
Edition July 2017

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0

\1
60

3
81

2_
3

2G
B

\H
b_

a
kt

u
el

l\e
n\

dv
32

_e
.v

or

English

BS2000 OSD/BC V11.0
Files and Volumes Larger than 32 GB

FUJITSU Software

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2017 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

U41253-J-Z125-3-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

25
.

Ju
ly

 2
01

7
 S

ta
n

d
17

:0
2.

13
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

8
12

_3
2

G
B

\H
b

_a
kt

ue
ll\

e
n\

dv
32

_
e.

iv
z

Contents

1 Introduction . 7

1.1 Target groups . 7

1.2 Structure of the manual . 8

1.3 Notational conventions . 10

2 Large objects in BS2000 . 11

2.1 Pubsets . 12

2.2 Volumes . 15

2.3 Files . 17

2.4 POSIX file systems . 20
2.4.1 Large POSIX file systems . 20
2.4.2 Large POSIX files . 21

2.5 User programs for configurations with large files 22

3 Systems support . 23

3.1 Pubset Management . 24
3.1.1 Installing and extending LARGE_OBJECTS pubsets with SIR 25
3.1.2 Upgrading and extending existing pubsets . 26
3.1.3 Generating SM pubsets with SMPGEN . 27
3.1.4 Recovering SM pubsets with large objects . 27
3.1.5 LARGE_OBJECTS pubsets in clusters . 27

3.2 Catalog and file management . 28
3.2.1 Consideration of large objects in the catalog entry (CE) 28
3.2.2 Assigning a 4-byte extent list to a file . 29
3.2.3 Creating SYSEAM files . 29
3.2.4 Creating catalogs . 30

Contents

 U41253-J-Z125-3-76

3.3 Parameter service . 31
3.3.1 System parameter FST32GB . 31

3.4 Affected commands . 32
3.4.1 SET-PUBSET-ATTRIBUTES / SHOW-PUBSET-ATTRIBUTES 33
3.4.2 MODIFY-USER-PUBSET-ATTRIBUTES . 35
3.4.3 Non-privileged commands . 35

3.5 Executability of utilities in environments with large objects 36
3.5.1 HSMS / ARCHIVE . 36
3.5.2 VOLIN . 37
3.5.3 SPCCNTRL . 37

3.6 Potential sources of errors and conflicts . 38
3.6.1 Restrictions for system files . 38
3.6.2 Restrictions for large volumes . 38

4 Users and programmers . 39

4.1 User commands . 40
4.1.1 SHOW-MASTER-CATALOG-ENTRY . 41
4.1.2 ADD-FILE-LINK / SHOW-FILE-LINK . 41
4.1.3 SHOW-FILE-ATTRIBUTES . 42

4.2 Assembler macros . 43
4.2.1 STAMCE . 45
4.2.2 FSTAT . 49
4.2.3 OPEN . 53
4.2.4 FCB . 55
4.2.5 FILE . 56
4.2.6 RDTFT . 57
4.2.7 DIV . 58
4.2.8 FPAMSRV . 61
4.2.9 FPAMACC . 63
4.2.10 Special issues when SHARUPD=YES . 64

4.3 Notes regarding programs created in high-level programming languages 66

5 Notes on migration . 69

5.1 Preliminary considerations . 69

5.2 Environment . 70

5.3 Program Conversion . 71

Contents

U41253-J-Z125-3-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

25
.

Ju
ly

 2
01

7
 S

ta
n

d
17

:0
2.

13
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

8
12

_3
2

G
B

\H
b

_a
kt

ue
ll\

e
n\

dv
32

_
e.

iv
z

5.3.1 Assembler programs . 71
5.3.2 Programs in high-level programming languages . 72

6 Appendix . 73

6.1 Semantic incompatibilities . 74

6.2 Messages referring to large objects . 75

Related publications . 79

Index . 81

Contents

 U41253-J-Z125-3-76

U41253-J-Z125-3-76 7

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
6:

58
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

1

1 Introduction

BS2000 OSD/BC supports files and volumes with a capacity of up to 4 terabytes. Files and
volumes which exceed 32 GB are known as “large files” and “large volumes”, and together
they are referred to as “large objects”.

On all BS2000 servers, large volumes can be configured on the external disk subsystems
which are connected via FibreChannel.

Large files and large volumes are only supported in special pubsets, which must be
assigned attributes for using these large objects. These pubsets are also called “large
pubsets” and can be imported on all BS2000 versions which are currently released.

In certain data structures, including the catalog entry, the 3-byte fields that have been used
for page addressing must be converted to 4-byte fields.
Converting 3-byte fields to 4-byte fields affects all components, products and applications
that work directly or indirectly with these fields. The TPR interfaces have been modified
accordingly, but not all of the TU user interfaces can compatibly support these large files.

1.1 Target groups

This manual is intended for programmers and systems support staff. It aims to facilitate
migration to large files and large volumes.

In order to work with this manual, you need very good knowledge of DMS and the SDF
command language (for systems support) or the Assembler programming language (for
programmers).

Structure of the manual Introduction

8 U41253-J-Z125-3-76

1.2 Structure of the manual

The chapter “Large objects in BS2000” describes the fundamental theoretical aspects
associated with the introduction of large objects (large volumes and large files). The
changes that affect pubsets, volumes and files in BS2000 are outlined and general
restrictions are mentioned. There is a classification for user programs which describes how
the individual programs handle large files.

The chapter “Systems support” outlines the role of systems support in introducing and
maintaining large objects.
Emphasis is placed on the additional tasks in the field of “Pubset Management”. But there
are also various aspects of “Catalog and File Management” and “System Initialization and
Parameter Service” that need to be addressed. One section outlines the changes in the
command interfaces which result from the introduction of large objects.
In addition, adjustments to individual utilities that are important in the context of systems
support and that have been affected by the extensions for large objects will be mentioned.
The end of the chapter provides a summary of potential sources of errors and conflicts.

The chapter “Users and programmers” contains detailed descriptions of the extensions
made to non-privileged command interfaces and Assembler macro interfaces to
accomodate large files. In addition, there are notes on RFA and high-level programming
languages that are affected by large objects. The end of the chapter provides a summary
of potential sources of errors and conflicts.

The chapter “Notes on migration” contains notes on the introduction of large files.
Necessary technical extensions are described in the previous chapters. Possible steps for
migration and the considerations that should be included in planning will be outlined here.

Introduction Structure of the manual

U41253-J-Z125-3-76 9

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
6:

58
.2

1
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

1

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Notational conventions Introduction

10 U41253-J-Z125-3-76

1.3 Notational conventions

References to other publications in the text are given in the form of abbreviated titles with
a reference number in square brackets. The full title of each publication is given in the
“Related publications” section as of page 79.

Commands mentioned in this manual are described in the “Commands” manual [10].
The macros mentioned are described in the following manuals: “Executive Macros” [11] and
“DMS Macros” [3]. The metasyntax of the commands or macros can be found in the
corresponding manuals.

v This symbol indicates warnings that make the reader aware of possible data loss or
serious conflicts.

U41253-J-Z125-3-76 11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

02
.2

2
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

2

2 Large objects in BS2000

In the following descriptions, large volumes and large files will be referred to as “large
objects”.

The continual growth of disk storage capacity and of data that needs to be available online
has been taken into account in BS2000 in the enlargement of previously available disk and
file sizes of around 32 GB. The following maximum values apply:

– Capacity of a pubset or volume set: approx. 4 TB (2.147.483.647 PAM pages)

– Capacity of a volume: approx. 2 TB (1.073.741.824 PAM pages)

– File size: approx. 4 TB

This means that within the operating system, 4-byte block numbers and 4-byte counters
must be used systematically for file sizes and disk sizes.

Block numbers and block counters become visible at different interfaces to the user in
BS2000 OSD/BC. Although 4-byte fields have been used exclusively in all new versions of
these interfaces, some old interface versions may still use 3-byte fields. This may lead to
compatibility problems for files Ï 32 GB (and in some rare cases also for volumes Ï 32 GB).

The compatibility aspect has been taken into account in that new pubset types have been
created as special containers for large objects. This has allowed the previous world of
“small objects” to be separated off and facilitates the successive introduction of large
volumes and large files.

Different conditions apply, however, when introducing large volumes and large files.

– The introduction of large volumes is designed to allow simple, low-cost expansion of
capacity in the Data Center. This process is not visible to users or programs.

– Large files are necessary in order to facilitate further growth of applications, where the
size of individual (and generally relatively few) files will exceed the former limit of 32 GB
in the near future.
In this context, it will be necessary in some cases to modify the programs affected, that,
for instance, use old versions of particular interfaces or implicitly assume a maximum
file size of 32 GB, in order to guarantee data integrity when the 32-GB limit is exceeded.
Programs that are not designed to work with large files are not affected.

Pubsets Large objects in BS2000

12 U41253-J-Z125-3-76

2.1 Pubsets

Standard pubsets cannot contain any large objects. Only LARGE_OBJECTS pubsets are
able to accommodate large objects. Two types of these pubsets are available:

– LARGE_OBJECTS pubsets without large files:

This pubset type allows large volumes, but limits the file size allowed to 32 GB. This
means that the pubset may contain volumes Ï 32 GB, but necessarily does not currently
contain such volumes.

The introduction of large volumes can only affect the PHP of the extent lists, a value
which is of no interest to the application program and cannot under any circumstances
be directly altered by it. Thus, this pubset type allows large volumes to be integrated
into existing application programs with (almost) no problems. From the point of view of
the user, these pubsets behave (almost) as conventional pubsets.

– LARGE_OBJECTS pubsets with large files:

This pubset type allows large volumes and large files, but they do not necessarily exist.

It allows large files to be separated from programs that use interfaces that are
incompatible and supports the step-by-step introduction of large volumes and - at a
second step - of large files.

Both new pubset types are only recognized as of OSD-BC V5.0 and can imported on all
BS2000 versions which are currently released.

Large objects are supported by both SF and SM pubsets. To achieve this, two additional
attributes exist:

i In the case of SM pubsets, the attributes LARGE_OBJECTS and
LARGE_FILES_ALLOWED are also properties of the pubset, rather than of
(individual) volume sets, since volume sets would otherwise be visible on different
interfaces to the user and could cause incompatibilities.

LARGE_OBJECTS Attribute for supporting volumes Ï 32 GB

LARGE_FILES_ALLOWED Attribute controls whether large files (files Ï 32 GB) are
also supported.

Large objects in BS2000 Pubsets

U41253-J-Z125-3-76 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

02
.2

2
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

2

Figure 1: Attributes of LARGE_OBJECTS pubsets

Defining LARGE_OBJECTS pubsets

The properties LARGE_OBJECTS and LARGE_FILES_ALLOWED are static and can be
specified when configuring the pubset with SIR (see page 25).

Using the SET-PUBSET-ATTRIBUTES command, existing standard pubsets can be
upgraded to LARGE_OBJECTS pubsets with and without support for large files (see
page 33). The following upgrades are possible in this context:

When the pubset is imported, the attributes are added to the MRSCAT.

v Warning!

Conversion back to a standard pubset is not possible.

The existence of large files can in certain cases affect the executability of applications (see
chapter “Users and programmers” as of page 39).

LARGE_FILES_ALLOWED=*FALSE LARGE_FILES_ALLOWED=*TRUE

LARGE_OBJECTS pubsets (SF/SM)Standard pubsets
(SF/SM)

Files < 32 GB

Volumes Ï 32 GB

Files Ï 32 GB

Volumes Ï 32 GB

Files < 32 GB

Volumes < 32 GB

Standard pubset

LARGE_OBJECTS pubset without large files

LARGE_OBJECTS pubset with large files

Pubsets Large objects in BS2000

14 U41253-J-Z125-3-76

Summary of pubset management interfaces affected by 32 GB objects

Interface Change

Privileged commands

SET-PUBSET-ATTRIBUTES Specification whether existing pubsets are to be upgraded to
LARGE_OBJECTS pubsets with or without large files.

SET-PUBSET-ATTRIBUTES Two S variables display the attributes LARGE-VOLUMES
and LARGE-FILES:
var(*LIST).LARGE-VOL and var(*LIST).LARGE-FILE

SHOW-MASTER-CATALOG-ENTRY Output of LARGE_OBJECTS properties for
LARGE_OBJECTS pubsets

Macros

STAMCE Output of MRSCAT entries related to LARGE_OBJECTS

Privileged utilities

SIR Installing and extending pubsets, initializing volumes in
respect of LARGE_OBJECTS

Table 1: Summary of pubset management interfaces affected by 32-GB objects

Large objects in BS2000 Volumes

U41253-J-Z125-3-76 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

02
.2

2
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

2

2.2 Volumes

Like pubsets, large volumes have their own attribute: LARGE_VOLUME.

The LARGE_VOLUME attribute characterizes a logical volume and indicates that the
volume has a gross capacity Ï 32 GB.
The LARGE_VOLUME attribute is stored in the base record of the SVL when the volume is
initialized with VOLIN.

