
Edition July 2016

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
a

tio
ns

sy
st

e
m

e
A

G
 1

9
95

P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.v

or

English

openUTM V6.4
Using openUTM Applications on BS2000 Systems

FUJITSU Software

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2016 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

Using openUTM on BS2000 Systems

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

i 2
01

6
 S

ta
n

d
16

:1
9.

17
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
4

_1
6

01
20

0
\0

5_
E

in
sa

tz
_

B
S

2
\e

n\
be

tr
B

S
_

e.
iv

z

Contents

1 Preface . 13

1.1 Summary of contents and target group . 15

1.2 Summary of contents of the openUTM documentation 16
1.2.1 openUTM documentation . 16
1.2.2 Documentation for the openSEAS product environment 21
1.2.3 Readme files . 22

1.3 Innovations in openUTM V6.4 . 23
1.3.1 New server functions . 23
1.3.2 New client functions . 26
1.3.3 New and modified functions for openUTM WinAdmin 27
1.3.4 New functions for openUTM WebAdmin . 27

1.4 Notational conventions . 29

2 Defining the application program structure . 31

2.1 Generating load modules . 33

2.2 Loading modules . 36

2.3 Recommendations for structuring the application 38

2.4 Rules and restrictions . 41

2.5 Using shared code . 43
2.5.1 Shared code in system memory . 44
2.5.2 Shared code in common memory pools . 46
2.5.2.1 Local application pool . 46
2.5.2.2 Global application pool . 47
2.5.2.3 Generating shareable objects that are loaded in a common memory pool 48

Contents

 Using openUTM on BS2000 Systems

3 Creating the application program . 51

3.1 Components of the application program . 55

3.2 Linking the application program . 57
3.2.1 LLMs with slices . 58
3.2.2 Linking LLMs . 59
3.2.3 Linking LLMs to public/private slices . 62
3.2.4 Linking runtime systems . 64
3.2.4.1 Shareable runtime system parts as subsystem 65
3.2.4.2 Shareable runtime system parts in a common memory pool 65
3.2.4.3 Linking runtime systems to an LLM . 66
3.2.5 Linking the start LLM . 67

3.3 Information for applications with ILCS program units 70

4 Files required for operation . 71

4.1 System files SYSOUT and SYSLST . 71

4.2 System log file SYSLOG . 73
4.2.1 SYSLOG as a simple file . 74
4.2.2 File generation group SYSLOG-FGG . 75
4.2.2.1 Creating the SYSLOG-FGG . 77
4.2.2.2 Creating a file generation . 79
4.2.2.3 Identifier overflow protection . 81
4.2.2.4 Retaining SYSLOG generations . 82
4.2.2.5 Automatic size monitoring . 82
4.2.3 Behavior in the event of write errors . 84

4.3 User log file . 85
4.3.1 Creating the user log file . 85
4.3.2 Double user log file . 87
4.3.3 Switching to the next file generation . 87
4.3.4 Response to write errors . 88

5 Starting a UTM application . 89

5.1 Start parameters of the application . 93
5.1.1 Start parameters for openUTM . 94
5.1.2 Start parameters for the database system . 109
5.1.3 Start parameters for the format handling system 109

5.2 Starting the application . 110

Contents

Using openUTM on BS2000 Systems

©
 S

ie
m

en
s

N
ix

d
or

f
In

fo
rm

at
io

ns
sy

st
em

e
A

G
 1

9
95

P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rB

S
_e

.iv
z

5.3 Cold start and warm start . 113

5.4 Error messages at the application start . 113

5.5 Restarting after an abnormal application termination 114

5.6 Basic structure of an SDF start procedure . 116

6 Terminating a UTM application . 119

6.1 Terminating a UTM application normally . 119

6.2 Terminating a UTM application abnormally . 121

6.3 Diagnostic documentation for a problem report 122

7 UTM database application . 123

7.1 Generating a UTM database connection . 124

7.2 Linking a UTM database application . 125

7.3 Starting and stopping a UTM database application 127
7.3.1 Start parameters for a UTM database application 127
7.3.2 Start parameters for a UTM database application with XA support 128
7.3.2.1 Multiple instances . 128
7.3.2.2 Using the Oracle user name and Oracle password from the UTM generation . . . 130

7.3.2.3 Start parameters for failover with Oracle® Real Application Clusters 131
7.3.2.4 Debug parameters . 135
7.3.3 Termination of a UTM database . 137

7.4 Operating a UTM database application . 138
7.4.1 User sign-on and sign-off . 138
7.4.2 SAT logging . 138
7.4.3 Accounting . 139
7.4.4 Performance control . 139
7.4.5 Diagnostics . 140

Contents

 Using openUTM on BS2000 Systems

8 UTM cluster application . 141

8.1 Properties of a UTM cluster application . 141

8.2 Installing and preparing a UTM cluster application for use 143
8.2.1 Installation . 143
8.2.2 UTM generation . 144
8.2.2.1 Special UTM generation statements for UTM cluster applications 144
8.2.2.2 Generating reserve nodes . 145
8.2.3 Using global memory areas . 146
8.2.4 Service restart . 147
8.2.5 Runtime environment . 149
8.2.5.1 Files . 149
8.2.5.2 Location of the files . 152
8.2.6 Preparation for use . 153
8.2.7 Examples . 154
8.2.7.1 Example 1: Storing all files under one user ID 154
8.2.7.2 Example 2: Storing the files under different user IDs 156

8.3 Configuration of a UTM cluster application with a database 158

8.4 Starting a UTM cluster application . 161

8.5 Monitoring of node applications and failure detection 163
8.5.1 Local monitoring of a node application . 163
8.5.2 Application monitoring of the node applications 163
8.5.3 Actions performed by the node applications if a failure is detected 164
8.5.4 Application data after abnormal termination of a node application 166
8.5.5 Measures taken when a node application has been terminated abnormally 167
8.5.5.1 Measures taken for users . 167
8.5.5.2 Measures to be taken by the administrator . 167
8.5.5.3 Node recovery . 168

8.6 Online import of application data . 170

8.7 Administering a UTM cluster application . 171
8.7.1 Actions global to the cluster and actions local to a node 172
8.7.2 Administration journal . 173
8.7.3 Reducing the number of nodes . 174

8.8 Shutting down a UTM cluster application . 175

8.9 Use of openUTM revision levels in the UTM cluster application 176

8.10 Debugging a UTM cluster application . 177

Contents

Using openUTM on BS2000 Systems

©
 S

ie
m

en
s

N
ix

d
or

f
In

fo
rm

at
io

ns
sy

st
em

e
A

G
 1

9
95

P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rB

S
_e

.iv
z

9 Working with a UTM application . 179

9.1 Sign-on process with user IDs . 180
9.1.1 Standard sign-on process for terminals . 180
9.1.1.1 Standard sign-on dialog . 181
9.1.1.2 Automatic KDCSIGN . 187
9.1.2 Sign-on process for UPIC clients and TS applications 187
9.1.3 Sign-on process for OSI TP partner . 188
9.1.4 Sign-on process in the World Wide Web via WebServices (WS4UTM) 189
9.1.5 Sign-on process in the World Wide Web via WebTransactions 190
9.1.6 Multiple sign-ons under one user ID . 191
9.1.7 Sign-on process with sign-on services . 192
9.1.7.1 Sign-on service for terminals . 193
9.1.7.2 Sign-on service for TS applications . 194
9.1.7.3 Sign-on service for UPIC clients . 194
9.1.7.4 Possible applications for the sign-on service . 195
9.1.7.5 Properties of sign-on services . 196
9.1.7.6 Sample programs for the sign-on service . 197
9.1.8 Behavior in the event of locked clients/LTERM partners 197

9.2 Sign-on process without user IDs . 198

9.3 Calling UTM services . 199
9.3.1 Starting services from the terminal . 199
9.3.2 Starting services from the UPIC client and OSI TP partner 200
9.3.3 Starting services from TS applications . 200
9.3.4 Service restarts . 201

9.4 Sign-on concept of openUTM . 202

9.5 Signing off from a UTM application . 204

9.6 UTM user commands for terminals . 206
KDCFOR - output the basic format . 207
KDCOUT - output asynchronous messages . 208
KDCDISP - output the last dialog message . 210
KDCLAST - repeat the last output . 211
KDCOFF - sign off from a UTM application . 212

Contents

 Using openUTM on BS2000 Systems

10 Replacing programs during operation . 213

10.1 Linking and generating . 214

10.2 Replacing application parts . 215
10.2.1 Replacing a load module with LOAD-MODE=STARTUP 216
10.2.2 Replacing a load module with LOAD-MODE=ONCALL 216
10.2.3 Replacing a load module in a common memory pool 217

10.3 Replacing the entire application . 218

10.4 Adding programs dynamically . 219

11 Fault tolerance of openUTM . 221

11.1 Errors detected by openUTM . 222

11.2 Errors detected by BS2000 which lead to a STXIT event 223

12 SAT logging . 225

12.1 Security-related UTM events . 226

12.2 Preselection – defining the events to be logged 227
12.2.1 Event-driven SAT logging . 227
12.2.2 User-driven SAT logging . 228
12.2.3 Job-driven SAT logging . 229
12.2.4 Defining the preselection values . 230
12.2.5 Linking the preselection values . 230

12.3 Rules for SAT logging . 234

12.4 Postselection – evaluating log records . 235

12.5 Administration of SAT logging . 236

12.6 UTM SAT administration commands . 238
12.6.1 KDCISAT – query information on SAT logging values 238
12.6.2 KDCMSAT – modify SAT logging . 241

Contents

Using openUTM on BS2000 Systems

©
 S

ie
m

en
s

N
ix

d
or

f
In

fo
rm

at
io

ns
sy

st
em

e
A

G
 1

9
95

P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rB

S
_e

.iv
z

13 Accounting . 245

13.1 Definition of terms . 247

13.2 Accounting phases . 250
13.2.1 Calculation phase . 250
13.2.2 Determining the variant of the accounting procedure 252
13.2.3 Accounting phase . 254
13.2.4 Evaluation . 255
13.2.5 Error situations . 255

13.3 Accounting with distributed processing . 256

13.4 Restrictions . 257

14 Checking performance with openSM2 and KDCMON 259

14.1 Recording measurement data with openSM2 . 261

14.2 KDCMON - UTM event monitor . 264
14.2.1 Starting and stopping data entry . 264
14.2.2 Evaluating data . 268
14.2.2.1 Converting the data to the SAM format and sorting the data 268
14.2.2.2 Evaluating data with the KDCEVAL tool . 269
14.2.3 Processing evaluation data on the PC . 272
14.2.4 Evaluation lists . 273

TASKS: UTILIZATION OF THE UTM TASKS . 275
SUMM: TRANSACTION EVALUATION . 276
TIMES: DISTRIBUTION OF PROCESSING TIMES 277
KCOP: UTM CALLS STATISTIC . 278
WAIT: WAITING TIMES . 280
TCLASS: EVALUATION OF THE TAC CLASSES 282
TACCL: TAC SPECIFIC TAC CLASS EVALUATION 284
TACPT: TAC SPECIFIC DISTRIBUTION OF PROCESSING TIMES 284
TACLIST: TAC SPECIFIC STATISTICS . 285
TRACE: TASK SPECIFIC TRACES . 286
TRACE2: TASK PERFORMANCE TRACE . 291

Contents

 Using openUTM on BS2000 Systems

15 Load simulation with Workload Capture and Replay 295

15.1 Recording the UPIC conversation (UPIC Capture) 298

15.2 Merging trace entries . 298

15.3 Preparing data using the program UpicAnalyzer 299

15.4 Replaying the UPIC session using the program UpicReplay 300
15.4.1 Adapting the UPIC configuration and UTM generation 300
15.4.2 Calling UpicReplay . 301
15.4.3 Functioning of UpicReplay . 302

16 Appendix . 305

16.1 Installing openUTM . 305
16.1.1 UTM system code . 306
16.1.2 Loading UTM system code . 308
16.1.3 Unloading UTM system code . 309
16.1.4 Installing product files . 310
16.1.5 Message files . 310
16.1.6 REP files and RMS files . 310
16.1.7 Operating several UTM versions in parallel . 311
16.1.8 UTM-SM2 subsystem . 312
16.1.9 KDCMON subsystem . 314

16.2 Calling UTM tools . 316
16.2.1 Starting UTM tools via START-EXECUTABLE-PROGRAM 316
16.2.2 Starting UTM tools via separate SDF commands 316

16.3 Memory classes of a UTM application . 320

16.4 Compiler versions, runtime systems, KDCDEF options 322
16.4.1 Assembler . 324
16.4.2 C/C++ . 324
16.4.3 COBOL . 325
16.4.4 Fortran . 326
16.4.5 Pascal . 327
16.4.6 PL/I . 327
16.4.7 SPL4 . 327
16.4.8 Notes on upgrading from an older UTM version 328

16.5 Structure of the accounting records of openUTM 329
16.5.1 Structure of an accounting record . 330
16.5.2 Structure of a calculation record . 331

Contents

Using openUTM on BS2000 Systems

©
 S

ie
m

en
s

N
ix

d
or

f
In

fo
rm

at
io

ns
sy

st
em

e
A

G
 1

9
95

P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rB

S
_e

.iv
z

16.6 Structure of SAT log records . 332
16.6.1 Meaning of the log data fields used by openUTM 332
16.6.2 Defining the data fields . 334

16.7 Sample programs . 345
16.7.1 Sample programs for the sign-on service . 345
16.7.2 Sample programs for a publish / subscribe server 347
16.7.3 Sample program for moving messages from the dead letter queue selectively 349
16.7.4 CPI-C sample programs . 349
16.7.5 Sample programs for asynchronous processing with UPIC clients 350

16.8 Sample procedures . 352

16.9 XS-support of UTM applications . 353

Glossary . 355

Abbreviations . 391

Related publications . 397

Index . 407

Contents

 Using openUTM on BS2000 Systems

Using openUTM on BS2000 Systems 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
53

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
1

1 Preface

Modern enterprise-wide IT environments are subjected to many challenges of rapidly
increasing importance. This is the result of:

● heterogeneous system landscapes

● different hardware platforms

● different networks and different types of network access (TCP/IP, SNA, ...)

● the applications used by companies

Consequently, problems arise – whether as a result of mergers, joint ventures or labor-
saving measures. Companies are demanding flexible, scalable applications, as well as
transaction processing capability for processes and data, while business processes are
becoming more and more complex. The growth of globalization means, of course, that
applications are expected to run 24 hours a day, seven days a week, and must offer high
availability in order to enable Internet access to existing applications across time zones.

openUTM is a high-end platform for transaction processing that offers a runtime
environment that meets all these requirements of modern, business-critical applications,
because openUTM combines all the standards and advantages of transaction monitor
middleware platforms and message queuing systems:

● consistency of data and processing

● high availability of the applications (not just the hardware)

● high throughput even when there are large numbers of users (i.e. highly scalable)

● flexibility as regards changes to and adaptation of the IT system

An UTM application can be run as a standalone UTM application or sumultanously on
several different computers as a UTM cluster application.

Preface

14 Using openUTM on BS2000 Systems

openUTM forms part of the comprehensive openSEAS offering. In conjunction with the
Oracle Fusion middleware, openSEAS delivers all the functions required for application
innovation and modern application development. Innovative products use the sophisticated
technology of openUTM in the context of the openSEAS product offering:

● BeanConnect is an adapter that conforms to the Java EE Connector Architecture (JCA)
and supports standardized connection of UTM applications to Java EE application
servers. This makes it possible to integrate tried-and-tested legacy applications in new
business processes.

● The WebTransactions member of the openSEAS family is a product that allows tried-
and-tested host applications to be used flexibly in new business processes and modern
application scenarios. Existing UTM applications can be migrated to the Web without
modification.

Preface Summary of contents and target group

Using openUTM on BS2000 Systems 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
53

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
1

1.1 Summary of contents and target group

This manual is aimed at UTM application planners, application developers, users, and
support personnel.

It contains all the information you will need to create a UTM application program on BS2000
systems and implement a UTM application.

The first chapters of this manual provide an overview of how to structure and link a UTM
application, and specify which files are needed to operate an application. Separate
chapters deal with starting and stopping a UTM application, and with exchanging programs
while the application is running. Special issues that you have to take into account when
operating a UTM cluster application or a UTM database application are dealt with centrally
in separate sections with corresponding names.

Full details are provided on how terminal users and other clients can sign on to a UTM appli-
cation.

There is also a separate chapter describing the tools available for running and controlling a
production UTM application.

Knowledge of the operating system is a prerequisite.

Summary of contents of the openUTM documentation Preface

16 Using openUTM on BS2000 Systems

1.2 Summary of contents of the openUTM documentation

This section provides an overview of the manuals in the openUTM suite and of the various
related products.

1.2.1 openUTM documentation

The openUTM documentation consists of manuals, the online help systems for the
graphical administration workstation openUTM WinAdmin and the graphical administration
tool WebAdmin, and a release note for each platform on which openUTM is released.

Some manuals are valid for all platforms, and others apply specifically to BS2000 systems
or to Unix, Linux and Windows systems.

All the manuals are available as PDF files on the internet at

http://manuals.ts.fujitsu.com

On this site, enter the search term “openUTM V6.4“ in the Search by product field to
display all openUTM manuals of version 6.4.

The manuals are included on the Enterprise DVD with open platforms and are available on
the WinAdmin DVD for BS2000 systems.

The following sections provide a task-oriented overview of the openUTM V6.4 documen-
tation. You will find a complete list of documentation for openUTM in the chapter on related
publications at the back of the manual.

Introduction and overview

The Concepts and Functions manual gives a coherent overview of the essential
functions, features and areas of application of openUTM. It contains all the information
required to plan a UTM operation and to design an UTM application. The manual explains
what openUTM is, how it is used, and how it is integrated in the BS2000, Unix, Linux and
Windows based platforms.

http://manuals.ts.fujitsu.com

Preface Summary of contents of the openUTM documentation

Using openUTM on BS2000 Systems 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
53

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
1

Programming

● You will require the Programming Applications with KDCS for COBOL, C and C++
manual to create server applications via the KDCS interface. This manual describes the
KDCS interface as used for COBOL, C and C++. This interface provides the basic
functions of the universal transaction monitor, as well as the calls for distributed
processing. The manual also describes interaction with databases.

● You will require the Creating Applications with X/Open Interfaces manual if you want
to use the X/Open interface. This manual contains descriptions of the UTM-specific
extensions to the X/Open program interfaces TX, CPI-C and XATMI as well as notes on
configuring and operating UTM applications which use X/Open interfaces. In addition,
you will require the X/Open-CAE specification for the corresponding X/Open interface.

● If you want to interchange data on the basis of XML, you will need the document entitled
openUTM XML for openUTM. This describes the C and COBOL calls required to work
with XML documents.

● For BS2000 systems there is supplementary documentation on the programming
languages Assembler, Fortran, Pascal-XT and PL/1.

Configuration

The Generating Applications manual is available to you for defining configurations. This
describes for both standalone UTM applications and UTM cluster applications how to use
the UTM tool KDCDEF to

● define the configuration

● generate the KDCFILE

● and generate the UTM cluster files for UTM cluster applications

In addition, it also shows you how to transfer important administration and user data to a
new KDCFILE using the KDCUPD tool. You do this, for example, when moving to a new
openUTM version or after changes have been made to the configuration. In the case of
UTM cluster applications, it also indicates how you you can use the KDCUPD tool to
transfer this data to the new UTM cluster files.

Summary of contents of the openUTM documentation Preface

18 Using openUTM on BS2000 Systems

Linking, starting and using UTM applications

In order to be able to use UTM applications, you will need the Using openUTM Applica-
tions manual for the relevant operating system (BS2000 or Unix, Linux and Windows
systems). This describes how to link and start a UTM application program, how to sign on
and off to and from a UTM application and how to replace application programs dynamically
and in a structured manner. It also contains the UTM commands that are available to the
terminal user. Additionally, those issues are described in detail that need to be considered
when operating UTM cluster applications.

Administering applications and changing configurations dynamically

● The Administering Applications manual describes the program interface for admin-
istration and the UTM administration commands. It provides information on how to
create your own administration programs for operating a standalone UTM application
or a UTM cluster application and on the facilities for administering several different
applications centrally. It also describes how to administer message queues and printers
using the KDCS calls DADM and PADM.

● If you are using the graphical administration workstation openUTM WinAdmin or the
Web application openUTM WebAdmin, which provides comparable functionality, then
the following documentation is available to you:

– A description of WinAdmin and description of WebAdmin, which provide a
comprehensive overview of the functional scope and handling of
WinAdmin/WebAdmin. These documents are shipped with the associated software
and are also available online as a PDF file.

– The respective online help systems, which provide context-sensitive help infor-
mation on all dialog boxes and associated parameters offered by the graphical user
interface. In addition, it also tells you how to configure WinAdmin or WebAdmin in
order to administer standalone UTM applications and UTM cluster applications.

i For detailed information on the integration of openUTM WebAdmin in SE Server's
SE Manager, see the SE Server manual Operation and Administration.

Testing and diagnosing errors

You will also require the Messages, Debugging and Diagnostics manuals (there are
separate manuals for Unix, Linux and Windows systems and for BS2000 systems) to carry
out the tasks mentioned above. These manuals describe how to debug a UTM application,
the contents and evaluation of a UTM dump, the behavior in the event of an error, and the
openUTM message system, and also lists all messages and return codes output by
openUTM.

Preface Summary of contents of the openUTM documentation

Using openUTM on BS2000 Systems 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
53

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
1

Creating openUTM clients

The following manuals are available to you if you want to create client applications for
communication with UTM applications:

● The openUTM-Client for the UPIC Carrier System describes the creation and
operation of client applications based on UPIC. In addition to the description of the
CPI-C and XATMI interfaces, you will find information on how you can use the C++
classes to create programs quickly and easily.

● The openUTM-Client for the OpenCPIC Carrier System manual describes how to
install and configure OpenCPIC and configure an OpenCPIC application. It describes
how to install OpenCPIC and how to configure an OpenCPIC application. It indicates
what needs to be taken into account when programming a CPI-C application and what
restrictions apply compared with the X/Open CPI-C interface.

● The documentation for the JUpic-Java classes shipped with BeanConnect is supplied
with the software. This documentation consists of Word and PDF files that describe its
introduction and installation and of Java documentation with a description of the Java
classes.

● The BizXML2Cobol manual describes how you can extend existing COBOL programs
of a UTM application in such a way that they can be used as an XML-based standard
Web service. How to work with the graphical user interface is described in the online
help system.

● If you want to provide UTM services on the Web quickly and easily then you need the
manual WebServices for openUTM. The manual describes how to use the software
product WS4UTM (WebServices for openUTM) to make the services of UTM applica-
tions available as Web services. The use of the graphical user interface is described in
the corresponding online help system.

Communicating with the IBM world

If you want to communicate with IBM transaction systems, then you will also require the
manual Distributed Transaction Processing between openUTM and CICS, IMS and
LU6.2 Applications. This describes the CICS commands, IMS macros and UTM calls that
are required to link UTM applications to CICS and IMS applications. The link capabilities
are described using detailed configuration and generation examples. The manual also
describes communication via openUTM-LU62 as well as its installation, generation and
administration.

Summary of contents of the openUTM documentation Preface

20 Using openUTM on BS2000 Systems

PCMX documentation

The communications program PCMX is supplied with openUTM on Unix, Linux and
Windows systems. The functions of PCMX are described in the following documents:

● CMX manual “Betrieb und Administration“ (Unix-Systeme) for Unix, Linux and Windows
systems (only available in German)

● PCMX online help system for Windows systems

Preface Summary of contents of the openUTM documentation

Using openUTM on BS2000 Systems 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
53

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
1

1.2.2 Documentation for the openSEAS product environment

The Concepts and Functions manual briefly describes how openUTM is connected to the
openSEAS product environment. The following sections indicate which openSEAS
documentation is relevant to openUTM.

Integrating Java EE application servers and UTM applications

The BeanConnect adapter forms part of the openSEAS product suite. The BeanConnect
adapter implements the connection between conventional transaction monitors and
Java EE application servers and thus permits the efficient integration of legacy applications
in Java applications.

● The manual BeanConnect describes the product BeanConnect, that provides a JCA
1.5- and JCA 1.6-compliant adapter which connects UTM applications with applications
based on Java EE, e.g. the Oracle application server.
The manuals for the Oracle application server can be obtained from Oracle.

Connecting to the web and application integration

You require the WebTransactions manuals to connect new and existing UTM applications
to the Web using the product WebTransactions.

The manuals will also be supplemented by JavaDocs.

Summary of contents of the openUTM documentation Preface

22 Using openUTM on BS2000 Systems

1.2.3 Readme files

Information on any functional changes and additions to the current product version
described in this manual can be found in the product-specific Readme files.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. For the BS2000 platform, you will also find
the Readme files on the Softbook DVD.

Information on BS2000 systems

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

Readme files on Unix and Linux systems

The Readme file and any other files, such as a manual supplement file, can be found in the
utmpath under /docs/language.

Readme files on Windows systems

The Readme file and any other files, such as a manual supplement file, can be found in the
utmpath under \Docs\language.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Preface Innovations in openUTM V6.4

Using openUTM on BS2000 Systems 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
53

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
1

1.3 Innovations in openUTM V6.4

The following sections provide more detail on the innovations in the individual function
areas.

1.3.1 New server functions

UTM cache in data spaces (BS2000 systems)

On BS2000 systems the UTM cache can be located on multiple data spaces. This provides
benefits when a UTM application requires a very large cache.

The following interfaces have been changed to support this:

● Generation

KDCDEF statement MAX... CACHE-SIZE=: New values PROGRAM-SPACE and
DATA-SPACE.

● KDCADMI administration interface

– Data structure kc_max_par_str: New field cache_location for the storage location of
the UTM cache.

● KDCADM command interface

– KDCINF SYSPARM: New output field CACHE-LOCATION for the storage location
of the UTM cache.

Saving compressed data

UTM can compress data in secondary storage areas (GSSB, LSSB), long-term storages
(TLS and ULS), and the communication area-program area, and thus reduce resource
consumption. The UTM pages saved on average per data compression can be displayed
using the administration functions.

The following interfaces have been changed to support this:

● Generation

KDCDEF statement MAX: New operand DATA-COMPRESSION with which data
compression is enabled or disabled.

● KDCADMI administration interface

– Data structure kc_curr_par_str: New field data_compression for displaying and
modifying the current compression setting and new field avg_saved_pgs_by_compr
for the UTM pages saved on average per compression.

Innovations in openUTM V6.4 Preface

24 Using openUTM on BS2000 Systems

– Data structure kc_max_par_str: New field data_compression for the generated
compression setting.

● KDCADM command interface

– KDCAPPL: New operand DATA-COMPRESSION for modifying the compression
setting.

– KDCINF STAT: Output of the pages saved on average per compression (AVG
COMPRESS PAGES SAVED).

– KDCINF SYSPARAM: Output of the generated compression setting (DATA-
COMPRESSION (GEN)).

Page pool information

UTM outputs the current values for page pool utilization.

The administration interface was extended for this purpose:

● KDCADMI administration interface

– New object type KC_PAGEPOOL for outputting the page pool information

– New data structure kc_pagepool_str for the current utilization of the page pool.

● KDCADM command interface

– KDCINF PAGEPOOL outputs the current utilization of the page pool.

Controlling the number of UTM system processes

The number of UTM system processes can be controlled by means of UTM generation, i.e.
more or also fewer than the current maximum of three UTM system processes can be
started.

The configuration interface was extended for this purpose:

● New KDCDEF operand MAX SYSTEM-TASKS. The default value *STD corresponds to
the former setting.

IP subnets in Unix, Linux, and Windows systems

IP subnets can be defined for UTM applications in Unix, Linux, and Windows systems. IP
subnets are used to enable communication partners access without name resolution using
DNS or to assign a specific address range to LTERM pools.

Preface Innovations in openUTM V6.4

Using openUTM on BS2000 Systems 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
53

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
1

The following interfaces have been changed to support this:

● Generation

New KDCDEF statement SUBNET in order to define an IP subnet with the associated
address ranges.

● KDCADMI administration interface

– New object type KC_SUBNET in order to query information on IP subnets.

– New data structure kc_subnet_str for the properties of an IP subnet.

Host name longer than 8 characters in Unix, Linux, and Windows systems

On Unix, Linux, and Windows systems, when a standalone or UTM cluster application is
started, an attempt is also made to map a local host name to a UTM host name via the
conversion file.

For all systems, the names of trace files for the ADMI trace and the traces for the X/Open
interfaces CPI-C, XATMI, and TX have also been modified.

openUTM as 64-bit application on Windows systems

On Windows systems with a 64-bit operating system, openUTM is available as a 64-bit
application.

KDCUPD thus also supports the transition from 32-bit to 64-bit architecture on Windows
systems.

Dynamic XA connection on Windows systems

On Windows systems dynamic XA connection is possible as an alternative. The settings
required for this must be made in the Windows Registry.

Authorization data for Oracle databases

For security reasons, the authorization data for Oracle databases can now only be specified
in the UTM generation. Specification in the start parameters is no longer permitted, and is
rejected with the message K237.

Multi-threaded network connection on Unix, Linux, and Windows systems

Only multi-threaded network connection is now supported on Unix, Linux, and Windows
systems. The generation operand MAX NET-ACCESS is consequently no longer
described.

Innovations in openUTM V6.4 Preface

26 Using openUTM on BS2000 Systems

Other changes

● Messages

– New message K167 on Unix, Linux, and Windows systems after successful
switching of stdout and stderr.

– New message K199 when a task or process is terminated.

– New message K237 when a user ID and/or a password was specified in clear text
in the XA open string for an Oracle database.

– Additional insert XPOSAS (OSI-TP ASSOCIATION REFERENCE) in some
XAP-TP-messages.

● Administration commands

– Output values of administration commands are output in floating point presentation
if they require more space than is available.

– KDCINF LTAC: new column D for LTACs which were deleted by means of dynamic
administration.

● Starting a UTM(BS2000) application using the SDF command ENTER-PROCEDURE:

– New start parameter ENTER-PROC-INPUT

– New sample procedure START-APPL-ENTER-PROC

● Trace entries

– When event exits (START, SHUT, etc.) are called, additional trace entries are
written to the UTM-DIAGAREA.

● The PID is always output in its full length on Unix, Linux, and Windows systems.

● The TNS is not supported on Windows-64-bit systems. The address information must
be specified in the UTM generation.

1.3.2 New client functions

There are no functional enhancements in V6.4.

Preface Innovations in openUTM V6.4

Using openUTM on BS2000 Systems 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
53

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
1

1.3.3 New and modified functions for openUTM WinAdmin

WinAdmin supports all the new features of UTM V6.4 relating to the administration program
interface. These include:

● The graphical display of the page pool utilization, displays for data compression, display
of the cache location on BS2000 systems, and display of IP subnets on Unix, Linux, and
Windows systems.

● Statistic collectors for the page pool utilization and the UTM pages saved by data
compression.

1.3.4 New functions for openUTM WebAdmin

Support of new features in openUTM V6.4

WebAdmin supports all the new features of UTM V6.4 relating to the administration
program interface. These include:

● The graphical display of the page pool utilization, displays for data compression, display
of the cache location on BS2000 systems, and display of IP subnets on Unix, Linux, and
Windows systems.

● Statistic collectors for the page pool utilization and the UTM pages saved by data
compression.

Logging

In future it will be possible to log the sign-on and sign-off of a WebAdmin user and modifi-
cations to the WebAdmin configuration.

Enhanced integration into the SE Server

● The WebAdmin add-on supports audit logging of the SE Manager, i.e. specific modifi-
cations of the WebAdmin configuration are logged in the SE Manager logging.

i The logging data is also available for standalone WebAdmin.

● The current status of the WebAdmin add-on is displayed in the SE Manager and can be
modified, i.e.:

– whether the add-on is running is displayed

Innovations in openUTM V6.4 Preface

28 Using openUTM on BS2000 Systems

– Depending on the current status, the add-on can either be started, terminated, or
terminated and restarted.

i These two functions are available in the SE Manager only in M2000 V6.2A and
higher.

Adaptation to WinAdmin

WebAdmin offers further additional functions which were previously only available in
WinAdmin

● Command mode for direct entry of administration commands or normal UTM TACs.

● Enhanced functionality for statistic collectors:

– The values of any number of statistic collectors can be saved, deleted, or output in
table form simultaneously and copied from there.

– The properties Automatic Wake-Up, Sample Interval, and Statistic Values Lifetime can
be modified simultaneously for any number of statistic collectors.

Preface Notational conventions

Using openUTM on BS2000 Systems 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
53

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
1

1.4 Notational conventions

Metasyntax

The table below lists the metasyntax and notational conventions used throughout this
manual:

Representation Meaning Example

UPPERCASE
LETTERS

Uppercase letters denote constants
(names of calls, statements, field names,
commands and operands etc.) that are to
be entered in this format.

LOAD-MODE=STARTUP

lowercase letters In syntax diagrams and operand descrip-
tions, lowercase letters are used to denote
place-holders for the operand values.

KDCFILE=filebase

lowercase letters in
italics

In running text, variables and the names of
data structures and fields are indicated by
lowercase letters in italics.

utm-installationpath is the UTM
installation directory

Typewriter font Typewriter font (Courier) is used in running
text to identify commands, file names,
messages and examples that must be
entered in exactly this form or which
always have exactly this name or form.

The call tpcall

{ } and | Curly brackets contain alternative entries,
of which you must choose one. The
individual alternatives are separated within
the curly brackets by pipe characters.

STATUS={ ON | OFF }

[] Square brackets contain optional entries
that can also be omiited.

KDCFILE=(filebase
[, { SINGLE| DOUBLE}])

() Where a list of parameters can be
specified for an operand, the individual
parameters are to be listed in parentheses
and separated by commas. If only one
parameter is actually specified, you can
omit the parentheses.

KEYS=(key1,key2,...keyn)

Underscoring Underscoring denotes the default value. CONNECT= { A/YES | NO }

abbreviated form The standard abbreviated form of state-
ments, operands and operand values is
emphasized in boldface type. The abbre-
viated form can be entered in place of the
full designation.

TRANSPORT-SELECTOR=c‘C‘

Notational conventions Preface

30 Using openUTM on BS2000 Systems

Other symbols

Indicates references to comprehensive, detailed information on the relevant topic.

i Indicates notes that are of particular importance.

v Indicates warnings.

. . . An ellipsis indicates that a syntactical unit
can be repeated.
It can also be used to indicate sections of a
program or syntax description etc.

Start KDCDEF
:
:
OPTION
DATA=statement_file
:
END

Representation Meaning Example

Using openUTM on BS2000 Systems 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

5.
06

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
2

2 Defining the application program structure

This chapter discusses the structuring of an application program.

Note that you must link the application program using the BINDER utility and load it using
the functions provided by BLS.

a UTM application can be structured in different forms and loaded in various ways. In
general, a distinction can be made between five different areas:

● Shareable programs in the system memory

Program components loaded in the system memory are available to all processes of a
BS2000 system in common. For this reason, you should primarily load application-
independent programs into the system memory, such as the shareable parts of runtime
systems of the programming languages. See also section “Shared code in system
memory” on page 44.

Modules must be loaded as a nonprivileged subsystem by the system administrator.

● Statically linked program components

The ROOT system modules and the runtime system modules they require (ILCS), as
well as the message modules for which no dynamic loading library was specified in the
UTM generation, must be incorporated statically in the start LLM. The ROOT table
module created and assembled by KDCDEF can, however, be linked statically or be
loaded dynamically at the start.

Other parts of the application can also be incorporated in the static part, but these must
not contain any external references to modules you load into a common memory pool
managed by openUTM.

The static part of a UTM application is loaded with the command:

START-EXECUTABLE-PROGRAM or LOAD-EXECUTABLE-PROGRAM

● Shareable programs in common memory pools

Program components that can be shared by all processes of a UTM application, such
as the shareable parts of your program units of the UTM application or formats or data
areas, should be loaded in common memory pools. See also section “Shared code in
common memory pools” on page 46.

Structure of the application program

32 Using openUTM on BS2000 Systems

● Program components to be loaded when the application starts

Program components which are always required by the UTM application or which
contain external references to shareable parts of the application, must be loaded
dynamically at the application start.

The ROOT table module created and assembled by KDCDEF is also dynamically
loaded if you did not link it statically to the start LLM.

● Program components to be loaded when the program is called

Program components that are not always required by the UTM application can be
generated such that they are not loaded dynamically until the first call is issued. These
program components must be statically linked to LLMs in such a way that all open
external references can be resolved from the modules already in the memory when
loading.

The values you specified when generating the application with KDCDEF (see openUTM
manual “Generating Applications”) determine the memory areas into which the program
components are loaded and the time at which they are loaded.

 For more information, please refer to the following chapters:

– chapter “Creating the application program” on page 51
– chapter “Replacing programs during operation” on page 213

Structure ot the application program Generating load modules

Using openUTM on BS2000 Systems 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

5.
06

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
2

2.1 Generating load modules

Only part of the application need to be linked statically to the application program (Start-
LLM, see section “Linking the application program” on page 57). The other parts of the
application must then be made available in the form of dynamically reloadable load
modules.

These load modules can be individual object modules (OM), which are provided in an object
module library (OML) or a program library as type R elements, or link load modules (LLM)
generated with BINDER, which are provided in a program library as type L elements.
Groups of objects can be statically linked to LLMs using BINDER, see section “Linking
LLMs” on page 59.

During KDCDEF generation, the individual load modules of the application must be
generated with LOAD-MODULE statements. The assignment of objects (program units and
shareable data areas) to load modules is likewise defined in the UTM generation (operand
LOAD-MODULE in the PROGRAM and AREA statements).

You must define the following for the load modules during KDCDEF generation:

● When the load modules are to be loaded

For program units, i.e. modules generated with the PROGRAM statement, you can
choose between the start time of the application and the call time of the program unit.

Non-shareable program units can be linked statically to the application program, loaded
dynamically as a load module at the application start, or loaded as a load module at the
time the program unit is called.

The non-shareable part (private slice) of a shareable part (public slice) contained in a
common memory pool can likewise either be loaded dynamically at the application start
or not loaded until the program unit is called.

The private slice of a public slice contained in nonprivileged subsystems can alternately
be linked to the static part of the application program.

Modules and data areas generated with the AREA statement must either be linked stati-
cally to the application program or not loaded dynamically until the application starts,
because access to these application parts is not controlled by openUTM.

● The libraries from which the load modules are to be loaded

You can specify object module libraries (OML) or program libraries (PL) which contain
type R or L elements.

● Which version of a load module is to be loaded

A program library can contain several versions of an element at the same time. You use
the version number to define which version of an element is to be loaded.

Generating load modules Structure ot the application program

34 Using openUTM on BS2000 Systems

● in which storage area the load modules are to be loaded

A load module can either be loaded in a common memory pool or in the standard
context of the application. The standard context contains the statically linked part of the
application program, which was loaded with the command START-EXECUTABLE-
PROGRAM (LOAD-EXECUTABLE-PROGRAM), as well as the parts of the application
program that were not loaded in common memory pools or in the system memory.

