2
ergish FUJITSU

JENV V9.0A

Development and Runtime Environment

User Guide

June 2018

Table of Contents

User GUIOE ... e e 7

L INtrodUCtiON 8

1.1 Objectives and target groups of thismanual 9
1.2 Summary of CONteNtS 10
1.3 Notational conventions i 12
1.3.1 Description of commands 13
1.3.2 Names of files, commands and programs 14
1.3.3 Description of eXecution SEQUENCESttt e 15
1.4 Further information and sources 16
1.5 Licenseregulations 17
2 Environment variables 18
3 Conversion from ASCIIto EBCDIC e 20
3.1 C0de SIS .. 21
3.2 Localized streams 22
3.3 Property files ... 23
34 Policy files ... 24
3.5 PIiNtStream ... 25
3.6 Standard Streams 26
3.7 JAR arChiVeS ... 29
3.8 Program arguments 30
4 The Java package JRIO 31
4.1 CONCEPIS ot 32
4. 1.1 File SYStEBMS 33
4.1.1.1 File names in the DMS file system 34
4.1.1.2 File names inthe UFSfilesystem 35
4.0 2 Flle types . . 36
4.1.3Accessmethods 37
4, 1.4 ACCESS tYPBS . it ittt e 38
4.1.5 Shared update proCcessingttt 39
4.1.6 Options and restrictions relating to access typesinDMS 40
A 1Y = £ 41
4.8 SECUIMLY ..ot 42
4.2 APl OVEIVIEBW . . e 44
4.2 RECOI ... 46
4.2.1.1 CONSIIUCIOISottt e e 47
4.2.1.2Generalmethods 48
4.2.1.3 Methods for extracting the dataofarecord 49

4.2.1.4 Methods for extracting the data fields ofarecord 50

4.2.1.5 Methods for filling arecord withdata 51

4.2.1.6 Methods for filling data fields of arecord 52
422 RecordFile 53
4.2.2.1 Basic structure of afilename 54
4.2.2.2 CONSIIUCIONSttt e e e 55
422 3Fields 56
4224 Generalmethods 57
4.2.2.5 Methods for analyzing and transforming pathnames 58
4.2.2.6 Methods for inquiring file and directory attributes 61
4.2.2.7 Methods for modifying file and directory attributes 63
4.2.2.8 Methods for generating files and directories 64
4.2.2.9 Methods for deleting and renaming files and directories 65
4.2.2.10 Methods for listing directories 66
4.2.3 AccessParameter 67
4.2.3.1 General parametermethods e 68
4.2.3.2 Parameters for SAMINDMS 69
4.2.3.3 Parameter method for ISAMINDMS 70
4.2.3.4 Parameter methods for UPAMINDMS 72
4.2.4 Sequential data proCesSINg oo vttt 73
4.2.4.1 InputRecordStream 74
4.2.4.2 FilelnputRecordStream 75
4.2.4.3 ArraylnputRecordStream 77
4.2.4.4 OutputRecordStreamt e 78
4.2.4.5 FileOutputRecordStreamt 79
4.2.4.6 ArrayOutputRecordStream 80
4.2.5 RandomAccessRecordFile 81
4.25.1 Openingandclosingafile 82
4.2.5.2 Methods for reading records i 83
4.2.5.3 Methods for writing records 84
4.2.5.4 Methods for positioning and changing size 85
4.2.6 Indexed-sequential data processing i 86
4.2.6.1 KeyDeSCIiPtOr ..ot 87
4.2.6.2KeyValue 89
4.2.6.3 KeyedAccessRecordFile 90
4.3 Implementation details 93
4.3.1 File-system-specific definitions 94
4.3.2 Access-method-specific definitions L, 96
4.3.3 Default values of the DMS access methods 99
A4 ReSIICHONS .. 100
A EXaMPIES .o 101
4.5.1 Sequential data proCesSSINgc v vttt 102
4.5.2 Random data processing ittt 105
4.5.3 Indexed-sequential data processinguui 111
5 Invoking the VM from the BS2000 command interface 115
S5.1INITIALIZE procedure e 116

5.2 START Procedure 117

5.3 DELETE ProCedure 120

5.4 Invoking the VM using the invocation APl 121
5.5 Special considerations 122
6 INILunder BS2000 e 123
6.1 The different variants of INI 124
6.2 Javadatatypesin C 125
6.2.1 Whole numbers 127
6.2.2 Floating point numbers 128
B.2.3 SHINGS . . 130
6.3 Dynamic loading of native methods 133
6.3.1 Shared libraries in Unix systems 134
6.3.2 Shared libraries in BS2000 135
6.3.3 Creation of shared objects i 136
6.3.4 Use of shared objectsfromJava oo, 138
6.4 Invocation APl ... 139
6.4.1 Compilingthe Cand C++ SOUICeSi it 140
6.4.2 Linking C and C++ applications with Java and Green Threads 141
6.5 EXamples 142
6.5.1 Implementation of a native methodinC 143
6.5.2 Implementation of a native method inC++ 146
6.5.3 Use of Java froma C application 147
6.5.4 Use of Java from a C++ application 151
7 JCI - Invocation APIfor COBOL e 154
7.1 Compiling the COBOL source codesuuuiiiiinnnnn.. 155
7.1.1 Assigning the JCI-COPY library 156
7.1.2 Required options/directives 157
7.2 Linking COBOL applicationswithJava 158
7.3 Processing COBOL applicationswith Java 159
7.4 Characters and StringsS 160
7.5 Floating point numbers 161
7.6 Object references 162
7.7 Javahandle 163
7.8 Return code in special register RETURN-CODE 164
7.9 Arguments and event values of Javamethods 165
7. 00 EXCEPUIONS o oot 167
7.11 COPY elements 168
7.11.1 JCI-CONST - Definitionof constants 169
7.11.2 JCI-TYPEDEFS - Type definitions 171
7.11.3 JCI-VMOPT - Structure for transferring options 172

7.11.4 JCI-METHODARGS - Functionargumentsc.ouou.. 173

7.11.5 JCI-METHODRES - Functionresult 174

7. 2 FUNCHIONS .o e e e 176
7.12.1 Starting and terminating the JavaVM oL 177
7.12.1.1 JCl_CreatedavaVM 178
7.12.1.2 JCI_DestroyJavaVM 180
7.12.2 Classesand methods i 181
7.12.2.1JC1_ FINACIasso 182
7.12.2.2 JCI_GetStaticMethodID 184
7.12.2.3 JCI_CallStaticMethod 186
7.12.2.4 JCl_GetMethodID 189
7.12.25JCl_CallMethod e 190
7.12.2.6 JCI_CallNonvirtualMethod i, 191
7.12.3 Objectreferences 193
7.12.3.1 JCI_DeleteLocalRef 194
7.12.3.2JCI_NewLocalRef 195
7.02.4 ObJeCtS .. 196
7.12.4.1 JCI_NeWObJeCt 197
7.12.4.2 JCl_GetObjectClass 200
7.12.4.3 JCl_IsInstanceOf 201
7.12.4.4 JC1 _IsSameObject 202
7125 Fields 203
7.12.5.1 JCI_GetStaticFieldID 204
7.12.5.2 JCI_GetStaticField 206
7.12.5.3 JCI_SetStaticField e 208
7.12.5.4JC1_GetFieldlD 210
7.1255JC1_GetField 211
7.12.5.6 JCI_SetField 212
7.012.6 SUINGS ..ot 213
7.12.6. 1 JCI_NeWSHING . ..ottt e 214
7.12.6.2 JCI_GetStringLength 216
7.12.6.3JCI_GetString 217
7.2, 7 A AY S .ttt 219
7.12.7.1 JCI_GetArrayLength 220
7.12.7.2 JCI_NeWODJECIAITaY . ..ttt e 221
7.12.7.3 JCI_GetObjectArrayElement 223
7.12.7.4 JCI_SetObjectArrayElement 225
7.12.7.5 JCI_NEWAITAY . . . o e 227
T7.12.7.6 JCI_GeIAITAY . . 229
T.12.7.7 JCI_SEIAITAY . . e 231
7. 12,8 EXCEPLIONS oottt 233
7.12.8.1 JCI_ExceptionCheck i 234
7.12.8.2 JCI_ExceptionOccurredt 235
7.12.8.3 JCI_ExceptionDescribe 236
7.12.8.4 JCI_ExceptionClear 237
7.12.9 Other functions 239
7.12.9.1 JCI_GetVerSiON 240

7.12.9.2 JCI_GetErrorinformation 241

7. B EXamples ... 243

7.13.1JavacClass 244
7.13.2 Compilingthe Javacode i 245
7.13.3 COBOL program 246
7.13.4 Compiling the COBOL program in POSIX 249
7.13.5 Linking the COBOL program in POSIX 250
7.13.6 Processing of the COBOL program in POSIX 251

7.13.7 Compiling the COBOL program under the BS2000 command line interface
252

7.13.8 Linking the COBOL program under the BS2000 command line interface . 253
7.13.9 Processing of the COBOL program under the BS2000 command line

1 =] 1 = Lo = 254

8 Commands for BS2000t 255
8.1 mK _Shobj 256
8.2 pr_Shobj .. e 258
B 3 aAVA .. e 259
8.4 NAtIVE2ASCIl . v v 261
8. 5 JCONSOlE ... 263
8.6 dbh 264
9 Appendix: Compatibility with earlier versions and migration 265
9.1 Incompatibilities 266
10 Related publications 267
10.1TextsS for Java 268

10.2 Further literature 269

JENV V9.0A

User Guide

Comments... Suggestions... Corrections...

The User Documentation Department would like to know your opinion on this manual. Your feedback helps us to
optimize our documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation according to DIN EN ISO 9001:2008

To ensure a consistently high quality standard and user-friendliness, this documentation was created to meet the
regulations of a quality management system which complies with the requirements of the standard DIN EN 1SO

9001:2008.

Copyright and Trademarks
Copyright © 2018 Fujitsu Technology SolutionsGmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software hames used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com

JENV V9.0A

1 Introduction

This documentation for the BS2000 Environment For Java™ (JENV) explains the main points of calling Java
commands insofar as they differ from Oracle’s original description. It also describes the special features which arise
from the conversion from ASCII to EBCDIC, and from working with the Java Native Interface (JNI) within the context
of JENV V9.0A. JENV V9.0A is an implementation of the “Java Platform, Standard Edition” (Java SE™) based on
OpenJDK 9 for BS2000 with the full name “BS2000 Environment for Java™” V9.0A.

The product includes a runtime environment (JRE) that complies with the relevant specifications:

® The Java Language and Virtual Machine Specifications, Java SE 9*
http.//docs.oracle.com/javase/specs/

® the version specific API specification
~Java™ Platform, Standard Edition 9 API Specification”
http://docs.oracle.com/javase/9/docs/api/

The product also includes a software development kit (JDK) with a range of development tools. These can be used
to develop applications or applets that comply with the above API specification.

JENV V9.0A supports all features of OpenJDK with the following exceptions:
® Audio-Features

® JDGA (Java Direct Graphic Access)

® Class Data Sharing.

JENV V9.0A also includes font files from the DejaVu Fonts Package.

The only VM technology used is the HotSpot client VM.

The OpenJDK demo programs are not contained in the product.

Revoked Java Packages

The packages com.fsc.java.bs2000, com.fsc.java.io and com.fsc.jrio are supported for the last time in JENV V9.0A.
Since JENV V7.0A the functionality has been replaced by the corresponding com.fujitsu.ts. packages.

The affected Java sources will be marked as "deprecated and marked for removal” by a tightening of the
@Deprecated annotation.

Module concept

The packages com.fujitsu.ts.java.bs2000 and com.fujitsu.ts.java.io are included in the module java.base.
The com.fujitsu.ts.jrio package is included in the jdk.jrio module

Optimized variant for S and SQ systems

Optimized platform-dependent variants are provided for S and SQ systems. If required, the /390 variant of JENV
can also be installed and used on SQ systems.

http://docs.oracle.com/javase/specs/
http://docs.oracle.com/javase/9/docs/api/

JENV V9.0A

1.1 Objectives and target groups of this manual

The documentation is intended for all those who wish to use Java™ for development work and/or in their system
environment.

JENV V9.0A

1.2 Summary of contents

Only the special BS2000 features and the special BS2000 parts are described in this manual. Knowledge of the
original description of Oracle is a requirement.

Conversion from ASCII to EBCDIC

Java is a product which was developed in an ASCII world (Unix systems and Windows systems). In an operating
system based on EBCDIC code, therefore, you will notice a number of peculiarities when working with code sets,
localized streams, print streams, and standard streams, for example. These peculiarities are described in this
documentation.

JNI under BS2000

This documentation also describes a number of special features that you as a user of Java Native Interfaces (JNIs)
in BS2000 must take into consideration, such as the use of Java data types in C and the dynamic loading of native
methods.

Contents of the documentation

This manual has the following contents:

® The chapter "Environment variables" contains a description of the file structure, how to use the classpath and the
environment variables.

® The chapter "Conversion from ASCII to EBCDIC" describes the special issues that need to be taken into account
as a result of the different code set used by BS2000 (EBCDIC).

® The chapter "The Java package JRIO" describes the interfaces and the implementations of JRIO.

® The chapter "Invoking the VM from the BS2000 command interface" describes the procedures INITIALIZE,
DELETE and START.

® The chapter "JNI under BS2000" explains the special issues that users of Java Native Interfaces (JNI) must take
into account in BS2000.

® The chapter "JCI - Invocation API for COBOL" describes the particularities, that a user of the Java-COBOL-
Interface (JCI) in BS2000 must observe.

® The chapter "Commands for BS2000" describes the mk_shobj and pr_shobj commands that have been
additionally implemented in JENV and the commands whose description deviates from that in “JDK Tools and
Utilities" [11].

® The chapter "Appendix: Compatibility with earlier versions and migration" describes incompatibilities between
JENV V9.0A and predecessor versions and it describes how to migrate from earlier versions to JENV V9.0A.

Readme file

The functional changes to the current product version and revisions to this manual are described in the product-
specific Readme file.

Readme files are available to you online in addition to the product manuals under the various products at
http.//manuals.ts.fujitsu.com . You will also find the Readme files on the Softbook DVD.

Information under BS2000
When a Readme file exists for a product version, you will find the following file on the BS2000 system:

SYSRME. <pr oduct >. <ver si on>. <l ang>

10

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

JENV V9.0A

This file contains brief information on the Readme file in English or German (<lang>=E/D). You can view this
information on screen using the /SHOW-FILE command or an editor.

The / SHOW | NSTALLATI ON- PATH | NSTALLATI ON- UNI T=<pr oduct > command shows the userID under which
the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and using a product version
are contained in the associated Release Notice. These Release Notices are available online at http:/manuals.ts.
fujitsu.com .

11

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

JENV V9.0A

1.3 Notational conventions

This documentation uses the following notational conventions:

12

JENV V9.0A

1.3.1 Description of commands

The description of the commands keeps - where possible - to a fixed framework:
Syntax

Shows the command syntax.
Description

Meaning, function, and mode of operation of the command. Where necessary, an explanation of the
prerequisites or conditions to be adhered to is provided.

Options
Description of the relevant command line options.
See also
Further sources of information relating to the command described.
Syntax representation
The metasyntax used has the following meaning:
Bold characters
Constants. Bold characters must be entered exactly as shown.
Normal characters
Variables. These strings represent real specifications that you enter or select.
Italics
Variables in options, which you have to replace with real specifications.

[]

Options. Arguments in square brackets are optional. The square brackets themselves must not be entered.

The previous expression can be repeated.

{1}

Selection option. Chose precisely one of the expressions separated by vertical lines. The braces themselves
must not be entered.

13

JENV V9.0A

1.3.2 Names of files, commands and programs

Names of files, commands, and programs etc. are shown in the text in jtalics. If variables occur, they are placed in
<angle> brackets.

14

JENV V9.0A

1.3.3 Description of execution sequences

Activities are subdivided into individual steps:

® Step which is part of the overall operating sequence. This is where you enter a command or perform an action.

15

JENV V9.0A

1.4 Further information and sources

You will find further information about Java™

® in the chapter "Related publications"

® under the Web page with the URL http://www.fujitsu.com/fts/products/computing/servers/bs2000/software
/programming/javabs2000.html

16

http://www.fujitsu.com/fts/products/computing/servers/bs2000/software/programming/javabs2000.html
http://www.fujitsu.com/fts/products/computing/servers/bs2000/software/programming/javabs2000.html

JENV V9.0A

1.5 License regulations

JENV V9.0A is Open Source Software.
JENV is based on a port of OpenJDK 9.
All relevant license information can be found in

SYSDCOC. JENV. 090. GSS
oder on the internet at

http://docs.ts.fujitsu.com/dl.aspx?id=9149a4ae-06ef-42fd-a971-ecff349bcc66.

17

http://docs.ts.fujitsu.com/dl.aspx?id=9149a4ae-06ef-42fd-a971-ecff349bcc66

JENV V9.0A

2 Environment variables

This section describes the following environment variables:

® CLASSPATH

* JAVA_HOME

* JENV_VMTYPE

® JENV_SYSHSI

® LD _LIBRARY_PATH
CLASSPATH

The syntactical structure of the CLASSPATH environment variable corresponds to that of the PATH environment
variable and describes the directories and JAR and ZIP archives in which the user classes are searched for.

When using the java commands and tools, users must only define this environment variable so that their own
classes are found. If the environment variable is not set, the search path for user classes is set to the current
directory (except in the case of appletviewer).

Alternatively, the -classpath option can also be used for the JAVA interpreters to define the path to the user classes.

JAVA_HOME

The environment variable JAVA_HOME describes the installation location of the JAVA runtime environment. It is
only needed for application programs which access JAVA using the invocation API.

For a standard installation JAVA_HOME is to be set to /opt/java/jdk-9.0.4. Refer to the Release Notice for the
currently valid name

The Java tools use their own mechanisms to determine their installation location. This environment variable should
thus no be set if the Java Interpreter and the other Java tools are to be used.

JENV_VMTYPE

For user programs which utilize the invocation API no interface exists to select the VM for processing. This
environment variable can be used to request a special VM for such programs. The following values are permitted:

client

Selection of the HotSpot™ client VM

If the variable is not set, the default applies (see subsection "Options for selecting the HotSpot™ VM type" in
section "java"). However, because only one VM implementation is currently available, this variable is not needed.

The Java tools do not use this environment variable but evaluate the corresponding command line options.

JENV_SYSHSI

The environment variable JENV_SYSHSI specifies the HSI variant to be used for the VM when calling the java
command (see section "java"). The following values are possible:

s$390

18

JENV V9.0A

The S390 variant of JENV is used (if available).
x86
The X86 variant of JENV is used (if available).

If you don't specify the variable, the default value is used, as desribed in section "Options for selecting the HSI
variant". In case you explicitly specify the variant in the java command, this value precedes the environment
variable.

LD_LIBRARY_PATH

The environment variable LD LIBRARY PATH describes the directories in which a search will be made for “Shared
Objects” with the user’s native methods. In its syntactical structure it corresponds to the environment variable PATH.

Other mechanisms are used for the search for native methods of Java implementation. With applications that use
the invocation API, they are found using JAVA_HOME for example.

19

JENV V9.0A

3 Conversion from ASCII to EBCDIC

The Java SE JDK was developed in an ASCII environment (Unix systems and Windows systems). Since the
BS2000 code set is quite different (EBCDIC), therefore, you will notice a number of peculiarities which are

described below.

20

JENV V9.0A

3.1 Code sets

In ASCII-based operating systems, the partial identity between ASCII and Unicode means that it is not always
necessary to distinguish between text and binary input/output. However, in BS2000 (and other non-ASClI-based
operating systems, such as OS/390), this distinction is extremely important. If this is not taken into consideration in
Java programs, not only will they not be portable, but they will have to be modified if they are to function correctly on
BS2000.

Java works internally in Unicode. For communication with the outside world Java can use any code. For the input
/output of text data, the new classes

InputStreamReader and OutputStreamWeriter, which perform the appropriate code conversions, have been
introduced in JDK 1.1. The standard code conversion which is used here is determined by the value of the system
property file.encoding. By default this is set to OSD_EBCDIC_DF04_1. When Java is called, this setting can be
changed either globally via -Dfile.encoding=XXX or else locally through specification of an appropriate code set
during instantiation of the classes InputStreamReader and OutputStreamWriter.

Supported code sets

The following code sets are additionally supported in BS2000 and accordingly are not available in other Java
implementations:

OSD_EBCDIC_DF04 1

Default code set in BS2000. It is the same as the EBCDIC.DF.04-1 character set, except that the EBCDIC
characters x'15' and x'25' are swapped, so that x'15' is interpreted as the character for newline. This is in
keeping with current practice in POSIX and in C programming in BS2000.

This character set is compatible with the ISO 8859-1 character set, the default character set used in Unix
systems. “Compatible” here means that it contains the same character set and can therefore be mapped 1:1, it
is just that encoding is different.

OSD_EBCDIC_DFO03_IRV

EBCDIC.DF.03.IRV (international reference version) character set, in which, once again, x'15' is the character
for newline.

OSD_EBCDIC_DF04_15

This is the same as the EBCDIC.DF.04_15 character set, except that the EBCDIC characters x'15' and x'25'
are swapped, so that x'15' is interpreted as the character for newline. This is in keeping with current practice in
POSIX and in C programming in BS2000.

This character set is fully compatible with the ISO 8859-15 character set. “Compatible” here means that it
contains the same character set and can therefore be mapped 1:1, it is just that encoding is different.

Specification of the code set

The commands javac, javadoc, appletviewer/ and native2ascii support the -encoding option, which allows you to
specify the character set for the files to be accessed by the command.

21

JENV V9.0A

3.2 Localized streams

For JENV, as for OS/390, various new classes and methods have been implemented for localized streams, with the
result that a number of ASCII/EBCDIC problems have been resolved. As an applications programmer, however, you
are advised to restrict yourself to the InputStreamReader and OutputStreamWriter classes defined by Oracle
America Inc. for inputting and outputting text.

The new classes implemented for this purpose are as follows

® com.fujitsu.ts.java.io.LocalizedInputStream
® com.fujitsu.ts.java.io.LocalizedOutputStream

® com.fujitsu.ts.java.io.LocalizedPrintStream

These classes cannot be instantiated, but they do offer a static method localize(), which converts a specified stream
into a “Localized Stream” if the specified stream is based on a file.

These methods are:

® com.fujitsu.ts.java.io.LocalizedInputStream.localize(InputStream)
® com.fujitsu.ts.java.io.LocalizedOutputStream.localize(OutputStream)

® com.fujitsu.ts.java.io.LocalizedPrintStream.localize(OutputStream)

These methods now actually return an InputStream or OutputStream in BS2000 for which the behavior is modified
in relation to the original stream in such a way that the entire 1/O via this steam is subject to code set conversion
from or into the implemented standard code set (value of system property file.encoding). However this only occurs
for streams which are based on files. These methods have no effect on other streams (e.g. ByteArray).

These streams modified in this way thus behave in a similar way to the objects of the new classes
InputStreamReader and OutputStreamWriter, but in contrast to them, remain of data type InputStream or
OutputStream, and can thus be used wherever only objects of this type are permitted.

There are in-built precautionary features against double conversions. Thus, a stream cannot be “Localized” twice. If
a getlLocalized... method is called for a stream which has already been localized, that stream is simply returned. An
instance of InputStreamReader or OutputStreamWriter can also be formed from a “Localized Stream” without any
danger of this causing double conversions.

This JENV-specific extension can be deactivated by setting the system property java.localized.streams to the value
False. This can be achieved if Java is called via -Djava.localized.streams=False.

22

JENV V9.0A

3.3 Property files

Property files can be written and read with the methods store() and load() in the class java.util. Properties. If the
specified streams are file streams, it is assumed in BS2000 that these files are read or created in the default code
set (value of system property file.encoding).

This does not happen if this JENV extension for the “Localized Streams” has been deactivated (see section
"Localized streams"). Property files are then always written or expected in the ISO8859-1 encoding (i.e. ASCII

encoding).

This behavior is compatible with that on IBM systems.

23

JENV V9.0A

3.4 Policy files

Policy files used by the default policy implementation must be coded in UTF-8 code set. Consequently, policytool
processes and generates only UTF-8 coded policy files. Because the first 127 characters of the UTF-8 code set are
identical to those of the ASCII code set, users can also generate a file in this code set by first creating the file with
the editor in the normal native code set (OSD_EBCDIC DF04 1) and then using the native2ascii tool to convert the

file to the ASCII code set.

1. CAUTION!

When the new file is generated, native2ascii does not transfer the access rights of the old file. If
necessary, these must be changed using chmod.

As of version JENV V1.4B the system property sun.security.policy.utf8 is provided which you can use for policy files
with native codeset. sun.security.policy.utf8 can have the values true or false. You therefore can use policy files in
native encoding with the following call:

java -Dsun.security.policy.utf8=false...

We however recommend to use UTF-8 encoded policy files.

24

JENV V9.0A

3.5 PrintStream

The output streams of type java.io.PrintStream are not modified as the default option in the BS2000 port, but are
mentioned here because they can cause special difficulties.

Methods of the java.io.PrintStream class

In accordance with the Java API specification some methods in the class java.io.PrintStream convert their outputs
into the default code set (value of the system property file.encoding), whereas others do not. With this class it is
therefore extremely easy to write programs which apparently function in an ASCII world but do not deliver the
expected results in BS2000. The following simple example will illustrate this point:

Example

PrintStream out = new PrintStrean{new
Fil eQutput Stream"test"));

out.print("This is a text.");
out.wite('\n");

In an ASCII-based system the content of file test will then be a line ending with newline and containing the above
text. In BS2000 the file would contain an EBCDIC-encoded version of the text, however the line would not end with
newline but would contain a “smudge” as the last character.

This example shows clearly how important it is for the input/output of text in a new implementation of Java code to
use the new read and write classes (i.e. InputStreamReader and OutputStreamWriter).

In BS2000 an additional option is available which changes the behavior of PrintStream so that no conversion is
performed by any method any more. This can be achieved if Java is called via -Djava.localized.print=False. With
this setting, the class PrintStream no longer behaves in accordance with the specification; however, this can
actually be useful for existing applications.

For the sake of completeness, mention should be made of the fact that the use of “Localized Streams” as the basis
for PrintStreams or the localization of a PrintStream does not result in multiple conversions. However, for
PrintStreams handled in this way it is of course then the case that all methods convert.

Interaction between the readLine() and printin() methods

It is often assumed that data written with printin() to a PrintStream could be reread by the readLine() methods of
some InputStream classes. In BS2000, however, this assumption may result in an error. This is due to the fact that
although data will be converted to the native code set (OSD_EBCDIC_DF04_1 in BS2000) during output to a
PrintStream, this is not carried out by any of the readLine() methods of the InputStream classes during a read
operation. Instead, you should use the new Reader and Writer classes or use “Localized Streams” for input.

25

JENV V9.0A

3.6 Standard streams

The class java.lang.System provides three standard streams in, out, and err. By analogy to the solution in OS/390,
these standard streams are “Localized Streams” in JENV. This means that normal text input and output is possible
in BS2000 via these streams.

This can be set selectively for each of the three streams if the following system properties are defined when the
program is started:

Systemin -Djava.localized.in=...
Syst em out -Djava.l ocal i zed. out =. ..
Systemerr -Djava.localized.err=...

These streams are not modified if the extension for “Localized Streams” is deactivated (-Djava.localized.
streams=False). Setting or amending these system properties later on has no effect on the currently defined
standard streams either.

The following values can be specified:
Default
The original streams (which are set when the program is started) are localized. This is the default value.
Full
Both the original streams and also the standard streams which are set later on using set/n() etc. are localized.
None
The standard streams are not modified.

If an application uses the methods setin(), setOut(), or setErr() in order to assign its own streams, there are two
options for guaranteeing correct operation: either you must ensure that all standard streams are “Localized
Streams” (i.e. text streams), or see to it that a clear distinction is made between text and binary input/output when
using standard streams. The following example shows both options.

The second option is the preferred solution, and should be applied as a matter of principle when working with
standard streams. However, the first option may be necessary if you are working with existing Java classes which
have not been implemented in a portable fashion.

Example

The following code (similar examples of which can be found in the JavaSoft demo programs) would lead to a binary
input/output via these streams, with the result that the output files would be unreadable or the input might be
misinterpreted if text input/output was really intended.

26

JENV V9.0A

ipublic static String read wite() {
' StringBuffer buf = new StringBuffer(80);
int c;
try {
while ((c = Systemin.read()) !'=-1) {
char ch = (char) c;
Systemout.wite(c);
if (ch =="\n")
br eak;
buf . append(ch);

}
} catch (1 OException e) {

Systemerr.println(e);

}
return (buf.toString());

}

System setln(new Fil el nput Strean("nyi nputfile"));
Syst em set Qut (new Print Strean(new Fil eQut put Strean("nyoutputfile")));

Eline =read_wite();

The following program fragment shows the first option, where all standard streams are “Localized Streams” (i.e. text
streams). This solution would have to be implemented by the calling program.

| System setIn(comfujitsu.ts.java.io.Localizedl nputStream
Elocalize (new Fil el nput Strean("nyinputfile")));

i System set Qut (com fujitsu.ts.java.io.LocalizedPrintStream
| ocalize (new Fil eQutputStreanm"nyoutputfile")));

‘line = read_write();

The code fragment for the second solution could look like this and would have to be implemented by the user of the
standard streams. It involves making a clear distinction between text and binary input/output when using standard
streams.

27

JENV V9.0A

‘public static String read_wite() {
: StringBuffer buf = new StringBuffer(80);
int c;
| nput St reanmReader in = new | nput St reanrReader (System i n);
Qut put StreamWiter out = new Cutput StreamNiter(System out);
try {
while ((c inread()) !'=-1) {
char ch = (char) c;
out.wite(c);
if (ch=="\n")
br eak;
buf . append(ch);
}
} catch (I OException e) {
Systemerr.println(e);

}
return (buf.toString());

28

JENV V9.0A

3.7 JAR archives

In the context of the problems associated with ASCII/EBCDIC conversion, JAR archives can create special
difficulties because they also constitute an exchange format between different environments (systems). You can
pack applets including all their resources into JAR archives and load them over the network by a browser. Java
offers corresponding methods for accessing the resources packed in this way (see java.util. ResourceBundle).

The typical resources here often also include property files (e.g. with error messages). To ensure interchangeability,
property files which are stored in JAR archives must therefore always be in | SC8859- 1 encoding i.e. they must
previously be converted into this code set by the creator of such a JAR archive in BS2000.

If the user introduces a manifest file of his/her own into the JAR archive (option -m):

® The manifest file is generated by the jar command itself, this occurs automatically using ISO8859-1 encoding.

® |f the user creates the manifest file himself, it must first be converted into the ISO8859-1 code set.

The methods for accessing these resources in JAR archives are designed so that they also expect ASCII input in
BS2000.

To support the code conversion of files, the command native2ascii is provided.

29

JENV V9.0A

3.8 Program arguments

The call arguments which are transferred to the method main() of a Java program are automatically converted from
EBCDIC to Unicode.

30

JENV V9.0A

4 The Java package JRIO

The JRIO package is a collection of Java classes to permit direct handling of files with a record or block structure
and for record- or block-oriented input/output to such files. Naturally these files include above all the BS2000 files of

DMS/DVS.

In contrast to normal Java I/O (java.io package), these interfaces also allow operations which cannot be expressed
with the given Java 1O classes (which we cannot extend).

The interfaces and implementations of JRIO are contained in the proprietary package com.fujitsu.ts.jrio and further
subpackages. These will not be available in other Java implementations. However, as far as it makes sense
technically, they are very similar to the corresponding IBM package com.ibm.recordio.

31

JENV V9.0A

4.1 Concepts

The implementation of JRIO is geared to extensibility. The sections below describe these concepts and their
realization.

32

JENV V9.0A

4.1.1 File systems

Unlike with the normal Java 10 classes, various file systems are supported by concept under JRIO (see section
"RecordFile"). The following file systems will supported in future versions:

® the BS2000 file system (referred to as DMS in the following)

¢ the hierarchical file system POSIX (referred to as UFS in the following)

® the BS2000 library file system (referred to as LMS in the following)

In this version only DMS will be supported initially.

Each of the file systems has its own syntax for specifying file names. When a RecordFile object is created this is
associated uniquely and permanently with one file system. This allocation can be specified either implicitly or
explicitly by the user and cannot be modified later. The allocation then determines the semantics of most of the
methods of the RecordFile object.

33

JENV V9.0A

4.1.1.1 File names in the DMS file system

File names in the DMS file system are formed in accordance with this file system’s rules (see manual “Introductory
Guide to DMS” [8]. Partially qualified file names and wildcard specifications are not supported at any of the JRIO
interfaces with the exception of the specifications permissible as a directory and the file identifier in policy files (see
also section "Security").

Only the specification of a lone catalog ID (Catid) which is enclosed in colons, a user ID (Userid) with a leading
dollar character and a closing period or a combination of the two are regarded as directories in the DMS file system.
The customary special way of specifying the system standard ID is also permitted. Consequently only the following
specifications are possible for directories in DMS:

;catid:

$useri d.
:catid: $userid.
$.

ccatid:$.

As DMS is a flat file system and actually has no directory concept, directories cannot be set up or deleted with the
interfaces provided here. Neither do they have attributes such as modification date or a size. Only the methods for
listing directory contents are practical for the above-mentioned artificial directories of DMS.

As in the DMS interfaces, the so-called logical system files (SYSFILE environment) are not supported. In addition,
JRIO does not support EAM files, either.

Normalized path names

When generating a RecordFile object and at locations where the user can specify a file or path name at the JRIO
interfaces, not only the syntax and semantics check is performed, but also what is known as normalization. For
DMS files this normalization of the name means that any lower-case letters contained in the name are converted to
upper-case letters. In addition, file names which contain no periods but begin with a dollar character ($) are
converted into names with a leading system standard ID in accordance with the DMS conventions:

Example

$EDT => $. EDT

Absolute path names

A path name in DMS is regarded as absolute if it begins with a catalog ID. Thus when an absolute path name is
generated this means that if a catalog ID is not already contained in the name, the default catalog ID of any user ID
specified or of the calling program is added (see section "RecordFile").

Canonical path names

A path name in DMS is canonical if it consists only of a catalog ID or contains both a catalog ID and a user ID. Thus
when a canonical path name is generated, this means that (if it is not already included) the default catalog ID of any
specified user ID or that of the calling program (see section "RecordFile").

34

JENV V9.0A

4.1.1.2 File names in the UFS file system

The same rules apply for the syntactical structure and the semantic definition as for the java.io.File class. The terms

» absolute path name”, “canonical path name” and “normalized path name” are also used in the same way at these
interfaces.

35

JENV V9.0A

4.1.2 File types

The following file types are currently supported in the DMS file system:

® SAM files with fixed or variable record length.
* |SAM files with fixed or variable record length.
* PAM files.

The UFS file system does not distinguish between file types. In particular, there are no defined file types with record
/block structure. Only the content of a file and the processing programs determine what can happen to it or what it is
intended for (see section "Access methods").

As with java.io.File, only regular files and directories are supported under JRIO.

36

JENV V9.0A

4.1.3 Access methods

The term access method is normally used to refer to a set of interfaces which permit access to data from files and
thus offer a particular logical view of this data. Generally this logical view will differ to a greater or lesser extent from
the physical storage in the file (the data repository). Here access methods which enable record-oriented processing
of the data in a file are of interest; the logical view is thus restricted. The access methods considered here thus
implement the following:

® Definition of a record and mapping of this logical view of the data onto a physical storage form (file type).

® Definition of the order of the records from the viewpoint of the user or program; this order need not necessarily
have anything to do with the physical order of the data in the file.

® |Interfaces to read and write records in their entirety.

Elementary access methods are a special type of access method. These are distinguished by the fact that the file
system (in which they are effective) knows of them and, for example, a file and access method can already be
assigned to each other via file types. Such access methods are provided in DMS, albeit not reversibly unique. Other
file systems (for example UFS) know only a single elementary access method which generally offers the raw
physical view of the data and logically also has no content-oriented file types.