Just as the LARGE_OBJECTS characteristic is for pubsets, the LARGE_VOLUME
characteristic is permanent and is stored in the SVL.

Restrictions for large volumes

– Large volumes can only be added to LARGE_OBJECTS pubsets.

– VOLIN
VOLIN supports a maximum capacity of 2 TB for any formatting.

– Large volumes are not allowed as private disks. Any attempt to initialize a large volume
as a private disk will be rejected with the following error message:

NVL0146 DISK CAPACITY GREATER EQUAL 32GB IS NOT PERMITTED FOR PRIVATE DISKS

Volume management interface affected by 32-GB objects

Interface Change

Privileged utilities

SIR Installing and extending pubsets, initializing volumes in
respect of LARGE_OBJECTS

Table 2: Summary of volume management interfaces affected by 32-GB objects

Volumes Large objects in BS2000

16 U41253-J-Z125-3-76

High-performance support of large volumes

If the load on the volume increases in accordance with the larger amount of data when large
volumes are used, provisions should be made to ensure high-performance support:

– External disk storage subsystems which employ the RAID hard disk system can be
employed to increase performance (and to enhance data security). When large
volumes are used, RAID 5, RAID 6 or preferably RAID 1/0 is recommended. In this case
the data of a logical volume is distributed over multiple physical disks (striping).

– In addition, use of the BS2000 function PAV (Parallel Access Volume) on /390 servers
in order to parallelize the disk inputs/outputs. On x86 servers the corresponding
function using RSC for disk I/Os is available by default.

Combining both measures results in considerable enhancements in TP and batch operation
(in the case of multitask batch), in terms of both the I/O times and the throughput. Also refer
to the “Performance Handbook” [12].

Large objects in BS2000 Files

U41253-J-Z125-3-76 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

02
.2

2
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

2

2.3 Files

The (theoretical) maximum file size is approx. 4 TB (2 147 483 647 PAM pages). This
means that within the operating system, 4-byte block numbers and 4-byte counters must
be used systematically for file sizes and disk sizes (see figure 2). (The term “block” in this
context is synonymous with the terms “PAM page” and “half page”.)

Figure 2: 3-byte and 4-byte fields and the resulting file and data volume sizes

Extending the catalog entry

The introduction of 4-byte fields for the following data stored in the catalog entry was a key
aspect in the lifting of the 32-GB limit for volume and data sizes.

– FILE-SIZE, the storage space allocated for the file

– HIGHEST-USED-PAGE, the amount of storage that currently contains data

– LHP (logical halfpage number) and PHP (physical halfpage number) of the individual
extents in the extent list, that allocate “physical” halfpages of volumes to the logical
halfpages.

3-byte and 4-byte fields

Block numbers and block counters become visible at different interfaces to the user in
BS2000. Although 4-byte fields have been used exclusively in all new versions of these
interfaces, some old interface versions may still use 3-byte fields. If files Ï 32 GB exist, you
may experience compatibility problems, in a few cases also when “only” volumes Ï 32 GB
exist.

7F

031 24....

X'FF FF FF' ï 231-1 = 2 147 483 647 PAM pages = 4 GB

Block numbers are treated as signed values.
The maximum block number is 231-1.

X'FF FF FF' ï 224-1 = 16 777 215 PAM pages = 32 GB

FF FF FF

Files Large objects in BS2000

18 U41253-J-Z125-3-76

Additional format for the extent list

The introduction of 4-byte LHPs and 4-byte PHPs meant that an additional format had to
be introduced for the extent list.

The correlation between the maximum size of volumes and files and the field width of LHP
and PHP is depicted in figure 3:

Figure 3: Correlation between file and volume sizes and the field width of LHP and PHP

Both formats of the extent list are supported:

– In general, the “old” format with 3-byte block numbers will be used.

– Only in the case of large files or of files that are wholly or partly located on large
volumes, will the new format with 4-byte block numbers be used.

Extent lists therefore contain either extents with 3-byte block numbers or extents with 4-byte
block numbers.

Restrictions for large files

– The paging file cannot be Ï 2 TB.

– A SYSEAM file cannot be Ï 32 GB.

– Files where BLKCTRL=PAMKEY are not supported, since the logical page number is
stored as a 3-byte field in the system section of the PAMKEY.

Ext. 4Ext. 2 Ext. 5VSN_1 Ext. 2 VSN_2 Ext. 4
IDEEIDEEIDEEIDEEIDEEIDVT IDVT

LHP

LHP

PHP

PHP

3-Byte Extent

Extent list:

PHP: the physical page

max. volume size approx. 2TB

max. file size 32 GB

page of the extent;

max. volume size 32 GB

assigned to the LHP:

max. file size 4 TB

LHP: highest logical

 file size limit volume size limit

4-Byte Extent

Ext. 1 Ext. 3

Large objects in BS2000 Files

U41253-J-Z125-3-76 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

02
.2

2
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

2

Summary of file management interfaces affected by 32 GB objects

Interface Change

Privileged commands

SET-PUBSET-ATTRIBUTES Specification whether existing pubsets are to be upgraded to
LARGE_OBJECTS pubsets with or without large files.

SET-PUBSET-ATTRIBUTES Two additional S variables display the attributes LARGE-
VOLUMES and LARGE-FILES:
var(*LIST).LARGE-VOL and var(*LIST).LARGE-FILE

SHOW-MASTER-CATALOG-
ENTRY

Output of LARGE_OBJECTS properties for
LARGE_OBJECTS pubsets

Non-privileged commands

ADD-FILE-LINK Additional operand for large files

SHOW-FILE-LINK Output of the “File can become large” attribute

SHOW-FILE-ATTRIBUTES The length of different output fields has been extended

Macros

FCB Additional operand for large files

FILE Additional operand for large files

FSTAT Effort involved in check and conversion if VERSION=0/1

OPEN Address problems of semantics

RDTFT Output of the “File can become large” attribute

DIV Additional operand for large files;
extended range of values for BLOCK and SPAN

FPAMACC Extended range of values for BLOCK

FPAMSRV Additional operand for large files

STAMCE Output of MRSCAT entries related to LARGE_OBJECTS

Table 3: Summary of file management interfaces affected by 32 GB objects

POSIX file systems Large objects in BS2000

20 U41253-J-Z125-3-76

2.4 POSIX file systems

The 32 gigabytes limit of the BS2000 has no significance in POSIX. But in the past only files
smaller than 2 gigabytes once had been supported in POSIX. This was because the data
within a file was addressed with a variable of the data type integer (signed). This could only
address a maximum of 231–1 bytes, i.e. 2 gigabytes.

This limit caused problems with different applications, for instance, with print files with
memory-intensive graphics. Consequently, more users called for the maximum file size to
be increased. This was also supported by the standardization authorities and led to a new
standard being defined for large files.

Standard for large files

The central point of this standard is that a “long long” variable is used to address data within
a file. This data type consists of an integer pair, which enables an address to be 263–1 bytes
long, including the sign.

This new class of files should of course be as compatible as possible with the existing ones,
so that existing programs can also work with large files without any great difficulty. That is
to say, it should be possible to process the large files where possible with the same
interfaces as previous files, at least in terms of syntax and semantics.

2.4.1 Large POSIX file systems

The maximum size of a POSIX file is also limited by the size of the file system in which it is
located, i.e by the size of the container file in BS2000.

Since internal addressing now uses a long long-type variable, a much greater range can be
addressed. Consequently, container files and thus POSIX file systems as well can be a
maximum of 1 terabyte.

The difference between the maximum size of BS2000 files and the maximum container size
is determined by the nature of the implementation in POSIX.

The size of a container file and thus of a POSIX file system is defined when it is created with
the administration tool POSINST (see the “POSIX Basics” manual [13]).

Large objects in BS2000 POSIX file systems

U41253-J-Z125-3-76 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

02
.2

2
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

2

2.4.2 Large POSIX files

Large POSIX files are files of a POSIX file system which can be larger than 2 gigabytes.
Large POSIX files can only be created in POSIX file systems which are based on a large
container and can thus exceed the limit value of 2 gigabytes, see the previous section.

The maximum size of a POSIX file is limited by the size of the container file which contains
it. You can also specify a maximum file size in POSIX, which applies to all files of the POSIX
file system (command ulimit or parameter FILESIZE in the POSIX information file).

Program interfaces for large POSIX files

To work with POSIX files, there are a number of C-library functions, such as open(), close(),
which are made available by CRTE. A subset of these functions is available in 64-bit form,
so that they can process large POSIX files. These functions have the same name, with the
additional suffix “64”, e.g. open64(). Some data structures and data types were also
converted to 64-bit form.

For further information on the program interface, see the “POSIX Basics” manual [13].

Commands for large POSIX files

Most file processing commands of the POSIX shell can recognize and sometimes also
process large POSIX files. They fall into two categories:

large file aware This command can process large POSIX files correctly. Some of the
commands in this category can only process large files up to a certain
file size, for instance cpio up to a maximum of 8 GB.

large file safe This command recognizes large POSIX files but rejects processing
them, e.g. with an appropriate message.

For further information on the command interface, see the “POSIX Basics” manual [13].

User programs for configurations with large files Large objects in BS2000

22 U41253-J-Z125-3-76

2.5 User programs for configurations with large files

As has already been mentioned, it cannot be assumed that all programs have been
prepared for accessing large objects, i.e. that they can address 4-byte block numbers and
block counters, although it must be borne in mind that the interfaces available to user
applications only relate to accessing and processing files and their metadata. The following
description is therefore confined to large files. Large disks will not be handled here, since
there are no user interfaces available, as has been mentioned. Program behavior can thus
be classified as follows:

Class A: A program is able to process large files without restrictions. This behavior is
defined as capable of LARGE_FILES (LARGE_FILES-capable).

Class B: A program has not been explicitly prepared for processing large files and/or
their metadata. It is, however, able to reject corresponding access that it regards
as illegal, or alternatively, it does not access files or their metadata. This
behavior is defined as compatible with LARGE_FILES (LARGE_FILES-
compatible).

Class C: A program has not been prepared for processing large files and cannot perform
a defined rejection of corresponding access. This behavior is defined as
incompatible with LARGE_FILES (LARGE_FILES-incompatible).

The corresponding classification for products of the software configuration of
BS2000/OSD-BC V8.0 can be found from page 73.

For configurations that contain large files, programs that are compatible with or capable of
LARGE_FILES must be presupposed. LARGE_FILES compatibility is to be regarded as the
norm. Growth over 32 GB will initially be limited to a relatively small number of files. Only
programs that access these must be capable of LARGE_FILES.

U41253-J-Z125-3-76 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

02
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

3

3 Systems support

This chapter outlines the role of systems support in introducing and maintaining large
objects.

Emphasis is placed on the additional tasks in the field of “Pubset Management”.
But there are also various aspects of “Catalog and File Management” and the “Parameter
Service” that need to be addressed.

One section outlines the changes in the commands interfaces which result from the
introduction of large objects.

In addition, adjustments to individual utilities that are important in the context of systems
support and that have been affected by the extensions for large objects will be mentioned.

The end of the chapter provides a summary of potential sources of errors and conflicts.

Pubset Management Systems support

24 U41253-J-Z125-3-76

3.1 Pubset Management

Systems support staff are responsible for the installation, reconfiguration and maintenance
of pubsets, including LARGE_OBJECTS pubsets. Tools in the SIR utility (see page 25f) and
the pubset management commands (see page 33ff) are available for this purpose.

A pubset that can accept large objects is known as a LARGE_OBJECTS pubset. Both SF
and SM pubsets can possess the LARGE_OBJECTS property. In the case of SM pubsets,
LARGE_OBJECTS is a property of the entire pubset, rather than of one or more volume
sets.

The maximum size of a LARGE_OBJECTS pubset is 2 147 483 647 PAM pages or 4 TB.
This limit is a result of the former field width for counters in the user catalog and for internally
maintained counters for disk storage management.

v Warning!

The existence of large files can in certain cases affect the executability of
applications (see the section “Executability of utilities in environments with large
objects”, on page 36, and section “Notes regarding programs created in high-level
programming languages” on page 66).

Before a pubset is assigned attributes that allow it to support large files, it should be
ensured that the software is configured accordingly. Appropriate measures should
therefore be taken in advance to clarify such issues and make any necessary
adjustments.

Systems support Pubset Management

U41253-J-Z125-3-76 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

02
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

3

3.1.1 Installing and extending LARGE_OBJECTS pubsets with SIR

Volumes and files Ï 32 GB can be allowed for SF and SM pubsets. These pubsets are then
referred to as LARGE_OBJECTS pubsets.

Indicating whether large objects are permitted in a pubset

In order to allow large volumes and/or files, the SIR statement DECLARE-PUBSET
provides two suboperands for creating and extending pubsets.

//DECLARE-PUBSET PUBSET-TYPE=...(...,ACTION=...(...,
LARGE-DISKS-ALLOWED=*NO/*YES(LARGE-FILES-ALLOWED=*NO/*YES)))

The LARGE-DISKS-ALLOWED=*NO/*YES operand determines whether or not volumes
with a capacity Ï 32 GB are allowed in a volume set of the pubset. The property “large
volumes” does not depend on whether large files should be allowed or not.