If an LLM contains public and private slices, the public slice can be loaded in a common
memory pool and the private slice can be loaded in the standard context in the local task
memory.

● Whether autolink is to be used for linking

The shareable parts of the load module are always loaded without using the Autolink
function. You can control whether or not the Autolink function is to be used for loading
with the LOAD-MODULE statement.

Suppressing the autolink function of BLS when loading and when exchanging programs
speeds up the load procedure for load modules and avoids inconsistencies in the
loaded application program. In this case, the load modules must only have open
external references to program components that already exist in the working memory
when this module is loaded.

If autolink is used for loading, the additionally required modules are linked when the
load module is loaded.The autolink function should only be used for modules of the
runtime system but must not be used for user-specific modules because modules
loaded with autolink are not unloaded in a subsequent exchange.

The assignment of objects (PROGRAM, AREA statement) to load modules (LOAD-
MODULE statement) is also defined in the UTM generation. openUTM cannot verify
whether the assignment defined with KDCDEF corresponds to the actual division of load
modules in the libraries. In a program exchange, openUTM relies on the specifications
made in the UTM generation.

The sequence with which you generate the load modules determines the sequence in
which the load modules are loaded. If load modules generated with LOAD-MODE=(POOL,
poolname, STARTUP) or LOAD-MODE=STARTUP are loaded without the BLS autolink
function, the generation sequence is decisive for the resolution of unresolved external refer-
ences when loading.

 Detailed information on generating the load modules can be found in the openUTM
manual “Generating Applications”.

Structure ot the application program Generating load modules

Using openUTM on BS2000 Systems 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

5.
06

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
2

Notes on program exchange

When generating the load modules, you define which program components can be
exchanged at a later stage. The following must be noted here:

● Program components that can subsequently be exchanged must not be statically linked
into the application program nor loaded into global application common memory pools
or the system memory.

● BLS only supports the unloading of program components that were loaded in one load
procedure. For example, if you want to exchange a group of modules, you must provide
these modules as an LLM or OM. If you want to exchange a single module, this module
can be provided as an LLM or OM and then cannot be linked with other modules.

● A load module that contains the KDCADM administration program, the event exits
START, SHUT, INPUT and FORMAT, or the event services BADTAC, MSGTAC and
SIGNON, must not be exchanged during operation.

● In an update generation, the current version numbers of the exchanged load modules
are by default transferred from the old KDCFILE to the new KDCFILE if necessary.

Loading modules Structure ot the application program

36 Using openUTM on BS2000 Systems

2.2 Loading modules

The sequence in which the various program components of the UTM application are loaded
and how the external references are resolved are illustrated in figure 1 and described in the
following section. The numbers indicate the sequence in which the program components
are (must be) loaded. The arrows specify the direction in which the unresolved external
references of the load modules are resolved when loading, if the autolink function is not
used.

Figure 1: Memory structure of a UTM application (CMP = Common Memory Pool)

All load procedures are initiated and controlled by openUTM with the exception of loading
the subsystems (performed by the system administrator) and loading the static part
(initiated by a START-EXECUTABLE-PROGRAM command):

 Shared modules are loaded by the system administrator before the start
of the UTM application.

 The start LLM with all linked load modules is loaded with the START-
EXECUTABLE-PROGRAM or LOAD-EXECUTABLE-PROGRAM command. Due
to the load performance, open external references should only be resolved from the
shared code, but can also be resolved from libraries.

Class 3/4 memory

Class 6 memory

STATIC STARTUP6 7 ONCALL

with nonprivileged
subsystems

1

Class 5 memory
with nonprivileged
subsystems

2

(shareable part)

(local task part)

4

Non-shared part of the application program

UTM-CMP
(shareable)

5
Nonprivileged

subsystem 3 (shareable)

System
address
space

User
address
space

1 2
3

4

Structure ot the application program Loading modules

Using openUTM on BS2000 Systems 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

5.
06

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
2

The command for starting the start LLM should be as follows:

/START-EXECUTABLE-PROGRAM FROM-FILE=*LIB-ELEM - *)
/ (LIBRARY=lm-lib -
/ ,ELEMENT=lm-name, TYPE=L) -
/ ,DBL-PAR=(LOADING= -
/ (LOAD-INFORMATION=REFERENCES,PROGRAM-MODE=ANY) -
/ ,RESOLUTION=(ALTERNATE-LIBRARIES=*BLSLIB## -
/ ,AUTOLINK=*ALTERNATE-LIBRARIES) -
/ ,ERROR-PROCESSING=(UNRESOLVED-EXTRNS=*DELAY))

*) or LOAD-EXECUTABLE-PROGRAM

The parameters UNRESOLVED-EXTRNS=*DELAY and LOAD-INFORMATION=
*REFERENCES are mandatory for starting UTM applications.

AUTOLINK=*ALTERNATE-LIBRARIES specifies that only the alternative libraries
are to be used for the autolink function, and ALT-LIB=*BLSLIB## specifies that only
libraries with the link names BLSLIBnn can be used as alternative libraries.

 All load modules generated with LOAD-MODE=POOL and with a common memory
pool with SCOPE=GLOBAL are loaded in the sequence of the MPOOL statements.
After that, all load modules that were generated with LOAD-MODULE=POOL and
with a common memory pool with SCOPE=GROUP are loaded.

Within a pool, the load modules are loaded into the pool in the order specified in the
LOAD-MODULE statement.

When loading, only the external references from system memory and from their
own memory pools are resolved; the Autolink function is suppressed when loading
shared code.

 The load modules generated with LOAD-MODE=STARTUP are loaded dynamically
at the start of the application program. The sequence of the LOAD-MODULE state-
ments in the UTM generation determines the sequence when loading.

Open external references can be resolved from the system memory, from the
common memory pools and from the modules already loaded. External references
to the runtime systems can be resolved by dynamically loading the runtime system
modules (specify the operand ALTERNATE-LIBRARIES=YES in the LOAD-
MODULE statement).
The same is true when loading the private slices of load modules generated with
LOAD-MODE=(POOL,...,START-UP | ONCALL).

 Load modules generated with LOAD-MODE=ONCALL are loaded the first time an
associated program unit is called. Open external references are resolved as for load
modules generated with LOAD-MODE=STARTUP (see 6).

5

6

7

Recommendations for structuring Structure ot the application program

38 Using openUTM on BS2000 Systems

2.3 Recommendations for structuring the application

The load structure of an application definitively determines the time required to start the first
task and the follow-up tasks of an application. It also defines which program components
can be exchanged at a later stage in the application run. For this reason, you should note
the following recommendations:

● The statically linked part of the application program to be loaded with the START-
EXECUTABLE-PROGRAM command (start LLM) should be kept as small as possible.
It must contain the ROOT system modules and the runtime modules required by the
system modules of KDCROOT.

● The administration modules (e.g the KDCADM administration program) are to be stati-
cally linked to the start LLM or to one of their own load modules. This load module must
be loaded when the application is started, i.e. it must be generated with LOAD-
MODULE ...,LOAD-MODE=STARTUP. The load module that contains the KDCADM
administration program may not be exchanged during operation. For this reason, you
must not link administration programs that you have written yourself and which are to
be replaceable together with KDCADM.

● The START, SHUT, INPUT and FORMAT event exits and the BADTAC, MSGTAC and
SIGNON event services are to be statically linked to the start LLM or to one of their own
load modules. This load module must be loaded when the application is started, i.e. it
must be generated with LOAD-MODULE ...,LOAD-MODE=STARTUP. It must not be
exchanged during operation because errors occurring during the exchange can lead to
the abnormal termination of the application.

● Program components that are to be exchanged at a later stage must not be linked stati-
cally or loaded into global application common memory pools or into the system
memory.

● Program components that are required by more than one application should be
shareable, e.g. should be loaded as a nonprivileged subsystem.

● All other application parts that are shareable should be pre-linked to form a load module
that should be loaded into a common memory pool. If several load modules with
shareable program components are required for some reason, these should never-
theless be loaded into only one common memory pool.

Structure ot the application program Recommendations for structuring

Using openUTM on BS2000 Systems 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

5.
06

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
2

● Many compilers allow you to save the shareable and the non-shareable module
together in one LLM. This simplifies the administration of the modules, as both parts are
always located in one container. In this case, the shareable and non-shareable parts
should not be statically linked separately, rather the LLMs with public and private slices,
as created by the compiler, should be statically linked in one or more LLMs.

openUTM loads the public slice of this type of LLM into a memory pool and loads the
private slice into the local task memory at the application start or when a program from
the LLM is called, if you generate the LLM with
LOAD-MODULE ..., LOAD-MODE=(POOL,...,STARTUP) or
LOAD-MODE= (POOL,...,ONCALL).

● Program components that are only required occasionally should be generated such that
they are not loaded dynamically until they are called
(LOAD-MODULE ...,LOAD-MODE=ONCALL).
This shortens the start phase. These load modules should be statically linked in small
logical units, because it takes less time to load small modules that large ones.

● Application parts that are logically related should be statically linked in a load module.
These may be program components that refer to each other or which belong to a
sequence of program unit runs in a service.

● All program components that are to be loaded dynamically should be statically linked
as LLM. This considerably speeds up the start of the application and the loading of load
modules, because the dynamic binder loader (DBL) can process LLMs much more
efficiently than OMs.

● The number of load modules loaded when the application program starts (LOAD-
MODE=STARTUP or LOAD-MODE=(POOL,...,STARTUP) should be kept as small as
possible. For this reason, only the parts of the application that are frequently required
should be generated with STARTUP.
Since it takes less time to load a small number of large load modules than a large
number of small load modules, these parts of the application program should be stati-
cally linked to larger load modules.

● Only one local application common memory pool should be defined (MPOOL ...,
SCOPE=GROUP). A number of statically linked load modules can be loaded into this
pool. This reduces the time required to set up and load the common memory pools and
thereby minimizes the time needed to start the application.

● OMs and LLMs should be made available in different program libraries because this
optimizes the BLS search algorithm.

Recommendations for structuring Structure ot the application program

40 Using openUTM on BS2000 Systems

● Modules that are neither program units of the application program nor data areas
(AREA) (e.g. the modules of the runtime systems of the programming languages) need
not be declared as dynamically loaded modules with the KDCDEF generation tool, even
if these modules are not linked statically. You can statically link these modules to larger
load modules (LLM) and need only generate the name of the load module in the LOAD-
MODULE statement.

v CAUTION!
openUTM cannot verify whether the assignment defined with the LOAD-MODULE
statement and the LOAD-MODULE operand in the PROGRAM and AREA state-
ments corresponds to the actual division of the load modules in the libraries.
When dynamically loading the load modules, openUTM relies on the specifications
made in the UTM generation. You must therefore ensure that the link procedures
you use for the individual parts of the application program correspond with the
specifications made in the UTM generation. Otherwise, openUTM cannot
guarantee that a required program will be loaded in the working memory with a
particular load module.

Structure ot the application program Rules and restrictions

Using openUTM on BS2000 Systems 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

5.
06

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
2

2.4 Rules and restrictions

The following rules and restrictions must be observed when dividing objects into load
modules and when linking and dynamically loading objects:

● The event exits START, SHUT, INPUT and FORMAT and the event services BADTAC,
MSGTAC and SIGNON must not be assigned to any load module whose loading is
deferred until a program unit is called, i.e. is generated with LOAD-MODE=ONCALL.
The reason for this is that the event exits and event services must be available in each
process of the application. If they are not, openUTM aborts the start of the process.
The load modules that contain event exits and event services must not be exchanged
during operation. Errors occurring during the exchange of the load modules can lead to
the abnormal termination of the application.

● The administration program KDCADM must not be assigned to any load module
generated with LOAD-MODE=ONCALL.
The load module to which the KDCADM administration program is linked must not be
exchanged.
If the administration program KDCADM is not available when the application is started,
openUTM aborts the start.

● Data areas (AREAs) must either be statically linked to the application program, or, if
possible, generated as LOAD-MODULEs with LOAD-MODE(POOL, STARTUP) or
LOAD-MODE=STARTUP.

● The start LLM must be made available in a program library. It must not be contained in
a file.

● You must specify the following operands in the START-EXECUTABLE-PROGRAM
command:
/ ,DBL-PARAMETERS=*PARAMETERS(-
/ ,LOADING=*PARAMETERS(-
/ PROGRAM-MODE=*ANY -
/ ,LOAD-INFORMATION=*REFERENCES) -
...
/ ,ERROR-PROCESSING=*PARAMETERS(-
/ UNRESOLVED-EXTRNS=*DELAY -
/ ,...))

You must specify PROGRAM-MODE=*ANY if the application is to be loaded into the
upper address space.

● If an administration command requires a program exchange, you must explicitly specify
the version of the new module to be loaded.

● For load modules, you must only specify the names of OMs or LLMs. For performance
reasons, openUTM does not support dynamic loading using CSECT or ENTRY names.

Rules and restrictions Structure ot the application program

42 Using openUTM on BS2000 Systems

● openUTM supports a maximum of eight common memory pools with SCOPE=GROUP
and eight common memory pools with SCOPE=GLOBAL.

● Two UTM applications should be started under different BS2000 user IDs if possible to
prevent errors that can arise due to having the same module name appear twice in a
shareable section. Modules that are used by several applications are therefore to be
loaded into global common memory pools or in nonprivileged subsystems.

● A newly created table module can be created by exchanging a program.

● The variant number of the LMS is of no significance when loading load modules with
BLS.

● BLS only supports the unloading of program components that were loaded in one load
procedure. For this reason, program components that are to be exchangeable as
separate parts must be made available in the form in which they are to be loaded and
exchanged. If an individual module is to be exchanged, this module can be made
available as an OM or LLM; if a group of load modules is to be exchanged, these
modules must be statically linked as LLMs.

● Load modules containing TCB entries must not be exchanged during operation.

● Modules that are loaded dynamically using the Autolink function cannot be exchanged
or unloaded. Exception: When exchanging the entire application (e.g. with KDCAPPL
PROG=NEW), all parts of the application are reloaded.

● FHS can not be loaded from the TASKLIB. FHS format modules can be exchanged with
this version or later.

● When statically linking load modules to LLMs, please note that the incorporated
elements should not appear in more than one load module. Restrictions therefore apply,
particularly when incorporating the runtime systems of the programming languages. For
information on how to link the runtime system modules required for the application
program, see section “Linking runtime systems” on page 64.

Structure ot the application program Using shared code

Using openUTM on BS2000 Systems 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

5.
06

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
2

2.5 Using shared code

Many compilers offer the option of creating a shareable part when compiling programs. This
shareable part need not necessarily be saved in a separate object module, rather can be
contained with the non-shareable part in an LLM, which is subdivided into a public and a
private slice.

The following objects can be loaded as shareable:

– shareable modules of program units
– formats
– some of the modules for formatting (if shareable)
– shareable data areas
– the database connection module, if this is shareable
– the message modules
– modules of the runtime systems of the programming languages that are

shareable (see the manuals of the individual programming languages)

If parts of a program unit are to be shareable, this must be taken into account in the
programming. The compiler which compiles the program unit determines what you must
note when programming. For further information, see the openUTM manual „Programming
Applications with KDCS” or the appropriate language supplement.

i COBOL compiler refers either to COBOL85 or to COBOL2000.

COBOL program units compiled with the COBOL85 compiler are shareable if you set the
option COMOPT GEN-SHARE-CODE=YES when compiling. Specifying the option
COMOPT GEN-LLM=YES instructs the compiler to save the objects in an LLM with slices.

COBOL program units compiled using the COBOL2000 compiler are shareable
if you specify the following options during compilation:

COMPILER-ACTION=*MOD-GEN(SHAREABLE-CODE=*YES, MODULE-FORMAT=*LLM,...)

C/C++ program units are shareable if you specify the following option when compiling:

COMPILER-ACTION=MODULE-GENERATION(SHAREABLE-CODE=YES,...)

Please refer to the relevant user guides for the corresponding option in other programming
languages.

In addition, many runtime systems of the programming languages are shipped with a
shareable part.

Shared code in the system memory Structure ot the application program

44 Using openUTM on BS2000 Systems

i if you wish to replace a program unit that is made up of a non-shareable module
and a shareable module, then you must link the shareable and non-shareable parts
to an LLM because otherwise inconsistencies would arise in the exchange. You can
avoid consistency problems by locking the TACs contained in the program unit
before the exchange, and then release them again the shareable and non-
shareable parts have been exchanged.

Loading shared code

The shareable program components need only be loaded once together for all tasks of the
application(s). Only the non-shareable parts need then be loaded in the local task memory.

You have various options for loading shareable objects:

● as a nonprivileged subsystem in the class 3/4/5 or 6 memory in the system storage

● in a common memory pool managed by openUTM in the user storage area
(class 6 memory)

See also the “BS2000/OSD Subsystem Management (DSSM/SSCM)” manual.

2.5.1 Shared code in system memory

Using the interfaces provided on BS2000 systems, shareable parts of the application
program units and parts of the runtime systems can be loaded either as shareable
programs in nonprivileged subsystems.

Shared code loaded in nonprivileged subsystems can be exchanged while the application
is running.

The shareable modules must be loaded in the memory by the administrator before the
application is started. See also the notes on the following page. In contrast to shared code
in common memory pools which can be loaded and exchanged under the control of
openUTM, you cannot manage the shareable modules in system memory yourself.

Non-shareable parts of the program units must be described with the PROGRAM
statement and, if necessary, assigned to a load module with the LOAD-MODULE
statement.
The load module or its private slice is loaded dynamically into the local task memory
(class 6 memory) when the application program is started. The links are established dynam-
ically in the shared code using the external references to shareable modules.
The load modules (OM format) that contain the shareable modules of the program unit need
not reside in the same program library as the load modules that contain the non-shareable
program components.

Structure ot the application program Shared code in the system memory

Using openUTM on BS2000 Systems 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

5.
06

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
2

Notes

● Subsystems should be created in LLM format because these subsystems can be
exchanged without inconsistencies while the application is running.
The public slice of the old LLM may eventually be loaded in the local task part of the
application program when exchanging the subsystem until the private slice is also
exchanged (e.g. initialized with KDCPROG).

On the other hand, when subsystems in OM format are exchanged during operation, an
inconsistency exists between the DSSM subsystem command

START-SUBSYSTEM SUBSYSTEM-NAME=subsystemname-
, VERSION=new-version-
, VERSION-PARALLELISM=*EXCHANGE-MODE

and the UTM administration command (or a corresponding KDCADMI call in the admin-
istration program interface)

KDCPROG LOAD-MODULE=load-module,VERSION=new-version

It may happen in this case that after the DSSM command and before the UTM admin-
istration command, a UTM application program is terminated with PEND ER and the
affected task of the UTM application program is started in a new subsystem with an old
private part and a new public part.

● When exchanging subsystems of various versions whose modules are contained in the
same library (condition for exchanging load modules with openUTM), please make sure
that different LINK-ENTRYs are specified as otherwise the DSSM may not be able to
implement the exchange.

● When creating a subsystem, the corresponding LLM format (e.g. Format 2) should be
used because in this case only a subsystem entry need be specified. See also the
“BINDER User Guide”.

Shared code in common memory pools Structure ot the application program

46 Using openUTM on BS2000 Systems

2.5.2 Shared code in common memory pools

A common memory pool is an area in the user storage area (class 6 memory). Shareable
objects that are not linked statically when linking the application program can be loaded into
a common memory pool. openUTM offers two options for setting up a common memory
pool:

● As a local application pool

All program units of an application can access this pool. Program units of other appli-
cations can also access the pool provided these applications were started under the
same BS2000 user ID.

● As a global application pool

Program units of several applications can access the same common memory pool,
regardless of the user IDs under which these applications were started.

Each common memory pool must be generated with the KDCDEF statement MPOOL. In
the MPOOL statement you define whether a common memory pool is to be set up as a
global or local application pool.

2.5.2.1 Local application pool

A local application pool is created by the first task of an application. All subsequent tasks of
this application likewise access this pool, i.e. the pool is created with SCOPE=GROUP in
the context of BS2000 memory pool management. Tasks of other UTM applications that
were started under the same user ID can also connect to this common memory pool.

The local application pool offers the following advantages for the user:

● The programs loaded in this pool can only be used from this user ID.

● The user has full control over the use of shareable objects, regardless of the system
initialization.

● The pool only exists for as long as the application is running or, if a number of applica-
tions are accessing the pool, until the last application has terminated. When the appli-
cation ends, the pool is cleared and the programs – like all other application programs –
are unloaded.

● The programs loaded in a common memory pool can also be exchanged dynamically
during the application run under certain conditions. For more information, see the
chapter “Replacing programs during operation” on page 213ff.

● The physical memory is utilized more efficiently.

Structure ot the application program Shared code in common memory pools

Using openUTM on BS2000 Systems 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

5.
06

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
2

When the (last) application terminates, the pool is cleared and the programs are unloaded
(as are all other application programs).

v CAUTION!
All modules, formats, and data areas have the same access authorization within a
pool.

Programs loaded in common memory pools may not contain any open external
references to addresses outside the common memory pool which point to modules
located in other common memory pools or nonprivileged subsystems in class 5/6
memory. These CSECTs and ENTRYs are not found. Moreover, open external
references must only point to shared code located at the same address for all tasks.
See also the DSSM manuals.

2.5.2.2 Global application pool

A global application pool is used for modules that are needed in several applications, e.g.
formats, connection module for formatting, connection module, language runtime modules,
shareable data areas, and also routines in program units and the message module.

A global application pool is set up by the first task of the first UTM application. All subse-
quent tasks of the same and other applications can connect to this pool, i.e. the pool is
created with SCOPE=GLOBAL in the context of BS2000 memory pool management.

A global application pool offers similar advantages to a local application pool; however, the
disadvantage is that the programs loaded in a global application pool cannot be exchanged
dynamically while the application is running.

If global common memory pools of the same content/name are used in several UTM appli-
cations, the PAGE=X’xxxxxxxx’ parameter in the KDCDEF statement MPOOL must be
specified with the same address in all applications. The address specified with PAGE= must
be chosen such that the reserved address area is available in all of these applications.

Example

Application 1 uses the global pool MPONE. Application 2 also uses this pool in addition to
pool MPTWO. The following KDCDEF control statements are required:

UTM generation application 1:

MPOOL MPONE, SCOPE=GLOBAL, PAGE=X’01000000’, SIZE=...

UTM generation application 2:

MPOOL MPTWO, SCOPE=GLOBAL, SIZE=...
MPOOL MPONE, SCOPE=GLOBAL, PAGE=X’01000000’, SIZE=...

Shared code in common memory pools Structure ot the application program

48 Using openUTM on BS2000 Systems

As an alternative to using PAGE=, the shared pools can be generated in the same
sequence in all applications. Moreover, these MPOOL statements must be the first MPOOL
statements to be specified.

2.5.2.3 Generating shareable objects that are loaded in a common memory pool

If parts of your application program are to be loaded in a common memory pool, you should
note the following:

● For performance reasons, all shareable parts of an application program that are to be
loaded in a common memory pool should, as far as possible, be combined into one load
module.

● The program’s shareable code module created by the compiler must be contained in an
LLM or OM.

● If a compiler created two separate object modules for the shareable and non-shareable
part, then you should link these modules beforehand to an LLM with slices using the
binder.

● LLMs with slices can be generated with a single LOAD-MODULE statement:

LOAD-MODULE llm-name ,VERSION=version -
,LOAD-MODE=(POOL,poolname,{STARTUP|ONCALL})-
,LIB=program-lib-
.ALTERNATE-LIBRARIES={YES|NO}

With this statement, the public slice of the LLM is loaded in the common memory pool
poolname, while the private slice is loaded later either when the application is started
(STARTUP) or when the program is called (ONCALL). PROGRAM statements are also
needed for the programs of this LLM that are to be called using openUTM.

Alternately, you can also generate the shareable and non-shareable module using two
LOAD-MODULE statements. You should avoid this, if possible, because you cannot
exchange these two modules without having inconsistencies arise.

● A shareable data area that is to be loaded in the common memory pool must be
described with an AREA statement. The area must then be contained in the load
module, which is generated as follows:

LOAD-MODULE ar-share ,VERSION=version -
, LOAD-MODE=(POOL,poolname,NO-PRIVATE-SLICE) -
, LIB=libname

Structure ot the application program Shared code in common memory pools

Using openUTM on BS2000 Systems 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

5.
06

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
2

AREAs that were assigned the PUBLIC attribute during compilation or by the binder can
also be linked together beforehand with other modules in one LLM with slices. This LLM
can then be generated as follows:
LOAD-MODULE llm-with-slices ,VERSION=version -
, LOAD-MODE=(POOL,poolname,{STARTUP|ONCALL})-
, LIB=libname

Example

The example assumes that the COBOL compiler was used for compiling and that the
compiler stored the objects in an LLM. The shareable modules of the COBOL program units
PU1 and PU2, the format descriptions FORMAT1 and FORMAT2, and the data module
DATAMOD are to be loaded in the local application pool LCPOOL. LCPOOL is to be loaded
at address X’020000’, is to be capable of occupying 128 KB, and is to be write-protected.

/MPOOL LCPOOL,SIZE=2,SCOPE=GROUP,ACCESS=READ,PAGE=X'20000'
/LOAD-MODULE LLM-LCPOOL,VERSION=1, -
/ LOAD-MODE=(POOL,LCPOOL,STARTUP), -
/ LIB=libname
/PROGRAM PU1 ,LOAD-MODULE=LLM-LCPOOL,COMP=ILCS
/PROGRAM PU2 ,LOAD-MODULE=LLM-LCPOOL,COMP=ILCS
/AREA DATAMOD,LOAD-MODULE=LLM-LCPOOL

The object modules must be prelinked to the LLM LLM-LCPOOL before the application
starts, which means that the option BY-ATTRIBUTES(PUBLIC=YES) must be specified in
the BINDER statement START-LLM-CREATION, whereby the LLM is split into a public slice
and a private slice. The LLM created in this way must be supplied in the libname library.

Shared code in common memory pools Structure ot the application program

50 Using openUTM on BS2000 Systems

Using openUTM on BS2000 Systems 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
3

3 Creating the application program

Before starting the application, you must create and compile program units. The program
units implement the application logic. Further information can be found in the openUTM
manual „Programming Applications with KDCS”.

To ensure that the program units will run under openUTM, the UTM application program
must be created as follows:

● assemble the ROOT table source generated by the KDCDEF generation tool

● link the ROOT system modules and the language-specific runtime systems to a start
LLM; you can also incorporate other application-specific components, such as UTM
message modules, format libraries, and program units into the start LLM

The ROOT table module can be loaded dynamically when starting the application.

The diagram below shows the individual steps involved in generating a UTM application
program.

Creating the application program

52 Using openUTM on BS2000 Systems

Figure 2: Overview: generating and starting the UTM application program with dynamic loading

The same as other parts of the application, the ROOT tables can also be incorporated into
the application program statically, as shown in the diagram below.

Compile

ROOT

Program units/
user libraries/

runtime systems
ROOT system modules

UTM
application program

Start and load dynamically

of openUTM

ROOT table source
created with KDCDEF

tables

Link
statically

Load
dynamically

Load
dynamically

orLink
statically

Creating the application program

Using openUTM on BS2000 Systems 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
3

Figure 3: Overview: generating the UTM application program without dynamic loading

Link statically

Compile

ROOT

Program units/
user libraries/

runtime systems

UTM
application program

UTM system modules

ROOT table source
created with KDCDEF

tables

Creating the application program

54 Using openUTM on BS2000 Systems

Main routine KDCROOT

Based on the ROOT system modules supplied with openUTM, the main routine KDCROOT
is generated as part of the application program during the link procedure. When running the
application, KDCROOT acts as the main control program. Its tasks include:

– linking program units and UTM system functions
– coordinating the execution of program units in different programming languages
– connecting to databases
– interacting with format handling systems

KDCROOT also contains the variable data and message areas. Further information on the
main routine KDCROOT can be found in the openUTM manual „Programming Applications
with KDCS”.

The default name for the ROOT table source is ROOT.SRC.ASSEMB.rootname. The source
for the ROOT tables generated by KDCDEF must be assembled, e.g. using ASSEMBH-
GEN. The ROOT system modules associated with the application program are stored in the
SYSLNK.UTM.064 module library.

Creating the application program Components of the application program

Using openUTM on BS2000 Systems 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
3

3.1 Components of the application program

A UTM application program is made up of a set of modules which must be linked as a
program at runtime or before.

The following modules are required for execution:

● root module

Compiled ROOT table module which you must store in a program library or object
module library. If you use the root dynamic loading technique, specify this library in the
start parameter TABLIB= and the module name in the start parameter ROOTNAME=.

● ROOT system modules

Modules required by openUTM for execution. They are contained in the library
SYSLNK.UTM.064.

● Program units

The application program units you created which must be compiled and entered in one
or more program libraries or object module libraries.

● Database connection module

Used for connecting openUTM to the database system specified in the TYPE operand
of the DATABASE statement during KDCDEF generation. The manuals for the corre-
sponding database systems describe how this module is provided by the database
system.

● Connection module for the format handling system

Used for connecting openUTM to the format handling system generated in the TYPE
operand of the FORMSYS statement. The manuals for the corresponding format
handling systems describe how this module is provided by the format handling system.

● Administration and UTM-SAT administration program unit

Programs for administering the UTM application. You can either write this type of
program yourself using the program interface for administration, or you can use the
standard administration programs KDCADM and KDCSADM supplied with openUTM.
Each administration program must be generated in a separate PROGRAM statement.
The object modules of the administration programs are available in the library
SYSLNK.UTM.064.
The administration program KDCADM is always needed, even if you are using an
administration program which you have created yourself.

Components of the application program Creating the application program

56 Using openUTM on BS2000 Systems

● Runtime system for KDCROOT

This is always required and is supplied in the library SYSLNK.UTM.064.SPLRTS. In
addition, KDCROOT needs one of the libraries
SYSLNK.CRTE or
SYSLNK.CRTE.PARTIAL-BIND,
whereby the second library provides performance advantages and is therefore the
preferred option. CRTE is the software prerequisite for openUTM and contains the
C runtime system, the ILCS, and the COBOL runtime system. The C runtime system
and the ILCS are always required by UTM.

● Runtime systems of the programming languages

These are required if at least one program unit of the application is written in a higher
programming language. If the application contains ILCS-capable program units, you
must ensure that the highest available ILCS version is incorporated. Further linking
information can be found in the description of ILCS in the CRTE User Guide. The ILCS
modules are contained in the CRTE library.

The section “Compiler versions, runtime systems, KDCDEF options” on page 322
describes which runtime systems can be used with which compiler versions.

● Language connection modules

These are needed for every generated programming language or its linkage. For SPL,
Assembler, COB1 and ILCS linkage, these connection modules are already incorpo-
rated in openUTM. For all other programming languages, the connection modules must
be incorporated from language-specific libraries when the application starts or before.

● Shared areas

(see AREA statement of KDCDEF)

● User-specific message modules

If user-specific message modules are to be linked statically.

Creating the application program Linking the application program

Using openUTM on BS2000 Systems 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
3

3.2 Linking the application program

UTM applications use the functionality of the BLS to load LLMs (link and load modules) and
OMs (object modules). This opens up new possibilities:

● When managing objects using LLMs that are subdivided into a private and a public
slice.

This means that the shareable and non-shareable parts of an object generated in a
compiler run can be managed in a container. This largely avoids inconsistencies when
pre-linking and replacing objects.

● When loading an object (program, area).
An object can be incorporated statically or loaded dynamically at the application start.
In the case of program units, it is also possible to defer dynamic loading until the first
call is executed.

● When exchanging the program.
An individual object (LLM or OM) or a statically linked group of objects (LLM or OM) can
be exchanged.

Only some of the application objects need be linked statically to the application program.
This part of the application program is called the start LLM and is loaded and started using
the command START-EXECUTABLE-PROGRAM FROM-FILE=*LIBRARY(...). You must
link in those ROOT system modules and the objects (program units, modules and data
areas) in the start LLM that are not assigned to a load modue or are assigned to a load
module with LOAD-MODE=STATIC.

The ROOT table module created by KDCDEF need not to be linked statically, i.e. it can be
loaded dynamically at the application start.

The other parts of the application program can be made available in the form of load
modules. A load module is

● either a statically linked link load module (LLM) contained in a program library as a type
L element,

● or an object module (OM) contained in an object module library as a type R element.

For performance reasons, however, you should use BINDER to statically link all load
modules to LLMs and make them available in a program library as type L elements.

When generating, you must enter precisely one LOAD-MODULE statement for each link
load module and each object module that you do not link into the START-LLM statically, and
thereby specify when the module is to be linked and where it is to be loaded. For more infor-
mation, see the openUTM manual “Generating Applications”.

LLMs with slices Creating the application program

58 Using openUTM on BS2000 Systems

If there are unresolved external references to program units when you link the application,
you can still start the application. If you cannot resolve these external references by
dynamic loading, the assigned transaction codes for the application are invalid, i.e. they
cannot be used.

3.2.1 LLMs with slices

Using BINDER, the CSECTs contained in an LLM can be combined to form a loadable unit
known as a slice, on the basis of certain criteria. A distinction is made here between slices
formed using attributes of CSECTs (slices by attributes) and slices defined by the user.

openUTM can only process LLMs with slices by attributes, and thereby supports the
PUBLIC attribute. Many compilers offer the option of storing the created objects in an LLM
with a public and private slice. The public slice then contains the shareable part of the object
while the private slice contains the non-shareable part. This procedure simplifies the
management of shareable and non-shareable parts of a program because both are
contained in an LLM; see also section “Linking LLMs to public/private slices” on page 62. If
you generate this type of LLM as appropriate for openUTM, then openUTM loads the public
slice in a common memory pool and the private slice in the local task memory.

If the public slice of an LLM cannot be loaded in the common memory pool when loading
or exchanging, this task is terminated after an appropriate K078 message has been issued
and application exchange is canceled.

Creating the application program Linking LLMs

Using openUTM on BS2000 Systems 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
3

3.2.2 Linking LLMs

All module groups in a logical relationship should be statically linked as LLMs. Such module
groups include:

● parts of the runtime systems

● logically related parts of a UTM application, e.g. all program units of one or more
services including conversation exits

● FHS formats including the associated program units

In order that the external references of an LLM can be resolved when this LLM is dynami-
cally linked, the following BINDER statements must be specified when creating the LLM:

/START-LLM-CREATION INTERNAL-NAME=int-name - ————————————————————————— (1)
/ ,INTERNAL-VERSION=int-vers -
/ ,...
/SET-EXTERN-RESOLUTION SYMBOL-TYPE=*REFERENCES - —————————————————————— (2)
/ ,RESOLUTION=*STD
/SAVE-LLM ...,ELEMENT=*INTERNAL-NAME(- —————————————————————— (3)
/ VERSION=*INTERNAL-VERSION) -
/ ,FOR-BS2000-VERSIONS=*FROM-OSD-V4(...)

1. Here you define the name and version of the LLM, and how the LLM is saved in the
library when linking is concluded.

2. The handling of unresolved external references is defined. The specified operand
values are the defaults which must on no account be modified.

3. The LLM must be saved under the internal name; the format of the LLM must be correct
(at least LLM format 2 as in the example).

If a name other than the internal name is selected when saving and if LOAD-
MODULE,...,ALTLIB=YES is specified when generating, openUTM cannot find the
module when a program is exchanged and reports an UNBIND error (K078 UNBIND
0C010174).

Repeated elements

When statically linking LLMs, you must ensure that the incorporated elements (sub-LLMs /
OMs) do not occur in several (possibly statically linked) LLMs / OMs. If this is the case,
however, the external names contained in repeatedly linked modules must be masked by
the BINDER statement MODIFY-SYMBOL-VISIBILITY.

Linking LLMs Creating the application program

60 Using openUTM on BS2000 Systems

Autolink function for dynamically loading load modules

The autolink function is controlled in the LOAD-MODULE statement by the operand
ALTERNATE-LIBRARIES.

● ALTERNATE-LIBRARIES=NO
switches off the autolink function of BLS. This means that for all dynamically generated
load modules loaded in this way, all open references of such a load module must be
resolved by the modules loaded at load time (start LLM and other load modules) and by
the shared code. External references in the runtime system are always resolved for load
modules comprising only C or data objects if a RESOLVE-BY-AUTOLINK to the library
SYSLNK.CRTE.PARTIAL-BIND was specified when linking the start LLM.

● ALTERNATE-LIBRARIES=YES
switches on the autolink function of BLS.
You can use this for load modules which, when loaded and exchanged, require
additional modules of the runtime system that are not yet contained in the memory.
When linking, open external references are first sought in the link context and then in
the shared code (see also the manual „Dynamic Binder Loader/Starter“). If external
references are still unresolved after this, the library you specified in the LIB operand is
searched. If a suitable definition is found, the associated module is linked and the
search is terminated. Otherwise, the search is continued in the libraries to which you
have set a link with the SET-FILE-LINK command before the application is started with
the link name BLSLIBnn (where 00≤nn≤99). The libraries are processed in ascending order
of nn.

The handling of the runtime system modules in connection with UTM applications is
described in detail on page 64.

The autolink mechanism should not be applied on user-specific libraries because only the
load module and not the entire load unit, which also contains all modules loaded by autolink,
is unloaded when a program is exchanged.

The autolink function for the start LLM can be influenced by the parameters of the command
START-EXECUTION-PROGAM. See also the example on page 37.

Creating the application program Linking LLMs

Using openUTM on BS2000 Systems 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
3

Example

● UTM generation and LINK statement

UTM generation:

LOAD-MODULE lm-name -
 ,VERSION = llm-version -
 ,LIB = lm-lib -
 ,LOAD-MODE = ONCALL -
 ,ALTERNATE-LIBRARIES = YES

LINK statement before application start:

/SET-FILE-LINK LINK-NAME = BLSLIB00 -
/ ,FILE-NAME = $userid.SYSLNK.CRTE.PARTIAL-BIND

First of all, the LOAD-MODULE statement generates the load module lm-name with
LOAD-MODE=ONCALL, i.e. lm-name is not loaded dynamically until a constituent
program is called. In the example, lm-name should contain COBOL objects.

To resolve open external references when loading, the library lm-lib specified in the LIB
operand is first searched and then the library $userid.SYSLNK.CRTE.PARTIAL-BIND,
which is assigned using the SET-FILE-LINK command.

● BINDER statements

/START-BINDER
//START-LLM-CREATION INTERNAL-NAME = llm-name -

// ,INTERNAL-VERSION = llm-version
//INCLUDE-MODULES LIBRARY=user-library -
// ,ELEMENT=program-unit-name
//RESOLVE-BY-AUTOLINK LIBRARY=(library1,library2..)
//SET-EXTERN-RESOLUTION SYMBOL-TYPE=*REFERENCES -
// ,RESOLUTION=*STD
//SAVE-LLM LIBRARY=llm-library -
// ,ELEMENT=*INTERNAL-NAME(-
// VERSION=*INTERNAL-VERSION) -
// ,FOR-BS2000-VERSIONS=*FROM-OSD-V4(...)
//END

In this binder run, an application program unit is linked to a load module. KDCROOT is
not incorporated here, e.g. because the KDCS entry remains unresolved.