However, there can also be any further access method desired, these generally being implemented using one of the
elementary access methods and offering further logical views of the data. These access methods have one problem
in common. As the file system has no knowledge of them, it is not possible to tell from a file whether and with which
of these access methods it can be successfully processed. Interpretation errors will thus only be recognized during
processing, if at all.

In UFS there is no elementary access method which offers record-oriented processing. However, the following
access methods, for example, are conceivable:

® TEXT - Access method which regards text files as record-structured files with records of variable and unlimited
length. The physical record separator would be the new line character, which would be masked out in the logical
view.

® CISAM - ISAM-type access method for Unix file systems.

In DMS there are several elementary access methods, of which the following are supported directly in JRIO:

® SAM - sequential access method
® |SAM - indexed-sequential access method

® UPAM - block-oriented access method

In DMS, too, there are access methods which are based on one of the elementary access methods and supply a
different logical view. A prominent example of these is an access method based on ISAM which is used by various
tools (editors, compilers, ...) to render ISAM files usable for normal texts. For this purpose, ISAM files with standard
keys are used. In the logical view these keys (which in ISAM are a part of the record) are masked out, and are
generated by the access method when records are written.

In the JRIO interfaces you always will encounter the access methods when you must take a decision as to how
access to a file is to be implemented.

Currently JRIO only supports the DMS file system, and in this only the access methods SAM, ISAM and UPAM.
However, the JRIO architecture will in future permit extension by the addition of further file systems without the user
interfaces needing to be modified.

37

JENV V9.0A

4.1.4 Access types

The starting point for designing the JRIO interfaces is an abstract view of the type and manner of data access (of
the sort that is also taken as a basis in the IBM implementation) which is independent of file systems and access
methods.

From the viewpoint of the application, the type and manner of data access can then be classified in the following
access types:

® Sequential access

Read access to records/pages takes place sequentially. Write access extends the file at the end.
® Random access
In a file processed using this access type any individual records be positioned to before reading or writing.

® Keyed access

In a file processed using this access type, individual records can be selected for reading and/or writing by
specifying keys.

38

JENV V9.0A

4.1.5 Shared update processing

By means of locks, JRIO permits the simultaneous, synchronized processing of a file by multiple applications (
shared update processing) if this is supported by the particular file system and access method.

This type of processing must be explicitly set by the application when the file is opened. It ensures that the
processing steps (e.g. write, delete or a combination of read and write) are protected by locks and cannot be
interfered with by competing applications. Shared update processing may be subject to file system-specific
restrictions. For example, it may not be permitted for certain file types or open modes, or it may not support certain
actions such as increasing or reducing the size of files.

The lock mechanism employed by JRIO in shared update processing is:

® record-oriented,
® implicit,
® deadlock secure.

Record-oriented means that /ogically an application locks or releases records only within a file. However, certain file
systems or access methods can physically implement a larger lock granularity. This is not visible to your own
applications but competing applications may encounter a lock when they attempt to access a record within the
larger lock granularity although the requested record itself is logically locked.

Implicit means that records are implicitly locked when they are read, written or deleted, and that the lock is implicitly
released after the write or delete operation has been completed. Methods are also offered for the explicit release of
records that are locked for reading but are not to be written.

Deadlock security is achieved by ensuring that an application can only ever logically lock one record per file. Setting
a lock for an operation leads implicitly to the release of any other lock for another record. Some file systems and
access methods are also able to implement deadlock security beyond file boundaries; in other words, only one lock
per application is permitted - regardless of in which file.

In shared update processing JRIO allows the behavior of the application to be controlled in the event of access
conflicts. The application can demand immediate transfer of control (NO_WAIT parameter). In the event of access
conflicts, a corresponding exception (RecordLockedException) is then generated or the application can wait for
granting of the lock as a thread (THREAD_WAIT parameter) or at the system interface (APPLICATION_WAIT
parameter). The wait time is unlimited in both cases, i.e. the application waits until a lock is received or until the
application itself is terminated. Waiting as a thread has the advantage that other threads of the application are not
blocked. However, in extreme situations it can happen that the lock is received by a competing application at the
very moment that the waiting application makes a renewed attempt although the lock was available in the
meantime. Not all file systems offer all wait variants. If, however, a variant is offered, the semantics described then

apply.

39

JENV V9.0A

4.1.6 Options and restrictions relating to access types in DMS

Not all access types are possible with all access methods/file types. The following table provides an overview of the
relationship between access types and access methods/file types:

Access
type

Sequential

Random

Keyed

SAM access method

Reading/writing for SAM files.
Physical record sequence.Shared
update processing is not possible.

Reading/writing for SAM files.
When records of variable length
are overwritten, the record to be
written must be of the same length
as the record to be overwritten.
Shared update processing is not
possible.

Not possible.

ISAM access method

Reading/writing for ISAM files.
Record sequence determined by
primary key.Shared update
processing is possible for reading
or adding to opened files.

Not possible.

Reading/writing for ISAM files.
Shared update processing is
possible for files opened as
“INPUT” or “INOUT". Only the first
opening application may open
“OUTIN".

Table 1: Overview of the relationship between access types and access methods/file types inthe DMS file system

UPAM access method

Reading/writing for
PAM, SAM and ISAM
files.

Physical block
sequence.

Shared update
processing is possible
only for PAM files
opened for reading.

Reading/writing for
PAM, SAM and ISAM
files.

Shared update
processing is possible
only for PAM files
opened as “INPUT” or
“INOUT".

Not possible.

40

JENV V9.0A

4.1.7 Drivers

JRIO has a dynamic driver concept that separates both the file system implementations and the implementations of
the various access methods from the JRIO user interfaces. New file system drivers or access method drivers can
be added without user interfaces needing to be modified.

When an application is started, it is determined dynamically which drivers are available for file systems and access
methods. These are then loaded dynamically as required. However, the associated interfaces (in particular the
driver API) and the configuration mechanisms are currently not to be made accessible to users and are
consequently not described here.

41

JENV V9.0A

4.1.8 Security
Applications that use JRIO and run under a Security Manager are started with, for example, the following command:

java -Djava. security. nmanager <application-name>
All accesses to files and directories of the supported file systems are initially rejected by the Security Manager.
Access is granted only to files in the UFS directory that contains the loaded class.

When handled by the Security Manager, UFS files are subject to the same mechanism in JRIO as offered by java.io
. The special features of the DMS file system are therefore described below.

To allow an application to access certain files and directories of the DMS file system under the Security Manager,
appropriate permissions must first be granted in a policy file. The mechanism for selecting the valid policy file is no
different from the usual method in Java; in particular, the policy file can also be specified directly:

java -Djava. security. nanager
-Dj ava. security. policy= <policy-file> <application>

JRIO features two new permissions that can be granted in the policy file:
comfujitsu.ts.jrio.DVS. Fil ePermn ssion
comfujitsu.ts.java. bs2000. Syst em nf oPer m ssi on

(D You can make entries in the policy file using the policytool or any normal editor. In this manual, the
entries are shown as if they were made using an editor.

Note that the policy file must be available in UTF8 coding.

File permission

com.fujitsu.ts.jrio. DMS. FilePermission controls access to files and directories. The syntax of an entry in the policy
file is as follows:

grant [codeBase ... | signedBy ...] {
perm ssion comfujitsu.ts.jrio. DVS. Fil ePerm ssion
"file-identifier" , "action-list";

b

The file identifier is either a valid BS2000 directory name or a valid BS2000 file name with or without catalog ID and
/or user ID, i.e. a catalog ID (in the format ":catid:"), a user ID (in the format "$userid.") or a combination of the two
(in the format ":catid:$userid."). The last character of the file name may be “ * ”. Access permission then relates to
all files whose name begins with the string preceding “ * ”. In this case, it need only be possible to complete the
name part preceding the “ * " to form a valid file name. For catalog and user IDs you can also use “:*:" or “$*.” to
grant access for all catalog IDs or all user IDs. The abbreviation “$.” for the default system ID is permitted but not
the abbreviation “$file” for “$.file”. Refer to the section "File names in the DMS file system".

If no user ID is explicitly specified, permission relates to files under the user ID of the caller (who need not be known
by name to the application). If no catalog ID is specified, permission relates to files of the default catalog ID of the
corresponding user ID. The string <<ALL FILES>> permits access to all files and directories. Further details are
provided in the shipped JAVADOC documentation for the com.fujitsu.ts.jrio. DMS.FilePermission class.

42

JENV V9.0A

The action-listis a comma-separated list of the permitted read, write and delete actions for the file. If permission to
perform the action is not granted in this file or directory, any access attempt is rejected with a SecurityException.
This also applies to information functions such as list() or listFiles() that require read permission for the underlying
directory.

Systeminfo permission

Within JRIO, com.fujitsu.ts.java.bs2000.SysteminfoPermission is used to control which information on the DMS file
system the application is allowed to obtain. The syntax is:

grant [codeBase ... | signedBy ...] {
perm ssion comfujitsu.ts.java. bs2000. Syst en nf oPerm ssi on
"Name";

3

Name is a value formed from HomePubset, UserName, UserPubset, DefaultUserName, DefaultUserPubset and
ForeignUserPubset or the string <<ALL INFO>> with which permission is granted for all named data. If the
permission is granted, the application is allowed to determine the corresponding catalog and user IDs via the
getCanonicalPath(), getCanonicalFile(), getAbsolutePath() and getAbsoluteFile() interfaces of the RecordFile class.
Otherwise, any attempt is rejected with a SecurityException. The names beginning with User... relate to the ID of
the caller, the names beginning with Default... to the default system ID, and the names beginning with Foreign... to
all foreign user IDs. Permission relates only to the interfaces that provide access to the corresponding file names
when completed, but not to actual access to the files under these catalog or user IDs.

Example

An application is granted access to the file named HUGO under the ID of the caller although the application
does not have permission to determine the ID of the caller:

grant [codeBase ... | signedBy ...] {
permi ssion comfujitsu.ts.jrio.DVS. Fil ePerm ssion
"Hugo", "read, wite";

b

This setting allows the file to be opened, read and written. However, completing the file name with, for example
, getCanonicalPath(...) is not permitted.

43

JENV V9.0A

4.2 APl overview

The public classes which constitute the JRIO interfaces are shown below:

Class
Record

BufferOverflowException

RecordlLockedException

RecordNotLockedException

RecordFile

RecordFileFilter

RecordFilenameFilter

AccessParameter

DMS/AccessParameterSAM

DMS/AccessParameterlSAM

DMS/AccessParameterUPAM

DMS/FilePermission

InputRecordStream

ArraylnputRecordStream

FilelnputRecordStream

OutputRecordStream

Use
Represents a record/block

This exception is triggered when records are being read whenever the record
object provided by the user is too small to incorporate the data.

This exception is triggered in shared update processing when a record that is
locked by another application is accessed and the user has specified that the
application should not wait for the lock to be granted.

This exception is triggered in shared update processing when an attempt is
made to access a record using a method that requires the record to be locked
first but the lock does not yet exist or no longer exists.

Represents a file with record/block structure (see java.io.File).

Interface for implementing user-specific classes which can be used as filters in
the listFiles() method of the RecordFile class (see java.io.FileFilter).

Interface for implementing user-specific classes which can be used as filters in
the list() method of the RecordFile class (see java.io.FilenamefFilter).

Represents the general parameters which are required for access to a file with
record/block structure when using a particular access method.

Represents a selection of parameters which are required for access to a file
(in particular generation) using the SAM access method in DMS.

Represents a selection of parameters which are required for access to a file
(in particular generation) using the ISAM access method in DMS.

Represents a selection of parameters which are required for access to a file
(in particular generation) using the UPAM access method in DMS.

Permits the fine-grained granting of access permissions for files and
directories in the DMS file system. This class is normally used only in the
context of entries in the policy file.

Abstract base class for FileInputRecordStream and ArraylnputRecordStream
and user-implemented input classes (see java.io.InputStream).

Class for sequential reading of records from an array of records (see java.io.
ByteArraylnputStream).

Represents a file with record/block structure that is open for sequential
reading (see java.io.FilelnputStream).

Abstract base class for FileOutputRecordStream and
ArrayOutputRecordStream and user-implemented output classes (see java.io.
OutputStream).

44

JENV V9.0A

ArrayOutputRecordStream Class for sequential writing of records to an array of records (see java.io.
ByteArrayOutputStream).

FileOutputRecordStream Represents a file with record/block structure that is open for sequential writing
(see java.io.FileOutputStream).

RandomAccessRecordFile Represents a file with record/block structure that is open for random access
(see java.io.RandomAccessFile).

KeyedAccessRecordFile Represents a file with record/block structure that is open for keyed access.
KeyDescriptor Describes a record key of an indexed-sequential file.
DMS Describes the primary key of an ISAM file.

/PrimaryKeyDescriptorISAM

DMS Describes a secondary key of an ISAM file.
/SecondaryKeyDescriptorISAM

KeyValue Represents the concrete value of a record key.

Table 2: Public classes which constitute the JRIO interfaces

The sections below describe the most important of the classes from the JRIO package which are mentioned above,
together with their principal and most common methods and fields. A complete description of the interfaces is
contained in the javadoc documentation provided (please refer to the Installation directory under doc/jrio).

45

JENV V9.0A

4.2.1 Record

A Record object represents a logical record of a file and consists of a record buffer which contains the actual data
record and the separately administered length of the data within the record buffer.

The Record class provides methods to access the data in the record buffer and their length, and to set or modify
these. No methods are provided for accessing numerical data fields; users can implement these themselves on the
basis of the methods provided.

A Record object is typically used to store or transfer the data of the record-by-record or pageby-page access
operations to files. It is serializable and can therefore be used for Remote Method Interfaces (RMI). The Cloneable
interface is also implemented.

Positions within a record are counted starting with position O (the first data byte of a record thus has position 0 and
so on). A logical data record of a file contains only the user data, while the data record stored physically in the file
can contain additional meta information (for example record length). Consequently the numbering of record
positions for example at the DMS macro interfaces of BS2000 (these supply the physical record) can differ from that
at the JRIO interfaces (these supply the logical record).

46

JENV V9.0A

4.2.1.1 Constructors

When a Record object is generated, either an empty record buffer of a required size can be created or a buffer
provided by the user can be used. If this buffer already contains data, the length of the data can also be transferred.

Typically you should select the size of the buffer so that there will be space in it for the longest expected record. The
Record object can then always be reused for input/output if the old content is no longer required instead of
repeatedly generating new instances.

A Copy constructor is also available which generates a new Record object from the data of another record. A one-to-
one copy of a Record object can be generated with the clone() method.

47

JENV V9.0A

4.2.1.2 General methods

The getBuffer() method returns the record’s record buffer. You can use this to process or provide the content with
the help of other classes and methods. Note that manipulations on this record buffer modify the object from which
the record buffer originates because this is not a copy of the data. The current length of the data within the record
buffer can be determined using the getDatalength() method.

A record buffer can be replaced using the setBuffer() methods. If the user’s buffer which is transferred already
contains data, the data length can also be transferred.

With the setDatalength() method users can themselves define the occupancy level of the record buffer. No check is
made to see whether the data in the record buffer is useful.

48

JENV V9.0A

4.2.1.3 Methods for extracting the data of a record

The getByteData() method enables all the data of a record to be returned in binary format (as bytes).
The methods of the getStringData() family return all the data of a record interpreted as text (string).

If no encoding for converting the data to text was specified by the user, the systemdependent standard encoding (in
BS2000 the default value is OSD_EBCDIC DF04 1) is used.

49

JENV V9.0A

4.2.1.4 Methods for extracting the data fields of arecord

The various methods of the getByteField() family enable the data of a specified data field (defined by position and
length within the record) to be returned in binary format (as bytes).

The methods of the getStringField() family return the data of a specified data field interpreted as text (string).

If no encoding for converting the data to text was specified by the user, the systemdependent standard encoding (in
BS2000 the default value is OSD_EBCDIC _DF04_1) is used.

The getKeyField() method returns, on the basis of a key description, the content of a key field as key value.

50

JENV V9.0A

4.2.1.5 Methods for filling a record with data

The setByteData() methods fill a record completely with binary data (bytes); the old content is lost in the process.
The data length of the record subsequently corresponds exactly to the length of the data entered.

The methods of the setStringData() family fill a record completely with text data (string). The data length of the
record subsequently corresponds exactly to the length of the data entered.

If no encoding for converting text to data was specified by the user, the system-dependent standard encoding (in
BS2000 the default value is OSD_EBCDIC DF04 1) is used.

51

JENV V9.0A

4.2.1.6 Methods for filling data fields of a record

The various methods of the setByteField() family fill binary data (bytes) into a specified data field (defined by
position and length) of a record.

These methods update the data length if the record was lengthened when the record’s data fields were filled. If the
data is shorter than the selected data field, the rest can optionally be filled with a filler byte. If the data is longer than
the selected data field, the length of the data transferred into the record buffer is limited to the length of the data
field.

The methods of the setStringField() family fill text data (string) into a specified data field. If no encoding for
converting text to data was specified by the user, the system-dependent standard encoding (in BS2000 the default
value is OSD_EBCDIC _DF04_1) is used.

These methods update the data length if the record was lengthened when the record’s data fields were filled. If the
data is shorter than the selected data field, the rest can optionally be filled with blanks. If the data is longer than the
selected data field, the length of the data transferred into the record buffer is limited to the length of the data field.

The setKeyField() method fills a record’s key field with a concrete key value.

52

JENV V9.0A

4.2.2 RecordFile

For record-oriented input/output, the RecordFile class plays approximately the same role as the java.io.File class for
normal Java I/O. It defines the objects of the basic file system(s), in other words normally files and directories.

Unlike with the java.io.File class, different file systems are actually supported by the RecordFile class and not just
one. Consequently a RecordFile object always consists of a path name (file or directory name) and an associated
file system (DMS, UFS, ...).

Thus there can be objects with the same name, especially in different file systems. In BS2000 it is perfectly
conceivable that a file named HALLO can exist both in UFS (Posix file system), in DMS (BS2000 file system) and
also in LMS (as a member of a PLAM library). This approach consequently reflects the actual situation in BS2000
better than the monolithic approach of java.io.File (see section "File systems").

The RecordFile class (like java.io.File, too) provides methods and fields for analyzing and transforming the path
name. These may be defined differently for each supported file system. For these operations it is normally
unimportant whether the file system actually contains a file or directory with the name in question, because recourse
is generally not made to the basic file system.

In addition, the RecordFile class also provides methods for accessing, and possibly modifying, the attributes of
existing files and directories.

Furthermore, with the RecordFile class methods are provided for performing typical file system operations. These
include renaming and deleting existing files and directories, creating files and directories which do not yet exist, and
listing directory contents.

All methods which actually access the file system should be subject to the restrictions of the active Security Manager
and trigger corresponding exceptions when access to the file system is restricted (see section "Security").

In the sections below the particular features relating to the UFS file system are generally not referred to. In these
cases what applies for java.io.File for the Unix file system also applies for the UFS file system.

53

JENV V9.0A

4.2.2.1 Basic structure of a file name

Generally a path name in all of the file systems supported comprises a file system prefix (if present) and no name
part, or a sequence of one or more name parts which may be separated by separator characters. Each name part in
a path name, except the last one, designates a directory. The last name part can designate either a directory or a
file. The empty path name has no prefix and an empty sequence of name parts. Whether an empty path name is
permitted and what the semantics of the path name is depends on the file system

The file system prefix or prefixes are defined on a file-system-specific basis. It is guaranteed that all root directories
returned by listRoots() are permissible file system prefixes. In the DMS file system each catalog ID is interpreted as
a file system prefix in this sense, regardless of whether this catalog ID exists in the file system, and in the UFS file
system the root “/” is the only file system prefix.

If multi-part names are permitted in a file system, a separator is generally (but not always) defined with which the
name parts are separated (for example “/” in UFS). However, the file system involved ultimately defines whether
and how many name parts are permitted and how they are separated.

There is no defined separator for path names in the DMS file system. In addition to the file system prefix (the
catalog ID with colons ;' at the beginning and end), the path name can also contain up to two name parts: a user ID
(with dollar '$' at the beginning and period "." at the end) and/or a file name. Even if both parts are contained in the
path name, there is no additional separator between them.

The same naming rules are used for path names in the UFS file system as for java.io.File.

54

JENV V9.0A

4.2.2.2 Constructors

A RecordFile object is formed from a given path name and a file system specification. Here a check is made to
ensure that the given path name satisfies the syntactical rules of the specified file system, and what is termed
normalization of the path name takes place. What this means specifically is defined separately for each file system
supported (see section "File systems"). This normalized path name is then the name of this object and the basis of
all operations on it.

There are constructor variants which permit path name specification in a different form, either simply as a single
string, or separately as two strings which constitute the directory part and the file name part of the path name, or as
a RecordFile object for the directory part and a string for the file name part. In the latter case the file system
specification is omitted because the RecordFile object already includes this implicitly for the directory part.

55

JENV V9.0A

4.2.2.3 Fields

The separator separatorChar or separator (in string form) is defined on a file-system-specific basis. Normally this
separator is used to separate different name parts within a path name.

Special features of the DMS file system

The DMS file system knows no separators in this sense. Consequently the null character is used for
separatorChar and an empty string for separator. However, this calls for care when it is used because the null
character is a defined character within character strings.

The separator pathSeparatorChar or pathSeparator (in string form) is also defined on a filesystem-specific basis.
This separator is used in order to separate the individual path names from one another when path name lists are
specified.

Special features of the DMS file system
The separator for path name lists is the comma “ , ".

Unlike in java.io.File, the separators are not static fields as several file systems are supported here. During
instantiation of a RecordFile object the separators are initialized by the underlying file system.

56

JENV V9.0A

4.2.2.4 General methods

The getPath() method returns the path name of this RecordFile object. The getFileSystem() method returns the
name of the file system associated with the path name. The string “DMS” is returned for the DMS file system, and
the string “UFS” for the UFS file system (currently not supported by JRIO).

57

JENV V9.0A

4.2.2.5 Methods for analyzing and transforming path names

The getName() method returns the last name part of the path name of this RecordFile object. The result is formed
by dropping any file system prefix there may be and every name part except the last. If the path name consists only
of a name part and this is not a file system prefix, the object’'s path name is returned. If the path name is empty or
consists only of the file system prefix, an empty string is returned.

Special features of the DMS file system

The file system prefix is the catalog ID.
Example

Name Result

:JAVA:SUSER.HALLO.JAVA HALLO.JAVA

:JAVA:HALLO.JAVA HALLO.JAVA
$USER.HALLO.JAVA HALLO.JAVA
HALLO.JAVA HALLO.JAVA
:JAVA:$.HALLO.JAVA HALLO.JAVA
:JAVA:SUSER. $USER.

JAVA: empty string ™"
$USER. $USER.

The getParent() method returns the parent of this path name as a string, or the return value null if the path name
has no parent. The parent of a path name consists of the file system prefix (if present) and of every name part,
except the last, in the name sequence of the path name. If the name sequence is empty, then the path name has no
parent.

Special features of the DMS file system

The file system prefix is the catalog ID.
Example

Name Result

JAVA:SUSER.HALLO.JAVA :JAVA:$USER.

*JAVA:HALLO.JAVA JAVA:
$USER.HALLO.JAVA $USER.
HALLO.JAVA null
[JAVA:$.HALLO.JAVA JAVA:S.

58

JENV V9.0A

:JAVA:$USER. :JAVA:
:JAVA: null
$USER. null

The getParentFile() method, like the getParent() method, returns the parent of this path name, but as a RecordFile
object. If the path name has no parent, null is returned.

The isAbsolute() method returns true if the path name of this RecordFile object is an absolute path name. What an
absolute path name is defined on a file-system-specific basis (see section "File systems").

Example

Name Result
:catid:$userid. true
:catid:$. true
$userid. false
$. false
‘catid: true

$. HALLO false
$USER.HALLO false

:JAVA:$.HALLO.JAVA true

The getAbsolutePath() method returns the absolute form of this RecordFile object’'s path name as a string. If the
RecordFile object was constructed with the aid of an absolute path name, this name is returned. If this is not the
case, the name is supplemented on a filesystem-specific basis (see section "File systems").

Special features of the DMS file system

In DMS it may not be possible to form the absolute path name for a syntactically correct path name. For
example, a file name consisting of 42 characters with a 5-character user ID is syntactically correct. However, if
it is complemented by a catalog ID comprising 4 characters, a syntactically incorrect (too long) path name
results.

The getAbsoluteFile() method returns the absolute form of this RecordFile object’s path name as a RecordFile
object.

The getCanonicalPath() method returns the canonical form of this RecordFile object’s path name as a string. A
canonical path name is both absolute and unique. The precise definition of the canonical form depends on the file
system (see section "File systems").

59

JENV V9.0A

Special features of the DMS file system

In DMS it may not be possible to form the canonical path hame for a syntactically correct path name. For
example, a file name consisting of 42 characters with a 4-character catalog ID is syntactically correct.
However, if it is complemented by user ID comprising 5 or more characters, a syntactically incorrect (too long)
path name results.

The getCanonicalFile() method returns the canonical form of this RecordFile object’s path name as a RecordFile
object.

File name completion using the above methods provides the application with an insight into the structure of the file
system and must therefore be monitored by an active Security Manager. In certain circumstances, file name
completion is rejected with a corresponding exception (see section "Security").

The compareTo() method compares two path names lexicographically. If the two path names belong to different file
systems, first of all the file system names are compared.

The equals() method compares two path names. It returns true only if the specified object is a RecordFile object
which is assigned to the same file system and if the path names of both objects (in the sense of compareTo()) are
equal. Equality is checked on the basis of the path names and not on the basis of the file or directory in the
underlying file system, in other words if different names designate the same existing file, false is still returned.

The hashcode() method calculates a hash code from the characters of the path name and the file system name.
Two RecordFile objects with the same path names and the same file system name also have the same hash code.
However, two RecordFile objects with the same hash codes do not necessarily have the same path name.

60

JENV V9.0A

4.2.2.6 Methods for inquiring file and directory attributes

The exists() method checks whether the file or the directory exists in the file system. Many of the methods offered
can only be used effectively if the file or directory exists and is visible (for example files are not always visible for the
calling program in foreign user IDs).

Special features of the DMS file system

A file is regarded as existing if it has already been opened once. This means that a catalog entry for the
existence of a file is not sufficient. A directory exists if the specified catalog ID and/or user ID is accessible in
the file system.

The canRead() method checks whether the file or the directory for this object exists (in the sense of exists()) and is
readable for the calling program.

Special features of the DMS file system
true is always returned for existing directories.

The canWrite() method checks whether the file or the directory for this object exists (in the sense of exists()) and is
writable for the calling program.

Special features of the DMS file system

Always returns false for a directory consisting only of the catalog ID if the calling program is not privileged, also
for foreign user IDs.

The isDirectory() method returns true if an existing directory in the associated file system is involved.

The isFile() method returns true if a normal file in the associated file system is involved. A file is normal if it is not a
directory and also meets file-system-specific criteria (for example special files in UFS are not normal files). Every
file generated by a Java application which is not a directory is guaranteed to be a normal file.

The isHidden() method can be used to determine whether the file or directory is hidden in the file system. What
precisely hidden means is defined on a file-system-specific basis.

Special features of the DMS file system
Temporary files in the DMS sense are always regarded as hidden.

The lastModified() method returns the time of the last modification to the file or directory if the file system supports
this.

Special features of the DMS file system
Directories do not have their own modification date. Consequently O is always returned.

The length() method returns the size of a file or directory. How the size of a directory is defined is file-system-
specific.

Special features of the DMS file system

For files the number of used (not reserved) PAM pages in the file multiplied by 2048 is returned, and for
directories always the value 0.

The getAccessParameter() method returns the parameters for accessing this file with the specified access method.
The AccessParameter object returned can, for example, be used to generate a new file with the same parameters
and is used internally for file access.

61

JENV V9.0A

The static method getDefaultAccessParameter() returns the default parameters for the given access method in the
given file system. The user can then, if required, modify these parameters and generate new files with them.

The getPreferredAccessMethod() method returns the name of the preferred access method for an existing file in the
associated file system. It is not guaranteed that the file was generated with this access method, especially if the
access methods in this file system are only a logical view of the file contents and not inquirable file attributes.

The getAllowedAccessMethods() method returns a list of the names of the permitted access methods for an existing
file in the associated file system. It is not guaranteed that the file was generated with one of these access methods,
especially if the access methods in this file system are only a logical view of the file contents and not inquirable file
attributes.

The static method getAllAccessMethods() returns a list of the names of all the access methods supported in the
specified file system.

62

JENV V9.0A

4.2.2.7 Methods for modifying file and directory attributes

The setLastModified() method sets the modification date to the specified value if the file system supports this.
Special features of the DMS file system
The modification date cannot be set.
The setReadOnly() method modifies the file attributes so that only read operations are permitted.
Special features of the DMS file system

For files the files attribute ACCESS is set to the value READ. This attribute cannot be set for directories and
temporary files in the DMS sense.

63

JENV V9.0A

4.2.2.8 Methods for generating files and directories

The createNewFile() methods generate a new file with the path name of the RecordFile object using the specified
access parameters or the default parameters of the specified access method.

Special features of the DMS file system

When a file is generated, it is opened exclusively and then closed. Any shared update option set in the access
parameters is ignored. The shared update option does not
takes effect until the file is opened for processing.

The static methods createTempFile() provide the option of creating temporary files using the specified access
parameters. A temporary file has a generated name which definitely does not already exist in the file system. The
file is either created in the specified directory or, if no directory was specified, in a file-system-specific directory. The
file is not automatically deleted; the user must call the deleteOnExit() method if the file is to be deleted when the
application is terminated. The name is formed from the user’s prefix and suffix specifications and a string generated
on a file-system-specific basis.

Special features of the DMS file system

No temporary files in the usual DMS sense are generated, but always permanent files which users must delete
themselves. The file-system-specific directory always refers to the default catalog ID of the calling user. The
directory parameter can be used in the DMS file system to generate temporary files on a different catalog ID
from the default catalog ID.

When a temporary file is generated, it is opened exclusively and then closed. Any shared update option set in
the access parameters is ignored. The shared update option does not take effect until the file is opened for
processing.

The mkdir() method creates a directory with the name of this object in the associated file system.
Special features of the DMS file system
No directories can be created.
The mkdirs() method creates a directory including all the necessary parent directories in the associated file system.
Special features of the DMS file system

No directories can be created.

64

JENV V9.0A

4.2.2.9 Methods for deleting and renaming files and directories

The renameTo() method renames this file or directory in the specified path names. The target file may not already
exist. Renaming is only possible within a file system.

(D The Record-File object itself, stays assigned to the old name, thus it may not represent an existing file
afterwards.
Special features of the DMS file system
It is not possible to rename directories. Files can only be renamed if the same catalog ID and user ID are used.

The delete() method deletes this file or directory in the associated file system. If the path name designates a
directory, this can only be deleted if it is empty.

Special features of the DMS file system
Directories cannot be deleted.

The deleteOnExit() method ensures that this file or directory is deleted in the associated file system when the
application is terminated. Deletions are only performed if the application terminates normally.

Special features of the DMS file system

Directories cannot be deleted.

65

JENV V9.0A

4.2.2.10 Methods for listing directories

The list() methods return a list of all or selected names of files and directories in the directory which this RecordFile
object represents. The file/directory names are returned without parent directories. The order of the names returned
is not defined. The files and directories returned can be selected using a filter (see RecordfilenameFilter in chapter

"API overview").

Name Results

:JAVA: Only the home user ID, for example $USER. , for non-privileged users or all user IDs in the
pubset JAVA for a privileged user

:JAVA:HALLO. Empty as no directory was specified

JAVA

$USER. Visible files of the user ID USER in their default catalog ID
$. Visible files of the standard system 1D

:JAVA:S. Visible files of the standard system ID on the pubset JAVA

Table 3: Sample DMS file system

The listFiles() methods return an array of RecordFile objects with path names of files or directories in the directory
which is represented by the path name of this RecordFile object. The path names created are created from the
directory itself and the file and directory names that are ascertained. The order of the names is not defined. The
files and directories returned can be selected using filters (see RecordFilenameFilter and RecordFileFilter in chapter
"API overview").

The list() and listFiles() methods can provide an application with information on file names that do not belong to their
actual area. These methods are therefore monitored by an active Security Manager. Consequently, they are
allowed only if the application has read permission for the corresponding directory (see section "Security").

The static method listRoots() returns a list of all file system prefixes (“roots”) for the specified file system. It is
guaranteed that the canonical path name of a file that actually exists physically begins with one of the prefixes
returned by listRoots().

The listRoots() method provides an application with information on the structure of the file system. If a Security
Manager is active, only the roots for which read permission has been granted are shown. If you want the application
to be able to determine all roots, you must grant the application read permission for

<<ALL FILES>> (see section "Security").

Special features of the DMS file system

A list of all accessible catalog IDs is returned.

66

JENV V9.0A

4.2.3 AccessParameter

The AccessParameter class and the classes derived from it define all parameters required to access record-
oriented files (and which are supported) and contain at least the access method used and the associated file
system, plus the default parameters record format and record length.

The access-method-specific implementations of this class can define additional parameters and then offer methods
for setting and inquiring the values of these parameters. The subsections below describe the general methods
which every implementation must provide, as well as the specific methods for the access methods currently
supported.

Objects of the access-method-specific implementations of the AccessParameter class can be used to create new
files in the corresponding file system using the relevant access method. Internally such objects are also used for

other accesses to files (for example to open files). They can only be used to generate files in the file system from
which they originate.

Objects of this abstract class cannot be generated by the user. However, the recordFile class provides the
getAccessParameter() and getDefaultAccessParameter() methods which you can use to have objects of the access-
method-specific implementations of this class returned.

Inadmissible values in the individual parameters are generally not discovered when the values are entered in the
Parameter object, but only when this object is used.

67

JENV V9.0A

4.2.3.1 General parameter methods

The getFileSystem() method returns the name of the associated file system.
The getAccessMethod() method returns the name of the access method to which this Parameter object belongs.

In addition, each implementation must provide the getRecordFormat(), setRecordFormat(), getRecordLength() and
setRecordLength() methods. These are not dealt with here because the specific details are described in the
following sections.

The constants RECORD_FORMAT_UNKNOWN, RECORD_FORMAT_FIXED and RECORD_FORMAT_VARIABLE
are used as arguments when calling the setRecordFormat() method. Their meanings as used in their specific
access methods are explained below.

The constants NO_WAIT, THREAD_WAIT and APPLICATION_WAIT are used as arguments in shared update
processing when calling the method setWaitMode(). Their meanings as used in their specific access methods are
explained below.

68

JENV V9.0A

4.2.3.2 Parameters for SAM in DMS

The AccessParameterSAM class in the com.fujitsu.ts.jrio. DMS package provides a raft of additional methods for
setting and inquiring further parameters which are specific to this access method.

Objects of this abstract class cannot be generated by the user. However, the RecordFile class provides the
getAccessParameter() and getDefaultAccessParameter() methods via which the user can receive objects of this
class’s implementation.

Inadmissible values in the individual parameters are generally not discovered when the values are entered in the
Parameter object, but only when this object is used.

The getRecordFormat() method returns the record format stored in this parameter object. The setRecordFormat()
method sets the record format in this Parameter object. RECORD_FORMAT_FIXED and
RECORD_FORMAT_VARIABLE can be specified when SAM is used. This parameter corresponds to the
RECFORM specification in DMS.

The getRecordLength() method returns the record length stored in this parameter object. The setRecordLength()
method sets the record length in this Parameter object. This parameter corresponds to the RECSIZE specification
in DMS. In conjunction with fixed record format, this parameter defines the exact length of each record in a file. With
variable record format it defines the maximum length of each record. The length specification 0 is then permitted
and means unlimited record length. The DMS/SAM-specific restrictions and dependencies on other parameters
(record format, block length) naturally apply as much for JRIO as at other DMS interfaces.