The LARGE-FILES-ALLOWED=*NO/*YES operand determines whether or not files in the
pubset may be Ï 32 GB in size. Large files may only be stored in pubsets that support large
volumes (LARGE-DISKS-ALLOWED=*YES).

If no explicit permission for large volumes and large files is entered in this operand, SIR
creates a pubset that does not allow any large volumes/files (*NO is the default value), and
thus generates a pubset format that is also compatible with earlier versions.

v Warning!

Permission for large volumes and files cannot be removed from a pubset.

Changes to the LARGE_OBJECTS attributes only take effect the next time the
pubset is initialized (using the IMPORT-PUBSET command).

Removing inconsistencies

If a large volume is specified when a pubset is created (ACTION=*INSTALL), but LARGE-
DISKS-ALLOWED=*YES was not specified, the volume is rejected with the message
SIR0308.

SIR0308 DISK FOR VSN '(&00)' EXCEEDS CAPACITY OF 32 GB; DISK REJECTED

If this large volume is to be included in this pubset, the LARGE-DISKS-ALLOWED=*YES
operand must be specified afterwards.

If a large volume is specified when a pubset is extended (ACTION=*EXTEND), but LARGE-
DISKS-ALLOWED=*YES was not specified, the volume is rejected with the message
SIR0308 (see above).

Pubset Management Systems support

26 U41253-J-Z125-3-76

If this large volume is to be included in this pubset, the pubset property must be changed
with the SET-PUBSET-ATTRIBUTES ...,LARGE-VOLUMES=*ALLOWED command before
SIR can add the volume.

3.1.2 Upgrading and extending existing pubsets

Indicating whether large objects are permitted in a pubset

Existing pubsets can be upgraded to large pubsets with and without large files using the
SET-PUBSET-ATTRIBUTES command (see page 33).

Changes to the LARGE_OBJECTS attributes only take effect the next time the pubset is
initialized (using the IMPORT-PUBSET command).

Adding large volumes to a pubset

Individual volumes can be added to an SF pubset or to a volume set in an SM pubset using
the MODIFY-PUBSET-PROCESSING command; new volume sets can be added to an
SM pubset in the same way.

If the volumes to be added are large volumes or if the (empty) volume sets that are to be
added contain large volumes, the pubset being extended must be a LARGE_OBJECTS
pubset. If this is not the case, the attempt to extend the pubset will be rejected with message
DMS1383 (with insert '06'):

DMS1383 VOLUME INCONSISTENT. ERROR TYPE '(&00)'. COMMAND REJECTED

'06': A volume is larger than 32 GB, but the pubset doesn't have
the attribute for large volumes.

The addition of a large volume in the context of IMPORT processing will only be successful
if the pubset to be extended is a LARGE_OBJECTS pubset. If this is not the case, the
attempt to extend the pubset will be aborted with message DMS037E (with insert &00='04'):

DMS037E FORMAT OF VOLUME '(&02)' INCONSISTENT WITH PUBSET/VOLUMESET
'(&00)'. IMPORT PUBSET TASK ABORTED WITH ERRORCODE '(&01)'

'04': a volume is larger than 32 GB, but the pubset doesn't have
the attribute for large volumes.

Systems support Pubset Management

U41253-J-Z125-3-76 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

02
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

3

3.1.3 Generating SM pubsets with SMPGEN

The SMPGEN utility allows an SM pubset to be generated from several SF pubsets. If the
SF pubsets include LARGE_OBJECTS pubsets, the resulting SM pubset will also be a
LARGE_OBJECTS pubset.

If at least one of the SF pubsets that are being combined has the property
LARGE_FILES_ALLOWED, then a LARGE_OBJECTS pubset with the property
LARGE_FILES_ALLOWED is created.

3.1.4 Recovering SM pubsets with large objects

If an SM pubset is recovered that has a corrupt control volume set, the information
determining whether the pubset is a LARGE_OBJECTS pubset must also be recovered.

The LARGE_OBJECTS attributes, therefore, are not only stored in the SVL of the VOLRES
of the control volume set, but also in the SVLs of the other volume sets in the SM pubset.

The “Exclusive import of a pubset with pubset conversion” function is offered for recovery
purposes.

This uses a special IMCAT to create an SF pubset from a volume set in order to enable
access to data stored on a volume set, regardless of the validity of the control volume set.
When it is converted, the SF pubset inherits the LARGE_OBJECTS properties of the
SM pubset.
When the SF pubsets taken from the volume sets are combined to form an SM pubset using
SMPGEN, the LARGE_OBJECTS properties are transferred, as described in the section
“Generating SM pubsets with SMPGEN” on page 27.

3.1.5 LARGE_OBJECTS pubsets in clusters

LARGE_OBJECTS can also be operated as shared pubsets.

Catalog and file management Systems support

28 U41253-J-Z125-3-76

3.2 Catalog and file management

A new version of the catalog entry had been introduced to support large objects. In some
cases, the extensions have been introduced in a source-incompatible form in order to
ensure that components produced newly take into account the changes for “large objects”.
Since the extension of the catalog entry and the corresponding access function for
programming system exits may be of interest, a short summary of the changes is given
below.

3.2.1 Consideration of large objects in the catalog entry (CE)

The following applies:

– The version identifier must be X'FF03' or higher.

– The indicator (bit) for identifying catalog entries with large objects (large extent list)
identifies whether the format used is 3-byte or 4-byte.

– The description of the extent list for large objects uses 4-byte format; an extent list that
does not belong to large objects remains in 3-byte format, under another name.
An additional substructure exists for the extent list (DCAEE4 or DCAEE4I), where the
fields for the LHP and the PHP are each 4 bytes in length. The old substructure for the
old extent list form (IDEE or DCMIDEET) with 3-byte fields has been retained.

– An additional 4-byte field exists for the file size in the main part of the catalog entry,
although the old 3-byte field has been retained (under another name) in the old part.

– The maximum size for extent lists has been extended to 2496 bytes.
For large files, the maximum size for extent lists has been extended to 2496 bytes.
A large file, like a small file, can thus contain a maximum of 310 extents.

– An additional 4-byte field exists for the last halfpage pointer in the main part of the
catalog entry, although the old 3-byte field has been retained (under another name) in
the old part.

Systems support Catalog and file management

U41253-J-Z125-3-76 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

02
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

3

3.2.2 Assigning a 4-byte extent list to a file

There are various versions of the structure of the catalog entry within the
LARGE_OBJECTS pubsets and in particular the extent list (3-byte and 4-byte variants).
The user has no direct influence over which variant is assigned to a file. This happens
implicitly via DMS, where a file is assigned a 4-byte extent list if:

– the size of the file exceeds the 32-GB limit, or

– the file is assigned an extent that is located on a volume with capacity Ï 32 GB by the
allocator.

4-byte extent lists are not converted back, even when the file becomes smaller than 32 GB
or no longer has an extent on a large volume.

3.2.3 Creating SYSEAM files

The size of SYSEAM files must always be less than 32 GB.

The size of SYSEAM files is determined by specifications in the MRSCAT entry.
It is defined with the ADD-MASTER-CATALOG-ENTRY EAM=*PAR(...) command when the
MRSCAT entry is created, and can be changed for an existing entry with the
MODIFY-MASTER-CATALOG-ENTRY EAM=*PAR(...) command.

If no EAM specifications exist in an MRSCAT entry, the corresponding system parameters
apply. Thus the maximum size specification possible (64512 units) guarantees that a
SYSEAM file always remains smaller than 32 GB.
Furthermore, if a primary or secondary allocation is necessary, the appropriate
parameterization within EAM ensures that a SYSEAM file cannot become larger than
32 GB.

The only way that a SYSEAM file can exceed the 32-GB limit is if it is explicitly created by
systems support using FILE or CREATE-FILE and the corresponding file size.

The first EAM access to this file will however be rejected, and the message DMS0854 will be
output to the console.

DMS0854 FILE SIZE OF SYSEAM FILE (&00) MAY NOT EXCEED 32 GIGABYTES

The action associated with this message is to delete the corresponding SYSEAM file and
to have systems support create the file again with a file size that is not critical.

Catalog and file management Systems support

30 U41253-J-Z125-3-76

3.2.4 Creating catalogs

A of BS2000/OSD V11.0, the catalog is always created in EXTRA-LARGE format. By this,
the catalog is enlarged and therefore the capacity relating to the number of file or JV entries
is increased considerably.

File catalogs of pubsets from lower OSD versions with format NORMAL or LARGE are
converted automatically to the EXTRA-LARGFE format when importing them via IMPORT-
PUBSET.

Catalogs are created generally in EXTRA-LARGE format when SIR with V20.0 or higher is
used.

The current catalog format can be queried using the SHOW-PUBSET-CATALOG-
ALLOCATION command.

Systems support Parameter service

U41253-J-Z125-3-76 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

02
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

3

3.3 Parameter service

3.3.1 System parameter FST32GB

(Customer) applications that do not access the critical data fields FILE-SIZE and
HIGHEST-USED-PAGE could also be affected by the changes introduced for the support
of large files. The system parameter FST32GB is offered to aid migration.

FST32GB only affects the following FSTAT interfaces:

– Version=0 (corresponds to Version=710) when a fully-qualified filename is specified
(although not when a file generation group is specified with GEN=YES)

– Version=1 (corresponds to Version=800), where the FNAM operand was not specified

For more information regarding FSTAT, see page 49ff.

FST32GB = 0 (default setting)

If at least one of the files in the set selected by FSTAT is Ï 32 GB, the FSTAT call is rejected
with the return code X'00000576'.

FST32GB = 1 (ignore overflow)

If at least one of the files in the set selected by FSTAT is Ï 32 GB, an overflow of the 3-byte
fields of the PHP in the extent list is always tolerated and no error message is issued. In the
event of an overflow, the value X'FFFFFF' is assigned to the data fields that cannot be
displayed.

Note

The system parameter FST32GB is not evaluated if the indicator
LARGE_PUBSET_ACCESS=YES is set in the FSTAT program interface (see
page 52).

Affected commands Systems support

32 U41253-J-Z125-3-76

3.4 Affected commands

This section describes the command interface which are affected by large objects.

Command/operand Explanation

Privileged commands

SET-PUBSET-ATTRIBUTES

LARGE-VOLUMES=
 *UNCHANGED/*ALLOWED(

LARGE-FILES=
*UNCHANGED/*ALLOWED)

Determines whether existing pubsets are to be upgraded
to LARGE_OBJECTS pubsets with or without large files.

SET-PUBSET-ATTRIBUTES The two S variables var(*LIST).LARGE-VOL and
var(*LIST).LARGE-FILE show the contents of the
attributes LARGE-VOLUMES and LARGE-FILES.

MODIFY-USER-PUBSET-
ATTRIBUTES

TOTAL-SPACE=*UNLIMITED Operand value which permits the user’s storage space
quota for permanent storage space, for temporary storage
space or for work files to exceed 4 TB (see PERM-, TEMP-
or WORK-SPACE-LIMITS=*PARAMETERS(...)).

SHOW-PUBSET-CATALOG-
ALLOCATION

Command which displays information about the catalog
format, allocation and extendability of the catalogs.

Non-privileged commands

ADD-FILE-LINK

EXCEED-32GB=*BY-PROGRAM/
*FORBIDDEN/*ALLOWED

Determines whether the file size may exceed 32 GB.

SHOW-FILE-LINK The S variable var(*LIST).EXC-32GB shows the contents
of the EXCEED-32GB attribute.

SHOW-FILE-ATTRIBUTES If the total number of reserved PAM pages exceeds 32 GB,
the information is displayed in units of one thousand PAM
pages.
Two additional S variables contain the number in units of
one thousand PAM pages if the original S variable has
reached the 2147483647 PAM pages:
var(*LIST).MIGRATE-S1-RESERVED-T and
var(*LIST).PUBSET-RESERVED-T.

SHOW-MASTER-CATALOG-ENTRY The LARGE_OBJECTS properties are output for
LARGE_OBJECTS pubsets.

Table 4: Commands - Summary

Systems support Affected commands

U41253-J-Z125-3-76 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

02
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

3

3.4.1 SET-PUBSET-ATTRIBUTES / SHOW-PUBSET-ATTRIBUTES

Indicating whether large objects are permitted in a pubset

Existing pubsets can be upgraded to large pubsets with the SET-PUBSET-ATTRIBUTES
command.

The following two operands determine whether large objects are permissible:

/SET-PUBSET-ATTRIBUTES ...,LARGE-VOLUMES=*UNCHANGED/*ALLOWED(
LARGE-FILES=*UNCHANGED/*ALLOWED)

The LARGE-VOLUMES operand determines whether the pubset may contain large
volumes. The default setting *UNCHANGED specifies that the previous setting is retained.
If *ALLOWED is specified, the pubset may contain large volumes. This setting cannot be
undone.

The LARGE-FILES operand determines whether large files may also be created on these
large volumes.
The default setting *UNCHANGED specifies the previous setting is retained.
If *ALLOWED is specified, large files may be stored. This setting cannot be undone.