Linking LLMs to public/private slices Creating the application program

62 Using openUTM on BS2000 Systems

3.2.3 Linking LLMs to public/private slices

If you use the linkage editor to link shareable modules in OM format to LLMs with a public
slice, you must ensure that the CSECTs of these modules have the attribute PUBLIC. If this
is not the case, the linkage editor creates these CSECTs in the private slice.

This can occur for example with AREAs that were previously in shareable modules in OM
format (the attribute has no significance here) or with all shareable COBOL objects. You can
adapt the objects by

● adding and then recompiling the PUBLIC attribute for AREAs,

● recompiling the associated sources in LLM format for shareable COBOL objects, or

● setting the PUBLIC attribute with the linkage editor.

The following example illustrates the third option.

Example

A load module is to be statically linked as an LLM. It should comprise

● the COBOL objects AFPUT and COBECHO with the non-shareable parts
AFPUT and COBECHO and the shareable parts AFPUT@ and COBECHO@

● as well as the shareable AREAs AREA1, AREA2 and AREA3, all of which are missing
the PUBLIC attribute.

This results in the following binder statements:

//START-LLM-CREATION -
//INTERNAL-NAME = EXAMPLE-LLM -
 // ,INTERNAL-VERSION = 001 -
 // ,SLICE-DEFINITION = BY-ATTR(PUBLIC = YES)
//REMARK ---
//REMARK ---
//INCLUDE-MOD LIB = LIB.UTM.PRELINK -
 // ,ELE = COBECHO
//INCLUDE-MOD LIB = LIB.UTM.PRELINK -
 // ,ELE = AFPUT
//REMARK ---
//REMARK ---
//BEGIN-SUB-LLM SUB-LLM-NAME=OM-WITHOUT-PUBLIC-ATTRIBUTE
//INCLUDE-MOD LIB = LIB.UTM.PRELINK -
 // ,ELE = AFPUT@
//INCLUDE-MOD LIB = LIB.UTM.PRELINK -
 // ,ELE = COBECHO@
//INCLUDE-MOD LIB = LIB.UTM.PRELINK -
 // ,ELE = AREA1

Creating the application program Linking LLMs to public/private slices

Using openUTM on BS2000 Systems 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
3

//INCLUDE-MOD LIB = LIB.UTM.PRELINK -
 // ,ELE = AREA2
//INCLUDE-MOD LIB = LIB.UTM.PRELINK -
 // ,ELE = AREA3
//MODIFY-SYMBOL-ATTR PUBLIC = YES
//END-SUB-LLM
//REMARK ---
//REMARK ---
//SET-EXTERN-RESOLUTION SYMBOL-TYPE=REFERENCE , RESOLUTION=STD
//MODIFY-MAP-DEFAULT PROGRAM-MAP = PAR(DEFINITION = ALL -
 // ,INVERT = ALL -
 // ,REFERENC = ALL) -
 // ,UNRESOLVED = YES -
 // ,SORTED-PRO = YES -
 // ,DUPLICATE = YES -
 // ,OUTPUT= LIST.LINK.EXAMPLE-LLM
/REMARK --
//SAVE-LLM LIB = LIB.LOAD-MODULE.STARTUP -
 // ,ELEM = *INTERNAL -
 // ,FOR-BS2000-VERSION = *FROM-OSD-V4(...)
//REMARK ---
//END

As the example shows, it is sufficient to link all shareable modules that do not have the
PUBLIC attribute in a sub-LLM in the linkage editor run and then set the PUBLIC attribute
for the entire sub-LLM using the MODIFY-SYMBOL-ATTRIBUTES statement. In the list
LIST.LINK.EXAMPLE-LLM - section *PROGRAM MAP* - you can then see which slice
contains the individual objects.

Linking runtime systems Creating the application program

64 Using openUTM on BS2000 Systems

3.2.4 Linking runtime systems

Many runtime systems have shareable parts. Together with BLS, this means that load times
can be reduced and performance increased. Depending on the runtime system, you can:

● Load shareable parts as a subsystem. This is the best option, but is not possible for all
runtime systems.

● Statically link shareable parts and load them in a common memory pool.

● Link the necessary parts of the runtime system to an LLM and then load them dynami-
cally.

● Link the runtime system statically to the start LLM.

When linking a UTM application with SYSLNK.CRTE.PARTIAL-BIND, ensure that the
CRTE version on the system on which the application is linked is not later than the CRTE
version on the system(s) on which the application will run.

Pay particular attention to this issue in cluster applications if different CRTE versions are
installed on the nodes.

When linking the start LLM, the C and SPL runtime system and the ILCS must be incorpo-
rated for UTM (ILCS is available in the CRTE libraries). This is achieved by specifying the
two following binder statements in this sequence:

//RESOLVE-BY-AUTOLINK LIB=$userid.SYSLNK.CRTE[.PARTIAL-BIND]
//RESOLVE-BY-AUTOLINK LIB=$userid.SYSLNK.UTM.064.SPLRTS

If you want to link your runtime systems statically, these two statements for C, COBOL, and
SPL objects are sufficient. If you require additional runtime systems you must – unless
otherwise specified in the respective manual – insert the RESOLVE-BY-AUTOLINK state-
ments for the necessary runtime systems between the RESOLVE statements for CRTE and
UTM.

It is better to use the partial bind linking technique when linking the runtime systems. The
advantage of linking with SYSLNK.CRTE.PARTIAL-BIND is that the link and load times are
reduced and the linked program occupies less disk space. If linking is carried out using the
partial bind library, references to the runtime system are satisfied by means of connection
modules. The modules from the runtime system required at runtime are dynamically loaded
when the application is run.

If you require SYSLNK.CRTE or SYSLNK.CRTE.PARTIAL-BIND a second time - in addition
to linking the start LLM - you must use the respective CRTE library again. An example of
this would be linking the local task part of the COBOL runtime system; see example on
page 68.

The possibilities for shareable loading are explained in the following sections. Information
on which runtime routines are shareable and which are non-shareable can be found in the
description of the respective runtime system.

Creating the application program Linking runtime systems

Using openUTM on BS2000 Systems 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
3

Please note that a load module containing runtime system modules must never be
exchanged while the application program is executing, as this may result in errors that are
difficult to diagnose.

3.2.4.1 Shareable runtime system parts as subsystem

If your UTM application is running with the common runtime system environment CRTE
(Common RunTime Environment), it is possible to load the shareable parts of CRTE via
DSSM. Other runtime systems also offer this option.

The BS2000 system administrator is responsible for loading the subsystem; for further
information see the CRTE manual.

As far as possible, you should use this procedure because it saves system resources. In
particular, the runtime system for C and COBOL, which are contained in CRTE, must be
loaded as a CRTE subsystem because they are required by KDCROOT.

If the CRTE runtime system is preloaded, you can use this by using the
SYSLNK.CRTE.PARTIAL-BIND library during linkage. The connection to the CRTE
subsystem is then established by a connection module incorporated when linking the start
LLM. If the CRTE runtime system cannot be accessed, the connection module dynamically
loads the necessary parts from the CRTE library into the local task area.

3.2.4.2 Shareable runtime system parts in a common memory pool

If modules use a runtime system that cannot be loaded as a subsystem and is also not
incorporated in the start LLM, you should pre-link all shareable modules of the runtime
system for one programming language to form LLMs and have openUTM load them into a
common memory pool.

The shareable parts of the runtime system must then be generated as follows:

LOAD-MODULE share-rts-part,LOAD-MODE=(POOL,..., NO-PRIVATE-SLICE),...

You must also generate the non-shareable part of the runtime system (also pre-linked to
form an LLM):

LOAD-MODULE nonshare-rts-part,LOAD-MODE=STARTUP

UTM generation is simplified if you link the shareable and non-shareable parts to an LLM.
This load module must be generated with:

LOAD-MODULE rts,LOAD-MODE=(POOL,..., STARTUP),...

When generating, please ensure that this LLM is specified before the other modules
required by the runtime system, as otherwise there will be unresolved external references.
Please note that the shareable parts of the C, SPL and FOR1 runtime systems must not be
loaded in a common memory pool managed by openUTM.

Linking runtime systems Creating the application program

66 Using openUTM on BS2000 Systems

3.2.4.3 Linking runtime systems to an LLM

For all runtime systems that do not have a PARTIAL-BIND library, you must determine
which modules of the runtime system are required for the entire application. This is done as
follows:

1. All application program units and all event exits of the desired language, as well as all
shareable modules of the runtime system loaded as a subsystem or in a common
memory pool, must be linked together to a sub-LLM.

2. The ILCS (contained in CRTE) must likewise be incorporated in the sub-LLM; must be
the highest available version.

3. To resolve all external references to the runtime system, you must enter the RESOLVE-
BY-AUTOLINK statement to the library of the runtime system of the language:
RESOLVE-BY-AUTOLINK LIBRARY=rts-library.

4. Using the REMOVE-MODULES statement, you must then remove the sub-LLM (see 1.
and 2.) from the LLM.

5. The load module must be generated in openUTM using the following statement:

LOAD-MODULE RTS-PRIVATE-KERNEL-
 ,VERSION=001 -
 ,LIB=private-rts-lib -
 ,LOAD-MODE=STARTUP

Creating the application program Linking the start LLM

Using openUTM on BS2000 Systems 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
3

3.2.5 Linking the start LLM

When linking the start LLM, a distinction is made between the following options:

● Linking the ROOT table module statically in the start LLM, or

● Loading the ROOT table module dynamically at the start of the application program. In
this case, the name of the library containing the ROOT table module must be specified
in the start parameters for TABLIB, and the name of the ROOT table module (PLAM
element name) must be specified for ROOTNAME (see section “Start parameters for
openUTM” on page 94). First, the KDCRTMN module must be linked statically.

The second procedure is more beneficial, because you do not need to relink the application
if changes are made in the UTM generation. For the same reason, you should if possible
save all program units in load modules that are linked dynamically.

Please note the following points for both procedures:

● The runtime systems for C and SPL, together with the ILCS, are required by the
KDCROOT modules, which is why the non-shareable parts of the runtime system must
always be linked statically.

● After linking, the start LLM must only have unresolved external references to runtime
system modules which are either loaded as a subsystem before the application start or
loaded dynamically at the application start.

● You should avoid saving more than one start LLM in the same library, because BLS
attempts to resolve open external references from this library at the start, i.e. in addition
to load modules loaded dynamically, the library must only contain a start LLM loaded
with the START-EXECUTABLE-PROGRAM command. You can also deactivate the
AUTOLINK function using parameters of START-EXECUTABLE-PROGRAM.

● The RESOLVE statement to the library SYSLNK.CRTE.PARTIAL-BIND or
SYSLNK.CRTE must always be specified as the first RESOLVE statement for a runtime
system and then for the UTM library. The library you use in the start LLM to link the
necessary modules of the CRTE must also be specified when linking all load modules
of the application. The library SYSLNK.CRTE.PARTIAL-BIND offers performance
advantages and should therefore be used in preference.

Linking the start LLM Creating the application program

68 Using openUTM on BS2000 Systems

Example

The following BINDER run contains all the statements required to link a start LLM. It is
assumed that the application is running with the shared runtime environment CRTE and
was installed using IMON.

The string vvv stands for the openUTM version (e.g 064 for V6.4).

/START-BINDER
//START-LLM-CREATION INTERNAL-NAME=start-llm -
// ,INTERNAL-VERSION=start-llm-version
//REMARK +---+
//BEGIN-SUB-LLM-STATEMENTS SUB-LLM-NAME=ROOT-TAB-LLM ---------------------- 1
//INCLUDE-MODULES LIBRARY=tablib ,ELEMENT=root-module
//END-SUB-LLM-STATEMENTS
//REMARK +---+
//INC-MOD ELEM=KDCRTMN ,LIB=<userid1>.SYSLNK.UTM.vvv ---------------------- 2
//REMARK +---+
//BEGIN-SUB-LLM-STATEMENTS SUB-LLM-NAME=LM-SHARED-RTS --------------------- 3
//INCLUDE-MODULES LIBRARY=$userid2.SYSLNK.CRTE.PARTIAL-BIND, ELEMENT=ITCMADPT
//INCLUDE-MODULES oncall-load-module
//INCLUDE-MODULES startup-load-module
//INCLUDE-MODULES pool-load-module
//END-SUB-LLM-STATEMENTS
//REMARK +---+
//RESOLVE-BY-AUTOLINK LIBRARY=$userid1.SYSLNK.UTM.vvv ----------------------- 4
//RESOLVE-BY-AUTOLINK LIBRARY=user-lib
//REMARK +---+
//RESOLVE-BY-AUTOLINK LIBRARY=$userid2.SYSLNK.CRTE.PARTIAL-BIND ------------- 5
//RESOLVE-BY-AUTOLINK LIBRARY=other-rts-lib
//RESOLVE-BY-AUTOLINK LIBRARY=$userid1.SYSLNK.UTM.vvv.SPLRTS
//REMARK +---+
//SHOW-MAP ..., UNRESOLVED-LIST=SORTED, ... ------------------------------- 6
//REMARK +---+
//REMOVE-MODULES NAME=*ALL,PATH-NAME=.ROOT-TAB-LLM ------------------------ 7
//REMOVE-MODULES NAME=*ALL,PATH-NAME=.LM-SHARED-RTS ----------------------- 8
//REMARK +---+
//SET-EXTERN-RESOLUTION SYMBOL-TYP=REFERENCES,RESOLUTION=STD
//SAVE-LLM LIBRARY=start-library,ELEMENT=*INTERNAL-NAME(-
// VERSION=*INTERNAL-VERSION)-
// ,FOR-BS2000-VERSIONs=*FROM-OSD-V4(...)
//END

Creating the application program Linking the start LLM

Using openUTM on BS2000 Systems 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
3

1. First of all, the ROOT table module is always linked in a separate sub-LLM. This module
can be removed before saving the start LLM (see 7) if the ROOT table module, as in
this example, is not linked statically but is to be loaded dynamically at the start of the
application program.

Using the external references of the ROOT table module, the static program units from
user-lib are linked (see 4). However, these should be as few as possible because these
modules cannot be exchanged.

2. Next, the KDCRTMN ROOT system module is linked. This must only be linked explicitly
if a start LLM is to be created without a ROOT table module.

3. In this case, an adapter module (ITCMADPT) is linked into your own sub-LLM. This
ensures that the necessary runtime modules are dynamically loaded.

In addition, all existing load modules loaded dynamically are linked in this sub-LLM, so
that the necessary runtime system modules are linked to the start LLM by the
RESOLVE-BY-AUTOLINK statement. This means that they are already available in the
dynamic loading process and need not be loaded dynamically with the autolink function,
as this reduces the load performance.

If you use the COBOL subsystem, the adapter module (ITCMADPT) can be omitted
from the SUB-LLM mentioned above.

4. You must always specify the UTM library as the first library in a RESOLVE-BY-
AUTOLINK statement. This can then be followed by RESOLVE-BY-AUTOLINK state-
ments to user libraries.

5. You must always specify the CRTE library as the first library of a runtime system in a
RESOLVE-BY-AUTOLINK statement. After the CRTE library, you should enter the
RESOLVEs to any libraries of other runtime systems, before the library with the SPL
runtime system required by openUTM. Further information can be found in the manual
for the corresponding runtime system.

6. You can use the SHOW-MAP statement to list the unresolved external references, for
example. The list, which is created at this point in the BINDER run, contains all open
external references that are yet to be resolved. At the end of the BINDER run, you
automatically receive another list of the unresolved external references, though this
also contains all unresolved external references arising from the removal of the sub-
LLM.

7. With a REMOVE-MODULES statement you remove the ROOT table module from the
start LLM.

8. The adapter module (ITCMADPT) that has been linked in (if necessary) and the
shareable modules of the runtime system for COBOL and the load modules generated
with ONCALL, STARTUP or POOL are also removed from the start LLM.

ILCS program units Creating the application program

70 Using openUTM on BS2000 Systems

The start LLM linked in this way must be loaded with the following command:

3.3 Information for applications with ILCS program units

● Program transitions (CALLs) between ‘ILCS’ program units or subroutines and ‘non-
ILCS’ subroutines are prohibited.

● ILCS modules (prefix IT0....) must only be contained once in the loaded application
program. In other words, you must ensure that the ILCS modules are not linked
repeatedly when linking by RESOLVE from the RTS libraries of the compilers, and that
they do not occur repeatedly when modules are loaded dynamically.

● The highest available version of ILCS must always be loaded. The CRTE library always
contains an ILCS.

● Please refer to the user guide or service information such as the Release Notice and
readme files of the compiler for information on whether the respective compiler version
or the runtime system supports ILCS and if so which version. Information on the ILCS
capability of compilers and runtime systems can be found in the Release Notice.

You will find a detailed list of the possible combinations of compiler options and RTS on
page 322.

● The CRTE manual contains examples of linking ILCS programs.

/START-EXECUTABLE-PROGRAM FROM-FILE=*LIBRARY-ELEMENT
 (LIBRARY=start-library

 ,ELEMENT-OR-SYMBOL=start-llm
,DBL-PARAMETERS=*PARAMETERS(
,LOADING=*PARAMETERS(

 PROGRAM-MODE = *ANY
,LOAD-INFORMATION = *REFERENCES)

,ERROR-PROCESSING=*PARAMETERS(
UNRESOLVED-EXTRNS=*DELAY
,ERROR-EXIT = *NONE)

-
-
-
-
-
-
-
-
-

Using openUTM on BS2000 Systems 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
4

4 Files required for operation

Before you start a UTM application, you must always ensure that the following files exist,
as they are essential for the operation of the UTM application:

– the KDCFILE
– The system files SYSOUT and SYSLST are always present, but should be assigned to

real, process-specific files.
– the system log file SYSLOG
– the user log file(s) USLOG (optional)
– all program and object module libraries from which the application is to dynamically load

modules during the start phase and during operation.

KDCFILE, USLOG and SYSLOG (if used without a link name) have the prefix filebase
(=base name of the UTM application) when used in standalone applications. You must
specify filebase in the start parameters. The name filebase is defined when creating
KDCFILE with the generation tool KDCDEF, see openUTM manual “Generating Applica-
tions”, control statement MAX...,KDCFILE=filebase.

 Information on what files are required for operating a UTM cluster application is
contained in the chapter “UTM cluster application” on page 141.

4.1 System files SYSOUT and SYSLST

openUTM logs messages to the system files SYSOUT and/or SYSLST. These system files
should therefore be redirected to separate process-specific files.

You can switch these system files during live operation. After you have switched the files,
the old SYSOUT and SYSLST files can be evaluated and, if necessary, deleted in order to
reduce the amount of disk space occupied.

Switching system files

The system files can be switched over during live operation either by the administrator or
at definable periodic intervals. The system files for all tasks of a UTM application are always
switched over together, but the precise time at which this is done for individual tasks may
be delayed when the system is under load.

System files SYSOUT and SYSLST Files required for operation

72 Using openUTM on BS2000 Systems

● To switch the files over as administrator
– use the command KDCAPPL SYSPROT=NEW
– use the sysprot_switch in the kc_diag_and_account_par_str data structure of the

programming interface (see the openUTM manual “Administering Applications”)
– use WinAdmin/WebAdmin

The system files are switched over as soon as possible after the request has been
made.

● To switch over the system files using a time interval, specify the start parameter
SYSPROT when starting UTM application (see section “Start parameters for openUTM”
on page 94). You can specify a time interval in days. The files are always switched over
at midnight.

If an error occurs when switching the files over, an error message is issued and time-
controlled switching is deactivated.

Names of the switched files

When the UTM application is started, the system files are set up using the names specified
either by the system or the user. Files are generated using the following name formats as
of the first time that the files are switched over manually or automatically:

SYSOUT: <prefix>.O.YYMMDD.HHMMSS.TSN
SYSLST: <prefix>.L.YYMMDD.HHMMSS.TSN

The maximum total length of the new path name for a file that has been switched over is 54
characters and is made up as follows:

[:catid:][$userid.]filename-prefix.datei-suffix
<---6---><---10---><------17----->.<----21---->

<prefix>

The prefix is made up of

catid, userid
Catalog ID and user ID under which the UTM application was started.

catid and userid can be omitted.

filename-prefix

The prefix you specified for the start parameter SYSPROT when starting the
UTM application (see section “Start parameters for openUTM” on page 94).

The file name prefix can be a maximum of 17 characters in length.

Files required for operation SYSLOG system log file

Using openUTM on BS2000 Systems 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
4

Default value for <prefix> in standalone applications:
Name of the application specified in MAX APPLINAME during KDCDEF gener-
ation.

Default value for <prefix> in cluster applications:
Name of the application specified in MAX APPLINAME during the KDCDEF gener-
ation, followed by a period and the host name from the CLUSTER-NODE statement
for this node.

YYMMDD.HHMMSS
Date and time of the switchover

TSN TSN of the task

4.2 System log file SYSLOG

openUTM logs all events from the application run in the system log file SYSLOG (SYSTEM
LOGGING), i.e. openUTM writes all UTM messages with the UTM message destination
SYSLOG to this file (see the openUTM manual “Messages, Debugging and Diagnostics on
BS2000 Systems” for information on message destinations). openUTM works with alter-
nating buffers. This prevents wait situations and therefore improves performance,
especially in applications with a large number of SYSLOG messages.

The system log file SYSLOG can be used for actively monitoring the application run or for
subsequent checking. SYSLOG provides important information, particularly for diagnostic
purposes.

You must provide openUTM with a SYSLOG for each application. If you have not assigned
a SYSLOG to openUTM before the start, openUTM terminates the application start.

The system log file SYSLOG can be created as:

– a simple SYSLOG file
– a file generation group SYSLOG-FGG

A SYSLOG-FGG has the following advantages over a simple SYSLOG file:

● You can switch to the next file generation during live operation (switchable SYSLOG
file). You can administer the SYSLOG with the KDCSLOG administration command, for
example. See the openUTM manual “Administering Applications” for more information.
If all tasks of the application have closed the old SYSLOG file, then this file generation
is available to you for your use.

SYSLOG system log file Files required for operation

74 Using openUTM on BS2000 Systems

● You can set automatic size monitoring for the SYSLOG. This means that you can
generate or specify via the administration a threshold value for the size of the individual
file generations of the SYSLOG-FGG. When this threshold is reached, openUTM
automatically switches to the next file generation of the FGG. Size monitoring can be
enabled and disabled while the application is running.

Messages from openUTM

openUTM outputs the following messages regarding the SYSLOG:

● Message K136 at the start of the application:

K136 (First) SYSLOG file is &FNAM

● Message K138 at the end of the application:

K138 SYSLOG file &FNAM closed

● Message K137 after switching to another file generation:

K137 SYSLOG switched to file &FNAM

4.2.1 SYSLOG as a simple file

If the SYSLOG file is to be maintained as a simple file, the SYSLOG file can be made known
to openUTM in two ways:

● Before the start of the application, you must assign the link name SYSLOG to the file
(SET-FILE-LINK command). When the application starts, openUTM opens this file. It
remains open for the entire application run for all tasks of the application.

● You can also create a file called filebase.SLOG before the start. The file must have the
same catalog ID (CATID) as the KDCFILE filebase.KDCA (see openUTM manual
“Generating Applications”, statement MAX...,CATID and KDCFILE). openUTM uses the
file with the name filebase.SLOG as the SYSLOG file for each subsequent start,
provided no file or file generation with the link name SYSLOG exists when the appli-
cation starts. If a file or file generation with the link name SYSLOG does exist, openUTM
always logs the SYSLOG UTM messages in this file.

Following the end of the application run, you should save the contents of the
filebase.SLOG file. With the next application start, the contents of this file are overwritten
by openUTM.

v CAUTION!
If you want to maintain the SYSLOG as a simple file, then you many not activate
size monitoring for the SYSLOG. If you switch on size monitoring in the UTM gener-
ation with MAX..,SYSLOG-SIZE=size (size > 0), then openUTM aborts the start of
the application with the start error code 58.

Files required for operation SYSLOG system log file

Using openUTM on BS2000 Systems 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
4

4.2.2 File generation group SYSLOG-FGG

When the SYSLOG file is maintained as an FGG, then openUTM opens a file generation of
the SYSLOG-FGG as the SYSLOG file when the application starts. All tasks of the appli-
cation write UTM messages with the destination SYSLOG to this file generation first.

If the SYSLOG is created as a file generation group, you need only create the file gener-
ation group (FGG) before the start. You do not have to create the individual file generations
because openUTM does not open a SYSLOG file generation before checking that it already
exists. If the file generation exists, it is simply opened. If the file generation does not yet
exist, openUTM creates the file generation automatically with the properties of the file
generation group.

If you want to assign particular values for primary and secondary allocation to the file gener-
ations, then you must create a file generation of the FGG with the desired values. openUTM
then creates the remaining file generations with the same values.

Making the SYSLOG-FGG known

You have the following opportunities to make the SYSLOG-FGG known to openUTM:

● Using the link name “SYSLOG”

At the start of the application, you create an FGG with any name for the SYSLOG. Then
assign the link name SYSLOG to one of the FGG file generations using /SET-FILE-
LINK. The link name must be assigned before each application start.

In this case, the file generation group containing the file generation with the link name
SYSLOG is taken as the SYSLOG-FGG. openUTM first logs data in the file generation
with the link name SYSLOG (first SYSLOG file generation).

If you generated automatic size monitoring for your application, openUTM switches to
the next file generation of this FGG as soon as the size of the first SYSLOG file gener-
ation has reached the threshold value for size monitoring. If this file generation does not
yet exist, openUTM creates it automatically.

If the application was generated without automatic size monitoring, openUTM continues
logging data in the file generation with the link name SYSLOG until you switch to
another file generation of the FGG using the administration command KDCSLOG, or
until you activate automatic size monitoring (e.g. with the administration command
KDCSLOG). This file generation is likewise created automatically by openUTM when
switching files.

SYSLOG system log file Files required for operation

76 Using openUTM on BS2000 Systems

● Creating an FGG with the name filebase.SLOG before the first start of the application

This file generation group must have the same base name (including CATID and
USERID) as the KDCFILE (KDCA file) and must be set up under the BS2000 user ID
under which the UTM processes run.

openUTM only uses the FGG with the name filebase.SLOG as the SYSLOG-FGG if no
file or file generation assigned to the link name SYSLOG exists under the user ID of the
application when the application starts. If a file or file generation with the link name
SYSLOG exists, openUTM always logs the SYSLOG UTM messages in this file.

If filebase.SLOG is a file generation group, then the defined base of the FGG determines
which file generation is taken as the first SYSLOG file.

Basis outside of the valid range

If the base lies outside the valid range (e.g. BASE-NUM=0), then openUTM creates the
file generation with the generation number LAST-GEN+1 at the start of the application.
This file generation is then the first SYSLOG file.

The next generation of the file generation last written in the previous application run is
used by openUTM as the first SYSLOG file the next time the application starts. In other
words, if data is written in the generations up to the n-th file generation in the last appli-
cation run, then logging starts with the (n+1)-th file generation with the next application
start.

Basis within the valid range

If the base lies within the valid range between the first and last file generation (the
output of the SHOW-FILE-ATTRIBUTES command on the FGG shows FIRST-GEN ≤
BASE-NUM ≤ LAST-GEN), then the base generation is taken as the first SYSLOG file.

openUTM does not modify the base number set by you. In other words, if the base lies
outside the valid range, at the next application start openUTM begins logging again in
the same file generation as with the previous start unless you modify the base setting
beforehand.

Files required for operation SYSLOG system log file

Using openUTM on BS2000 Systems 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
4

4.2.2.1 Creating the SYSLOG-FGG

If you want to work with a SYSLOG-FGG, you must create this before the start of the appli-
cation.

Creating SYSLOG as filebase.SLOG

In the simplest case you work with the FGG filebase.SLOG, whereby the base lies outside
the valid range. This FGG need only be created once before the first application start. For
each subsequent application start, openUTM automatically continues with the next gener-
ation of the file generation last written, provided you do not move the base into the valid
range. You can create the FGG using the following BS2000 command:

/CREATE-FILE-GROUP -
/ GROUP-NAME = filebase.SLOG -
/ ,GENERATION-PARAMETER = GENERATION-PARAMETER(-
/ MAXIMUM = n -
/ [,VOLUME = volume -
/ ,DEVICE-TYPE = device -
/ ,OVERFLOW-OPTION = overflow])

Meaning of parameters:

MAXIMUM=n Maximum number of file generations that can be cataloged simultaneously
in the FGG.

VOLUME=volume, DEVICE=device
Volume identifier and device type of the disk on which the FGG is to be
created. The FGG can be created on PUBLIC or PRIVATE DISK.

OVERFLOW-OPTION=overflow
Specifies what should happen if the maximum permitted number of file
generations (MAXIMUM) is exceeded. You can use this operand to control
whether only the last n (MAXIMUM) file generations are to be retained from
the SYSLOG-FGG of your application, or whether all file generations written
by openUTM are to be retained. You can specify CYCLIC-REPLACE,
REUSE-VOLUME or KEEP-GENERATION. (See also section “Identifier
overflow protection” on page 81 and section “Retaining SYSLOG genera-
tions” on page 82.)

KEEP-GENERATION
All file generations are retained, even if the number specified in MAXIMUM
is exceeded.

SYSLOG system log file Files required for operation

78 Using openUTM on BS2000 Systems

CYCLIC-REPLACE and REUSE-VOLUME
Specify that the oldest file generation of the FGG is deleted before the new
one is created.

If you specify CYCLIC-REPLACE or REUSE-VOLUME here, the value you
select for the MAXIMUM (number of file generations) should not be too
small. After switching files, the “old” file generation, which is no longer being
written by openUTM, can be kept open for a longer period by some tasks (if
these are using a user program unit for a very long time). If you have
permitted n file generations and if a task keeps the file generation i open, it
is not yet possible to switch to file generation i+n. BS2000 reports a DMS
error for this file generation. Automatic size monitoring is suspended until
the administrator of the application successfully switches the SYSLOG file
using the KDCSLOG command.

With OVERFLOW-OPTION=KEEP-GENERATION, however, it is also
possible to switch files in this case.

Using the command you create an FGG whose base lies at 0, i.e. outside the valid range.
openUTM automatically creates all file generations. With the first application start,
openUTM creates the file generation with the generation number 1 and uses this as the first
SYSLOG file.

Creating SYSLOG with link names

If you want to work with the link name SYSLOG, then you can create the SYSLOG using
the same command as for a SYSLOG with filebase.SLOG (see above). For GROUP-NAME,
you can specify any name fgg-name. Before each application start, you must then use the
following BS2000 command to assign the link name SYSLOG to the file generation which
should be opened by openUTM as the first SYSLOG:

/SET-FILE-LINK LINK-NAME=SYSLOG,FILE-NAME=fgg-name(*gen)

gen is the generation number of the file generation which openUTM should open as the first
SYSLOG file after the application start.

Files required for operation SYSLOG system log file

Using openUTM on BS2000 Systems 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
4

4.2.2.2 Creating a file generation

Before opening a file generation, openUTM checks whether the respective file generation
already exists. If the file generation does not exist, then openUTM creates it. You can also
create the file generation yourself to define different values for PRIMARY-ALLOCATION
and SECONDARY-ALLOCATION.

Creation of the file generation by openUTM

Depending on whether the FGG was created on PUBLIC or PRIVATE DISK, openUTM
issues one of the following commands internally:

● FGG on PUBLIC DISK

/CREATE-FILE-GENERATION -
/ GENERATION-NAME = fgg-name(*gen) -
/ ,SUPPORT = PUBLIC-DISK(-
/ SPACE = RELATIVE(-
/ PRIMARY-ALLOCATION = prim-alloc -
/ ,SECONDARY-ALLOCATION = sec-alloc))

● FGG on PRIVATE DISK

/CREATE-FILE-GENERATION -
/ GENERATION-NAME = fgg-name(*gen) -
/ ,SUPPORT = PRIVATE-DISK(-
/ VOLUME = volume -
/ ,DEVICE-TYPE = device -
/ ,SPACE = RELATIVE(-
/ PRIMARY-ALLOCATION = prim-alloc -
/ ,SECONDARY-ALLOCATION = sec-alloc))

Meaning of parameters:

fgg-name Name of the file generation group transferred to openUTM

gen Generation now to be opened

PUBLIC-DISK or PRIVATE-DISK
Specifies whether the file generation is to be created on public disk or
private disk. openUTM takes this information from the catalog entry of the
transferred SYSLOG-FGG.

VOLUME=volume, DEVICE=device
Volume identifier and device type of the disk on which the FGG is to be
created.

SYSLOG system log file Files required for operation

80 Using openUTM on BS2000 Systems

PRIMARY-ALLOCATION=prim-alloc, SECONDARY-ALLOCATION=sec-alloc
Size of the initial allocation of storage space or the size of the storage space
expansion.

If openUTM creates all generations of the FGG automatically, openUTM
sets 192 PAM pages for both parameters. If openUTM has already opened
an existing file generation of this FGG (one you created yourself) before
creating the file generation, the values in the existing file generation for
primary and secondary allocation are transferred by openUTM when
creating subsequent file generations.

Creating the file generation yourself

If you want to define the values for primary and secondary allocation yourself for all file
generations of the SYSLOG-FGG, you must create at least one file generation with the
desired storage space specifications and transfer this file generation to openUTM as the
first SYSLOG file. All subsequent file generations are then automatically created by
openUTM with the specified values for primary and secondary allocation.

You can create the file generation using the following BS2000 command:

/CREATE-FILE-GENERATION -
/ GENERATION-NAME = filebase.SLOG(*1) -
/ ,SUPPORT = PUBLIC-DISC(-
/ SPACE = RELATIVE(-
/ PRIMARY-ALLOCATION = prim-alloc -
/ ,SECONDARY-ALLOCATION = sec-alloc))

If the FGG is located on a private disk, you must also create the file generation on private
disk.

Transferring the file generation to openUTM

You then transfer this file generation to openUTM as the first SYSLOG file. This can be done
using the link name SYSLOG or by specifying the FGG base (see page 76).

If you work with the second method, then you must make sure that openUTM has not
changed the base. If the FGG base is within the valid range of the FGG and you do not set
the base to another generation before the next FGG start, then openUTM also begins with
the same (base) file generation as the first SYSLOG file for the next application start.

The information from the previous application run may then be lost. Moreover, regardless
of what you specified for OVERFLOW-OPTION when creating the FGG, only the n most
recent file generations are retained (n=MAXIMUM in CREATE-FILE-GROUP). Please note
section “Retaining SYSLOG generations” on page 82.

Files required for operation SYSLOG system log file

Using openUTM on BS2000 Systems 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
4

To ensure that openUTM begins with the next generation as the first SYSLOG after one
application ends and another starts, you should carry out the following steps before each
start.

1. Set the base to the last FGG generation written (LAST-GEN):

/MODIFY-FILE-GROUP-ATTRIBUTES -
/ GROUP-NAME = filebase.SLOG -
/ ,GENERATION-PARAMETER = GENERATION-PARAMETER(-
/ BASE-NUMBER = RELATIVE-TO-LAST-GEN(0))

2. Create the next file generation:

/CREATE-FILE-GENERATION -
/ GENERATION-NAME = filebase.SLOG(+1) -
/

3. Set the base to the file generation just created:

/MODIFY-FILE-GROUP-ATTRIBUTES -
/ GROUP-NAME = filebase.SLOG -
/ ,GENERATION-PARAMETER = GENERATION-PARAMETER(-
/ BASE-NUMBER = RELATIVE-TO-LAST-GEN(0))

You can only enter this command sequence once for each application start, not for each
started UTM task.

4.2.2.3 Identifier overflow protection

Proceed as follows to check the SYSLOG-FGG memory allocation:

1. Switch on automatic size monitoring either in the UTM generation using
MAX...,SYSLOG-SIZE=size or by administration (e.g. using the administration
command KDCSLOG SIZE= size). In both cases, a value > 0 must be specified for size.

2. Create the SYSLOG-FGG using the following command:

/CREATE-FILE-GROUP -
/ GROUP-NAME = filebase.SLOG -
/ ,GENERATION-PARAMETER = GENERATION-PARAMETER(-
/ MAXIMUM = n -
/ ,OVERFLOW-OPTION = CYCLIC-REPLACE or REUSE-VOLUME)

The file generations are cyclically overwritten so that a maximum of n generations are
cataloged in the FGG. In addition, it may happen that another (older) file generation
occupies storage space internally in the BS2000. With size monitoring, each generation has
a maximum of size UTM pages.

This means that the maximum space occupied by the SYSLOG-FGG is less than or equal
to: (n+1) ∗ size ∗ (size of a UTM page).

SYSLOG system log file Files required for operation

82 Using openUTM on BS2000 Systems

4.2.2.4 Retaining SYSLOG generations

If you want to retain all file generations of the SYSLOG-FGG, you must create the SYSLOG-
FGG as follows:

/CREATE-FILE-GROUP -
/ GROUP-NAME = fgg-name -
/ ,GENERATION-PARAMETER = GENERATION-PARAMETER(-
/ MAXIMUM = n -
/ ,OVERFLOW-OPTION = KEEP-GENERATION)

In this case the base is set to 0, i.e. it lies outside the valid range between the first and last
file generation. The BS2000 then retains all generations of the FGG, regardless of the value
specified in the MAXIMUM parameter (maximum number of generations).

v CAUTION!
If, on the other hand, you set the base of the FGG within the valid range, i.e.
between the first and last generation, all generations outside the valid range (gener-
ation numbers not within LAST-GEN - MAXIMUM and LAST-GEN) are lost (without
warning).

If the base lies within the valid range of the FGG and if you nonetheless want to keep as
many generations as possible, you must select a sufficiently high value for n (preferably
9999). In this case, you can also specify REUSE-VOLUME or CYCLIC-REPLACE for the
OVERFLOW-OPTION operand.

4.2.2.5 Automatic size monitoring

Automatic size monitoring can only be used for FGGs. If you create the SYSLOG file as a
simple file and generate automatic size monitoring, then openUTM terminates the start of
the application with start error code 58.

Automatic size monitoring can be set in two ways:

● in the UTM generation using the KDCDEF statement MAX ...,SYSLOG-SIZE=size

● while the application is running, using the administration command
KDCSLOG [SWITCH,]SIZE=size or on the administration program interface with the
operation code KC_SYSLOG and subopcode KC_CHANGE_SIZE (see the openUTM
manual “Administering Applications”)

In both cases, you must set a value > 0 for size.

When size monitoring is switched on, openUTM does not write any UTM message to the
SYSLOG file before checking whether writing this UTM message would exceed the agreed
maximum size of the file generation (size ∗ size of a UTM page). If this is the case, an
attempt is made to switch to the next file generation. If successful, openUTM outputs UTM
message K137.

