1 Preface

The openUTM Universal Transaction Monitor is a comprehensive middleware platform,
offering a wealth of options for designing and implementing transaction-oriented OLTP
applications, as well as the functionality of a complete message queuing system.

Thanks to its optimum performance, sophisticated security functions, and high availability,
openUTM is also suitable for situations in which conventional OLTP systems have long been
pushed to their limits.

openUTM forms a secure, efficient framework for modern, multi-tier client/server architec-
tures. Among other things, it controls global transactions, optimizes the utilization of system
resources (memory, CPU, etc.), manages parallel access, takes care of access control, and
sets up network connections.

The name “openUTM” says it all:

open ... because openUTM complies with the reference model for Distributed
Transaction Processing (DTP) defined by X/Open and supports the open
interfaces standardized by X/Open.

Universal ... because openUTM links different environments and is designed for use in
the most varied scenarios: it integrates heterogeneous networks, platforms,
resource managers, and applications.

Transaction ... because openUTM guarantees complete global transaction management
in accordance with the classical ACID properties of atomicity, consistency,
isolation and durability.

Monitor ... because openUTM not only offers “pure” transaction processing, but also
allows for the management of distributed, enterprise-wide IT solutions.

Summary of contents and target group Preface

1.1 Summary of contents and target group

This manual is intended to support programmers writing openUTM applications in
Assembler in their work. It is a supplement to the openUTM manual “Programming Applica-
tions with KDCS for COBOL, C and C++".

A basic knowledge of the operating system and openUTM, as well as of the core manual
“Programming Applications with KDCS for COBOL, C and C++" is required. For more
detailed information, the openUTM manuals “Generating and Administering Applications”,
“Messages, Debugging and Diagnostics” and “Concepts and Functions” should be
consulted.

This manual describes the language-specific points to be observed when writing Assembler
program units.

The manual contains a sample program written in Assembler of the KDCS call INIT.

The Assembler data structures are listed in the chapter “Assembler data structures” on
page 17.

README file

You will find information on your BS2000 computer in the Release Notes (file name
SYSFGM.product.version.language) or in a README file (file name
SYSRME.product.version.language). Please ask your systems support for the user ID under
which the README file is stored. You can view the README file with the /SHOW-FILE
command or in an editor, or you can print it to a standard printer with the following
command:

/PRINT-DOCUMENT filename, LINE-SPACING=*BY-EBCDIC-CONTROL
or, for SPOOL versions prior to 3.0A:

/PRINT-FILE FILE-NAME=filename, LAYOUT-CONTROL=
PARAMETERS (CONTROL-CHARACTERS=EBCDIC)

2 Assembler program units

UTM program units can be written in Assembler.

— You define Assembler program units that are not ICLS-compatible during generation by
means of the KDCDEF control statement PROGRAM ..., COMP=ASSEMB.

— Inthe case of program units which support ILCS (InterLanguage Communication
Services), you have to specify PROGRAM ...,COMP=ILCS (see the openUTM-Manual
"Generating and Handling Applications").

For the purpose of generating Assembler program units, openUTM provides macros that
enable you to:

— call KDCS functions
— satisfy linkage conventions
— write programs more easily.

The macros are stored in the SYSLIB.UTM.050.ASS library.

The ZSTRT, ZCALL and ZEND macros do not generate shared code. Information on how
to write shareable program units in Assembler is given in section “Shareable Assembler
modules” on page 10.

These macros only need to be used if you want to create compatible KDCS programs.

If you want to make Assembler programs ILCS-compatible, you have a choice of two
methods (see the table “Notes on the table:” on page 4 for more information on this subject,
and see the CRTE manual for the ILCS conventions).

With the aid of ILCS itis possible to link program units from several source codes in different
programming languages. When passing parameters or accessing common data structures,
it is absolutely essential that the data representations are identical. You will find a list of all
compiler and runtime systems that allow you to link mixed sources in the “Generating and
Handling Applications” manual for openUTM (BS2000/0SD).

For UTM V3.1 and higher, UTM no longer sets the 2**7 bit (stop bit) in the last
address in the parameter list passed in register 1 when calling a program unit.

Compilers

Assembler program units

2.1 Compilers, runtime systems and generation options

The following table shows the compilers (assemblers), runtime systems and generation
options which you can use to create Assembler program units and execute them ina UTM
user program.