Changes to the LARGE_OBJECTS attributes only take effect the next time the pubset is
initialized (using the IMPORT-PUBSET command).

Affected commands Systems support

34 U41253-J-Z125-3-76

Outputting pubset attributes

Pubset attributes are output with the SHOW-PUBSET-ATTRIBUTES command.

Example of the output of /SHOW-PUBSET-ATTRIBUTES for the TST pubset

In the S variable output of the SHOW-PUBSET-ATTRIBUTES command, these
specifications are shown in the following two S variables:

– var(*LIST).LARGE-VOL
– var(*LIST).LARGE-FILE

Contents of both S variables: *NOT-ALLOW or *ALLOW.

Example of the output to the TESTOUT S variable

/sh-pub-attr tst
%
%===
% PVSID SYSID SHAREABILITY CURRENT DESIGNATED BACKUP ALTERNATE
% MASTER MASTER MASTER BACKUP
%---
% TST 250 *YES 126 126 124 *BY-OPER
%===
% DEFAULT-STORAGE-TYPE LARGE VOLUMES LARGE FILES SNAPSET LIMIT
%---
% *PUBLIC-SPACE *ALLOWED *FORBIDDEN 0
%===
%

/decl-var testout(type=*struct),mult-elem=*list
/exec-cmd cmd=(show-pub-attr work),text-output=*no,struct-output=testout
/sh-var testout
TESTOUT(*LIST).PUBSET = WORK
TESTOUT(*LIST).PUBSET-TYPE = *STANDARD
TESTOUT(*LIST).CONTROL-VOLSET =
TESTOUT(*LIST).SYS-ID = 250
TESTOUT(*LIST).SHARE = *YES
TESTOUT(*LIST).LARGE-VOL = *ALLOW
TESTOUT(*LIST).LARGE-FILE = *ALLOW
TESTOUT(*LIST).CURR-MASTER = *NONE
TESTOUT(*LIST).DESIGNATED-MASTER = *NONE
TESTOUT(*LIST).BACKUP-MASTER = *NONE
TESTOUT(*LIST).ALT-BACKUP = *NONE

Systems support Affected commands

U41253-J-Z125-3-76 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

02
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

3

3.4.2 MODIFY-USER-PUBSET-ATTRIBUTES

As the maximum size of a volume set is 4 TB, the maximum total size of an SM pubset can
be 255 * 4 TB, in other words a little over 1,000 TB. A user can occupy more than 4 TB of
storage space on an SM pubset. The MODIFY-USER-PUBSET-ATTRIBUTES command
permits storage space quotas > 4 TB:

/MODIFY-USER-PUBSET-ATTRIBUTES ...,
PERM-SPACE-LIMIT=*PAR(TOTAL-SPACE=*UNLIMITED,...),
TEMP-SPACE-LIMIT=*PAR(TOTAL-SPACE=*UNLIMITED,...),
WORK-SPACE-LIMIT=*PAR(TOTAL-SPACE=*UNLIMITED,...),

Specifying TOTAL-SPACE=*UNLIMITED determines that the specified storage space
quota may exceed the limit of 4 TB. This operand can be specified separately for the
permanent storage space (PERM-SPACE-LIMIT operand), for the temporary storage
space (TEMP-SPACE-LIMIT operand) or for the storage space for work files (WORK-
SPACE-LIMIT operand).

Information on allocated storage space quotas is displayed by the SHOW-USER-
ATTRIBUTES command with INFORMATION=*PUBSET-ATTRIBUTES or *PUBSET-
SUMMARY:

– The output fields PERM-SPACE-LIMIT, TEMP-SPACE-LIMIT and WORK-SPACE-
LIMIT contain *UNLIMITED if the relevant quota may exceed the limit of 4 TB.

– The S variables var(*LIST).PERM-TSL, var(*LIST).TEMP-TSL and var(*LIST).WORK-
TSL show this specification with the *UNLIM value.

3.4.3 Non-privileged commands

The changes to the following non-privileged commands are described in Chapter 4 “Users
and programmers” as of page 39.

ADD-FILE-LINK Description on page 41

SHOW-FILE-ATTRIBUTES Description on page 42

SHOW-FILE-LINK Description on page 41

SHOW-MASTER-CATALOG-ENTRY Description on page 41

Utilities Systems support

36 U41253-J-Z125-3-76

3.5 Executability of utilities in environments with large objects

This section will refer to a few utilities that are important in the area of systems support.
Once again, only the modifications for large files and volumes will be described.

A full description can be found in the following manuals: “HSMS” [8], “FDDRL” [6],
“SPACEOPT” [14], “IMON” [9] and - for all the other utilities - the “Utilities” manual [2].

With regard to SIR, see page 25 and with regard to SMPGEN, see page 27.

3.5.1 HSMS / ARCHIVE

HSMS/ARCHIVE is supporting the back up and the restore of files > 32GB.

When using RESTORE with a backup set that also contains large files, the large files can
only be restored only on LARGE_OBJECTS pubsets with LARGE-FILES-ALLOWED.
In all other cases - i.e. when attempting to restore to pubsets with other properties - HSMS
and ARCHIVE skip all large files and output an ARC0061 message for each file.

ARC0061 FILE GREATER THAN 32GB. FILE NOT PROCESSED

Save files on the S1 level

S1 save files are possible on large disks and/or as large files for saving and migration.

Incremental saves and partial saves

When performing incremental saves and partial saves, the situation can occur that older file
versions in the backup set are small files, whereas newer versions are large files. If a
backup set of this kind is restored in an environment where large files are not permitted,
large files are rejected by ARCHIVE with the message ARC0061 (see page 36).

RESTORE with K → NK conversion

When files with BLKCTRL=PAMKEY are restored to an environment with NK disks, they are
automatically converted to a suitable NK format (DATA or NO) by the PAMINT subsystem.
In the context of this conversion, the size of the converted file can exceed 32 GB. PAMINT
supports large files. Thus a conversion can also be performed in this case, provided that a
LARGE_OBJECTS pubset with LARGE-FILES-ALLOWED is specified.

Systems support Utilities

U41253-J-Z125-3-76 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

02
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

3

3.5.2 VOLIN

It should be noted that large volumes can only be components of a LARGE_OBJECTS
pubset.

Large volumes are not permitted as private disks. Any attempt to initialize a large volume
as a private disk will be rejected with the message NVL0146 :

NVL0146 DISK CAPACITY GREATER EQUAL 32GB IS NOT PERMITTED FOR PRIVATE DISKS

3.5.3 SPCCNTRL

SPCCNTRL can display information about large files and volumes.

Exception

If, in the DISPLAY CATALOG,ENTRY statement, ENTRY refers to a file Ï 32 GB, and if
the user is not the system administrator (TSOS), the information cannot be returned.
The request is rejected with the message SPC0030:

SPC0030 ERROR EXECUTING (&00)-MACRO, RETURN CODE = (&01)

Sources of errors and conflicts Systems support

38 U41253-J-Z125-3-76

3.6 Potential sources of errors and conflicts

3.6.1 Restrictions for system files

SYSEAM files

The size of SYSEAM files must always be less than 32 GB.

The only way that a SYSEAM file can exceed the 32-GB limit is if it is explicitly created by
systems support using the FILE macro or the CREATE-FILE command and the
corresponding file size.
The first EAM access to this file is, however, rejected. The file must be deleted by systems
support and newly created with the permitted size (see also page 29).

Paging files

The paging file cannot be Ï 32 GB.

3.6.2 Restrictions for large volumes

Large volumes can only be added to LARGE_OBJECTS pubsets.

Large volumes are not allowed as private disks. Any attempt to initialize a large volume as
a private disk will be rejected with the following error message:

NVL0146 DISK CAPACITY GREATER EQUAL 32GB IS NOT PERMITTED FOR PRIVATE DISKS

U41253-J-Z125-3-76 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

01
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

4

4 Users and programmers

This chapter contains detailed descriptions of the extensions made to non-privileged
command interfaces and Assembler macro interfaces in relation to large files.

This is followed by notes on RFA and high-level programming languages that are affected
by large objects.

The end of the chapter summarizes potential sources of errors and conflicts.

User commands Users and programmers

40 U41253-J-Z125-3-76

4.1 User commands

This section describes the command interface which are affected by large objects.

Summary

Command/operand Explanation

ADD-FILE-LINK

EXCEED-32GB=*BY-PROGRAM/
*FORBIDDEN/*ALLOWED

This operand determines whether the file size may exceed
32 GB

SHOW-FILE-LINK The S variable var(*LIST).EXC-32GB;
displays the contents of the EXCEED-32GB attribute

SHOW-FILE-ATTRIBUTES If the total number of reserved PAM pages exceeds 32 GB,
the information is displayed in units of one thousand PAM
pages.
Two additional S variables contain the number in units of
one thousand PAM pages if the original S variable has
reached the 2147483647 PAM pages:
var(*LIST).MIGRATE-S1-RESERVED-T and
var(*LIST).PUBSET-RESERVED-T

SHOW-MASTER-CATALOG-ENTRY The two S variables: var(*LIST).LARGE-VOL and
var(*LIST).LARGE-FILE display the contents of the
attributes LARGE-VOLUMES and LARGE-FILES

Table 5: User commands

Users and programmers User commands

U41253-J-Z125-3-76 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

01
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

4

4.1.1 SHOW-MASTER-CATALOG-ENTRY

The SHOW-MASTER-CATALOG-ENTRY command provides information on the contents
of MRSCAT entries.

Outputting pubset attributes

If the pubset is a LARGE_OBJECTS pubset, these properties will be output by the SHOW-
MASTER-CATALOG-ENTRY command.

Example of the output of /SHOW-MASTER-CATALOG-ENTRY for the TST pubset

4.1.2 ADD-FILE-LINK / SHOW-FILE-LINK

Indicating whether large files are permitted

Access to large files can be controlled with the ADD-FILE-LINK command and the operand
EXCEED-32GB, without intervention in the program.

/ADD-FILE-LINK SUPPORT=*DISK(EXCEED-32GB=*BY-PROGRAM/*FORBIDDEN/*ALLOWED,...)

The EXCEED-32GB operand defines whether the processing of large files is allowed
(*ALLOWED) or not (*FORBIDDEN).
The specifications in the TU FCB are used for the default setting *BY-PROGRAM.
This operand is entered in the TFT (Task File Table) and is evaluated when the file is
opened.

Outputting file attributes

In the S variable output of the SHOW-FILE-LINK command, the validity of large files as
specified in the TFT is output in the S variable var(*LIST).EXC-32GB (declared using the
ADD-FILE-LINK command or the FILE macro).

Contents of the S variables: ’’ (corresponds to BY-PROGRAM) or *FORBID or *ALLOW.

/show-master-catalog-entry tst
%PUBSET TST : SINGLE-FEATURE, PUBRES-UNIT=5140, LOCAL-IMPORTED, NK2-FORMAT
% LARGE-OBJECTS, EXTRA-LARGE-CATALOG
% SHARED, MASTER-HOST=OWN-HOST

User commands Users and programmers

42 U41253-J-Z125-3-76

4.1.3 SHOW-FILE-ATTRIBUTES

Outputting file size

The output fields of the SHOW-FILE-ATTRIBUTES command that relate to the output of the
number of PAM pages allow the output for file sizes Ï 32 GB. 10 digits are available for the
output, although leading zeros are not displayed.

This concerns the following output fields and the following output fields in the totals lines:

– File size in the header (number of PAM pages reserved for the file)
– HIGH-US-PA for the file properties (number of PAM pages occupied by the file)

The following output fields in the totals lines have also been extended to 10 digits:

– FRE (the total PAM pages that have been reserved for but are not yet occupied by the
displayed output set)

– REL (the total PAM pages that can be released for the displayed output set)
– RES (the total PAM pages that are reserved for the displayed output set)

When there are more than 2147483647 reserved PAM pages, the display uses units of
one thousand PAM pages (8 digits and the right-justified identifier “T”).

– S variables var(*LIST).MIGRATE-S1-RESERVED and var(*LIST).PUBSET-RESERVED:
When the value of 2147483647 PAM pages is reached, the corresponding S variable
var(*LIST).MIGRATE-S1-RESERVED-T or var(*LIST).PUBSET-RESERVED-T is assigned
the current value in units of one thousand PAM pages.

The modification have been implemented for all output destinations
(OUTPUT=*SYSOUT/*SYSLST/*PRINTER/<filename>).

Users and programmers Assembler macros

U41253-J-Z125-3-76 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

01
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

4

4.2 Assembler macros

This section describes Assembler macro interfaces which are affected by large objects.

The macros mentioned are described in the following manuals: “Executive Macros” [11]
(STAMCE macro) or “DMS Macros” [3] (all other macros)

Summary of Assembler macros

Macro/operand or RC Explanation Page

Executive macros

STAMCE 45

SELECT=
LARGE_OBJECTS/
LARGE_FILES_ALLOWED

Select and display the LARGE_OBJECTS and
LARGE_FILES_ALLOWED attributes

DMS macros

FSTAT 49

VERSION=0/1 If FSTAT is called with these versions, you must check
whether it is necessary to convert to VERSION=2/3.