Files required for operation SYSLOG system log file

Using openUTM on BS2000 Systems 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
4

If the attempt to switch generations results in an error, openUTM continues to work with the
old file generation in which data was logged before the switching attempt was made.
openUTM writes UTM message K139 to SYSOUT and to the administrator console. In
addition, UTM message K043 is output for all DMS errors. This contains a DMS error code
indicating the reason for the switching error.

To ensure that openUTM does not unsuccessfully attempt to switch to the next file gener-
ation for each subsequent UTM message with the destination SYSLOG, automatic size
monitoring is deactivated after this type of switching error.

After the administrator has found and eliminated the cause of the switching error, automatic
size monitoring can be reactivated using the KDCSLOG SWITCH command, for example.
When KDCSLOG SWITCH is issued, openUTM is forced to begin a new switching attempt.
If this attempt runs without errors, the previously deactivated size monitoring function is
automatically reactivated.

openUTM guarantees that no more UTM messages are written to the old file generation
following the switch. However, this does not mean that the old file generation is freely
available immediately. First, all tasks of the application must close this file generation. This
may take longer if tasks are using user program units for a very long time. When a file
generation is closed by the last task, openUTM outputs UTM message K138.

The output of the administration command KDCSLOG INFO indicates which file genera-
tions are closed (LOWEST-OPEN-GEN).

openUTM does not change the FGG base set by the user at the start of the application. This
means that file generations are not lost unintentionally even if the FGG option
OVERFLOW-OPTION = KEEP-GENERATION is set.

SYSLOG system log file Files required for operation

84 Using openUTM on BS2000 Systems

4.2.3 Behavior in the event of write errors

If an error occurs in the attempt to write a UTM message in the SYSLOG, openUTM outputs
UTM message K043, which contains a DMS error code. This error code indicates the
reason for the error.

The subsequent behavior of openUTM depends on whether the SYSLOG is maintained as
a simple file or as an FGG.

● The SYSLOG is maintained as a simple file:

After UTM message K043 is output, the application is terminated with reason SLOG09.

● The SYSLOG is maintained as an FGG:

When an error occurs, openUTM attempts to switch to the next file generation.
openUTM also switches generations if size monitoring is deactivated or not generated.
openUTM does not switch generations if size monitoring is suspended as a result of a
previous switching error.

If the switching attempt fails, the application is terminated with reason SLOG09.

If openUTM can successfully switch to the next file generation, openUTM makes
another attempt to write the UTM message in the SYSLOG. If an error occurs in this
attempt, the application is terminated with SLOG09. If no errors occur, the application
continues running and openUTM logs the UTM messages in the new SYSLOG file
generation.

Files required for operation User log file

Using openUTM on BS2000 Systems 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
4

4.3 User log file

The user log file contains the records created by the application program with LPUT calls.
The user log file must be created as a file generation group.

openUTM does not write the user log records directly into the log file, rather saves them first
of all in the page pool of the KDCFILE. If the page pool contains the number of UTM pages
generated in MAX...,LPUTBUF=number, openUTM copies the records to the user log file.
The records are copied asynchronously to active transactions. If the application is termi-
nated normally, openUTM likewise copies the records to the user log file.

The number of UTM pages specified in LPUTBUF=number must be taken into account when
generating the size of the page pool with MAX...,PGPOOL=number.

The MAX...,LPUTLTH=length statement affects the block length of the user log file. It is
calculated by openUTM and can be greater than the standard block of 2KB.

openUTM can only copy LPUT records to the user log file if this file is created and can be
accessed by openUTM.

Note that the user log file is overwritten from the start following a KDCDEF or KDCUPD run;
otherwise, data is added to the end of the file. For this reason, you should evaluate the log
records before a KDCDEF or KDCUPD run.

4.3.1 Creating the user log file

The file generation group for the user log file must have the file name filebase.USLA. Here,
filebase is the base name of the KDCFILE as generated in MAX..., KDCFILE=filebase.

The file generation group must be created before the first application start. The following
BS2000 commands must thus be issued:

● CREATE-FILE-GROUP command to create the catalog entry. You must specify:

– the name of the file generation group
– the maximum permitted number of generations
– the procedure when the maximum number of generations is reached

(OVER-FLOW-OPTION=CYCLIC-REPLACE is the default)
– the access authorization, if necessary

● CREATE-FILE-GENERATION command to create at least one generation.

● MODIFY-FILE-GROUP-ATTRIBUTES command to define the reference generation for
relative numbering.

User log file Files required for operation

86 Using openUTM on BS2000 Systems

Example: Creating a file generation group for a user log file

CREATE-FILE-GROUP GROUP-NAME=filebase.USLA
 ,GENERATION-PARAMETER=GENERATION-PARAMETER(
 MAXIMUM=3,OVERFLOW-OPTION=REUSE-VOLUME)
CREATE-FILE-GENERATION GENERATION-NAME=filebase.USLA(+1)
MODIFY-FILE-GROUP-ATTRIBUTES GROUP-NAME=filebase.USLA
 ,GENERATION-PARAMETER=GENERATION-PARAMETER(
 BASE-NUMBER=RELATIVE-TO-LAST-GEN(NUMBER=0))

If the OVERFLOW-OPTION=REUSE-VOLUME parameter is set, a new generation is
created on the same volume as the deleted generation.

If the user log records (LPUT calls) can be > 6 KB, you must specify the SPACE operand
in the CREATE-FILE-GENERATION commands for the primary and secondary allocation.
The values of the SPACE operand must be large enough that at least one LPUT record fits
in the disk area for the secondary allocation. The primary allocation must be at lest twice as
big as the secondary allocation.

If the file generation group is to be created on a private disk, you must also note the
following:

● Each individual file generation of the group must be created on the private disk using a
CREATE-FILE-GENERATION command before the start of the application.

● You must specify OVERFLOW=REUSE-VOLUME when creating the file generation.

● If the base of the file generations is set to the last member of the file generation group
following creation, openUTM begins with the last file generation and then switches to
the next generation. If the first generation is specified as the base, openUTM switches
to the last generation when the first KDCLOG command is issued (see page 87).

These restrictions do not apply to file generations on PUBLIC DISK.

Example: Creating a file generation group on private disk

/CREATE-FILE-GROUP GROUP-NAME=filebase.USLA
 ,GENERATION-PARAMETER=GENERATION-PARAMETER(
 MAXIMUM=3,OVERFLOW-OPTION=REUSE-VOLUME
 ,VOLUME=B004H,DEVICE-TYPE=D3465)
/CREATE-FILE-GENERATION GENERATION-NAME=filebase.USLA(*1)
 ,SUPPORT=PRIVATE-DISK(VOLUME=B004H,DEVICE-TYPE=D3435)
/CREATE-FILE-GENERATION GENERATION-NAME=filebase.USLA(*2)
 ,SUPPORT=PRIVATE-DISK(VOLUME=B004H,DEVICE-TYPE=D3435)
/CREATE-FILE-GENERATION GENERATION-NAME=filebase.USLA(*3)
 ,SUPPORT=PRIVATE-DISK(VOLUME=B004H,DEVICE-TYPE=D3435)
/MODIFY-FILE-GROUP-ATTRIBUTES GROUP-NAME=filebase.USLA
 ,GENERATION-PARAMETER=GENERATION-PARAMETER(
 BASE-NUMBER=RELATIVE-TO-LAST-GEN(NUMBER=0))

Files required for operation User log file

Using openUTM on BS2000 Systems 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
56

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
4

4.3.2 Double user log file

If you are working with double user log files (MAX...,USLOG=DOUBLE), a second file
generation group called filebase.USLB must be created in the same way as the first file
generation group filebase.USLA. The file generation group filebase.USLB must be located in
the same catalog as the parts of the KDCFILE with the suffix B.

4.3.3 Switching to the next file generation

The KDCLOG command and the KC_USLOG opcode on the KDCADMI program interface
can be used by the administrator to switch to the next file generation. Each time the
KDCLOG command or a corresponding KDCADMI call is issued, openUTM switches to the
next file generation.

At the first start of the UTM application, openUTM writes the user log records in the gener-
ation of the group that was specified as the base at the time of creation. openUTM issues
a MODIFY-FILE-GROUP-ATTRIBUTES command to the next file generation and sets the
base to the next most recent file generation with each additional switch initiated by the
administrator.

You can also switch to the next generation as follows after a UTM application terminates
normally:

/CREATE-FILE-GENERATION GENERATION-NAME=filebase.USLA(+1)
/MODIFY-FILE-GROUP-ATTRIBUTES GROUP-NAME=filebase.USLA,
 GENERATION-PARAMETER=GENERATION-PARAMETER(
 BASE-NUMBER=RELATIVE-TO-LAST-GEN(NUMBER=0))

These commands for switching to the next file generation can also be transferred to the
start procedure of your UTM application.

If the administrator, for example, wants to switch to another user log file with KDCLOG, the
file generation group must be created under the same BS2000 user ID under which the
UTM processes are running.

User log file Files required for operation

88 Using openUTM on BS2000 Systems

4.3.4 Response to write errors

If a DMS (Data Management System) error occurs while writing LPUT records in the user
log file, then openUTM outputs message K043, which contains a DMS error code. You can
determine the reason for the error with this error code.
At the same time, every additional LPUT call in the program unit is rejected with the KDCS
return code 40Z (internal return code K903).

The administrator of the application can then correct, restore or recreate the user log file or
its generations.

The administrator must issue the KDCLOG administration command or a KDCADMI call
with opcode KC_USLOG so that openUTM can write LPUT records to the user log file
again. (see the openUTM manual “Administering Applications”).

The file generation number is incremented. The LPUT records saved in the page pool of
the KDCFILE are subsequently written to the log file(s).
The lock for LPUT calls in the program units is released.

Using openUTM on BS2000 Systems 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
5

5 Starting a UTM application

A UTM application can be started as an ENTER process from the BS2000 console or from
any terminal.

The CPU time etc. for the application is calculated under the BS2000 user ID used for this
purpose.

All the necessary files must be cataloged either under this ID or under another ID on the
same host with SHARE=YES.

The following files are required:

– library with a start LLM or with an executable main module
– KDCFILE
– user log file (USLOG, optional)
– system log file (SYSLOG)
– user files of the application
– module library SYSLNK.UTM.064
– library with the connection module for the database system (optional)
– library with the connection module for the format handling system (optional)
– library with the formats (optional)

The ENTER or procedure file for starting the UTM application contains:

– CREATE-FILE- and SET-FILE-LINK commands for the system log file
– CREATE-FILE- and SET-FILE-LINK commands for user files (optional)
– START-EXECUTABLE-PROGRAM command for calling the application program
– Start parameters for UTM, FHS or the database system

When an ENTER file has been created, the application is started by calling the BS2000
command ENTER-JOB:

/ENTER-JOB FROM-FILE=enterfile[,JOB-CLASS=job-class]
 [,RESOURCES=PARAMETERS(CPU-LIMIT=tttt)]

In the case of a procedure file, use the BS2000 command ENTER-PROCEDURE to start
the application:

/ENTER-PROCEDURE FROM-FILE=enter-proc-file (with the same parameters)

Starting a UTM application

90 Using openUTM on BS2000 Systems

Recommendations for the selection of the parameters:

● You should set up a separate job class in which you set the most important parameters
for the ENTER job of a UTM application.

You can assign the job class then in the ENTER-PROC command or in the ENTER-JOB
command (or concerning the parameters in an ENTER-JOB file in the SET-LOGON-
PARAMETERS command).

● The operand CPU-LIMIT (CPU time limit) should be specified when calling the ENTER
procedure if it is not specified in the SET-LOGON-PARAMETERS command in the
ENTER-JOB file.

The value should be set such that the jobs of a UTM application are not subject to any
CPU time restriction. For this reason, you should set CPU-LIMIT=NO (or TIME=NTL)
or define the job class accordingly.

If the CPU time is limited, i.e. if CPU-LIMIT≠ NO has been set, and a CPU time runout
occurs for a task of the application, then this can lead to the abnormal termination of the
UTM application!

Please note that an NTL authorization (No Time Limit) may be necessary in the user
entry for the corresponding account number so that the Enter process can run without
a CPU time limit.

You can set CPU utilization limits for individual program units of a UTM application in
the KDCDEF generation in the TIME operand of the TAC statement.

All the requirements for operating the application are fulfilled when the UTM application
starts, i.e. the areas and tables are created, files are opened, connections are established,
etc. These actions may result in error situations, which are identified by the start routine and
which may lead to the termination of the application start or of a task. openUTM then
outputs UTM message K078 or K049 to SYSOUT, which indicates the reason for the termi-
nation (see also the openUTM manual “Messages, Debugging and Diagnostics on BS2000
Systems”).

In the start procedure, no commands need be issued to check the consistency of the files
opened by openUTM (REPAIR-DISK-FILES or CHECK-FILE-CONSISTENCY); openUTM
automatically calls these commands when opening files that were not closed correctly.

The application program remains loaded until it is terminated either by the interception of
the administrator or as a consequence of an error. The manner in which openUTM termi-
nates the application program is important for the structure of the start procedure by the
user.

Starting a UTM application

Using openUTM on BS2000 Systems 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
5

The following situations can occur:

● On a normal termination using the administrative tools (e.g. via WinAdmin/WebAdmin
or the administration command KDCSHUT NORMAL/WARN/GRACE) or after the
application has terminated (Term Application), openUTM terminates the application
program with TERM UNIT=STEP, i.e. all commands up to the next /SET-JOB-STEP or
up to /EXIT-JOB or /LOGOFF are ignored in the ENTER procedure.

● When exchanging the application program with KDCAPPL PROG=NEW or following a
program error which results in PEND ER, the application program should be loaded
dynamically and restarted. openUTM then terminates the program with TERM
UNIT=PRGR, i.e. the next command of the ENTER procedure is interpreted. This
should be a /SKIP-COMMANDS command, which leads back to the
/START-EXECUTABLE-PROGRAM command for starting the application program.

The processing in the start procedure following the /SET-JOB-STEP command can be
rendered dependent on whether the UTM application was terminated normally or abnor-
mally:

If the application is terminated abnormally (Term Application), openUTM creates an entry
with LINK-NAME=KDCTRMAP in the task file table (TFT). In the start procedure, you can
query (with /SHOW-FILE-LINK) whether such an entry exists in the TFT and control the
subsequent procedure accordingly. When a UTM dump is written, the LINK name
KDCDUMP is assigned for this purpose. In the start procedures, the user can execute
KDCDUMP immediately, for example.
The job variable connection offers another means of restarting openUTM after an abnormal
termination (see section “Restarting after an abnormal application termination” on
page 114).

The start procedure is described in the following sections. It is contained in a file named
enterfile or enter-proc-file in this section.

With the start procedure you create an ENTER process. The ID used must be specified in
the ENTER-JOB or ENTER-PROC command or in the SET-LOGON-PARAMETERS
command of the start procedure.

UTM processes that are started by ENTER-JOB or ENTER-PROC are batch processes.
They are thus subject to the JOB-CLASS restrictions for batch tasks. Normally, however,
you want to start UTM processes immediately. This can be achieved using the “JOB
EXPRESS” function. In this case, you must specify START-IMMEDIATE=YES in the user
entry of the BS2000 user ID under which the processes are to run.

Starting a UTM application

92 Using openUTM on BS2000 Systems

In addition to the batch and dialog tasks, there is also the class of TP processes on BS2000
systems. This is handled as a priority by the operating system. The processes started with
ENTER-JOB or ENTER-PROC are registered by openUTM as TP processes. However,
these processes are only handled as a priority if TP processes are permitted under the
respective BS2000 user ID or job class. If TP processes are prohibited, UTM processes run
as batch processes.

All the processes of an application must be started under the same BS2000 user ID.

i ● A UTM application can also be started interactively. This should only be done
for test purposes.

● The start procedure can also be started using WinAdmin/WebAdmin. For this
purpose, the openFT product must also be installed in addition to
WinAdmin/WebAdmin (on BS2000 systems and on the WinAdmin or
WebAdmin computer).

 ● For an example of a start procedure, refer to the section “Basic structure of an
SDF start procedure” on page 116.

● For information on cluster-specific issues when starting a UTM cluster appli-
cation, refer to the section “Starting a UTM cluster application” on page 161.

Starting a UTM application Start parameters

Using openUTM on BS2000 Systems 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
5

5.1 Start parameters of the application

The main routine KDCROOT reads the start parameters from SYSDTA when the appli-
cation is started.

The start parameters define the current runtime parameters of the application. This includes
the number of tasks with which the application is to start or parameters for a database
and/or formatting system connected to the system, for example.

The start parameters can be entered in one or more lines. A prefix determines who the start
parameters are for:

● Start parameters with the prefix “.UTM” or without a prefix are interpreted by openUTM
itself.

● Start parameters with the prefix “.UDS”, “.LEASY”, “.RMXA”, “.DB”, or “.CIS“ are
forwarded by openUTM to the connected database system for evaluation.

Example

If the application was generated with DATABASE...,TYPE=UDS, for example, “.UDS”
must be specified as the prefix for the parameters to be forwarded to UDS.

If the application was generated with DATABASE...,TYPE=XA, “.RMXA” must be
specified as the prefix.

● Start parameters with the prefix „.FHS“ are forwarded by openUTM to the FHS format
handling system, which was generated with the type “.FHS” in the FORMSYS
statement.

● Start parameters with

● 1st block: start parameters for openUTM

● 2nd block: start parameters for database system and format handling system

The sequence of start parameters is arbitrary within a block. Each block – including an
empty block – is concluded with an END command. For example, if no database system or
format handling system is generated, two END commands are specified in succession.

UTM start parameters in the second block are ignored. This also applies to start parameters
of the database system and format handling system in the first block.

Start parameters Starting a UTM application

94 Using openUTM on BS2000 Systems

5.1.1 Start parameters for openUTM

The syntax of the UTM start parameters is illustrated below:

[.UTM] START

 [,ADMI-TRACE= { ON | OFF }]
 [,ASYNTASKS=number]

 [,BTRACE=]

 [, CPIC-TRACE = { TRACE | BUFFER | DUMP | ALL | OFF }]
 [,DB-CONNECT-TIME=sec]
 [,DBKEY=db-key]
 [,DUMP-CONTENT={ STANDARD | EXTENDED }]
 [,DUMP-MESSAGE=(event-typ,event)]
 [,DUMP-PREFIX=filename-prefix]
 [,DUMP-USERID={ STANDARD | SYSUSER }]

[,ENTER-PROC-INPUT='enter-proc-file,[(par1=param1
 ,…,par<n>=param<n>),<enter-proc-pars>]']

[,NODE-TO-RECOVER=node-name]
 [,OTRACE={ ON | (SPI, INT, OSS, SERV, PROT) | OFF }]
 [,PASSWORD=connection-password]

[,RESET-PTC ={ YES | NO }]
 [,ROOTNAME=rootname]
 [,STARTNAME={ enterfile |
 'enterfile[,enteroperand][...]' }]
 [,STXIT={ ON | OFF }]
 [,STXIT-LOG={ ON | OFF }]
 [,SYSPROT=(interval,filename-prefix)]
 [,TABLIB=libname]
 [,TASKS=number]
 [,TASKS-IN-PGWT=number]
 [,TESTMODE={ ON | OFF | FILE }]
 [, TX-TRACE = { ERROR | INTERFACE | FULL | DEBUG | OFF }]
 [,UTM-MSG-DATE={ YES | NO }]
 [, XATMI-TRACE = { ERROR | INTERFACE | FULL | DEBUG | OFF }]

[.UTM] END

With the syntax shown above, the parameters are specified in a line without a carriage
return and are separated by commas.

The UTM start parameters in the START command can be specified over several lines. In
this case, the START command must appear in each line before the operands.

FILEBASE=filebase [,CATID=(catalog-A,catalog-B)]
CLUSTER-FILEBASE=cluster_filebase

 ON | OFF
 (ON | OFF, length)

Starting a UTM application Start parameters

Using openUTM on BS2000 Systems 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
5

Syntax check at the start of the application

● If openUTM detects a syntax error in the start parameters, it outputs message K038,
sets the corresponding value of the start parameter to its default value (if any) and starts
the application.

● The application cannot be started when there is a syntax error in the FILEBASE
parameter or in the CLUSTER-FILEBASE parameter because there is no default value
for this parameter.

Meaning of the commands

START This command is used to specify the UTM start parameters required for a
UTM application run. The application is started as soon as all start param-
eters have been entered.

END This command concludes the input of start parameters (openUTM,
database system, and format handling system).

The start parameters must be specified in own blocks:
– first the openUTM start parameters, and then
– the start parameters for the connected database and formatting

systems.

Each block is concluded with the END command.

Meaning of the operands

FILEBASE=filebase
Base name of the KDCFILE and the user log file, in standalone applications.
Here you must specify the name under which the KDCFILE is stored at
startup time (with a maximum of 42 characters in length). If an invalid name
is specified, the application start is aborted.

If you specify the start parameter FILEBASE, you must not specify the start
parameter CLUSTER-FILEBASE.

In the case of UTM cluster applications, use the start parameter CLUSTER-
FILEBASE instead of FILEBASE. The base name of an individual node
application is defined in the CLUSTER-NODE statement during UTM
generation.

Start parameters Starting a UTM application

96 Using openUTM on BS2000 Systems

CLUSTER-FILEBASE=cluster_filebase
If you want to start a UTM application as a node application of a UTM cluster
application, you use this start parameter to specify the base name for the
cluster files, which can also contain the catalog ID and the user ID. Here
you must specify the name under which the files that are global to the
cluster are stored at the startup time.

CLUSTER_FILEBASE applies locally to the node.

cluster_filebase can be a maximum of 42 characters in length. You can omit
the catalog ID and the user ID. Even if you do this, the base name must not
exceed 42 characters in length when the catalog ID and the user ID have
been added.

If you specify the start parameter CLUSTER-FILEBASE, you must not
specify the start parameters FILEBASE and CATID.

ADMI-TRACE=
Enable/disable the ADMI trace function (= trace function for the KDCADMI
administration program interface), see also openUTM manual “Messages,
Debugging and Diagnostics on BS2000 Systems”.

In UTM cluster applications, ADMI-TRACE applies locally to the node.

For information on the names of the trace files, see “Trace files” on
page 109.

ON The ADMI trace function is enabled at the start of the application.

OFF The ADMI trace function remains disabled at the start of the application.

Default: OFF

ASYNTASKS=number
Maximum number of tasks that are to work for asynchronous services.

In UTM cluster applications, ASYNTASKS applies locally to the node.

Default value: Number defined in MAX...,ASYNTASKS=number
Minimum value: 0
Maximum value: Number defined in MAX...,ASYNTASKS=number

BTRACE= Enable/disable the BCAM trace function.

In UTM cluster applications, BTRACE applies globally to the cluster.

ON The BCAM trace function is enabled at the start of the application.
All events relating to the connection are recorded in the BCAM trace file. In
order for the trace to be written, it is necessary to set up a trace file in the
UTM start procedure for each task and use the SET-FILE-LINK command
to assign it the link name KDCBTRC.

Starting a UTM application Start parameters

Using openUTM on BS2000 Systems 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
5

For further information on setting up the trace file and analyzing it using the
utility program KDCBTRC and for a description of the trace, see the
openUTM manual “Messages, Debugging and Diagnostics on BS2000
Systems”

OFF The BCAM trace function remains disabled at the start of the application.

Default: OFF

length Specifies the maximum length of data recorded when the BCAM trace
function is activated. If the data to be recorded is longer, the first length/2
characters and the last length/2 characters of the data are recorded. This
length can only be specified in the start parameters.

Default: 256
Minimum value: 32
Maximum value: 32680

If you use the BCAM trace for the UPIC Capture function (see also section
“Recording the UPIC conversation (UPIC Capture)” on page 298) then it is
advisable to use the maximum value.

CATID=(catalog-A,catalog-B)
With this parameter you can specify the catalog IDs to which the parts of the
KDCFILE are assigned. If you are working with CATID, you must specify the
base name without CATID in the FILEBASE parameter. In the case of dual-
file operation, you can assign the files with suffix A to catalog-A and the files
with suffix B to catalog-B. If you are working with dual-file operation and if
you only specify catalog-A, both files will be assigned to the same CATID.

If you specify the parameter CLUSTER-FILEBASE, you must not specify
the start parameter CATID.

i In UTM cluster applications, the CATID of a node application is
defined in the CLUSTER-NODE statement during UTM generation.

CPIC-TRACE=
Enable/disable the CPI-C trace function (= trace function for the X/Open
interface CPI-C), see also openUTM manual “Creating Applications with
X/Open Interfaces”.

In UTM cluster applications, CPIC-TRACE applies locally to the node.

For information on the names of the trace files, see “Trace files” on
page 109.

Start parameters Starting a UTM application

98 Using openUTM on BS2000 Systems

TRACE The CPI-C trace function is enabled with the level TRACE at the start of the
application. The content of the input and output parameters is output for
each CPI-C function call. Only the first 16 bytes are output from the data
buffers. The return codes of the KDCS calls to which the CPI-C calls are
mapped are output.

BUFFER The CPI-C trace function is enabled with the level BUFFER at the start of
the application. This trace level includes the TRACE level. However, the
data buffers are logged in their full length.

DUMP The CPI-C trace function is enabled with the level DUMP at the start of the
application. This trace level includes the TRACE level and also writes
diagnostic information to the trace file.

ALL The CPI-C trace function is enabled with the level ALL at the start of the
application. This trace level includes the levels BUFFER, DUMP and
TRACE.

OFF The CPI-C trace function remains disabled at the start of the application.

Default: OFF

DB-CONNECT-TIME=sec
Maximum time in seconds the system waits to establish a connection to the
database.

In UTM cluster applications, DB-CONNECT-TIME applies locally to the
node.

If no connection is established to the database during this wait time,
message K078 is issued and the task is terminated.

Default: 0 (no timeout)
Minimum value: 60
Maximum value: 3600

DBKEY=db-key
Key comprising up to eight characters for accessing the database.

In UTM cluster applications, DBKEY applies locally to the node.

db-key is used when calling the database system if no DBKEY is defined for
the transaction code of the calling program unit.

Default value: C’UTMËËËËË’

DUMP-CONTENT=
Specifies whether openUTM dumps the global task storage areas in all
dumps of a dump file generation, i.e. for all tasks, or only in the dump of the
task that caused the application crash.
In UTM cluster applications, DUMP-CONTENT applies locally to the node.

Starting a UTM application Start parameters

Using openUTM on BS2000 Systems 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
5

STANDARD
If openUTM creates a dump file generation, global task storage areas are
only contained in the dump of the first process (initiator). This is normally
sufficient for diagnostic purposes.

Default value: STANDARD

EXTENDED
The global task storage areas are contained in all dumps of a DUMP file
generation.

i This value should only be set if explicitly requested by the Service
personnel.

DUMP-MESSAGE= (event-type, event)
Event for which UTM creates a UTM dump when test mode is enabled. A
dump is only created by the task in which the event occurred; the application
is not terminated in the process.

In UTM cluster applications, DUMP-MESSAGE applies globally to the
cluster.

The dump code depends on the event:

The following can be specified for event-type, event:

– event-type=MSG,event=Knnn (K message)

The UTM dump is created when message Knnn occurs.
A dump is only created once for message numbers K023, K043, K061,
K062; thereafter, event is reset automatically.
With all other messages, a dump is created each time the message
number occurs until the value is reset by the administrator.

The value of DUMP-MESSAGE can be reset by the administrator, e.g.
using WinAdmin/WebAdmin or by issuing the command
KDCDIAG DUMP-MESSAGE=*NONE.

Event Prefix Example

K or P message ME
followed by the message number

MEP012

Primary KDCS return
code

CC-
followed by the return code

CC-71Z

Secondary KDCS return
code

DC
followed by the return code

DCK303

SIGN status SG-
followed by the status

SG-U01

Start parameters Starting a UTM application

100 Using openUTM on BS2000 Systems

– event-type=RCCC,event=rccc (compatible KDCS return code)

Specify a KDCS return code (KCRCCC, e.g. 40Z) for rccc. When this
return code is returned for a KDCS call, the process in which the return
code occurred generates a UTM dump. The message dump for this
event is then automatically deactivated.

– event-type=RCDC,event=rcdc (internal KDCS return code)

Specify a KDCS return code (KCRCDC, e.g. KD10) for rcdc. When this
return code is returned for a KDCS call, the process in which the return
code occurred generates a UTM dump with the code CC-40Z. The
message dump for this event is then automatically deactivated.

– event-type=SIGN,event=sign (SIGN status code)

Specify a SIGNON status code (KCRSIGN1/2, e.g. U05) for sign, where
KCRSIGN1 must have the value U, I, A or R. If this code is issued when
a user signs on, the process in which the SIGNON status occurred
generates a UTM dump with the code SG-U05. This happens
irrespective of whether a signon service has been generated in the
application or not. The message dump for this event is then automati-
cally deactivated.

Notes

For all KDCS return codes ≥70Z and the associated incompatible KDCS
return codes for which no PENDER dump is written (e.g. 70Z/K316), no
dump is created either.

Up to three different events can be specified in the administration command
KDCDIAG using the parameters DUMP-MESSAGE1, DUMP-MESSAGE2
and DUMP-MESSAGE3. In contrast, only one event can be specified using
the start parameter DUMP-MESSAGE. In addition, no message inserts can
be specified for event-type=MSG in the start parameter. By contrast, up to
three inserts can be specified as additional conditions in the KDCDIAG
command.

DUMP-PREFIX
filename-prefix is the filename prefix for UTM dump files. It can be a
maximum of 17 characters in length.

In UTM cluster applications, DUMP-PREFIX applies locally to the node.

If you specify filename-prefix, openUTM writes the memory dumps to a file
generation group (FGG) or to a normal BS2000 file (dump file) with the
name filename-prefix.rrrrrr.ttttff.

Starting a UTM application Start parameters

Using openUTM on BS2000 Systems 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
5

In cluster applications, it makes sense to specify filename-prefix. In this case,
filename-prefix should contain an indication of the application name and the
name of the computer on which the node application runs.

If you do not specify a filename-prefix or if the memory dump (without blanks)
is written at a very early phase during startup of the application, openUTM
writes the memory dumps to a file generation group or to a file with the
name DUMP.UTM.rrrrrr.ttttff.aaaaaaaa.

DUMP-USERID=
Specifies the user ID under which the UTM dumps are to be stored.

In UTM cluster applications, DUMP-USERID applies locally to the node.

STANDARD
The UTM dumps will be stored under the user ID that started the UTM task.

Default: STANDARD

SYSUSER
The UTM dumps will be stored under the $SYSUSER user ID.

ENTER-PROC-INPUT=enter-proc-input

In UTM cluster applications, ENTER-PROC-INPUT applies locally to the
node.
Specification of the ENTER-PROC file and its parameters.
When this parameter is specified, the follow-on tasks of a UTM application
are started by means of an ENTER-PROC command.

enter-proc-input may be a maximum of 255 characters in length.

This parameter can be specified more than once. The specification must b
enclosed in double quotes. The maximum length of the aggregate specifi-
cations is 2000 characters. The parameters specified in multiple ENTER-
PROC statements are assembled in the order in which they are specified.
If the maximum total length is exceeded, a message is output and the start
of the application is aborted.

rrrrrr Return code specifying the reason for termination.
You will find detailed information in the openUTM manual “Messages,
Debugging and Diagnostics on BS2000 Systems”.

tttt TSN of the task that generated the dump.

ff If the dump file is not an FGG file: Sequence number for the dumps
created by one process of an application.
If the dump file is an FGG file: Hexadecimal value of the application
start counter since KDCDEF generation.

aaaaaaaa Name of the application to which the dump belongs.

Start parameters Starting a UTM application

102 Using openUTM on BS2000 Systems

The collected enter-proc-input parameters are issued by UTM by means of
an ENTER-PROC command. They must consequently be specified in the
correct syntax of the ENTER-PROC command.

Example:

.UTM START ENTER-PROC-INPUT='START-DYN-PROC,(PAR1=<par1>,
 PAR2=<par2>'
.UTM START ENTER-PROC-INPUT=',PAR3=<par3>),LOGGING=*NO'

This issues the following command:

ENTER-PROC START-DYN-PROC,(PAR1=<par1>, PAR2=<par2>,
 PAR3=<par3>),LOGGING=*NO

In the event of syntax errors in this command, the message K048 is output,
and no follow-on task is started.
The simultaneous specification of the ENTER-PROC-INPUT and
STARTNAME parameters is rejected with the message K039, and the start
of the application is aborted.

NODE-TO-RECOVER=node-name
This parameter is only relevant for UTM cluster applications.

node-name is the name of the node application for which a node recovery is
to be performed.
The name results from the UTM generation, see openUTM manual “Gener-
ating Applications”, CLUSTER-NODE statement, NODE-NAME operand.
Whenever a node application starts, terminates or fails, the K169 message
outputs node-name together with the host name. WinAdmin/WebAdmin also
display the node-name in the list of cluster nodes.

Node recovery should only be performed for an abnormally terminated node
application if a normal node warm start is either not possible or cannot be
performed quickly because the node computer has failed and no virtual host
has been defined. As a result, a node recovery for a node application is only
possible on a node computer on which the abnormally terminated node
application has not run.
For information on the conditions that must be fulfilled in order to perform
node recovery for UTM cluster applications as well as on the purpose and
function of node recovery, see section “Node recovery” on page 168.

If a database system does not support node recovery then node recovery
always terminates abnormally.

i For information on the SESAM/SQL and UDS/SQL versions as of
which node recovery is supported, please refer to the openUTM
Release Notice.

Default: Blanks, i.e. normal application start.

Starting a UTM application Start parameters

Using openUTM on BS2000 Systems 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
5

OTRACE= Switches on/off the OSS trace function.
The OSS trace is required for diagnostic purposes if problems arise with
OSI TP connections of the application. See also the openUTM manual
“Messages, Debugging and Diagnostics on BS2000 Systems” and the OSS
manual.

In UTM cluster applications, OTRACE applies globally to the cluster.

ON Switches on the OSS trace function on the start of the application.
Trace records of types SPI, INT, OSS, SERV and PROT are logged. When
the OSS trace function is switched on, each process of the application
creates its own trace file.

(SPI, INT, OSS, SERV, PROT)
Switches on the OSS trace function on the start of the application. Trace
records of the specified type are logged. The trace records are specified in
an arbitrary sequence.

SPI
The XAP-TP system programming interface is logged.

INT
The internal processes in the XAP-TP module are logged.

OSS
The OSS calls are logged.

SERV
The internal OSS trace records of type O_TR_SERV are logged.

PROT
The internal OSS trace records of type O_TR_PROT are logged.

OFF The OSS trace function remains off when the application starts.

PASSWORD=connection-password
A 4-character password that must be specified by the user to establish a
logical connection to the application (see section “Standard sign-on process
for terminals” on page 180).

In UTM cluster applications, PASSWORD applies locally to the node.

Default value: No password (X’0000 0000’)

RESET-PTC =
This parameter is only relevant for UTM cluster applications if a value other
than blanks has been set for NODE-TO-RECOVER.

RESET-PTC specifies whether transactions with the state PTC ("prepare to
commit") are rolled back during node recovery.

Start parameters Starting a UTM application

104 Using openUTM on BS2000 Systems

A transaction with the PTC state may contain locks on global UTM storage
areas that apply globally throughout the cluster and may possibly impair the
current UTM cluster application.

Transactions with the PTC state cannot be committed on a node recovery
because no connections are established to partner applications. If transac-
tions remain in the PTC state then the node recovery terminates abnor-
mally, i.e. no online import or KDCUPD with the KDCFILE of the failed node
application is permitted and any locks on UTM storage areas that are
effective throughout the cluster are retained.

If you are able to tolerate possible data inconsistencies, repeat the node
recovery with RESET-PTC=YES in the case of existing transactions in the
PTC state.

YES PTCs during node recovery are rolled back.

NO PTCs are retained during node recovery.

Default: NO

ROOTNAME=rootname
The parameter is mandatory if the ROOT table module is to be loaded
dynamically. rootname is the PLAM element name of the ROOT table
module in the library specified with TABLIB=.

In UTM cluster applications, ROOTNAME applies locally to the node.

STARTNAME=

In UTM cluster applications, STARTNAME applies locally to the node.

i The simultaneous specification of the ENTER-PROC-INPUT and
STARTNAME parameters is rejected with the message K039. The
start of the application is aborted.

enterfile Name of the file specified in the ENTER command. The specification is only
necessary in multi-task mode (TASKS > 1). The ENTER file must be
cataloged under the user ID under which the application was started.
enterfile may be up to 54 bytes long.

enteroperand
Operand of the BS2000 command ENTER. openUTM starts the follow-up
tasks and implements the operands specified. The notation and effect of the
operands specified correspond to the operands of the ENTER command
The operands must be specified in the ISP format.
The character string between the quotation marks
(’enterfile, enteroperand,...’) can be up to 200 characters long.

Starting a UTM application Start parameters

Using openUTM on BS2000 Systems 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
5

STXIT= Activates STXIT routines.

In UTM cluster applications, STXIT applies locally to the node.

ON The UTM-STXIT is activated on the start of the application.

Default value: ON

OFF The UTM-STXIT remains deactivated. This is only possible for UTM appli-
cations started interactively.

STXIT-LOG= Activation of extended STXIT logging in the event of problems involving
STXIT processing. Several K099 messages are output at SYSOUT.

In UTM cluster applications, STXIT-LOG applies locally to the node.

ON The STXIT logging function is activated at the start of the application.

OFF The STXIT logging function remains deactivated at the start of the appli-
cation.

Default: OFF

SYSPROT= Switch over system files SYSOUT and SYSLST

interval Switchover interval in days

In UTM cluster applications, interval applies globally to the cluster.

Default: 0 (no interval: the files are not switched over at a specified time
interval, but only on request)
Maximum value: 364

filename-prefix
Prefix for the new file name of the system files that have been switched
over.
filename-prefix must not exceed 17 characters, see also page 72.

In UTM cluster applications, filename-prefix applies locally to the node.

Default in standalone applications:
Name of the application specified in MAX APPLINAME during KDCDEF
generation.

Default in cluster applications: Name of the application specified in
MAX APPLINAME during the KDCDEF generation, followed by a period
and the host name of this node (CLUSTER-NODE HOSTNAME).

You will find a complete description of how to switch over the system log
files in the section “System files SYSOUT and SYSLST” on page 71.

Start parameters Starting a UTM application

106 Using openUTM on BS2000 Systems

TABLIB=libname
The parameter is mandatory if the ROOT table module is to be loaded
dynamically. The libname library must then contain the object of the ROOT
table module.

In UTM cluster applications, TABLIB applies locally to the node.

TASKS=number
Number of BS2000 tasks that are to be started for the application.

In UTM cluster applications, TASKS applies locally to the node.

Default value: Number defined in MAX...,TASKS=number
Minimum value: 1 *)
Maximum value: Number defined in MAX...,TASKS=number

If the application is to work with several processes, then the STARTNAME=
start parameter or the ENTER-PROC-INPUT start parameter must also be
specified.