The first column of the table contains all the compiler versions that can be used to
create the object modules of the program unit.

The second column contains the versions of the runtime systems in which these
program units run smoothly.

The third column contains the values of the COMP operand of the UTM generation
statement PROGRAM that you need to specify in the KDCDEF generation in order to
integrate these program units into the application configuration.

Assembler compiler Runtime system PROGRAM..., COMP=

ASSGEN — ASSEMB 1.
ASSEMB = V30 — ASSEMB 1.
ASSEMBH V1.0 through V1.2 |— ASSEMB 1.
ASSEMBH V1.2A ASSEMBH V1.2A ILCS 2.

Notes on the table:

1.

If you specify COMP=ASSEMB, then you must not use the ASSEMBH runtime system.
The reason for this is that ASSEMBH runtime system versions 1.1 and higher use the
ILCS. The result is a mixture of non-ILCS and ILCS program units, and this is not
allowed.

The Assembler program must be ILCS-compatible.
There are two ways to make an Assembler program ILCS-compatible:

— You can use the Assembler macros ZSTRT, ZCALL and ZEND while specifying
ZSTRT ILCS=YES. Please note that the specification ZSTRT ILCS=NO (not ILCS-
compatible) is the default value!

— Youcan use the macros@ENTR ... ILCS=YES..., @PASS and @EXIT (see also the
“ASSEMBH” manual)

The compiler and the runtime system must have a correction status greater than or
equal to 10.

Assembler program units Structure of a program unit

2.2

Structure of an Assembler program unit

The programming rules for Assembler are the same as for program units in other
programming languages:

— The first UTM call must be an INIT.

— Program unit execution ends with the UTM call PEND. After this, control is not returned
to the program unit.

— Each program unit that ends a dialog step must contain an MPUT.

— The code must be serially reusable (see also the Core Manual “Programming Applica-
tions with KDCS for COBOL, C and C++").

Start of program

Assembler program units are subroutines of the KDCROOT main routine.
To satisfy linkage conventions, each program unit must begin with the ZSTRT macro.

You also have to make the communication area (KB) and the standard primary working area
(SPAB) addressable, as well as any other shareable areas that have been defined with the
KDCDEF statement AREA (see the openUTM-Manual “Generating and Handling Applica-
tions”).

UTM passes the addresses of the parameters in a parameter list. The address of the
parameter list is stored in register 1.

Word 1: address of the KB
Word 2: address of the SPAB
Word 3: address of the first shareable area

Word n+2: address of the nth shareable area

Structure of a program unit Assembler program units

Example
The start of a program unit might, for example, look like this:

prgnam ZSTRT BASIS=rl,REGS=n,PARM=savpar
USING kckb,r2

L r2,0(R1)
USING spab,r3
L r3,4(R1)
USING areal,r4
L r4,8(R1)
Where
prgnam is the entry point of the program unit as specified at generation in
the PROGRAM statement.
kckb is the name of the DSECT which describes the KB.
r2 is the register which addresses the KB.
spab is the name of the DSECT which describes the SPAB.
r3 is the register which addresses the SPAB.
areal is the name of the DSECT which describes the first shareable area.
r4 is the register which addresses areal.

For information on the entries r1, n and savpar see chapter “Macros” on page 13ff.

Assembler program units Calling UTM from a program unit

2.3 Calling UTM from a program unit

Calling UTM functions

Calling UTM from a program unit involves the following steps:

1. Write the necessary specifications to the KDCS parameter area. These can be found
in the descriptions of the function call concerned in the Core Manual “Programming
Applications with KDCS for COBOL, C and C++".

UTM provides the KCPAA macro. KCPAA generates a DSECT with the structure of the
KDCS parameter area. The names of the parameters are identical to those in the
COBOL COPY element KCPAC. If the function call uses a message area (NB), this area
must generally be predefined (MPUT, FPUT). The KDCS parameter area and the NB
should be placed in the SPAB.

2. Callthe ZCALL macro:

ZCALL KDCS, kcpaal,nbl]

where

kcpaa is the name of the KDCS parameter area.
nb is the name of the message area.