X'0576' Extended return code for large files

OPEN Be aware of problems regarding semantics 53

X'0D9D'
X'0D00'

Additional return code
Additional return code

FCB 55

LARGE_FILE=
*FORBIDDEN/*ALLOWED

Only for disk files:
LARGE_FILE specifies whether the file may become a
“large” file (i.e. whether its size may increase beyond
32 GB during processing).

FILE 56

EXC32GB=
*FORBIDDEN/*ALLOWED

Only for disk files;
determines whether or not the file size may exceed 32
GB during processing

RDTFT Information about the file property EXC32GB in the
output area

57

Table 6: Assembler macros (part 1 of 2)

Assembler macros Users and programmers

44 U41253-J-Z125-3-76

DMS macros for special access methods

DIV 58

LARGE_FILE=
*FORBIDDEN/*ALLOWED

Operand for FCT=*OPEN:
LARGE_FILE specifies whether the file to be opened
may become a “large” file that can exceed 32 GB in
size.

OFFSET=number Operand for FCT=*MAP/*SAVE/*RESET:
Specifies the first block of the file region to be mapped
in virtual address space. The value for OFFSET is
limited by the maximum size of a file, thus;
– 8388606 when LARGE_FILE= *FORBIDDEN or.
– 1073741823 when LARGE_FILE=*ALLOWED.

SPAN=number Operand for FCT=*SAVE/*RESET:
Specifies the length of the file region in 4-KB blocks.
The value for SPAN is limited by the maximum size of
a file, thus;
– 8388607 when LARGE_FILE=*FORBIDDEN or
– 1073741824 when LARGE_FILE=*ALLOWED.

X'000C'
X'0030'

Return code INVALID_LARGE_FILE
Return code LARGE_FILE_NOT_SPECIFIED

FPAMSRV Address problems of semantics 61

LARGE_FILE=
*FORBIDDEN/*ALLOWED

Operand for FCT=*OPEN:
LARGE_FILE specifies whether the file to be opened
may become a “large” file that can exceed 32 GB in
size.

X'0015' Return code INVALID_LARGE_FILE

FPAMACC 63

BLOCK=number Specifies the direct decimal numeric value for the
number of the first logical block to be transferred. The
value for BLOCK is limited by the maximum size of a
file, thus;
– 8388606 when LARGE_FILE=*FORBIDDEN or
– 1073741823 when LARGE_FILE=*ALLOWED.
(specified in the FPAMSRV macro)

X'0145' Return code LARGE_FILE_NOT_SPECIFIED

Macro/operand or RC Explanation Page

Table 6: Assembler macros (part 2 of 2)

Users and programmers STAMCE

U41253-J-Z125-3-76 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

01
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

4

4.2.1 STAMCE

Outputting pubset attributes

The STAMCE macro provides information about the contents of the MRSCAT entries and
also displays the LARGE_OBJECTS attributes.

Extract from the STAMCE DSECT

STAMCE MF=D,PREFIX=D,XPAND=MCE,VERSION=5
:
:
:
2 *
2 DMCFDATT DS X attribute
2 DMCFDLOB EQU X'40' set: large_objects
2 * files/volumes with more than 32 GB
2 DMCFDLFA EQU X'20' set: large_files_allowed
2 DMCFDRAI EQU X'10' set: pubset with RAID volumes
2 DMCFDGSV EQU X'08' set: gs volumes
2 DMCFDDRV EQU X'02' set: high availability by DRV
2 DMCFDKEY EQU X'01' set: key pubset
2 *
:

STAMCE Users and programmers

46 U41253-J-Z125-3-76

Example

The output of attributes addressed with DMCFDATT is laid out in such a way that in the output
columns, YES stands for “allowed/existing” and NO for “not allowed/non existent”. The
LARGE_OBJECTS attributes are output in the LOB and LFA columns.

STAMCE START
 PRINT NOGEN
 BALR 10,0
 USING *,10
 USING DSTAM3,6
 USING DSTAM4,7
 STAMCE MF=E,PARAM=STAM3,VERSION=5
 LR 7,1
 L 6,DMCEAREA
 WROUT HEADER,WROUTERR
SHOW MVC ATTRIB,=C'NO NO NO NO NO NO '
 MVC CATID,DMCFSCTD
 MVC PROCESS,DMCFSBCA
TLOB TM DMCFDATT,DMCFDLOB
 BZ TLFA
 MVC LOB,YES
TLFA TM DMCFDATT,DMCFDLFA
 BZ TRAI
 MVC LFA,YES
TRAI TM DMCFDATT,DMCFDRAI
 BZ TGSV
 MVC RAI,YES
TGSV TM DMCFDATT,DMCFDGSV
 BZ TDRV
 MVC GSV,YES
TDRV TM DMCFDATT,DMCFDDRV
 BZ TKEY
 MVC DRV,YES
TKEY TM DMCFDATT,DMCFDKEY
 BZ TEND
 MVC KEY,YES
TEND NOP TEND
 CLI PROCESS,X'00'
 BNE WROUT2
 MVC PROCESS,=CL8' '
WROUT2 WROUT OUTREC,WROUTERR
 LA 6,DMCF#(6)
 CLI DMCFSCTD,' '
 BNE SHOW
WROUTERR TERM

Users and programmers STAMCE

U41253-J-Z125-3-76 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

01
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

4

*** DEFINITIONS
STAM3 STAMCE CATID=' ',MF=L,VERSION=5
HEADER DC Y(HEADERE-HEADER)
 DC CL2' '
 DC CL1' '
 DC C'CATID PROCESSOR LOB LFA RAI GSV DRV KEY '
HEADERE EQU *
OUTREC DC Y(OUTRECE-OUTREC)
 DC CL2' '
 DC CL1' '
CATID DS CL4
 DC CL3' '
PROCESS DS CL8
 DC CL2' '
ATTRIB DS 0CL24
LOB DS CL4
LFA DS CL4
RAI DS CL4
GSV DS CL4
DRV DS CL4
KEY DS CL4
OUTRECE EQU *
YES DC C'YES’
 LTORG
 DS 0F
OUT DS XL4096
DSTAM3 STAMCE MF=D,PREFIX=D,XPAND=MCE,VERSION=5
DSTAM4 STAMCE MF=D,PREFIX=D,XPAND=PL,VERSION=5
 END

STAMCE Users and programmers

48 U41253-J-Z125-3-76

Print-edited output

 CATID PROCESSOR LOB LFA RAI GSV DRV KEY
 AARZ NO NO NO NO NO NO
 BAU3 KAROBUBE NO NO NO NO NO NO
 BLAU NO NO NO NO NO NO
 BXT2 YES NO NO NO NO NO
 :
 :
 WORK YES YES NO NO NO YES
 2ATS PIKASS NO NO YES NO NO YES
 2CVC KAROBUBE NO NO NO NO NO NO
 4ARB D015ZE08 NO NO NO NO NO YES
:
:

Users and programmers FSTAT

U41253-J-Z125-3-76 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

01
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

4

4.2.2 FSTAT

If the FSTAT macro accesses pubsets with large volumes that do not, however, allow large
files, interface behavior is unchanged. Access of this kind is always performed without
problems.
Problems can occur if pubsets that also allow large files are accessed.

The FSTAT macro offers the following interface variants:

Interface variants that do not need to be converted

If FSTAT calls with version 2 or higher are used exclusively, no incompatibilities occur.

The variants as of (c) return the relevant data (extent lists and data fields for File-Size and
Last-Page-Pointer) as 4-byte fields. These interfaces do not need to be converted when
large files are used, and they are not affected by the comments below.
The semantics problem discussed in section “OPEN” on page 54, however, must be
considered. Each user of this interface must check whether this problem applies to their
implementation.

The following variants are not affected either:

– FSTAT ...,VERSION=0,<partially-qualified filename>
FSTAT ...,VERSION=0,<file generation group with GEN=YES>

– FSTAT ...,VERSION=1,FNAM

Interface variants that need to be checked/converted

In the following section, the remaining variants of (a) and (b) will be examined more closely:

FSTAT ...,VERSION=0/1,SHORT/LONG

These variants return the catalog information in BS2000 V10.0 format.
The extent lists and data fields for File-Size and Last-Page-Pointer are output with only
3 bytes. For reasons of compatibility, it is not possible to change the layout of these
interfaces.

Calls that refer to large objects cause an overflow in the 3-byte fields.

(a) Version=0 (corresponds to Version 710, default)

(b) Version=1 (corresponds to Version 800) as of BS2000 version V8.0

(c) Version=2 as of OSD-BC version V1.0

(d) Version=3 as of OSD-BC version V3.0

(e) Version=4 as of OSD-BC version V9.0

(f) Version=5 as of OSD/BC version V11.0

FSTAT Users and programmers

50 U41253-J-Z125-3-76

Two different cases must be distinguished. These depend on the contents of the result list
from the FSTAT call:

a) No file Ï 32 GB exists in the result list (set of selected files).

In this instance, FSTAT tolerates the overflow of the 3-byte data field of the PHP in the
extent list. The value X'FFFFFF' is assigned to the PHPs that cannot be displayed. It is
assumed that the PHPs are never or very rarely evaluated at the interfaces. If this is
occasionally not the case, the interface must be converted to version 2 or 3.

This achieves the following:

– The introduction of large volumes can be carried out in a compatible manner, user
programs do not need to be changed.

– FSTAT calls with fully-qualified pathnames can be supported compatibly (except for
the PHP overflow in the extent list).

Ê No conversion is necessary.

b) At least one file Ï 32 GB exists in the result list (FSTAT is called with a partially-qualified
filename or with wildcards).

Calls of this kind are rejected with the following return code:

The following types of FSTAT interfaces are affected:

Ê These calls must be converted to VERSION Ï 2.

It is generally recommended to use the newest FSTAT versions. This especially
applies to the case when Net-Storage files (FTSTAT as of VERSION=4) or SAM
node files (FTSTAT as of VERSION=5) are to be considered.

X'cc' X'bb' X'aaaa' Explanation

X'00' X'01' X'0576' The selection contains large files.

Type Comment

I FSTAT ... VERSION=0 is set as default

II FSTAT ...,VERSION=0

III FSTAT ...,VERSION=1,SHORT

IV FSTAT ...,VERSION=1,LONG

V FSTAT ...,VERSION=1 The SHORT operand is set as default

Users and programmers FSTAT

U41253-J-Z125-3-76 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

01
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

4

Summary of FSTAT calls

FSTAT <fully-qualified pathname>,VERSION=0/1

1. Access only to small files (less than 32 GB):
No action necessary 1)

2. Large files are also accessed (Ï 32 GB):
If the call is made with one of the types I to V, conversion to VERSION=2/3 is
necessary, with the exception of types I and II where the file generation group and
GEN=YES are specified.

FSTAT <partially-qualified pathname or pathname with wildcards>,VERSION=0/1

1. The result list contains only small files (less than 32 GB):
No action necessary 1)

v Warning!

You must ensure that the requirements are always fulfilled.
This is probably only possible for pathnames that contain wildcards in the
catalog ID and otherwise contain fully-qualified components.

2. The result list can also contain large files (Ï 32 GB):
If the call is made with one of the types III to V, conversion to VERSION=2/3 is
necessary.

Conclusion

When using the FSTAT interface with VERSION < 2 and FORM=LONG or FORM=SHORT,
it is necessary to convert to the most recent interface version under the following
circumstances:

a) Large files should be accessible with the FSTAT call in the affected program.

b) The pathname in the FSTAT call is partially-qualified or contains wildcards and it cannot
be assumed that the result list contains no large files. Calls with wildcards in the catalog
ID are particularly critical here.

It may be necessary to convert the data structures in the program as well as the interface.

1 “No action necessary” applies here if the result list contains only small files and the overflow of the 3-byte data field of the PHP
in the extent list does not present a problem. If this is not the case, conversion to VERSION>2 is necessary.

FSTAT Users and programmers

52 U41253-J-Z125-3-76

Control using the system parameter FST32GB

FST32GB only affects the following FSTAT interfaces:

– Version=0 (corresponds to Version=710) when a fully-qualified filename is specified
(although not when a file generation group is specified with GEN=YES)

– Version=1 (corresponds to Version=800), where the FNAM operand was not specified

Whether the existence of a file Ï 32 GB in the list of selected files leads to the FSTAT call
being rejected with the X'00000576' return code (FST32GB=0, default setting) or whether
an overflow of the 3-byte fields is always tolerated (FST32GB=1) is set globally on the
system by systems support staff. In the latter case, the value X'FFFFFF' is assigned to the
data fields that cannot be displayed.

Note

The system parameter FST32GB is not evaluated if the FSTAT indicator (see below) is
set.

Control using the FSTAT indicator

Behavior equivalent to FST32GB=1, i.e. ignoring the overflow, can be activated for specific
interfaces for FSTAT types I to V using an indicator.