*) If the application is generated with Program Wait (i.e. if either a TAC class
or a TAC is generated with PGWT=YES), or if the application is generated
as a UTM cluster application then a value of at least 2 must be specified for
the TASKS start parameter.

i In addition to the number of tasks defined in TASKS, UTM starts
further tasks for an application. These are known as UTM system
processes. The purpose of the UTM system processes is to ensure
that applications continue to be responsive even under high loads.
The system tasks only process selected jobs which are charac-
terized first and foremost by short runtimes. When an application is
started, UTM starts up to three additional UTM system processes for
the application depending on the number of started tasks (TASKS=
number).

TASKS-IN-PGWT=number
Maximum number of processes that can simultaneously execute program
units with blocking calls (e.g. the KDCS call PGWT) are permitted (PGWT=
operand in the TAC and TACCLASS KDCDEF statements).

In UTM cluster applications, TASKS-IN-PGWT applies locally to the node.

Default value: Number defined in MAX ...,TASKS-IN-PGWT=number in the
UTM generation.
Minimum value: 1 if MAX...,TASKS-IN-PGWT > 0; otherwise 0.
Maximum value: Number defined in MAX ...,TASKS-IN-PGWT=number in
the UTM generation.

Starting a UTM application Start parameters

Using openUTM on BS2000 Systems 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
5

TESTMODE=
Activate test mode.
See also the openUTM manual “Messages, Debugging and Diagnostics on
BS2000 Systems”.

In UTM cluster applications, TESTMODE applies globally to the cluster.

ON Test mode is to be switched on when the application starts. In test mode,
additional internal UTM plausibility checks are carried out and trace infor-
mation is logged in the internal trace area. Test mode should only be
switched on to diagnose UTM errors on the recommendation of the systems
analyst.

OFF Test mode is to remain deactivated when the application starts. In particular
situations, dumps are suppressed after PEND ER if TESTMODE=OFF.

Default value: OFF

FILE Test mode is activated when the application starts. In addition, the
diagnostic data is written to a file each time the internal trace area overflows
so as to avoid any loss of diagnostic data. The file name is made up of the
base name filebase and the TSN of the respective task, i.e. the following file
is created for each task for a UTM production application:

filebase.KTATRC.tsn

TX-TRACE= Activate/deactivate the TX trace function (= trace function for the X/Open
interface TX), see also openUTM manual “Creating Applications with
X/Open Interfaces”.

In UTM cluster applications, TX-TRACE applies locally to the node.

For information on the names of the trace files, see “Trace files” on
page 109.

ERROR The TX trace function is enabled with the level ERROR at the start of the
application. Only errors are logged.

INTERFACE
The TX trace function is enabled with the level INTERFACE at the start of
the application. The level INTERFACE includes the level ERROR, and TX
calls are also logged.

FULL The TX trace function is enabled with the level FULL at the start of the appli-
cation. The FULL level includes the INTERFACE level. All KDCS calls to
which the TX calls are mapped are also logged.

DEBUG The TX trace function is enabled with the level DEBUG at the start of the
application. The level DEBUG includes the level FULL, and diagnostic infor-
mation is also logged.

Start parameters Starting a UTM application

108 Using openUTM on BS2000 Systems

OFF The TX interface trace function remains disabled at the start of the appli-
cation.

Default: OFF

UTM-MSG-DATE=

Specifies whether UTM messages are output to SYSOUT/SYSLST with or
without date/time.

In UTM cluster applications, UTM-MSG-DATE applies locally to the node.

YES All UTM messages to SYSOUT/SYSLST are prefixed with the date/time.

Default: YES

NO The UTM messages do not include any date/time prefix.

XATMI-TRACE=
Activate/deactivate the XATMI trace function (= trace function for the
X/Open interface XATMI), see also openUTM manual “Creating Applica-
tions with X/Open Interfaces”.

In UTM cluster applications, XATMI-TRACE applies locally to the node.

For information on the names of the trace files, see “Trace files” on
page 109.

ERROR The XATMI trace function is enabled with the level ERROR at the start of
the application. Only errors are logged.

INTERFACE
The XATMI trace function is enabled with the level INTERFACE at the start
of the application. The level INTERFACE includes the level ERROR, and all
XATMI calls are also logged.

FULL The XATMI trace function is enabled with the level FULL at the start of the
application. The FULL level includes the INTERFACE level. All KDCS calls
to which the XATMI calls are mapped are also logged.

DEBUG The XATMI trace function is enabled with the level DEBUG at the start of
the application. The level DEBUG includes the level FULL, and diagnostic
information is also logged.

OFF The XATMI interface trace function remains disabled at the start of the appli-
cation.

Default: OFF

Starting a UTM application Start parameters

Using openUTM on BS2000 Systems 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
5

Trace files

By default, the trace records of the ADMI, CPI-C, TX, and XATMI trace function are written
to one of the following files:

● KDC.TRC.trace-type.appliname.tsn (standalone application)

● KDC.TRC.trace-type.appliname.nodename.tsn (UTM cluster application)

You can also assign your own trace files via link names.

trace-type
Identifies the trace type:

ADMI ADMI trace (link name: KDCADMI)

CPIC CPI-C trace (link name: KDCCPIC)

TX TX trace (link name: KDCTX)

XATMI XATMI trace (link name: KDCXATMI)

appliname
Name of the application

nodename
Name of the node on which the node application is running.

tsn TSN of the UTM task (4 digits)

5.1.2 Start parameters for the database system

The notation and meaning of these parameters are described in the User Guides for the
respective database systems. Additional information can be found in section “Starting and
stopping a UTM database application” on page 127.

5.1.3 Start parameters for the format handling system

The notation and meaning of these start parameters are described in the User Guide for the
format handling system (FHS). openUTM only accepts start parameters for the format
handling system if this was specified in the KDCDEF statement FORMSYS in the UTM
generation.

Start commands Starting a UTM application

110 Using openUTM on BS2000 Systems

5.2 Starting the application

The application program is started using the START-EXECUTABLE-PROGRAM command.

The following then applies:

● If shareable parts of the application or the runtime systems required by the application
are to be loaded into system memory, then this must be initiated by the administrator
before the start of the application program.

● The START-EXECUTABLE-PROGRAM command loads the statically linked part of the
application program into working memory. All load modules of the application program
that were generated with LOAD-MODE=STARTUP or LOAD-MODE=(POOL,...) are
loaded at the start of the application as independent units.

● If individual load modules cannot be loaded, then the start of the task is generally
resumed. If there is a branch to a program that could not be loaded while the application
is running, then this leads to a BADTACS event service call or to a PEND ER. If the
MSGTAC, SIGNON event services or the START, SHUT, INPUT and FORMAT event
exits or the administration program unit or AREAs could not be loaded, then the start of
the task is aborted with an error message.

● openUTM checks if the application program loaded in this task matches the program
started in tasks started earlier when an additional task is started for the application and
also after a PEND ER. openUTM checks the UTM generation information. If the data
does not match, then openUTM aborts the start of the follow-up task with an error
message.

Start commands for the application program

The application program is started with:

/START-EXECUTABLE-PROGRAM FROM-FILE=*LIB-ELEM -
 (LIB=llm-plamlib -
 , ELEM=llm-start-llm -
)

The application program llm-start-llm must be made available as a type L element in an llm-
plamlib program library.

If you have generated a load module with ALTERNATE-LIBRARIES=YES, you must assign
a link name (BLSLIBnn with 00≤nn£99) to the library of the respective runtime system before
the application program starts. While the application is running, you can output a DBL list
of the dynamic load processes with the BS2000 command
/MODIFY-DBL-DEFAULT PRIORITY=*FORCED, SCOPE=*ALL(PROGRAM-MAP=...).

Because this delays the start process and the program exchange, you should only use this
when debugging or when an error occurs.

Starting a UTM application Start commands

Using openUTM on BS2000 Systems 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
5

If parts of the application program are to be loaded later, then you must specify the following
operands at the start of the application program:

Wenn Teile des Anwendungsprogramms zu einem späteren Zeitpunkt nachgeladen
werden sollen, müssen Sie beim Starten die folgenden Operanden angeben:

/ ,DBL-PARAMETERS = *PARAMETERS(-
/ ,LOADING = *PARAMETERS(-
/ PROGRAM-MODE = *ANY -
/ ,LOAD-INFORMATION = *REFERENCES) -
/ ,RESOLUTION = *PARAMETERS(-
/ ALTERNATE-LIBRARIES = *BLSLIB## -
/ ,AUTOLINK = *ALTERNATE-LIBRARIES) -
/ ,ERROR-PROCESSING=*PARAMETERS(-
/ UNRESOLVED-EXTRNS=*DELAY -
/ ,ERROR-EXIT = *NONE))

The following list shows the options available to you for influencing the autolink function:

– If you do not need the Autolink function during the start phase and you have unresolved
external references in the start LLM, then you should suppress the function with
AUTOLINK=*NO.

– AUTOLINK=*YES,ALTERNATE-LIBRARIES=*NO causes the library from the load call
to be searched.

– AUTOLINK=*ALTERNATE-LIBRARIES,ALTERNATE-LIBRARIES=*TASKLIB/
*BLSLIB## causes the TASKLIB and/or the BLS libraries to be searched.

– AUTOLINK=*YES,ALTERNATE-LIBRARIES=*TASKLIB/*BLSLIB## causes the library
from the load call and the TASKLIB and/or BLS libraries to be searched.

Even if the start LLM does not contain any unresolved external references at the start, the
DBL search should be suppressed with the start operand SHARE-SCOPE=*NONE.

openUTM first loads all load modules that are to be maintained as shareable in common
memory pools (LOAD-MODE=POOL) at the start of the application. First, the common
memory pools are loaded that were generate with SCOPE=GLOBAL, and then those with
SCOPE=GROUP are loaded. Then openUTM loads all load modules that were generated
with LOAD-MODE=STARTUP in the order in which you specified them in the LOAD-
MODULE statement.

Start commands Starting a UTM application

112 Using openUTM on BS2000 Systems

Load modules that were generated with LOAD-MODE=ONCALL are only loaded once a
program unit of this load module is called.

i – Different UTM applications should be started under different BS2000 user IDs,
if possible, to prevent errors that occur due to having the same module names
in shareable parts. Modules that are used by several applications should
therefore be loaded into global common memory pools or in nonprivileged
subsystems.

– A sample start procedure is also supplied with openUTM, see section “Sample
procedures” on page 352.

Starting a UTM application Cold start / warm start / error messages

Using openUTM on BS2000 Systems 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
5

5.3 Cold start and warm start

These terms are explained below for openUTM:

● Cold start:
Start following a normal termination of the UTM application or following a regeneration.

● Warm start:
Start following an abnormal termination of the UTM application.

Cold start with openUTM

Before an application starts for the first time, you create the KDCFILE using the generation
tool KDCDEF. After a regeneration of the KDCFILE or if the UTM application was termi-
nated normally before, openUTM performs a cold start the next time the application is
started. After the application has been started successfully, openUTM outputs the
message:

K051 Successful cold start for application appliname under UTM V06.4A00

Warm start with openUTM

If a UTM application has been abnormally terminated, openUTM performs a warm start the
next time this application is started. During a warm start, openUTM brings the KDCFILE into
a consistent state. After a successful start, openUTM outputs the message:

K050 Successful warm start for application appliname under UTM V06.4A00

You should note that UTM-S and UTM-F differ in the scope of their restart functions. See
also the openUTM manual “Concepts and Functions”.

5.4 Error messages at the application start

If the start of a UTM application or of a process is terminated due to an error, openUTM
generally outputs messages K049 and/or K078. Message K078 can occur in several
variants. The meanings of these messages and their return codes are described in detail in
the openUTM manual “Messages, Debugging and Diagnostics on BS2000 Systems”.

The program branches to the next /SET-JOB-STEP command or to /EXIT-JOB or to the
/LOGOFF command in the procedure.

When using SDF-P, BEGIN-/END-BLOCK and IF-BLOCK-ERROR should be used, see
section “Basic structure of an SDF start procedure” on page 116.

Start errors can occur at the start of every process.

Restarting after abnormal application termination Starting a UTM application

114 Using openUTM on BS2000 Systems

5.5 Restarting after an abnormal application termination

openUTM offers the option of an automatic restart after an abnormal application
termination.

i The product JV “Job Variables” is a prerequisite for the procedure outlined below.

If a job variable is cataloged with the base name of the A parts of the KDCFILE (KDCA,
including catid and userid), this job variable is used by openUTM.

The first position of the job variable can have the value R or T:

R: UTM application is running

T: UTM application is terminated

The second position of the job variable can have the value N or A:

N: Normal termination

A: Abnormal termination

These job variables can be used to monitor the execution of a UTM application using an
ENTER job which restarts the application if the application terminates abnormally. If the first
column of the job variable contains the value “T”, the value of the second job variable
column determines whether this ENTER job is terminated (with ‘N’) or the UTM application
is restarted (with ‘A’).

Starting a UTM application Restarting after abnormal application termination

Using openUTM on BS2000 Systems 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
5

The ENTER job can be structured as follows:

/SET-LOGON-PARAMETERS
/.WAIT1 REMARK
/WAIT-EVENT UNTIL=*JV(CONDITION=((jobvariable-name,1,1)='T'), -
/ TIME-LIMIT=32767,TIMEOUT-LABEL=WAIT1)
/SKIP-COMMANDS TO-LABEL=END,IF=*JV(CONDITION=((jobvariable-name,2,1)='N'))
/ENTER-JOB enterfile,CPU-LIMIT=ttt,JOB-CLASS=job-class
/WAIT-EVENT UNTIL=*JV(CONDITION=((jobvariable-name,1,1)='R'))
/WAIT-EVENT UNTIL=*JV(CONDITION=*NONE,TIME-LIMIT=600,TIMEOUT-LABEL=WAIT2)
/.WAIT2 REMARK
/SKIP-COMMANDS TO-LABEL=END,IF=*JV(CONDITION=((jobvariable-name,1,2)='TA'))
/SKIP-COMMANDS TO-LABEL=WAIT1
/.END REMARK
/EXIT-JOB

Description of the ENTER job

● The first WAIT-EVENT command instructs the job to wait until the UTM application has
terminated (‘T’ in the first field of the job variable). If the application terminated abnor-
mally (‘A’ in the second field of the job variable), the ENTER job is initiated to restart the
UTM application; with a normal termination, the monitoring job is also terminated.

● With the second WAIT-EVENT command, the job waits until the UTM application is
running again.

● With the third WAIT-EVENT command, the job waits for ten minutes (600 sec) until a
query is issued as to whether the UTM application has terminated abnormally again. If
so, the monitoring job is terminated and the UTM application is not restarted. If not, the
system branches to the first WAIT-EVENT and the monitoring job lies in wait again. This
prevents the UTM application from continuously terminating and restarting in the event
of a permanent error.

Basic structure of an SDF start procedure Starting a UTM application

116 Using openUTM on BS2000 Systems

5.6 Basic structure of an SDF start procedure

The following example shows an SDF start procedure. As recommended when using
SDF-P, BEGIN-BLOCK, END-BLOCK, and IF-BLOCK-ERROR are used.

/SET-PROCEDURE-OPTIONS -
/ CALLER = ANY -
/ ,IMPLICIT-DECLARATION = YES -
/ ,LOGGING = YES -
/ ,INTERRUPT-ALLOWED = YES -
/ ,INPUT-FORMAT = FREE -
/ ,DATA-ESC = STD -
/ ,SYS-FILE = STD -
/ ,DATA-ERROR = YES -
/ ,JV-REPLACEMENT = AFTER-BUILTIN-FUNCTION
/BEGIN-PARAMETER-DECLARATION
/&* ---
/&* here you can declare your Procedure-Parameters
/&* ---
/END-PARAMETER-DECLARATION
/&* -------------------------------------
/&* here is place for your variables
/&* -------------------------------------
/ SET-FILE-LINK LINK-NAME=SYSLOG,FILE-NAME=<applname>.SYSLOG
/ MODIFY-TEST-OPTION DUMP=YES
/ ASSIGN-SYSDTA TO-FILE=*SYSCMD
/ ASSIGN-SYSOUT TO-FILE=SYSOUT.&(TSN()).<applname>
/&* --
/&* Here follows the section with the SET-FILE-LINK commands if
/&* at least one LOAD-MODULE is defined with
/&* ALTERNATE-LIBRARIES = YES.
/&* If you need RFA connections, or an AID connection (AID-FE)
/&* for testing an UTM production application or other
/&* connections please insert here the commands.
/&* --
/REPEAT: BEGIN-BLOCK
/ SHOW-FILE-LINK LINK-NAME=KDCDUMP
/&* --
/&* If you want to do some actions after PEND ER, then you must
/&* insert commands here. (E.g. prepare an UTM dump.)
/&* --
/ REMOVE-FILE-LINK LINK-NAME=KDCDUMP
/ GOTO EXEC
/ IF-BLOCK-ERR; END-IF
/&* --
/&* here is place for actions after KDCAPPL PROG=NEW
/&* --

Starting a UTM application Basic structure of an SDF start procedure

Using openUTM on BS2000 Systems 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
5

/EXEC:
/ MOD-DBL-DEFAULTS SCOPE=*CMD-CALLS(-
/ LOAD=*PAR(LOAD-INF=*REF), -
/ RESOLUTION=*PAR(SHARE-SCOPE=*NONE), -
/ ERROR-PROC=*PAR(UNRESOLVED-EXTRNS=*DELAY), -
/ REPORT=*PAR(MES-CONTR=*WARN, -
/ PROG-MAP=*SYSLST))
/ START-EXEC-PROG FROM-FILE=*LIBRARY-ELEMENT (-
/ LIBRARY = <libname> -
/ , ELEMENT = <elem>)
.UTM START FILEBASE = <applname>
.UTM START ROOTNAME = <rootname>
.UTM START TABLIB = <root-lib>
/&* --
/&* in this section you can insert the parameter(s)
/&* for node-recovery for example:
/&* .UTM START NODE-TO-RECOVER=<nodename>,RESET-PTC=Y/N
/&* --
.UTM START ENTER-PROC-INPUT='STRT-ENTER-PROC'
/&* --
/&* if your enter-procedure has parameters you have to
/&* change the last line with correct syntax
/&* if necessary duplicate the parameter-line
/&* --
.UTM START TASKS = 3
.UTM START TASKS-IN-PGWT = 0
.UTM START ASYNTASKS = 2
.UTM START TESTMODE = OFF
.UTM START STXIT = ON
.UTM START BTRACE = OFF
.UTM START OTRACE = OFF
.UTM START DB-CONNECT-TIME = 0
.UTM END
/&* --
/&* Here follows the section with the data base and format system
/&* parameters (if necessary).
/&* --
.FHS MAPLIB = <maplib>
END
/ GOTO REPEAT
/ IF-BLOCK-ERR
/ SHOW-FILE-LINK LINK-NAME=KDCTRMAP
/&* ---
/&* If you want to do some actions after abnormal application
/&* termination, then you can put some commands here.
/&* ---
/ END-IF
/ END-BLOCK REPEAT

Basic structure of an SDF start procedure Starting a UTM application

118 Using openUTM on BS2000 Systems

/ GOTO EXIT
/ IF-BLOCK-ERR; END-IF
/&* --
/&* Here you can insert commands to execute after normal
/&* application termination.
/&* --
/EXIT:
/ REMARK
/EXIT-PROC

Using openUTM on BS2000 Systems 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
6

6 Terminating a UTM application

A UTM application can

– be terminated normally via the administration or
– abnormally as a result of a bottleneck of operating resources, as a result of internal

errors in openUTM, or via the administration.

openUTM terminates all processes with TERMJ, i.e. the system branches to the next /SET-
JOB-STEP command or to the /EXIT-JOB- or /LOGOFF command in the start procedure.

In the start procedure, you can query whether the UTM application was terminated normally
or abnormally (TERMAP). See also section “Start parameters for openUTM” on page 94.
The following query options are available:

– job switch 3
– TFT entry
– job variable

When using SDF-P, BEGIN-/END-BLOCK and IF-BLOCK-ERROR should be used, see
section “Basic structure of an SDF start procedure” on page 116.

 For information on how to terminate the node applications of a cluster application,
refer to the section “Shutting down a UTM cluster application” on page 175.

6.1 Terminating a UTM application normally

The UTM administrator terminates a UTM application normally by entering the following
UTM administration command at a terminal, for example:

KDCSHUT GRACE,TIME=time

or

KDCSHUT WARN,TIME=time

or

KDCSHUT NORMAL

Normal termination Terminating a UTM application

120 Using openUTM on BS2000 Systems

Applications that use distributed transaction processing should always be terminated with
KDCSHUT GRACE or WARN because this allows open distributed transactions to end
properly.

When the application is terminated, openUTM performs the following actions:

– All jobs still in the UTM queue are processed.
– The connections to all communication partners of the application are shut down.
– The KDCFILE, system log file, and user log file are brought to a consistent state and

closed properly.
– All processes of the application are terminated.

You can use an appropriate WinAdmin/WebAdmin function or administration program
interface function instead of the KDCSHUT command to terminate a UTM application
normally.

If BCAM is terminated with BCEND, any standalone UTM application loaded at this time will
be terminated normally.

If the UTM application was being monitored by a job variable (see page 114), the first
position of the job variable is set to “T” and the second to “N”.

i A UTM task can only be terminated with the /CANCEL-JOB command if it is running
in the non-privileged mode (TU). A program unit in an endless loop can be termi-
nated, for example, with this command.

Terminating a UTM application Abnormal termination

Using openUTM on BS2000 Systems 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
6

6.2 Terminating a UTM application abnormally

A UTM application is terminated abnormally by any of the following events:

– internal UTM error
– error in the system environment, e.g. database system not available
– UTM administration command KDCSHUT KILL (or by the corresponding

WinAdmin/WebAdmin or KDCADMI function)
– UTM generation error

The following actions are performed when a UTM application is terminated abnormally:

● All transactions currently being processed by the individual processes are aborted
immediately.

● The connections to all communication partners of the application are shut down.

● The connection to the database system is shut down.

● A UTM-specific dump is created for each work process of the application. See also the
openUTM manual “Messages, Debugging and Diagnostics on BS2000 Systems”.

● All processes of the application are terminated and all files are closed. No attempt is
made to bring the KDCFILE to a consistent state. This does not occur until the appli-
cation is restarted.

If the UTM application was being monitored by a job variable (see page 114), the first
column of the job variable is set to “T” and the second to “A”.

Following an abnormal termination of the application, you must first determine the cause of
the crash. To find the cause, look for message K060 in the SYSLST log. This message
contains the dump error code as an insert. This error code gives precise information
regarding the cause of the abnormal termination. You can also find the cause for the dump
as part of the name of the UTM dump file. The meanings of the dump error codes are
described in the openUTM manual “Messages, Debugging and Diagnostics on BS2000
Systems”. There are three possibilities:

● The dump error code indicates that a KDCDEF operand must be modified.
In this case, the KDCFILE must be regenerated. If you want to retain the application
data in the page pool, proceed as follows:

– warm start with ASYNTASKS=0, TASKS=1
– terminate the application normally with KDCSHUT NORMAL
– new KDCDEF generation with the modified operand
– transfer the application data from the old to the new KDCFILE using KDCUPD
– start the application with the new, updated KDCFILE

Diagnostic documentation Terminating a UTM application

122 Using openUTM on BS2000 Systems

● The dump error code cites the cause as:
– DMS error
– memory bottleneck
– the database system is currently not available

When the error has been rectified, you can restart the application, and openUTM
executes a warm start automatically.

● Otherwise (if the dump error code is not described) a system error has occurred. In this
case, produce diagnostic documentation and write a problem report to the system
support personnel. Please refer to section “Diagnostic documentation for a problem
report” on page 122 for information on which documentation is required by system
support.

A warm start with the same KDCFILE is not always successful in this case. If a warm
start cannot be performed, you must regenerate the KDCFILE using KDCDEF.

6.3 Diagnostic documentation for a problem report

If a UTM application terminates abnormally due to a system error, openUTM writes dumps
for all tasks of the application (see the openUTM manual “Messages, Debugging and
Diagnostics on BS2000 Systems”).

The following diagnostic documentation must be supplied when you write a problem report
for the system support personnel:

– UTM dump files of all tasks
– SYSOUT logs of all tasks
– system log file SYSLOG
– KDCDEF control statements

The UTM dumps and SYSLOG file should not be edited.

In addition, you should retain the following documentation in the event of subsequent
queries:

– KDCFILE and, if it is split over several files, also all pagepool and restart files
– the log created when the program was linked

Additional diagnostic documents are required for UTM cluster applications. See the section
“Debugging a UTM cluster application” on page 177.

Using openUTM on BS2000 Systems 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
7

7 UTM database application

This chapter provides a comprehensive overview of how to implement databases under
openUTM.

The following systems are connected via the interface used for UTM-DB collaboration
(IUTMDB):

– UDS/SQL
– SESAM/SQL
– LEASY (the LEASY file system behaves like a database system with respect to

openUTM)
– CIS

The following systems are connected via the XA interface:

– Oracle

In addition, openUTM can also work in conjunction with other database systems or be
connected via the XA interface if they support the either interface IUTMDB interface or the
XA interface.

Multi-DB operation

openUTM can work in coordination with two different types of database systems, i.e. a UTM
transaction can contain calls to both database systems. If update operations are requested
by both systems, at least one of the two database systems must support the
“2-phase-commit” protocol.

Coordinated interoperation between openUTM and the two DB systems "in a single multi-
database application" is available for UDS/SQL and SESAM/SQL if

– COBOL or Call-DML is used for calls to UDS/SQL, and
– SQL is used for calls to SESAM/SQL.

However, the UDS/SQL and SESAM/SQL systems cannot be combined in one application
if SQL is used for calls to the UDS/SQL DB system.

Multi-DB operation with more than two database systems (maximal up to 8 DB systems) is
possible on special release.

Generating a UTM database connection UTM database application

124 Using openUTM on BS2000 Systems

 Further details on the concept of coordinated interoperation can be found in the
openUTM manual “Concepts und Functions”. More information is available in the
DB system manuals under the topic of UTM or openUTM, e.g. “UDS/SQL -
Programming Applications” or “SESAM/SQL - Core Manual”.

7.1 Generating a UTM database connection

For coordinated interoperation, you must generate the UTM database connection in the
KDCDEF statement DATABASE. The XA connection on BS2000 systems must also be
generated with the DATABASE statement. Here you specify:

● the type of database system

The type “DB” must be specified for database systems from other manufacturers.

● the entry name of the database

● the library from which the database connection module can be loaded

You can specify a symbolic link name for the library. This causes a search to be made
for the connection module in the IMON installation path for SESAM/SQL and UDS/SQL
databases; the module is then loaded from the library. This has the advantage that the
UTM application is independent of installation IDs and library names of the database
system.

● Database access data (user name, password).

These specifications are optional and are only permitted for Oracle databases. If you
want to store the access data in the UTM generation then you must use placeholders
in the open string for the user name and the password.

The DATABASE statement can be specified more than once. If you define two database
systems of the same type, the entry names must be different. If you define two database
systems of different types, the DATABASE systems can be specified in any order. You can
combine all database systems that can be specified at UTM generation; one of these
systems may also be from another manufacturer (DATABASE=DB).

 More details can be found in the openUTM manual “Generating Applications” under
the description of the DATABASE statement.

UTM database application Linking a UTM database application

Using openUTM on BS2000 Systems 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
7

Creating and assembling the ROOT source

During the KDCDEF run, a ROOT source is created which contains the following macro
calls, depending on the specifications for DATABASE:

● macro call KDCDB when working with one database system

● macro calls KDCDBx when working with several database systems; here, x is the first
letter of the database type specified in DATABASE, e.g. KDCDBS for SESAM

The KDCDB macro or KDCDBx macros are supplied with the respective database systems.
When assembling the ROOT source, the libraries containing these macros must be
assigned explicitly.

 More details on creating the root source can be found in the openUTM manual
“Generating Applications” in the chapter “Generating application components”. The
creation of load modules is described in the section “Generating load modules” on
page 33.

7.2 Linking a UTM database application

For coordinated interoperation with a database, openUTM needs a database connection
module. This module is supplied with the respective database system. The library
containing this connection module is an optional specification in the KDCDEF statement
DATABASE (see above).

The connection module can either be loaded dynamically or linked when the application is
linked. If openUTM is to interoperate with two database systems, a specific connection
module is required for each database system.

Loading the connection module dynamically

The reference to the connection module can be omitted when linking the application
program. The advantage of this is that the application program need not be relinked when
upgrading to a new database version (with a new connection module). In this case, the
connection module is loaded dynamically when the application starts.

Linking a UTM database application UTM database application

126 Using openUTM on BS2000 Systems

The following search algorithm applies here:

1. in the link context
2. in the user’s shared code
3. in non-privileged subsystems (e.g. the DB system can be loaded as a subsystem)
4. in the shared code of the system address space
5. in the library that was specified at UTM generation in the DATABASE statement
6. in the alternative libraries you declared using the link name BLSLIBnn (00≤nn≤99) at

application startup with a SET-FILE-LINK command

In particular, this means that the connection module is not loaded from the library specified
in the DATABASE statement if the DB system was loaded entirely as a non-privileged
subsystem, or if parts of the DB system were loaded as non-privileged subsystems and the
connection module is contained in one of these parts.

v CAUTION!
When loading the connection module of the database system, please note that it
might only be operable in 24-bit mode. In this case, the statement MODIFY-
SYMBOL-ATTRIBUTES ... ADDRESSING-MODE=24 must be inserted when
linking the UTM application.

Linking the connection module

If the connection module is to be linked when the application is linked, you should use the
INCLUDE-MODULES statement. The RESOLVE-BY-AUTOLINK statement can produce
undesirable side effects if the libraries specified with RESOLVE-BY-AUTOLINK contain
other modules in addition to the connection module.

UTM database application Starting and stopping a UTM database application

Using openUTM on BS2000 Systems 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
7

7.3 Starting and stopping a UTM database application

A UTM database application can be started and stopped in the same way as a UTM appli-
cation without a database, i.e. by starting and stopping the UTM application program.

Please note here that the DBH of the database is always started before the UTM appli-
cation, as otherwise an openUTM start error might occur.

7.3.1 Start parameters for a UTM database application

To start a UTM-DB application, the start parameters for the database(s) must be specified
in addition to the start parameters for openUTM, if this is required by the DB system. These
start parameters are database-specific and are described in the manuals of the respective
DB system.

The start parameters must be entered in accordance with the following schema, whereby
the start parameters of openUTM always appear before the start parameters of the
database:

.UTM Start parameters for UTM, see section “Start parameters of the application” on
page 93; you may have to specify the DBKEY parameter.
...

.db-typ1 Start parameters for the database of type db-typ1, see the manual for the
DB system db-typ1.

.db-typ2 Start parameters for the database of type db-typ2 if a second DB system is used;
see the manual for the DB system db-typ2.
...

For db-typ1, db-typ2 you must specify the database type you generated in the DATABASE
statement.

You can specify the following for UDS, for example:

.UDS DATABASE=UDSCONF

This defines the UTM application connection to the UDS configuration UDSCONF.

i With SESAM/SQL, the start parameters must be supplied in a configuration file,
which is assigned to the tasks of the UTM-SESAM application under the link name
SESCONF.

Starting and stopping a UTM database application UTM database application

128 Using openUTM on BS2000 Systems

7.3.2 Start parameters for a UTM database application with XA support

openUTM also supports the XA functionality for connections to database systems on
BS2000 systems. The functionality when using traditional database systems on a BS2000
system is not affected by this (e.g. UDS/SQL, SESAM/SQL or LEASY).

The start parameters have the following general format:

.RMXA RM="...",OS="openstring",CS="closestring"

openstring The format of openstring is database-specific and is described in the
documentation for the database system. There you will also find the
meanings of the individual parameters in the open string. openUTM passes
the strings from the start parameter file to the database system without
checking them.

The start parameters for a UTM-Oracle application, for example, have the following format:

.RMXA RM="Oracle_XA",OS="openstring"

At connection setup openUTM automatically replaces the generic placeholders
*UTMUSER and *UTMPASS by the user ID and the password which were generated in the
RMXA statement.

Additional parameters are required for failover support in the Oracle® Real Application
Cluster; see page 131.

Example for the connection to an Oracle XA database

Start parameters:

.RMXA RM="Oracle_XA"
,OS="Oracle_XA+Acc=P/*UTMUSER/*UTMPASS+SqlNet=
RACSERVICE1+SesTm=60+DbgFl=0"

Appropriate KDCDEF generation:

DATABASE
TYPE=XA,ENTRY=XAOSWD,USERID='MaxTheSuperman',PASSWORD='PasswordOfMax'

7.3.2.1 Multiple instances

When a connection is established over the XA interface, the UTM application can operate
with several Oracle instances (databases). To do this, you must specify a separate open
string for each instance. Each open string must be specified in a separate line in the start
parameter file. The different instances are specified in the open strings.

UTM database application Starting and stopping a UTM database application

Using openUTM on BS2000 Systems 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
7

The general syntax for start parameters of Oracle XA instances is:

.RMXA[xa-inst-name] RM="Oracle_XA",OS="Oracle_XA+DB=db-name ..."

Here the optional value of xa-inst-name must match the generation value of the parameter
XA-INST-NAME of a DATABASE statement of the KDCDEF generation.

Please observe the following three rules to ensure that the uniqueness of the assignment
of XA instances to the UTM generation information is guaranteed in all cases:

● Use at most one empty XA instance name and at most one empty Oracle DB name per
UTM application.

● All XA instance names must be unique in the UTM application.

● All Oracle DB names must be unique in the UTM application.

Example

This example shows the connection of two Oracle XA databases to openUTM (BS2000).

Start parameters:

.RMXA RM="Oracle_XA",OS="Oracle_XA+Acc=P/*UTMUSER/
*UTMPASS+SqlNet=RACSRV1+SesTm=60+DbgFl=0"

.RMXAEVE RM="Oracle_XA",OS="Oracle_XA+DB=EVESDB+Acc=P/*UTMUSER/
*UTMPASS+SqlNet=RACSRV2+SesTm=60+DbgFl=0"

The first start parameter contains only the prefix ".RMXA", i.e. an empty XA instance name,
and is therefore assigned to the first database generated in openUTM without an XA-INST-
NAME parameter.

The second start parameter contains the prefix ".RMXAEVE", i.e. the second XA instance
is assigned to the generated database with XA-INST-NAME=EVE, and the access data
generated for this ("Eve", etc.) is used by this XA Instance.

KDCDEF generation:

DATABASE
TYPE=XA,ENTRY=XAOSWD,USERID='MaxTheSuperman',PASSWORD='PasswordOfMax'

DATABASE TYPE=XA,ENTRY=XAOSWD,USERID='Eve',PASSWORD='PasswordOfEve'
,XA-INST-NAME=EVE

Starting and stopping a UTM database application UTM database application

130 Using openUTM on BS2000 Systems

7.3.2.2 Using the Oracle user name and Oracle password from the UTM generation

The access authorization for an Oracle database can be defined via KDCDEF generation.
If you want to make use of this capability, please note the following:

● The Oracle user name for the connection to Oracle and the associated Oracle
password must be generated in KDCDEF (KDCDEF statement DATABASE, USERID
and PASSWORD operands).

The Oracle password is stored as a hashcode in the UTM system tables (masked) and
is therefore not present in clear text in the UTM dump.

● In the open string for the start parameter, specify the placeholder *UTMUSER in place
of the Oracle user name and the placeholder *UTMPASS instead of the Oracle
password. These placeholders are replaced in accordance with the following rules:

– If the open string contains at least one of the placeholders *UTMUSER or
*UTMPASS, then UTM replaces the placeholders with the values generated for the
specific database system on an xa_open() call. I.e. in the open string, *UTMUSER
is replaced by the generated Oracle user name and *UTMPASS by the generated
Oracle password.

For security reasons, the Oracle password is converted into clear text only immedi-
ately prior to use on an xa_open() call and is then deleted in the process memory
immediately after the xa_open() call.

– If the open string of the start parameter does not contain either *UTMUSER or
*UTMPASS then it is passed unchanged to the xa_open() call.

Please note that processing is case-sensitive!

Examples

1. You want to use the Oracle user name and the Oracle password from the UTM gener-
ation:

OS="Oracle_XA+SqlNet=O11+ACC=P/*UTMUSER/*UTMPASS+DbgFl=15"

Behavior if the Oracle access data is not generated

● If the USERID and PASSWORD operands were not specified during UTM generation
then you can specify the Oracle user name and the Oracle password directly in the start
parameter as in the past.

● If you specify *UTMUSER or *UTMPASS in the start parameter even though the
USERID and PASSWORD operands were not specified during UTM generation then
UTM uses an empty Oracle user name or empty Oracle password. As a result, the
attempt to establish a connection to the database will generally be unsuccessful.

UTM database application Starting and stopping a UTM database application

Using openUTM on BS2000 Systems 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
7

7.3.2.3 Start parameters for failover with Oracle® Real Application Clusters

A UTM application communicates with Oracle® Real Application Clusters over the XA
interface. If an XA call cannot be executed correctly by Oracle in the event of a failover,
Oracle returns the value "XAER_RMFAIL".
In normal circumstances, i.e. when failover support is not activated, openUTM takes this
message to mean that it is no longer possible to work with this database and aborts
execution of the application.

In order to prevent execution from being aborted in these circumstances, you should also
specify the value RAC=Y under the .RMXA parameters and control behavior in the event of
a failover with the optional parameters RAC_retry and RAC_recover_down:

.RMXA RM="Oracle_XA",OS="openstring" ,RAC=Y[,RAC_retry=nnn]
 [,RAC_recover_down={Y|N}]

RAC=Y Enables failover support when connecting the UTM application to Oracle®
Real Application Clusters. RAC=N disables failover support. N the default
value for .RMXA.

RAC_retry=nnn
nnn specifies the number of times that openUTM attempts to reconnect to
the database and execute a recovery job.

If the Commit job could not be executed for a transaction which has the
state "Prepare-to-Commit" as a result of a failover, openUTM reconnects to
the database and executes a recovery job. If the current XID is contained in
the list of supplied XIDs, openUTM executes a Commit job for that XID, i.e.
for the current transaction. If the XID is not contained in the list, openUTM
performs an xa_close. Then openUTM again tries to connect to the database
and execute a recovery job.

Default: RAC_retry=1

RAC_recover_down=
Specifies the behavior of openUTM if the transaction could not be finally
completed after the number of attempts specified by RAC_retry=, i.e. if the
status of the transaction could not be set to "Commit".

N openUTM assumes that the transaction is no longer known to Oracle® Real
Application Clusters. The transaction is assumed to have the status
"Commit" and openUTM continues execution of the application.

Default: N

Y openUTM terminates execution of the application and thus forces a warm
start in order to ensure that the data is consistent.

Starting and stopping a UTM database application UTM database application

132 Using openUTM on BS2000 Systems

Behavior of openUTM in the event of failover

If you have enabled failover support, openUTM and the database system behave as
follows:

● The application is not aborted if failover to a node of the Oracle® Real Application
Cluster is possible.