3. Ifdesired, evaluate the return information from UTM: return codes in the communication
area KB and data in the message area NB.

Example

The following excerpt from a program unit shows an example of an INIT call:

INITA EQU *
MVC KCOP,INIT

LA R9.,80
STH R9,KCLA
LA R9,138

STH R9,KCLM

ZCALL KDCS,KCPAA
CLC KCRCCC,=C"000"
BNE ERRORS

The program unit containing this INIT call uses an 80-byte KB program area and a 138-
byte SPAB. Following the INIT call, the UTM error code is queried.

This example makes use of the programming aids described in chapter “Assembler
data structures” on page 17ff.

Calling UTM from a program unit Assembler program units

Calling Assembler subroutines

Assembler program units generated with PROGRAM...,COMP=ASSEMB can call
Assembler subroutines. The following points should be borne in mind:

— from Assembler program units, subroutines are called by means of the ZCALL macro
— the return from the subroutine is programmed with the ZEND macro

By the same token, ILCS program units generated with PROGRAM...,COMP=ILCS can
also call Assembler subroutines, provided the ILCS program units satisfy the ILCS conven-
tions. This is only possible if the following @ macros of the ASSEMBH compiler are used
(see the "ASSEMBH-User Guide"):

— @ENTR with ILCS=YES
- @PASS
- @EXIT

or the UTM macros:

— ZSTRT with ILCS=YES
— ZCALL
— ZEND

From within ILCS program units you can call any ILCS-compatible subroutine, even subrou-
tines written in another ILCS-supported language.

For further information on calling subroutines from program units see the Core Manual
“Programming Applications with KDCS for COBOL, C and C++".

Assembler program units Compiling and linking

2.4 Compiling and linking ILCS-compatible Assembler
programs

When compiling an Assembler program with ZSTRT ILCS=YES, you must also assign
$TSOS.SYSLIB.ASSEMBH.012

as an additional macro library. This library contains the @ENTR, @PASS and @EXIT
macros used by the Z macros.

When linking the UTM application, you must assign the library
$TSOS.SYSLIB.ASSEMBH.012
This library contains the Assembler runtime system.

Additional information can be found in chapter 4, “Runtime System for Structured
Programming”, of the “ASSEMBH V1.2A” User Guide.

Shareable Assembler modules Assembler program units

2.5 Shareable Assembler modules

A shareable Assembler module can only be loaded in a common memory pool (i.e. in class
6 memory). It may only be a submodule of the UTM program units. It must not be defined
as a UTM program unit in the KDCDEF control statement PROGRAM.

Specifying LOAD=(POOL,poolname) in the MODULE statement determines where the
shareable Assembler module is to be loaded. Further entry points can be defined with the
KDCDEF control statement ENTRY.

If you are working with BLS (Binder-Loader-Starter), you must use the LOAD-MODULE
generation statement instead of the MODULE statement.

Assembler modules defined in the PROGRAM statement as UTM program units cannot be
shareable.

Shareable modules must not contain any external addresses, V-type constants, local
register save areas or local working areas.

The ZSTRT, ZCALL and ZEND macros must not be used.

Communication between UTM and these shareable modules in the common memory pool
takes place exclusively via UTM program units which are defined in the PROGRAM
statement and which, in turn, communicate with the shareable modules in accordance with
the usual conventions for submodule branching (BALR Rx,Ry).

If a UTM program unit contains a reference to a shareable module, different entries in the
PROGRAM statement are required, depending on whether or not you are working with the
BLS interface:

— without the BLS interface:
you have to specify the operand LOAD=STARTUP in the PROGRAM statement

— with the BLS interface:
the program unit must be contained in a load module described in the LOAD-MODULE
statement. By means of the parameter LOAD-MODE=STARTUP or LOAD-
MODE=ONCALL you stipulate that the load module is to be dynamically loaded as an
autonomous unit.
You must specify the name of the load module in the LOAD-MODULE parameter of the
PROGRAM statement.

For further information on generating shareable modules see the openUTM-Manual "Gener-
ating and Handling Applications".

10

Assembler program units Shareable Assembler modules

Example

1.

In the following example the UTM application does not use the BLS functions.

The Assembler program unit TPRGASS calls the shareable Assembler module
SHARASS. TPRGASS is defined in the PROGRAM statement and SHARASS in the
MODULE statement.