The getBlockSize() method returns the block length stored in this parameter. The setBlockSize() method sets the
logical block length (as a number of PAM blocks) in this parameter object. This parameter corresponds to the
BLKSI ZE=(STD, n) specification in DMS. The dependencies on the record length naturally apply as much for JRIO
as at other DMS interfaces.

The getBlockControl() method returns the block format stored in this parameter. This parameter corresponds to the
BLKCTRL specification in DMS. The setBlockControl() method sets the block format in this parameter object.
BLOCK_CONTROL_BY_PUBSET, BLOCK_CONTROL_DATA, BLOCK_CONTROL_NO,
BLOCK_CONTROL_PAMKEY, BLOCK_CONTROL_DATA_2K and BLOCK_CONTROL_DATA_4K can be
specified. This parameter is only of significance when new files are generated.

The getPrimarySpaceAllocation() method returns the value stored in this parameter for the primary space allocation
in a file. The setPrimarySpaceAllocation() method sets the value for the primary space allocation of a file in this
parameter object. This parameter corresponds to the first part of the SPACE specification in DMS.

The getSecondarySpaceAllocation() method returns the value stored in this parameter for the secondary space
allocation in a file. The setSecondarySpaceAllocation() method sets the value for the secondary space allocation in
a file in this Parameter object. This parameter corresponds to the second part of the SPACE specification in DMS.

The SAM access method enables a file to be opened simultaneous for read-only access by multiple applications.
For this reason, shared update processing is not possible for SAM files.

69

JENV V9.0A

4.2.3.3 Parameter method for ISAM in DMS

The AccessParameterlSAM class in the com.fujitsu.ts.jrio.DMS package provides a raft of additional methods for
setting and inquiring further parameters which are specific to this access method.

Objects of this abstract class cannot be generated by the user. However, the RecordFile class provides the
getAccessParameter() and getDefaultAccessParameter() via which the user can receive objects of this class’s
implementation.

Inadmissible values in the individual parameters are generally not discovered when the values are entered in the
parameter object, but only when this object is used.

The getRecordFormat() method returns the record format stored in this parameter object. The setRecordFormat()
method sets the record format in this Parameter object. RECORD_FORMAT_FIXED and

RECORD_FORMAT _VARIABLE can be specified when ISAM is used. This parameter corresponds to the
RECFORM specification in DMS.

The getRecordLength() method returns the record length stored in this parameter object. The setRecordLength()
method sets the record length in this parameter object. This parameter corresponds to the RECSIZE specification in
DMS. In conjunction with fixed record format, this parameter defines the exact length of each record in a file. With
variable record format it defines the maximum length of each record. The length specification 0 is then permitted
and means unlimited record length. The DMS/SAM-specific restrictions and dependencies on other parameters
(record format, block length) naturally apply as much for JRIO as at other DMS interfaces.

The getBlockSize() method returns the block length stored in this parameter object. The setBlockSize() method sets
the logical block length (as a number of PAM blocks) in this parameter object. This parameter corresponds to the
BLKSIZE=(STD,n) specification in DMS. The dependencies on the record length naturally apply as much for JRIO
as at other DMS interfaces.

The getBlockControl() method returns the block format stored in this parameter object. This parameter corresponds
to the BLKCTRL specification in DMS. The setBlockControl() method sets the block format in this parameter object.
BLOCK _CONTROL_BY PUBSET, BLOCK_CONTROL_DATA, BLOCK_CONTROL_NO,
BLOCK_CONTROL_PAMKEY, BLOCK_CONTROL_DATA_2K and BLOCK_CONTROL_DATA_4K can be
specified. This parameter is only of significance when new files are generated.

The getSharedUpdate() method returns true or false depending on whether simultaneous processing of a file by
multiple applications (shared update processing) is permitted (or is to be permitted) or is prohibited (or is to be
prohibited) with the parameter object. The setSharedUpdate() method specifies whether shared update processing
for afile is to be allowed (setSharedUpdate(true)) or not (setSharedUpdate(false)) with the parameter object. The
parameter is relevant only when a file is opened. It corresponds to the SHARUPD specification in DMS.

The getWaitMode() method returns the setting stored in the parameter object to control the behavior of the
application in the event of conflicts during shared update processing for a file opened with the parameter object.

The setWaitMode() method controls the behavior of the application in the event of conflicts during shared update
processing for a file. The specifications NO_WAIT, THREAD_WAIT and APPLICATION_WAIT are possible.
NO_WAIT causes the application not to wait for granting of the lock and causes a RecordLockedException to be
triggered in the event of a lock.

THREAD_WAIT causes the thread to be placed in a wait state. After expiry of a (brief, internally specified) wait time,
repeated attempts are made to receive a lock until this succeeds or the application is terminated.
APPLICATION_WAIT causes the entire application to wait at the system interface for the granting of the lock. The
wait time at the interface is limited by the operating system to approx. 12 hr. After this period and after expiry of a
(brief, internally specified) wait time, the system call is repeatedly issued until the lock is received or the application

70

JENV V9.0A

is terminated. This parameter has no direct equivalent in DMS because the wait behavior with ISAM shared update
can only be controlled by means of the EXLST mechanism.

The getPrimarySpaceAllocation() method returns the value stored in this parameter object for the primary space
allocation in a file. The

setPrimarySpaceAllocation() method sets the value for the primary space allocation of a file in this parameter
object. This parameter corresponds to the first part of the SPACE specification in DMS.

The getSecondarySpaceAllocation() method returns the value stored in this parameter object for the secondary
space allocation in a file. The

setSecondarySpaceAllocation() method sets the value for the secondary space allocation of a file in this parameter
object. This parameter corresponds to the second part of the SPACE specification in DMS.

The getPrimaryKeyPosition() method returns the value stored in this parameter object for the key position of an
ISAM file. The setPrimaryKeyPosition() method sets the value for the key position of an ISAM file in this parameter
object. This parameter corresponds to the KEYPOS specification in DMS but with the difference that the numbering
of the positions in JRIO deviates from that of other DMS interfaces (see section "Record").

The getPrimaryKeyLength() method returns the value stored in this parameter for the key length of an ISAM file.
The setPrimaryKeyLength() method sets the value for the key length of an ISAM file in this parameter object. This
parameter corresponds to the KEYLEN specification in DMS.

The getDuplicateKeyindicator() method returns the value stored in this parameter for permitting duplication of the
same key values in an ISAM file. The

setDuplicateKeylndicator() method sets the value for permitting duplication of the same key values in an ISAM file in
this parameter object. This parameter corresponds to the DUPEKY specification in DMS.

71

JENV V9.0A

4.2.3.4 Parameter methods for UPAM in DMS

The AccessParameterUPAM class in the com.fujitsu.ts.jrio. DMS package provides a raft of additional methods for
setting and inquiring further parameters which are specific to this access method.

Objects of this abstract class cannot be generated by the user. However, the RecordFile class provides the
getAccessParameter() and getDefaultAccessParameter() via which the user can receive objects of this class’s
implementation.

Inadmissible values in the individual parameters are generally not discovered when the values are entered in the
parameter object, but only when this object is used.

The getRecordFormat() method returns the record format stored in this parameter object. The setRecordFormat()
method sets the record format in this parameter object. Only RECORD_FORMAT_FIXED is permitted in UPAM.

The getRecordLength() method returns the record length stored in this parameter object. The setRecordLength()
method sets the record length in this parameter object. For UPAM, the record length is always identical to the
logical block length in bytes. Thus only values which are multiples of 2048 are permitted.

The getBlockControl() method returns the block format stored in this parameter object. This parameter corresponds
to the BLKCTRL specification in DMS. The setBlockControl() method sets the block format in this parameter object.
BLOCK_CONTROL_BY_PUBSET, BLOCK_CONTROL_DATA, BLOCK_CONTROL_NO,
BLOCK_CONTROL_PAMKEY, BLOCK_CONTROL_DATA_2K and BLOCK_CONTROL_DATA_4K can be
specified. This parameter is only of significance when new files are generated.

The getPrimarySpaceAllocation() method returns the value stored in this parameter object for the primary space
allocation in a file. The setPrimarySpaceAllocation() method sets the value for the primary space allocation of a file
in this parameter object. This parameter corresponds to the first part of the SPACE specification in DMS.

The getSecondarySpaceAllocation() method returns the value stored in this parameter object for the secondary
space allocation in a file. The setSecondarySpaceAllocation() method sets the value for the secondary space
allocation of a file in this parameter object. This parameter corresponds to the second part of the SPACE
specification in DMS.

The getSharedUpdate() method returns true or false depending on whether simultaneous processing of a file by
multiple applications (shared update processing) is permitted (or is to be permitted) or is prohibited (or is to be
prohibited) with the parameter object. The setSharedUpdate() method specifies whether shared update processing
for a file is to be allowed (setSharedUpdate(true)) or not (setSharedUpdate(false)) with the parameter object. The
parameter is relevant only when a file is opened. It corresponds to the SHARUPD specification in DMS.

The getWaitMode() method returns the setting stored in the parameter object to control the behavior of the
application in the event of conflicts during shared update processing for a file opened with the parameter object.
The setWaitMode() method controls the behavior of the application in the event of conflicts during shared update
processing for a file. The specifications NO_WAIT, THREAD _WAIT and APPLICATION_WAIT are possible.
NO_WAIT causes the application not to wait for granting of the lock and causes a RecordLockedException to be
triggered in the event of a lock.

THREAD_WAIT causes the thread to be placed in a wait state. After expiry of a (brief, internally specified) wait time,
repeated attempts are made to receive a lock until this succeeds or the application is terminated.
APPLICATION_WAIT causes the entire application to wait at the system interface for the granting of the lock. The
wait time at the interface is limited by the operating system to approx. 12 hr. After this period and after expiry of a
(brief, internally specified) wait time, the system call is repeatedly issued until the lock is received or the application
is terminated. This parameter has no direct equivalent in DMS because the wait behavior with UPAM shared update
can only be controlled by means of the PAMTOUT value.

72

JENV V9.0A

4.2.4 Sequential data processing

Separate interface groups for input and output are available for the sequential processing of files or other media
which contain data records. The structure, designation and functionality of these interfaces is based on the classes
known from the normal package java.io for sequential input/output familiar from normal Java /0.

73

JENV V9.0A

4.2.4.1 InputRecordStream

The abstract class InputRecordStream is the base class for all implementations of classes which permit sequential
reading of records. The JRIO API provides two implementations of this abstract class, the FilelInputRecordStream
class for sequential reading from a file, and the ArrayinputRecordStream class for sequential reading from an array
of Record objects.

The abstract class specifies the implementation of methods for sequential reading and skipping of records and for
closing the file, as well as a method group for elementary repositioning (mark/reset), but which need not necessarily
be supported by implementations.

The methods of the abstract class are not described in more detail here, but explained with the individual
implementations. The APl documentation contains this description for users who wish to define their own
implementations.

74

JENV V9.0A

4.2.4.2 FilelInputRecordStream

A FilelnputRecordStream object represents a file that has been opened for sequential read access. The file is
opened implicitly when the object is created (see section "Opening and closing a file").

The FilelnputRecordStream class offers methods for reading and skipping records and for closing the file. The
method group for positioning is present, but provides no functionality.

The file that is to be opened must already exist in the underlying file system. The createNewFile() method of the
RecordFile class must be used to generate a file.

For a file opened for sequential read access a current file position is always defined at which the next read
operation is performed. The current file position is defined by the number of the record in accordance with the order
of the records in this file, the records of a file being numbered starting with 0. After the file has been opened the
current file position is the start of the file.

Opening and closing afile

When a FilelnputRecordStream object is constructed, the file specified as RecordFile object is opened in read mode
with the specified access method or with the specified access parameters. The file must exist in the underlying file
system and the access method must belong to this file system and must be permissible for this file. The user must
possess the access rights which permit the file to be read. If a Security Manager is active and its restrictions do not
allow the file to be read, an exception is triggered (see section "Security").

If access parameters are specified for opening the file, these are taken into account when the file is opened
provided the file parameters do not have priority. After the file has been opened, the parameters are updated with
the corresponding values of the opened file.

The close() method closes the file. Subsequently no I/O operations can be performed via this
FilelnputRecordStream object.

Special features of the DMS file system

Shared update processing (see section "Shared update processing” and section "AccessParameter”) of a
FileInputRecordStream is possible with the ISAM and UPAM access methods. However, with UPAM only PAM
files can be opened in shared update processing. Because the file is opened for reading only, all accesses are
made without locks. As a result, no access conflicts can arise. However, it must be expected that another
application changes the contents of the record in the meantime.

Methods for reading records

The read method is offered in two variants, one in which the record read is provided as a result in a newly
generated Record object, and a second in which a Record object transferred by the calling program as an argument
is filled with the data of the record read.

When a record buffer is created, it has precisely the same size as the data read. If the calling program provides the
Record object, it must ensure that the record buffer is large enough to contain the data of the record to be read. If
the specified record buffer is too small to contain all the data, an exception is triggered and no data is transferred.

The read() methods read the record at the current file position. The current file position is subsequently incremented
by one, in other words the next record is automatically positioned on.

The skip() method enables the specified number of records in the file to be skipped. It may be the case that it is not
possible to skip exactly the number of records specified (for example if there are no longer enough records in the
file). The return value of skip() specifies the actual number of records that are skipped.

75

JENV V9.0A

The available() method returns the minimum number of records that can be read without blocking. But even the
result null, which is often returned if it is impossible or difficult to determine whether a read attempt leads to a wait
state (of the thread), does not justify the assumption that the next call of read() or skip() will actually lead to such a
wait state.

Methods for positioning

The markSupported() method provides information on whether marking or repositioning is supported for this file. As
with the java.io.FilelnputStream class, positioning is currently not supported for objects of this class, in other words
this method always returns false.

The mark() method is present, but has no function.
Calling reset() results in an exception as this functionality is currently not supported.

76

JENV V9.0A

4.2.4.3 ArraylnputRecordStream

An ArraylnputRecordStream object represents an array of Record objects opened for sequential read access.
Opening takes place implicitly when an object is generated (see "Opening and closing"), but has no further meaning
here as it would with files.

The ArraylnputRecordStream class offers methods for reading and skipping records. The method group for
positioning is also supported in full.

Within the array from which is read a current read position is always defined at which the next read operation is
performed. The current read position is defined by the number of the record in the array, the numbering of the
records starting with zero. After opening, the current read position is zero.

Opening and closing

When an ArraylnputRecordStream object is constructed, the calling program provides the array with data records
which are to be read later. This array is used directly and not copied, in other words any manipulations on this array
or the records contained in it have a direct affect on the ArraylnputRecordStream object. With a second variant of
the constructor the user can make part of an array with records (defined by offset and length) available for input.

The close() methods is present, but has no function for this class.

Methods for reading records

The read method is offered in two variants, one in which the record read is provided as a result in a newly
generated Record object, and a second in which a Record object transferred by the calling program as an argument
is filled with the data of the record read.

When a record buffer is created, it has precisely the same size as the data read. If the calling program provides the
Record object, it must ensure that the record buffer is large enough to contain the data of the record to be read. If
the specified record buffer is too small to contain all the data, an exception is triggered and no data is transferred.

The read() methods read the record at the current read position. The current read position is subsequently
incremented by one, in other words the next record in the array is automatically positioned on.

The skip() method enables the specified number of records in the array to be skipped. It may be the case that it is
not possible to skip exactly the number of records specified because the array no longer contains enough records.
The return value of skip() specifies the actual number of records that are skipped.

The available() method returns the number of records which can still be read before the end of the array is reached.
Reading from an array of records never leads to wait states.

Methods for positioning

The markSupported() method provides information on whether marking or repositioning is supported for this data
stream. In this class this method always returns true.

The mark() method notes the current read position so as to be able to reposition to it later. The argument envisaged
for mark() is ignored in this implementation and should always be specified as 0.

Calling reset() repositions the pointer to a read position previously noted with mark().

7

JENV V9.0A

4.2.4.4 OutputRecordStream

The abstract class OutputRecordStream is the base class for all implementations of classes which permit sequential
writing of records. The JRIO API provides two implementations of this abstract class, the FileOutputRecordStream
class for sequential writing to a file, and the ArrayOutputRecordStream class for sequential writing to an array of
Record objects.

This abstract class specifies the implementation of methods for sequential writing of records and for closing the file.

The methods of the abstract class are not described in more detail here, but explained with the individual
implementations. The API documentation contains this description for users who wish to define their own
implementations.

78

JENV V9.0A

4.2.4.5 FileOutputRecordStream

A FileOutputRecordStream object represents a file that has been opened for sequential write access. The file is
opened implicitly when the object is created (see section “Opening and closing a file” below).

The FileOutputRecordStream class offers methods for writing records and for closing the file. In a file opened for
sequential write access, records are always added at the end.

The file that is to be opened must already exist in the underlying file system. The createNewFile() method of the
RecordFile class must be used to generate a file.

Opening and closing afile

When a FileOutputRecordStream object is constructed, the file specified as RecordFile object is opened in write
mode with the specified access method or with the specified access parameters. Users can decide whether or not
any content the file may have should be deleted when the file is opened.

The file must already exist in the underlying file system and the access method must belong to this file system and
must be permissible for this file. The user must possess the access rights which permit writing. If a Security Manager
is active and its restrictions mean that writing is not permitted for the file, an exception is triggered (see section
"Security").

If access parameters are specified for opening the file, these are taken into account when the file is opened
provided the file parameters do not have priority. After the file has been opened, the parameters are updated with
the corresponding values of the opened file.

The close() method closes the file. Subsequently no 1/0 operations can be performed via this
FileOutputRecordStream object.

Special features of the DMS file system

Shared update processing (see section "Shared update processing” and section "AccessParameter”) for a
FileOutputRecordStream is only possible with the ISAM access method if an existing file is opened in order to
add to it. Other applications cannot then also open the file as FileOutputRecordStream. You are generally
advised not to use shared update processing in conjunction with FileOutputRecordStream. In exceptional
cases, simultaneous opening as FilelnputRecordStream may be useful.

Methods for writing records

The write() method writes a record after the last record in the file. A lock is implicitly requested when shared update
processing is used. This can trigger a RecordLockedException or, depending on the option set with setWaitMode(),
can cause the thread or the entire application to wait in the event of access conflicts. The lock is released after
completion of the write operation.

The flush() method ensures that all the records written with write() are actually output into the file, even if the basic
access method envisages buffering the outputs. An existing lock for this file is released if shared update processing
is used.

79

JENV V9.0A

4.2.4.6 ArrayOutputRecordStream
An ArrayOutputRecordStream object represents an array of Record objects opened for sequential write access. The
array is created implicitly when it is opened (see "Opening and closing") and expands with the data written into it.

The ArrayOutputRecordStream class offers methods for reading records. When writing, records are always added
at the end of the array. In addition, this class also offers methods to fetch the entire contents of the data stream, to
delete the contents, or to inquire the size.

Opening and closing

When an ArrayOutputRecordStream object is constructed, an array is provided internally into which records are
later to be written. When doing this, the calling program can specify how many records the array should initially
receive. If it does not do this, a default size is assumed. However, if this size is not sufficient to accommodate the
records, the array is automatically enlarged internally.

The close() method is present, but has no function.

Methods for writing records

The write() method adds a record after the last record in the array.
The flush() method is present, but has no function for this class.
Methods for access to the content of a data stream

The size() method returns the number of records in the array.

The reset() method enables the entire contents of the array to be deleted. The array itself is retained unchanged in
size and is refilled when further write() calls are made.

The toRecordArray() method returns the entire current contents of the data stream as an array of Record objects.
The array returned is, in contrast to the one used internally, of exactly the size required to contain the data. The
individual records are not copied here, which means that manipulation of the record contents has an effect on the
content of the data stream.

The writeTo() method writes the entire current contents of the data stream into another specified data stream. Every
data stream whose implementation is derived from the abstract class OutputRecordStream is suitable for this.

80

JENV V9.0A

4.2 5 RandomAccessRecordFile

A RandomAccessRecordFile object represents a file opened for random access. The file is opened implicitly when
the object is generated (see section "Opening and closing a file" below).

The RandomAccessRecordFile class offers methods for reading and writing records and for shortening and
extending this file. There are also methods for positioning and for closing the file.

The file that is to be opened must already exist in the underlying file system. The createNewFile() method of the
RecordFile class must be used to generate a file.

For a file that has been opened for random access a current file position is always defined at which the next read or
write operation takes place. The current file position is defined by the number of the record in accordance with the
sequence of records in this file, the records being numbered starting with zero. The current file position after the file
is opened is the start of file.

When a file is opened for random access, the specific access direction can be restricted and deletion of the
contents of an existing file can be requested.

The following open modes are permitted with this class:

* INPUT
After the file has been opened only read operations are permitted.

® OUTIN
After the file has been opened both write and read operations are permitted. The entire file contents are deleted
when the file is opened.

* INOUT
After the file has been opened both read and write operations are permitted. The file contents remain unchanged
when the file is opened.

After the file has been closed the RandomAccessRecordFile object should no longer be used.

81

JENV V9.0A

4.2.5.1 Opening and closing a file

When a RandomAccessRecordFile object is constructed, the file specified as RecordFile object is opened in the
specified mode with the specified access method or with the specified access parameters.

The file must already exist in the underlying file system and the access method must belong to this file system and
must be permissible for this file. The user must possess the necessary access rights to the file for the specified
open mode. If a Security Manager is active and its restrictions for this file conflict with the specified open mode, an
exception is triggered (see section "Security").

If access parameters are specified for opening the file, these are taken into account when the file is opened
provided the file parameters do not have priority. After the file has been opened, the parameters are updated with
the corresponding values of the opened file.

The close() method closes the file. Subsequently no 1/O operations can be performed via this
RandomAccessRecordFile object.

Special features of the DMS file system

Shared update processing (see section "Shared update processing” and section "AccessParameter”) for a
RandomAccessRecordFile is possible with the UPAM access method only for PAM files in the INPUT and
INOUT open modes. If the file was opened in INPUT open mode, all accesses are made without locks.
Consequently, no access conflicts can arise. However, it must be expected that another application changes
the contents of the record in the meantime. In the INOUT open mode, read and write accesses are made with
an implicit lock. In the event of access conflicts the option set using setWaitMode() can trigger a
RecordLockedException or cause the thread or the entire application to wait. Locks are implicitly released
when the locked record is written but can also be explicitly released using flush(). Details are provided in the
appropriate interface description in the shipped JAVADOC documentation.

82

JENV V9.0A

4.2.5.2 Methods for reading records

The read method is offered in two variants, one in which the record read is provided as a result in a newly
generated Record object, and a second in which a Record object transferred by the calling program as an argument
is filled with the data of the record read.

When a record buffer is created, it has precisely the same size as the data read. If the calling program provides the
Record object, it must ensure that the record buffer is large enough to contain the data of the record to be read. If
the specified record buffer is too small to contain all the data, an exception is triggered and no data is transferred.

The read() methods read the record at the current file position. The current file position is subsequently incremented
by one, in other words the next record in the array is automatically positioned on.

83

JENV V9.0A

4.2.5.3 Methods for writing records

The write() method writes a record into the file at the current file position. Any existing record is overwritten, but only
if the restrictions applicable for the access method (for example same record length) are complied with. If the
current file position is the end of file (or after this), the file is extended. After writing, the current file position is the
record after the written record or the end of file.

In shared update processing, an existing record can only be changed safely (when there are competing
applications) if the record lock implicitly set when reading is not released between reading and writing - in particular,
no other record must be read or written in the meantime. You should therefore follow a corresponding sequence of
actions in shared update processing; however, no check of this sequence is made.

The flush() method ensures that all records written with write() are output to the file even if the underlying access
method provides buffering. Shared update processing also ensures that a lock received for a file by the application
is released.

Special features of the DMS file system

When shared update processing is used in the DMS file system, information on the current end-of-file cannot
be synchronized between participating applications. Simultaneous extension of RandomAccessRecordFiles by
multiple applications is not therefore recommended.

84

JENV V9.0A

4.2.5.4 Methods for positioning and changing size

The getCurrentRecordNumber() method returns the current file position as a record number.

The setCurrentRecordNumber() method sets the current position of the file to the record with the specified number.
The special constants POS_FIRST and POS_LAST can be used to position to the start or end of file.

The getRecordCount() method returns the number of records in the file. That is simultaneously the position of the
end of file.

The setRecordCount() method modifies the size of the file to the number of records specified. If the specified
number of records is less than the current number of records in the file, the file is shortened so that it only contains
as many records as specified. If in this case the current file position was greater than the new file size, the current
file position is set to the new end of file. If the specified number of records is greater than the current number of
records in the file, the file can be extended. An access method can reject such a file extension, for example for files
with variable record format. When the operation has been executed, the content of the newly added records is
undefined.

Special features of the DMS file system

When shared update processing is used in the DMS file system, it is not possible to reduce the size of a file.
This would trigger an IOException.

When shared update processing is used in the DMS file system, information on the current end-of-file cannot
be synchronized between patrticipating applications. Simultaneous extension of RandomAccessRecordFiles by
several applications is not therefore recommended. Nevertheless, the locks are set as if the file were being
extended by writing individual records on after the other.

85

JENV V9.0A

4.2.6 Indexed-sequential data processing

Keys play a very central role in indexed-sequential data processing.

Keys define the order of the records within an indexed-sequential file. A key is always part of a record and is
defined by the key field (position and length) within each record of an indexed-sequential file. The content of a key
field is the key value. In addition, a key can have a name if, for example, this is necessary to distinguish different
keys in an implementation.

A distinction is made between primary and secondary keys. Each indexed-sequential file always has precisely one
primary key and can have one or more secondary keys. Secondary keys must always have a unique name. If a file
has several keys, each of these keys may define a different order.

Identical key values in different records are permitted for a key.

Special features of the BS2000 access method ISAM

For ISAM files, an unnamed primary key is always defined. Only for NK-ISAM files can several secondary keys (up
to 30) be defined in addition. The secondary keys must always have a unique name (up to 8 characters). The
restrictions which apply for ISAM (for example regarding key length) must naturally also be taken into account when
the JRIO interfaces are used. Identical secondary keys in different records are only permissible if no identical key
values are permitted in different records for the primary key and if and if identical key values in different records
have already been permitted for all other secondary keys.

The marking options (value flag and logical marking) which ISAM offers are not supported by JRIO.

Note that at the ISAM DMS interfaces, positions within a record, in particular key positions, can be numbered
differently than at the JRIO interfaces (see section "Record").

86

JENV V9.0A

4.2.6.1 KeyDescriptor

The KeyDescriptor class defines the position, length and other attributes of a particular key field within a record of
an indexed-sequential file (key definition). It provides methods for accessing these key attributes of an indexed-
sequential file.

A KeyDescriptor object is used for generating or extracting a concrete key value. Appropriate implementations of
this abstract class are provided for ISAM. You can thus generate such KeyDescriptor objects themselves or have
them provided via the methods of the KeyedAccessRecordFile class.

If you are working on an ISAM file with key definitions they have generated themselves, you must naturally ensure
that these fit the keys defined in the file.

A KeyDescriptor object is serializable and can thus be used for Remote Method Interfaces (RMIs).

Methods
The getPosition() method returns the position of the key field in a record.

The getLength() method returns the length of the key field.

The getName() method returns the name of a named key, or null for unnamed keys. Thus with secondary keys the
unigue name is always returned. In the case of the primary key, whether or not a name is returned depends on the
implementation.

The hasDuplicates() method is used to check whether identical key values are permitted in different records for the
key concerned.

Whether the key is a primary or secondary key is checked using the isPrimary() or isSecondary() method.

PrimaryKeyDescriptorISAM

The PrimaryKeyDescriptorISAM class in the com.fujitsu.ts.jrio. DMS package is an implementation of the abstract
class KeyDescriptor and represents the primary key of an ISAM file. The class offers only those methods which the
abstract class specifies, as well as constructors for generating the key definitions. The following particular features
apply for ISAM:

® The key position must be a value between 0 and 32767. However, this does not mean that these values always
make sense. The values actually used for I/0O depend on other factors (block size, record format, key length), but
these cannot be checked by the constructor.

® The length of the key must be a value between 1 and 255.

® The primary ISAM key does not have a name, and the getName() method therefore always returns null.

SecondaryKeyDescriptorISAM

The SecondaryKeyDescriptorISAM class in the com.fujitsu.ts.jrio. DMS package is an implementation of the abstract
class KeyDescriptor and represents a secondary key of an ISAM file. The class offers only those methods which the
abstract class specifies, as well as constructors for generating the key definitions. The following particular features
apply for ISAM:

® The key position must be a value between 0 and 32767. However, this does not mean that these values always
make sense. The values actually used for I/0O depend on other factors (block size, record format, key length), but
these cannot be checked by the constructor.

® The length of the key must be a value between 1 and 127.

® A secondary ISAM key must have a unique name up to 8 characters in length which complies with the DMS
rules. Upper/lower case is ignored in these names, and a name is always returned in upper case by getName().

87

JENV V9.0A

88

JENV V9.0A

4.2.6.2 KeyValue

The KeyValue class defines an actual key value. Every key value has a key definition associated with it. This class
provides methods for manipulating the key value and for inquiring the attributes of the associated key description.

A KeyValue object can be used to select a record in an indexed-sequential file using this key.A KeyValue object is
serializable can thus be used for Remote Method Interfaces (RMIs).

Constructors

When a KeyValue object is generated, the key value is filled with the user’s data. This data can be specified as a
byte array or string. If the user specifies no data or the data specified is shorter than the key, the complete key
value is padded with null bytes or blanks. If the data is longer than the key, only as much data is transferred as will
fit in the key.

If the user specifies the data as a string but specifies no encoding for converting text to data, the system-dependent
standard encoding (in BS2000 the default value is OSD_EBCDIC_DF04 1) is used.

Methods for manipulating the key value

The setValue() methods fill the key with the specified user data. If the user specifies no data, the entire key value is
filled with null bytes. If the data is shorter than the key, the rest is filled with a filler byte. The filler byte can be
supplied by the user, otherwise a null byte is used. If the data is longer than the key, only as much data is
transferred as will fit in the key.

The setStringValue() methods fill the key with the converted data of the specified string. If the user specifies no
data, the entire key value is filled with blanks. If the data is shorter than the key, the rest is filled with blanks. If the
data is longer than the key, only as much data is transferred as will fit in the key.

If no encoding for converting text to data was specified by the user, the system-dependent standard encoding (in
BS2000 the default value is OSD_EBCDIC _DF04_1) is used.

The getValue() methods are used to return the key value of a key. The key value is either transferred to a buffer
provided by the user or returned as a copy of the value. As the key value is therefore always copied, this means
that manipulations on the result returned have no influence on the object from which the value originates. If the
value in the object is to be modified, the setValue() method must subsequently be used.

With the getStringValue() methods, the key value of a key is returned converted into a string. If no encoding for
converting text to data was specified by the user, the system-dependent standard encoding (in BS2000 the default
value is OSD_EBCDIC _DF04_1) is used.

Methods for determining the key attributes
The getPosition() method returns the position of the key field in a record.

The getLength() method returns the length of the key field.
The getKeyDescriptor() method returns the key definition associated with the key value.

89

JENV V9.0A

4.2.6.3 KeyedAccessRecordFile

A KeyedAccessRecordFile object represents a file opened for keyed access. The file is opened implicitly when the
object is generated (see section "Opening and closing a file").

The KeyedAccessRecordFile class offers methods for reading, writing and deleting records in this file. There are
also methods for handling keys and for closing the file.

The file that is to be opened must already exist in the underlying file system. The createNewFile() method of the
RecordFile class must be used to generate a file.

When a file is opened for keyed access, the specific access direction can be restricted and deletion of the contents
of an existing file can be requested.

The following open modes are permitted with this class:

* INPUT
After the file has been opened only read operations are permitted.

®* OUTIN
After the file has been opened both write and read operations are permitted. The entire file contents are deleted
when the file is opened.

* INOUT
After the file has been opened both read and write operations are permitted. The file contents remain unchanged
when the file is opened.

After the file has been closed the KeyedAccessRecordFile object should no longer be used.

Opening and closing afile

When a KeyedAccessRecordFile object is constructed, the file specified as RecordFile object is opened in the
specified mode with the specified access method or with the specified access parameters.

The file must already exist in the underlying file system and the access method must belong to this file system and
must be permissible for this file. The user must possess the necessary access rights to the file for the specified
open mode. gegebenen Open-Modus erforderlichen Zugriffsrechte auf die Datei besitzen. If a Security Manager is
active and its restrictions for this file conflict with the specified open mode, an exception is triggered (see section
"Security").

If access parameters are specified for opening the file, these are taken into account when the file is opened
provided the file parameters do not have priority. After the file has been opened, the parameters are updated with
the corresponding values of the opened file.

The close() method closes the indexed-sequential file. Subsequently no I/O operations can be performed via this
KeyedAccessRecordFile object.

Special features of the DMS file system

Shared update processing (see section "Shared update processing” and section "AccessParameter”) of a
KeyedAccessRecordFile is possible for all open modes (INPUT, INOUT, OUTIN). However, OUTIN open
mode is permitted only for the application that opened the file first. If the file was opened in INPUT open mode,
all accesses are made without locks. As a result, no access conflicts can arise. However, it must be expected
that another application changes the contents of the record in the meantime. With the other open modes, read
and write accesses are made with implicit locks. In the event of access conflicts, this can trigger a
RecordLockedException or cause the thread or the entire application to wait, depending on the option set

90

JENV V9.0A

using setWaitMode(). Locks are released after writing or deleting the locked record. They can also be released
explicitly using unlock(). When a record is read, an existing lock for another record is also released. Details are
provided in the appropriate interface description in the shipped JAVADOC documentation.

Methods for reading records

All read methods are offered in two variants, one in which the record read is provided as a result in a newly
generated Record object, and a second in which a Record object transferred by the calling program as an argument
is filled with the data of the record read.

When a record buffer is created, it has precisely the same size as the data read. If the calling program provides the
Record object, it must ensure that the record buffer is large enough to contain the data of the record to be read. If
the specified record buffer is too small to contain all the data, an exception is triggered and no data is transferred.

With the read methods in which a KeyValue or KeyDescriptor object can be specified, such arguments are only
accepted if they are suitable for the file (see the
getPrimaryKeydescriptor() and getSecondaryKeydescriptor() methods).

The read() methods read the record which is selected by the specified key value. If there is more than one record
with the same key value in the file, the first one is returned. Both a value of the primary key and a value of the
secondary key can be specified as the key value.

The readNext() methods read the next record in the order determined by the given argument. There are three
variants of these methods:

® If no order argument is specified, the next record defined by the order of the primary key is read. If this method is
called as the first operation after a file has been opened, the record with the lowest available primary key value is
read. In all other cases this operation reads the record following the last record read, provided the last record
read was also read via the primary key (in other cases the behavior is access-method-specific). This is a method
to permit sequential reading of records which contain the same key value.

® |f a key definition is specified as an order argument, the next record defined by the order of the primary or
secondary key of the given key definition is read. If this method is called immediately after a file has been
opened, the record with the lowest available key value as defined in the given key definition is read. In all other
cases this operation reads the record following the last record read, provided the last record read was read via
the same key definition (in other cases the behavior is access-method-specific). This is a method to permit
sequential reading of records which contain the same key value.

® If a key value is specified as an order argument, the record is read with the next highest key in accordance with
the order of the associated key definition.

The readPrevious() methods read like the readNext() methods, but they read the preceding record rather than the
following record.

Methods for writing and deleting records

When records are written to an indexed-sequential file, the position of a written record is determined by the key
fields contained in the record.

The write() method writes a record to a file. If a file with the same primary key value already exists and no duplicate
keys are permitted for the primary key, the existing record is replaced. If duplicate keys are permitted and the record
already exists, the record is added after the last record with the same primary key value.

The writeNew() method writes a record to the file, but only if no record with the same primary key exists in the file.

The writeBack() method overwrites a record in the file that was read directly beforehand. Between the read and
write operations, no modification may be made to the record’s primary key field. In shared update processing an

91

JENV V9.0A

existing record is not overwritten unless the lock set in order to read the record still applies. Otherwise, a
RecordNotLockedException is triggered.