● If the connection is lost between "Prepare" and "Commit" at the end of a transaction, a
"Reconnect" with recovery is performed and if this is successful, the "Commit" operation
is repeated over this new connection.

● If transactions are still open when the failover occurs, this can still lead to problems and
corresponding error messages even if failover support is enabled (e.g. return code
ORA-25402 - transaction must roll back). The reason for this is that Oracle® Real Appli-
cation Clusters is unable to migrate any open transactions in the event of a failover.
These transactions must be rolled back by the UTM application program, see also
“Interrupted transactions” on page 133.

Any open multi-step transactions (i.e. following PEND KP) are rolled back by the
database system in the event of a failover. openUTM has no influence over this.

The database system is automatically reconnected after the rollback. It is then possible
to start new transactions.

● If the failover occurs during a warm start of the application or while the UTM process is
being terminated, error processing is carried out as usual and no attempt is made to
reconnect.

● The "prepared statements" database function can lead to errors in the event of a
failover.

● Messages allow the progress of the reconnection to the database system to be
monitored.

– xa_close in the event of reconnection:

In the &RMSTAT insert in message K202, the string "RAC closed" is output for the
Oracle® Real Application Clusters instance in place of "closed".

– xa_open in the event of reconnection:

In the &XACALL insert of message K224, the string "RAC: xa_open" is output.

Debug messages

The debug messages contain an indication whether the message refers to an instance
of Oracle® Real Application Clusters.
How to get the XA-DEBUG information for the connection to the database, is described
in section “Debug parameters” on page 135.

UTM database application Starting and stopping a UTM database application

Using openUTM on BS2000 Systems 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
7

Interrupted transactions

Interrupted transactions can only be continued by the node that started the transaction. For
this reason, all UTM processes must always be connected to the same node of the Oracle®
Real Application Cluster. It is therefore simplest to proceed as follows:

● terminate the UTM application after failover of the Oracle® Real Application Cluster and
before the failed node is restarted,

● restart the UTM application after the failed node has been restarted.

This ensures that all UTM processes are connected to the same node of the Oracle® Real
Application Cluster and that all transactions of the application are processed by the
restarted node of the Oracle® Real Application Cluster.

If it is not possible to terminate and restart the UTM application, i.e. if the nodes of the
Oracle® Real Application Cluster are switched over while the UTM application is running,
this can result in the following situation in which not all UTM processes are connected to
the same node:

● One transaction is interrupted by the failover; at this time, the UTM process is still
connected to the old node.

● After the process is restarted or after a PEND ER in the UTM application program, the
interrupted transaction is continued by a different UTM process. This process is now
connected to the new node.

● The database instance rejects the request to resume the interrupted transaction (xa-
start with RESUME) and reports that the transaction is unknown.

● openUTM reconnects to the database instance. openUTM attempts to resume the
transaction over the new connection (i.e. with the new node).

● The database system again rejects this request, since the database transaction was
started on the old node of the Oracle® Real Application Cluster and cannot be
continued on the new node.

● openUTM rolls back the global transaction and issues a K160 message; "NOTA" is
output in the insert of the internal return code KCRCDC.

A situation such as this can be handled as described below using a MSGTAC program.

Control using a MSGTAC program

The MSGTAC event service is defined as an additional message destination for the K160
message. In this case, MSGTAC must have been generated with administrator authori-
zation. MSGTAC reacts to the message insert and initiates a restart over the administration
programming interface (KC_CHANGE_APPLICATION). This replaces all processes,
restarts them and then connects them to the new node.

Starting and stopping a UTM database application UTM database application

134 Using openUTM on BS2000 Systems

This method minimizes the period of time for which the UTM processes are connected to
different nodes. The number of transactions that are rolled back is limited to those that were
started on the old node and could not be continued on the new node. The transactions that
were started on the new node before the restart can be continued.

Oracle® connection

Connection to an Oracle® database is established using a "service". You can also set up
"DTP services" in an Oracle® Real Application Clusters environment.

This offers the following options for live operation:

– automatic error detection

– automatic failover.
If an instance fails, a new transaction is redirected to another instance of the service.
No administrator intervention is required.

– load distribution as soon as the connection is established

Creating a DTP service (Oracle®)

1. Use the command "srvctl add service" to add a new service for the database and assign
it to an instance of the database.

Example:

Two "DTP services" are to be created with the following options for the RAC database
dbracutm with the instances racutm1 and racutm2:

"srvctl add service -d dbracutm -s racutmS12 -r racutm1
 -a racutm2

-P BASIC"

and

"srvctl add service -d dbracutm -s racutmS21 -r racutm2
-a racutm1
-P BASIC"

-d Name of the database

-s Name of the (DTP) service

-r Name of the first instance

-a Name of the second instance

-P Failover method

UTM database application Starting and stopping a UTM database application

Using openUTM on BS2000 Systems 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
7

The service racutmS12 connects to the instance racutm1 and to the instance racutm2
in the event of a failover. In the same way, the service racutmS21 connects to the
instance racutm2 and to the instance racutm1 in the event of a failover.

2. Convert the services to "DTP services“ using SQLPLUS:

SQL> connect
SQL> execute dbms_service.modify_service

(service_name => 'racutmS12', dtp => true);
SQL> execute dbms_service.modify_service

(service_name => 'racutmS21', dtp => true);
SQL> exit

You can start, stop and administer the (DTP) services with "srvctl commands". See also
the Oracle® "Administration and Deployment Guide".

i The DTP service must be started on the node on which the instance of the RAC
DB system that is primarily assigned to it is running, i.e. the DTP service
racutmS21, which is primarily assigned to the instance racutm2, must be
started on the node on which this instance is running.

3. Enter the service in the file tnsnames.ora with a net_service_name:

Example

RACUTMS1 =
(DESCRIPTION =

(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP) (HOST=server1) (PORT=1521))
(ADDRESS = (PROTOCOL = TCP) (HOST=server2) (PORT=1521))

)
(CONNECT_DATA =

(SERVICE_NAME = racutmS12.domain_name)
)
(FAIL_OVER = ON)

)

4. In the Open string in the start parameters, assign this net_service_name (in this case
RACUTMS1) to the operand "SqlNet".

7.3.2.4 Debug parameters

You have the option of logging the XA interface in openUTM for test purposes. The RMXA
start parameter DEBUG= is available for this purpose. This parameter must be passed
before the other RMXA start parameters. It is not passed to the database system.

i It is recommended that you only use this function for test purposes, as the output
can become very extensive. Every transaction is logged in the task, irrespective of
whether there is any access to the database.

Starting and stopping a UTM database application UTM database application

136 Using openUTM on BS2000 Systems

The DEBUG= parameter has the following format:

.RMXA DEBUG={ YES | ALL },OUTPUT={ SYSOUT | FILE }

Explanation

DEBUG= Activates the debug function.

Use DEBUG= as the first RMXA start parameter.

YES Logs the individual XA calls and, for each call,
– the service number
– the transaction counter
– the return value

ALL In addition to the values logged with DEBUG=YES, the status values and
the XID are also logged.

OUTPUT= Specifies the output destination.

SYSOUT The log is written to SYSOUT.

FILE Output is sent to a file. The file name has one of the following formats:

KDC.TRC.XA.appliname.tsn (standalone application)

KDC.TRC.XA.appliname.nodename.tsn (UTM cluster application)

appliname
Name of the application, up to 8 characters in length.

nodename
Name of the node on which the node application is running.

tsn
TSN of the UTM task (4-digit)

Alternatively, a file can be assigned using the link name KDCXA.

Example:

/SET-FILE-LINK LINK-NAME=KDCXA,FILE-NAME=XA-DEBUG.BSP.01

You can enable or disable logging of the XA interface during execution of the application
using the administration functions. To do this, use the program interface, the administration
tools WinAdmin/WebAdmin or the administration command KDCDIAG XA-DEBUG=. For
details, refer to the openUTM manual “Administering Applications”.

UTM database application Starting and stopping a UTM database application

Using openUTM on BS2000 Systems 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
7

7.3.3 Termination of a UTM database

Normal termination of a UTM database application

A UTM database application is terminated using UTM administration functions; see section
“Terminating a UTM application normally” on page 119. The database handler is not shut
down in this case.

Abnormal termination of a UTM database application

A UTM database application can be terminated abnormally as a result of errors or by the
administrator; see section “Terminating a UTM application abnormally” on page 121.
Following an abnormal application termination, the database and KDCFILE may be in an
inconsistent state.

In this case, the data consistency is checked and, if necessary, restored by the subsequent
warm start of the UTM database application. In this case, openUTM completes a shared
recovery phase with the affected database systems.

Operating a UTM database application UTM database application

138 Using openUTM on BS2000 Systems

7.4 Operating a UTM database application

The operation of a UTM database application is based on the same principles as the
operation of a UTM application without a database. The special points to observe are
described in the following sections.

7.4.1 User sign-on and sign-off

A user who wants to work with a UTM database application signs on using the client-
specific sign-on process for openUTM. The same applies to sign-off.

If a sign-on service is used for signing on, the following must be noted:

● If the user signs on via a terminal or terminal emulation, database calls are not
permitted in the first part of the SIGNON service for security reasons, unless this is
explicitly permitted at UTM generation with the KDCDEF statement SIGNON,
...RESTRICTED=NO.

● In the second part of the sign-on service, the authorization profile for the user is read
from the database, provided the database supports this option. This means that a
universal DB/DC authorization concept can be implemented.

More details on sign-on and sign-off can be found in the chapter “Working with a UTM appli-
cation” on page 179.

7.4.2 SAT logging

SAT logging can be defined individually for each transaction code (= job-driven) and each
UTM user (= user-driven). UTM then logs all the security-related events within UTM and
announces activation of SAT logging on the interface to the DB system.

The XA interface is excepted from SAT logging.

Security-related events within the DB transaction must be logged by the DB system if this
is permitted. UTM only records whether or not the entire transaction was executed success-
fully.

More details on SAT logging can be found in the section “User-driven SAT logging” on
page 228 and the section “Job-driven SAT logging” on page 229.

UTM database application Operating a UTM database application

Using openUTM on BS2000 Systems 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
57

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
7

7.4.3 Accounting

The following only applies if the database is connected over the IUTMDB interface.

DB systems that do not run in UTM tasks can use the IUTMDB interface to notify openUTM
of the resources utilized for processing DB calls. The usage values supplied by the DB
system (CPU, I/Os) are stored in the accounting record in the accounting phase; see the
section “Structure of an accounting record” on page 330.

These values are also supplied to openSM2. As the DB system may not be able to
determine this data precisely, evaluation of the data is only possible to a limited extent for
measurement purposes, although trends can be identified. The KDCMON event monitor
can be used to record exact values from the DB system; see below.

In the accounting phase, the values are multiplied with the defined weights and added to
the accounting unit counter; see the section “Structure of an accounting record” on
page 330.

The usage values are supplied to openUTM by the DB systems SESAM/SQL and
UDS/SQL. SESAM/SQL only supply the usage values to openUTM if the gathering of
accounting information is enabled in the DBH; see also the manual “SESAM/SQL Database
Operation”.

7.4.4 Performance control

Database calls from the program units can only be recorded for the IUTMDB interface.

To control the performance of the UTM application, the UTM event monitor KDCMON can
be implemented with the formatting tool KDCEVAL. Some of the lists formatted with
KDCEVAL also contain database-specific information:

● The TASKS list contains the proportion of time spent on DB calls in the database
column.

● The KCOP list specifies how often DB measurement data was written in NOOP.

● The TACLIST list specifies the number of DB calls for each TAC.

● The TRACE and TRACE2 lists are trace lists containing both the UTM calls and DB
calls.

More details on KDCMON and the associated evaluation lists can be found in the section
“KDCMON - UTM event monitor” on page 264f.

Operating a UTM database application UTM database application

140 Using openUTM on BS2000 Systems

7.4.5 Diagnostics

UTM messages, error codes and dumps are important sources of information for
diagnosing errors. Database-specific information is also provided for UTM database appli-
cations. This information should be examined first if an error could relate to a fault in the
database connection. The following UTM diagnostic information is supplied:

● the database-specific UTM messages K068 and K071

● the start error codes of message K049

● messages from the XA database connection K201 through K233

● the incompatible return code KCRCDC

● the DB-DIAGAREA of the UTM dump, if a UTM dump was created

● the CDUMP error codes KDCDBxx, if a CDUMP was created

More details can be found in the openUTM manual “Messages, Debugging and Diagnostics
on BS2000 Systems”.

Using openUTM on BS2000 Systems 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

8 UTM cluster application

A cluster is a number of computers (nodes) connected over a fast network and which share
common peripherals.

A UTM application can run as a UTM cluster application on a cluster. To a large extent, a
UTM cluster application can be operated as a single UTM application (standalone appli-
cation). A UTM cluster application is made up of several identically generated UTM appli-
cations (the node applications) that run on the individual nodes.

A UTM cluster application can run on up to 16 nodes.

8.1 Properties of a UTM cluster application

A UTM cluster application is intended to run on more than one computer. It has the following
characteristics:

● The configuration of the UTM cluster application, including the KDCFILE for all nodes,
is created in a single generation run and is therefore the same for all nodes. This also
applies in particular to the application name of the UTM cluster application.

● The computers that belong to a cluster must be compatible in terms of hardware status
and software configuration. Discrepancies involving compatible correction statuses,
operating system versions, server variants (S, SQ, SE) and updates are possible. For
details, see the Release Note.

● The nodes must belong to the same XCS cluster.
An XCS pubset is used as a failsafe storage medium for the configuration data that is
global to all the computers. This is a shared pubset whose file catalog is imported by all
the computers of this XCS cluster.

 For detailed information on setting up an XCS cluster, refer to the manual
“HIPLEX MSCF - BS2000 Processor Networks”.

● The UTM system code synchronizes concurrent file access to the files of a UTM cluster
application that are global to the cluster using the DLM (Distributed Lock Manager).

● A number of files that can be accessed jointly by all nodes are required in order to run
a UTM cluster application. These are the UTM cluster files. For detailed information on
the UTM cluster files, refer to the section “Runtime environment” on page 149.

Properties of a UTM cluster application UTM cluster application

142 Using openUTM on BS2000 Systems

● There are also files which are local to each node. A node application’s KDCFILE must
be accessible from all node applications. You have to create these files with a node-
specific filename prefix. For detailed information on the files local to the nodes, refer to
the section “Runtime environment” on page 149.

UTM cluster application Installation and preparation for use

Using openUTM on BS2000 Systems 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

8.2 Installing and preparing a UTM cluster application for use

8.2.1 Installation

Before you can create and operate a UTM cluster application, you must install the product
openUTM on all computers to be used for the cluster. The procedure used to install
openUTM does not depend on whether you subsequently wish to operate standalone or
UTM cluster applications. See also the section “Installing openUTM” on page 305.

You will find information on the software requirements for UTM cluster applications in the
Release Note (e.g. HIPLEX®-MSCF).

The runtime environment of openUTM (e.g. the system time) must be the same on all
nodes. See section “Properties of a UTM cluster application” on page 141.

A number of files that can be accessed jointly by all node applications are required in order
to run a UTM cluster application. See section “Runtime environment” on page 149.

openUTM revision levels can be deployed during live operation of a UTM cluster appli-
cation. For details, refer to the section “Use of openUTM revision levels in the UTM cluster
application” on page 176.

Installation and preparation for use UTM cluster application

144 Using openUTM on BS2000 Systems

8.2.2 UTM generation

Configuration of the UTM cluster application including the initial KDCFILE is created in a
common generation run.

You create the initial KDCFILE for a UTM cluster application in the basic generation run. It
is stored under the base name that you specify in the KDCFILE operand of the MAX
statement.

8.2.2.1 Special UTM generation statements for UTM cluster applications

Special UTM generation statements are required for generating a UTM cluster application:

● The CLUSTER statement defines the common properties of the UTM cluster appli-
cation.

● The CLUSTER-NODE statements define the computers on which the node applications
will run and specify the node-specific properties for each node application. You must
issue a separate CLUSTER-NODE statement for each node application.

i The number of CLUSTER-NODE statements specifies the number of node
applications for the cluster. You cannot subsequently add further node applica-
tions to the cluster in live operation. You can, however, create "reserve" nodes
during UTM generation and subsequently modify these using the administration
facilities, populating them with actual values for additional nodes. See below.

 openUTM manual “Generating Applications”

CLUSTER statement
The CLUSTER-FILEBASE operand specifies the name prefix that is global to the
cluster for the files of the UTM cluster application that are global to the cluster.

CLUSTER-NODE statement
The FILEBASE operand specifies the base name for the node application that is
local to the node.

UTM cluster application Installation and preparation for use

Using openUTM on BS2000 Systems 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

8.2.2.2 Generating reserve nodes

During generation with KDCDEF, you have the option of creating reserve nodes with provi-
sional values. You can subsequently use the administration facilities to change the host
name and the base name of the KDCFILE of these node applications. The node application
must not be active when this is done.

This option is particularly useful in the following situations:

● You generate more nodes than you initially wish to operate as a reserve, for instance
because insufficient computers are yet available.

At a subsequent time, you wish to add a node to an existing cluster because the number
of nodes that were available to date is no longer sufficient. Now that you know the data
of the new node, you can use the administration facilities to modify the configuration of
a reserve node.

● The hardware on which a node application is running is faulty or is to be replaced by
more powerful hardware. To do this, proceed as follows:

– Terminate the node application.
– Transfer the UTM application data to the new computer.
– Use the administration facilities in a running node application to change the

computer name of the terminated node, i.e. enter the new name of the node instead
of the old computer name here.

After you have made the change, you can start the node application on the new
computer.

 You will find detailed information on generating reserve nodes and on modifying the
provisional properties using the administration facilities in the
openUTM manual “Generating Applications” and the openUTM manual “Adminis-
tering Applications”.

Installation and preparation for use UTM cluster application

146 Using openUTM on BS2000 Systems

8.2.3 Using global memory areas

In UTM cluster applications, the UTM storage areas GSSB and ULS are supported at the
global cluster level. The associated user data is stored in the cluster page pool.

 openUTM manual “Generating Applications”, CLUSTER statement
You use the operands PGPOOL and PGPOOLFS to define the properties of the
cluster page pool (size, warning level and number of files). You use the
DEADLOCK-PREVENTION operand to control how the system behaves in the
case of locked, global storage areas (additional check or control via timeout).

TACs for accessing GSSB and ULS

In UTM cluster applications, you should assign TAC classes to programs that access GSSB
or ULS storage areas. By restricting the tasks working for these TAC classes, you can
prevent all the tasks in a node application from simultaneously accessing the GSSB or ULS
storage areas. UTM rejects attempts to access storage areas if this would mean that all the
tasks in a node application would have to wait for a lock held by another node.

If it is possible, it is advisable to place the TACs that access GSSB or ULS in the same TAC
class. Any TACs that use PGWT should be gathered together in the same TAC class since
it is also necessary to take account of the PGWT wait situations.

When you have assigned the TACs to TAC classes, you can restrict the number of tasks by
means of either the TACCLASS or TAC-PRIORITIES statement:

● TACCLASS statement:
The number of tasks that are started must be at least one greater than the maximum
number of tasks that are allowed to run for the TAC classes containing the TACs
which access GSSB or ULS.

● TAC-PRIORITIES statement:
The number of tasks that are started must be at least one greater than the total of
FREE-DIAL-TASKS and MAX ASYNTASKS.

UTM cluster application Installation and preparation for use

Using openUTM on BS2000 Systems 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

Examples

In the example below, TASKS=10 and ASYNTASKS=2 are generated in the MAX
statement. The TACs with GSSB/ULS access are to run in TAC class 2 (TAC....
TACCLASS=2). This means:

– If the task limitation is controlled via the TACCLASS statement and TAC class 2 is able
to use a maximum of 5 tasks then the TACCLASS statement is as follows:

TACCLASS 2,TASKS=5,PGWT=YES

At least 6 tasks musts be started.

– If the task limitation is controlled via the TAC-PRIORITIES statement and at least one
task is to be kept free for jobs whose TACs do not belong to any dialog TAC class then
the TAC-PRIORITIES statement is as follows:

TAC-PRIORITIES FREE-DIAL-TASKS=1

At least 4 tasks must be started (because MAX ... ASYNTASKS=2).

8.2.4 Service restart

In UTM cluster applications, service restarts are supported globally throughout the cluster
for all genuine user IDs generated with RESTART=YES. This means that after signing off
at the node application, a user is able to continue an open dialog service at another node
application provided that the service is not a node-bound service.

Node-bound services

The following services are node-bound:

– Services that have started communication with a job receiver via LU6.1 or OSI TP and
the job receiver service has not yet been terminated

– Inserted services in a service stack
– Services that have successfully completed at least one SESAM transaction

In addition, a service associated with a user is node-bound as long as the user is signed-
on at a node application. Hence, following abnormal termination, an open service is bound
to a node application if the user was signed on at the node application at the time the appli-
cation was terminated.

Node-bound services can only be continued at the node to which they are bound.

If a user who has a node-bound service wants to sign on at another node application then
the sign-on attempt is rejected if

– the node application to which the service is bound is running, or
– the bound service has a transaction in the state PTC, or

Installation and preparation for use UTM cluster application

148 Using openUTM on BS2000 Systems

– the UTM cluster application has been generated with ABORT-BOUND-SERVICE = NO.

If an attempt by a user with a node-bound service to sign on at another node application is
accepted, then the open service is not continued but is instead terminated abnormally the
next time the node application to which it is bound is started.

i – A connection user ID is bound to the connection. A connection user ID
generated with RESTART=YES can have an open service in every node appli-
cation.

– In applications without USER, an LTERM generated with RESTART=YES can
have an open service in every node application.

Service restarts in UTM-F applications

Although service restarts are also supported in UTM-F applications, the service data is not
saved until the user signs off.

As a result, following an abnormal termination of a node application, no further service
restart is possible if the user

● was signed on at the node application at the time it was terminated abnormally or

● has a service bound to the node application that has terminated abnormally.

UTM cluster application Installation and preparation for use

Using openUTM on BS2000 Systems 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

8.2.5 Runtime environment

8.2.5.1 Files

Both files that are global to the cluster and files that are local to the node belong to the
runtime environment of the UTM cluster application.

You specify in the storage location of the files during UTM generation using the following
KDCDEF statements:

● CLUSTER CLUSTER-FILEBASE = cluster_filebase
cluster_filebase identifies the storage location of the UTM cluster files.

● CLUSTER-NODE FILEBASE = node_filebase
node_filebase identifies the storage location of the files local to the node.

You must specify cluster_filebase for the application run when the node applications are
started using the start parameter CLUSTER-FILEBASE = cluster_filebase. The same value
must be specified for this start parameter for all node applications.

i The value that you specified for cluster_filebase during UTM generation does not
have to match the value that you specify for cluster_filebase using the start
parameter.

It is crucial that the UTM cluster files, such as the cluster configuration file, are
available under the base name specified in the start parameters at the time at which
the first node application is started.

UTM cluster files

A number of files that can be accessed jointly by all node applications are required in order
to run a UTM cluster application. These UTM cluster files are created with a filename prefix
specific to the UTM cluster application (cluster_filebase).

The following list indicates all the UTM cluster files. In this list, the file names are specified
without file name prefix. The complete name in each case is as follows:

cluster_filebase.UTM-C.xxxx

xxxx=CFG, USER, ..., LOCK

UTM-C.CFG *) Cluster configuration file
Contains the configuration of the cluster, the current status of all the
nodes of the cluster, additional information on all the node applica-
tions of the UTM cluster application and specifications on data that is
global to the cluster.

Installation and preparation for use UTM cluster application

150 Using openUTM on BS2000 Systems

The UTM cluster files indicated by *) are created by KDCDEF at generation time (see
section “UTM generation” on page 144).

The journal files (.JRN1, .JRN2, .JKAA) and the lock file are set up by openUTM the first
time the first node application is started.

v CAUTION!
You must not rename any of these files or copy them to a different location. This
applies during operation of the UTM cluster application and after the UTM cluster
application has been terminated.

i In the case of the cluster files, the attributes, including the storage allocation
(primary allocation and secondary allocation), are taken over from the catalog entry
of a file that has already been cataloged. Consequently, the secondary allocation in
the catalog entries of these files should be at least 192.

UTM-C.USER *) Cluster user file
Contains user-specific information for managing users in a UTM
cluster application.

i In a UTM cluster application without explicitly generated user
IDs, the cluster user file is not needed and is therefore not
generated.

UTM-C.CPnn *)
(nn = 01, ..., 10)

Cluster page pool files, the number of which is defined during UTM
generation
Contain user data that is managed globally throughout the cluster in
UTM cluster applications (GSSB, ULS and the service data of users).

UTM-C.CPMD *) Control file for the cluster page pool

UTM-C.GSSB *) Cluster GSSB file
Used for GSSB management in a UTM cluster application

UTM-C.ULS *) Cluster ULS file
Used for ULS management in a UTM cluster application.

UTM-C.JRN1
UTM-C.JRN2

Administration journal which logs global administration actions
("memory" for the administration functions, see section “Adminis-
tration journal” on page 173). openUTM uses these files to ensure
that global administrative changes apply globally and consistently
across the entire cluster.

UTM-C.JKAA Journal file containing a copy of the KDCS Application Area (KAA).
Administrative changes which are no longer contained in the admin-
istration journal (see section “Administration journal” on page 173)
are taken from this file.

UTM-C.LOCK Cluster lock file
Used for the management of queues in a UTM cluster application.

UTM cluster application Installation and preparation for use

Using openUTM on BS2000 Systems 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

If new cluster files are created by the KDCDEF utility program during UTM gener-
ation with the option GEN=CLUSTER, then the value 192 is always set for the
secondary allocation. This applies to all the cluster files with the exception of the
cluster configuration file which cannot be extended during operation.

Files local to the node

Both files that are global to the cluster and files that are local to the node belong to the
runtime environment of the UTM cluster application. A filename prefix that is unique within
the cluster (node_filebase) is assigned to each node in the case of files that are local to the
node. There are the following files local to the node for each node application:

● the KDCFILE files (including the pagepool and restart areas) in the form of copies of the
initial KDCFILE files:

node_filebase.KDCA

node_filebase.PxxA, if required by the UTM generation
node_filebase.RxxA, if required by the UTM generation

The initial KDCFILE files are created using KDCDEF (see section “UTM generation” on
page 144). You must copy these files for each node application.

You must organize the KDCFILEs of the node applications in such a way that all
KDCFILEs of the node applications can be accessed by all other node applications.

● System log file (SYSLOG file)

node_filebase.SLOG

If the name is not node-filebase.SLOG, the file must be assigned using the link name
SYSLOG.

The system log file SYSLOG can be a single file or a file generation group (FGG).

● User log file

node_filebase.USLA

The user log file USLOG must be a file generation group (FGG).

● Execution logs

● Diagnostics files

● Other application-specific files

You must set up the SYSLOG file and the user log file and other application-specific files
for each node application.

Installation and preparation for use UTM cluster application

152 Using openUTM on BS2000 Systems

8.2.5.2 Location of the files

You can place files that are global to the cluster and files that are local to the node either
under one user ID or under different user IDs:

Organizing all files under one user ID

If you place all the files of the UTM cluster application under one user ID, the node_filebase
names must differ between the individual node applications (see “Example 1: Storing all
files under one user ID” on page 154).

i You should use this variant if possible in order to prevent access control problems.

Organizing the files under different user IDs

If you have to place the files for each node application under a different user ID, the
node_filebase names for the individual node applications can be identical with the exception
of the user ID (see “Example 2: Storing the files under different user IDs” on page 156).

You can store the files in one catalog or in several catalogs.

It must be possible for all node applications to access the files that are global to the cluster.
In addition, you must ensure that it is possible for the node applications to access all the
KDCFILEs of the other node applications in the cluster.

i If you are using multiple user IDs, it is recommended that you use the product
SECOS. The GUARDS mechanisms should be used to declare those user IDs
under which the node applications are started as co-owners of the files stored under
the cluster filebase.

If you store the files under different user IDs but do not use SECOS GUARDS, you must
create catalog entries for the following files before the first node application is started
(CATALOG or FILE command):

cluster_filebase.UTM-C.JRN1
cluster_filebase.UTM-C.JRN2
cluster_filebase.UTM-C.JKAA
cluster_filebase.UTM-C.LOCK

When you do this, you must set up the catalog entries for these files in such a way that all
user IDs under which the node applications are started have read and write access to the
files. openUTM creates these four files when the first node application is started. This is only
possible from a different user ID if the files have already been cataloged. See also
“Example 2: Storing the files under different user IDs” on page 156.

UTM cluster application Installation and preparation for use

Using openUTM on BS2000 Systems 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

8.2.6 Preparation for use

Distributing the KDCFILE

In order to be able to run, every node application requires a copy of the initial KDCFILE from
the common UTM generation run with a base name assigned exclusively to this node appli-
cation. To achieve this, you must copy the initial KDCFILE (including the pagepool, restart
areas are maintained) into the associated node-specific filebase for each node application
after the UTM generation run.

Creating the start parameter file

When you start a node application, you must specify the start parameter
CLUSTER-FILEBASE in place of FILEBASE. See also the section “Start parameters for
openUTM” on page 94. The files that are global to the cluster must be present under the
base name specified in CLUSTER-FILEBASE.

i If you wish to specify a different name for cluster_filebase in the start parameter file
than you set in the KDCDEF statements, you must rename the UTM cluster files
generated by KDCDEF before the first node application is started.

Installation and preparation for use UTM cluster application

154 Using openUTM on BS2000 Systems

8.2.7 Examples

8.2.7.1 Example 1: Storing all files under one user ID

In this example

● the local user ID under which the KDCDEF run is performed is
$USERID

● the default catalog is CAT1

● three nodes are generated: NODE1, NODE2, NODE3

KDCDEF statements

The following UTM generation statements are required to generate the UTM cluster appli-
cation in this example:

OPTION GEN=(KDCFILE,ROOTSRC,CLUSTER)

CLUSTER CLUSTER-FILEBASE=UTM.CLUSTER
CLUSTER USER-FILEBASE=UTM.CLUSTER
CLUSTER PGPOOLFS=1

CLUSTER-NODE FILEBASE=NODE1
CLUSTER-NODE FILEBASE=NODE2
CLUSTER-NODE FILEBASE=NODE3

MAX KDCFILE=INITIAL "FILEBASE-NAME OF THE INITIAL KDCFILE"
MAX PGPOOLFS=1
MAX RECBUFFS=1

Storing the files

● Files that are global to the cluster

:CAT1:$USERID.UTM.CLUSTER.UTM-C.CFG
:CAT1:$USERID.UTM.CLUSTER.UTM-C.USER
:CAT1:$USERID.UTM.CLUSTER.UTM-C.CPMD
:CAT1:$USERID.UTM.CLUSTER.UTM-C.CP01
:CAT1:$USERID.UTM.CLUSTER.UTM-C.GSSB
:CAT1:$USERID.UTM.CLUSTER.UTM-C.ULS

Cluster configuration file
Cluster user file
Cluster page pool control file
Cluster page pool file
Cluster GSSB file
Cluster ULS file

These files are created by KDCDEF during
UTM generation.

:CAT1:$USERID.UTM.CLUSTER.UTM-C.JRN1
:CAT1:$USERID.UTM.CLUSTER.UTM-C.JRN2
:CAT1:$USERID.UTM.CLUSTER.UTM-C.JKAA

Administration journal
set up the first time a node application is
started.

UTM cluster application Installation and preparation for use

Using openUTM on BS2000 Systems 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

● Files of the initial KDCFILE

● Files for NODE1

● Files for NODE2

● Files for NODE3

:CAT1:$USERID.UTM.CLUSTER.UTM-C.LOCK Cluster lock file
set up the first time a node application is
started.

:CAT1:$USERID.INITIAL.KDCA
:CAT1:$USERID.INITIAL.P01A
:CAT1:$USERID.INITIAL.R01A

are generated with KDCDEF

:CAT1:$USERID.NODE1.KDCA
:CAT1:$USERID.NODE1.P01A
:CAT1:$USERID.NODE1.R01A

Copy of the initial KDCFILE files
You must copy these.

:CAT1:$USERID.NODE1.USLA (FGG)
:CAT1:$USERID.NODE1.SLOG (or FGG if applicable)

User log file
SYSLOG file
You must set this up.
If the name is not node-filebase.SLOG, the
file must be assigned using the link name
SYSLOG.

:CAT1:$USERID.NODE2.KDCA
:CAT1:$USERID.NODE2.P01A
:CAT1:$USERID.NODE2.R01A

Copy of the initial KDCFILE files
You must copy these.

:CAT1:$USERID.NODE2.USLA (FGG)
:CAT1:$USERID.NODE2.SLOG (or FGG if applicable)

User log file
SYSLOG file
You must set this up.
If the name is not node-filebase.SLOG, the
file must be assigned using the link name
SYSLOG.

:CAT1:$USERID.NODE3.KDCA
:CAT1:$USERID.NODE3.P01A
:CAT1:$USERID.NODE3.R01A

Copy of the initial KDCFILE files
You must copy these.

:CAT1:$USERID.NODE3.USLA (FGG)
:CAT1:$USERID.NODE3.SLOG (or FGG if applicable)

User log file
SYSLOG file
You must set this up.
If the name is not node-filebase.SLOG, the
file must be assigned using the link name
SYSLOG.

B
B
B

B
B

B

B
B

B

Installation and preparation for use UTM cluster application

156 Using openUTM on BS2000 Systems

8.2.7.2 Example 2: Storing the files under different user IDs

In this example

● three node applications are generated: NODE1, NODE2, NODE3

● the files are distributed across four user IDs: USERID0 - USERID3

KDCDEF statements

The following UTM generation statements are required to generate the UTM cluster appli-
cation in this example:

OPTION GEN=(KDCFILE,ROOTSRC,CLUSTER)

CLUSTER CLUSTER-FILEBASE=:CAT0:$USERID0.UTM.CLUSTER
CLUSTER USER-FILEBASE=:CAT0:$USERID0.UTM.CLUSTER
CLUSTER PGPOOLFS=1

CLUSTER-NODE FILEBASE=$USERID1.UTM.APPLICATION,CATID=CAT1
CLUSTER-NODE FILEBASE=$USERID2.UTM.APPLICATION,CATID=CAT2
CLUSTER-NODE FILEBASE=$USERID3.UTM.APPLICATION,CATID=CAT3

MAX KDCFILE=:CAT0:$USERID0.INITIAL "FILEBASE-NAME OF THE INITIAL KDCFILE"
MAX PGPOOLFS=1
MAX RECBUFFS=1

Storing the files

● Files that are global to the cluster

:CAT0:$USERIDO.UTM.CLUSTER.UTM-C.CFG
:CAT0:$USERIDO.UTM.CLUSTER.UTM-C.USER
:CAT0:$USERIDO.UTM.CLUSTER.UTM-C.CPMD
:CAT0:$USERIDO.UTM.CLUSTER.UTM-C.CP01
:CAT0:$USERIDO.UTM.CLUSTER.UTM-C.GSSB
:CAT0:$USERIDO.UTM.CLUSTER.UTM-C.ULS

Cluster configuration file
Cluster user file
Cluster page pool control file
Cluster page pool file
Cluster GSSB file
Cluster ULS file

These files are created by KDCDEF during
UTM generation.

:CAT0:$USERIDO.UTM.CLUSTER.UTM-C.JRN1
:CAT0:$USERIDO.UTM.CLUSTER.UTM-C.JRN2
:CAT0:$USERIDO.UTM.CLUSTER.UTM-C.JKAA

Administration journal
set up the first time a node application is
started.

:CAT0:$USERIDO.UTM.CLUSTER.UTM-C.LOCK Cluster lock file
set up the first time a node application is
started.

UTM cluster application Installation and preparation for use

Using openUTM on BS2000 Systems 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

● Files of the initial KDCFILE

● Files for NODE1

● Files for NODE2

● Files for NODE3

:CAT0:$USERID0.INITIAL.KDCA
:CAT0:$USERID0.INITIAL.P01A
:CAT0:$USERID0.INITIAL.R01A

are generated with KDCDEF.

:CAT1:$USERID1.UTM.APPLICATION.KDCA
:CAT1:$USERID1.UTM.APPLICATION.P01A
:CAT1:$USERID1.UTM.APPLICATION.R01A

Copy of the initial KDCFILE files

:CAT1:$USERID1.UTM.APPLICATION.USLA (FGG)
:CAT1:$USERID1.UTM.APPLICATION.SLOG

User log file
SYSLOG file
You must set this up.
If the name is not node-filebase.SLOG, the
file must be assigned using the link name
SYSLOG.

:CAT2:$USERID2.UTM.APPLICATION.KDCA
:CAT2:$USERID2.UTM.APPLICATION.P01A
:CAT2:$USERID2.UTM.APPLICATION.R01A

Copy of the initial KDCFILE files

:CAT2:$USERID2.UTM.APPLICATION.USLA (FGG)
:CAT2:$USERID2.UTM.APPLICATION.SLOG

User log file
SYSLOG file
You must set this up.
If the name is not node-filebase.SLOG, the
file must be assigned using the link name
SYSLOG.

:CAT3:$USERID3.UTM.APPLICATION.KDCA
:CAT3:$USERID3.UTM.APPLICATION.P01A
:CAT3:$USERID3.UTM.APPLICATION.R01A

Copy of the initial KDCFILE files

:CAT3:$USERID3.UTM.APPLICATION.USLA (FGG)
:CAT3:$USERID3.UTM.APPLICATION.SLOG

User log file
SYSLOG file
You must set this up.
If the name is not node-filebase.SLOG, the
file must be assigned using the link name
SYSLOG.

Configuration with a database UTM cluster application

158 Using openUTM on BS2000 Systems

8.3 Configuration of a UTM cluster application with a database

Because all node applications have an identical configuration, all node applications work
with the same database system.

SESAM/SQL and UDS/SQL databases are generally configured on BS2000 systems in
such a way that the database handler (DBH) runs on the same computer as the UTM appli-
cation. If the database is used in a cluster, this configuration must be modified, because all
node applications apart from one must access the database remotely. For this reason, a
database-specific distribution component must additionally run on each node:
SESAM/SQL-DCN for the database system SESAM/SQL-Server or UDS-D for UDS/SQL.
In the case of UDS/SQL, a DBH with an empty configuration is additionally required on the
node which is accessing the database remotely.

 You will find detailed information on deploying the distribution components in the
manuals “SESAM/SQL DB Operation” and “UDS/SQL Database Operation”.

The following options are, for example, available for configuring a UTM cluster application
with a database:

Central database with access via the network

The database is located on a separate computer. The node applications of the UTM cluster
application communicate with the database in the same way as multiple individual stand-
alone UTM applications.

UTM cluster application Configuration with a database

Using openUTM on BS2000 Systems 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

Database handler on one node

A database handler runs on one node together with the assigned node application.