TPRGASS ZSTRT

L R15,=V(SHARASS)
BALR R14,R15

ZCALL KDCS,PARML, PARMZ2
END

SHARASS CSECT PUBLIC

USING *,R15
BR R14
END

In this example the UTM application uses the BLS functions.

Both modules, TPRGASS and SHARASS, are linked using the BINDER to form an LLM
(link and load module) with the name LMODASS with private and public slices.

The LOAD-MODULE statement defines the name, version and attributes of the
LMODASS load module:

LOAD-MODULE LMODASS, VERSION=xxx, LIB= Tmod-1ib,
LOAD-MODE = (POOL, poolname, STARTUP)

The PROGRAM statement defines the name and attributes of the program unit and
specifies a name for the load module:

PROGRAM TPRGASS, COMP= ASSEMB
LOAD-MODULE= LMODASS

11

12

Macros

This chapter describes macros made available by openUTM for the programming of
Assembler program units.

ZSTRT - Start program and pass parameters

The ZSTRT macro must be the first statement in an openUTM program unit or subroutine.
It performs the following functions:

— generate CSECT with entry point

— save register contents

— assign and load base address register

— generate save area

— load address of save area in register 13 and save parameter address

— generate C-type constant with name of program unit or subroutine

— equate register numbers with RO-R15

Format
Name |Operation |Operands
(r1) savpar YESX
name |ZSTRT [BASIS= 1 LREGS=n] [[PARM=< (r2) 1[ILCS=]
Rrl Rr2 NO
Meanings of the operands
name is the name of the program unit or subroutine.
BASIS=(r1) rlis the number of the register to be assigned as the base register.

13

ZSTRT

UTM Assembler macros

BASIS=Rr1

REGS=n

PARM=savpar

(r2)
Rr2

ILCS=YES/NO

Possible MNOTES

Module name missing.

base address register; Rrl is the name of this register (formed from
“R” and the register number), e.g. (3) or R3 (optional). If there are
two or more base address registers, the number refers to the first
one. The registers are numbered consecutively. The register
numbers must be between 3 and 12.

Default value: (12) or R12
“n” base address registers are used (optional).
Default value: 1

savpar is the address of a word in which the contents of register 1
are saved (optional).

r2is the number of a register into which register 1 is to be reloaded.

Rr2 is the register name (formed from “R” and the register number)
into which register 1 is to be reloaded.

Default: register 1 is not saved.
Note

Register 1 contains the address of the parameter list. It is not
changed by ZSTRT.

If YES is specified, the ILCS convention is used for program linkage.
In this case, the program unit must be generated with COMP=ILCS.

Default value: NO

Syntax error in parameter.

14

UTM Assembler macros

ZCALL

ZCALL - Call UTM or subroutine

The ZCALL macro performs the following functions:

generate V-type constants with the destination address
store return address

generate parameter list

branch to subroutine

Format

Name |Operation |Operands
KDCS par

[name] |ZCALL subnam ~ [</par ~][..]
(r1) (r2)

Meanings of the operands

name
KDCS

subnam

(r1)

par

[par
(r2)

Possible MNOTEs

is the symbolic address of the macro (optional).

is the UTM function call.

is the call of subroutine with the name subnam (destination address).
is the number or name of a register with the destination address.

The address of par is entered in the parameter list (optional).

A maximum of up to 78 parameters are allowed.

If no operand is specified, then register 1 remains unchanged in
conjunction with ILCS=NO, and it is set to 0 with ILCS=YES.
Otherwise, ZCALL writes the address of the parameter list in
register 1.

The address of par, defined with a DSECT, is entered.

The address stored in register r2 is entered.

The parameter list must be specified contiguously.

Default: no parameter list is generated and register 1 remains
unchanged.

Branch address is missing.

Syntax error in parameter.

15

ZEND

UTM Assembler macros

ZEND - Terminate subroutine

ZEND controls the return to the calling program. A return code can be passed at the same
time. ZEND performs the following functions:

— reload registers
— return to the calling program

— transfer return code

Format

Name Operation |Operands

_/num
[name] |ZEND [RC= 1) }]

Meanings of the operands

[name] is the symbolic address of the macro (optional).