The delete() method deletes the record selected by the specified key value. If there are several records with the
same key value in the file, the first one is deleted. Either a value of the primary key or a value of a secondary key
can be specified as the key value.

Methods for unconditional lock release

The unlock() method is used to explicitly release a lock set implicitly by a read operation in shared update
processing.

Methods for determining key definitions
The getPrimaryKeyDescriptor() method returns the key definition for the primary key of this file.
The getSecondaryKeyDescriptor() method returns the key definition for the secondary key with the specified name.

The getKeyDescriptorNames() method returns a list of the names of all of this file’'s secondary keys.

Methods for generating and deleting secondary keys

The createSecondaryKey() methods generate a new secondary key for this indexedsequential file with the specified
parameters. There are two parameter variants. One variant is that all fields of the KeyDescriptor object (name, key
position, key length and the specification as to whether identical key values are permitted in different records for this
key) are specified individually, and the second is that a KeyDescriptor object is specified for a secondary key. The
second variant enables, for example, the attributes of another file’s secondary key to be used in order to generate a
corresponding secondary key in this file.

The deleteSecondaryKey() method deletes the specified secondary key of this indexedsequential file.

The createSecondaryKey() and deleteSecondaryKey() methods require exclusive access to the file and are
therefore not permitted in shared update processing. They would trigger an IOException.

92

JENV V9.0A

4.3 Implementation details

The attributes marked as implementation-specific in the API descriptions are defined in this section.

93

JENV V9.0A

4.3.1 File-system-specific definitions

Both in the API descriptions in this document and in the actual API specifications it is specified in various places
that a file system implementation can specify particular definitions.

These definitions are shown in the table below for the file systems supported in this version. The UFS file system is

included merely to complete the picture, although it is currently not supported.

Detail

Name to be used at the
JRIO interfaces

Access methods
File system prefixes

Normalization

Absolute path name

Canonical path name

Empty path name

Normal file

Hidden files and
directories

Size of a file with the
length() method

Size of a directory with
the length() method

File name

Separator between path
name parts
separatorChar and
separator

DMS file system

“DMS”

ISAM, SAM, UPAM
Catalog IDs (":catid")

Lower-case letters are converted to
upper-case letters and path names
$<name>to $.<name>

Supplementing the path name with the
catalog ID

Either only catalog ID or the file name
supplemented by catalog ID and user ID,
if required with cancellation of the
standard system ID

Standard catalog ID of the user

All files are normal files

Temporary files in the DMS sense

Number of PAM pages used * 2048 (last
page pointer)

Always 0

See the manual “Introductory Guide to
DMS” [8]

Not defined

Comma',' or",

UFS file system

“UFS”

Currently none
Root directory '/'

. and .. directories are cancelled and
double slashes '//' are converted into
single slashes; a '/ at the end of the
path name is deleted

Supplementing the current directory for
relative path names

Conversion like absolute path name and
resolution of all symbolic links

Root directory '/'

Regular files (for example no special
files)

All files and directories whose name
begins with a period ".'

Size in bytes
Size in bytes
See manual “POSIX, Basics for Users

and Systems Administrators” [1]

Slash '/ or /"

Colon :'or ":"

94

JENV V9.0A

Separator between path
names
pathSeparatorChar and
pathSeparator

Default directory when Default catalog ID of the calling program Default directory which is assigned to

creating a temporary file the system property java.io.tmpdir
with the

createTempkFile()

method

Generated name part of String with the length 7 String with the length 7

a temporary file
(between suffix and
prefix specifications)

Shared update Supported (with restrictions) Not supported
processing

Table 4: File-system-specific definitions

JENV V9.0A

4.3.2 Access-method-specific definitions

Both in the API descriptions in this document and in the actual API specifications it is specified in various places
that an access method implementation can specify particular definitions.

These definitions are shown in the table below for the DMS access methods supported in this version.

Details SAM access ISAM access method UPAM access method
method
Name to be used at the JRIO “SAM” “ISAM” “UPAM”

interfaces

Record format with fixed
record length

Record format with variable
and fixed record length

Record format
with variable and
fixed record

Permissible record formats

length
Maximum record length fixed, KEY fixed: fixed, NO, KEY
(depending on the record format
i ; . BS * 2048 BS * 2048 BS * 2048
(fixed, variable), logical block
format (NO, KEY, DATA) and fixed, NO, DATA fixed, DATABS * 2048
block size (1 <= BS <= 10)- e ooa8 - 16 iable: he first 12 b i
the setRecordLength method of i vanaple: (the first ytes contain
. metadatal)
the AccessParameter... classes variable, KEY: BS * 2048 - 4
also accepts greater values .
because block size or record BS * 2048 -4
format can be modified later) variable, NO, In the event of full
utilization overflow blocks
DATA
may occur
BS * 2048 - 20

Permissible values for

0 through 32768

0 through 32768 (0 means:

0 through 32768 (0

setRecordLength() of the (0 means: variable, restricted only by means: pubset standard)
AccessParameter... classes variable, block size) Values != n*2048 (n=0,,
restricted only by 16) are not permitted
block size)
Permissible values for the See API See AP| documentation on See APl documentation
setBlocksize, documentation the AccessParameter ISAM on the AccessParameter
setPrimarySpaceAllocation, on the interface U PAM interface
setSecondarySpaceAllocation, AccessParameter
setPrimary-KeyPosition, SAM interface
setSecondaryKeyPosition
methods of the AccessParameter
... classes
markSupported() methodFor Always false Always false Always false
marking and repositioning in the
event of sequential reading of
the FilelnputRecordStream class
The write buffer is emptied No function

96

JENV V9.0A

Writing buffered output to the The write buffer
output stream with the flush() is emptied
method of the

FileOutputRecordStream class

Permissible values when Not supported Yes Not supported
generating secondary keys with
the createSecondaryKey()
method of the
KeyedAccessRecordFile class

Max. 30 secondary keys,
each max. 127 bytes long.
keyPos <= 32495

Name of secondary keys (Not supported 8-character, as per DMS Not supported
createSecondaryKey() method of rules, lower-case letters

the KeyedAccessRecordFile may be converted to upper-

class) case letters

Setting the file position with the Yes - empty No Yes - records with
setCurrentRecordNumber() records (with undefined contents may
method of the variable record be added
RandomAccessRecordFile class format) or

after the last record (value of records with

getRecordCount()) - or writing at undefined

such a position contents (with

fixed record
format) may be

added
Overwriting records with the Same record Possible without
write() method length at records restrictions
with variable
lenght
Overwriting records with the - The primary key may not
writeBack() method be modified
Sequence in the event of - Write or delete operations
sequential reading with the modify the file position and
KeyedAccessRecordFile class should therefore not be
used between sequential
read operations. With
regard to different keys,
ISAM behavior applies for
the sequence in sequential
read operations (see
themanual “Introductory
Guide to DMS” [8])
Shared update processing: Not possible Possible as: Only possible for PAM
general FilelnputStream, files as FilelnputStream
FileOutputStream or as
KeyedAccessRecordFile RandomAccessRecordFile

97

JENV V9.0A

Shared update processing: open
modes

Shared update processing: lock
granularity

Shared update processing:other
special features

Table 5: Access-method-specific definitions

INPUT, INOUT or OUTIN

permitted, FileOutputStream
only to add to a file, OUTIN
only for the first application

that opens the file

With NK-ISAM, the lock is

on key level (primary key),

withK-ISAM the lock is on
block level

Locks apply for the entire
application (not only for a
file)

INPUT or INOUT
permitted

Lock is on block level

It is not possible to
increase or decrease the
size of a file

98

JENV V9.0A

4.3.3 Default values of the DMS access methods

The table below provides an overview of the default values for the access methods in the DMS file system of an
AccessParameter object that was generated with the getDefaultAccessParameter() method. The overview is
structured according to the methods used for reading.

Method

getAccessMethod()
getFileSystem()

getRecordFormat()

getRecordLength()
getBlockSize()

getDuplicateKeylndicator()
getPrimaryKeyLength()
getPrimaryKeyPosition()
getPrimarySpaceAllocation()

getSecondarySpaceAllocation()

getBlockControl()

getSharedUpdate()

getWaitMode()

Table 6: Default values of the DMS access methods

SAM access method

“SAM”
“DMS”
RECORD_
FORMAT _
VARIABLE
0

0

0
-1

BLOCK-
CONTROL _
BY_PUBSET

ISAM access
method

“ISAM”
“DMS”

RECORD_
FORMAT _

VARIABLE

0
-1

BLOCK-
CONTROL_
BY_PUBSET

false

THREAD_WAIT

UPAM access
method

“UPAM”
“DMS”
RECORD_
FORMAT_
FIXED

0

0
-1

BLOCK-
CONTROL_
BY_PUBSET

false

THREAD_WAIT

The value 0 with getRecordLength() designates the value “variable - only limited by block size” for the SAM and

ISAM access methods and the “pubset-specific default” for UPAM.

The values 0 with getBlockSize(), 0 with getPrimarySpaceAllocation() and -1 with getSecondarySpaceAllocation()
designate the “pubset-specific default”. If the file has been created, the current values are entered here.

99

JENV V9.0A

4.4 Restrictions

The following explicit restrictions are defined for DMS under JRIO:

Tape files and private disks are not supported.
EAM and logical system files are not supported.

Not all file parameters can be manipulated or set via JRIO. Only the parameters explicitly named in the API
descriptions are taken into account. Especially when new files are created this results in restrictions when
particularly special attributes are to be used. However, the most common parameters of the various access
methods are already supported with the AccessParameter class and the associated implementations of the
access methods.

Only the access methods shown and the files related to them are supported.
Shared update and locking are not supported in this version.
Reverse reading is supported only for keyed access, not for sequential or random access.

In ISAM the logical value flag is not supported. ISAM files which contain such a flag cannot be processed. ISAM
pools are also not supported.

The undefined record format is not supported. Files with undefined record format cannot be processed.

File generation groups are not supported.

100

JENV V9.0A

4.5 Examples

The examples in the sections below are designed to show the various access types and general use of the JRIO
interfaces on the basis of one or two (more or less typical) problems.

All the examples given here consist of complete programs which can be executed. The source texts of all sample
programs are supplied with the product and are contained in the subdirectory demo/jrio of the installation directory.
In conjunction with your inline documentation, the programs should be largely self-explanatory.

101

JENV V9.0A

4.5.1 Sequential data processing

A simple copy program for SAM files is used to demonstrate sequential data processing. The program requires two
parameters: the name of the file which is to be copied and the file name of the copy. If the target file already exists,
it is deleted (take care!) and created again.

The example is so designed that no knowledge of the file attributes, such as record format or record length, of the
file to be copied is required. The error handling in the example is not particularly convenient, simply to prevent the
comprehensive code which would be required for this distracting the reader from the way the interface is actually
used.

The program is contained in the CopySAM.java file:

Ein’port java.io.*;

finport comfujitsu.ts.jrio.*;

i/**

© % This sanpl e program denmonstrates the use of the
* JRIO interfaces for file handling and sequenti al
* jinput and output.

* The program creates a copy of a DMS file of type SAM
* by sequentially copying each record of the file.

* The interesting part of this programis the nethod
* doCopySAM'), all other nethods are added to nake it
* a conpl ete executable program
! *
public class CopySAM
{
i | **
* The main nethod, which anal yses the program argunents,
* calls the work nethod and provides gl obal error
* handl i ng.
*/
public static void main(String args[])
{
String source = null;
String target = null;
for (int i =0; i < args.length; i++)

{

if (source == null)
source = args[i];
else if (target == null)
target = args[i];
el se
usage();
}
if (source == null || target == null)
usage();
try {
doCopySAM source, target);
} catch (Exception e) {
error(e.toString());
}
}
/**
* Print a usage message and exit with error
*/

102

JENV V9.0A

private static void usage()
{
error("Usage: CopySAM source target");
}
/**
* Print the given error nmessage and exit
*/
private static void error(String nmsg)
{
Systemerr.println(nsg);
Systemexit(1);

* %

* The work nethod.

* This method denonstrates, how the JRIO interfaces
* may be used to copy a conplete SAMfile by

* sequential read and wite operations.

* @aram source

* The name of the file to be copied
* @aram target

* The name of the copied file

*/

public static void doCopySAM String source, String target)

throws | CException

{
Record rec;
RecordFi | e sourceFil e;
RecordFil e targetFile;
Fi | el nput RecordSt ream i nput ;
Fi | eQut put Recor dSt r eam out put ;

/**

* check file nanes and create RecordFile objects

*/
sourceFil e = new RecordFil e(source, "DV5");
targetFile = new RecordFil e(target,"DWV5");

/**

* check source file existence
*/
if (!sourceFile.exists())

error("Source file " + source + " does not exist");

/**
* check target file existence
*/
if (targetFile.exists())
{
/**
* delete the existing file
*/
if (!targetFile.delete())
error("Target file " + target
+ " could not be deleted");
}
/**
* create an enpty output file with sane attributes
*/
if (ltargetFile.createNewril e(
sour ceFi | e. get AccessParaneter ("SAM')))
error("Target file " + target + " still exists");

103

JENV V9.0A

/**

* open source for input

*/
i nput = new Fil el nput RecordStrean(sourceFile,"SAM');
/**

* open target for output

*/
out put =new Fi |l eCut put RecordStrean(targetFile,"SAM);
/**

* read and wite all records

*/
while ((rec = input.read()) != null)

output.wite(rec);

/**

* close all files

*/

i nput . cl ose();

out put . cl ose();

The program can be compiled with the Java compiler javac and then be run. No particular specifications are
required to make the JRIO interfaces available.

104

JENV V9.0A

4.5.2 Random data processing

Two examples are used to demonstrate random data processing. The first program solves the problem of deleting
one or more records from a SAM file. For this purpose the program expects as parameters the name of an existing
file and the number or the number range of the records to be deleted. Note that here, too, the records are numbered
consecutively starting with zero.

The example is so designed that no knowledge of the file attributes, such as record format or record length, of the
file to be processed is required. The error handling in the example is not particularly convenient, simply to prevent
the comprehensive code which would be required for this distracting the reader from the way the interface is
actually used.

The program is contained in the DeleteRecordsSAM.java file:

{inport java.io.*;

Linmport comfujitsu.ts.jrio.*;

E/**
* This sanpl e program denonstrates the use of the
* JRIOinterfaces for file handling and random
* access to a file.

* This program del etes a sequence of specified records
* froma DMS file of type SAM

* The interesting part of this programis the nethod
* doDel et eRecordsSAM), all other methods are added
* to make it a conplete executabl e program
P
public class Del et eRecordsSAM
{
E /**
* The mmin nethod, which anal yses the program argunents,
* calls the work nethod and provides gl obal error

* handl i ng.

*/
public static void main(String args[])
{

String file = null;
String first = null;
String last = null;
int firstNum |astNum
for (int i =0; i < args.length; i++)
{
if (file == null)
file = args[i];

else if (first == null)
first = args[i];
else if (last == null)
last = args[i];
el se
usage();
}
if (file = null || first == null)
usage();
try {

firstNum= Integer.parselnt(first);
if (firstNum< 0)

105

JENV V9.0A

error("lllegal record nunber " + firstNun);
if (last !'= null)
{
| ast Num = I nteger. parselnt (|l ast);
if (lastNum< 0 || lastNum < firstNum
error("lllegal record nunber " + |astNum;
}
el se

last Num = firstNum
doDel et eRecordsSAM fil e, first Num | ast Num ;
} catch (Exception e) {
error(e.toString());
}
}

/**

* Print a usage nessage and exit with error

*/
private static void usage()
{
error("Usage: Del eteRecordsSAMfile first [last]");
}
/**

* Print the given error nessage and exit

*/
private static void error(String nsg)
{
Systemerr.println(nsg);
Systemexit(1);
}
/**

* The work nethod.

* Delete all records between the given record
* nunbers in a SAM accessible file using

* the random access cl asses of JRI O

*

* @aram file

* The file to nmodify

* @aram first

* The first record to delete
* @aram | ast

* The last record to delete
*/

public static void doDel et eRecor dsSAM
String file,int first,int |ast)
t hrows | OException

Record rec;

RecordFi |l e sourceFil e;

RandomAccessRecor dFi | e updat e;

Ar rayQut put Recor dStream buffer;

Record[] renaining;

/**
* check file name and create RecordFil e object
*/

sourceFil e = new RecordFile(file,"DV5");

/**
* check source file existence and wite rights
*/

if (!sourceFile.exists() || !'sourceFile.canWite())

106

JENV V9.0A

error("Source file " + file + " does not exist"
+ " or is not witeable");

/**

* open file for update

*/

updat e = new RandomAccessRecor dFi |l e(sourceFil e, "SAM',
RandomAccessRecor dFi | e. | NOUT) ;

/**

* check record nunbers

*/
if (first >= update.getRecordCount())
{
/**
* not hing todo
*/
updat e. cl ose();
return;
}
/**

* position to first record after delete area
*/
updat e. set Current Recor dNunber (1 ast + 1);
/**
* read all remmining records into an array
*/
buf fer = new ArrayQut put RecordStrean();
while ((rec = update.read()) != null)
buf fer.wite(rec);
remai ning = buffer.toRecordArray();
/**
* truncate file
*/
updat e. set Recor dCount (first);

/**

* append the buffered records to the truncated file

*/

for (int i =0; i < remaining.length; i++)
update.write(remaining[i]);

/**

* close the file
*/
updat e. cl ose();

The program can be compiled with the Java compiler javac and then be run. No particular specifications are
required to make the JRIO interfaces available.

The second program outputs a randomly selected “slogan of the day” from a file (SAM) with slogans. For this
purpose the program expects as a parameter the name of the file with the slogans. If this does not yet exist, it is
created with a basic stock of slogans.

The example is also so designed that no knowledge of the file attributes, such as record format or record length, of
the file to be processed is required. The error handling in the example is not particularly convenient, simply to
prevent the comprehensive code which would be required for this distracting the reader from the way the interface
is actually used.

The program is contained in the SloganOfTheDay.java file:

107

JENV V9.0A

Eirrport comfujitsu.ts.jrio.*;
{import java.io.*;
‘inport java.util.Random

i/**

* This exanpl e denonstrates a random access to a SAMfile.

* A randomy selected record (the slogan of the day) is read
* fromthe file and witten to the standard output stream

* |f the file with the slogans does not yet exist, it is

* created and filled with some standard sl ogans.

* The interesting part of this programis the nethod
* doSl oganOf TheDay(), all other methods are added to nmake it
* a conpl ete executable program
*/
public class Sl oganCOf TheDay
H
i | **
* The main nethod, which anal yses the program argunents,
* calls the work nethod and provides gl obal error

* handl i ng.
*/
public static void main(String[] args)
{
if (args.length I'= 1)
usage();
try {

doSl oganOf TheDay(args[0]);
} catch (Exception e) {
error(e.toString());
}
}

/**

* Print a usage nessage and exit with error

*/
private static void usage()
{
error("Usage: Sl oganOf TheDay file");
}
/**

* Print the given error nmessage and exit

*/
private static void error(String nsg)
{
Systemerr.println(msg);
Systemexit(1);
}
/**

* The work met hod.
* |t denonstrates how the JRIO interfaces may be used
* for random access to a file.
*
* @aram fil enane
* the file containing the slogans
*/
public static void doSl oganOf TheDay(String fil enane)
throws | OException
{

108

JENV V9.0A

/**

* the random nunber generator, used to select the

* sl ogan
*/
Random generat or = new Random();
/**
* some slogans to be witten to the slogan file
* in case it is still enmpty.
*/
String[] data = {
"Schuster bleib bei deinen Leisten.",
"Es fuehren viele Wge nach Rom",
"I n ungezaehl ten Muehen waechst das Schoene.",
"It's better to burn out, than to fade away.",
"Make your ideas work!",
"Erlaubt ist, was gefaellt.",
"Der schoenste Morgen bringt uns das Gestern "
+ "nicht zurueck.",
"Sage nicht inmrer, was du weisst, aber w sse
+ "imrer, was du sagst.",

"All es nmuss nman sel ber machen - sogar das Lachen.™

}

/**

* Definition of the slogan file

*/

RecordFile rf = new RecordFil e(fil ename, "DWS");
RandomAccessRecordFil e slogfile = null;

/**

* The record object used for accessing

* the slogan file

*/

Record record = nul |;

/**

* the nunber of records in the slogan file

*/

| ong nunX Recs = O0;

/**

* Check if the slogan file is already existing
*/

if (!'rf.exists())

{
rf.createNewFil e("SAM');
sl ogfil e = new RandomAccessRecordFil e(rf, "SAM',
RandomAccessRecor dFi |l e. QUTI N);
for (int i =0; i < data.length; i++)
{
record = new Record(data[i].length());
record. set StringData(datali]);
slogfile.wite(record);
}
}
el se
{
sl ogfil e = new RandomAccessRecordFil e(rf, "SAM',
RandomAccessRecor dFi | e. | NPUT) ;
}
/**

* check if there is at least 1 record in the
* slogan file

109

JENV V9.0A

* if not, the nodulo function would fail

*/
if ((numXRecs = slogfile.getRecordCount()) == 0)
{

sl ogfile.close();

error("Slogan file is enpty!");
}
/**
* Position to a randonly selected record within
* the file.
* Thanks to the nodul o function (% we are sure
* that the position will always be inside the file
*/

sl ogfil e. set Current Recor dNumber (
Mat h. abs(generator. nextlnt () % nunf Recs));
/**
* read the record and show t he sl ogan
*/
record = slogfile.read();
Systemout. println("Sl ogan of the day:
+ record. getStringbData());

/**

* close the slogan file

*/
slogfile.close();

The program can be compiled with the Java compiler javac and then be run. No particular specifications are
required to make the JRIO interfaces available.

110

JENV V9.0A

4.5.3 Indexed-sequential data processing

To demonstrate indexed-sequential data processing a program is used which monitors the lifetime of files on an ID.
The program expects two parameters: the user ID to be monitored and the name of the file in which the program
can store data. When first called the file should not yet exist. It is then created with the correct attributes for the
program.

The example generates an ISAM file with fixed record length as a database. The error handling in the example is
not particularly convenient, simply to prevent the comprehensive code which would be required for this distracting
the reader from the way the interface is actually used.

The program is contained in the FileHistory.java file:

Einport java.io.*;

finmport comfujitsu.ts.jrio.*;

iinport comfujitsu.ts.jrio. DM5. AccessPar anet er | SAM

Eierort java.util . Date;

{inport java.text.DateFornat;

i mport java.text. Sinpl eDat eFor mat ;

E/**
* The deno program Fil eHi story provides a
* sinple mechanismto | og changes in the files bel onging
* to a given BS2000 userid. In fact, only two dates are
* | ogged for each file: date first seen and date | ast seen.

* Every tinme the programis started it synchronizes the
* current list of filenames with the list of filenanes
* given by the logfile:

* New filenanes are added to the logfile with date first seen
* and date | ast seen set to the current date.

* For filenanes of the current |list which are already | ogged
* the date | ast seen is updated.

* Filenames in the logfile which are no nore in the current
* |ist renmin untouched.

* The program should run once a day, to create a conplete
* history.

* The interesting part of this programis the nethod
* doFileH story(), all other nethods are added to make it
* a conpl ete executabl e program
*/
‘public class FileH story
{
i | **
* The main nmethod, which anal yses the program argunents,
* calls the work nethod and provides gl obal error

* handl i ng.

*/
public static void main(String args[])
{

String userid = null;
String logfilename = null;
for (int i =0; i < args.length; i++)

{

111

JENV V9.0A

if (userid == null)
userid = "$" + args[i] + "
else if (logfilename == null)
| ogfilenane = args[i];
el se
usage();
}
if (userid == null || logfilenane == null)
usage();
try {

doFil eHi story(userid, | ogfil enane);
} catch (Exception e) {
error(e.toString());
}
}

/**

* Print a usage nessage and exit with error

*

/

private static void usage()

{

error("Usage: FileH story userid logfile\n"
+ " - userid without '$" and '.'");
}
/**

* Print the given error nessage and exit

*

/

private static void error(String nmsg)

{
Systemerr.println(nsg);
Systemexit(1);

}

/**

* The wor k net hod.
* This nmethod denonstrates, how the JRIO interfaces
* may be used to update records in an |SAMfile

* @aram userid

* the userid (with '$" and '.') to be scanned
* @aram | ogfil enane

* the file containing the |og records

*/

public static void doFileH story(String userid,
String |ogfil enane)
throws | OException

/**
* The current Date as string,
* to be witten to the log record
*/
Dat eFor mat df = new Si npl eDat eFor mat ("yyyy. M dd") ;
String toDay = df.format(new Date());
/**
* The directory to be scanned for additional or
* deleted files in its canonical form
*/
RecordFil e root =
new RecordFi |l e(userid,"DVS"). get Canonical File();
/**

* List of filenanes within the scanned directory

112

JENV V9.0A

*/
String[] rfList = root.list();
/**
* Definition of file for |ogging
*/
RecordFile logfile =
new Recor dFil e(l ogfil enane, "DVS");
KeyedAccessRecordFile log = null;
/**
* key descriptor of the log file
* and dummy key value (will be filled later
* and used for reading)
*/
KeyDescri ptor keyDesc = null;
KeyVal ue keyVal = null;
/**
* Records fromthe logfile are read into this buffer.
* |t has fixed length: filenane (54),
* date fist seen (10), date |ast seen (10)
*/
Record | ogrec = new Record(54 + 10 + 10);
/**
* check if the logfile already exists
* and prepare access paraneter
*/
AccessPar anet er | SAM accesspar;
if (!logfile.exists())

{
/* No, create it */
accesspar = (AccessParanet erl SAM
| ogfile.getDefaul t AccessParaneter ("Il SAM');
accesspar. set Pri maryKeyPosi ti on(0);
accesspar. set Pri mar yKeyLengt h(54);
accesspar. set Recor dFor nat (
AccessPar anet er . RECORD_FORMAT_FI XED) ;
accesspar. set RecordLengt h(54 + 10 + 10);
if (logfile.createNewFile(accesspar) == fal se)
error("Cannot create file " + |ogfil enane);
}
el se
{
accesspar = (AccessParaneter| SAM
| ogfil e.get AccessParaneter ("l SAM');
}
/**
* Open the log file
*/

| og = new KeyedAccessRecor dFi | e(
| ogfil e, accesspar, KeyedAccessRecor dFi |l e. | NOUT) ;
/**
* Get the key descriptor of the log file
*/
keyDesc = | 0g. getPrimaryKeyDescriptor();
/**
* Consi stency check
*/
if (keyDesc.getPosition() '=0
| | keyDesc.getLength() != 54)
{

113

JENV V9.0A

| og. cl ose();
error("File " + logfile
+ " isnovalid logfile.");
}
/**

* create key val ue connected with key descriptor
* proper values will be inserted |ater

*/

keyVal = new KeyVal ue(keyDesc);

/**

* | oop through the list of filenanes

* close the logfile
*/
| og. cl ose();

E *

! /

i for (int i =0; i <rfList.length; i++)

i {

i /**

! * prepare key vaue for reading the

: * log record for this filename

i *|

keyVal . set StringVal ue(rfList[i]);

1 | **

f * check if the filenane is already in the |og
Z *l

; if (log.read(keyVal,logrec) > -1)

; {

: [**

i * yes, filename did exist at |ast run,
! * update 'date | ast seen' field

: */

: | ogrec. set StringFiel d(toDay, 64, 10);

i | **

* wite updated record back to logfile
1 */

f | og. writeBack(l ogrec);

; }

; el se

; {

: [**

i * filename is new. build a new record
a */

! | ogrec. set KeyFi el d(keyVal) ;

: | ogrec. set StringFiel d(toDay, 54, 10);

5 | ogrec. set StringFi el d(toDay, 64, 10);

! /**

* wite newrecord to log file

| ‘I

log.wite(logrec);

| }

; }

H /'k*

B!

The program can be compiled with the Java compiler javac and then be run. No particular specifications are
required to make the JRIO interfaces available.

114

JENV V9.0A

5 Invoking the VM from the BS2000 command interface

The INITIALIZE, DELETE and START procedures are available in the PLAM library SYSPRC.JENV.090.

® INITIALIZE is used to set the environment variables needed to execute the VM.

® START is used to start the VM. If INITIALIZE is not invoked before START, the default values are used.

® DELETE is used to delete all environment variables set by INITIALIZE.

The procedures are also delivered in a compiled variant so that the user can execute them without the product SDF-
P.

A prerequisite for execution is that the user has permission to run POSIX programs and is authorized to access the
POSIX file system on which the POSIX part of JENV is installed.

115

JENV V9.0A

5.1 INITIALIZE procedure

The INITIALIZE procedure sets the environment variables that are evaluated by the Java VM. This is done by
setting the corresponding structure elements of the structure variable SYSPOSIX. Other existing structure elements
of this structure remain unchanged. If the structure variable SYSPOSIX does not already exist, it will be created.

Parameters
JAVA-HOME

Determines the value of the environment variable JAVA HOME (see chapter "Environment variables"). If the
parameter is not specified or is set to *STD’, the variable is not assigned. Any existing assignment is cleared.

CLASSPATH

Determines the value of the environment variable CLASSPATH. If the parameter is not specified or is set to ’
*STD’, the variable is not assigned. Any existing assignment is cleared.

LD-LIBRARY-PATH

Determines the value of the environment variable LD LIBRARY PATH. If the parameter is not specified or is
set to *STD', the variable is not assigned. Any existing assignment is cleared.

PWD

Sets the value of environment variable PWD and thereby determines the current working directory . If the
parameter is not specified or is set to *STD’, the directory set for the user id with the command
IMODIFY-POSIX-USER-ATTRIBUTES DIRECTORY= ... is used.

DISPLAY

Determines the value of the environment variable DISPLAY. This specifies the address of the screen in which
the X-Windows are displayed. If the application operates without X-Windows, the value of this variable is
irrelevant.If the parameter is not specified or is set to *STD’, the variable is not changed.

SCOPE

Specifies the scope of the structure variable SYSPOSIX. The default value is '*TASK’. The parameter is
passed directly to the SCOPE operand of the DECLARE-VARIABLE command (see manual “SDF-P (BS2000)
" [7]). Only the *TASK’ and *PROCEDURE’ procedures with their sub-operands are meaningful, and’
*PROCEDURE’ is only meaningful if the procedure is called with INCLUDE-PROCEDURE.

Since the system is case-sensitive, all parameter values must be entered enclosed in single quotes.
In addition to this, the following environment variables are always set implicitly:
PROGRAM_ENVIRONMENT = 'shell’

as the Java VM can only be run in this mode.
HOME

to the home directory which was set for the user id with the command /MODIFY-POSIX-USER-ATTRIBUTES
DIRECTORY=

116

JENV V9.0A

5.2 START procedure

The START function starts the VM with the command START-PROGRAM and passes the parameters which have
been set. If the structure variable SYSPOSIX does not already exist, the INITIALIZE procedure is first invoked using
the default values. If the structure variable SYSPOSIX does already exist, INITIALIZE will not be called. The internal
environment variables necessary for calling the tool will however be set.

Parameters
CMD
Must be assigned one of the following values:

"appletviewer’
idlj’

jar
‘jarsigner’
‘java’

‘javac’
'javadoc’
‘javah’
‘javap’
‘jconsole’
'idb

‘ideps’
jimage’

lis’

jlink’

‘imod’
'keytool’
'native2ascii’
‘orbd’
'pack200’
'policytool’
‘rmic’

rmid’
‘rmiregistry’
'schemagen’
'serialver’
'servertool’
‘thameserv’
‘'unpack200’
‘wsgen’
‘'wsimport’
xjc’

The values correspond to the shell commands.

Other values:

1?1

‘help’ outputs a help text in English.

117

JENV V9.0A

‘hilfe’ outputs a help text in German.

ARGS

The arguments for the command above are to be enclosed in single quotes.
The wildcard substitution function, which is usually available under the shell, is not supported.

REDIRECT

This parameter must be used if input/output is to be redirected. This is done in the same way as for the
corresponding option under the shell. For example: REDIRECT="2>MyfFile’ redirects the output of stderrto
MyfFile.

See the section "Redirection of default streams".
SYSHSI
This parameter must be assigned to one of the following values:

*STD’
'X86’
'S390’

This parameter specifies, whether the s390 variant of the Java VM or the X86 variant is used.
Default value: *STD’
The variant corresponding to the system is used.
INSTALLATION-ID

User ID of the JENV installation. This parameter must only be specified if the object to be started under VM is
not stored under the same user ID as the procedure library in which the START procedure is located.

Redirection of default streams

If PROGRAM_ENVIRONMENT="shell’ is set, the file names into which the default streams are redirected refer to
files in the POSIX file system.

It is possible to redirect the streams to BS2000 files using the usual prefix /BS2/. To redirect to SYSDTA, SYSOUT
or SYSLST you must also use this prefix, i.e. /BS2/(SYSDTA), /BS2/(SYSOUT) or /BS2/(SYSLST). If the prefix is
not used, redirecting to (SYSOUT) will result in a POSIX file being written with the name (SYSOUT).

The same applies to redirections which indicate special treatment under the shell. Outside the shell everything to
the right of < or > is interpreted as a file name. So, for example, a redirection of 2>&1 creates a file called &1.

The redirection of stdout and stderr to the same BS2000 file is not possible, and if these streams are redirected to
the same POSIX file, output data may be lost.

Example
If an applet is to be started via the file /MyDir/MyTest/Test1.html and the terminal has the symbolic address
ABCD1234, this could be achieved as follows:

/ CALL- PROCEDURE *LI B($TSCS. SYSPRC. JENV. 090, | NI TI ALI ZE),
(PWD="/ WDir/ MyTest ', D SPLAY=" ABCD1234:0.0")

118

JENV V9.0A

/CALL PROCEDURE * LI B($TSCS. SYSPRC. JENV. 090, START) ,
(CVD=' appl etvi ewer' , ARGS=' Test 1. htm ")

119

JENV V9.0A

5.3 DELETE procedure

The DELETE procedure deletes all elements of the structure variable SYSPOSIX which are set by the INITIALIZE
procedure. If the SYSPOSIX structure subsequently contains no elements, it is itself deleted.

Parameters

SCOPE

Specifies the scope of the structure variable SYSPOSIX. The default value is *TASK". The ’
*PROCEDURE’ value need only be specified if it was specified in the INITIALIZE procedure (see section

"INITIALIZE procedure").

120

JENV V9.0A

5.4 Invoking the VM using the invocation API

If a C or C++ program which invokes the VM via the invocation API is started using START-PROGRAM, the
environment variables must be set using the INITIALIZE procedure. The following operands must be set in the
START-PROGRAM command:

PROGRAM: MODE=* ANY, RUN- MODE=* ADVANCED, SHARE- SCOPE=* NONE.

ﬁ} A C/C++ program must be linked with the Java Runtime Adapter and not with the normal CRTE-, C++ or
socket libraries (see section "Invocation API").

121

JENV V9.0A

5.5 Special considerations

When invoking a BS2000 program using START-PROGRAM neither the /etc/profile nor the .profile file of the user is
executed. The result of this is that a program may, in some cases, behave differently than if it had been started
under the shell. If the file access rights of newly created files are restricted in the profiles using umask, this does not
apply to programs started using START-PROGRAM. The result of this is that these programs then create files with
more extensive access rights than intended. There is currently no solution available to remedy this. The tools are
also affected because they are called with the START-PROGRAM command in the START procedure.

The environment variable PATH is not set after START-PROGRAM. The consequence of this is that creating a new
process with fork/exec is not possible under some circumstances when the program to be started cannot be found.
It is possible to resolve this problem by setting the SDF-P variable SYSPOSIX.PATH to the value used in the shell
before calling START-PROGRAM, or by specifying a complete path name in the program for exec(). In Java this
problem effects the method Runtime.exec().