For the node on which the DBH is running, it makes sense to use a computer with greater
spare performance capacity than those used for the other nodes. In the case of UDS/SQL,
a DBH without a database (empty configuration) is additionally required on the node which
is accessing the database remotely.

Node Node
application 2application 1

DATABASE
HANDLER

Node 1 Node 2

Database

Distribution
component

Distribution
component

for UDS/SQL:

Empty DBH

Configuration with a database UTM cluster application

160 Using openUTM on BS2000 Systems

Using Oracle® Real Application Clusters (Oracle® RAC)

The following configuration is recommended if you are using Oracle® RAC:
One primary RAC node is assigned to each node application. In addition, each node appli-
cation uses the other RAC nodes as fallback levels for failover purposes.

Figure 4: Configuration with two node applications and two Oracle® RAC nodes

Load balancer

Node Node

RAC node 1 RAC node 2

application 2application 1

UTM cluster application Startup

Using openUTM on BS2000 Systems 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

8.4 Starting a UTM cluster application

You start a UTM cluster application by starting one or more node applications. You start
each node application separately in the same way as a standalone application (see the
section “Starting the application” on page 110).

Start parameter file

In contrast to a standalone UTM application, the start parameter file must contain the
statement START CLUSTER-FILEBASE=cluster_filebase in place of the statements START
FILEBASE=filebase and START CATID=(catalog-A, catalog-B).

The following start parameters apply globally to the cluster:

– TESTMODE
– BTRACE
– OTRACE
– DUMP-MESSAGE
– interval value for SYSPROT

Start parameters which apply globally to all nodes are distributed from the first node appli-
cation started to nodes which start subsequently via the administration journal. They remain
valid – even during or after an update generation – until the UTM cluster application is termi-
nated or until the value is changed using the administration functions.

If the node applications do not require any special start parameters, the start parameter file
can be the same for all node applications. The UTM cluster files generated by KDCDEF
must be present under the base name which you specified for CLUSTER-FILEBASE.
These files must come from the same generation run (see the section “Creating the start
parameter file” on page 153). Where necessary, the files of the cluster administration
journal must also be cataloged there before the application is started for the first time (see
the section “Location of the files” on page 152). The files of the KDCFILE must not be older
than the UTM cluster files.

When a node application is started, the following cluster-specific start actions are
performed:

● A check is performed whether the KDCFILE of the node application is compatible with
the cluster configuration file.

● The first time the first node application is started, the administration journal files are
initialized and the cluster lock file is set up.

● Cluster monitoring in which the node applications monitor each other is started when a
second node application is started.

● Cluster monitoring is automatically extended when a further node application is started.

Startup UTM cluster application

162 Using openUTM on BS2000 Systems

● The monitoring relationships are determined dynamically (see the section “Application
monitoring of the node applications” on page 163).

SYSLOG file and user log file

You must set up the system log file SYSLOG and the user log file for each node application
(see the sections section “System log file SYSLOG” on page 73 and section “User log file”
on page 85).

The system log file SYSLOG must either be set up as a single file on all nodes or must be
set up as a File Generation Group (FGG) on all nodes (see section “System log file
SYSLOG” on page 73).

All running node applications with a KDCFILE from the same UTM generation run must
have the same SYSLOG configuration, otherwise startup of a subsequent node is aborted.

Encryption capability

You must ensure either that openUTM with encryption functions is running on all nodes or
that openUTM is installed without encryption functions.

UTM cluster application Monitoring and failure detection

Using openUTM on BS2000 Systems 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

8.5 Monitoring of node applications and failure detection

Monitoring of node applications comprises

● a local monitoring using UTM-specific job variables

● an application monitoring

● and measures to be taken if a failure is detected, for instance starting a failure
procedure.

8.5.1 Local monitoring of a node application

Local monitoring of a node application should be carried out using UTM-specific job
variables. It is recommended that the BS2000 add-on product "Job Variables" is used for
cluster operation.

Local monitoring of the node applications works in exactly the same way as with standalone
UTM applications. For details, refer to the section “Restarting after an abnormal application
termination” on page 114.

8.5.2 Application monitoring of the node applications

If more than one node application has been started for a UTM cluster application, each
node application is monitored by a different node application.

The following are dynamically defined when a node application is started:

● what other node application is to be monitored by this node application,

● and what other node application is to monitor this node application.

These monitoring relationships are entered in the cluster configuration file. When the node
application is terminated, the relationships are canceled.

Monitoring process

The availability of a node application is monitored. Heartbeat monitoring is performed using
messages which are exchanged over a special connection. If errors occur during commu-
nication, the job variable with the name of the KDCFILE filebase of the monitored node is
evaluated. If no such job variable exists the system checks whether the KDCFILE of the
monitored node is still open.

Only when the result of all these checks indicates failure is it assumed that the monitored
node has failed.

Monitoring and failure detection UTM cluster application

164 Using openUTM on BS2000 Systems

You can specify the following individual aspects of monitoring (in the UTM generation):

● the interval between the monitoring messages,

● the time that the application waits for a response to the message,

● the retry factor, the number of retries before level 2 of monitoring takes effect if no
response is received to a message.

 openUTM manual “Generating Applications”, CLUSTER statement
You configure mutual monitoring between the node applications using the
following operands:
CHECK-ALIVE-TIMER-SEC=
COMMUNICATION-REPLY-TIMER-SEC=
COMMUNICATION-RETRY-NUMBER=

8.5.3 Actions performed by the node applications if a failure is detected

It is assumed that a node application has failed if the monitored application does not
respond to the messages within the configured reply time and taking account of the number
of retries configured and if, on the basis of the UTM-specific job variable or the KDCFILE of
the monitored application, it is then detected that this application is no longer running but
was also not terminated normally.

If failure or abnormal termination of the monitored node application is detected, openUTM
proceeds as follows:

● The node application is flagged as failed in the cluster configuration file and removed
from the monitoring relationships.

● If you have specified a so-called failure procedure during UTM generation, the
monitoring node application starts this procedure on the computer of the monitoring
node application. The following data of the failed application is passed to the failure
procedure:
– the application name
– the base name of the node application
– the host name
– the virtual host name or blanks
– the reference name of the node application
– the error code of the UTM dump (Term Application Reason)

 openUTM manual “Generating Applications”, CLUSTER statement
To configure the failure procedure, specify the operand FAILURE-CMD. This
operand passes a command string containing a command to be executed and
any arguments.

UTM cluster application Monitoring and failure detection

Using openUTM on BS2000 Systems 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

● The monitoring node application starts a restart monitoring timer if you have configured
this:

 openUTM manual “Generating Applications”, CLUSTER statement
To configure the restart monitoring timer, specify the operand RESTART-
TIMER-SEC. This specifies the maximum time in seconds that a node appli-
cation requires for a warm start after a failure.

● If you have specified an emergency procedure during UTM generation, the monitoring
node application starts this procedure if the failed node application does not become
available again after the restart monitoring timer has expired. The following data of the
failed application is passed to the emergency procedure:
– the application name
– the base name of the node application
– the host name
– the virtual host name or blanks
– the reference name of the node application
– the error code of the UTM dump (Term Application Reason)

 openUTM manual “Generating Applications”, CLUSTER statement
To configure the emergency procedure, specify the operand EMERGENCY-
CMD. This operand passes a command string containing a command to be
executed and any arguments.

You can initiate the restart of a failed node application by evaluating the UTM job variable,
see also section “Restarting after an abnormal application termination” on page 114.

Sample procedure on detection of a failure

Sample failure and emergency procedures are supplied with openUTM. These examples
output the parameters passed when they are called. If you wish to use the samples in a live
environment, you must adapt them to suit the requirements of the relevant cluster.

The following sample procedures are supplied in the library SYSLIB.UTM.064.EXAMPLE:

● UTM-C.EMERGENCY

● UTM-C.FAILURE

Monitoring and failure detection UTM cluster application

166 Using openUTM on BS2000 Systems

8.5.4 Application data after abnormal termination of a node application

UTM cluster applications involve application data that is valid globally throughout the cluster
as well as application data that is specific to the node:

● Application data that is valid globally throughout the cluster includes GSSB, ULS and
the service data of non-node-bound services. This data is present in the UTM cluster
files.

● Data that is applicable locally at node level such as, for example, TLS and the service
data of node-bound services (see page 147) is saved in the KDCFILE of the relevant
node application.

The abnormal termination of a node application has the following consequences for the
application data:

– Any locks that were set for the cluster's global ULS and GSSB storage areas at the time
the node application terminated are retained.

– Any users who were signed on exclusively at the node application at that time continue
to be signed on.

– It is not possible to access the service data of users who were signed on at the node
application at the time of the failure until such a warm start is performed.

– The pages in the cluster page pool that were reserved by the abnormally terminated
node application continue to be occupied.

– No node updates, cluster updates or online imports are possible.

Therefore, a warm start should rapidly be performed for abnormally terminated node appli-
cations.

UTM cluster application Monitoring and failure detection

Using openUTM on BS2000 Systems 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

8.5.5 Measures taken when a node application has been terminated
abnormally

This section describes what users should do following the abnormal termination of a node
application and what measures the administrator of the UTM cluster application can
perform in such cases.

8.5.5.1 Measures taken for users

Users who were signed on at the node application at the time it terminated abnormally or
who possess an open service bound to this node application can sign on at another node
application. In this case, any open service for such a user is lost. An open service can only
be continued when the user sign-on is performed after a warm start of the abnormally termi-
nated node application.

However, such users cannot sign on at another node application until the abnormal termi-
nation of the node application has been detected:

● The abnormal termination of the node application has already been detected:

Users with RESTART=NO can sign on at another running node application.
Users with RESTART=YES can sign on at another running node application if the appli-
cation has been generated with CLUSTER ABORT-BOUND-SERVICES=YES and the
user does not have a node-bound service with a transaction in the state PTC.

● The abnormal termination of the node application has not yet been detected:

The attempt to sign on is rejected until the monitoring node has detected the failure. As
soon as the failure has been detected, processing continues as in the first case above.

8.5.5.2 Measures to be taken by the administrator

Depending on whether the node application can be restarted on the same node or not, the
following measures may be necessary to prevent data loss:

● If the node application can be restarted on the same node after the failure, it is possible
to continue working with the previous data without any problems. A job variable or a
failure script can, for instance, initiate an automatic restart of the node application.

● The following alternatives are available if it is not possible to restart the application on
the same node, for instance if the computer has failed:

a) Move the node application to a spare computer with the same host name / IP
address. It is then possible to restart the node application on this new computer
without the need to take any further measures.

Monitoring and failure detection UTM cluster application

168 Using openUTM on BS2000 Systems

b) Move the node application to a spare computer with an identical virtual host name/
IP address. Before the node application can be started on this new computer, the
administration functions must be used to change the host name of the failed node
in the cluster configuration file to the host name of the spare computer. After this
has been done, it is possible to restart the node application on this new computer.

c) Perform a node recovery, see section “Node recovery”.

8.5.5.3 Node recovery

If it is not possible to perform a warm start for an abnormally terminated node application at
the node's own node computer in reasonable time and also no virtual host has been defined
then a node recovery can be performed for this node on another node in the UTM cluster
in order to avoid impairing the performance of the running UTM cluster application.

i For information on the SESAM/SQL and UDS/SQL versions as of which node
recovery is supported, please refer to the openUTM Release Notice.

Prerequisites for the use of node recovery

Node recovery requires the presence of SYSLOG files with node-specific names that can
be accessed throughout the cluster.

An ENTER procedure that can be accessed throughout the cluster is required in order to
start node recovery. Alternatively, it is possible to generate the ENTER file for node
recovery dynamically.

It is not possible to start node recovery in the dialog.

Starting node recovery

Node recovery is controlled via the start parameters listed below.

NODE-TO-RECOVER
selects a node in the UTM cluster application for which node recovery is to be
performed.

RESET-PTC
specifies whether or not transactions in the PTC state are to be reset on node
recovery.

For a more detailed description of these start parameters, see section “Start parameters for
openUTM” on page 94.

UTM cluster application Monitoring and failure detection

Using openUTM on BS2000 Systems 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

Messages

When node recovery is started, the message K192 is sent to SYSOUT and SYSLST. This
message logs the values of the start parameters NODE-TO-RECOVER and RESET-PTC
together with the current computer name.

A K193 message is output for every detected transaction with the PTC state, irrespective
of the value of the RESET-PTC parameter.

A K160 message is output for every transaction that is reset.

At the end of node recovery, a K194 message is output which indicates the number of
GSSB and ULS areas still locked by this node.

Online import of application data UTM cluster application

170 Using openUTM on BS2000 Systems

8.6 Online import of application data

After a node application has been terminated normally, messages to (OSI-)LPAPs,
LTERMs, asynchronous TACs or TAC queues and open asynchronous services can be
imported from the terminated node application into a different, running node application. For
this to be done, their KDCFILE must originate from the same UTM generation run. Data that
is imported is deleted from the terminated node application.

Online import is only possible in UTM-S applications (UTM Secure) and must be initiated
using the administration functions, e.g. via WinAdmin or WebAdmin.

Imported messages are treated in the same way as newly generated messages, i.e. they
are appended to the end of the queue rather than being inserted in an existing message
queue on the basis of their generation times.

The following data is not imported:

– Asynchronous messages to a TAC whose queue level (QLEV) has been reached. This
also applies if the TAC is generated with QMODE = WRAP-AROUND. This ensures that
the import operation does not delete any asynchronous messages in the importing
application.

– Open asynchronous services if the service contains database transactions with
SESAM/SQL. These jobs remain in the KDCFILE of the terminated application, i.e. they
can only be executed by the original node application after restarting.

UTM cluster application Administration

Using openUTM on BS2000 Systems 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

8.7 Administering a UTM cluster application

You can administer the node applications of the UTM cluster application together:

● WinAdmin/WebAdmin

WinAdmin and WebAdmin provide administration functions that you can apply
globally to all node applications in a UTM cluster application. In addition, for example,
WinAdmin/WebAdmin also provide summary statistics covering all running node appli-
cations. WinAdmin/WebAdmin also permit you to administer individual node applica-
tions separately.

For these reasons, it is recommended that you use WinAdmin or WebAdmin to admin-
ister UTM cluster applications.

 For detailed information on administering UTM cluster applications using
WinAdmin or WebAdmin, refer to the respective online Help system in
WinAdmin/WebAdmin and the “WinAdmin Description” or “WebAdmin
Description” document.

● Using your own administration programs or administration commands

In addition to WinAdmin/WebAdmin, there is also the possibility of administering a UTM
cluster application using a programmed administration facility or using administration
commands. Depending on the type of change involved, the administration job applies
either globally to all node applications of the UTM cluster application or only to an
individual node application.

 For detailed information on the programming interface and the administration
commands, refer to the openUTM manual “Administering Applications”.

Administration UTM cluster application

172 Using openUTM on BS2000 Systems

Note the following when administering UTM cluster applications:

● Objects that can be created dynamically must always be deleted using the adminis-
tration facilities. These objects cannot be deleted by a new UTM generation alone.

● Objects that can be created dynamically cannot be deleted immediately in a UTM
cluster application. Deletion can only be delayed.

● You must generate a new KDCFILE in order to release the storage space occupied by
objects for which deletion was delayed in the KDCFILE.

● You can define reserve nodes with provisional properties in a UTM cluster application.
You can then modify these simply, for instance using WinAdmin or WebAdmin, to
produce "real" nodes.

● You can display distributed transactions that have the PTC state and then roll back the
local element of this type of transaction. This action also resets the transaction in any
locally connected database.

8.7.1 Actions global to the cluster and actions local to a node

You must distinguish between actions which apply globally and actions which apply locally
when administering a UTM cluster application.

Actions that are global to the cluster

Actions that are global to the cluster apply to every node application. This is irrespective of
whether the node application is currently active or not. All node applications subsequently
perform these changes on the basis of the administration journal (see the section “Admin-
istration journal” on page 173).

Global administrative changes can be, for example:

● changing the password for a user ID

● replacing the application program or parts of the application program during live
operation

● generating objects

● deleting objects from the configuration

UTM cluster application Administration

Using openUTM on BS2000 Systems 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

Actions local to the node

Actions local to the node only applied to the node application in which these actions are
performed.

Administrative changes local to the node can be, for example:

● terminating an individual node application

● establishment of a connection using the administration facilities

 You will find information on which actions apply globally to the cluster or locally to
the node in the description of the operation codes or the data structures in the
openUTM manual “Administering Applications”.

8.7.2 Administration journal

The administration journal contains a log of past global administration actions, i.e. the
history of the administration actions. openUTM sets up the administration journal under the
filebase name of the associated UTM cluster application the first time the first node appli-
cation is started (see also the section “UTM cluster files” on page 149).

Like all files that are global to the cluster, the administration journal is located on a storage
medium which can be accessed by all node applications (see the section “Runtime
environment” on page 149). The UTM system code synchronizes current accesses via the
DLM (Distributed Lock Manager).

All node applications reconstruct the administrative changes that have global application on
the basis of the administration journal.

● Running applications apply these actions with minimal delay. They do this at the latest
before they initiate global administration actions themselves. Depending on the load on
a node, this will generally be done within a few seconds.
They are notified of the need to do so by the node application that was administered
directly.

A network problem can occasionally cause this notification to be lost. For this reason,
and depending on the
CHECK-ALIVE-TIMER-SEC operand of the CLUSTER statement, the administration
journal is checked at regular intervals by the running node applications.

● Node applications that are subsequently started apply the changes during the startup
phase.

Administration UTM cluster application

174 Using openUTM on BS2000 Systems

8.7.3 Reducing the number of nodes

You can reduce the number of nodes in the cluster without having to modify the generation
of the UTM cluster application.

To do this, proceed as follows

1. Shut down the node applications of the nodes that you want to remove from the cluster
for an extended period.

2. At a node application that is still running, perform an online import for the terminated
node applications, see also section “Online import of application data” on page 170.

UTM cluster application Shutdown

Using openUTM on BS2000 Systems 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

8.8 Shutting down a UTM cluster application

You have a number of different options for terminating the UTM cluster application:

● Shut down one node application, for instance using the command KDCSHUT GRACE.

● Shut down all running node applications of the UTM cluster application, for instance
using KDCSHUT GRACE, SCOPE=GLOBAL.

 openUTM manual “Administering Applications”,
Administration command KDCSHUT

● Using WinAdmin/WebAdmin:
Terminate an individual node application or terminate a UTM cluster application with all
running applications.

 „WinAdmin Online-Hilfe“ or WebAdmin Online Help,
Terminating an application

● Using an administration program you have created yourself:
Terminate an individual node application or terminate a UTM cluster application with all
running applications.

If only one node application is running, shutting down this last node application has the
same effect as shutting down the complete UTM cluster application.

Update generation in a cluster UTM cluster application

176 Using openUTM on BS2000 Systems

8.9 Use of openUTM revision levels in the UTM cluster
application

You can always deploy openUTM revision levels during live operation without the need to
terminate the UTM cluster application. Some of the node applications can continue to run
while the revision level is being installed for the remaining node applications.

To do this, the node applications must be terminated one after another and then restarted
using the new revision level.

The updated files of the new revision level overwrite files of the same name from the
existing old revision level.

You must observe the following sequence when deploying UTM revision levels:

1. Prepare for migration:
You can optionally install the revision level while all the node applications are still
running. The installation has no impact on the running applications because these still
have the old revision level loaded and can therefore continue to run without problems.

2. Terminate one node application.

3. Terminate the UTM subsystem on this node

4. Install the revision level at this point at the latest.

5. Re-link the UTM application program or provide the new version of the UTM application
program if this is necessary for deploying this revision level.

6. Restart the UTM subsystem.

7. Restart the node application.

8. Repeat steps 2 through 7 for all other node applications of the UTM cluster application.

UTM cluster application Debugging a UTM cluster application

Using openUTM on BS2000 Systems 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
8

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
1

60
12

0
0\

05
_E

in
sa

tz
_B

S
2\

en
\b

et
rb

s_
e.

k0
8

8.10 Debugging a UTM cluster application

Every node application writes a separate set of log files and diagnostic files. At least the log
files of the node application in which a concrete error has occurred are therefore always
required for debugging.

Node monitoring messages

The monitoring node application issues message K169 when monitoring starts.

 For detailed information on the messages, refer to the openUTM manual
“Messages, Debugging and Diagnostics on BS2000 Systems”.

Diagnostics documents

The following files are required for debugging cluster problems in addition to the usual
documents:

● all UTM cluster files

● in the case of problems relating to the administration of the administration journal at
global cluster level

● in the case of problems caused by the interaction between node applications, the log
files of all node applications

● the start procedure and the procedures specified as EMERGENCY-CMD and
FAILURE-CMD on UTM generation

Debugging a UTM cluster application UTM cluster application

178 Using openUTM on BS2000 Systems

Using openUTM on BS2000 Systems 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
9

9 Working with a UTM application

This chapter describes the various dialog types with which a terminal user can sign on to
and sign off from a UTM application. Communication always following the same principle
for all clients:

1. Sign on to the UTM application
A user can only sign on via clients for which LTERM partners, LTERM pools, or OSI-
LPAP partners have been generated in the UTM application; see the openUTM manual
“Generating Applications”.

2. Call services of the UTM application:
openUTM offers a separate authorization concept for data access control, see
page 202.

3. Enter UTM user commands if necessary.

4. Sign off from the UTM application.

The details of these steps vary depending on the type of client. The following sections
describe the options available for the various clients.

UTM user IDs are used for access, provided the application is generated with user IDs. For
information on signing on to a UTM application without user IDs, see page 198.

Sign-on process with user IDs Working with a UTM application

180 Using openUTM on BS2000 Systems

9.1 Sign-on process with user IDs

If an application is generated with user IDs, openUTM runs through a standard sign-on
process for the user in accordance with the type of client. It is also possible to use your own
sign-on process instead of the standard one, see section “Sign-on process with sign-on
services” on page 192.

A user can sign-on using the following client access points:

– terminals (page 180)

– UPIC clients and TS applications (page 187)

– OSI TP partner (page 188)

– via the web using WebServices (WS4UTM)(page 189)

– via the web using WebTransactions (page 190)

In principle, it is also possible for several users to sign on under the same user ID, see
section “Multiple sign-ons under one user ID” on page 191.

9.1.1 Standard sign-on process for terminals

The user must carry out the following steps in order to work with a UTM application via a
terminal:

1. Establish a connection to the UTM application

The establishment of the connection can be initiated either by the UTM application or
by the user.

2. Sign on to a UTM application, see the section “Standard sign-on dialog” on page 181.

Only then can the user start services and carry out interactive processing, see section
“Calling UTM services” on page 199.

Connection setup by the UTM application

If initiated by the UTM application, the connection can either be established automatically
on the start of the application or using the administration functions. Automatic connection
establishment must be specified during KDCDEF generation and is only possible for
explicitly generated terminals.

Connection setup by the user via terminal emulation

A user can also work with a UTM application from a Windows PC by calling a emulation (for
example, MT9750) and opening the session configured for this application.

Working with a UTM application Sign-on process with user IDs

Using openUTM on BS2000 Systems 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
9

When you set up a session for MT9750, specify the name of the UTM application and the
name and/or IP address of the computer on which the application runs. Details can be found
in the MT9750 product manual.

9.1.1.1 Standard sign-on dialog

The standard sign-on dialog is always performed when the following two conditions are
met:

1. Automatic KDCSIGN (= automatic sign-on check) is not generated for the terminal (see
page 187).

2. No sign-on service is generated for the application name under which the user signed
on (see page 192).

In the standard sign-on dialog, openUTM carries out a sign-on check (system access
control). In the sign-on dialog, UTM messages in line mode ask the user for identification.
In the UTM generation, you can choose between various variants and also modify the UTM
message texts. However, this is the extent to which this procedure can be modified.
Different levels of freedom can be defined for the sign-on check. An overview of all options
can be found in the diagram in the section “Scenarios for the UTM sign-on check” on
page 184.

openUTM outputs the following message to initiate the sign-on check:

K002 Connected to application sample - please sign on KDCSIGN

The user must verify his or her authorization by entering the following details:

KDCSIGN userID [,password]

The password must be entered when the password was not generated as a hidden password
(KDCDEF statement USER...,PASS=).

openUTM checks the user ID and the password (if there is one). If the result is negative,
then the user is requested to re-enter the data for KDCSIGN.

Blanking the password

If password blanking is generated for the user ID (KDCDEF statement
(USER...,PASS=(password,DARK)), openUTM outputs a UTM message to ask the user to
enter the password in a blanked-out field.

On every sign-on to the UTM application, the user has the option of entering a new
password to replace the previous one, provided the minimum validity period allows the
password to be changed at this time. In this case, the user must confirm the new password
by entering it a second time. openUTM checks the old password entered and, if necessary,

Sign-on process with user IDs Working with a UTM application

182 Using openUTM on BS2000 Systems

the new password. If the old password is incorrect or if the new password was not entered
identically both times, a UTM message is output to inform the user and request that the data
be reentered.

Validity period of the password

When generating the user ID, you can define a maximum and minimum validity period for
the password (USER ...,PROTECT-PW=(...,maxtime,mintime)). The minimum validity period
means that the user cannot change his or her password until this period has expired. The
maximum validity period means that the user must change the password within the
specified period.

If the password will become invalid within the 14 days following the sign-on procedure,
openUTM warns the user in a K-message as long as a change is allowed at this time
according to the minimum validity period for the password. A blanked-out password can be
changed as described under “Blanking the password”.
To prevent users that have not worked with the application for a long time from forgetting to
change their password and then consulting the system administrator, the UTM application
can be configured such that these users may sign on one more time after their password
has expired, see section “Grace sign-on” on page 183.

When the password is changed, openUTM checks the following:

● whether the new password differs from the old one if a maximum validity period has
been generated for the password.
If a password history is generated (SIGNON ...,PW-HISTORY=n), the new password is
also checked against the last n passwords.

● whether the new password corresponds to the level of complexity generated for the
user ID (USER ...,PROTECT-PW=).

● whether the length of the password is greater than or equal to the generated minimum
length (USER ...,PROTECT-PW=).

If the password fulfils all of these conditions, openUTM changes the password. The validity
period of the new password again corresponds to the generated value.

Working with a UTM application Sign-on process with user IDs

Using openUTM on BS2000 Systems 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
9

If the new password does not satisfy one of these conditions, the following UTM message
is output to ask the user to reenter the KDCSIGN information using the old password:

K097 Input for new password cannot be used - please sign on

If the validity period of the password has already expired when the sign-on attempt is made
and if no grace sign-on is generated, the sign-on attempt is rejected with the following UTM
message:

K120 Password expired

It is not possible to sign on at the UTM application under this user ID again until the UTM
administrator has assigned a new password to the user ID.

Grace sign-on

If the validity of the password has already expired when the user attempts to sign on and if
the application is generated with grace sign-on (SIGNON ...,GRACE=YES), a K message
informs the user that his or her password is no longer valid. The user is also asked to enter
the old password and a new password. To change the password, an unblanked password
must be reentered in the corresponding blanked-out field.

KDCSIGN with ID card

If the insertion of an ID card (magnetic strip card) is prescribed for the user ID in the UTM
generation, openUTM outputs a UTM message asking the user to insert an ID card into the
ID card reader. When this message is output, the keyboard of the terminal is locked. The
lock is not released until the ID card is inserted. If no ID card is available, the keyboard can
alternatively be unlocked with the K14 or ESC: key.

openUTM checks the ID card information, i.e. openUTM compares the character string
defined in the KDCDEF statement USER ...,CARD=(...) with the corresponding character
string on the ID card. If the result is negative, UTM message K031 is output to inform the
user and request that the KDCSIGN information be reentered. If the result is positive:

● The user can work with the application, provided no blanked-out password is generated
for the user ID.

● openUTM outputs UTM message to ask the user to enter the password in a blanked-
out field. The sign-on procedure is then continued as described under “Blanking the
password” and “Validity period of the password”.

In both cases, the ID card must remain in the ID card reader for as long as the user wishes
to work under this user ID. If the ID card is removed prematurely, openUTM detects this with
the next dialog entry or before, and implicitly generates KDCOFF. See also section “Signing
off from a UTM application” on page 204.

Sign-on process with user IDs Working with a UTM application

184 Using openUTM on BS2000 Systems

i If the ID card is removed, the same message is output as when you press function
key K14. If the user is working under a user ID which requires KDCSIGN with ID
card check, the assignment of K14 (KDCDEF statement SFUNC) to a TAC or return
code makes no sense for this user ID. If the KDCOFF command is assigned to
function key K14, then, for all user IDs, entering K14 has the same effect as
KDCOFF .

Scenarios for the UTM sign-on check

The following diagram shows the possible variants of the UTM-sign-on check, depending
on the KDCDEF generation. If incorrect data is entered, openUTM outputs a specific UTM
message and asks the user to reenter the information. If several unsuccessful sign-on
attempts are made in succession from a particular terminal or under a particular user ID,
openUTM outputs UTM message K094 with the standard destination SYSLOG (system log
file). The maximum permitted number of unsuccessful sign-on attempts before UTM
message K094 is initiated can be defined in the UTM generation with the KDCDEF
statement SIGNON ... SILENT-ALARM=. An MSGTAC program unit can respond to this
UTM message.

Working with a UTM application Sign-on process with user IDs

Using openUTM on BS2000 Systems 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
9

Figure 5: Sign-on check scenarios for applications with user IDs (part 1)

With automatic KDCSIGNWithout automatic KDCSIGN

K002 Connected to application
..... - please sign on

KDCSIGN user ID[, password]

User ID

K029 Please insert card

press K14 key
or

1)

2)

Without password
blanking

With password
blanking

With chipcard check

Connection setupEstablishing a connection

Without ID card /
chipcard check

Insert chipcard

Sign-on process with user IDs Working with a UTM application

186 Using openUTM on BS2000 Systems

continued:

Figure 5: Sign-on check scenarios for applications with user IDs (part 2)

K092 Please enter password
If you wish to change the password,

or

K121 Please enter password
Your password is valid on nnn more day(s) only!
Please enter new password
and repeat new password.

1)
 If openUTM does not accept the entry because an incorrect user ID or incorrect password was entered, or because the
password has expired, a new KDCSIGN is requested.

2)
 If openUTM does not accept the entry, a new KDCSIGN is requested.

Service restart at last
synchronization point

K008 Sign-on accepted - input please

Start format

K155 The password has expired.
Please enter previous password
Please enter new password
and repeat new password.

or 3)

please enter new password
and repeat new password.

or 4)

K028 Please enter password

open service

2)

3) If the password has expired and a change is permitted (only with grace sign-on).
4)

 If no password change is permitted.

Enter old and new
password, if necessary.

K155 The password has expired.
Please enter expired password
Please enter new password
and repeat new password.

3)

or
K122 Your password is valid on nnn more day(s) only!

5)
 For users with password if the password is valid for less than 14 days and a change is permitted, and if

5)

Does not existExists

no start format is generated for the user

or

Working with a UTM application Sign-on process for UPIC clients / TS applications

Using openUTM on BS2000 Systems 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
9

9.1.1.2 Automatic KDCSIGN

If the KDCDEF statement LTERM...,USER=username was specified for a terminal, after the
connection setup openUTM behaves as though the user had already verified his or her
authorization, i.e. KDCSIGN need not be entered. If an ID card or blanked-out password
must be entered for this user ID, openUTM requests this input from the user.

After KDCOFF BUT has been entered, it is also possible to work at this terminal under a
different ID (see section “Signing off from a UTM application” on page 204).

9.1.2 Sign-on process for UPIC clients and TS applications

UPIC clients and TS applications are clients that were generated with PTYPE=UPIC-R,
APPLI or SOCKET.

The connection is set up by the client in the case of UPIC clients, and by the client or
openUTM in the case of TS applications; connection setup by openUTM is only possible if
the TS application is generated explicitly with a PTERM statement.

If the client sets up the connection, the client must know the name of the UTM application
as well as the host name and/or host address. This data is configured on the UPIC client.

When the connection is set up successfully, a UPIC client or TS application signs on in two
stages:

1. Implicit sign-on using a connection user ID

A connection user ID is strictly assigned to an LTERM partner of a TS application or a
UPIC client and is created explicitly or implicitly at UTM generation:

– Explicit creation by USER= specification in the LTERM statement.
Additional characteristics can be defined with the KDCDEF statement USER for
connection user IDs defined in this way.

– Implicit creation by openUTM if no USER was specified in the LTERM statement or
if an LTERM pool is used (TPOOL statement). The LTERM name is then used as
the connection user ID; in the case of an LTERM pool, the LTERM name is made
up of the generated prefix and a serial number, e.g. UPIC0025. For LTERM pools,
special key codes can be assigned to the connection user ID with
TPOOL ...USER-KSET=. The access options of the connection user ID can thus be
restricted.

If no sign-on attempt is made under a real user ID, the preliminary sign-on of the
connection user ID becomes permanent. This is recorded with a message. In the case
of UPIC clients, this message is also output if the client subsequently signs on under a
real user ID.

Sign-on process for OSI-TP clients Working with a UTM application

188 Using openUTM on BS2000 Systems

2. Explicit sign-on using a real user ID (optional)

UPIC clients and TS applications behave differently in this case:

– In the case of UPIC clients, the user ID and sign-on data must be set in the
respective UPIC interface calls. UPIC then transfers these values to openUTM,
which then performs the sign-on for the transferred user ID. This replaces the
connection user ID for the duration of the conversation. At the end of the conver-
sation, the user is signed off again. If the UPIC client does not transfer any sign-on
data in the UPIC interface calls, signing on using a real user ID is only possible with
a corresponding sign-on service; see page 192.

– A user can only sign-on under a real user ID via a transport system connection if an
appropriate sign-on service is generated for the application; see page 192. It is not
possible to sign on with a real user ID using the standard sign-on dialog.

If a TS application signed on using a real user ID, this user ID replaces the
connection user ID for the full duration of the connection.

In the case of both UPIC clients and TS applications, the connection user ID remains
signed on for at least as long as the real user ID. If the connection is lost, a renewed
connection setup attempt may be rejected if a program is still running under the real
user ID and the connection user ID is thus also considered to be signed on. In this case,
the user must wait until the program terminates before signing on again.

9.1.3 Sign-on process for OSI TP partner

In order for an OSI TP partner to sign on to the UTM application, the partner must know the
address of the OSI TP access point of the UTM application. This data is configured in the
OSI TP partner.

In the case of OSI TP partner, the connection setup initiative can come from either the
partner or openUTM. This means that several parallel connections, known as associations,
can be established via one logical connection. An association name is assigned to each
association.

Following a successful connection setup, the client first signs on under its association
name. This name is made up of the name specified in OSI-LPAP ...,ASSOCIATION-
NAMES= and a serial number, e.g. ASSOC03.

Once the appropriate APPLICATION-CONTEXT for OSI TP communication between the
two partners has been generated (in the OSI-LPAP statement in openUTM), the client can
pass a genuine user ID and authorization data in the relevant log fields. openUTM then
signs on with the user ID that has been passed. This sign-on then applies for the duration
of the OSI TP dialog. The user is then signed off again at the end of the OSI TP dialog.

If no genuine user ID is passed, the client remains signed on under its association name.

Working with a UTM application Sign-on process for WS4UTM

Using openUTM on BS2000 Systems 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
9

9.1.4 Sign-on process in the World Wide Web via WebServices (WS4UTM)

A service of the UTM application can be called from WebService clients using WS4UTM.
This allows the user to access certain services of a UTM application over the Web.

The WebService client can be used to structure the sign-on process via WS4UTM:

1. The user specifies a WebService name and a method in his/her WebService client. The
WebService is permanently linked to a UTM application by the configuration. A
connection to the UTM application is established over UPIC.
The WebService client may possibly execute an intermediate dialog, for instance to
obtain proof of authorization.

2. As when using a terminal, the user may have to specify their UTM user ID and
password. Whether or not the user has to go through an authorization dialog of this type
and the appearance of any such dialog will depend on the way in which the WebService
client is structured. It is, for instance possible to "hide" the UTM user ID/password in the
WebService client or to specify it within the configuration of the WebService, with the
result that the authorization dialog is handled internally.

3. The job data (TAC and user data) is sent together with the authorization data to a
WebService server via http/Soap and then to the UTM application over the UPIC
connection. The UPIC connection is cleared again after the response has been
returned to the WebService client.

The Apache Axis server is used as the WebService server.

Communication takes place over Apache Tomcat and Axis using Soap messages and the
http protocol. WS4UTM uses the UPIC interface in openUTM in order to connect to the UTM
application.

For further information, refer to the manual "Web-Services for openUTM".

Sign-on process via WebTransactions Working with a UTM application

190 Using openUTM on BS2000 Systems

9.1.5 Sign-on process in the World Wide Web via WebTransactions

A UTM application can be connected to the World Wide Web via WebTransactions. This
means that a user can access the services of a UTM application using a browser.

Signing on via WebTransactions is simple and can be configured using the WebTransac-
tions application:

1. The user enters the URL of the WebTransactions application in the browser.
The connection is then established to the UTM application. The WebTransactions appli-
cation might output an intermediate dialog box, e.g. to verify authorization for accessing
the WebTransactions application.

2. The user may have to specify the UTM user ID and password (if necessary), as with a
terminal. However, the actual configuration of the WebTransactions application deter-
mines the format of the sign-on dialog and whether or not the user must complete such
a dialog. For example, it is possible to “hide” the UTM user ID/password in the
WebTransactions application so that the sign-on dialog runs internally and the user is
signed on immediately the URL is entered.

The user can then call the services of the application, see page 199f.

To connect to the UTM application, WebTransactions uses either the terminal interface or
the UPIC interface of UTM. More details can be found in the WebTransactions manuals
“Web Access to openUTM Applications via UPIC” and “Web Access to OSD Applications”,
if the terminal interface is used.

Working with a UTM application Multiple sign-ons

Using openUTM on BS2000 Systems 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
9

9.1.6 Multiple sign-ons under one user ID

If the user ID was generated at KDCDEF generation with RESTART=NO and the UTM
application with default value MULTI-SIGNON=YES, a user can be signed on to openUTM
via different connections – though only once via a connection to the terminal. Multiple sign-
ons are only possible for real user IDs, not for connection user IDs. More details on
connection user IDs can be found on page 187.

In this case, the current service utilizes the resources of the connection user ID
(UPIC, TS application) or of the association (OSI TP partner).

If a user signs on under a user ID generated with RESTART=YES via an OSI TP partner
with the functional unit “commit” selected for its conversation, a further sign-on is possible
under this user ID because openUTM does not restart the service in this case and the user
ID thus behaves as though no restart was generated.
The same applies if the user signs on via an OSI TP partner and executes an asynchronous
request.

Otherwise, a user can only be signed on once at any one time under a user ID generated
with RESTART=YES, because the resources needed to restart the service are assigned to
the user ID.

Preventing multiple sign-ons for user IDs with RESTART=NO

The MULTI-SIGNON parameter of the SIGNON statement can be used at UTM generation
to define that a user can only be signed on to openUTM once at any one time regardless of
the restart attribute.
However, this definition does not apply to sign-ons via an OSI TP partner for the execution
of asynchronous requests.