RC= is the return code specification to be passed to the calling program
in register 15.

num 1 to 4096.

(rn The return code is moved from register r1 to register 15. Use of

register 13 is prohibited.

Default: no return code, register 15 is cleared.

Possible MNOTEs

Operand has more than 5 positions (return code larger than 5 positions).
Numeric operand portion incorrect (alpha characters in register notation).
Return code greater than 4096.

Register number greater than 15.

Register 13 used.

RC=is not supported when ILCS=YES is specified.

16

4 Assembler data structures

The following data structures simplify programming. They make it easier for you to modify
or swap program units:

KCAPROA

KCATA
KCKBA

KCPAA

KCOPA
KCDFA
KCINIA

KCINFA
KCMSGA
KCDADA
KCPADA
KCINPA

Defines an optional second parameter area for the APRO call. This area is
used for selecting specific OSI TP function combinations.

Defines the UTM attribute functions for FHS.

Creates a DSECT with the structure of the KB header in the KDCS commu-
nication area. A KB program area, which you have to define yourself, can
be connected to this KB header.

UTM passes the address of the real KB communication area in a parameter
list (see page 5).

Calling with KCKBA C suppresses the DSECT statement.

Creates a DSECT with the structure of the KDCS parameter area. It is best
to locate the KDCS parameter area in the SPAB. For how to address the
SPAB, see page 5.

Calling with KCPAA C suppresses the DSECT statement.

Calling with KCPAA PREFIX=xx: This selects a different prefix than the
default prefix KC. This function is necessary if, for example, the layout of a
second KDCS parameter area is required for an INFO call with KCOM=CK.
Note that KCPAA must be aligned on a doubleword boundary.

Defines constants with the names of the KDCS operations.
Defines the KDCS screen output functions.

Defines a second parameter area for the INIT call (necessary only with
INIT PU). In this parameter area UTM returns the information requested
with INIT PU.

Defines data structures for returning information with the UTM call INFO.
Defines a DSECT with the data structure of the UTM messages.

Defines data structures for the DADM call.

Defines data structures for the PADM call.

Defines a DSECT for setting up the parameter area for the event exit INPUT.

17

Overview Assembler data structures

KCCFA Defines the second parameter passed by UTM for the event exit INPUT. In
this parameter UTM passes the contents of the control fields of screen
formats to the program unit. For this reason, this second parameter is also
known as the control fields area.

These data structures are stored in the SYSLIB.UTM.050.ASS library.
The data structures for KCKBA and KCPAA are presented in the following.

18

Assembler data structures KCKBA

Data structure KCKBA

* Kk K
* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1992 ***
* ALL RIGHTS RESERVED ok
* COPYRIGHT (C) SIEMENS AG 1998 ALL RIGHTS RESERVED ok
* *Kkk
.. N
* SIEMENS AG openUTM 5.0 ok
MACRO 500 980708 51311101
&NAME KCKBA &C,&CSECT=NO
SPACE
R R R R S B S B S B R S B S B R B S B e B R S S e S R R S R R R S R S S B R S R S R R S B e B S R S R e R S R R S S S
* *
* KDCS COMMUNICATION AREA (KB) *
* COPY: KCKBA *
R R R R S S B S B S B S B R B e B e B R R S e S R R S R S R S R S S B R S R S S S B S B S R S R e R S R R S S S
SPACE
R R R R S S B S B e S B S B R B R B e B B S S e S R R S R R R S R S S B R S R S S R S e B S R S R e R S R R S R S
* KDCS KB HEADER *
"""""""""""""""""""""""""""""""""""" ok Kk
SPACE
ATF (& EQ ’C’).P1
&NAME DSECT KDCS COMMUNICATION AREA
AGO .P2
P1 ANOP

ATF (&CSECT EQ °"NO”).P3
&NAME AMODE ANY
&NAME RMODE ANY
&NAME CSECT

AGO .P2
.P3 ANOP
&NAME DS 0D KDCS COMMUNICATION AREA
.P2 ANOP

SPACE
KCKBKOPF DS 0CL68 KB HEADER
KCBENID DS D . USER IDENTIFICATION
KCVORG DS 0CL24 . CONVERSATION-SPECIFIC DATA:
KCTACVG DS CL8 . TRANSACTION CODE
KCDATVG DS 0CL9 . DATE:
KCTAGVG DS CL2 . DAY
KCMONVG DS CL2 . MONTH
KCJHRVG DS CL2 . YEAR
KCTJHVG DS CL3 . DAY OF YEAR
KCUHRVG DS 0CL6 . TIME:
KCSTDVG DS CL2 . HOUR