Example

The following instruction can only be excuted if the environment variable PATH was set correctly:

Process child =
{ Runti ne. get Runti me().exec(System get Property("java. hone") +
("/bin/java Mclass");

Even if the VM is started using START-PROGRAM, the input/output is, by default, directed to files in the POSIX file

system. BS2000 files can be opened using the package JRIO. The class files must be located in the POSIX file
system.

122

JENV V9.0A

6 JNI under BS2000

This chapter describes the special features which a user of Java native interfaces (JNI) needs to look out for in
BS2000. The chapter will not go in any depth into the general use of the native interfaces (i.e. independent of the

operating system)
Specifications and tutorials on this are available in the internet and on the book market.

The use of the JNI for real applications is not simple, since komplex interaction between the Java and C
environments is possible. Before making the decision to use the JNI, you should discuss the alternatives carefully.

123

JENV V9.0A

6.1 The different variants of JNI

Only Version 1.2 of INI is still supported.

124

JENV V9.0A

6.2 Java data typesin C

A mapping, which essentially also applies to BS2000, has been defined between the primitive Java data types and
the native C representation. The following table provides a summary of the data types and any special features:

Java type Ctype Compatible Ctype Remarks

boolean jboolean unsigned char JNI_FALSE, JNI_TRUE
byte jbyte signed char

char jchar unsigned short Unicode

short jshort signed short

int jint signed int

long jlong signed longlong from C/C++ V3.0B

float jfloat float IEEE

double jdouble double IEEE

void void void

Table 7: Java data types in C

For complex data types, JNI defines corresponding access and conversion functions which can be used in BS2000
analogously to other operating systems. A special role is played here by strings as the UTF-8 encoding of Unicode
strings which is used by Java, although closely related to ASCII, is quite unlike EBCDIC encoding. A C programmer
in an ASCII environment (Unix systems, Windows systems) will therefore easily succumb to the temptation to use
this similarity, with a result that it will not be possible to use such C programs in BS2000 (i.e. in the EBCDIC
environment) without taking some further measures.

When C code and Java are linked up via the JNI, there will inevitably be instances in BS2000 where different forms
of data encoding coincide. Users must decide for themselves where they want to make corresponding conversion
points between the data representations. The essential and critical conversion points are shown in the following
table:

Data Representation Normal Alternative
in Java representation representation
in BS2000 in BS2000
Whole numbers 32 and 64 bit 32 bit 32 and 64 bit
Floating point numbers IEEE format /390 format IEEE format
Strings, characters Unicode, UTF-8, ASCII EBCDIC ASCII

Table 8: C code in Java and BS2000

In order that the user can make a free choice of conversion point, appropriate help on the various topics is provided
through the compiler and runtime systems.

Typically, a JNI interface user will implement this conversion point either directly at the NI interface and have all his
C code run in the normal BS2000 environment or else he will have parts of his C code (or even all of it) run in the
alternative representation which is more closely oriented to Java (and Unix systems) and, for example, only carry
out the relevant conversions in the context of legacy applications (use of well-tried software).

125

JENV V9.0A

The sections below describe the support available for the various data types.

126

JENV V9.0A

6.2.1 Whole numbers

The Java data type long is a 64-bit data type which is represented in the JNI by the C data types jlong

The C/C++ compiler (as of version 3.0B) supports the data type longlong or int64_t, which is compatible with the
above mentioned data types (i.e. jlong). This means that this data can be used in C without any further
precautionary measures being required. The scope of the support available through C runtime system functions as
of CRTE V2.1B is explained in the appropriate CRTE documentation.

127

JENV V9.0A

6.2.2 Floating point numbers

The Java data types float and double are floating point data types which are represented in the JNI through the C
data types jfloat and jdouble.

These data types are formally compatible with the C data types float and double. However, as they are represented
in IEEE format (instead of /390 format) they cannot be used in C without taking precautionary measures.

As well as explicit conversion options, appropriate compiler and runtime system extensions are provided to support
the IEEE format. These allow you to work directly with this number format in C.

Explicit conversion

A number of functions are available for explicit conversion between floating-point numbers in IEEE format and in
/390 format. These are declared in the header file ieee_390.h, which is part of the CRTE distribution. These
conversion functions are described in the manual “CRTE” [3].

Example

The following example shows the use of a conversion function in a native method which performs arithmetic
manipulations on a floating point number. On the Java side the method will be declared as:

public native doubl e nmani pul at e(doubl e arg);

The associated C program could look like this:

#i ncl ude <jni.h>

#include "..... h" // javah generated Header

#i ncl ude <i eee_390. h>

JNI EXPORT j doubl e JNI CALL

Java_..._mani pul ate(JNl Env *env, jobject jthis, jdouble nunj;

{

doubl e result, arg;

arg = ieee2doubl e(nunj;

result = (arg < 1.7)? arg * 3.4 : arg - 1.0;
return doubl e2i eee(result);

The above code example does not contain any error handling for possible conversion errors.

IEEE floating point numbers in the C code

As of version V3.0B, the C/C++ compiler allows you to generate code for IEEE format as an alternative to /390
format for floating point numbers. The setting, which is controlled via the compiler option -Kieee floats, applies to
the entire compilation unit (source file).

This option only has an effect on floating point constants in the source code, and on arithmetic, type conversion or
comparison of floating point numbers. It has no effect on the passing of such data to other functions or simple
assignments

Setting this option also has the effect of implicitly permitting the use of C library functions with floating point
arguments and/or floating point result in a variant for IEEE arithmetic.

128

JENV V9.0A

All the arithmetic is processed using corresponding emulation routines. This applies to SQ systems too, as long as
generation of native code for the corresponding commands via Asstran is not possible. Naturally this has a negative
effect on performance. C programs which make intensive use of floating point arithmetic should therefore not be run
in this mode.

Example

The example shown above could then be implemented as follows:

i#lnclude <j ni.

E#i nclude "..... h" /'l javah generated Header

{ INI EXPORT j doubl e JNI CALL

EJava_..._nanipulate(JNIEnv *env, jobject jthis, jdouble num
{

return (num< 1.7)? num* 3.4 : num- 1.0;

The compilation must be carried out using the C compiler option -Kieee_floats.

IEEE floating point numbers in the C runtime system

The C runtime system contains, in addition to the conversion routines which are declared in the ieee_390.h, all the
essential XPG4 functions which work with floating point numbers in a variant for IEEE arithmetic. When the
aforementioned compiler option for using IEEE is selected, the corresponding library functions are normally used
automatically without the user needing to do anything. You can also modify this behavior for mixed mode (see the
manual “CRTE” [3]).

Example

The next example illustrates the use of the IEEE version of the C function tanh in a native method for
calculatmg the hyperbolic tangent in a Java class. On the Java side the method will be declared as:

E#I ncl ude <math. h>

{#include <jni.h

f#include ".. ... h" // javah generated Header

| INIEXPORT j doubl e JNI CALL

{Java_..._tanhyp(JNI Env *env, jobject jthis, jdouble num
A

' [lprintf("tan_hyp called with: %\n", num;

return tanh(nunj;

..

To work correctly it must naturally be compiled in this form using the C compiler option -Kieee_floats.

129

JENV V9.0A

6.2.3 Strings

The Java data type string is provided in JNI as data type jstring. This type cannot be used directly in C; in particular,
it has no commonality with the C data type char *. In order to convert the string to a form which can be processed in
C, the corresponding JNI interfaces must be used for the conversion (see JNI documentation).

The Java data typeChar is available at the JNI interface as data type jchar. This is compatible with the C data type
unsigned short and constitutes one character in Unicode representation. The first 256 characters in Unicode are
identical to the 1ISO8859-1 encoding. Unicode characters outside this range are not supported in C/C + + in
BS2000. Processing of these characters must therefore be undertaken by users themselves.

The UTF-8 representation of Unicode, which is partially used by Java in the JNI, plays a special role. In UTF-8
representation, Unicode characters are encoded into one, two or three bytes. Under this encoding, Unicode
characters with codes 1 to 127 are represented with this value in a single byte, corresponding once again exactly to
the ASCII encoding of these characters.

Moreover, UTF-8 byte sequences are always terminated in Java with a NULL byte, which enables them to be
processed as C strings. Here, the Unicode NULL character is encoded into two bytes so as to avoid confusion with
the string delimiter in C, since, unlike in C, it is perfectly acceptable in Java for strings to contain NULL characters.

The following simple rules apply to the processing of UTF-8 byte sequences in C:

® The NULL byte marks the end of the byte sequence, and is absolutely essential.
® Bytes for which the function isascii_ascii() returns the value “t r ue” (1-127) are also in fact ASCII characters as
per ISO8859-1

® To represent Unicode characters outside the range 1 to 127, all the other bytes are treated as if they were part of
a multibyte sequence. These have to be interpreted by the user.

As nearly all these conversion functions constitute character sequences at least in a form which is upwardly
compatible with ASCII, code conversion from ASCII to EBCDIC and vice versa does not play a special role in
BS2000. Naturally, this applies not only to strings but also, for example to byte arrays or characters (jchar).

References to “ASCII" in this manual always refer to the ISO8859-1 character set (ISO Latin 1) or its 7 bit offshoot
(ISO 646). “EBCDIC" refers to the character set DF04-1 (international reference version) with swapped 0x15 and
0x25 or its 7 bit offshoot DF03-1.

As well as explicit conversion facilities, to support ASCII strings, appropriate compiler and runtime system
extensions are available which allow you to work directly with ASCII strings and characters in C.

Explicit conversion

The JNI conversion functions (see ,JavaTM Native Interface” [13]) work in BS2000 exactly as specified. They
always return or else expect Unicode or UTF-8.

Some functions are available in CRTE for explicit conversion between ASCII (8859-1) and EBCDIC (DF04-1).
These are declared in the header file <ascii_ebcdic.h>, which is part of the CRTE distribution. These conversion
functions are described in the manual “CRTE” [3].

Example

The next example illustrates usage in a native method which ascertains the value of an environment variable
and removes the prefix JAVA_ from this. On the Java side the method will be declared as:

130

JENV V9.0A

i #include <jni.h>

i#include "..... h" /| Header generated by javah
{#include <stdlib. h>

- #i ncl ude <ascii_ebcdic. h>

{ JNI EXPORT jstring JN CALL
{Java_..._get_jenviron(JNIEnv *env, jobject jthis,

: jstring nane)

K 5
§ const char *utf_nane;

i char *ebcdi c_nanme, *ebcdi c_val ue, *utf_val ue; ;
; jstring val ue; ;
! utf_nanme = (env*)->CGet StringUTFChar s(env, nane, NULL), ;
: ebcdi c_nane = _a2e_dup(utf_nane); E
: (*env) - >Rel easeStri ngUTFChar s(env, name, utf _nane) ; !
5 ebcdi c_val ue = getenv(ebcdi c_nane); !
f free(ebcdi c_name); :
f i f (ebcdic_value == NULL)

f return NULL; 5
; if (strncnp(ebcdi c_val ue, "JAVA ",5) == 0) f
; utf_value = _e2a_dup(ebcdi c_val ue+5); f
; el se f
i utf_value = _e2a_dup(ebcdi c_val ue); ;
: val ue = (*env)->NewStri ngUTF(env, utf_val ue); ;
: free(utf_val ue); E
§ return val ue; ;
) |

The above sample code does not contain any error handling. It is implicitly assumed that in all strings only
characters from the 7 bit ASCII character set will occur. Moreover, this code is naturally very much BS2000-
specific.

ASCII strings in the C code

As of version V3.0B, the C/C++ compiler allows you to generate an equivalent ASCII code as an alternative to the
normal EBCDIC encoding for string and character literals. This setting must apply to a complete compilation unit
(source file) and is controlled via the compiler options -Kliteral_encoding_ascii and -Kliteral_encoding_ascii_full.
The difference between the two options lies in the treatment of octal and hexadecimal sequences in such literals.
With -Kliteral_encoding_ascii such literal parts are not converted.

ASCII strings in the C runtime system

In addition to the above conversion routines, the C runtime system provides further support for the use of ASCI|I
strings and characters. All key XPG4 functions that work with or return strings or characters are available in a

131

JENV V9.0A

variant for ASCII coding. When one of the compiler options for ASCII use described in the section "ASCII strings in
the C code" is set, the corresponding library functions are generally used automatically without the need for user
intervention. You can change this behavior for mixed operation (see the manual “CRTE” [3]).

If the compiler option -Kieee_floats is set at the same time, the combined ASCII/IEEE variants are used (e.g. with
printf).

As of C Compiler V3.1A and CRTE V2.4C, the arguments of the vector argv/] are passed as ASCII strings when
compiling the main program with one of the compiler options described in the section "ASCII strings in the C code".
The global variables of the C runtime system tzname and the strings of environ are saved as ASCII strings. Explicit
conversion of argv/] is therefore unnecessary.

If explicit access is made to the strings of the global variables tzname or environ, it should be noted that as of JENV
V1.4B these are stored as ASCII strings (formerly EBCDIC strings). However, the Technical Standard “the Single
UNIX Specification” warns against explicit access to the environ variable (see “X/Open System Interface (XSI)
Specification” [16]). Implicit access using getenv() and putenv() functions as in the past and is compatible with
previous versions.

Example

If you use these options, the above C program could look like this:

 #i nclude <jni.h>
;#i nclude "..... h 1/ javah generated Header
i #include <stdlib. h>

{ JNI EXPORT jstring JN CALL
‘Java_..._get_jenviron(JNIEnv *env, jobject jthis,
§ jstring nane)
{
const char *utf_nane;
char *utf_val ue;
utf_name = (*env)->Cet Stri ngUTFChar s(env, name, NULL) ;
utf_value = getenv(utf_name);
(*env) - >Rel easeStri ngUTFChar s(env, nane, utf _nane) ;
if (utf_value == NULL)
return NULL;
if (strncnp(utf_value,"JAVA ",5) == 0)
return (*env)->NewStri ngUTF(env, utf _val ue+5);
el se
return (*env)->NewStringUTF(env, utf_val ue);

This implementation is exactly the same as one which could also be used on Unix systems This form is
therefore the one most highly recommended for ported code.

132

JENV V9.0A

6.3 Dynamic loading of native methods

Native methods for Java must be dynamically loadable. The procedure here is very similar to the established
methods in Unix systems (shared libraries). The Unix concepts and the BS2000 implementation will now be
compared. The BS2000 solution and the associated requirements for the user will then be described in detail.

Java applications on Unix platforms require that native methods are produced as shared libraries. The native
methods can then be dynamically loaded and called. The C system functions dlopen() and diIsym() are used for this
purpose.

Although in OSD-POSIX there is now a shared libraries implementation, the analogous mechanism familiar from the
preceding version has been retained. However, not all the functionality of the shared libraries is offered here but
only those functions which are needed in the Java environment.

133

JENV V9.0A

6.3.1 Shared libraries in Unix systems

Shared libraries contain an object (i.e. a module which can be loaded and executed by the system loader) with a
special structure (a “shared object”). One of the characteristics of shared objects is that they can be dynamically
loaded during program execution.

List of required objects

A shared object can specify other objects which are necessary in order for it to be executed. These objects are
loaded at the same time as a shared object is loaded and are considered during resolution of unresolved external
references. Here again, each of these objects can specify other required objects, so that chains are formed.

Name spaces

When a shared object is loaded, other dynamically loaded shared objects are not accessed unless they are
included in the list of required objects.

An exception here is the context in which the program was loaded on startup (and all the objects which were
dynamically loaded at that time).

This causes the name spaces to be partitioned.

Search sequence

The search for shared objects during program execution is controlled through the environment variable
LD LIBRARY PATH, in which different directories can be specified which the system will search through in the
specified sequence, looking for the shared objects which are to be loaded.

Resolution of external references

When a shared object is loaded, any unresolved external references are initially resolved from the primary load
context. The current shared object is then included and finally the objects which were loaded as required objects.
(This is a simplified version. Full details are provided in the interfaces descriptions of dlopen() and disym() in the
corresponding Unix manuals).

As the external references within a shared object are not resolved, a function which exists in a shared object can be
overwritten by a function of the primary load context (this is not possible in LLMs!).

Naming convention

Shared libraries always begin with the prefix /ib and end with the suffix .so, for example, libhello.so. Often a name
also has a version suffix for the co-existence and unambiguous assignment of different interface versions, for
example, libXm.so.1.2.

134

JENV V9.0A

6.3.2 Shared libraries in BS2000

As already mentioned, in BS2000 there is no exact correspondence to the familiar shared objects from Unix
systems. The characteristics essential to Java such as dynamic loading, the partitioning of name spaces and the
dynamic determination of function addresses are mapped during the Java port. On the other hand, the naming
property of multiple usage, the implicit loading of shared objects at program start and the subtleties of resolution
cannot be mapped. This would require extension of the linking loader.

As the BS2000 linking loader cannot dynamically load any module from the POSIX file system, native methods
must be created as LLMs and stored in PLAM libraries.

In the LLM there is no means of specifying a “list of required objects”, yet this functionality is necessary for Java and
a search method analogous to Unix systems would appear to be useful in the POSIX file system. Hence, an
additional description file has been implemented. This file contains what amounts to a description of a shared
object. It is stored in the POSIX file system, observes the same naming conventions as shared libraries in Unix
systems and contains all the information needed by Java in order to dynamically load and call the native methods.

This information comprises above all the PLAM library in which the LLM is stored, the name of the module (or
modules) and, if appropriate, the list of required objects.

List of required objects

A list of required objects can be entered in the description file. These objects are dynamically loaded before the
current object. Objects which already exist are not dynamically loaded again. Objects are identified by their POSIX
file names.

These objects are included during loading of the current object to resolve external references.

It is perfectly possible for different shared objects to contain the same objects in their lists of required objects. The
first reference to such an object then leads to dynamic loading

Name spaces (link contexts)

Each object is loaded in a separate link context. Objects are therefore partitioned in their name space.

The BS2000 linking loader now allows 200 link contexts. If more objects are loaded the application is aborted.

Search sequence

The search for shared objects (or rather, for the description files) operates in exactly the same way as in Unix
systems, i.e. it is controlled through the environment variable LD LIBRARY PATH.

Resolution of external references

The contexts into which the required objects have been loaded are specified as reference contexts. The default
context is used as reference context with the highest priority.

Searching through the share scope is explicitly prevented as it is not possible at the present time to see to it that
this does not happen until after the reference contexts have been handled.

To resolve any unresolved external references, the system therefore initially searches through the default context

and then through the required objects. All other objects are ignored.

(D This continues to be different from Unix systems. In particular, all external references in an LLM are
shorted, so that no function in an LLM can be overwritten.

135

JENV V9.0A

6.3.3 Creation of shared objects

The next few sections explain the procedure for creating a shared object with native methods which can later be
dynamically loaded by the Java VM.

Compilation of source code

To compile the C source code of Java native methods, the C/C++ compiler as of V3.0B must be used for the parts
of the source code which work with the JNI.

When compiling the C or C++ parts, it is essential that the following compiler options are used:
-I <Installation path>/include

This option is necessary in order that the Java distribution header files are found. For <Installation path> the
path in which JENV has been installed must be substituted. For a standard installation, this is /opt/java/jdk-
9.0.4. Refer to the Release Notice for the currently valid name.

-K workspace_stack

This is necessary in order that the Garbage Collector can also find the Java objects used in the C parts and
that the objects can be thread-safe.

-K ¢_names_unlimited
This is necessary in order that the name mangling correctly functions for native interface functions.
-K llm_keep

This is necessary in order that the name mangling correctly functions for native interface functions and that the
runtime system functions are found.

-K llm_case_lower

This is necessary in order that the name mangling correctly functions for native interface functions and that the
runtime system functions are found.

-D__SNI_THREAD_SUPPORT
This option is mandatory for C++ compilations.
The following compiler options can be useful:
-K ieee_floats
Used when you want the IEEE format for floating point numbers to also be used in the C code.

-K literal_encoding_ascii
-K literal_encoding_ascii_full

Used when you want to use ASCII strings in the C code.
-K enum_long
Should always be set, as the default setting does not conform to the ANSI standard.

Furthermore, it is essential that compilation is performed in ANSI mode (-Xa or -Xc).

136

JENV V9.0A

Linking a main module

If the implementation of a shared object is to consist of several modules, then these should be linked together into a
main module. This is done using the command cc or ¢89, where the following options must be specified

-r

This option has the effect of linking a main module without adding any standard libraries like (CRTE). Under no
circumstances should these be explicitly linked to it with -Ic or -Isocket.

-B llm4

This option cause the linker to create a main module in LLM4 format which is necessary for the long name of
the Java native methods.

Creating an LMS library

The main module created (and held in the POSIX file system) must be stored in a PLAM library as an element with
the element type L. The best way to do this is with the POSIX command bs2cp, which also creates the library if it
does not yet exist.

It is quite in order for several shared objects to be stored in such a PLAM library

(@ The element name of the module in the library must not exceed 32 characters.

Creating the object description

To create the necessary description file for a shared object, the command mk_shobj is available. The command
pr_shobj is used to view the content of such a description file. Both commands are part of the Java distribution and
are described in detail in chapter "Commands for BS2000".

C++ objects must be labeled as such (see subsection "Options" of section "mk_shobj").

137

JENV V9.0A

6.3.4 Use of shared objects from Java

To dynamically load the user’s native methods, it is necessary in Java to call, for example, the method System.
loadLibrary().

A new name is formed from the name specified in loadLibrary(), under which the library is then searched for. This
name is lib<name>.so

The library is searched for using the environment variable LD_LIBRARY _PATH. The first description file found
using this method is then used to dynamically load the appropriate module or modules.

The JVM and the native methods of Java are held in separate shared libraries and loaded into separate contexts in
each case. Thus, if JVM interfaces which extend beyond the NI interface are used (which they should not be), the
corresponding dependencies to the shared Libraries should be entered in the user libraries.

When the first C++ method is started a C++ runtime system is loaded dynamically (including the tools and standard
library) and C++ is initialized, if this has not already been done.

During dynamic loading of shared libraries (BIND macro), at present the system does not search through the “share
scope” to resolve any open external references as this would mean it could no longer be guaranteed that the Java
private CRTE or sockets will be used.

This must likewise be done if the user himself dynamically loads via BIND code, at least when references to the C
runtime system and the sockets exist.

Java native methods and main modules containing them cannot be pre-loaded with the current linking loader.

138

JENV V9.0A

6.4 Invocation API

The invocation API is a part of the JNI for invoking Java from C/C++ applications. Only Version 1.2 is still supported.

Changes to the invocation API

The invocation API provides no interface which allows you to select which variant of the HotSpot™ VM (client,
server, etc.) is to be used by the program.

In BS2000 the client VM is normally used by default. However, in this implementation it is also possible to use the
environment variable JENV_VMTYPE to select another VM variant (if available) (see chapter "Environment
variables").

139

JENV V9.0A

6.4.1 Compiling the C and C++ sources

The compiler options described in section "Implementation of the Java code" of chapter "Implementation of a native
method in C" must be used when compiling the C/C++ parts.

The HotSpot™ VM handles overflow events itself. To prevent interrupts occurring you must also specify:
-K no_integer_overflow
This option must be set for the main program.

The C/C++ Compiler as of Version 3.1A20 has been changed (and is therefore incompatible) so that if a main
program is compiled with this compiler the argument strings are automatically passed as ASCII strings if the -K
literal_encoding_ascii or -K literal_encoding_ascii_full option was set. Explicit conversion with, for example, _e2a()
is not needed. If an existing main program already performs this conversion and you do not want to change it, the
following option must be specified for reasons of compatibility:

-K environment_encoding_ebcdic

The argument strings continue to be passed as EBCDIC strings.

140

JENV V9.0A

6.4.2 Linking C and C++ applications with Java and Green Threads

When linking C/C++ applications the link options described in section "Implementation of a native method in C++"
must be used.

With JENV a runtime adapter is provided which has to be linked with C applications which need to call Java via the
invocation API (part of the JNI). This adapter contains the functions of the Invocation API as well as the adapter to
the thread-safe C and C++ runtime system and to the thread-safe socket library.

The runtime adapter is available in an optimized variant, as is used in java. The runtime systems are located in
PLAM libraries which are part of the scope of delivery of JENV:

For S390:
SYSLNK.JENV.090.GREEN-JAVA.
For X86:
SKULNK.JENV.090.GREEN-JAVA

When linking an application with this runtime adapter, it must also be borne in mind that, due to the long names
which occur in Java, this runtime system is of LLM type 4. It is therefore essential that the compiler option -B llm4 is
used during linking. It should also be noted that the C compiler normally automatically links a CRTE during linking
and in the case of C++ a standard library. This must be prevented to avoid any conflict with the thread-safe runtime
system already contained in the runtime adapter. This is achieved with the Kno_link _stdlibs option. For the same
reason, no socket library can be explicitly linked and nor can any tools library. During linking, the options -/c, -Isocket
or -ltools should therefore never be used.

Under POSIX a C application can be linked as follows with JENV:

export BLSLI BOO="$. SYSLNK. JENV. 090. GREEN- JAVA'
cc -Kno_link_stdlibs -BIllm -0 <progranm> \
<obj ects> -1 BLSLIB

The linked program can then be run without further precautions although naturally it needs a completely installed
JENV under the standard installation path. If a Java installed elsewhere is to be used, the environment variable
JAVA HOME must be set to the installation path of the Java runtime environment (see chapter "Environment
variables").

The cc command implicitly links the POSIX linkage option. If linkage is not carried out under the shell using the cc
command, but under the BS2000 command line interface using BINDER, this option must be linked from $.SYSLNK.
CRTE.POSIX.

In order to use the BINDER to obtain the required LLM4 format when using a OSD V3 for production you must
specify the operand
FOR-BS2000-VERSIONS=*FROM-OSD-V4 in SAVE-LLM . The objects can also run on OSD V3.

This procedure applies equally for C++ applications, in which case the command CC with the options specified
above is to be used for linkage.

An application that explicitly calls the C interfaces of the POSIX sockets may not link the modules of the socket
library but must link the LIBSOCKET module from SYSLNK.JENV.090.GREEN (or SKULNK.JENV.090.GREEN).

141

JENV V9.0A

6.5 Examples

Four examples will now illustrate the complete process of creating a Java application using the JNI.

142

JENV V9.0A

6.5.1 Implementation of a native method in C

Our sample application will consist of two Java classes Hello and Work, each of which contains a native method.
One of them issues a greeting message, while the other performs a calculation. This example is highly artificial as
normally no user would have this performed using native methods.

The native methods in both classes are to be stored in a common library called examplel.

Implementation of the Java code

In a file called Hello.java the following Java class is defined:

iclass Hello {

' public native void greetings(String text);

static {

System | oadLi brary("exanpl el");

}

public static void main(String[] args) {
new Hel | o().greetings("Hello");
new Wor k(). conpute();

Ein’port java.io.*;
iclass Work { |
; public native doubl e doconpute(double arg); i
public void conmpute() { i
i Systemout.println("Resultat 1: " + doconpute(1.0)); 5
! Systemout.println("Resultat 2: " + doconpute(7.0)); 5
! Systemout.println("Resultat 3: " + doconpute(3.11));
! |
) !

If you had wanted to store the native methods in different libraries, each class would have to load its own library
during initialization.

Compiling the Java code

The two Java classes can now be simply compiled using the command

The dependent class Work is created during this compilation.

Creation of header files

The header files which are needed in order to implement the native methods can be generated from the class files
using the tool javah:

‘javah -jni Hello

Ejavah -ini werk

Once this step is complete, the header files Hello.h and Work.h will be available with the prototypes of the native
functions.

143

JENV V9.0A

Implementation of the C code

The native methods are now typically implemented in corresponding source files. In our example these will be the
files Hello.c and Work.c. Both files include the header which is provided with JENV jni.h and in each case the
associated header previously generated, Hello.h or Work.h. The function definition must match the prototype which
has been generated. The further coding depends on the desired implementation.

The program Hello.c will now be implemented in the example as follows:

E#i ncl ude <jni.h>

i #i ncl ude "Hello.h"

i #i ncl ude <stdio. h>

 #include <stdlib. h>

i #i ncl ude <ascii_ebcdic. h>

{ JNI EXPORT voi d JNI CALL

EJava_HeI |l o_greetings(JNIEnv *env, jobject jthis, jstring text)
{

{ char *ebcdic_text;

const char *utf_text;

utf_text = (*env)->CGet StringUTFChars(env, text, NULL);

ebcdic_text = _a2e_dup(utf_text);

(*env) - >Rel easeStri ngUTFChar s(env, text, utf _text);

printf("The programresponds here %\ n", ebcdic_text); free(ebcdic_text);

i #i nclude <jni.h>

E#i ncl ude "Wbrk. h"

{ JNI EXPORT j doubl e JNI CALL

Java_Wor k_doconput e(JNI Env *env, jobject jthis, jdouble nun
H

return (num< 1.7) ? num* 3.4 : num- 1.0;

In the file Work.c use has been made of the option of transparent usage of IEEE functions, described in more detalil
above. In file Hello.c explicit ASCII-EBCDI conversions are carried out.

To make the examples clear and at the same time keep them short, detailed error handling has been omitted.

Compiling the C source

The C source code implemented in the section above must now be compiled using the correct compiler options. For
Hello.c these are the standard options which are described in more detail above:

Ecc -c -l/opt/javalinclude \
-Kl I m keep, | mcase_| oner \
- Kwor kspace_stack, c_nanes_unlinmited Hello.c

‘cc -c -1/opt/javalinclude \

' -KI I mkeep, | | m case_| oner \
- Kwor kspace_stack, c_names_unlinmted \
-Ki eee_floats Wrk.c

144

JENV V9.0A

This results in the object files being made available

Creation of the shared object

The previously created objects can be linked to a main module with the following command:

Finally, a description file which complies with the naming convention is created. This must naturally contain the
correct references.

Processing of the program

To run the program all that remains now is to set the environment variable LD _LIBRARY _PATH so that the created
shared object is also found. In our example this can be done using

145

JENV V9.0A

6.5.2 Implementation of a native method in C++

Implementation in C++ is largely identical to the procedure used for implementation in C. The differences from the
example above are as follows:

Program Hello.cpp is now implemented as follows:

! #include <jni.h>

- #include "Hell o. h"

i #i ncl ude <i ostream h>

! #i ncl ude <ascii_ebcdic. h>

L #i nclude <stdlib. h>

{ JNI EXPORT void JNI CALL

EJava_FbIIo_greetings(JNIEnv *env, jobject jthis, jstring text)

i{
E char *ebcdic_text;

const char *utf_text;

utf_text = env->CGet StringUTFChars(text, NULL);

ebcdic_text = _a2e_dup(utf_text);

env- >Rel easeSt ri ngUTFChar s(text, utf_text);

cout << "The programresponds here" << ebcdic_text << endl
free(ebcdi c_text);

For compilation, instead of using command cc, use command CC. For creation of the shared object, the flag cpp
must be set:

Enk_shobj -f cpp -1 syslnk.exanpl el -m exanpl el |ibexanpl el.so

146

JENV V9.0A

6.5.3 Use of Java from a C application

The next example illustrates the use of the Java invocation API (part of the JNI) for calling Java programs from C.
The example we have chosen is consciously kept simple.

A Java echo program will output all its arguments to standard output. This Java program will then be called froma C
program.

Implementation of the Java code

In the file Echo.java we define the following class:

Eclass Echo {
public static void main(String[] args)

{

for (int i =0; i < args.length; i++)
{
if (i >0)
Systemout.print(" ");
Systemout.print(args[i]);

}
Systemout.println("");

Compiling the Java code

The above defined Java class can now be simply compiled using the command

you can prove to yourself that the program is working.

Implementation of the C code

In our example, the following C program will call the above Java program and at the same time transfer its call
arguments to it. Once again you should note that all strings transferred to JNI functions must be coded in ASCII.
This example will therefore be implemented and produced completely in ASCII mode.

The file Echo.c is implemented as follows:

{#include <jni.h>

Eint

mau n(int argc, char *argv[])

A
JavaVM ni t Args vm ar gs;
JavaVMDpti on options[1];
JavaVM *j vm

JNI Env *env;

jint res;

jclass cls;

jmet hodl D ni d;

147

JENV V9.0A

j obj ect Array args;

int i;

/*

** Prepare VM Options

*/

options[0].optionString = "-D ava. cl ass. path=."
/*

** Prepare VM configuration

*/

vm args.version = JNI _VERSION_1_4;

vm args. nOptions = 1;

vm ar gs. opti ons = options;

vm ar gs. i gnor eUnr ecogni zed = JNI _FALSE;

/*

** Create the Java WM

*/

res = JNI _CreateJavaVM & vm (voi d **) &env, &m ar gs) ;

if (res <0)

{
fprintf(stderr,"Can't create Java VM n");
exit(1l);

}

/*

** Get class Echo

*/

cls = (*env)->Fi ndd ass(env, "Echo");
if (cls == NULL)

{
fprintf(stderr,"Can't find Echo class\n");
exit(1);

}

/*

** Get main nethod

*/
md = (*env)->Get StaticMethodl D(env, cls, " min",
"([Ljaval/lang/ String;)V");

if (md==0)

{
fprintf(stderr,"Can't find main in Echo\n");
exit(1l);

}

/*

** Al l ocate argunent array

*

/

args = (*env)->NewObj ect Array(env, argc- 1,
(*env) - >Fi ndd ass(env, "javal/l ang/ String"), NULL);
if (args == 0)

{
fprintf(stderr,"Qut of menory\n");
exit(1);

}

/*

** Prepare argunents

*/

for (i=1; i<argc; i++)

{

jstring jstr;
jstr = (*env)->NewStringUTF(env, argv[i]);

148

JENV V9.0A

if (jstr == NULL)

o

: fprintf(stderr,"Qut of menory\n");

: exit(1);

o)

i (*env) - >Set bj ect ArrayEl enent (env, args,i-1,jstr);
-}

A

. *x call Java nethod

Y

(*env)->Cal | St ati cVoi dMet hod(env, cl s, m d, args);
: /*

; ** Destroy Java VWM

oo

: (*jvm ->DestroyJavaVM j v ;

return O;

)

The program functions in this form only with a standard JENV installation. If you want to run the program with a
private installation, you must set the JAVA HOME environment variable accordingly (see chapter "Environment
variables").

Compilation of the C source code

The C source code implemented in the section above must now be compiled using the correct compiler options. For
Echo.c, in addition to the standard options which have been described in detail above, the ASCIl mode must also
be considered:

Ecc -c -l/opt/javalinclude \

| -Kl I m keep, | | m case_l ower \
- Kwor kspace_stack, c_nanmes_unlimted \
-Kliteral _encodi ng_asci i
-Kno_i nteger _overfl ow Echo.c

This results in an object file being made available.

Linking and executing the application

When linking the application, it must be remembered that the Java runtime adapter is linked and not the “normal”
runtime systems.

The application can be statically linked with the following commands:

export BLSLI BOO="$. SYSLNK. JENV. 090. GREEN- JAVA
icc -Kno_link_stdlibs -B1Imt -0 Echo \
' Echo.o -1 BLSLIB

The program can be called like any other POSIX program. However, for JENV to execute, it must be installed under
the default installation path. To use a JENV installed elsewhere, you must set the JAVA_HOME environment
variable accordingly (see chapter "Environment variables").

The call using

produces the expected output:

149

JENV V9.0A

The program is run using the default VM described in section "Options for selecting the HotSpot™ VM type" in
section "java". By selecting the environment variable JENV_VMTYPE beforehand you can determine the VM type
explicitly. For example:

This results in the HotSpot™ client VM being used.

150

JENV V9.0A

6.5.4 Use of Java from a C++ application

The differences as compared to using Java from a C application (see section "Use of Java from a C application”)
are listed below.

