converted into the character set specified by . Any portable Unicode representations in the input -encoding
(\uxxxx) are interpreted when this is done. Characters which cannot be shown in the output character set are
output there in portable Unicode representation.

JENV V9.0A

 262

-J javaoption

Passes to the JVM, where is one of the options described for .javaoption javaoption java

JENV V9.0A

 263

8.5 jconsole

In BS2000, the use of a process ID (pid) is not supported when setting up a connection with a Java application.

JENV V9.0A

 264

8.6 jdb

jdb does not work when the default input is connected with a BS2000 block terminal, in which case is terminated jdb
with an error message.

JENV V9.0A

 265

9 Appendix: Compatibility with earlier versions and migration

JENV V9.0A is an implementation of the “Java Platform, Standard Edition” (Java SE) for BS2000.TM

With OpenJDK 9, a module concept was introduced in Java. Due to this module concept, neither source nor binary
compatibility with the previous versions can be guaranteed. A detailed migration guide is available at the following
link .https://docs.oracle.com/javase/9/migrate/toc.htm

https://docs.oracle.com/javase/9/migrate/toc.htm

JENV V9.0A

 266

9.1 Incompatibilities

There are no known BS2000-specific incompatibilties.

JENV V9.0A

 267

10 Related publications

You will find the manuals on the internet at . You can order printed copies of http://manuals.ts.fujitsu.com
those manuals which are displayed with an order number.

[1] POSIX (BS2000)
 POSIX, Basics for Users and Systems Administrators

User manual

[2] CRTE
 C Library functions for POSIX applications

Reference Manual

[3] CRTE
 Common RunTime Environment

User Manual

[4] C/C++ (BS2000)
C/C++-Compiler
User Manual

[5] COBOL2000 (BS2000)
COBOL-Compiler
User Manual

[6] COBOL2000 (BS2000)
COBOL-Compiler
Reference Manual

[7] SDF-P (BS2000)
 Programming in the Command Language

User Guide

[8] BS2000 OSD/BC
 Introductory Guide to DMS

User Guide

http://manuals.ts.fujitsu.com

JENV V9.0A

 268

10.1 Texts for Java

You will find the following texts in the internet, mainly on the Web pages of Oracle America Inc.:

All links given below were valid when going to press. However, no guarantee can be given for their future
validity. The information in this manual always takes precedence over information in the internet.

[9] Java Platform Standard Edition 9 Documentation
https://docs.oracle.com/javase/9/index.html

[10] The Java Language and Virtual Machine Specifications TM

http://docs.oracle.com/javase/specs/

[11] JDK Tools and Utilities
http://docs.oracle.com/javase/9/docs/technotes/tools/index.html

[12] The Java Platform, Standard Edition 9 API SpecificationTM

http://docs.oracle.com/javase/9/docs/api/

[13] Java Native InterfaceTM

https://docs.oracle.com/javase/9/docs/specs/jni/

[14] Supported Encodings
http://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

https://docs.oracle.com/javase/9/index.html
http://docs.oracle.com/javase/specs/
http://docs.oracle.com/javase/9/docs/technotes/tools/index.html
http://docs.oracle.com/javase/9/docs/api/
https://docs.oracle.com/javase/9/docs/specs/jni/
https://docs.oracle.com/javase/9/intl/supported-encodings.html

JENV V9.0A

 269

10.2 Further literature

[15] Erich Gamma
Richard Helm

Ralph E. Johnson

John Vlissides

Design Pattern
Addison Wesley 1994

[16] Technical Standard
 X/Open System Interface (XSI) Specification

System Interfaces and Headers, Issue 4, Version 2

	User Guide
	Introduction
	Objectives and target groups of this manual
	Summary of contents
	Notational conventions
	Description of commands
	Names of files, commands and programs
	Description of execution sequences

	Further information and sources
	License regulations

	Environment variables
	Conversion from ASCII to EBCDIC
	Code sets
	Localized streams
	Property files
	Policy files
	PrintStream
	Standard streams
	JAR archives
	Program arguments

	The Java package JRIO
	Concepts
	File systems
	File names in the DMS file system
	File names in the UFS file system

	File types
	Access methods
	Access types
	Shared update processing
	Options and restrictions relating to access types in DMS
	Drivers
	Security

	API overview
	Record
	Constructors
	General methods
	Methods for extracting the data of a record
	Methods for extracting the data fields of a record
	Methods for filling a record with data
	Methods for filling data fields of a record