19

KCKBA

Assembler data structures

KCMINVG DS CL2 . MINUTE
KCSEKVG DS CL2 . SECOND
KCKNZVG DS CL1 . CONVERSATION 1D
KCAKTUEL DS 0CL16 . DATA TO CURRENT PROGRAM RUN:
KCTACAL DS CL8 . TRANSACTION CODE
KCUHRAL DS OCL6 . TIME:
KCSTDAL DS CL2 . HOUR
KCMINAL DS CL2 . MINUTE
KCSEKAL DS CL2 . SECOND
KCAUSW DS CL1 . A = CARD IN READER
KCTAIND DS CL1 . TRANSACTION INDICATOR
KCLOGTER DS CL8 . NAME OF UTM TERMINAL (LTERM)
KCTERMN DS CL2 . TERMINAL MNEMONIC
KCLKBPB DS H . MAXIMUM LENGTH OF
* . KB PROGRAM AREA
KCSTA DS 0CL3 . STACK INFORMATION:
KCHSTA DS H . CURRENT STACK LEVEL
KCDSTA DS CL1 . CHANGE IN STACK LEVEL
DS CLI
KCPRIND DS CLI . PROGRAM INDICATOR
KCOF1 DS CLI . OSI-TP FUNCTION1
KceP DS CL1 . CLIENT PROTOCOL
KCTARB DS CL1 . TRANSACTION IS MARKED ROLLBACK
KCYEARVG DS CL4 . YEAR START CONVERSATION
SPACE
DS CL12
SPACE
R R R R S B S B S B e S B S B R B R B e S S B S S e S R R S R R R S R S S B R S R S S R S R B e R R B R B e R S R R S R S
* KDCS RETURN AREA *
R R R R R S B S B S B S B S B R B e B e B R B S S e S R R S R R R S R S S B R S R S R S R S B R B e R R R e R S R R S R S
SPACE
KCRFELD DS 0CL24 KDCS RETURN AREA
KCRI DS CL2 . RETURN IDENTIFICATION
* . (NOT USED)
ORG KCRI
KCRDF DS H . RETURN DEVICE FEATURE
KCRLM DS H . RETURN LENGTH
KCRINFCC DS CL3 . INFO CALL ERROR CODE
ORG KCRINFCC
KCRSTATE DS 0CL2 . CONVERSATION AND
* . TRANSACTION STATUS
KCRST ~ EQU KCRSTATE
KCVGST DS CLI . CONVERSATION STATUS
KCTAST DS CLI . TRANSACTION STATUS
DS CLI . NOT USED
ORG KCRINFCC
KCRSIGN DS OCL3 . STATUS OF SIGN-ON:
KCRSIGNI DS CL1 . PRIMARY CODE

20

Assembler data structures

KCKBA

KCRSIGN2 DS CL2 . SECONDARY CODE
KCRMGT ~ DS CL1 . RETURN INFO MGET

KCRC DS 0CL8 . RETURN CODES:

KCRCCC DS CL3 . KDCS ERROR CODE

KCRCKZ DS CL1 . INDICATOR

* . P=PRODUCTION, T=UTM-T

KCRCDC DS Cl4 . ADDITIONAL ERROR CODE FROM

* . UTM (NOT COMPATIBLE)

KCRMF DS CL8 .RETURN MESSAGE FORMAT

KCRPT DS CL8 . RETURN CONVERSATION 1D

ORG KCRPI
KCRUS DS CL8 . RETURN USER (SIGN ST)

SPACE
"""""""""""""""""""""""""""""""""""" KKK
* KDCS KB PROGRAM AREA *
R R R R S B S B S B e S B S B R B R B e S B S S e S R R S R S R S R S S B R S R S S R S e B e S R S R e R S R R S R S