Note

The FSTAT indicator has a higher priority than the system parameter FST32GB. If the
FSTAT indicator is set, FST32GB is not evaluated.
The indicator must be set directly in the parameter list; no support is provided in the
FSTAT macro.

Description of the bits in the corresponding DSECT:

 FSTAT MF=D,PARMOD=31,VERSION=710
IDBFLAG2 DS X FLAGS 2
IDBLOPYE EQU X'04' 2-2 S LARGE PUBSET ACCESS=YES

 FSTAT MF=D,PARMOD=31,VERSION=800
IFLAG0 DC B'10001100'
ILOPY EQU X'04' 2-2 S LARGE PUBSET ACCESS=YES

Users and programmers OPEN

U41253-J-Z125-3-76 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

01
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

4

4.2.3 OPEN

The OPEN macro and the access methods are only affected by the introduction of large
files, not by the introduction of large volumes.

The OPEN interface checks whether files are permitted to extend beyond 32 GB and
whether the creation of files Ï 32 GB and access to such files are permitted.

There are two aspects associated with this:

a) Rejection of access to or the creation of large files for access methods that do not allow
processing of large files.

b) Indication that a program can create or open files Ï 32 GB.

Incompatible interface variants

Interfaces where 3-byte block numbers are used are never able to work with files Ï 32 GB.
This affects the following cases:

– All files in key format (BLKCTRL=PAMKEY):
The logical block numbers in the PAMKEY are only 3 bytes wide.

– 24-bit interface of UPAM
The field for logical block numbers in the UPAM parameter lists and in the TU FCB is
only 3 bytes wide.

– 24-bit interface of SAM
The logical block numbers are affected as part of the retrieval address.

– 24-bit interface of ISAM

In all the cases described above, the following applies:

– Access to files Ï 32 GB is rejected with the return code X'00000D9D' or X'00000D00',
depending on the size of the storage space allocated to the file (FILE_SIZE).

– Exceeding a file size of 32 GB as a result of secondary allocation is prohibited
(LARGE_FILE).

OPEN Users and programmers

54 U41253-J-Z125-3-76

Semantic incompatibilities

It is possible that applications use interfaces that employ 4-byte fields for the data fields
described above, but that these 4-byte fields are implicitly or explicitly subject to the former
limitation to values less than X'00FFFFFF'. Detailed information relating to this can be found
in the Appendix, in the section “Semantic incompatibilities” on page 74.

The following return codes display information about execution of the macro with regard to
large files:

X'cc' X'bb' X'aaaa' Explanation

X'00' X'00' X'0D9D' Error when opening a disk file

X'00' X'00' X'0D00' System error when opening a file

Users and programmers FCB

U41253-J-Z125-3-76 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

01
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

4

4.2.4 FCB

The FCB macro defines the file control block, which is the central source of information for
the BTAM, ISAM, SAM and UPAM access methods.

Indicating whether large files are permitted

At program level, the LARGE_FILE operand controls whether large files are permitted.

LARGE_FILE
Only for disk files (ISAM, SAM and UPAM access methods):
The LARGE-FILE operand defines whether or not the logical file size may exceed 32 GB.

= *FORBIDDEN
Default setting: The logical file size may not exceed 32 GB.

= *ALLOWED
Only for files with BLKCTRL î PAMKEY:
The logical file size may exceed 32 GB.

Operation Operands

FCB :
:

:

[,LARGE_FILE=
*FORBIDDEN

*ALLOWED 
 
 

]

FILE Users and programmers

56 U41253-J-Z125-3-76

4.2.5 FILE

Allocation behavior

Support for files Ï 32 GB is only possible for non-PAMKEY files on pubsets where
LARGE_OBJECTS=TRUE and LARGE_FILES_ALLOWED=TRUE.

Thus, PAMKEY files on these pubsets may not exceed previous allocation limits for reasons
of compatibility. The PAMKEY property of a file is not binding at the point at which FILE is
executed; it only becomes definitive when the file is accessed using OPEN.

The behavior for files on all other pubsets (LARGE_OBJECTS=FALSE or TRUE,
LARGE_FILES_ALLOWED=FALSE) does not change, i.e. the FILE interface rejects an
allocation that exceeds the 32 GB limit.

Indicating whether large files are permitted

At program level, the EXC32GB operand controls whether large files are permitted. The
operand does not affect the allocation behavior of the FILE interface.

EXC32GB
Only for disk files; only for non-PAMKEY files:
The EXC32GB operand determines whether or not the file size may exceed 32 GB when
the file is processed. The operand is entered in the TFT (Task File Table) and is only
evaluated when the file is opened using OPEN.
During processing, EXC32GB does not affect the space assignment of the FILE call.

= FORBIDDEN
The file size may not exceed 32 GB.

= ALLOWED
The file size may exceed 32 GB.

Operation Operands

FILE :
:
,EXC32GB=FORBIDDEN/ALLOWED
:

Users and programmers RDTFT

U41253-J-Z125-3-76 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

01
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

4

4.2.6 RDTFT

Outputting file attributes

The RDTFT macro allows information to be output from the TFT.

RDTFT ...,LINK=...,VERSION=2/3

Using the VERSION=2/3 and PARMOD=31 operands, an output list is created that also
outputs information about the file property EXC32GB (see FILE macro, page 56).

Extract from the RDTFT DSECT

RDTFT MF=D,PLIST=OUTPUT,VERSION=3
:
:
:
1 ***************** FCB AND DEVICE TYPE INFORMATION
1 IDRFINFO DS 0HL2
:
:
1 IDRIND15 DS C INDICATOR 15
1 IDRDESCS EQU X'80' 7-7 S DESTOC SPECIFIED
1 IDRDESCY EQU X'40' 6-6 S DESTOC = YES
1 IDRCMSGS EQU X'20' 5-5 S CLOSMSG SPECIFIED
1 IDRCMSGY EQU X'10' 4-4 S CLOSMSG = YES
1 IDRTAPWS EQU X'08' 3-3 S TAPEWR SPECIFIED
1 IDRTAPWY EQU X'04' 2-2 S TAPEWR = DEVICE-BUFFER
1 IDRX32GS EQU X'02' 1-1 S EXC32GB SPECIFIED
1 IDRX32GA EQU X'01' 0-0 S EXC32GB = ALLOWED
:

DIV Users and programmers

58 U41253-J-Z125-3-76

4.2.7 DIV

The DIV access method (like FASTPAM) uses its own parameter list, rather than the TU
FCB for passing parameters.
This DIV(I) parameter list includes - among others - the LARGE_FILE operand for the
“Open files” function. The default value *FORBIDDEN prevents uncontrolled access to
large files. This function is represented in the parameter list in a bit field that is preset with
B'0' (ï *FORBIDDEN).
The presetting with the default value *FORBIDDEN is therefore guaranteed for programs
that were compiled in versions earlier than OSD-BC V5.0.

Indicating whether large files are permitted

The DIV macro with the OPEN function indicates whether large files are permitted. At
program level, the LARGE_FILE operand controls whether large files are permitted.

The operand is entered in the TFT (Task File Table) and is evaluated when the file is opened
using OPEN.

LARGE_FILE
The LARGE_FILE operand determines whether or not the file size may exceed 32 GB
during processing. The operand is entered in the TFT (Task File Table) and is only
evaluated when the file is opened using OPEN.

With the form MF=L, only direct specification is permitted.

= *FORBIDDEN
Default setting: The file size may not exceed 32 GB.

Operation Operands

DIV

:
:

:

[,FCT=

*OPEN

adr

(r) 
 
 
 
 

]

[,LARGE_FILE=

*FORBIDDEN

*ALLOWED
adr
(r)

 
 
 
 
 
 
 

]

Users and programmers DIV

U41253-J-Z125-3-76 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

01
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

4

= *ALLOWED
The file size may exceed 32 GB.

= adr / (r)
The address of a field that is 1 byte in length and contains the value for LARGE_FILE
or the register that contains the value.

Specifying the first block of the data area and the file length

The first block of the file area to be mapped to the virtual address space is specified using
the OFFSET operand and the MAP, SAVE, or RESET function. This value is limited
depending on the maximum size of a file.

The length of the file area is specified in 4-KB blocks using the SPAN operand and the
SAVE or RESET function. This value is limited depending on the maximum size of a file.

OFFSET
Together with SPAN, OFFSET defines the file region for which the window is created. The
OFFSET operand can be specified with the MAP, SAVE or RESET functions.

Default setting: OFFSET = 0

With the form MF=L, only direct specification is permitted.

= number
Specifies the first block of the file region to be mapped in virtual address space. The
value for OFFSET is limited to the maximum size of a file in 4 KB pages minus 1:

0 Î number Î 8388606 for LARGE_FILE=*FORBIDDEN

0 Î number Î 1073741823 for LARGE_FILE=*ALLOWED

Operation Operands

DIV

:
:

:

[,FCT=

*MAP/*SAVE/*RESET

adr

(r) 
 
 
 
 

]

[,OFFSET=

number
adr
*equ
(r)

 
 
 
 
 
 
 

][,SPAN=

number
adr
*equ
(r)

 
 
 
 
 
 
 

]

DIV Users and programmers

60 U41253-J-Z125-3-76

= adr
Symbolic address of a 4-byte field containing the numeric value (binary) of the
specification for the first block of the file region to be mapped in virtual address space.

= *equ
Equate representing the numeric value of the specification for the first block of the file
region to be mapped in virtual address space.
The “*” character must precede the name of the equate.

= (r)
Register containing the numeric value of the specification for the first block of the file
region to be mapped in virtual address space.

SPAN
Together with OFFSET, SPAN defines the data area which is referred to in SAVE.
The SPAN operand can be specified with the SAVE or RESET functions.

Default setting: SPAN = 0

With the form MF=L, only direct specification is permitted.

= number
Specifies the length of the file region in 4-KB blocks. The value for SPAN is limited by
the maximum size of a file in 4 KB pages minus 1:

0 Î number Î 8388607 for LARGE_FILE=*FORBIDDEN

0 Î number Î 1073741824 for LARGE_FILE=*ALLOWED

= adr
Symbolic address of a 4-byte field which specifies the length of the file region in
4-KB blocks (binary).

= *equ
Equate which specifies the length of the file area in 4-KB blocks (binary).
The “*” character must precede the name of the equate.

= (r)
Register containing the length of the file region in 4-KB blocks (binary).

Additional return codes display information about the execution of the macro with regard to
large files:

X'cc' X'bb' X'aaaa' Explanation

X'00' X'01' X'000C' The value for LARGE_FILE (OPEN) is neither *ALLOWED nor
*FORBIDDEN.

X'00' X'40' X'0030' When a file was accessed in the mode SHARUPD=YES, it was
determined that the file size exceeded 32 GB; exceeding 32 GB was
not permitted for this file in OPEN.

Users and programmers FPAMSRV

U41253-J-Z125-3-76 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

01
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

4

4.2.8 FPAMSRV

The FASTPAM access method (like DIV) uses its own parameter list, rather than the TU
FCB for passing parameters.
This FPAMSRV(I) parameter list includes - among others - the
LARGE_FILE=*FORBIDDEN/*ALLOWED operands for the “Open files” function.

The operand controls whether the processing of large files is permitted.
The default value *FORBIDDEN prevents uncontrolled access to large files. This function
is represented in the parameter list in a bit field which is preset with B'0' (ï *FORBIDDEN).
The presetting with the default value *FORBIDDEN is therefore guaranteed for programs
that were compiled in versions earlier than OSD-BC V5.0.

Indicating whether large files are permitted

The FPAMSRV macro, with the OPEN function and the LARGE-FILE operand, indicates
whether large files are permitted.

LARGE_FILE
specifies whether the file to be opened may become a “large” file that can exceed 32 GB in
size.

Default setting: LARGE_FILE = *FORBIDDEN

With the form MF=L, only direct specification is permitted.

= *FORBIDDEN
Default setting: The file may not become a “large file”.

Operation Operands

FPAMSRV

:
:

:

[,FCT=

*OPEN

adr

(r) 
 
 
 
 

]

[,LARGE_FILE=

*FORBIDDEN

*ALLOWED
adr
(r)

 
 
 
 
 
 
 

]

FPAMSRV Users and programmers

62 U41253-J-Z125-3-76

= *ALLOWED
The file may become a “large file”.

= adr / (r)
The address of a field that is 1 byte in length and contains the value for LARGE_FILE
or the register that contains the value.

An additional return code displays information about the execution of the macro with regard
to large files:

X'cc' X'bb' X'aaaa' Explanation

X'00' X'01' X'0015' The function was not performed.
Invalid specification for LARGE_FILE

Users and programmers FPAMACC

U41253-J-Z125-3-76 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

01
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

4

4.2.9 FPAMACC

The direct decimal numeric value for the number of the first logical block to be transferred
can be specified in the BLOCK operand of the FPAMACC macro.
This value is limited depending on the maximum size of a file (specified in the FPAMSRV
macro).

BLOCK
Specifies the number of the first logical FASTPAM block within the file to be transferred.
The block size is determined with the BLKSIZE operand in the the OPEN function of the
FPAMSRV macro. Only integer values are permitted.