Implementation of the C++ code

Let us assume that the Echo.cpp file is implemented as follows:

' #i ncl ude <jni.h>

fint

imain(int argc, char *argv[])

{
: JavaVM ni t Args vm ar gs;

JavaVMXti on options[1];

JavaVM *j vm

JNI Env *env;

jint res;

jclass cls;

jmet hodl D ni d;

j obj ectArray args;

int i;

/*

** Prepare VM Options

*/

options[0].optionString = "-D ava.cl ass. path=.";
/*

** Prepare VM configuration

*/

vm args.version = JNI _VERSION_1_4;

vm args. nOptions = 2;

vm ar gs. opti ons = options;

vm ar gs. i gnor eUnr ecogni zed = JNI _FALSE;

/*
** Create the Java WM
*/
res = JNI _CreateJavaVM & vm (void **) &nv, & m ar gs) ;
if (res <0)
{
fprintf(stderr,"Can't create Java VM n");
exit(1);
}
/*

** Get class Echo

*/

cls = env->Fi ndd ass("Echo");

if (cls == NULL)

{
fprintf(stderr,"Can't find Echo class\n");
exit(1);

}

/*

** Get main nethod

*/

md = env->Get StaticMet hodl D(cl s, "main",

"([Ljavallang/ String;)V");
if (md==0)

151

JENV V9.0A

{
fprintf(stderr,"Can't find main in Echo\n");
exit(1);

}

/*

** Al| ocate argunent array

*/

args = env->New(bj ect Array(argc-1,
env->Fi ndd ass("java/l ang/ String"), NULL) ;
if (args == 0)

{
fprintf(stderr,"Qut of menmory\n");
exit(1);

}

/*

** Prepare argunents

*

/
for (i=1; i<argc; i++)
{

jstring jstr;
jstr = env->NewStri ngUTF(argv[i]);
if (jstr == NULL)
{
fprintf(stderr,"Qut of menory\n");
exit(1l);
}
env->Set Obj ect ArrayEl ement (args,i-1,jstr);
}
/*
** Call Java net hod
*/
env->Cal | St ati cVoi dMet hod(cl s, mi d, args);
/*
** Destroy Java VM
*/
(*jvm ->DestroyJavaVM j vn);
return O;

Compiling the C++ source

You must now compile the above C++ source using the CC command and the correct compiler options. For Echo.
cpp, you must also take ASCIlI mode into account in addition to the default options described above. This example
generates an application that can be executed with the X86 variant of JENV on SQ systems:

CC -Cc -lI<installation-path>/include \

| -KI I m keep, | | m case_| oner \
- Kwor kspace_stack, c_nanmes_unlimted \
-Kliteral _encoding_ascii -Kno_integer_overflow
-D_SNI _THREAD SUPPORT Echo. cpp

Linking and executing the application

When you link the application, you must remember that the X86 runtime adapter of Java is linked and not the
“normal” runtime systems.

You can link the application with the following commands:

152

JENV V9.0A

export BLSLI BOO="$. SKULNK. JENV. 090. GREEN- JAVA
i CC -Kno_link_stdlibs -B1lm -0 Echo \
' Echo.o -1 BLSLIB

The program can be called like any other POSIX program on an SQ system. However, for it to run, a X86 variant of
JENV must be installed under the default installation path. To use a JENV installed elsewhere, you must set the
JAVA HOME environment variable accordingly (see chapter "Environment variables").

The call using

The program is executed with the default VM described in "Options for selecting the HotSpot™ VM type" in section
"jJava". The VM type can be specified explicitly by setting the JENV_VMTYPE environment variable beforehand. For
example:

export JENV_VMIYPE=cl i ent
{Echo This is a Java echo

This causes the HotSpot™ Client-VM to be used for execution.

153

JENV V9.0A

7 JCI - Invocation API for COBOL

The Java-COBOL Interface (JCI) is a collection of functions and COBOL-COPY elements to permit simpler
operation of the interfaces of the Java Invocation APl from COBOL programs.

The Java Invocation APl is part of the Java Native Interface (JNI). As it is designed for th language C/C++, its
interfaces are inconvenient to operate directly from COBOL programs.

The JCI supports the following functions:

® Starting a Java VM

® | oading classes

® (Calling methods

® Generating and editing Java objects

® Checking whether an exception has been generated

® Terminating a Java VM

The option of creating and calling native COBOL methods is not supported.

154

JENV V9.0A

7.1 Compiling the COBOL source codes

A COBOL2000 compiler Version V1.4A or higher is required to compile a COBOL source code which uses JCI
interfaces.

155

JENV V9.0A

7.1.1 Assigning the JCI-COPY library

The JCI-COPY elements are contained in the POSIX directory <installationpath>/ i ncl ude. Here the path under
which JENV was installed must be used for <installation-path>. For standard installation this is /opt/java/jdk-9.0.4.
The currently valid name can be found in the Release Notice.

This path must be made known to the compiler under the BS2000 command line interface by means of the S
variable SYSI OL- <I i bnanme> or SYSI OL- COBLI B:

DECL- VAR SYSI OL- COBLI B, I NI T=" *PQSI X(<Installations-Pfad>/ i ncl ude) ' , SCOPE=* TASK
For details, see “COBOL2000 (BS2000) User Manual” [5].

Under POSIX, the environment variable <l i bname> or COBLI B must be set:

export COBLI B=. : <lInstallations-Pfad>/ i ncl ude

For details, see “COBOL2000 (BS2000) User Manual” [5].

156

JENV V9.0A

7.1.2 Required options/directives

As data structures which contain pointers are used at the interface to JCI functions, the option below is required
when the COBOL program is compiled:

SOURCE- PROPERTI ES=* PAR(STANDARD- DEVI ATI ON=* YES, . . .)

Under POSIX, this corresponds to the option:

- C PERM T- STANDARD- DEVI ATI ON=YES

All JCI functions return an integral return value according to ILCS conventions (i.e. in general register R1). To
enable this value to be used in the COBOL program, it must be made available in the COBOL special register
RETURN-CODE after it has been returned. You can do this as follows:
® Specification of the option

SOURCE- PROPERTI ES=* PAR(RETURN- CODE=* FROMt ALL- SUBPROGRAMS, . . .)
® or under POSIX

- C ACTI VATE- XPG4- RETURNCODE=YES
® or on a targeted basis in the source program by specifying the directive

>>CALL- CONVENTI ON | LCS- SET- RETURN- CODE

The options apply for the entire source program, the directive only until a >>CALL- CONVENTI ON directive with a
different value is specified, see “COBOL2000 (BS2000) Reference Manual” [6]).

The module generated must be available in LLM format. When compilation takes place under the BS2000
command line interface, the option below is required for this purpose:

COWPI LER- ACTI ON=* MODULE- GENERATI ON(MODULE- FORMAT=*LLM . . .)

When compilation takes place under POSIX, no corresponding options exists as an LLM is always generated there.

157

JENV V9.0A

7.2 Linking COBOL applications with Java

The JCI functions are provided in two PLAM libraries:
SYSLNK.JENV.090.GREEN-JAVA (for the S390 variant),
SKULNK.JENV.090.GREEN-JAVA (for the X86 variant)

In addition, these libraries contain the JNI functions called by the JCI, the thread-safe C/C++ runtime system, and
the complete COBOL runtime system, the latter always in S390 format.

External references from applications which call JCI functions must be resolved with priority from one of these
libraries.

Under POSIX, the environment variable BLSLI BOO must be assigned to do this:

. cobol -g -M <PROG D> -0 <progranp <objekte> -1 BLSLIB

The cobol command implicitly links the POSIX linkage option. If linkage is not carried out under the shell using the
cobol command, but under the BS2000 command line interface using BINDER, this option must be linked from $.
SYSLNK.CRTE.POSIX.

158

JENV V9.0A

7.3 Processing COBOL applications with Java

Before an application which calls JCI functions is started from the BS2000 command line interface, the POSIX
environment must be initialized for the run with the INITIALIZE procedures (see "INITIALIZE procedure”).

The COBOL runtime system then mainly behaves as if it had been started under the POSIX shell (see “
COBOL2000 (BS2000) User Manual” [5] and section "Special considerations™).

After the application has terminated, the POSIX environment must on all accounts be reset by calling the DELETE
procedure. Otherwise the environment is set incorrectly for further compilations runs.

159

JENV V9.0A

7.4 Characters and strings

Alphanumeric and national strings are transferred to JCI functions in structures which contain a length field in
addition to the data area.

Example:

01 ANUM

05 ANUM LEN PIC S9(9) COWw-5 VALUE 10.
05 ANUM TEXT PI C X(10) VALUE "ANUM TEXT".
01 NAT.

05 NAT-LEN PIC S9(9) COW-5 VALUE 10.

05 NAT- TEXT PI C N(10) VALUE N'NAT- TEXT".

In this chapter, such structures in the formats are referred to as Cobvar or CobNvar .

Whether blanks at the end of the text area are ignored or retained depends on the function called. In some functions
this behavior can be controlled by means of an additional parameter.

Alphanumeric characters and COBOL strings have an EBCDIC representation, while the Java VM expects or
supplies a UTF representation (depending on the interface, UTF8 or UTF16). Necessary conversions are performed
automatically in the JCI functions. For this purpose, it must be possible to represent all characters in EDFO3IRV.
National characters (strings) (UTF16 representation) must be used for characters (strings) for which no such
representation exists, otherwise the result is undefined. National strings must also be used for strings which contain
binary zeros. Only convertible characters may be used for interfaces for which no national strings are defined (e.g.
class and method names).

Java strings are available as objects. Conversion between Java strings and COBOL strings takes place
automatically in the JCI functions.

Conversion consists of two partial steps:

® Conversion between EBCDIC strings and UTF8 strings (for alphanumeric strings only).

® Conversion between UTF8 and UTF16 strings and objects.

If an error occurs in any of these conversions (e.g. lack of memory), the condition variable ResEr r Code (COPY
element JCI-METHODRES) is set to the value RES- ERR- NOVEM (error in the first step) or RES- ERR- OBJECT (error
in the second step).

If the length field of the COBOL structure is equal to 0 before the conversion, the text area remains unchanged
when a Java string is converted to a COBOL string. In the case of conversion in the other direction, an object is
created for a null string. If the length field is less than 0 before the conversion, the condition variable ResEr r Code
is set to RES- ERR- LENGTH.

160

JENV V9.0A

7.5 Floating point numbers

The Java floating point types float and double are represented in IEEE format, while the COBOL floating point types
COMP-1 and COMP-2 are represented in /390 format. The conversion is performed automatically in the JCI
functions.

During conversion, the following exceptional situations can occur, which are displayed to the caller as a condition
variable in the field ResEr r Code (COPY element JCI-METHODRES) when returning from the JCI function:
* COMP-1 ---> IEEE:
RES- ERR- FLOAT- UNDERFLOW
The /390 floating point number is lower than the smallest representable IEEE floating point number.
RES- ERR- FLOAT- OVERFLOW
The /390 floating point number is greater than the largest representable IEEE floating point number.
® COMP-2 ---> |IEEE:
(none)
®* |EEE ---> COMP-1:
RES- ERR- FLOAT- | NVALI D
The IEEE floating point number equals NaN or infinity.
®* |EEE ---> COMP-2:
RES- ERR- FLOAT- UNDERFLOW
The IEEE floating point number.is less than the smallest representable /390 floating point number.
RES- ERR- FLOAT- OVERFLOW
The IEEE floating point number.is greater than the largest representable /390 floating point number.
RES- ERR- FLOAT- | NVALI D
The IEEE floating point number equals NaN or infinity.

If bit positions are lost in the conversion, this does not lead to an exceptional situation.

161

JENV V9.0A

7.6 Object references

Java objects are transferred to the COBOL program as local object references.

To prevent the Garbage Collector from removing the referenced objects, the VM registers all the transferred
references.

The references are valid until a native method returns to Java. However, this is never the case with a COBOL main
program. To release the resources required for the registration and to enable the Garbage Collector to remove the
objects referenced by the object references, the references must therefore be released explicitly by the COBOL
program (see section "Object references").

For object references, the TYPEDEF JCl - obj ect is defined in the COPY element JCI-TYPEDEF.

162

JENV V9.0A

7.7 Java handle

Some JCI functions use parameters with an opaque data type. These are referred to as Java handles in the formats.

In the COPY element JCI-TYPEDEF, the TYPEDEF JCl - handl e is defined for Java handles.

163

JENV V9.0A

7.8 Return code in special register RETURN-CODE

All JCI functions are i nt functions which return either a truth value or an error indicator in the special register
RETURN-CODE.

A separate parameter is used to return other values. Unless described differently, the content of the result field
referenced by this parameter is undefined in the event of an error.

164

JENV V9.0A

7.9 Arguments and event values of Java methods

Structures are used to transfer arguments and result values between the COBOL program and JCI functions which
call Java methods or edit Java data fields. These must contain all the necessary information. The structures are
defined in the COPY elements JCI-METHODARGS and JCI-METHODRES (see sections "JCI-METHODARGS -
Function arguments" and "JCI-METHODRES - Function result"). In this chapter they are referred to as Met hodAr g
or Met hodRes.

If nothing else is defined in the function descriptions, the following prerequisites apply for calling functions which
reference an argument of the type Met hodAr g or Met hodRes:

® Arguments
Before the function is called, the Cal | Ar gNumfield must contain the number of arguments to be transferred.
For each argument, an element of the Cal | Ar g table must be supplied with values in the structure.

In the Ar gType field, the condition name ARG . . . which corresponds to the COBOL data type must be set.The
address of a Cobvar or CobNvar structure must be specified for strings. If trailing spaces are to be ignored,
| GNORE- TRAI LI NG SPACES must also be set. Other arguments must be transferred directly into the structure.

® Result values

For result values, the condition name which corresponds to the COBOL data type RES- . . . must be set in the
ResType field, or RES- VA Dif no return value is expected. If a string is expected as the return value, the
address of a Cobvar or CobNvar structure must be specified with a maximum length for the data area in the
ResVal Addr field. If the length <=0, the result value is not transferred.

After returning from the function, a Cobvar or CobNvar structure referenced as a return value contains the
number of transferred characters (maximum entry value) in the length field, and the transferred characters in the
data area. For other data types, the return value is transferred directly into the structure.

If an exceptional situation occurred during the conversion of a floating point data field or string object, the

ResEr r Code field contains the corresponding error code after returning from the function. This can be inquired by
means of the condition variable RES- ERR- <condi t i on> (see sections "Characters and strings" and "Floating
point numbers"). If an argument was incorrect (RETURN-CODE RET-ERR-EARGUMENT), the ResEr r | ndex field
contains the number of the argument.

The table below provides an overview of the definitions and the corresponding COBOL and Java types. For COBOL
types whose name begins with 'JCl - ', a type definition exists in the COPY element JCI-TYPEDEF. A '*' in the last
column specifies that automatic conversion of the argument or result value will take place in the JCI functions.

Java type COBOL type Variable Condition name
or TYPEDEF ResVval ..., RES- ..., ARG ...
ArgVval ...
String Structure CobVar Addr ANUM-STRING *
Structure CobNvar NAT-STRING
byte JClI-byte Byte BYTE
char PIC X Achar ANUM-CHAR *
char PIC N Nchar NAT-CHAR
boolean JCI-boolean Boolean BOOLEAN

165

JENV V9.0A

short
int
long
float
double

Java object (also string object)

JCI-short

JCl-int

JClI-long

USAGE COMP-1
USAGE COMP-2

JClI-object

Short
Int
Long
Float
Double

Object

SHORT
INT
LONG
FLOAT
DOUBLE

OBJECT

166

JENV V9.0A

7.10 Exceptions

Exceptions can be triggered both by the JCI functions and explicitly by a Java method. This can generally not be
recognized from the function’s return value.

JCI functions are available to inquire the existence of an exception, have information output, and to remove the
exception (see section "Exceptions").

When an exception has been triggered, it must first be removed by calling JCI _Except i onCl ear before the error-
free execution of further JCI functions is guaranteed.

167

JENV V9.0A

7.11 COPY elements

COPY elements are made available for general definitions and structures.

These are contained in the POSIX directory i ncl ude beneath the path under which JENV was installed.

168

JENV V9.0A

7.11.1 JCI-CONST - Definition of constants

This element defines the COBOL partial structure JCI - Const which contains all constants which are relevant to
the JCI as data fields:

i{*> Copyright (c) 2016 Fujitsu Technol ogy Sol utions GrbH

P> All Rights Reserved
! >>SOURCE FORVAT |'S FREE
141 JCl - Const.

{42 JCl - Versions.

{43 JCI - | NTERFACE- VERSI ON Pl C S9(009) USAGE COW-5 SYNC VALUE 001.
43 JCl - VERSI ON- 1 PI C S9(009) USAGE COW-5 SYNC VALUE 001.
{42 JCl - ReturnVal ues.

i *> success

43 JC - RET- K PI C S9(009) USAGE COWP-5 SYNC VALUE 000.
i*> truth-value false (fromtest-functions)

{43 JC - RET- FALSE PI C S9(009) USAGE COWP-5 SYNC VALUE 000.
§*> truth-value true (fromtest-functions)

{43 JCl - RET- TRUE PI C S9(009) USAGE COWP-5 SYNC VALUE 001.
{*> unspecific error

43 JC - RET-ERR PI C S9(009) USAGE COWP-5 SYNC VALUE 010.
{*> VM not created

{43 JCl - RET- ENOVM PI C S9(009) USAGE COWP-5 SYNC VALUE 011.
*> class/nethod/... not found

{43 JCl-RET-ENOTFOUND Pl C S9(009) USAGE COMP-5 SYNC VALUE 012.
{*> JCI-NULL object not allowed

43 JCl - RET- ENULLOBJ PI C S9(009) USAGE COW-5 SYNC VALUE 013.
{*> JCl-NULL method-id/field-id not allowed

{43 JCI-RET-ENULLID PI C S9(009) USAGE COWP-5 SYNC VALUE 014.
' *> array-index out of bounds

{43 JCl - RET- EI NDAOB PI C S9(009) USAGE COW-5 SYNC VALUE 015.
{*> jinvalid argunent

43 JCl - RET- EARGUMENT PI C S9(009) USAGE COW-5 SYNC VALUE 016.
{*> not enough nenory

{43 JCl - RET- ENOVEM PI C S9(009) USAGE COW-5 SYNC VALUE 017.
' *> VM al ready created

{43 JCl - RET-EEXI ST PI C S9(009) USAGE COWP-5 SYNC VALUE 020.
{*> jnvalid version in option structure

43 JCI-RET-EOPTVERS PIC S9(009) USAGE COWP-5 SYNC VALUE 021.
i*> jinvalid option nunmber

{43 JCl - RET- OPTNUM PI C S9(009) USAGE COWP-5 SYNC VALUE 022.
§*> nvalid version in argument structure

{43 JCl-RET-EARGVERS Pl C S9(009) USAGE COMP-5 SYNC VALUE 101.
i*> jnvalid version in result structure

43 JCl - RET- ERESVERS PI C S9(009) USAGE COW-5 SYNC VALUE 102.
i*> invalid argument nunber

{43 JCl - RET- EARGNUM PI C S9(009) USAGE COW-5 SYNC VALUE 103.
'*> invalid argument-type

{43 JCl - RET- EARGTYPE PI C S9(009) USAGE COW-5 SYNC VALUE 110.
{*> invalid result-type

43 JCl - RET- ERESTYPE PI C S9(009) USAGE COWP-5 SYNC VALUE 111.
{*> argument conversion error

{43 JCl - RET- EARGCONV PI C S9(009) USAGE COWP-5 SYNC VALUE 112.
§*> result conversion error

{43 JCl-RET-ERESCONV Pl C S9(009) USAGE COMP-5 SYNC VALUE 113.
{*> pending exception after nethod-call

43 JCl - RET- EEXCEPT PI C S9(009) USAGE COWP-5 SYNC VALUE 120.
{42 JC - Val ues.

169

JENV V9.0A

{43 JC-NULL PIC S9(009) USAGE COMP-5 SYNC VALUE 000.
42 JCl - Bool eanVal ues.

§43 JCl - FALSE PI C X(001) VALUE X 00'.

543 JC -TRUE PIC X(001) VALUE X 01'.

..

170

JENV V9.0A

7.11.2 JCI-TYPEDEFS - Type definitions

This element contains all elementary type definitions which are relevant to the JCI:

E*> Copyright (c) 2016 Fujitsu Technol ogy Sol utions GvbH
P*> Al Rights Reserved

| >>SOURCE FORMAT |'S FREE

101 JCI -short TYPEDEF Pl C S9(004) USAGE COMP-5.

101 JC-int TYPEDEF PI C S9(009) USAGE COVP-5.
101 JCI-long TYPEDEF Pl C S9(018) USAGE COWP-5.
101 JCI-size TYPEDEF TYPE JCI -int.

{01 JCl-object TYPEDEF Pl C S9(009) USAGE COWP-5.
101 JC-handle TYPEDEF PIC S9(009) USAGE COVP-5.
101 JCl-byte TYPEDEF PI C X(001).
501 JCl -bool ean TYPEDEF PI C X(001).

171

JENV V9.0A

7.11.3 JCI-VMOPT - Structure for transferring options

This element contains the partial structure JCI - VMopt which is required to transfer options when the VM is started:

§*> Copyright (c) 2016 Fujitsu Technol ogy Sol utions GrbH

P> Al Rights Reserved

{ >>SOURCE FORMAT | S FREE

{41 JCI - V\Vopt .

542 PI C S9(009) USAGE COWP-5 SYNC VALUE 001.
142 PI C S9(004) USAGE COWP-5 SYNC

VALUE <nax-options>.

142 VMOpt Num PI C S9(004) USAGE COWP-5 SYNC VALUE 000.
{42 VWMOptFlag PIC X(001) VALUE X 00'.

| 88 | GNORE- UNRECOGNI ZED VALUE X' 01'

{WHEN SET TO FALSE X 00'.

42 Pl C X(003) VALUE X 00'.

142 VMOpt OCCURS <max- opt i ons>.

43 VMOpt Vstring USAGE PO NTER

543 VMEXt r ai nf USAGE PROGRAM POl NTER.

This structure is referred to as Opt Ar g below.

Then umber of elements with which the options table is to be expanded (maximum number of arguments) must be
set by the REPLACING entry in the COPY statement:

COPY JCI - VMOPT REPLACI NG == <max- opti ons> == BY num.

The following statement is required for dynamic initialization of the structure as a whole in order to ensure the
correct values for fields which are reserved internally:

I NI TI ALI ZE JCI - VMopt W TH FI LLER ALL TO VALUE

172

JENV V9.0A

7.11.4 JCI-METHODARGS - Function arguments
This element contains the partial structure JCI - Met hodAr gs required for transferring arguments:

§*> Copyright (c) 2016 Fujitsu Technol ogy Sol uti ons GrbH
P> Al R ghts Reserved

| >>SOURCE FORMAT | S FREE

141 JC - Met hodAr gs.

142 USAGE COWP-2 SYNC VALUE 000.
142 PI C S9(009) USAGE COW-5 SYNC VALUE 001.
142 PI C S9(004) USAGE COWP-5 SYNC

| VALUE <max- ar gument s>.

{42 Cal | ArgNum Pl C S9(004) USAGE COVP-5 SYNC VALUE 000.
42 Call Arg OCCURS <max-ar gunment s>.

143 ArgType PI C X(001) VALUE X 00'.

! 88 ARG BYTE VALUE X 01'.

88 ARG ANUM CHAR VALUE X 02'.

i 88 ARG NAT- CHAR VALUE X 03'.

{88 ARG DOUBLE VALUE X 04'.
88 ARG FLOAT VALUE X 05'.
i 88 ARG LONG VALUE X 06'.
188 ARG I NT VALUE X 07'.
88 ARG SHORT VALUE X 08'.
{ 88 ARG BOOLEAN VALUE X 09'.

88 ARG ANUM STRI NG VALUE X OA'.

88 ARG NAT- STRING VALUE X 0B'.

88 ARG OBJECT VALUE X 0C .

143 Arglnd Pl C X(001) VALUE X 00' .

' *> Indicator for Strings

88 | GNORE- TRAI LI NG SPACES VALUE X 01'

EV\HEN SET TO FALSE X 00'.

43 Pl C X(002) VALUE ALL X 00 .
43 ArgVal Addr USAGE PO NTER.

43 ArgVal Doubl e USAGE COWP-2 SYNC VALUE 0.

43 ArgVal Fl oat REDEFI NES Ar gVal Doubl e USAGE COWP-
{43 ArgVal Long REDEFI NES Ar gVal Doubl e PI C S9(018) USACE COWP-
{43 Argval | nt REDEFI NES Ar gVal Doubl e PI C S9(009) USAGE COWP-

143 ArgVal Short REDEFI NES ArgVal Doubl e PI C S9(004) USAGE COMP-
' 43 ArgVal Obj ect REDEFI NES ArgVal Doubl e PI C S9(009) USAGE COVP-
{43 ArgVal Bool ean REDEFI NES Ar gVal Doubl e PI C X(001).
143 Argval Byte REDEFI NES Ar gVal Doubl e PI C X(001).
' 43 ArgVal Achar REDEFI NES ArgVal Doubl e PI C X(001).
143 ArgVal Nchar REDEFI NES ArgVal Doubl e PI C N(001).

agaoaoapR

The number of elements to be used to expand the argument table (maximum number of arguments) must be set by
means of the REPLACING entry in the COPY statement:

COPY JCI - METHODARGS REPLACI NG == <max-ar gunment s> == BY num.

The following statement is required for dynamic initialization of the structure as a whole in order to ensure the
correct values for both reserved fields and for the table elements:

I NI TI ALI ZE JCI - Met hodArgs W TH FI LLER ALL TO VALUE
THEN REPLACI NG ALPHANUMERI C BY ALL X 00'
THEN TO DEFAULT

173

JENV V9.0A

7.11.5 JCI-METHODRES - Function result

This element contains the partial structure JCI - Met hodRes required for transferring result values and error
information:

§*> Copyright (c¢) 2016 Fujitsu Technol ogy Sol uti ons GrbH
P> Al Rights Reserved

| >>SOURCE FORMAT |'S FREE

{41 JCI - Met hodRes.

142 USAGE COWP-2 SYNC VALUE 000.
542 PI C S9(009) USAGE COWP-5 SYNC VALUE 001.
{*> index to argunent/tabl e-el enent that caused a conversion-error
{42 ResErrlndex PIC S9(009) USAGE COWP-5 SYNC VALUE 000.
§*> addi tional information for function return-code

{*> JCl - RET- EARGCONV and JCl - RET- ERESCONV

{42 ResErrCode PIC S9(004) USAGE COWP-5 SYNC VALUE 000.
§*> no error

i 88 RES- NO- ERROR VALUE 000.

{*> not enough nenory to create/convert data

88 RES- ERR- NOVEM VALUE 001.

i *> object conversion error (object <-> string)

| 88 RES- ERR- OBJECT VALUE 010.

*> floating-point conversion-errors (S390 <-> | EEE)

{ 88 RES- ERR- FLOAT- UNDERFLOW VALUE 020.

! 88 RES- ERR- FLOAT- OVERFLOW VALUE 021.

88 RES- ERR- FLOAT-1 NVALID VALUE 022.

542 PI C X(006) VALUE ALL X 00'.
{42 Resul t Val ue.

|43 ResType Pl C X(001) VALUE X 00 .

88 RES-VA D VALUE X' 00'.

88 RES- BYTE VALUE X' 01'.

88 RES- ANUM CHAR VALUE X 02'.
{ 88 RES- NAT- CHAR VALUE X 03'.

| 88 RES- DOUBLE VALUE X 04' .
| 88 RES- FLOAT VALUE X 05'.
|88 RES-LONG VALUE X 06' .
188 RES-INT VALUE X 07" .
| 88 RES- SHORT VALUE X 08' .

{ 88 RES- BOOLEAN VALUE X 09'.

1 88 RES- ANUM STRI NG VALUE X OA' .
1 88 RES- NAT- STRING VALUE X OB'.
| 88 RES- OBJECT VALUE X' OC .
43 PI C X(003) VALUE ALL X 00'.
' 43 ResVal Addr USAGE PO NTER.
{43 ResVal Doubl e USAGE COMP-2 SYNC VALUE 0.

43 ResVal Fl oat REDEFI NES ResVal Doubl e USAGE COWP- 1.
{ 43 ResVal Long REDEFI NES ResVal Doubl e PI C S9(018) USAGE COWP- 5.
! 43 ResVal I nt REDEFI NES ResVal Doubl e PI C S9(009) USAGE COWP- 5.

43 ResVal Short REDEFI NES ResVal Doubl e PI C S9(004) USAGE COWP-5.
{43 ResVal Obj ect REDEFI NES ResVal Doubl e PI C S9(009) USAGE COWP-5.
! 43 ResVal Bool ean REDEFI NES ResVal Doubl e PI C X(001).
43 ResVal Byt e REDEFI NES ResVal Doubl e PI C X(001).
i 43 ResVal Achar REDEFI NES ResVal Doubl e PI C X(001).
43 ResVal Nchar REDEFI NES ResVal Doubl e PI C N(001).

174

JENV V9.0A

The following statement is required for dynamic initialization of the structure as a whole in order to ensure the
correct values for fields which are reserved internally:

I NI TI ALI ZE JCI - Met hodRes W TH FI LLER ALL TO VALUE

175

JENV V9.0A

7.12 Functions

The interfaces of the JCI functions are described according to aspects relating to content in this section.
For simplicity’s sake, object references are mainly referred to as objects in the formats.

Class object refers to a reference to an object of the class java.lang.Class.

176

JENV V9.0A

7.12.1 Starting and terminating the Java VM

This section describes the JCI functions which are required to start and terminate the Java VM.

177

JENV V9.0A

7.12.1.1 JCI_CreateJavaVM

This function generates, i.e. loads and initializes, the Java VM.
It is equivalent to the JNI function JNI _Cr eat eJavaVM

Call

CALL 'JCl _CreateJavaVM USI NG opt
opt Options for the Java VM

Arguments

opt A structure in the form Opt Ar g with the following elements:

VMOpt Num

The number of VM options; the value may not exceed the value specified for <max- opt i ons> (see
section "JCI-VMOPT - Structure for transferring options").

VMpt Fl ag

Displays whether unknown options are to be ignored (condition name | GNORE- UNRECOGNI ZED).
VMt Vst ri ng

For each option, the address of a Cobvar structure.Trailing spaces at the end of the text are ignored
VMEXt r ai nf

Depending on the option, the address of an external function.

All options can be specified which are also permissible in the JNI function JNI _Cr eat eJavaVM

Return value (RETURN-CODE)
JCl - RET- K
The call was successful.
JCl - RET- EVERSI ON
The statically generated version number in opt is invalid (possibly overwritten).
JCI - RET- EOPTNUM

The number of options transferred (VMOpt Nunj is less than O or greater than the value specified for <max-
opt i ons> (see section "JCI-VMOPT - Structure for transferring options").

JClI - RET- EEXI ST
A Java VM has already been generated.
JCI - RET- ENOVEM

Not enough memory is available to generate the Java VM.

178

JENV V9.0A

JCl - RET- ERR

An error which is not specified in more detail has occurred (e.g. invalid option and | GNORE- UNRECOGNI ZED
not set).

Notes
Only one JavaVM can be generated in a program run.

No new Java VM can be generated after terminating the VM with JCI _Dest r oyJavaVM either.

Example

! DATA DI VI SI ON.

| WORKI NG- STORAGE SECTI ON.

101 QptCP.

{05 PIC S9(9) COWP-5 VALUE 30.

105 PIC X(30) VALUE '-Djava.class. path=."

{01 Opt Enc.

{05 PIC S9(9) COMP-5 VALUE 40.

105 PIC X(40) VALUE '-Dfile.encodi ng=0SD_EBCDI C_DF04_15' .
{01 JVMpti ons.

| COPY JCI - VMOPT REPLACI NG == <nmx-options> == BY 2.

PROCEDURE DI VI SI ON.

Px>

Lx> Pr epare VM options

*>

{ MOVE 2 TO VMOpt Num

{ SET | GNORE- UNRECOGNI ZED TO FALSE.

{ SET VMpt Vstring(1l) TO ADDRESS OF Opt CP
! SET VMOpt Vstring(2) TO ADDRESS OF Opt Enc
Pr>

i*> Create the Java W

Px>

CALL 'JCl _CreateJavaVM USI NG JVMpti ons
{1 F RETURN- CODE NOT = JCI - RET- K

179

JENV V9.0A

7.12.1.2 JCI_DestroyJavavVM

This function releases resources of the Java VM.
It is equivalent to the JNI function JNI _Dest r oyJavaVM

Call

CALL ' JCl _DestroyJavavVM

Return value (RETURN-CODE)
JCl - RET- K

The call was successful.
JCl - ERR

An error which is not specified in more detail has occurred.

Notes

® The function should not be called if the call of the function JCI _Cr eat eJavaVMwas not successful.

After the function has been executed correctly, no further JCI functions can be called.

The Java VM is not unloaded.
® Itis not possible to reboot the Java VM with JCl _Cr eat eJavaVM

180

JENV V9.0A

7.12.2 Classes and methods

This section describes the JCI functions which are required to load classes and call methods.

181

JENV V9.0A

7.12.2.1 JCI_FindClass

This function localizes and loads a class.
It is equivalent to the JNI function Fi ndCl ass.

Call
CALL ' JC _Fi ndd ass' USI NG cName cObj

cName Name of the class

cObj Class object returned by the function

Arguments

cName Structure of the type Cobvar
Fully qualified name of the class (i.e. a package-name separated by "/" followed by the name and
class) which is to be searched for. If the name begins with “[" (array signature character), an array
class is returned.
Trailing spaces at the end of the text are ignored.

cObj Data field of the type JCI - obj ect
After the function has been successfully executed, the field contains a class object of the class being
searched for.
In the event of an error, the value JCI-NULL is returned.

Return value (RETURN-CODE)
JCl - RET- K

The call was successful.
JCI - RET- ENOVM

No Java VM has been started.
JCI - RET- ENOTFOUND

The class could not be loaded.

Exceptions

The exceptions generated by the function correspond to those of the JNI function Fi ndd ass.

{ DATA DI VI SI ON.

| WORKI NG- STORAGE SECTI ON.
{ COPY JCI - TYPEDEFS.

101 JCl Constants.

182

JENV V9.0A

! COPY JCI - CONST.

01 cl assNane.

102 PIC S9(9) USAGE COMP-5 VALUE 30.
102 PIC X(30) VALUE ' Hello'.

101 classChj TYPE JC - obj ect.

| PROCEDURE DI VI SI ON.

CALL 'JC _Fi ndd ass' USI NG cl assNane cl assObj
{1 F RETURN- CODE NOT = JCI - RET- K

183

JENV V9.0A

7.12.2.2 JCI_GetStaticMethodID

This function returns the method ID (Java handle) for a static method of a class.It is equivalent to the JNI function
Get St at i cMet hodl D.

Call

CALL 'JC _Cet StaticMethodl D USI NG cObj mName mSig miD
cObj Class object

mName Name of the method
mSig Signature of the method

miD Method ID returned by the function

Arguments

cObj Data field of the type JCI - obj ect
Object of the class in which the method is to be searched for.

mName Structure of the type Cobvar
Name of the method which is to be searched for.
Trailing spaces at the end of the text are ignored.

mSig Structure of the type Cobvar
Signature of the method which is to be searched for.
Trailing spaces at the end of the text are ignored.

miD Data field of the type JCl - handl e
After the function has been successfully executed, the field contains the method ID of the method
being searched for.
In the event of an error, the value JCI-NULL is returned.

Return value (RETURN-CODE)
JCl - RET- &K

The call was successful.
JCl - RET- ENOVM

No Java VM has been started.
JCl - RET- ENULLOBJ

cObjis JCI - NULL.
JCI - RET- EARGUMENT

cObjis not a class object.

JCl - RET- ENOTFOUND

184

JENV V9.0A

The method could not be found.

Exceptions

The exceptions generated by the function correspond to those of the JNI function Get St at i cMet hodl D.

Notes

The method is identified by the name and the signature. The signature can be received by the statement,

the <cl ass- nane> being the name of the class identified by cObj.

Example

{ DATA DI VI SI ON.

| WVORKI NG- STORAGE SECTI ON.
| COPY JCI - TYPEDEFS.

{01 JCl Constants.

| COPY JCI - CONST.

{01 met hodNane.