SPACE
KCKBPRG EQU * KB PROGRAM AREA

SPACE 2

MEND

21

KCPAA

Assembler data structures

Data structure KCPAA

* Kk K
* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1992 ***
* ALL RIGHTS RESERVED ok
* COPYRIGHT (C) SIEMENS AG 1998 ALL RIGHTS RESERVED ok
* *Kkk
.. N
* SIEMENS AG openUTM 5.0 ok
MACRO 500 980708 51311102
&NAME KCPAA &C, -
&PREFIX=KC
SPACE
"""""""""""""""""""""""""""""""""""" ok Kk
* *
* KDCS STANDARD PRIMARY WORKING AREA *
* (SPAB) *
* *

KAk hkkhkhhhhhhkhkhkkhkhkhhhhkhkhkhkhkkhkhhhhhhhkhkhkkhkkhkhhhhhhkhkhkkhkhkhhhhrrhkhkkhkhhhhhhhkhkkhkhkkhkhhhrxxk

SPACE
AIF (&C EQ 'C’).P1
&NAME DSECT KDCS STANDARD PRIMARY WORKING AREA (SPAB)
SPACE
AGO .P2
.P1 ANOP
&NAME DS OF KDCS STANDARD PRIMARY WORKING AREA (SPAB)
.P2 ANOP
&PREFIX.OP DS CL4 . OPERATION CODE
&PREFIX.OM DS CL2 . OPERATION MODIFICATION
&PREFIX. LA DS H . LENGTH OF AREA
&PREFIX.LKBPRG EQU &PREFIX.LA . LENGTH OF KB PROGRAM AREA
&PREFIX.LM DS H . LENGTH OF MESSAGE
&PREFIX.LPAB EQU &PREFIX.LM . LENGTH OF SPAB
&PREFIX.RN DS CL8 . REFERENCE NAME
* . TAC/LTERM/STORAGE AREA
&PREFIX.MF DS CL8 . MESSAGE FORMAT
&PREFIX.LT EQU &PREFIX.MF . NAME OF UTM TERMINAL
&PREFIX.US EQU &PREFIX.MF . USER ID
&PREFIX.PA EQU &PREFIX.MF . NAME OF THE PARTNER
* . APPLICATION
&PREFIX.DF DS H . SCREEN FUNCTION
&PREFIX.LI EQU &PREFIX.DF . LENGTH OF INIT AREA
&PREFIX.EXTENT DS 0CL14 . EXTENTION SINCE V3.0
*
&PREFIX.DPUT DS 0CL10 . FOR DPUT-CALL:
&PREFIX.MOD DS CL1 . MODE: A=ABSOLUTE,R=RELATIVE

22

Assembler data structures

KCPAA

*

&PREFIX.
&PREFIX.
&PREFIX.
&PREFIX.

*

&PREFIX.
&PREFIX.
&PREFIX.

*

&PREFIX.
&PREFIX.
&PREFIX.

*

&PREFIX.
&PREFIX.
&PREFIX.
&PREFIX.

*

&PREFIX.
&PREFIX.
&PREFIX.
&PREFIX.

*

&PREFIX.

TAG
STD
MIN
SEK

ORG
APRO
PI
OF

ORG
PADM
ACT
ADRLT

ORG
MCOM
POS
NEG
COMID

ORG
SGCL
LANGID
TERRID
CSNAME

ORG
SPACE
PAREND
SPACE
MEND

DS CL3
DS CcL2
DS CL2
DS CL2
DS CL4

&PREFIX.EXTENT

DS 0CL8
DS CL8
DS CL1
DS CL5

&PREFIX.EXTENT

DS 0CL11
DS CL3
DS CL8
DS CL3
&PREFIX.MF
DS 0CL24
DS CL8
DS CL8
DS CL8

&PREFIX.EXTENT

DS 0CL12
DS CL2
DS CL2
DS CL8
DS CL2
EQU *

2

SPACE= NO TIME

. DAY

. HOUR

. MINUTE

. SECOND

. NOT USED

FOR APRO-CALL:

. CONVERSATION ID
. OSI-TP FUNCTIONS
. NOT USED

FOR PADM—-CALL:

. ACTION (ON/OFF/CON/DIS)
. ADDRESSED LTERM, DESTINATION

(NOT USED)

FOR MCOM-CALL:

. DESTINATION IN POSITIVE CASE
. DESTINATION IN NEGATIVE CASE
. COMPLEX IDENTIFICATION

FOR SIGN CL CALL:
LANGUAGE ID

. TERRITORY 1ID
. CODED CHARACTER SET NAME

(NOT USED)

END OF PARAMETER AREA

23

24

Index

G
@ENTR macro 8,9 generation option 4
@EXIT macro 8,9

@PASS macro 8,9 |
ILCS program unit 3, 8

A ILCS-compatible Assembler programs 9
Assembler data structures 17 INFO call 17
Assembler module 10 INIT macro 7
Assembler program unit 3, 4, 10 INPUT event exit 18
Assembler subroutine 8
K
B KB header 17
base address register 13 KCAPROA 17
BLS interface 10, 11 KCATA 17
KCCFA 18
c KCDADA 17
calling KCDFA 17
subroutine 8, 15 KCINEA 17
utm 7 KCINIA 17
common memory pool 10 KCINPA 17
COMP parameter 4,8 KCKBA 17,19
compatible KDCS programs 3 KCMSGA 17
compiler version 4 KCOPA 17
compiling and linking ILCS-compatible Assembler KCPAA 7, 17, 22
programs 9 KCPADA 17
constants 17 KDCS parameter area 17
CSECT 13 KDCS programs
C-type constant 13 compatible 3
D L
DADM call 17 library 3,18
LOAD-MODULE parameter 10
E LOAD-MODULE statement 11

event exit INPUT 18

Index

M
macro
@ENTR 8,9
@EXIT 8,9
@PASS 8,9
INIT 7
KCPAA 7
ZCALL 3,7,8,15
ZEND 3, 8,16
ZSTRT 3,5,8,13
macros 3
message area 7
middleware platform 1
MODULE statement 10
MPUT 5

P

PADM call 17

parameter address 13
parameter list 5, 15
parameter passing 13
passing parameters 13
PEND 5

program start 13
PROGRAM statement 3, 11
program unit, structure 5

R
register
contents 13
number 13
reload 16
reloading registers 16
return 8
return address 15
runtime system 4

S

save area 13

shareable Assembler module 10
shared code 3

start program 13

structure of a program unit 5

subroutine 8
call 8,15
terminate 16

T
terminate subroutine 16
U

UTMcalls 15

UTM messages 17
UTM program unit 3

\%
V-type constant 15

Z

ZCALL macro 3,7, 8, 15,18
ZEND macro 3, 8, 16, 18
ZSTRT macro 3,5,8,9, 13, 18

26

Contents

Preface . . 1
Summary of contents and target groupo 2
Assembler program UNitS e 3
Compilers, runtime systems and generation options 4
Structure of an Assembler program unit 5
Calling UTM from a program Unitot e e e 7
Compiling and linking ILCS-compatible Assembler programs 9
Shareable Assembler modules 10
MaCIOS . oot 13
ZSTRT - Start program and pass parameters 13
ZCALL - Call UTM or subroutineo e e 15
ZEND - Terminate subroutine e 16
Assembler data Structures 17
Data structure KCKBA 19
Data structure KCPAA 22

openUTM V5.0 (BS2000/0SD)

Programming Applications with KDCS for Assembler

Target group
This manual is intended to support programmers of openUTM applications in Assembler.

Contents

This manual describes the language-specific features involved in writing Assembler pro-
gram units. It supplements the Core Manual “Programming Applications with KDCS for
COBOL, C and C++".

Edition: November 1998

File: utm_ass.pdf

Copyright © Siemens AG 1998.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

O
FUJITSU

Information on this document

On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format ... @s.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument

Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu Ubergegangen. Diese neue Tochtergesellschaft von Fuijitsu tragt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor langerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbeziige und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions bergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form ... @zs.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Preface
	Summary of contents and target group

	Assembler program units
	Compilers, runtime systems and generation opti...
	Structure of an Assembler program unit
	Calling UTM from a program unit
	Compiling and linking ILCS-compatible Assemble...
	Shareable Assembler modules

	Macros
	ZSTRT - Start program and pass parameters
	ZCALL - Call UTM or subroutine
	ZEND - Terminate subroutine

	Assembler data structures
	Data structure KCKBA
	Data structure KCPAA

	Index
	A-L
	M-Z