With the form MF=L, only direct specification is permitted.

= number
Direct entry of a decimal numeric value for the number of the first logical block to be
transferred. The value is limited to the maximum size of a file in 4 KB pages minus 1:

1 Î number Î 8388606 for LARGE_FILE=*FORBIDDEN (see FPAMSRV macro)

1 Î number Î 1073741823 for LARGE_FILE=*ALLOWED (see FPAMSRV macro)

= adr / (r)
Symbolic address of a 4-byte field containing the numeric value (binary) or the register
which contains this address.

An additional return code displays information about the execution of the macro with regard
to large files:

Operation Operands

FPAMACC :
:

:

X'cc' X'bb' X'aaaa' Explanation

X'00' X'40' X'0145' When a file was accessed in the mode SHARUPD=YES, it was
determined that the file size exceeded 32 GB; exceeding 32 GB was
not permitted for this file in OPEN.

[,BLOCK=

number

adr

(r) 
 
 
 
 

]

Mode SHARUPD=YES Users and programmers

64 U41253-J-Z125-3-76

4.2.10 Special issues when SHARUPD=YES

When files are accessed in the mode SHARUPD=YES, it is possible that a file with a file
size of less than 32 GB could become Ï 32 GB during processing.

There are two different cases here:

– Callers that are prepared for this situation:
– by specifying LARGE_FILE=*ALLOWED in the FCB macro
– by specifying EXCEED-32GB=*ALLOWED in the ADD-FILE-LINK command

– Unprepared callers:
– by specifying LARGE_FILE=*FORBIDDEN in the FCB macro
– by specifying EXCEED-32GB=*FORBIDDEN in the ADD-FILE-LINK command

UPAM, FASTPAM and DIV access methods

When a file is accessed with the UPAM, FASTPAM and DIV access methods, the size of
the file is checked after each allocator call.
If this check reveals a file size Ï 32 GB and the LARGE_FILE=*FORBIDDEN attribute or
the EXCEED-32GB=*FORBIDDEN attribute is set in the corresponding TFT, processing is
aborted.

– UPAM then issues the following return code

or the corresponding DMS message

DMS09AD FILE SIZE GREATER 32 GIGABYTES IS NOT ALLOWED

– In this instance, FASTPAM issues the following return code in its own parameter list
FPAMACC(I)

– In this instance, DIV issues the following return code in its own parameter list DIV(I)

X'000009AD' FILE SIZE GREATER 32 GIGABYTES IS NOT ALLOWED

X'00400145' LARGE_FILE_NOT_SPECIFIED
When a file was accessed in the mode SHARUPD=YES, it was determined
that the file size exceeded 32 GB; exceeding 32 GB was not permitted for this
file in OPEN.

X'00400030' LARGE_FILE_NOT_SPECIFIED
When a file was accessed in the mode SHARUPD=YES, it was determined
that the file size exceeded 32 GB; exceeding 32 GB was not permitted for this
file in OPEN.

Users and programmers Mode SHARUPD=YES

U41253-J-Z125-3-76 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

01
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

4

NK-ISAM access method

Under the NK-ISAM access method, the size of the NK-ISAM file is checked on the basis
of the extent list located in the file table entry at every SVC entry point. If this check reveals
a file size Ï 32 GB and if the caller set the LARGE_FILE=*FORBIDDEN attribute in the FCB
or the EXCEED-32GB=*FORBIDDEN attribute in the TFT, processing is aborted.

– NK-ISAM then issues the following return code

or the corresponding DMS message

DMS0A23 FILE SIZE GREATER 32 GIGABYTES IS NOT ALLOWED

The K-ISAM access method is not affected by this problem.

X'00000A23' FILE SIZE GREATER 32 GIGABYTES IS NOT ALLOWED

High-level programming languages Users and programmers

66 U41253-J-Z125-3-76

4.3 Notes regarding programs created in high-level
programming languages

In the context of high-level programming languages / programming systems, there are two
different aspects of file processing:

– File processing in the framework of program creation using compilers

– File processing when running objects created under a compiler/programming system

File processing by compilers

Support for source programs Ï 32 GB is neither necessary nor desirable - it is unlikely that
input objects of this size will be manageable. The same applies to output objects created
by compilers such as object modules, listings and debugging output.
As long as the corresponding objects are managed in libraries, the size of the library, but
not the size of the library elements, may exceed 32 GB.

File processing by runtime systems

Please refer to the documentation of the corresponding run time system for details of the
compatibility of individual runtime systems with large files.

COBOL

In COBOL programs that were compiled with COBOL85, any attempt to work with large files
will be rejected with the file status '9x'.

Avoiding this limitation by explicitly specifying the
ADD-FILE-LINK ...,EXCEED-32GB=*ALLOWED command is not permitted and will cause
undefined behavior, in particular the omission of necessary checks.

For programs that were compiled with COBOL2000, it is possible to access files Ï 32 GB
via the SEQUENTIAL, LINE SEQUENTIAL and INDEXED file organization methods in
COBOL.

The COBOL file organization method RELATIVE is only supported with large files if mapped
to BS2000-ISAM.

There are no restrictions to files smaller than 32 GB caused by the COBOL product for
BS2000 files and POSIX files using the SEQUENTIAL and RELATIVE organization
methods. Files using the INDEXED organization method are still restricted in terms of size
in the POSIX file system.

Users and programmers High-level programming languages

U41253-J-Z125-3-76 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

01
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

4

C

The full functionality of the open64 interface family is available for correct processing of
BS2000 files Ï 32 GB. Please refer to the “C Library functions for POSIX applications”
manual [1] for a description of these interfaces.

C++

The IOSTREAM interface supplied with CRTE does not support large files. Using
IOSTREAM to open large files will fail. By default, no further information other than the
return code zero will be issued (in particular, no error message).
The “errno” variable returns the value 3 (DMS ERROR).

If C++ programs need interfaces to large files, they must work with the C API (open64) (see
“C” section, above).

High-level programming languages Users and programmers

68 U41253-J-Z125-3-76

U41253-J-Z125-3-76 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

02
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

5

5 Notes on migration

This chapter contains notes on the introduction of large files. Necessary interfaces are
described in the previous chapters. Possible steps for migration and the considerations that
should be included in planning will be outlined here.

5.1 Preliminary considerations

Due to the continual growth of the volume of data stored, the size of individual files can
exceed 32 GB. In order to be able to make modifications when and where appropriate,
these developments must be carefully monitored and extrapolated.
Generally the option exists for introducing an environment in which files Ï 32 GB can be
processed.

If large files are to be introduced, it is necessary to clarify the following points in advance:

– Which files will or should exceed 32 GB?

– Which programs/applications should run in an “environment with large files”?

– Which programs/applications operate on these files?

Programs/applications that are identified in this way must be checked to ensure that they
will be executable in the future, i.e. that they will be able to process large files. Modifications
may be necessary. The following sections will examine this.

Environment Notes on migration

70 U41253-J-Z125-3-76

5.2 Environment

An appropriate environment must be made available by systems support in order to support
large files. It is advisable initially to install this environment for test purposes only, on a test
application or a guest system under VM2000.

System requirements

As described in Chapter 2 “Large objects in BS2000”, large files can only be created in
special pubsets, known as LARGE_OBJECTS pubsets, with the
LARGE_FILES_ALLOWED attribute.
At least one of these pubsets must therefore be made available. This can be achieved by
generation with SIR or by subsequent assignment of attributes using the
SET-PUBSET-ATTRIBUTES command. The latter approach has the advantage that
existing files can be included and updated.

Software configuration

The software configuration of the current OSD/BC version supports the operation with large
files.

Notes on migration Program Conversion

U41253-J-Z125-3-76 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17
 S

ta
nd

 1
7:

02
.2

6
P

fa
d:

 P
:\

F
T

S
-B

S
\B

S
2

-G
A

\O
S

D
-V

11
0\

16
0

38
12

_
32

G
B

\H
b_

ak
tu

el
l\e

n
\d

v3
2_

e.
k0

5

5.3 Program Conversion

5.3.1 Assembler programs

Assembler programs are directly based on the TU interfaces of BS2000 OSD/BC.

1. Modifications may be necessary for programs that should be executable for large files
in the future (LARGE-FILES-compatible programs)

2. In general, modification measures will be necessary for programs that should process
large files.

In the first case, the way in which the FSTAT program interface is used, and whether it is
used, must be checked. As described in detail in Chapter 4, in the “FSTAT” section as of
page 49, interface variants earlier than VERSION=2 only support 3-byte block numbers.
When large files are accessed, these interfaces issue the return code x'0576'.
This behavior is only undesirable and incorrect if the return code appears “randomly”,
because the result list of the FSTAT call also contains large files, although these do not
need to be processed. This can occur for FSTAT calls with partially-qualified filenames or
filenames with wildcards. Calls with wildcards in the catalog ID are particularly critical. In
this instance, the call is not restricted to the file catalog of a pubset, but among other things
includes several or all of the pubsets imported in the system.
When critical FSTAT calls are converted to an interface variant equal to or greater than
VERSION=2, it is not only modification of access to output area fields that is necessary.
Further use of the counters or block numbers taken from here must also be checked and
adapted where appropriate.

In the second case, it is necessary to perform modifications in the context of file processing
in addition to the modification of FSTAT calls that may be required. For this purpose, the
indication LARGE_FILES=*ALLOWED for OPEN in the FCB (or in the parameter list for
FASTPAM and DIV) must then be set. This determines that large files can be processed.
A check and possible modification of the program logic may also be necessary in order to
ensure that large files can be processed without errors. If you are working with block-
oriented access methods (UPAM, FASTPAM) or block numbers (retrieval address in SAM),
it is also necessary to ensure that the block numbers can universally be handled as 4-byte
fields.
In addition to this direct dependence, there may also be an implicit assumption within the
program logic that a block number or file cannot be larger than 224-1. No exhaustive set of
rules can be given for identifying “semantic incompatibilities” of this kind. A list of examples
in the form of a checklist is given in the Appendix (“Semantic incompatibilities” section,
page 74).

For test purposes, or if no modifications are necessary, it is possible to set whether large
files are permitted via the ADD-FILE-LINK command interface (see page 41).

Program Conversion Notes on migration

72 U41253-J-Z125-3-76

5.3.2 Programs in high-level programming languages

The current compiler versions and run time systems support large files. If want to you use
older programs for the operation with large files a new compilation using the current
compiler may be necessary, see the following sections.

COBOL

New compilation is necessary if the program had been compiled with a
COBOL2000 < V1.1A before.

For further information, see the “COBOL” section on page 66.

C, C++

The program has to be adapted, compiled and linked again if the program had been created
and linked using a program environment with CRTE < V2.3C before.

For further information, see the “C” section on page 67.

U41253-J-Z125-3-76 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
25

. J
ul

y
2

01
7

 S
ta

n
d

17
:0

1.
27

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

8
12

_3
2

G
B

\H
b

_a
kt

ue
ll\

e
n\

dv
32

_e
.a

n
h

6 Appendix

The appendix contains the following tables and overviews:

– Semantic incompatibilities (page 74)

– Messages referring to large objects (page 75)
New or changed messages for processing large volumes and files,
organized according to message codes

Semantic incompatibilities Appendix

74 U41253-J-Z125-3-76

6.1 Semantic incompatibilities

In Chapter 5, it was mentioned that for the modifications in Assembler code for files Ï 32 GB
in addition to the conversion to 4-byte block numbers and counters, it is necessary to check
whether the program logic implicitly assumes that files may not be larger than 32 GB.

The following lists a number of examples of potential problems.

– The highest 3-byte block number X'FFFFFF' has a special meaning.

– “Block numbers” greater than X'00FFFFFF' represent objects other than blocks.

– For calculations with block numbers or counters greater than X'00FFFFFF', overflow
can occur.

– The number of digits in input or output fields is not sufficient for displaying such large
block numbers or counters.

– When converting hexadecimal numbers to decimal numbers, the field length is too
small for the decimal number.

– It is assumed that data structures whose size depends on a file size always find space
in virtual memory. This assumption can apply to files less than 32 GB, but not if this size
is exceeded.

Appendix Messages referring to large objects

U41253-J-Z125-3-76 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
25

. J
ul

y
2

01
7

 S
ta

n
d

17
:0

1.
27

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

8
12

_3
2

G
B

\H
b

_a
kt

ue
ll\

e
n\

dv
32

_e
.a

n
h

6.2 Messages referring to large objects

The following displays the messages that are mentioned in this manual with reference to
large objects. They are sorted alphabetically according to message code.

ARC0061 FILE GREATER THAN 32GB. FILE NOT PROCESSED

? Files with a file size greater than 32GB can not be processed
with this ARCHIVE Version or in this environment

! Processing of this file is possible in an environment with
following features:
- >= BS2000 OSD V5.0A
- >= ARCHIVE V6.0A
- In case of a restoration the destination pubset must allow
files larger than 32GB

DMS037E FORMAT OF VOLUME '(&02)' INCONSISTENT WITH PUBSET/VOLUMESET
'(&00)'. IMPORT PUBSET TASK ABORTED WITH ERRORCODE '(&01)'

? (&00): id of SF pubset or volumeset
(&01): format error
'01': PAM key volumes and NON-PAM key volumes exists. SF pubsets

or volumesets may only consist of volumes with the same
PAM key type.