105 PIC S9(9) COWP-5 VALUE 30.

105 PIC X(30) VALUE 'hello'.

{01 nethodSi g.

105 PIC S9(9) COMP-5 VALUE 80.

{05 PIC X(80) VALUE '(Ljaval/lang/String;)V .

101 classCbj TYPE JCl - obj ect.
{01 nmethodl D TYPE JCI - handl e.

PROCEDURE DI VI SI ON.

CALL 'JCl _Get StaticMethodl D USING cl assCbj met hodNane
i met hodSi g net hodl D

{1 F RETURN- CODE NOT = JCI - RET- OK

185

JENV V9.0A

7.12.2.3 JCI_CallStaticMethod

This function calls a static method.
It is equivalent to the JNI functions Cal | St at i c<t ype>Met hod. However, it also offers the option of transferring
or receiving strings directly.

Call

CALL 'JCl _Call StaticMethod' USING cObj mID arg res
cObj Class object

miID Method ID
arg Method arguments

res Method result

Arguments

cObj Data field of the type JCI - obj ect
Class object whose method is to be called.

miID Data field of the type JCI - handl e
ID of the method which is to be called. The method ID must be obtained by calling the function
JCl _Get St ati cMet hodl Dfor the cObj class.

arg A structure of the form Met hodAr g
Description of the arguments for the method call (see section "Arguments and event values of Java
methods").

res A structure of the form Met hodRes
Description of the return value for the method call and error information (see section "Arguments and
event values of Java methods"). If the return value of the method is a NULL object, the length field of the
target structure is set to 0 for the types RES- ANUM STRI NG and RES- NAT- STRI NG, and the text area
remains unchanged.

Return value (RETURN-CODE)
JCI - RET- K

The call was successful.
JCI - RET- ENOVM

No Java VM has been started.
JCI - RET- ENULLOBJ

cObjis JCI - NULL.

JCl - RET- ENULLI D

186

JENV V9.0A

midis JCI - NULL.
JCI - RET- EARGUVENT

cObjis not a class object.
JCl - RET- EARGVERS

The statically generated version number in arg is invalid (possibly overwritten).
JCl - RET- ERESVERS

The statically generated version number in res is invalid (possibly overwritten).
JCl - RET- EARGNUM

The number of arguments transferred (Cal | Ar gNum is less than 0 or greater than the value used for <max-
ar gunent s> (see section "JCI-METHODARGS - Function arguments").

JCI - RET- EARGTYPE

The value of the Ar gType field is invalid. The ResEr r | ndex field contains the number of the faulty argument.
JCI - RET- ERESTYPE

The value of the ResType field is invalid.
JCl - RET- EARGCONV

An error occurred while an argument was being converted.
The ResErr | ndex field contains the number of the argument, the ResEr r Code field a more precise error
code.

JCl - RET- ERESCONV

An error occurred while the result was being converted.
The ResEr r Code field contains a more precise error code.

JCl - RET- EEXCEPT

An exception exists after the method was called. No distinction is made between whether the exception was
generated by this or an earlier function call.
The field corresponding to the method result in the res structure is unchanged.

Exceptions

All exceptions which were generated by the called method.

| DATA DI VI SI ON.
| WORKI NG STORAGE SECTI ON.

101 Met hodAr gs.

{ COPY JCI - METHODARGS REPLACI NG ==<max- ar gunent s>== BY 2.
101 Met hodRes.

{ COPY JCI - METHODRES.

187

JENV V9.0A

EOl myNane.

105 len PIC S9(9) COWP-5 VALUE 30.
105 txt PIC X(30).

01 classQyj TYPE JCl -object.

{01 nethodl D TYPE JCI - handl e.

| PROCEDURE DI VI SI ON.

' MOVE 1 TO Cal | Ar gNum

{ SET RES-VO D TO TRUE

SET ARG ANUM STRI NG 1) | GNORE- TRAI LI NG SPACES(1) TO TRUE
| SET ArgVal Addr (1) TO ADDRESS OF nyNane

'CALL 'JCI _Call StaticMethod USING cl assCbj nethodl d

El\/tat hodArgs Met hodRes

{1 F RETURN- CODE NOT = JCI - RET- OK

188

JENV V9.0A

7.12.2.4 JCI_GetMethodID

This function returns the method ID (Java handle) for an instance method of a class or interface.
It is equivalent to the JNI function Get Met hodl D.

Call

CALL 'JC _Cet Met hodl D USI NG cObj mName mSig miD
cObj Class object

mName Name of the method
mSig Signature of the method

miD Method ID returned by the function

Arguments

See function JCI _Get St at i cMet hodl D.

Return value (RETURN-CODE)

See function JCI _Get St at i cMet hodl D.

Exceptions

The exceptions generated by the function correspond to those of the JNI function Get Met hodl D.

Notes
The method can be defined in an upper class of the class referenced by cObj and be inherited by the latter.

The method is identified by the name and the signature. The signature can be received by the statement,

the <cl ass- name> being the name of the class identified by cObj.

189

JENV V9.0A

7.12.2.5 JCI_CallMethod

This function calls an instance method.
It is equivalent to the JNI functions Cal | <t ype>Met hod. However, it also offers the option of transferring or
receiving strings directly.

Call

CALL 'JCl _Cal | Met hod' USI NG obj mID arg res

obj Instance object
mID Method ID
arg Method arguments

res Method result

Arguments

obj Data field of the type JCI - obj ect
Instance object for which the method is to be called.

miD Data field of the type JCI - handl e
ID of the method which is to be called. The method ID must be obtained by calling the
JCl _Get St ati cMet hodl Dfunction for the class of the object obj or one of its upper classes.

arg A structure of the form Met hodAr g
Description of the arguments for the method call (see section "Arguments and event values of Java
methods").

res A structure of the form Met hodRes
Description of the return value for the method call and error information (see section "Arguments and
event values of Java methods"). If the return value of the method is a NULL object, the length field of the
target structure is set to O for the types RES- ANUM STRI NG and RES- NAT- STRI NG, and the text area

remains unchanged.

Return value (RETURN-CODE)
JCl - RET- ENULLOBJ
objis JCI - NULL.

All other values asin JCI _Cal | St ati cMet hod.

Exceptions

All exceptions which were generated by the called method.

190

JENV V9.0A

7.12.2.6 JCI_CallNonvirtualMethod

This function calls an instance method of a predefined class.
It is equivalent to the JNI functions Cal | Nonvi rt ual <t ype>Met hod. However, it also offers the option of
transferring or receiving strings directly.

Call

CALL 'JCl _Cal I Nonvirtual Met hod' USI NG objcObhj miD arg res

obj Instance object

cObj Object of the class in which the method is defined.
mID Method ID

arg Method arguments

res Method result

Arguments

obj Data field of the type JCI - obj ect
Instance object for which the method is to be called.

cObj Data field of the type JCI - obj ect
Object of the class whose method is to be called.

miD Data field of the type JCI - handl e
ID of the method which is to be called.
The method ID must be obtained by calling the function JCI _Get Met hodl D for the cObj class. This
class must match the class of the obj object or of one of its upper classes.

arg A structure of the form Met hodAr g
Description of the arguments for the method call (see section "Arguments and event values of Java
methods").

res A structure of the form Met hodRes
Description of the return value for the method call and error information (see section "Arguments and
event values of Java methods"). If the return value of the method is a NULL object, the length field of the
target structure is set to 0 for the types RES- ANUM STRI NG and RES- NAT- STRI NG, and the text area
remains unchanged.

Return value (RETURN-CODE)
JCl - RET- ENULLOBJ
objor cObjis JCI - NULL.

All other values asin JCI _Cal | St ati cMet hod.

191

JENV V9.0A

Exceptions

All exceptions which were generated by the called method.

192

JENV V9.0A

7.12.3 Object references

This section describes the JCI functions required to manage local object references.

193

JENV V9.0A

7.12.3.1 JCI_DeleteLocalRef

This function deletes a local object reference.
It is equivalent to the JNI function Del et eLocal Ref.

Call
CALL ' JCl _Del eteLocal Ref' USI NG obj

obj Object reference

Arguments

obj Data field of the type JCI - obj ect
Object reference which is to be deleted.

Return value (RETURN-CODE)
JC - RET- K

The call was successful.
JCl - RET- ENOVM

No Java VM has been started.

Notes

After the JCI _Del et eLocal Ref function has been called, the object reference obj may no longer be used.

194

JENV V9.0A

7.12.3.2 JCl_NewLocalRef

This function generates a new local reference to an object.
It is equivalent to the JNI function NewLocal Ref .

Call
CALL 'JCl _NewlLocal Ref' USI NG obj new(bj

obj Object reference

newObj Obiject reference returned by the function

Arguments

obj Data field of the type JCI - obj ect
Object reference to the object to which a new reference is to be generated.

newObj Data field of the type JCI - obj ect
New object reference to the object referenced by obj.

Return value (RETURN-CODE)
JCl - RET- &K

The call was successful.
JCl - RET- ENOVM

No Java VM has been started.

195

JENV V9.0A

7.12.4 Objects

This section describes the JCI functions required to generate and edit Java objects.

196

JENV V9.0A

7.12.4.1 JCI_NewObject

This function generates a new Java object.
It is equivalent to the JNI function NewObj ect . However, it also offers the option of transferring strings directly.

Call

CALL 'JClI _Newhj ect' USING cObj mID arg res
cObj Class object

mID Method ID
arg Constructor arguments

res Result

Arguments
cObj Data field of the type JCI - obj ect
Class object for which an object is to be generated. It may not refer to an array class.

mID Data field of the type JCI - handl e
ID of the constructor method. The method ID must be obtained by calling the function
JCl _Get Met hodl D with the name <i ni t > and signature (. . .) V for the cObj class.

arg A structure of the form Met hodAr g
Description of the arguments for the constructor call (see section "Arguments and event values of Java
methods").

res A structure of the form Met hodRes
Return value (new object) and error information (output only, result in ResVal Qbj ect). In the event of
an error, JCI-NULL is returned.

Return value (RETURN-CODE)
JCI - RET- K

The call was successful.
JCI - RET- ENULLOBJ

cObjis JCl - NULL.
JCI - RET- ENULLI D

midis JCI - NULL.
JCI - RET- EARGUMVENT

cObjis not a class object or refers to an array.
JCl - RET- ENOVM

No Java VM has been started.

JCI - RET- EARGVERS

197

JENV V9.0A

The statically generated version number in arg is invalid (possibly overwritten).
JCl - RET- ERESVERS

The statically generated version number in res is invalid (possibly overwritten).
JCl - RET- EARGNUM

The number of arguments transferred (Cal | Ar gNum is less than 0 or greater than the value used for <max-
ar gunent s> (see section "JCI-METHODARGS - Function arguments").

JCI - RET- EARGTYPE
The value of the Ar gType field is invalid. The ResEr r | ndex field contains the number of the faulty argument.
JCI - RET- EARGCONV

An error occurred while an argument was being converted.
The ResErr | ndex field contains the number of the argument, the ResEr r Code field a more precise error
code.

JCl - RET- ERR

The object could not be generated.

Exceptions
All exceptions generated by the constructor.

The other exceptions generated by the function correspond to those of the JNI function NewChj ect .

Example

{ DATA DI VI SI ON.

| VORKI NG- STORAGE SECTI ON.
| COPY JCI - TYPEDEFS.

{01 JC Constants.

| COPY JCI - CONST.

101 cl assNane.

§02 PIC S9(9) COWP-5 VALUE 30.
{02 PIC X(30) VALUE 'nyd ass'.
{01 nmet hodNane.

§05 PIC S9(9) COWP-5 VALUE 9.
{05 PIC X(10) VALUE '<init>'.
{01 net hodSi g.

EOS PI C S9(9) COWP-5 VALUE 80.
{05 PIC X(80) VALUE

(Lj aval/l ang/ String; Ljaval/lang/ String;)V .
01 nText.

{05 PIC S9(9) COWP-5 VALUE 8.
105 PIC N(20) VALUE N COBOL'.
01 aText.

{05 PIC S9(9) COWP-5 VALUE 8.
{05 PIC X(20) VALUE 'Java'.
101 classObj TYPE JC -obj ect.

198

JENV V9.0A

{01 instanceCbj TYPE JC - obj ect.

101 methodl D TYPE JC - handl e.

{01 Met hodAr gs.

! COPY JCI - METHODARGS REPLACI NG ==<max- ar gunent s>== BY 2.
EOl Met hodRes.

| COPY JCI - METHODRES.

PROCEDURE DI VI SI ON.

CALL 'JCl _FindC ass' USING cl assNarme cl assbj ect
{1 F RETURN- CODE NOT = JCI - RET- K

PEND- I F

| CALL ' JCI _GetMethodl D' USI NG cl assCbj net hodNane
i met hodSi g net hodl D

|| F RETURN- CODE NOT = JCI - RET- K

CEND- I F

{MOVE 2 TO Cal | ArgNum

| SET ARG NAT- STRING(1) | GNORE- TRAI LI NG SPACES(1) TO TRUE

| SET ArgVal Addr (1) TO ADDRESS OF nText

! SET ARG ANUM STRI NG(2) | GNORE- TRAI LI NG SPACES(2) TO TRUE
| SET ArgVal Addr (2) TO ADDRESS OF aText

CALL 'JCl _NewObj ect' USI NG cl assObj net hodld
i Met hodAr gs Met hodRes
{1 F RETURN- CODE NOT = JCI - RET- OK

CEND- I F
{ MIVE ResVal Obj ect TO i nstanceQbj ect

199

JENV V9.0A

7.12.4.2 JCI_GetObjectClass

This function returns the class object of an object.
It is equivalent to the JNI function Get Obj ect O ass.

Call
CALL 'JCl _Get njectd ass' USI NG obj cObj

obj Instance object

cObj Class object returned by the function

Arguments
obj Data field of the type JCI - obj ect

Instance object whose class object is to be returned. The object may not be 0.

cObj Data field of the type JCI - obj ect
After the function has been successfully executed, the field contains the class object of the class being
searched for.

Return value (RETURN-CODE)
JCl - RET- K

The call was successful.
JCI - RET- ENOVM

No Java VM has been started.
JCI - RET- ENULLOBJ

objis JCI - NULL.

200

JENV V9.0A

7.12.4.3 JCI_IsInstanceOf

This function checks whether an object is an instance of a class.
It is equivalent to the JNI function | sl nst anceCf .

Call
CALL 'JC _IslnstanceO'" USI NG obj cObj

obj Instance object

cObj Class object

Arguments

obj Data field of the type JCI - obj ect
Object which is to be checked. If objis JCI - NULL, it is an instance of every class.

cObj Data field of the type JCI - obj ect
Class which is to be checked for.

Return value (RETURN-CODE)
JCl - RET- TRUE

obj is an instance of cQbj .
JCI - RET- FALSE

obj is not an instance of cObj .
JCI - RET- ENOVM

No Java VM has been started.
JCI - RET- ENULLOBJ

cObjis JClI - NULL.
JCI - RET- EARGUVENT

cObj is not a class object.

201

JENV V9.0A

7.12.4.4 JCI_IsSameObject

This function checks whether two object references refer to the same object.It is equivalent to the NI function
| sSanej ect .

Call

CALL 'JCl I sSaneChj ect' USI NG objl obj2
objl Object
obj2 Object

Arguments
obj1, obj2

Data fields of the type JCI - obj ect
Objects which are to be compared.

Return value (RETURN-CODE)
JCl - RET- TRUE
Both object references refer to the same object or are both JCI - NULL.
JCI - RET- FALSE
The object references refer to different objects.
JCI - RET- ENOVM

No Java VM has been started.

202

JENV V9.0A

7.12.5 Fields

This section describes the JCI functions which enable fields in Java objects to be edited.

203

JENV V9.0A

7.12.5.1 JCI_GetStaticFieldID

This function returns the field ID (Java handle) for a static field of a class.It is equivalent to the JNI function
Get St ati cFi el dI D.

Call

CALL 'JC _CetStaticFieldl D USING cObj fName fSig flD
cObj Class object

fName Name of the field
Sig Signature of the field

flD Field ID returned by the function

Arguments

cObj Data field of the type JCl - obj ect
Object of the class in which the method is to be searched for.

fName Structure of the type Cobvar
Name of the field which is to be searched for.
Trailing spaces at the end of the text are ignored.

fSig Structure of the type Cobvar
Signature of the field which is to be searched for.
Trailing spaces at the end of the text are ignored.

flD Data field of the type JCI - handl e
After the function has been successfully executed, the field contains the field ID of the field being
searched for.
In the event of an error, the value JCI-NULL is returned.

Return value (RETURN-CODE)
JC - RET- K

The call was successful.
JCI - RET- ENOVM

No Java VM has been started.
JCI - RET- ENULLOBJ

cObjis ICI - NULL.
JCI - RET- EARGUMVENT

cObjis not a class object.

204

JENV V9.0A

JCl - RET- ENOTFOUND

The field could not be found.

Exceptions

The exceptions generated by the function correspond to those of the JNI function Get St at i cFi el dI D.

Notes

The field is identified by the name and the signature. The signature can be received by the statement,

the <cl ass- nane> being the name of the class identified by cObj.

205

JENV V9.0A

7.12.5.2 JCI_GetStaticField

This function returns the value of a static field of a class.
It is equivalent to the JNI functions Get St at i c<t ype>Fi el d. However, it also offers the option of obtaining

strings directly.

Call

CALL 'JCl _GetStaticField USING cObjfID res
cObj Class object

fID Field ID
res Result
Arguments

cObj Data field of the type JCI - obj ect
Class object whose field content is to be returned.

fID Data field of the type JCI - handl e
ID of the field whose content is to be returned. The field ID must be obtained by calling the function
JClI _Get St ati cFi el dl Dfor the cObj class.

res A structure of the form Met hodRes
Description of the return value for the field content and error information (see section "Arguments and
event values of Java methods"). If the content of the field is a NULL object, the length field of the target
structure is set to 0 for the types RES- ANUM STRI NGand RES- NAT- STRI NG, and the text area remains

unchanged.

Return value (RETURN-CODE)
JCl - RET- K

The call was successful.
JCI - RET- ENOVM

No Java VM has been started.
JCI - RET- ENULLOBJ

cObjis JCI - NULL.
JCl - RET- ENULLI D

fIDis JCI - NULL.
JCl - RET- EARGUMENT

cObjis not a class object.

JCl - RET- ERESVERS

206

JENV V9.0A

The statically generated version number in res is invalid (possibly overwritten).
JCl - RET- ERESTYPE

The value of the ResType field is invalid.
JCl - RET- ERESCONV

An error occurred while the result was being converted.
The ResEr r Code field contains a more precise error code.

207

JENV V9.0A

7.12.5.3 JCI_SetStaticField

This function sets the value of a static field of a class.
It is equivalent to the JNI functions Set St at i c<t ype>Fi el d. However, it also offers the option of transferring

strings directly.

Call

CALL 'JCl _Set StaticField USING cObjfID arg res
cObj Class object

fID Field ID
arg New value

res Result

Arguments

cObj Data field of the type JCI - obj ect
Class object whose field content is to be set.

fID Data field of the type JCI - handl e
ID of the field whose content is to be set. The field ID must be obtained by calling the function
JCl _Get Stati cFi el dl Dfor the cObj class.

arg A structure of the form Met hodAr g
Description of the new value for the field content (see section "Arguments and event values of Java
methods").
Only the partial structure Cal | Arg(1) is required.

res A structure of the form Met hodResError information (output only).

Return value (RETURN-CODE)
JCl - RET- &K

The call was successful.
JCl - RET- ENOVM

No Java VM has been started.
JCl - RET- ENULLI D

fIDis JCI - NULL.
JCI - RET- ENULLOBJ

cObjis ICI - NULL.

JCl - RET- EARGUMENT

208

JENV V9.0A

cObjis not a class object.

JCI - RET- EARGVERS

The statically generated version number in arg is invalid (possibly overwritten).

JCl - RET- ERESVERS

The statically generated version number in res is invalid (possibly overwritten).

JCl - RET- EARGTYPE
The value of the Ar gType field is invalid.
JCI - RET- EARGCONV

An error occurred while the argument was being converted.
The ResEr r Code field contains a more precise error code.

209

JENV V9.0A

7.12.5.4 JCI_GetFieldID

This function returns the field ID (Java handle) for an instance field of a class.It is equivalent to the JNI function
Get Fi el dI D.

Call

CALL 'JCl _CetFieldl D USI NG cObj fName fSig fID
cObj Class object

fName Name of the field
Sig Signature of the field

flD Field ID returned by the function

Arguments

See function JCI_GetStaticFieldID.

Return value (RETURN-CODE)

See function JCI_GetStaticFieldID.

Exceptions

The exceptions generated by the function correspond to those of the JNI function Get Fi el dI D.

Notes

See function JCI_GetStaticField.

210

JENV V9.0A

7.12.5.5 JCI_GetField

This function returns the value of an instance field of an object.
It is equivalent to the JNI functions Get <t ype>Fi el d. However, it also offers the option of obtaining strings directly.

Call
CALL 'JCl _GetField USING objfID res
obj Instance object

fiD Field ID

res Result

Arguments
obj Data field of the type JCI - obj ect
Instance object whose field content is to be returned.

fID Data field of the type JClI - handl e
ID of the field whose content is to be returned. The field ID must be obtained by calling the function
JCl _Cet Fi el dI D.

res A structure of the form Met hodRes
Description of the return value for the field content and error information (see section "Arguments and
event values of Java methods"). If the content of the field is a NULL object, the length field of the target
structure is set to 0 for the types RES- ANUM STRI NGand RES- NAT- STRI NG, and the text area remains
unchanged.

Return value (RETURN-CODE)
JClI - RET- ENULLOBJ
objis JCI - NULL.

All other values as in JCI_GetStaticField.

211

JENV V9.0A

7.12.5.6 JCI_SetField

This function sets the value of a static field of a class.
It is equivalent to the JNI functions Set <t ype>Fi el d. However, it also offers the option of transferring strings

directly.

Call

CALL 'JCl _Set Field" USING objfID arg res

obj Instance object
fID Field ID
arg New value

res Result

Arguments

obj Data field of the type JCl - obj ect
Instance object whose field content is to be modified.

fID Data field of the type JCI - handl e
ID of the field whose content is to be set. The field ID must be obtained by calling
the function JClI _Get Fi el dI D.

arg A structure of the form Met hodAr g
Description of the new value for the field content (see section "Arguments and event values of Java
methods").
Only the partial structure Cal | Arg(1) is required.

res A structure of the form Met hodRes
Error information (output only).

Return value (RETURN-CODE)
JCl - RET- ENULLOBJ
objis JCI - NULL.

All other values as in JCI_GetStaticField.

212

JENV V9.0A

7.12.6 Strings

This section describes the JCI functions which enable Java strings to be generated and edited.

213

JENV V9.0A

7.12.6.1 JCI_NewsString

This function generates a new Java string object from a COBOL string.It is equivalent to the JNI function
NewSt r i ng. However, it also offers the option of transferring alphanumeric (EBCDIC) strings directly.

Call
CALL '"JCI _Newstring' USING arg res

arg Argument description

res Result description

Arguments

arg A structure of the form Met hodAr g

Description of the string from which the string object is to be generated (see section "Arguments and event
values of Java methods").

Only the partial structure Cal | Arg(1) is required.

The only permissible value for Ar gType(1) is ARG ANUM STRI NG or ARG- NAT- STRI NG.

res A structure of the form Met hodRes
Return value and error information (output only, result in ResVal Obj ect). In the event of an error, the
value JCI-NULL is returned.

Return value (RETURN-CODE)
JCl - RET- K
The call was successful.
JCl - RET- ENOVM
No Java VM has been started.
JCl - RET- EARGVERS
The statically generated version number in arg is invalid (possibly overwritten).
JCl - RET- ERESVERS
The statically generated version number in res is invalid (possibly overwritten).
JCl - RET- EARGTYPE
The value of the Ar gType field is invalid.
JCI - RET- EARGCONV

An error occurred while the argument was being converted.
The ResEr r Code field contains a more precise error code.

JCl - RET- ERR

214

JENV V9.0A

The object could not be generated.

Exceptions

The exceptions generated by the function correspond to those of the JNI function NewSt ri ng.

215

JENV V9.0A

7.12.6.2 JCI_GetStringLength

This function returns the length (number of Unicode characters) of a Java string.
It is equivalent to the JNI function Get St ri ngLengt h.

Call
CALL 'JCl _Get StringLength' USI NG sObjlen
sObj String object

len Length

Arguments

sObj Data field of the type JCI - obj ect
String object whose length is to be returned.

len Data field of the type JCI - si ze
After the function has been successfully executed, the field contains the number of Unicode characters in
the string object referenced by sObj.

Return value (RETURN-CODE)
JCl - RET- K

The call was successful.
JCI - RET- ENOVM

No Java VM has been started.
JCI - RET- ENULLOBJ

sObjis JCI - NULL.
JCI - RET- EARGUVENT

sObjis not a string object.

216

JENV V9.0A

7.12.6.3 JCI_GetString

This function copies part of a Java string to a data area provided.
It is equivalent to the JNI function Get St ri ngRegi on. However, it also offers the option of obtaining alphanumeric

(EBCDIC) strings directly.

Call

CALL 'JCl _GetString' USING sObj start res
sObj String object

start Start position

res Result description

Arguments

sObj Data field of the type JCI - obj ect
String object whose content is to be copied.

start Data field of the type JCI - si ze
Position of the first character which is to be returned (beginning with 1).

res A structure of the form Met hodRes
Return value and error information (see section "Arguments and event values of Java methods").
The only permissible value for ResType is RES- ANUM STRI NG or RES- NAT- STRI NG

Return value (RETURN-CODE)
JCl - RET- K
The call was successful.
JCI - RET- ENOVM
No Java VM has been started.
JCI - RET- ENULLOBJ
sObjis JCI - NULL.
JCl - RET- EARGUMENT
sObjis not a string object.
JCl - RET- El NDACB
startis less than 1 or greater than the number of characters in the Java string.
JCl - RET- ERESVERS
The statically generated version number in res is invalid (possibly overwritten).

JCl - RET- ERESTYPE

217

JENV V9.0A

The value of the ResType field is invalid.
JCl - RET- ERESCONV

An error occurred while the string was being converted.
The ResEr r Code field contains a more precise error code.

Notes

The maximum length of the transfer (Ilength of Java string — start + 1) or of the value /en equals that of the output
structure.

Example

{ DATA DI VI SI ON.

| WORKI NG- STORAGE SECTI ON.
| COPY JCI - TYPEDEFS.

{01 JCI Constants.

| COPY JCI - CONST.

{01 sCbj TYPE JCI -object.

101 sPos PIC S9(9) COVP-5 VALUE 0.
101 sLen PIC S9(9) COWP-5 VALUE 0.
{01 aText.

105 alen PIC S9(9) COMP-5 VALUE 80.
105 atxt PIC X(80) VALUE SPACE.

101 Met hodRes.
| COPY JCI - METHODRES.

PROCEDURE DI VI SI ON.

CALL 'JC _Get StringLength' USING sCbj slLen
i1 F RETURN- CODE NOT = JCl - RET- K

{END- | F.

SET RES- ANUM STRI NG TO TRUE

{ SET ResVal Addr TO ADDRESS OF aText

{ MOVE LENGTH OF atxt TO al en

§*> | oop to output the conplete java-string

{ PERFORM VARYI NG sPos FROM 1 BY al en UNTIL sPos > sLen
{CALL 'JCI _GetString' USING sobj sPos MethodRes

I F RETURN- CODE NOT = JCI - RET- K

CEND- I F
DI SPLAY aTxt(1:alen) UPON T
| END- PERFORM

218

JENV V9.0A

7.12.7 Arrays

This section describes the JCI functions which enable Java arrays to be generated and processed.

219

JENV V9.0A

7.12.7.1 JCI_GetArrayLength

This function is equivalent to the JNI function Get Arr ayLengt h.

Call

CALL 'JC _Get ArrayLength' USI NG aObj num
aObj Array object

num Number of elements

Arguments

aObj Data field of the type JCI - obj ect
Array object whose number of elements is to be returned.

num Data field of the type JCl - si ze
After the function has been successfully executed, the field contains the number of elements of the array
object referenced by aObj.

Return value (RETURN-CODE)
JCl - RET- &K

The call was successful.
JCl - RET- ENOVM

No Java VM has been started.
JCI - RET- ENULLOBJ

aObjis JCI - NULL.
JCI - RET- EARGUMENT

aObj is not an array object.

220

JENV V9.0A

7.12.7.2 JCI_NewObjectArray

This function generates an array object for object elements.
It is equivalent to the JNI function NewGbj ect Arr ay.

Call

CALL 'JClI _Newhj ect Array' USI NG num cObj eObj res

num Number of elements
cObj Element class
eObj Element initil value

res Result description

Arguments

num Data field of the type JCl - si ze
Number of elements in the array.

cObj Data field of the type JCl - obj ect
Class object for the class of the array elements.

eObj Data field of the type JCI - obj ect
Initial value for the array elements (may also be JCI-NULL).

res A structure of the form Met hodRes

Return value (new object reference) in ResVal Obj ect . In the event of an error, the value JCI-NULL is

returned.

Return value (RETURN-CODE)
JCl - RET- K

The call was successful.
JCI - RET- ENULLOBJ

cObjis ICI - NULL.
JCI - RET- EARGUMENT

cObjis not a class object.
JCI - RET- El NDACB

numis less than 0.
JCI - RET- ENOVM

No Java VM has been started.

JCl - RET- ERESVERS

221

JENV V9.0A

The statically generated version number in res is invalid (possibly overwritten).
JCl - RET- ERR

The array object could not be generated.

Exceptions

The exceptions generated by the function correspond to those of the JNI function NewGbj ect Arr ay.

Example

| DATA DI VI SI ON.

| WORKI NG- STORAGE SECTI ON.
{ COPY JCI - TYPEDEFS.

01 JC Const ant s.

{ COPY JCI - CONST.

01 cl assNane.

105 len PIC S9(9) COWP-5 VALUE 40.
{05 txt PIC X(40) VALUE SPACE.

101 classCbj TYPE JCI - obj ect.

{01 initObj TYPE JCl -object.

{01 arrayQhj TYPE JCI - obj ect.

101 nunEl ements PIC S9(9) COVP-5.

101 Met hodRes.
| COPY JCI - METHODRES.

| PROCEDURE DI VI SI ON.

§*> Create array of 10 String-elenments

Pr>

MOVE 'javal/lang/String' TO txt IN classNane
{CALL 'JCl _Findd ass' USING cl assNane cl assld
EIF RETURN- CODE NOT = JCI - RET- K

{ END- | F.

' MOVE 10 TO nunEl erent s

{ MOVE JCI - NULL TO i ni t Obj

[CALL 'JCI _New(bj ect Array’ USI NG nunEl ements cl assld
LinitObj MethodRes

§IF RETURN- CODE NOT = JCI - RET- K

END- I F.
i MOVE ResVal Obj ect TO arr ayQbj

222

JENV V9.0A

7.12.7.3 JCI_GetObjectArrayElement

This function returns an element of an object array.
It is equivalent to the JNI function Get Obj ect Arr ayEl enent . However, it also offers the option of obtaining

strings instead of string objects.

Call

CALL 'JCl _Get bj ect ArrayEl enent' USI NG aObj index res
aObj Array object

index Array index

res Result description

Arguments

aobj Data field of the type JCI - obj ect
Array object whose element is to be returned.

index Data field of the type JCl - si ze
Position of the element in the array which is to be returned (beginning with 1).

res A structure of the form Met hodRes
Return value and error information (see section "Arguments and event values of Java methods").
The only permissible values for ResType are RES- OBJECT, RES- ANUM STRI NG, and RES- NAT-
STRI NG If the array element is a NULL object, the length field of the target structure is set to 0 for the
types RES- ANUM STRI NGand RES- NAT- STRI NG, and the text area remains unchanged.

Return value (RETURN-CODE)
JCl - RET- K

The call was successful.
JCI - RET- ENOVM

No Java VM has been started.
JCl - RET- ENULLOBJ

aObjis JCI - NULL.
JCl - RET- EARGUVENT

aObj is not an array object.
JCI - RET- ERESVERS

The statically generated version number in res is invalid (possibly overwritten).

JCI - RET- ERESTYPE

223

JENV V9.0A

The value of the ResType field is invalid.
JCl - RET- ERESCONV

An error occurred while the element was being converted.
The ResEr r Code field contains a more precise error code.

JCl - RET- El NDACB

index is less than 1 or greater than the number of elements in the array.

Example

' DATA DI VI SI ON.

: WORKI NG- STORAGE SECTI ON.
| COPY JCI - TYPEDEFS.

{01 JCI Constants.

| COPY JCI - CONST.

01 arrayObj TYPE JC -object.

{01 arraylndex PIC S9(9) COWP-5.
01 nat Text.

105 nlen PIC S9(9) COWP-5 VALUE 80.
105 ntxt PIC N(80) VALUE SPACE.

101 Met hodRes.
| COPY JCI - METHODRES.

| PROCEDURE DI VI SI ON.

! MOVE 7 TO arrayl ndex

SET RES- NAT- STRI NG TO TRUE

{ SET ResVal Addr TO ADDRESS OF nat Text

| CALL 'JCl _Get Obj ect ArrayEl ement’ USI NG
arrayObj arrayl ndex MethodRes

{1 F RETURN- CODE NOT = JCI - RET- K

END- | F.
i DI SPLAY FUNCTI ON DI SPLAY- OF(ntxt (1:nlen)) UPON T

224

JENV V9.0A

7.12.7.4 JCI_SetObjectArrayElement

This function sets an element of an object array.
It is equivalent to the JNI function Set Obj ect Arr ayEl enent . However, it also offers the option of transferring

strings instead of string objects.

Call

CALL 'JCl _Set hj ect ArrayEl enent' USI NG aObj index arg res
aObj Array object

index Array index

arg Argument description

res Result description

Arguments

aObj Data field of the type JCI - obj ect
Array object which is to be modified.

index Data field of the type JCl - si ze
Position of the element in the array which is to be set (beginning with 1).

arg A structure of the form Met hodAr g
Description of the new value for the array element (see section "Arguments and event values of Java
methods").
Only the partial structure Cal | Arg(1) is required.
The only permissible values for Ar gType(1) are ARG OBJECT, ARG ANUM STRI NG, and ARG NAT-
STRI NG

res A structure of the form Met hodRes
Error information (output only).

Return value (RETURN-CODE)
JCl - RET- K

The call was successful.
JCI - RET- ENOVM

No Java VM has been started.
JCI - RET- ENULLOBJ

aobjis JCI - NULL.
JCl - RET- EARGUMENT

aObj is not an array object.

225

JENV V9.0A

JCl - RET- EARGVERS

The statically generated version number in elem is invalid (possibly overwritten).

JCl - RET- ERESVERS

The statically generated version number in res is invalid (possibly overwritten).
JCl - RET- EARGIYPE

The value of the Ar gType field is invalid.
JCI - RET- EARGCONV

An error occurred while the argument was being converted.
The ResEr r Code field contains a more precise error code.

JCI - RET- EI NDACB

index is less than 1 or greater than the number of elements in the array.

Exceptions

The exceptions generated by the function correspond to those of the JNI function Set Cbj ect Arr ayEl enent .

226

JENV V9.0A

7.12.7.5 JCI_NewArray

This function generates an array object for non-object elements which is initialized with binary zeros.
It is equivalent to the JNI functions New<Pri m ti veType>Array.

Call

CALL 'JC _NewArray' USI NG num arg res

num Number of elements
arg Element description

res Result description

Arguments

num Data field of the type JCI - si ze
Number of elements in the array.

arg A structure of the form Met hodAr g
Type description of the array elements.
Only the Ar gType(1) field is required.
ArgType(1) may not be ARG OBJECT, ARG- ANUM STRI NG or ARG NAT- STRI NG.

r A structure of the form Met hodRes
Return value (new object reference) in ResVal Obj ect . In the event of an error, the value JCI-NULL is
returned.