	RecordFile
	Basic structure of a file name
	Constructors
	Fields
	General methods
	Methods for analyzing and transforming path names
	Methods for inquiring file and directory attributes
	Methods for modifying file and directory attributes
	Methods for generating files and directories
	Methods for deleting and renaming files and directories
	Methods for listing directories

	AccessParameter
	General parameter methods
	Parameters for SAM in DMS
	Parameter method for ISAM in DMS
	Parameter methods for UPAM in DMS

	Sequential data processing
	InputRecordStream
	FileInputRecordStream
	ArrayInputRecordStream
	OutputRecordStream
	FileOutputRecordStream
	ArrayOutputRecordStream

	RandomAccessRecordFile
	Opening and closing a file
	Methods for reading records
	Methods for writing records
	Methods for positioning and changing size

	Indexed-sequential data processing
	KeyDescriptor
	KeyValue
	KeyedAccessRecordFile

	Implementation details
	File-system-specific definitions
	Access-method-specific definitions
	Default values of the DMS access methods

	Restrictions
	Examples
	Sequential data processing
	Random data processing
	Indexed-sequential data processing

	Invoking the VM from the BS2000 command interface
	INITIALIZE procedure
	START procedure
	DELETE procedure
	Invoking the VM using the invocation API
	Special considerations

	JNI under BS2000
	The different variants of JNI
	Java data types in C
	Whole numbers
	Floating point numbers
	Strings

	Dynamic loading of native methods
	Shared libraries in Unix systems
	Shared libraries in BS2000
	Creation of shared objects
	Use of shared objects from Java

	Invocation API
	Compiling the C and C++ sources
	Linking C and C++ applications with Java and Green Threads

	Examples
	Implementation of a native method in C
	Implementation of a native method in C++
	Use of Java from a C application
	Use of Java from a C++ application

	JCI - Invocation API for COBOL
	Compiling the COBOL source codes
	Assigning the JCI-COPY library
	Required options/directives

	Linking COBOL applications with Java
	Processing COBOL applications with Java
	Characters and strings
	Floating point numbers
	Object references
	Java handle
	Return code in special register RETURN-CODE
	Arguments and event values of Java methods
	Exceptions
	COPY elements
	JCI-CONST - Definition of constants
	JCI-TYPEDEFS - Type definitions
	JCI-VMOPT - Structure for transferring options
	JCI-METHODARGS - Function arguments
	JCI-METHODRES - Function result

	Functions
	Starting and terminating the Java VM
	JCI_CreateJavaVM
	JCI_DestroyJavaVM

	Classes and methods
	JCI_FindClass
	JCI_GetStaticMethodID
	JCI_CallStaticMethod
	JCI_GetMethodID
	JCI_CallMethod
	JCI_CallNonvirtualMethod

	Object references
	JCI_DeleteLocalRef
	JCI_NewLocalRef

	Objects
	JCI_NewObject
	JCI_GetObjectClass
	JCI_IsInstanceOf
	JCI_IsSameObject

	Fields
	JCI_GetStaticFieldID
	JCI_GetStaticField
	JCI_SetStaticField
	JCI_GetFieldID
	JCI_GetField
	JCI_SetField

	Strings
	JCI_NewString
	JCI_GetStringLength
	JCI_GetString

	Arrays
	JCI_GetArrayLength
	JCI_NewObjectArray
	JCI_GetObjectArrayElement
	JCI_SetObjectArrayElement
	JCI_NewArray
	JCI_GetArray
	JCI_SetArray

	Exceptions
	JCI_ExceptionCheck
	JCI_ExceptionOccurred
	JCI_ExceptionDescribe
	JCI_ExceptionClear

	Other functions
	JCI_GetVersion
	JCI_GetErrorInformation

	Examples
	Java class
	Compiling the Java code
	COBOL program
	Compiling the COBOL program in POSIX
	Linking the COBOL program in POSIX
	Processing of the COBOL program in POSIX
	Compiling the COBOL program under the BS2000 command line interface
	Linking the COBOL program under the BS2000 command line interface
	Processing of the COBOL program under the BS2000 command line interface

	Commands for BS2000
	mk_shobj
	pr_shobj
	java
	native2ascii
	jconsole
	jdb

	Appendix: Compatibility with earlier versions and migration
	Incompatibilities

	Related publications
	Texts for Java
	Further literature