'02': volumes with different minimal I/O-transfer units exist.
SF pubsets or volumesets may only consist of volumes with
the same minimal I/O unit.

'03': volumes with different minimal allocation units exist.
SF pubsets or volumesets may only consists of volumes with
the same minimal allocation unit.

'04': a volume is larger than 32 GB, but the pubset doesn't have
the attribute for large volumes.

(&02): vsn of current volume

! Check volume identity, maybe initialize some volumes and try
import again.

Messages referring to large objects Appendix

76 U41253-J-Z125-3-76

DMS0501 REQUESTED CATALOG NOT AVAILABLE OR WILDCARDS IN USER IDENTIFICATION

? Possible reasons:
Case 1: The class 2 option BMTNUM=0 is set for private disks.
Case 2: When accessing files with the aid of a MSCF connection,

wildcards were used in the user identification.
Case 3: The required catalog is not imported.
Case 4: The identification of a volume set from a pubset was

specified in the pathname.
Case 5: The required volume set is not available.

! Case 1: Request the system administrator to make the catalog
available. Reset the class 2 option BMTNUM to a value
other than zero.

Case 2: Repeat the call without wildcards.
Case 3: Request the system administrator to import the required

catalog.
Case 4: Specify the identification of the relevant pubset.
Case 5: Ask the system administrator to make the required volume

set available.

DMS0854 FILE SIZE OF SYSEAM FILE (&00) MAY NOT EXCEED 32 GIGABYTES

? SYSEAM file (&00) has been created with unallowed file size
higher than 32 gigabytes (by CREATE-FILE).

! Delete SYSEAM-file (&00) and create it again with allowed file
size below 32 gigabytes.

DMS09AD FILE SIZE GREATER 32 GIGABYTES IS NOT ALLOWED

? In FCB or ADD-FILE-LINK LARGE_FILE=*FORBIDDEN has been set, but
concerned file exceeeds 32 gigabytes.

! Correct program. If the error persists, contact system
administrator.

DMS0A23 FILE SIZE GREATER 32 GIGABYTES IS NOT ALLOWED

? In FCB or ADD-FILE-LINK LARGE_FILE=*FORBIDDEN has been set, but
concerned file exceeeds 32 gigabytes.

! Correct program. If the error persists, contact system
administrator.

Appendix Messages referring to large objects

U41253-J-Z125-3-76 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
25

. J
ul

y
2

01
7

 S
ta

n
d

17
:0

1.
27

P
fa

d:
 P

:\F
T

S
-B

S
\B

S
2-

G
A

\O
S

D
-V

11
0\

16
03

8
12

_3
2

G
B

\H
b

_a
kt

ue
ll\

e
n\

dv
32

_e
.a

n
h

DMS1383 VOLUME INCONSISTENT. ERROR TYPE '(&00)'. COMMAND REJECTED

? (&00): error type
'01': The raid mode of the volume does not match the

pubset/volumeset.
'02': The GS mode of the volume does not match the

pubset/volumeset.
'03': Returncode "bad volume" from the allocator.
'04': The dual recording mode of the volume does not match the

pubset/volumeset.
'05': The timestamp of the volume reserved by the slave does not

match the master.
'06': A volume is larger than 32 GB, but the pubset doesn't have

the attribute for large volumes.

! Dependent on cause.

NVL0146 DISK CAPACITY GREATER EQUAL 32GB IS NOT PERMITTED FOR PRIVATE DISKS

? no further information

! none

SIR0308 DISK FOR VSN '(&00)' EXCEEDS CAPACITY OF 32 GB; DISK REJECTED

? In a SIR run with ACTION=*INSTALL is the operand LARGE-DISKS-
ALLOWED=*NO specified in the //DECLARE-PUBSET assignment or for
ACTION=*EXTEND the coresponding pubset attribute is set.

! - for ACTION=*INSTALL you have to set the operand LARGE-DISKS-
ALLOWED to *YES

- for ACTION=*EXTEND you have to set the coresponding attribute
of the pubset using the command /SET-PUBSET-ATTRIBUTES ...,
LARGE-VOLUMES=*ALLOWED before you restart the SIR run.

SIR0728 COPYING OF FILE '(&00)' ABNORMALLY TERMINATED. FILE SIZE EXCEEDS
THE LIMIT OF 32GB

? no further information

! none

SPC0030 ERROR EXECUTING (&00)-MACRO, RETURN CODE = (&01)

? no further information

! none

Messages referring to large objects Appendix

78 U41253-J-Z125-3-76

U41253-J-Z125-3-76 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

5.
 J

u
ly

 2
0

17

S
ta

nd
 1

7:
02

.2
0

P
fa

d
: P

:\
F

T
S

-B
S

\B
S

2
-G

A
\O

S
D

-V
11

0
\1

60
38

1
2_

32
G

B
\H

b_
ak

tu
el

l\e
n

\d
v3

2_
e

.li
t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

[1] CRTE (BS2000)
C Library Functions for POSIX Applications
Reference Manual

[2] BS2000 OSD/BC
Utility Routines
User Guide

[3] BS2000 OSD/BC
DMS Macros
User Guide

[4] BS2000 OSD/BC
Introductory Guide to DMS
User Guide

[5] BS2000 OSD/BC
System Administration
User Guide

[6] FDDRL (BS2000)
User Guide

[7] HIPLEX MSCF (BS2000)
BS2000 Processor Networks
User Guide

[8] HSMS (BS2000)
Volume 1 and 2
User Guide

http://manuals.ts.fujitsu.com

Related publications

80 U41253-J-Z125-3-76

[9] IMON (BS2000)
Installation Monitor
User Guide

[10] BS2000 OSD/BC
Commands
User Guide

[11] BS2000 OSD/BC
Executive Macros
User Guide

[12] Performance Handbook
User Guide

[13] POSIX (BS2000)
Basics for Users and System Administrators
User Guide

[14] SPACEOPT (BS2000)
Disk Optimization and Reorganization
User Guide

[15] BS2000 OSD/BC
System Installation
User Guide

U41253-J-Z125-3-76 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
25

.
Ju

ly
 2

01
7

 S
ta

n
d

17
:0

3.
06

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0\
16

03
8

12
_3

2
G

B
\H

b
_a

kt
ue

ll\
e

n\
dv

32
_

e.
si

x

Index

4-byte fields 17

A
ADD-FILE-LINK 41
address length 20
allocation behavior 56
ARCHIVE 36
Assembler 71
attributes for large objects

for pubsets 12
for volumes 15

B
BLKCTRL=PAMKEY 18

C
C/C++ 67, 72
catalog and file management 28
catalog entry extension 17, 28
classification of software configuration 22
COBOL 66, 72
commands

ADD-FILE-LINK 41
SET-PUBSET-ATTRIBUTES 13, 34
SHOW-FILE-ATTRIBUTES 42
SHOW-FILE-LINK 41
SHOW-MASTER-CATALOG-ENTRY 41

compatibility
of pubsets for large objects 12
of the pubsets for large objects 12

compilers 66

D
data type “long long” 20

DIV (access method) 64
DIV (macro) 58

E
executability

of utilities 36
Extent list 18

F
FASTPAM (access method) 64
FCB (macro) 55
FILE (macro) 56
files larger than 32 GB 11, 12, 17

basics 17
interfaces 19
max. size 11, 17
restrictions 18

FPAMACC (macro) 63
FPAMSRV (macro) 61
FST32GB (system parameter) 31, 52
FSTAT (macro) 49
FSTAT indicator 52

H
HSMS 36

I
identifying validity

of large files 41
incompatibility, semantic (OPEN) 54
indicator (FSTAT) 52
interfaces

for large files 19
for large pubsets 14
for large volumes 15

Index

82 U41253-J-Z125-3-76

L
large file aware 21
large file safe 21
large files 20

permitting 55, 56, 58, 61
large objects 11

permitting in a pubset 33
Large POSIX file systems 20
Large POSIX files 21
large volumes, see volumes larger than 32 GB
LARGE_FILES classification 22
LARGE_FILES_ALLOWED (pubset attribute) 12
LARGE_OBJECTS (pubset attribute) 12
LARGE_OBJECTS pubsets see pubsets for large

objects
LARGE_VOLUME (volume attribute) 15
LHP (Logical Half Page) 18
long long (data type) 20

M
macros

DIV 58
FCB 55
FILE 56
FPAMACC 63
FPAMSRV 61
FSTAT 49
OPEN 53
RDTFT 57
STAMCE 45

migration 69
program conversion 71
system requirements 70

N
NK-ISAM (access method) 65

O
object, large 11
OPEN (macro) 53
output

file attributes 41, 57
file size 42
pubset attributes 34, 41, 45

P
paging file 18, 38
parameter service 31
PHP (Physical Half Page) 18
POSIX file 20
POSIX file system 20
private disk 15
program conversion

Assembler 71
C/C++ 72
COBOL 72

PUBRES 12
pubset management 24
pubsets for large objects

attribute LARGE_FILES_ALLOWED 12
attribute LARGE_OBJECTS 12
compatibility 12
creating 26
creating with SIR 25
importing 12
in clusters 27
max. size 24
new pubset types 12
shared pubsets 27
upgrades 13

pubsets larger than 32 GB
capacity 11

R
RDTFT (macro) 57
Readme file 9
restrictions

for files 18
for system files 38
for volumes 15, 38

runtime systems 66

S
semantic incompatibility (OPEN) 54
SET-PUBSET-ATTRIBUTES 13, 34
SF pubsets 27
shared pubset cluster 27
SHARUPD=YES 64
SHOW-FILE-ATTRIBUTES 42

Index

U41253-J-Z125-3-76 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
25

.
Ju

ly
 2

01
7

 S
ta

n
d

17
:0

3.
06

P
fa

d:
 P

:\
F

T
S

-B
S

\B
S

2-
G

A
\O

S
D

-V
11

0\
16

03
8

12
_3

2
G

B
\H

b
_a

kt
ue

ll\
e

n\
dv

32
_

e.
si

x

SHOW-FILE-LINK 41
SHOW-MASTER-CATALOG-ENTRY 41
SIR 13, 25
SM pubsets 27
SMPGEN 27
software configuration

classification 22
SPCCNTRL 37
STAMCE (macro) 45
SVL (Standard Volume Label) 12, 15
SYSEAM files 18, 29, 38
system files

paging files 38
SYSEAM files 38

system parameter FST32GB 31, 52
system requirements for migration 70

U
UPAM (access method) 64
user programs 22
utilities

ARCHIVE 36
HSMS 36
SIR 13, 25
SMPGEN 27
SPCCNTRL 37
VOLIN 15, 37

V
VOLIN 15, 37
volume larger than 32 GB

capacity 11
volume sets larger than 32 GB

capacity 11
volumes larger than 32 GB 11, 15

attribute LARGE_VOLUME 15
Interface 15
private disk 15
restrictions 15

Index

84 U41253-J-Z125-3-76

	Contents
	Introduction
	Target groups
	Structure of the manual
	Notational conventions

	Large objects in BS2000
	Pubsets
	Volumes
	Files
	POSIX file systems
	Large POSIX file systems
	Large POSIX files

	User programs for configurations with large files

	Systems support
	Pubset Management
	Installing and extending LARGE_OBJECTS pubsets with SIR
	Upgrading and extending existing pubsets
	Generating SM pubsets with SMPGEN
	Recovering SM pubsets with large objects
	LARGE_OBJECTS pubsets in clusters

	Catalog and file management
	Consideration of large objects in the catalog entry (CE)
	Assigning a 4-byte extent list to a file
	Creating SYSEAM files
	Creating catalogs

	Parameter service
	System parameter FST32GB

	Affected commands
	SET-PUBSET-ATTRIBUTES / SHOW-PUBSET-ATTRIBUTES
	MODIFY-USER-PUBSET-ATTRIBUTES
	Non-privileged commands

	Executability of utilities in environments with large objects
	HSMS / ARCHIVE
	VOLIN
	SPCCNTRL

	Potential sources of errors and conflicts
	Restrictions for system files
	Restrictions for large volumes

	Users and programmers
	User commands
	SHOW-MASTER-CATALOG-ENTRY
	ADD-FILE-LINK / SHOW-FILE-LINK
	SHOW-FILE-ATTRIBUTES

	Assembler macros
	STAMCE
	FSTAT
	OPEN
	FCB
	FILE
	RDTFT
	DIV
	FPAMSRV
	FPAMACC
	Special issues when SHARUPD=YES

	Notes regarding programs created in high-level programming languages

	Notes on migration
	Preliminary considerations
	Environment
	Program Conversion
	Assembler programs
	Programs in high-level programming languages

	Appendix
	Semantic incompatibilities
	Messages referring to large objects

	Related publications
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	U
	V