Return value (RETURN-CODE)
JCI - RET- K
The call was successful.
JCI - RET- ENOVM
No Java VM has been started.
JCI - RET- El NDACB
num is less than 0.
JCI - RET- EARGVERS
The statically generated version number in elem is invalid (possibly overwritten).
JCl - RET- ERESVERS
The statically generated version number in res is invalid (possibly overwritten).
JCI - RET- EARGTYPE

The value of the Ar gType field is invalid.

227

JENV V9.0A

JCl - RET- ERR

The array object could not be generated.

Exceptions

The exceptions generated by the function correspond to those of the JNI functions
New<PrimtiveType>Array.

228

JENV V9.0A

7.12.7.6 JCI_GetArray

This function copies elements of a Java array to a COBOL table provided.lt is equivalent to the JNI functions
Get<PrinmtiveType>ArrayRegi on.

Call

CALL 'JC _Get Array' USI NG aObj start num res
aObj Array object

start Start position
num Number

r Result description

Arguments

aObj Data field of the type JCl - obj ect
Array object whose elements are to be copied.

start Data field of the type JCI - si ze
Position of the first element in the Java array which is to be transferred (beginning with 1).

num Data field of the type JCl - si ze
Maximum number of elements which are to be transferred.
After the call, nhum contains the number of elements which were actually transferred.

r A structure of the form Met hodRes
Return value and error information (see section "Arguments and event values of Java methods").
ResType must be set in accordance with the COBOL data type of the table elements. Neither RES-
OBJECT nor RES- ANUM STRI NG nor RES- NAT- STRI NGis permissible.
The address of the COBOL table to which the elements are to be copied is always transferred in the
ResVal Addr field, regardless of the data type.

Return value (RETURN-CODE)
JCl - RET- K

The call was successful.
JCI - RET- ENOVM

No Java VM has been started.
JCI - RET- ENULLOBJ

aobjis JCI - NULL.
JCl - RET- EARGUMENT

aObjis not an array object.

229

JENV V9.0A

JCI - RET- El NDACB
num is less than O or startis less than 1 or greater than the number of elements in the array.
JCl - RET- ERESVERS
The statically generated version number in res is invalid (possibly overwritten).
JCl - RET- ERESTYPE
The value of the ResType field is invalid.
JCI - RET- ERESCONV

An error occurred while the table elements were being converted.
The ResErr | ndex field contains the number of the COBOL table element (beginning with 1), the
ResEr r Code field a more precise error code.

All elements up to the faulty element are transferred; all subsequent fields of the COBOL table remain
unchanged.

Notes

A maximum of (number of array elements - start + 1) or num elements are transferred.

230

JENV V9.0A

7.12.7.7 JCI_SetArray

This function copies a COBOL table to the elements of a Java array.lt is equivalent to the JNI functions
Set<PrinitiveType>ArrayRegi on.

Call

CALL 'JCl _Set Array' USI NG aObj start num arg res
aObj Array object

start Start position

num Number

arg Argument description

r Result description

Arguments

aObj Data field of the type JCI - obj ect
Array object whose elements are to be set.

start Data field of the type JCI - si ze
Position of the first element in the Java array which is to be overwritten (beginning with 1).

num Data field of the type JCl - si ze
Maximum number of elements which are to be transferred.
After the call, num contains the number of elements which were actually transferred, and in the case of
an error 0.

arg A structure of the form Met hodAr g
Description of the array elements.
Only the ArgType(1) and Ar gVal Addr (1) fields are required.
ArgType(1) must be set in accordance with the COBOL data type of the table elements. Neither ARG
OBJECT nor ARG- ANUM STRI NG nor ARG NAT- STRI NGis permissible.
The address of the COBOL table from which the elements are to be copied is always transferred in the
Ar gVal Addr (1) field, regardless of the data type.

r A structure of the form Met hodRes
Error information (output only).

Return value (RETURN-CODE)
JCl - RET- &K

The call was successful.
JCl - RET- ENOVM

No Java VM has been started.

231

JENV V9.0A

JCI - RET- ENULLOBJ

aObjis JCI - NULL.
JCI - RET- EARGUMENT

aObj is not an array object.
JCl - RET- EARGVERS

The statically generated version number in elem is invalid (possibly overwritten).
JCI - RET- ERESVERS

The statically generated version number in res is invalid (possibly overwritten).
JCI - RET- EARGIYPE

The value of the Ar gType field is invalid.
JCI - RET- EARGCONV

An error occurred while the table elements were being converted.
The ResErr | ndex field contains the number of the COBOL table element (beginning with 1), the
ResEr r Code field a more precise error code.

If a conversion error occurs in an element, no transfer takes place, i.e. all fields of the Java array remain
unchanged.

JCl - RET- El NDACB

num is less than O or startis less than 1 or greater than the number of elements in the array.

Notes

A maximum of (number of array elements - start + 1) or num elements are transferred.

232

JENV V9.0A

7.12.8 Exceptions

This section describes the JCI functions required to process Java exceptions.

233

JENV V9.0A

7.12.8.1 JCI_ExceptionCheck

This function checks whether a pending exception exists.
It is equivalent to the JNI function Except i onCheck.

Call
CALL 'JC _ExceptionCheck'

Return value (RETURN-CODE)
JCl - RET- TRUE

An exception is pending.
JCI - RET- FALSE

No exception is pending.

Notes

If the function is called without the Java VM being started, JClI - RET- FALSE is returned.

234

JENV V9.0A

7.12.8.2 JCI_ExceptionOccurred

This function checks whether a pending exception exists, and returns the associated exception object.
It is equivalent to the JNI function Except i onCccurr ed.

Call

CALL 'JCl _ExceptionCccurred' USI NG eObj
eObj Exception object

Arguments

eObj Data field of the type JCI - obj ect
Reference to the pending exception object.
If no object was created, JCI - NULL is returned.

Return value (RETURN-CODE)
JCl - RET- K

The call was successful.

Notes

If the function is called without the Java VM being started, JCl - NULL and JCI - RET- OK are returned.

235

JENV V9.0A

7.12.8.3 JCI_ExceptionDescribe

This function outputs information in English about a pending exception to st der r .It is equivalent to the JNI function
Excepti onDescri be.

Call

CALL ' JCl _ExceptionDescri be'

Return value (RETURN-CODE)
JCI - RET- K

The call was successful.

Notes
This function may also be called when no Java VM has been started.

If the VM has not been started or no exception is pending, the output does not take place.If the program was started
from the BS2000 command line interface, the output is directed to SYSOUT.

236

JENV V9.0A

7.12.8.4 JCI_ExceptionClear

This function removes any pending exception.
It is equivalent to the JNI function Except i ond ear.

Call

CALL 'JC _Exceptiond ear'

Return value (RETURN-CODE)
JCI - RET- K

The call was successful.

Notes

This function may also be called when no Java VM has been started or no exception is pending.

Example

i DATA DI VI SI ON

| WORKI NG- STORAGE SECTI ON
| COPY JCI - TYPEDEFS

{01 JCl Constants.

| COPY JCI - CONST

01 cl assNane.
102 PIC S9(9) USAGE COWP-5 VALUE 30.
{02 PIC X(30) VALUE 'hello".

101 classCbj TYPE JO -obj ect.
' PROCEDURE DI VI SI ON

CALL 'JCI _FindC ass' USING cl assNane cl assQhj
{1 F RETURN- CODE NOT = JC - RET- (K

CALL ' JCl _Excepti onCheck'

{1 F RETURN- CODE = JCI - RET- TRUE

{CALL ' JCl _ExceptionDescri be'

CALL ' JCl _Exceptiond ear'

'END- I F

| ELSE

CEND- I F

Exception in thread "nmai n" java.l ang. Nod assDef FoundError: hello
i Caused by: java.lang.d assNot FoundException: hello

237

JENV V9.0A

‘at java.net.URLO asslLoader. findd ass(URLC assLoader. j ava: 382)

at java.l ang. C assLoader. | oadd ass(Cl assLoader . j ava: 425)

iat sun.m sc. Launcher $AppC assLoader . | oadC ass(Launcher.j ava: 332)
at java.l ang. Cl assLoader. | oadCd ass(Cl assLoader . j ava: 358)

238

JENV V9.0A

7.12.9 Other functions

This section described all JCI functions for which there are no equivalent NI functions.

239

JENV V9.0A

7.12.9.1 JCI_GetVersion

This function returns the version of the Java COBOL interface module.

Call

CALL 'JCl _GetVersion' USING vers

vers Version

Arguments

vers Data field of the type JCI - i nt
Data field to which the version number of the JCI is to be transferred.

Return value (RETURN-CODE)
JCl - RET- XK

The call was successful.

Notes

The version of the COPY elements used in the COBOL application is defined in JCI-CONST as JCI -i nt er f ace-
ver si on. This may not be greater than the version returned by JCI _Get Ver si on.

240

JENV V9.0A

7.12.9.2 JCI_GetErrorinformation

This function returns more precise error information.

Call

CALL 'JC _GetErrorinformation' USING elnf

elnf Error information

Arguments

einf A structure of the type Cobvar
Structure to which the at most 256-character-long error information of the JCI is to
be transferred.
The transfer occupies at most the length of the length field. If this is less than or
equal to 0 or no error information exists, it is set to 0, and no transfer takes place.
If no error information is available, the length field in elnfis set to 0, and the text area
remains unchanged.

Return value (RETURN-CODE)
JCI - RET- K

The call was successful.

Notes

This function can always be called, even when the call of JCI functions is described as invalid, as in, for instance,
section "Exceptions".

In the event of an error, more precise information on this error is stored in a joint field by all JCI functions which can
supply an error return code. If no error occurs, the field is deleted. As a result, only the information of the function
called most recently is ever available. The text is in English and only intended to be displayed to the user.

After the JCI _Get Err or I nf or mat i on function has been called, the error information is no longer available for
further calls.

| DATA DI VI SI ON.

{ WORKI NG- STORAGE SECTI ON.

01 el nf.

102 len PIC S9(9) USAGE COWP-5 SYNC VALUE 256.
102 txt PIC X(256).

| PROCEDURE DI VI SI ON.

ECALL "JCl _GetErrorlinformation ' USING el nf

241

JENV V9.0A

‘IFlen INelnf >0
{DISPLAY txt INelnf(l:len INelnf) UPONT
'END-I F

242

JENV V9.0A

7.13 Examples

In this example, all Java sources are available in the / myhone/ j ci t est directory.

JENV is installed in the / myj ava directory under the $SMYJAVA ID.

243

JENV V9.0A

7.13.1 Java class

The following class is defined in the Hel | o. j ava file:

Eclass Hello {
ipublic static void hello(String arg)

o

ESysten1out.printIn(">> Hello " + arg + "1");

244

JENV V9.0A

7.13.2 Compiling the Java code

The Java class defined above can now be simply compiled using the command

The call generates the Hel | 0. cl ass file in the / myhone/ j ci t est directory.

Calling

Epublic static void hello(java.lang. String);
descriptor: (Ljaval/lang/String;)V

245

JENV V9.0A

7.13.3 COBOL program
The COBOL program HELLO is implemented in the Hel | 0. cob file as follows:

| >>SOURCE FREE

! >>| MP LI STI NG OPTI ONS MERGE- DI AGNOSTI CS
{1D DIVISION,

| PROGRAM | D. HELLO.

i ENVI RONVENT DI VI SI ON.

! CONFI GURATI ON SECTI ON.

| SPECI AL- NAMES.

{ ARGUMENT- NUMBER | S ARGNUM

! ARGUMVENT- VALUE | S ARGVAL

'TERM NAL IS T.

' DATA DI VI SI ON.

- WORKI NG- STORAGE SECTI ON.

i*> Types and constants

| COPY JCI - TYPEDEFS.

{01 JCI Constants.

| COPY JCI - CONST.

{*> Constant strings

{01 opt CP.

105 PIC S9(9) COVP-5 VALUE 80.

{05 PIC X(80) VALUE '-Djava.cl ass. path=.:/nyhone/jcitest’'.
o1 Opt Enc.

105 PIC S9(9) COVP-5 VALUE 40.

105 PIC X(40) VALUE '-Dfile.encodi ng=0SD_EBCDI C DF04_15' .
101 cl assNane.

105 PIC S9(9) COWP-5 VALUE 30.

105 PIC X(30) VALUE 'Hello'.

{01 net hodNane.

105 PIC S9(9) COVP-5 VALUE 30.

{05 PIC X(30) VALUE 'hello'.

{01 methodSi g.

105 PIC S9(9) COVP-5 VALUE 80.

{05 PIC X(80) VALUE ' (Ljaval/lang/String;)V .
! LOCAL- STORAGE SECTI ON.

*> JCl structures

{01 JVMpti ons.

CODY JCl - VMOPT REPLACI NG == <nmx- opti ons> == BY 2.
{01 Met hodArgs.

{ COPY JCI - METHODARGS REPLACI NG == <max- ar gunment s> == BY 4.
101 Met hodRes.

| COPY JCI - METHODRES.

{*> String structures

{01 nyNane.

105 len PIC S9(9) COVP-5 VALUE 30.

{05 txt PIC X(30).

{*> (pjects and handl es

101 classQbj TYPE JCI - obj ect.

{01 nmet hodl d TYPE JCI -handl e.

{*> Error handling

101 Errldent PI C X(10) VALUE SPACE.
01 RetcodeSave PIC S9(9) COWP-5 VALUE O.
{01 errorlnf.

105 len PIC S9(9) COVP-5 VALUE 300.

105 txt PIC X(300).

| PROCEDURE DI VI SI ON.

246

JENV V9.0A

- >>CALL- CONVENTI ON | LCS- SET- RETURN- CODE
LE>

' *> get name from terninal

Pr>

DI SPLAY ">> Pl ease enter name" UPON T
EACCEPT txt IN myName FROM T

Pr>

*> Prepare VM options

LS

' MOVE 2 TO VMOpt num

! SET | GNORE- UNRECOGNI ZED TO FALSE.

! SET VMOpt Vstring(1) TO ADDRESS OF opt CP
| SET VMOpt Vst ring(2) TO ADDRESS OF opt Enc
LE>

§*> Create the Java VM

Pr>

| CALL ' JOI _CreateJavaVM USI NG JVMOpt i ons
{1 F RETURN- CODE NOT = JCl - RET- K

' MOVE ' CreateVM TO Errl dent

!GO TO ERROR-EXI T

{END- I F.

x>

§*> CGet class Hello

P>

CALL 'JC _Findd ass' USING cl assNane cl assObj
I F RETURN- CODE NOT = JCI - RET- K

{ MOVE ' Fi nddl ass' TO Errl dent

| GO TO ERROR-EXI T

{END-| F.

§*> Get nethod hello

PE>

{CALL 'JCl _GetStaticMethodl D USING cl assCbj met hodName
- met hodSi g met hodl d

| F RETURN- CODE NOT = JCl - RET- K

{ MOVE ' Get Met hod' TO Errl dent

| GO TO ERROR-EXI T

{END- | F.

PE>

§*> Cal | Java net hod

PE>

{ MOVE 1 TO Cal | ArgNum

| SET RES-VOI D TO TRUE

! SET ARG ANUM STRI NG(1) | GNORE- TRAI LI NG SPACES(1) TO TRUE
{ SET ArgVal Addr (1) TO ADDRESS OF nyNane
CALL 'JCl _Call StaticMethod' USING cl assObj met hodld Met hodArgs Met hodRes
| F RETURN- CODE NOT = JCl - RET- K

{ MOVE ' Cal | Meth' TO Errldent

| GO TO ERROR-EXI T

{END- | F.

PE>

' *> Destroy Java WM

PE>

{ CALL 'JCl _DestroyJavaVM

|1 F RETURN- CODE NOT = JO - RET- OK

{ MOVE ' DestroyVM TO Errldent

{ G0 TO ERROR-EXI T

END- | F.

! GOBACK.

247

JENV V9.0A

%> Error exit

Pr>

| ERROR- EXI T.

' MOVE RETURN- CODE TO Ret codeSave

i CALL 'JCl _GetErrorlnformation' USING errorl nf
‘IF len IN errorinf >0

Dl SPLAY ' Message from' Errldent ': "' txt INerrorinf(l:len INerrorlinf) '"'
FUPON T

{END- I F

CALL ' JCl _Excepti onCheck'

{1 F RETURN- CODE = JCI - RET- TRUE

{CALL 'JCI _ExceptionDescri be'

CALL ' JCl _Exceptiond ear'

'END- I F

! CALL 'JCl _DestroyJavavVM

' MOVE Ret codeSave TO RETURN- CODE

| GOBACK.

END PROGRAM HELLO

248

JENV V9.0A

7.13.4 Compiling the COBOL program in POSIX
In this example, the COBOL source program resides in the POSIX directory / nyhone/ j ci t est .

The following commands are needed to compile the COBOL program HELLO:

export COBLI B='/nyjavalincl ude'
icobol -c -C PERM T- STANDARD- DEVI ATI ON=YES \

-/ myhorre/ j ci test/ Hel | 0. cob i

The object file Hel | 0. o is available as the result.

249

JENV V9.0A

7.13.5 Linking the COBOL program in POSIX

When linking the application, it must be remembered that the runtime routines for the languages C/C++ and COBOL
are linked from the Java runtime library and not from the CRTE.

The application can be linked with the following commands:

export BLSLI BOO=" $MYJAVA. SYSLNK. JENV. 090. GREEN- JAVA'
icobol -M HELLO -0 Hello Hello.o -1 BLSLIB

250

JENV V9.0A

7.13.6 Processing of the COBOL program in POSIX

As the standard installation path of JENV is not to be used for this example, the environment variable JAVA_ HOVE
must be set before calling the program.

The call and processing are then as follows:

export JAVA HOME=/nyjaval/jre
iHel l o

' >> Please enter name

i Susanne

. >> Hel | o Susanne!

251

JENV V9.0A

7.13.7 Compiling the COBOL program under the BS2000 command line interface

In this example, the COBOL source program resides in the LMS library SRC. LI B, but the JCI-COPY elements in
the POSIX directory / myj aval/ i ncl ude.

Consequently the following commands are required for compilation:

|/ DECL- VAR SYSI OL- COBLI B, | NI T=' * POSI X(/ nyj ava/ i ncl ude) ',
| SCOPE=* TASK

|/ START- COBOL2- COMP SO=* LI B(SRC. LI B, HELLO. COB) ,

- SOURCE- PROPERTI ES=* PAR(ST- DEV=* YES) ,

| COVPI LER- ACTI ON=* MOD- GEN(MOD- FORVE* LLM)

- MODULE- OUTPUT=* LI B(MOD. LI B, HELLO) ,

- RUNTI ME- OPTI ONS=* PARAVETERS(ENABL E- UFS- ACCESS=* YES)

252

JENV V9.0A

7.13.8 Linking the COBOL program under the BS2000 command line interface

In addition to functions and CRTE from the Java runtime library, the POSIX options must also be linked:

{ | START- Bl NDER

/1 START- LLM CREATI ON HELLO

i/ /1 NCLUDE LI B=MOD. LI B, ELEMFHELLO

/11 NCLUDE LI B=$. SYSLNK. CRTE. POSI X

-1/ RESOLVE LI B=$SMYJAVA. SYSLNK. JENV. 090. GREEN- JAVA
'/ / SAVE- LLM LI B=LLM LI B, ELEMFHELLO

// END

253

JENV V9.0A

7.13.9 Processing of the COBOL program under the BS2000 command line interface

Before the application is started, the POSIX environment must be initialized for processing. The COBOL runtime
system then behaves as if it had been started under the POSIX shell (see ,COBOL2000 (BS2000) User Manual” [5

D

After the application has terminated, the POSIX environment must on all accounts be reset by calling the DELETE
procedure. Otherwise the environment is set incorrectly for further compilations runs.

The call and processing are then as follows under the $SMYHOME ID:

/ CALL- PROCEDURE *LI B($MYJAVA. SYSPRC. JENV. 090, | NI TI ALI ZE),

! (PAD=" nyhome/ wor k' , JAVA- HOVE=' / nyj aval/jre')

/ START- PROGRAM * MODULE(LI BRARY=LLM LI B, ELEMENT=HELLO,

{ PROGRAM MODE=ANY, RUN- MODE=* ADVANCED(SHARE- SCOPE=* NONE))

{% BLS0523 ELEMENT ' HELLO, VERSION ' @, TYPE 'L' FROM LI BRARY
' : LUNB: $MYHOME. LLM LI B' | N PROCESS

{% BLS0524 LLM'HELLO, VERSION ' ' OF '2016-04-13 15:17:10' LOADED
{>> Pl ease enter name

Susanne

i >> Hell o Susanne!

/ CALL- PROCEDURE * LI B($SMYJAVA. SYSPRC. JENV. 090, DELETE)

254

JENV V9.0A

8 Commands for BS2000

The tools belonging to the JDK are described in “JDK Tools and Utilities" [11]. JENV supports all the tools listed
there for Solaris with the following exceptions:

® Monitoring und Management Tools jps, jstat, jstatd

® Troubleshooting Tools jemd , jinfo, jhat, jmap, jsadebugd, jstack

® Scripting Tool jrunscript.

This chapter only includes the commands which differ from the description in “JDK Tools and Utilities" [11], namely:
® The mk_shobj and pr_shobj commands
JENV offers these is in addition to supporting the shared object description files.

® The java command
Its options differ from those described for Solaris.

® The native2ascii command
This is described in more detail because of its greater importance in the EBCDIC environment.

® The jconsole, jdb commands

255

JENV V9.0A

8.1 mk_shobj

The mk_shobj command creates and processes descriptive files for shared objects.

Syntax
mk_shobj [Options ...] Filename
Options ...
One or more command line options, separated by spaces.
Filename

Description file for shared objects in the POSIX file system which mk_shobj is to create.

Description

The mk_shobj command creates and processes descriptive files for shared objects in the POSIX file system. These
descriptive files are evaluated by the Java interpreter if native methods are loaded (methods loadLibrary() or load()
of the classes runtime and system).

The names of the descriptive files must be put together in such a way that they can be found by the VM using the
search procedure described under the use of shared objects from Java, or in other words, beginning with the prefix
lib and ending with the suffix .so.

Options

-? Outputs help information for the command.
-l lib Specifies the PLAM library (in BS2000) in which the LLM to be loaded is located.

-0 userid BS2000 user ID, under which the PLAM library /ib is installed. Where “.” stands for the current
user ID and “$" stands for the system ID and the form %name indicates, that the user ID to be
used at runtime can be taken from the environment variable name and any other specification
stands for the names of user IDs.

Default: current user ID

-m Specification of the module which is to be loaded. This option can be specified several times,
modulename and then all specified modules can be loaded dynamically. The module name may not be longer
than 32 characters.

-n filename Specifies the required shared objects (descriptive file). The shared object specified here is
loaded before the primary shared object. This option can be specified several times, and all the
required shared objects are loaded before the current shared object.

-u The specified descriptive file must exist and is updated using the specified information. This can
be used, for example, to subsequently modify the user ID. If the -u option is not specified, the
descriptive file is generated again.

-f cpp

256

JENV V9.0A

If the shared object has been implemented in C++, this flag must be set to ensure that the
required runtime libraries can be loaded and initialized.

-d If this flag is set, the module is loaded in the default context LOCAL#DEFAULT.
-C ctxt The module is loaded in the specified context.
Example

The command

creates the file libhello.so in the current file directory of the POSIX file system, and specifies that when hello is
loaded the module helloworld is to be dynamically loaded from the PLAM library sysink.hello of the current user ID.
When hello is loaded the Java interpreter expands loadLibrary(hello) to read libhello.so.

257

JENV V9.0A

8.2 pr_shobj

The command pr_shobj outputs the contents of a shared object descriptive file.

Syntax
pr_shobj Filename
Filename

Descriptive file for which the contents is to be output.

Description

The command pr_shobj outputs the contents of a shared object descriptive file to stdout.

Example

Li brary: syslnk.hello
i UserID :
' Modul e : hel | owor | d

258

JENV V9.0A

8.3 java

Options for selecting the HotSpot™ VM type

-client

The HotSpot™ client VM is used. This VM optimizes the generated object code for short-running programs
(default).

-server
The option is not supported.

-d32
-d64

The options are not supported.

Options for selecting the HSI variant

- The S390 variant of JENV is used (if available). This option is useful only if both the S390 variant and the
s390 X86 variant of JENV are installed on one system and you want to explicitly select one of them for
execution.
This option overrides any specification in the environment variable JENV_SYSHSI (see the chapter
"Environment variables").

The variant that matches your system is used by default, i.e. if no value has been assigned to the
environment variable JENV_SYSHSI either.

-x86 The X86 variant of JENV is used (if available). This option is useful only if both the S390 variant and the
X86 variant of JENV are installed on one SQ system and you want to explicitly select one of them for
execution.

This option overrides any specification in the environment variable JENV_SYSHSI (see the chapter
"Environment variables").

The variant that matches your system is used by default, i.e. if no value has been assigned to the
environment variable JENV_SYSHSI either.

Non-standard options
-Xmaxjitcodesize size
In contrast to the original description, the cache size is specified without an equals sign, e.g.:

- Xmaxj i t codesi ze48m

Controlling the Java heap memory

The following options allow the user to control heap expansion or reduction. Since the standard settings for heap
expansion are suitable for most applications, it is not necessary to use these options in most situations. You should

259

JENV V9.0A

only use them if you understand the effects of the options on the applications concerned. Deliberately setting these
options can just as easily adversely affect system performance as improve it.

In BS2000 the maximum size of heap memory is always requested by the system right from the start and always

remains reserved in this size. Option -Xms merely controls how much of the heap memory is to be used currently.
The smaller this area is, the faster garbage collection proceeds since only the area currently being used must be

searched. On the other hand it can be that garbage collection has to be called unnecessarily frequently if there is

only a small amount of space for new objects in the currently used area.

Minimum and default values which differ from the original description are defined for these options:
-Xsssize

Minimum value: 512K
Default value: 1M

-Xmssize

Minimum value: 1M
Default value: 3.5M

-Xmxsize
Minimum value: 1M

Default value: 64M

ﬁ) The specified value is rounded off the next multiple of 2M.

260

JENV V9.0A

8.4 native2ascii

This command converts a file from any code set into the US-ASCII (7 bit ASCII) code set.

Syntax
native2ascii [Options ...] [input file[output file]]
Options ...
One or more command line options, separated by blanks.
Input file
File which is to be converted. If input file is not specified, the input is expected on stdin.
Output file
Destination file for the conversion. If output file is not specified, output is on stdout.

output file and input file may also be the same.

Description

The native2ascii command converts text available in any code set (e.g OSD_EBCDIC_DF04_1) into US-ASCII (7-
bit ASCII); non-printable characters in ASCII are printed in portable Unicode (\uxxxx). Conversion in the reverse
direction is also possible. Portable Unicode is interpreted, for example, when property files are loaded.

If property files are stored in JAR archives, they must be present in code set ISO8859-1. The same applies to
manifest files or other texts. This command makes it possible to prepare the corresponding files for this because the
full US-ASCII code set is included in ISO8859-1.

As of JENV V1.4A policy files, which are used by the standard policy implementation, must be encoded in the UTF-
8 codeset. native2ascii can be used for the conversion, as the UTF-8 codeset concurs with the first 127 characters
of the US-ASCII codeset.

Options
-encoding character set

Specifies the character set from which or into which the command converts. If the option is not specified, the
value set via the system property file.encoding is used. Since JENV V1.2A the default value for this system
property is OSD_EBCDIC_DF04_1. Permitted values can be found in the Specification entitled “Supported
Encodings” [14]. The character sets additionally supported since JENV V1.2A are described in section "Code
sets".

-reverse

The conversion is performed in the reverse direction: A text which is present in character set US-ASCI!I is
converted into the character set specified by -encoding. Any portable Unicode representations in the input
(\uxxxx) are interpreted when this is done. Characters which cannot be shown in the output character set are
output there in portable Unicode representation.

261

JENV V9.0A

-J javaoption

Passes javaoption to the JVM, where javaoption is one of the options described for java.

262

JENV V9.0A

8.5 jconsole

In BS2000, the use of a process ID (pid) is not supported when setting up a connection with a Java application.

263

JENV V9.0A

8.6 jdb

jdb does not work when the default input is connected with a BS2000 block terminal, in which case jdb is terminated
with an error message.

264

JENV V9.0A

9 Appendix: Compatibility with earlier versions and migration

JENV V9.0A is an implementation of the “Java Platform, Standard Edition” (Java SETM) for BS2000.

With OpenJDK 9, a module concept was introduced in Java. Due to this module concept, neither source nor binary

compatibility with the previous versions can be guaranteed. A detailed migration guide is available at the following
link https://docs.oracle.com/javase/9/migrate/toc.htm.

265

https://docs.oracle.com/javase/9/migrate/toc.htm

JENV V9.0A

9.1 Incompatibilities

There are no known BS2000-specific incompatibilties.

266

JENV V9.0A

10 Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed copies of
those manuals which are displayed with an order number.

[1] POSIX (BS2000)
POSIX, Basics for Users and Systems Administrators
User manual

[2] CRTE
C Library functions for POSIX applications
Reference Manual

[3] CRTE
Common RunTime Environment
User Manual

[4] C/C++ (BS2000)
C/C++-Compiler
User Manual

[5] COBOL2000 (BS2000)
COBOL-Compiler
User Manual

[6] COBOL2000 (BS2000)
COBOL-Compiler
Reference Manual

[7] SDF-P (BS2000)
Programming in the Command Language
User Guide

[8] BS2000 OSD/BC
Introductory Guide to DMS
User Guide

267

http://manuals.ts.fujitsu.com

JENV V9.0A

10.1 Texts for Java

[9]

[10]

[11]

[12]

[13]

[14]

You will find the following texts in the internet, mainly on the Web pages of Oracle America Inc.:

All links given below were valid when going to press. However, no guarantee can be given for their future

validity. The information in this manual always takes precedence over information in the internet.

Java Platform Standard Edition 9 Documentation
https://docs.oracle.com/javase/9/index.html

The Java™ Language and Virtual Machine Specifications
http://docs.oracle.com/javase/specs/

JDK Tools and Utilities
http://docs.oracle.com/javase/9/docs/technotes/tools/index.html

The Java™ Platform, Standard Edition 9 API Specification
http.//docs.oracle.com/javase/9/docs/api/

Java™ Native Interface
https.//docs.oracle.com/javase/9/docs/specs/jni/

Supported Encodings
http://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

268

https://docs.oracle.com/javase/9/index.html
http://docs.oracle.com/javase/specs/
http://docs.oracle.com/javase/9/docs/technotes/tools/index.html
http://docs.oracle.com/javase/9/docs/api/
https://docs.oracle.com/javase/9/docs/specs/jni/
https://docs.oracle.com/javase/9/intl/supported-encodings.html

JENV V9.0A

10.2 Further literature

[15]

[16]

Erich Gamma
Richard Helm

Ralph E. Johnson
John Vlissides

Design Pattern
Addison Wesley 1994

Technical Standard
X/Open System Interface (XSI) Specification
System Interfaces and Headers, Issue 4, Version 2

269

	User Guide
	Introduction
	Objectives and target groups of this manual
	Summary of contents
	Notational conventions
	Description of commands
	Names of files, commands and programs
	Description of execution sequences

	Further information and sources
	License regulations

	Environment variables
	Conversion from ASCII to EBCDIC
	Code sets
	Localized streams
	Property files
	Policy files
	PrintStream
	Standard streams
	JAR archives
	Program arguments

	The Java package JRIO
	Concepts
	File systems
	File names in the DMS file system
	File names in the UFS file system

	File types
	Access methods
	Access types
	Shared update processing
	Options and restrictions relating to access types in DMS
	Drivers
	Security

	API overview
	Record
	Constructors
	General methods
	Methods for extracting the data of a record
	Methods for extracting the data fields of a record
	Methods for filling a record with data
	Methods for filling data fields of a record

	RecordFile
	Basic structure of a file name
	Constructors
	Fields
	General methods
	Methods for analyzing and transforming path names
	Methods for inquiring file and directory attributes
	Methods for modifying file and directory attributes
	Methods for generating files and directories
	Methods for deleting and renaming files and directories
	Methods for listing directories

	AccessParameter
	General parameter methods
	Parameters for SAM in DMS
	Parameter method for ISAM in DMS
	Parameter methods for UPAM in DMS

	Sequential data processing
	InputRecordStream
	FileInputRecordStream
	ArrayInputRecordStream
	OutputRecordStream
	FileOutputRecordStream
	ArrayOutputRecordStream

	RandomAccessRecordFile
	Opening and closing a file
	Methods for reading records
	Methods for writing records
	Methods for positioning and changing size

	Indexed-sequential data processing
	KeyDescriptor
	KeyValue
	KeyedAccessRecordFile

	Implementation details
	File-system-specific definitions
	Access-method-specific definitions
	Default values of the DMS access methods

	Restrictions
	Examples
	Sequential data processing
	Random data processing
	Indexed-sequential data processing

	Invoking the VM from the BS2000 command interface
	INITIALIZE procedure
	START procedure
	DELETE procedure
	Invoking the VM using the invocation API
	Special considerations

	JNI under BS2000
	The different variants of JNI
	Java data types in C
	Whole numbers
	Floating point numbers
	Strings

	Dynamic loading of native methods
	Shared libraries in Unix systems
	Shared libraries in BS2000
	Creation of shared objects
	Use of shared objects from Java

	Invocation API
	Compiling the C and C++ sources
	Linking C and C++ applications with Java and Green Threads

	Examples
	Implementation of a native method in C
	Implementation of a native method in C++
	Use of Java from a C application
	Use of Java from a C++ application

	JCI - Invocation API for COBOL
	Compiling the COBOL source codes
	Assigning the JCI-COPY library
	Required options/directives

	Linking COBOL applications with Java
	Processing COBOL applications with Java
	Characters and strings
	Floating point numbers
	Object references
	Java handle
	Return code in special register RETURN-CODE
	Arguments and event values of Java methods
	Exceptions
	COPY elements
	JCI-CONST - Definition of constants
	JCI-TYPEDEFS - Type definitions
	JCI-VMOPT - Structure for transferring options
	JCI-METHODARGS - Function arguments
	JCI-METHODRES - Function result

	Functions
	Starting and terminating the Java VM
	JCI_CreateJavaVM
	JCI_DestroyJavaVM

	Classes and methods
	JCI_FindClass
	JCI_GetStaticMethodID
	JCI_CallStaticMethod
	JCI_GetMethodID
	JCI_CallMethod
	JCI_CallNonvirtualMethod

	Object references
	JCI_DeleteLocalRef
	JCI_NewLocalRef

	Objects
	JCI_NewObject
	JCI_GetObjectClass
	JCI_IsInstanceOf
	JCI_IsSameObject

	Fields
	JCI_GetStaticFieldID
	JCI_GetStaticField
	JCI_SetStaticField
	JCI_GetFieldID
	JCI_GetField
	JCI_SetField

	Strings
	JCI_NewString
	JCI_GetStringLength
	JCI_GetString

	Arrays
	JCI_GetArrayLength
	JCI_NewObjectArray
	JCI_GetObjectArrayElement
	JCI_SetObjectArrayElement
	JCI_NewArray
	JCI_GetArray
	JCI_SetArray

	Exceptions
	JCI_ExceptionCheck
	JCI_ExceptionOccurred
	JCI_ExceptionDescribe
	JCI_ExceptionClear

	Other functions
	JCI_GetVersion
	JCI_GetErrorInformation

	Examples
	Java class
	Compiling the Java code
	COBOL program
	Compiling the COBOL program in POSIX
	Linking the COBOL program in POSIX
	Processing of the COBOL program in POSIX
	Compiling the COBOL program under the BS2000 command line interface
	Linking the COBOL program under the BS2000 command line interface
	Processing of the COBOL program under the BS2000 command line interface

	Commands for BS2000
	mk_shobj
	pr_shobj
	java
	native2ascii
	jconsole
	jdb

	Appendix: Compatibility with earlier versions and migration
	Incompatibilities

	Related publications
	Texts for Java
	Further literature