Sign-on services Working with a UTM application

192 Using openUTM on BS2000 Systems

9.1.7 Sign-on process with sign-on services

Sign-on services, also known as SIGNON event services, are user-programmed services
that can be used to define your own sign-on processes. Sign-on services can be used by
terminals, UPIC clients, and TS applications, i.e. by clients generated with the PTERM or
TPOOL statement.

Calling sign-on services

A sign-on service is linked to the application name. If a client signs on under a particular
application name, the sign-on service associated with this application name is started and
replaces the standard sign-on process described in the preceding sections. If several appli-
cation names are generated with BCAMAPPL statements, several different sign-on
services can exist in an application. This means that client-specific sign-on services can be
created, e.g. one for terminals, one for UPIC clients, and one for TS applications. More
details can be found in sections “Sign-on service for terminals” on page 193 through
“Sign-on service for UPIC clients” on page 194.

If no sign-on service is generated for an application name, the client runs through the
standard sign-on process.

Generating sign-on services

Sign-on services are generated as follows; see also the openUTM manual “Generating
Applications”:

● TAC KDCSGNTC is used to generate the sign-on service for the standard application
name (defined in MAX APPLINAME).

● BCAMAPPL appliname2...,SIGNON=signon-tac is used to generate the sign-on service
for the application name appliname2. signon-tac must be defined in a TAC statement.

● If you also want UPIC clients to be able to use sign-on services, SIGNON ...,UPIC=YES
must be generated as well.

A PROGRAM statement is also needed for each of these TACs. The name of the first
program unit run through in the sign-on service is specified here.

Programming sign-on services

The special KDCS calls SIGN ST, SIGN ON and PEND PS are used for programming a
sign-on service. A detailed description of how to program a sign-on service and what rules
to observe in the process can be found in the corresponding section of the openUTM
manual „Programming Applications with KDCS”.

Working with a UTM application Sign-on services

Using openUTM on BS2000 Systems 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
9

9.1.7.1 Sign-on service for terminals

A sign-on service for terminals is generally made up of two parts:

Between the first and second part of the sign-on service, openUTM can - if necessary -
insert an intermediate dialog that is controlled by openUTM messages. This intermediate
dialog reads a magnetic strip card or a password generated with
USER...,PASS=(...,DARK). In these cases, openUTM asks the user to enter this infor-
mation, as in the standard sign-on dialog. This procedure offers the users additional
security for accessing their applications. In the intermediate dialog, it is possible (as in the
standard sign-on dialog) to overwrite the previous password with a new one.

Special cases of the sign-on service for terminals

The sign-on service must be changed accordingly for the UTM generation of LTERM
partners with automatic KDCSIGN and for signing on via OMNIS.

LTERM partners with automatic KDCSIGN

The sign-on service receives the information that the user ID is already known to the system
when calling SIGN ST. An intermediate dialog can now be run to query a magnetic strip card
or a password.

Signing on via OMNIS or multiplex connection (OMNIS)

When the user signs on to the UTM application via multiplex connection, then OMNIS
transmits the authorization data on to openUTM via the PUTMMUX protocol for further
verification. If the data is correct, then openUTM starts the sign-on service that contains the
appropriate information from the SIGN ST call. If the data is incorrect, then the sign-on
service is not started and the distributor must inform the user on the terminal.

Sign-on service

Part 1 Part 2

The service asks the user for identification, reads
the authorization data with MGET, and transfers
this data to openUTM for checking. The service
is not yet assigned to any user ID.

openUTM has accepted the authorization data
and has assigned the sign-on service to the
established user ID.

Sign-on services Working with a UTM application

194 Using openUTM on BS2000 Systems

9.1.7.2 Sign-on service for TS applications

When the sign-on service starts, the user is temporarily signed on under the connection
user ID.

The authorization data of a real user ID can be passed in the sign-on service via the
SIGN ON call. If openUTM accepts the data, then the user is signed on under the specified
user ID when the sign-on service ends properly. The sign-on attempt is rejected if the autho-
rization data of the TS application is incorrect or if there is an open service under the
connection user ID.

If the sign-on is unsuccessful under a real user ID, a successful sign-on under a real user
ID must follow within the same sign-on service, as otherwise the connection is cleared
down when the sign-on service is terminated. This means that the connection user ID is not
a fallback step for a failed sign-on attempt.

If there is no user ID passed in the sign-on service, then the user is signed on permanently
under the connection user ID when the sign-on service terminates properly.

9.1.7.3 Sign-on service for UPIC clients

A distinction is drawn between two possible scenarios when signing on using a sign-on
service:

● The UPIC client transfers authorization data to openUTM in the UPIC protocol. If
openUTM accepts the data, the sign-on service is started under the transferred real
user ID and the client is signed on under this user ID, provided the sign-on service is
completed successfully.

● If the UPIC client does not transfer any authorization data in the UPIC protocol, the sign-
on service is started under the connection user ID. The authorization data of a real user
ID can be passed in the sign-on service. If openUTM accepts the data, then the user is
signed on under the specified user ID when the sign-on service ends properly. If no
authorization data is passed, then the conversation runs under the connection user ID.

If the sign-on fails under a real user ID, a successful sign-on must follow under a real user
ID, as otherwise the conversation is terminated when the sign-on service is terminated. This
means that the connection user ID is not a fallback step for a failed sign-on attempt.

To ensure that client programs can be implemented regardless of whether or not the UTM
application uses a sign-on service, messages from the client that are unread when a
program unit of the sign-on service terminates, can be read in the subsequent program unit
with PEND PA, PEND PR, PEND PS or PEND FC without preceding MPUT.

Working with a UTM application Sign-on services

Using openUTM on BS2000 Systems 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
9

9.1.7.4 Possible applications for the sign-on service

The sign-on service offers the user a range of practical options, which are outlined below:

● The sign-on service for terminals can be conducted as a formatted dialog.

● Start formats can contain current data such as the date, time, a bulletin, etc.

● In an application with multilingual users, LTERM-specific start formats can be used to
output a welcome screen in the respective language. This option is only available for
terminals.

● User-specific start formats are useful for showing information specific to a user group
(bulletin, menu, etc.).

● TS applications can sign on to a UTM application using a sign-on service with a real
user ID. They are thus integrated in the system access and data access concept of
openUTM.

● The name entered by the user can be converted into a user ID which is defined in the
UTM generation (USER username).

● In the case of a global DB/DC authorization concept, a database call can be used in the
second part of the sign-on service to retrieve the current authorization profile for this
USER from the database and possibly store it in a user-specific long-term storage area
(ULS).

● In the second part, the sign-on service can ask the user to change his or her password,
for example because the system is monitoring the time span in which the user can use
the same password.

● Statistics can be produced on all attempted and successful sign-ons.

● The FHS format handling system offers the option for terminals of loading the P keys
using a global attribute of a #format. In the second part of the sign-on service, for
example, the P keys can be loaded user-specifically.

● The sign-on service can also provide the user with useful information in the case of a
subsequent service restart. Such information includes bulletins, maps of keyboard
layout, or a display of the service restart. Of course, this requires an additional dialog
step.

● If openUTM starts the sign-on service following a SIGN OB call (= KDCOFF BUT by
program), it may be advisable to read the last input from the terminal with MGET if new
authorization data was already entered there.

Sign-on services Working with a UTM application

196 Using openUTM on BS2000 Systems

9.1.7.5 Properties of sign-on services

Outputting the last dialog message by the sign-on service

If there is not a service restart pending and the sign-on service is terminated with MPUT PM
and PEND FI, the last dialog message is output. The user can then continue working with
the same screen that was being used when the last session was terminated, regardless of
whether this occurred inside or outside of a service.

Messages

If a UTM application uses a sign-on service, then the following messages are not produced
(and therefore not output to the SYSLOG and MSGTAC):

K001, K002, K004 through K008.

Message K033 (Successful sign-on) is also output when a sign-on service is used.

Unsuccessful attempts in the sign-on service

In the sign-on service, unsuccessful attempts of the user to sign on can be intercepted: if
openUTM does not accept the authorization data entered by the user, the sign-on service
can ask the user to repeat the input. The maximum number of input attempts can be
programmed. If this number is exceeded, the sign-on service should terminate. UTM shuts
down the connection in the case of TS applications and terminals, whereas only the conver-
sation is ended in the case of UPIC.

In addition, openUTM counts all of the unsuccessful attempts of a client or unsuccessful
attempts under a user ID made in uninterrupted succession, also over a series of sign-on
services. The maximum permitted number of failed sign-on attempts must be defined in the
UTM generation. After this number of failed sign-on attempts has been made (see
openUTM manual “Generating Applications”, KDCDEF statement SIGNON, operand
SILENT-ALARM), openUTM reports this event to SYSLOG (silent alarm, UTM message
K094). Sign-on attempts by unauthorized persons can be uncovered and averted with an
MSGTAC routine.

Abnormalities in the sign-on service

openUTM checks whether the rules for the sign-on service are observed. This also provides
protection against any manipulation of the program units of the sign-on service. If such
errors occur, openUTM terminates the sign-on service with PEND ER and shuts down the
connection to the terminal. The connection is then shut down in the case of TS applications
and terminals, whereas only the conversation is ended in the case of UPIC.

Working with a UTM application Locked clients/LTERM partners

Using openUTM on BS2000 Systems 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
9

9.1.7.6 Sample programs for the sign-on service

In conjunction with openUTM, program units supplied as COBOL source programs
implement a complete sign-on service with formatted interface to the terminal. This sign-on
service is suitable for all generation variants. The format used contains English texts.

This template can be modified to suit the user’s needs, thereby providing an easy way of
producing a sign-on procedure with a formatted interface to the user. In this way, there is
no need for the user to begin the programming from scratch.

9.1.8 Behavior in the event of locked clients/LTERM partners

Behavior for locked clients

Clients can be locked by UTM generation (PTERM...,STATUS=OFF) or administration
command. Locking a client has the following effects:

● Any connection setup request will be rejected.

● Any existing connection will be retained; the lock only comes into effect if a new
connection setup request is received from this client.

Behavior for locked LTERM partners

LTERM partners can be locked by UTM generation (LTERM...,STATUS=OFF) or adminis-
tration command.

In the case of UPIC clients and TS applications, locking the LTERM partner has the same
effect as locking the client.

In the case of terminals, locking an LTERM partner has the following effects:

● Any connection setup request will be carried out, but the following UTM message will
be output after the connection has been established:

K027 Terminal <ERM is locked - contact administrator
or sign off.

● Any existing connection will be retained; the next input from the terminal will be
acknowledged with UTM message K027.

Sign-on process without user IDs Working with a UTM application

198 Using openUTM on BS2000 Systems

9.2 Sign-on process without user IDs

openUTM does not perform a sign-on check for UTM applications for which no user IDs are
generated. The clients are signed on under their LTERM names or association names.
UPIC clients and OpenCPIC clients are not permitted to transfer real user IDs in this case.

If the UTM application uses sign-on services (page 192f), an application-specific sign-on
check can then be performed, e.g. using a database with authorization data.

If sign-on services are not used, the user can work with this application as soon as a
connection has been successfully established to the UTM application. In the case of
terminals and TS applications, the user receives a message from openUTM depending on
whether an open service is still known for this LTERM partner.

● If no open service is known for the LTERM partner in the application, openUTM outputs
the UTM message

K001 Connected to application example - input please

In the case of terminals, the start format for this LTERM partner is output, if generated.
The user can then start services and enter UTM user commands.

● If an open service is known for this LTERM partner in the application, the output from
the last synchronization point of the interrupted service is displayed on the screen and
the user can continue the service. See also “Service restart” and “Screen restart” in the
openUTM manual „Programming Applications with KDCS”. One of the prerequisites
here is that RESTART=YES was generated for this LTERM partner. However, this also
means that the user may also be able to continue the service of another user.

Note that openUTM links a service to the LTERM partner in an application without user IDs.
An interrupted service can therefore only be continued from the same client, unless the
assignment of LTERM partner and physical client (defined in the PTERM statement) is
changed accordingly with the administration command KDCSWTCH.

If clients are locked, the behavior is the same as for user IDs; see page 197.

v CAUTION!
In a UTM application without user IDs, all users have administration authorization.

Working with a UTM application Calling UTM services

Using openUTM on BS2000 Systems 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
9

9.3 Calling UTM services

If the UTM sign-on check runs successfully, the user is authorized to work with the UTM
application, i.e. he or she can start new services (see below) or continue open services.

Sections “Starting services from the terminal” on page 199 to “Starting services from TS
applications” on page 200 illustrate how new services are started for the individual client
types. For a description of what happens when an open service is still known for this user
ID in the application, see section “Service restarts” on page 201.

9.3.1 Starting services from the terminal

Following a successful sign-on, the user can start a service by entering a transaction code
(TAC) or pressing an appropriately generated function key.

Starting a service by entering a transaction code

If no sign-on service is performed, users may find themselves in the following situations:

● openUTM outputs the following message in line mode:

K008 Sign-on accepted - input please

The user can start a service by entering a TAC and possibly a message. The first eight
characters input are interpreted by openUTM as the TAC. If the TAC is shorter than
8 characters, it must be separated from the message by a blank.

● If a start format was generated for the user, the appropriate fields of the start format
must be completed. The field with the TAC, also called the control field, does not neces-
sarily appear first.

If a sign-on service is performed, the sign-on service determines the next step. The user
then receives output in format or line mode, or a service is started immediately.

Starting a service using a function key

A TAC can be assigned to a function key at UTM generation, e.g. F10; see KDCDEF
statement SFUNC. When the user presses this key, the service is started regardless of
whether the user is working in line mode or is in a start format.

Calling UTM services Working with a UTM application

200 Using openUTM on BS2000 Systems

Entering invalid transaction codes

If the user enters an incorrect TAC, the following message is output:

K009 Transaction code <tac> is invalid - input please

If a BADTACS dialog service is generated in the application, then the BADTACS service is
started instead. After the BADTACS dialog service has ended, the user remains signed on
and can start a service as described above.

9.3.2 Starting services from the UPIC client and OSI TP partner

After the connection has been set up, the OSI TP partner or UPIC clients can start conver-
sations. To this end, the TAC is set by the client, e.g. using the Set_TP_Name function on the
CPI-C interface or a corresponding entry in the side information file. This TAC is transferred
to openUTM, possibly in conjunction with authorization data. When the sign-on check has
been performed successfully, the following apply:

● In the case of OSI TP partner and UPIC clients with no sign-on service, the service
associated with the TAC is started immediately.

● In the case of UPIC clients with a sign-on service, the service associated with the TAC
is not started until the sign-on service has been concluded.

The user is signed off again at the end of the conversation if he or she signed on for this
conversation under a real user ID.

9.3.3 Starting services from TS applications

TS applications behave similarly to terminals:

● If there is no sign-on service, the TS application receives message K001 if the message
destination PARTNER was assigned to this message; see the description of the
KDCMMOD tool in the openUTM manual “Messages, Debugging and Diagnostics on
BS2000 Systems”.

The TS applications can then start a service by transferring a TAC, and possibly a
message, to the UTM application. In this case, the first 8 characters of the message are
interpreted as the TAC. If the TAC is shorter than 8 characters, it must be separated
from the message by blanks.

● If a sign-on service is performed, this service determines the next step. The sign-on
service can either start a service directly to send a message to the TS application. In
the latter case, the next message must contain a TAC in the first 8 characters, i.e. the
same applies as when no sign-on service is used (see above).

Once the service has terminated, the next service can be started.

Working with a UTM application Calling UTM services

Using openUTM on BS2000 Systems 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
9

9.3.4 Service restarts

If a client signs on under a user ID that was generated with RESTART=YES, and if an open
service is still known for this user ID in the application, a service restart is generally
performed. If a message was sent to the client at the last synchronization point then
openUTM sends this message to the client again. The user can then restart the service.
Otherwise the open service is continued immediately.

Depending on the type of client and on the sign-on process involved, the following apply to
the service restart:

● Standard sign-on process for terminals and TS applications:
openUTM performs the service restart automatically.

● Standard sign-on process for UPIC clients and OSI TP partner:
The client must start a specific conversation, which requests the restart using the UTM
user command KDCDISP (see the manual „openUTM-Client for the UPIC Carrier
System”, for example). The service cannot be restarted from OSI TP clients if the
“commit” functional unit was selected.

● Signing on using a sign-on service:
The sign-on service must initiate the restart or terminate the open service abnormally.

i In an application with user IDs, a service is linked to the user ID. This means that
the user can continue an interrupted service even on a different client, provided the
LTERM partner of the client has the correct authorization and the client type
remains the same.

Sign-on concept of openUTM Working with a UTM application

202 Using openUTM on BS2000 Systems

9.4 Sign-on concept of openUTM

In addition to system access control based on user IDs, openUTM offers a sophisticated
system access and data access concept. This makes it possible to control which users can
access which services of the UTM application via which LTERM partners.

The user-oriented variant (lock/key code concept) and role-oriented variant (access list
concept) are available. These variants are generated using lock codes, access lists,
keysets, and key codes:

● A service is protected either with lock codes (lock/key code concept) or with an access
list (access list concept) (TAC statement LOCK= or ACCESS-LIST=).

● A user ID receives a keyset with one or more key codes (USER statement KSET=). The
key codes define the authorizations.

● An LTERM partner receives a keyset with one or more key codes, as well as lock codes
if the lock/key code concept is used (LTERM or TPOOL statement, KSET= and LOCK=
operands).

● Keysets are defined separately in KSET statements.

The preconditions under which users can sign on and when they can start or continue a
service (following a service restart) are outlined in the following table for both concept
variants.

Action Preconditions

Lock/key code concept Access list concept

Sign on via specific
LTERM partner

A key code of the user ID matches
the lockcode of the LTERM partner.

Sign-on is always possible.

Start a service The user ID and LTERM partner
have a key code that matches the
lockcode of the TAC.

The user ID and LTERM partner
each have a key code which is
contained in the access list of the
TAC. The key codes of the user ID
and LTERM need not be identical.

Continue service
(following service
restart)

A key code of the LTERM partner
via which the user continues the
service must match the lockcode of
the follow-up TAC.

A key code of the LTERM partner
via which the user continues the
service must be contained in the
access list of the follow-up TAC.

Working with a UTM application Sign-on concept of openUTM

Using openUTM on BS2000 Systems 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
9

Messages in the event of incorrect authorization

If authorization is invalid, the following messages may be output to the terminal user (a
corresponding return code is supplied with the sign-on service):

K005 User identification user is locked - please sign on

If the key code of the user does not match the key code of the LTERM partner (sign-on
service: return code U02).

K009 Transaction code <tac> is invalid - input please

If the user or LTERM is not authorized to start the service. If a BADTAC service is
generated, the BADTAC service is started instead.

K123 LTERM does not have the rights to continue the service - please sign on

If the LTERM partner via which the user signed on at the service restart is not authorized to
start the follow-up TAC (sign-on service: return code U16). This message may be output in
particular if a user continues the service from a different terminal and hence a different
LTERM.

i More information can be found in the openUTM manual “Concepts and Functions”
and the openUTM manual “Generating Applications”.

Signing off from a UTM application Working with a UTM application

204 Using openUTM on BS2000 Systems

9.5 Signing off from a UTM application

The following sections describe the various ways in which a client can sign off from the UTM
application or is signed off by UTM. In this case, terminals differ from all other clients
because users can only sign off from the application explicitly from terminals.

Signing off in the event of a timeout

Maximum wait times can be defined at UTM generation using:

● the TERMWAIT= (PEND KP timer) and PGWTTIME= (PGWT timer) operands in the
KDCDEF control statement MAX

● the IDLETIME= (transaction end timer) operand of the PTERM statement or OSI-LPAP
statement (for OSI TP partner)

If a wait time set with these timers expires, the following message is output to terminals:

K021 No input within the specified period

openUTM then signs off the user ID and shuts down the connection to the client. The client
can subsequently sign on to the application again and continue the service, see section
“Service restarts” on page 201.

Signing off with the KDCOFF command

The terminal user can sign off from the UTM application by entering the UTM command
KDCOFF or KDCOFF BUT. See also the UTM user command KDCOFF on page 212.

KDCOFF from a program

openUTM offers the function calls SIGN OF and SIGN OB, which can be used to trigger the
effect of the KDCOFF or KDCOFF BUT user command in a dialog program unit. SIGN
OF/OB is possible for terminals, UPIC clients, and TS applications. These calls are not
permitted in program units running for an OSI TP partner.

SIGN OF and SIGN OB work as follows:

SIGN call Command Effect

SIGN OF KDCOFF openUTM shuts down the connection to the client

SIGN OB KDCOFF BUT The connection remains open for terminals; the user is signed
off.
In the case of UPIC clients and TS applications, the
connection is shut down (as with SIGN OF).

Working with a UTM application Signing off from a UTM application

Using openUTM on BS2000 Systems 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
9

The call has different effects for terminals and UPIC clients/ TS applications:

● In the case of terminals, openUTM first outputs the MPUT message and message K095
to the terminals. Only with the next (arbitrary) input from the terminal is the user signed
off and the connection shut down (with SIGN OF).

● In the case of UPIC clients and TS applications, the MPUT message is sent and the
connection shutdown is then initiated immediately.

Some of the possible applications of the SIGN OF/OB function call are outlined below:

● Applications with particular security requirements. After signing off, a user can only
process a single service.

● Improved data protection: The screen can be overwritten by the last MPUT; no service-
specific data remains on the screen.

● The control part of the screen also offers “Sign Off” or “Sign On” as possible follow-up
actions. Depending on the input, the follow-up program unit then creates a SIGN OF or
SIGN OB call. Following the dialog output of this program unit and the subsequent
input, either the connection to the terminal is shut down or the sign-on service is started.

UTM user commands Working with a UTM application

206 Using openUTM on BS2000 Systems

9.6 UTM user commands for terminals

This section describes all of the UTM user commands available to the terminal user after
signing on (the KDCSIGN command needed to sign on is described on page 181):

– KDCFOR, for outputting the basic format

– KDCOUT, for requesting asynchronous messages

– KDCDISP, for requesting the last dialog message again

– KDCLAST, for repeating the last output

– KDCOFF, for signing off

The KDCDEF statement SFUNC can be used when generating the application to assign
UTM user commands to K/F keys; these commands can then be entered by pressing the
corresponding function keys.

Working with a UTM application UTM user commands

Using openUTM on BS2000 Systems 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
9

KDCFOR - output the basic format

The KDCFOR command can be used to output a basic format. A basic format is used for
entering the data for a job on the screen in format fields.

By entering KDCFOR { format-identifier1 | ’format-identifier’2 }, the format is output at the
terminal with the specified format identifier. This format applies as the basic format of the
user until another KDCFOR command with a different format identifier is entered.

By entering the KDCFOR command without a format-identifier, the basic format which is
currently valid can be output at the terminal.

i It is not possible to output #formats with the KDCFOR command.

In the event of errors, openUTM outputs one of the following UTM messages:

K013 Error in command KDCFOR - input please

The KDCFOR command does not have the prescribed form.

K014 No base format defined - input please

The user has specified a KDCFOR command without a format identifier, but no basic
format is known as yet.

K015 Formatting error - input please

An error occurred in the attempt to output the basic format.

K003 Command KDCFOR is not permitted at this time.

The KDCFOR command is not permitted on this level of the dialog (with the UTM appli-
cation).

1 if format-identifier = *
2 if format-identifier = *,+,-

UTM user commands Working with a UTM application

208 Using openUTM on BS2000 Systems

KDCOUT - output asynchronous messages

With the KDCOUT command, the user can request the output of asynchronous messages.
At generation time, the ANNOAMSG={ YES | NO } operand in the LTERM or TPOOL
statement defines how openUTM is to output asynchronous messages to this terminal
(LTERM) or LTERM pool (TPOOL).

Output with ANNOAMSG=Y

In this case, openUTM announces asynchronous messages with the following UTM
message:

K012 nnn asynchronous message(s) present

The UTM message appears in the system line together with the next dialog output at this
terminal. The number of asynchronous messages is specified with nnn. The user can
retrieve these messages using the KDCOUT command. If, on the other hand, there are no
messages for the terminal, openUTM outputs the UTM message:

K020 No message(s) present

When an asynchronous message is retrieved with KDCOUT, it is deleted by the next input,
except when KDCLAST is entered (see page 211).

If the user is in a format-driven dialog with a service and outputs an asynchronous message
with KDCOUT, the last output format is thereby destroyed. To continue the service, the user
must redisplay the output format with the user command KDCDISP (see page 210). If this
is not done, openUTM automatically executes a KDCDISP. The user must then repeat the
input.

The result of the KDCDEF statement LTERM ..., RESTART= NO is that any pending
asynchronous messages are deleted when the connection is set up or shut down to this
LTERM partner.

The function variants of openUTM have the following effects on the handling of
asynchronous messages:

● With UTM-S applications, asynchronous messages are logged even if the application
run is interrupted and are retained until retrieved with KDCOUT.

● With UTM-F applications, asynchronous messages are only stored during the appli-
cation run. They are lost when the application run terminates.

Working with a UTM application UTM user commands

Using openUTM on BS2000 Systems 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
9

Output with ANNOAMSG=N

If a client is connected to an LTERM partner generated with LTERM...,ANNOAMSG=N or
TPOOL ...,ANNOAMSG=N, the KDCOUT command is not permitted on this client.
ANNOAMSG=N means that openUTM outputs asynchronous messages immediately at the
terminal, i.e. without prior announcement. openUTM therefore rejects the KDCOUT
command at this terminal with UTM message K003:

K003 Command KDCOUT is not permitted at this time.

In a UTM application with user IDs, asynchronous messages are output at the earliest after
the sign-on check has been concluded successfully.

If you want to continue your dialog with the application after the asynchronous message has
been output, the screen of the last dialog output must be requested beforehand with
KDCDISP. Otherwise, openUTM executes an automatic KDCDISP. This automatic screen
restart is only suppressed by openUTM if the asynchronous message was output with the
same format as the last dialog output.

i An automatic restart is always implemented with #formats.

UTM user commands Working with a UTM application

210 Using openUTM on BS2000 Systems

KDCDISP - output the last dialog message

While a UTM application is running, the user can output the last dialog message once again
with the KDCDISP command.

When the application has been terminated and restarted in UTM-S, the KDCDISP
command can be issued by the user after signing on to redisplay the dialog output message
from the last synchronization point.

If the user enters the KDCDISP command after the sign-on service has concluded or after
returning from an inserted service, openUTM redisplays the last screen of the last session
or the last screen of the interrupted service.

For information on screen output in FHS-DE formats, see also the
section “KDCDISP, KDCLAST in FHS-DE formats” on page 211.

The KDCDISP command is useful in the following situations:

● As a result of transmission problems or operating errors at the terminal, the screen
content after a dialog output is partially or fully destroyed.

● The user has received asynchronous messages on the screen while processing a
service (either requested with KDCOUT or sent automatically by openUTM) and then
wants to continue the open service. In this case, the KDCDISP command is issued to
redisplay the last dialog output.

If the user wants to continue the service directly in the asynchronous format message,
openUTM implicitly creates a KDCDISP and the input must be repeated.

● When the UTM application has been terminated and restarted, the user can (for orien-
tation purposes) issue the KDCDISP command to repeat the last dialog output of the
service concluded before the application terminated. However, this only applies with a
UTM-S application and if the service restart facility was not explicitly deactivated by the
KDCDEF statement USER ...,RESTART=NO (or LTERM ...,RESTART=NO, if the appli-
cation was generated without user IDs).

Working with a UTM application UTM user commands

Using openUTM on BS2000 Systems 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k0
9

KDCLAST - repeat the last output

The KDCLAST command enables you to repeat the last output message at the terminal,
regardless of whether this was a dialog message or an asynchronous message. For infor-
mation on screen output in FHS-DE formats, see also the following section.

If the last message output was an asynchronous message, this output is repeated with
KDCLAST. However, the asynchronous message is thereby not yet released.

If the KDCLAST command is entered after the sign-on service has concluded, openUTM
redisplays the last screen of the sign-on service. If the command is entered after returning
from an inserted service, the last screen of the inserted service is redisplayed.

KDCDISP, KDCLAST in FHS-DE formats

It is advisable to use the FHS-DE function RESHOW to redisplay the last screen output in
FHS-DE formats.

In the intermediate dialog, the user must issue the FHS-DE function RESHOW to request
the repetition of the last screen output. The RESHOW function can only be called using a
K key assigned with RESHOW in the KEY format belonging to the format. This key must
not be generated with SFUNC in openUTM. See also the User Guide “FHS - Format
Handling System for openUTM, TIAM, DCAM”.

If the UTM commands KDCDISP and KDCLAST are specified in FHS-DE formats, they are
only processed by openUTM if they are specified in the first input field or in the UTM control
field of an FHS-DE screen format. No field in the screen format can be filled such that an
FHS-DE intermediate dialog would be run as a follow-up action. If these conditions are
fulfilled, the command is transferred from FHS-DE to openUTM for processing and as a
result the last screen output is repeated.

If, on the other hand, one of the commands is specified in a dialog box (in the FHS-DE inter-
mediate dialog) or in a screen format followed by an intermediate dialog, then KDCDISP
and KDCLAST do not cause openUTM to repeat the last screen output. FHS-DE first
processes the intermediate dialogs. In this case, FHS-DE does not recognize KDCLAST or
KDCDISP.

UTM user commands Working with a UTM application

212 Using openUTM on BS2000 Systems

KDCOFF - sign off from a UTM application

You can enter the UTM command KDCOFF to sign off from the UTM application. The
connection to the terminal is thereby shut down. You can then establish another connection
to a UTM application from this terminal. If you sign off at the end of a transaction while a
service is being processed, the processing is interrupted. It can be continued when you
later sign on to the UTM application again.

KDCOFF BUT

By entering KDCOFF BUT, you can sign off in such a way that the connection between the
terminal and the UTM application is retained. It is needed for a subsequent sign-on, or the
sign-on service is started.

Messages

If KDCOFF [BUT] is entered, openUTM responds by outputting one of the following UTM
messages:

K019 Sign-off for application example accepted

The user entered KDCOFF or, in an application without user IDs, entered KDCOFF
BUT. The terminal is no longer connected to the UTM application.

K018 Sign-off for application example accepted - please sign on

The user entered KDCOFF BUT in an application with user IDs and without a sign-on
service. openUTM asks the user to sign on again.

K003 Command KDCOFF is not permitted at this time.

The command is entered after a PEND KP call or blocking call (e.g. PGWT) of the
program unit.

Using openUTM on BS2000 Systems 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
0

10 Replacing programs during operation

openUTM offers functions for replacing application programs or parts of an application
program during operation. openUTM uses the interfaces and functions of the BLS for the
replacement operation.

The application must have been generated with at least one LOAD-MODULE statement if
program exchange is to be possible.

The following can be replaced during operation using UTM administration functions:

● All non-shareable application parts that are not linked statically.

● All application parts in a common memory pool valid for a user ID
(MPOOL..., SCOPE=GROUP). However, this requires that no more than one openUTM
application is connected to this common memory pool.

● The complete application.

● A nonprivileged subsystem in LLM format, for which the private slice is generated as a
load module with LOAD-MODE=STARTUP | ONCALL. A system administration
command is required in addition to the KDCPROG command. Please note that a
consistency gap exists for nonprivileged subsystems in OM format. See also the infor-
mation in section “Shared code in system memory” on page 44.

The following cannot be replaced during operation:

● Program components that were linked statically to the application program.

● Program components that were loaded as shareable programs in a common memory
pool generated with SCOPE=GLOBAL.

● Program components in common memory pools that were loaded with
SCOPE=GROUP and to which several UTM applications are connected under the
same user ID.

● Load modules in which additional user-specific modules other than the one generated
with a LOAD-MODULE statement are loaded by the autolink function along with the
load module.

● Load modules containing TCBs.

Linking and generating Replacing programs during operation

214 Using openUTM on BS2000 Systems

● Load modules containing runtime modules. These can only be replaced with the entire
application program.

● The load module that contains the KDCADM administration program unit.

 The UTM administration functions for replacing programs are described in the
openUTM manual “Administering Applications”.

10.1 Linking and generating

To be able to replace application parts, the start LLMs must be linked beforehand as a link
load module (LLM) and be made available in a program library as type L element (see
section “Linking LLMs” on page 59).

The rest of the program units must also be linked beforehand as a link load module (LLM)
and be made available in a program library as type L elements, or they must be contained
as object modules (OMs) in an object module library (OML) or in a program library as type
R elements.

Exchangeable load modules must always be generated in a LOAD-MODULE statement
with LOAD-MODE≠STATIC. If they are loaded in a common memory pool, this must be
generated with MPOOL ,...SCOPE=GROUP. If program units or data areas are incorpo-
rated in a load module, the LOAD-MODULE operand must be defined as appropriate in the
associated PROGRAM or AREA statements.

Replacing programs during operation Replacing application parts

Using openUTM on BS2000 Systems 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
0

10.2 Replacing application parts

The replacement of application parts must be explicitly requested using the administration
command KDCPROG. In this case, you must explicitly specify the version number of the
new load module to be loaded. openUTM checks whether the specifications are permissible
and initiates the program replacement. In the program replacement process, openUTM
does not verify whether the assignment defined with KDCDEF in the LOAD-MODULE,
AREA, and PROGRAM statements corresponds to the actual division of the load modules
in the libraries.

The changes that resulted from the administrative action to exchange programs in the
application program loaded are saved by openUTM beyond the end of the application run,
i.e. the versions of the load modules that have been modified by the administration actions
will be loaded during the next start. The version numbers of the replaced load modules can
be transferred to the new KDCFILE even in the case of an update generation using
KDCUPD, which means that the modules last loaded are reloaded at the next application
start.

In the program replacement, only a program component loaded with one load procedure
can be replaced as a single module, i.e. only one LLM or OM can be replaced as a part.
Only the module which is generated by openUTM is replaced, not the entire load unit; in
other words, if the load unit contains parts of the runtime system that were loaded with
autolink, these are not unloaded in the replacement.

Example

The load module A-LLM is contained in the library OWN-LIB and is generated with:

LOAD-MODULE A-LLM,LIB=OWN-LIB -
,VERSION=001 -
,LOAD-MODE=STARTUP -
.ALTERNATE-LIBRARIES=YES

A-LLM contains a program unit APU, for example, which calls a function bfunc. This function
is in B-LLM, which is contained neither in A-LLM nor in the library OWN-LIB. In this case,
A-LLM is loaded at the start of the application program with B-LLM by the autolink function.
When A-LLM is replaced with KDCPROG, B-LLM remains in the memory with bfunc. This
can lead to inconsistencies if B-LLM contains subroutines from application programs and
not just runtime modules. If B-LLM also contains application logic, A-LLM and B-LLM are to
be linked to create one LLM.

When replacing individual load modules, the event exits SHUT and START are not
executed. These are only activated when the entire application program is terminated and
loaded dynamically as a result of a program replacement in a task.

The replacement process runs differently depending on when (STARTUP or ONCALL) and
where (common memory pool or not) the load module is loaded.

Replacing application parts Replacing programs during operation

216 Using openUTM on BS2000 Systems

10.2.1 Replacing a load module with LOAD-MODE=STARTUP

When replacing a load module that was generated with LOAD-MODE=STARTUP, the
program run in the tasks of the application is not terminated. Instead, the relevant load
module is unloaded and then a new version of this load module is loaded. The program
replacement can be implemented simultaneously by several tasks of an application. During
the replacement, different states of the application program are loaded in the tasks of the
UTM application. Each task of the application implements the requested program
replacement after processing the current job. The program replacement is concluded when
the new version of the load module is loaded in each task of the application.

Until the program replacement is concluded in all tasks, no further program replacement
can be started. The administrator can use the administration command KDCINF SYSP to
ascertain whether or not a program replacement is running at present.

The version numbers of the old and new load module may be the same.

When the program replacement is concluded successfully openUTM generates UTM
message K074, which is output to SYSOUT. The UTM message can, however, also be
evaluated using an MSGTAC program, in order to make this information accessible to the
administrator.

If openUTM has to abort the program replacement, openUTM generates UTM message
K075.

10.2.2 Replacing a load module with LOAD-MODE=ONCALL

If you want to replace a part of an application which was generated in a load module with
LOAD-MODE=ONCALL, only the new version number to be loaded for the respective load
module will be entered in the UTM tables when the administration command KDCPROG is
processed.

The load module of the new version will not be loaded by each task of the application until
the next time a program unit of this load module is called in the task. This program
replacement can be implemented simultaneously by several tasks of an application. Until
the requested program replacement has been implemented by all tasks of the UTM appli-
cation, different states of the application program are loaded in the individual tasks.
However, it is ensured that each task implements the requested replacement before
another program unit is activated which is contained in the load module to be replaced.

The replacement of an ONCALL load module does not have a blocking effect on subse-
quent commands for program replacement; in other words, immediately after processing
the KDCPROG command the administrator can initiate a new program replacement with
another KDCPROG command. However, the program library must not be modified after the
administration call has been issued, as otherwise the program replacement may result in
errors.

Replacing programs during operation Replacing application parts

Using openUTM on BS2000 Systems 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
0

If the version identifiers of the new and the old load module are the same, no program
replacement is implemented.

10.2.3 Replacing a load module in a common memory pool

Load modules that are fully or partially contained in common memory pools can first of all
be marked for replacement with the KDCPROG command.

These load modules are not replaced until the entire application is subsequently replaced
(see below).
Exception: In UTM cluster applications, replacement of the entire application is immediately
initiated in the case of a KDCPROG command for a load module located in a common
memory pool (see below). In this event, each task of the application is unloaded in
sequence and then reloaded.

If the application terminates before the application exchange, then the load modules remain
marked for exchange. The new (remain marked) versions are loaded during the next
restart.

If a program replacement is requested using KDCPROG, the version number of the new
load module to be loaded must be explicitly specified in all cases. The version numbers of
the old and the new load module must be different.

Program units that contain both shareable and non-shareable parts should be linked as
LLM, because otherwise there will be two load modules in OM format that cannot be
replaced simultaneously (consistency problem!).

Replacing the entire application Replacing programs during operation

218 Using openUTM on BS2000 Systems

10.3 Replacing the entire application

You can use the command KDCAPPL PROG=NEW to replace the entire application.

At least one LOAD-MODULE must have been generated for the application if it is to be
possible to replace the entire application.

Replacing the entire application may be useful or necessary in the following situations:

● Program components in common memory pools are to be replaced.

● Program components generated with LOAD-MODE=ONCALL are to be unloaded.

● Programs in common memory pools were added dynamically, and these programs are
to be loaded for the application.

When the entire application is replaced, each task of the application is unloaded in
succession and then loaded dynamically. In the dynamic loading process, the new versions
of the load modules are loaded. To minimize the interruption to the operation of the appli-
cation, openUTM replaces only one task of the application at any one time.

The administrator can issue the command KDCINF SYSP to ascertain whether or not a
program replacement is running at present.

When the program replacement is concluded successfully, openUTM generates UTM
message K074, which is output to SYSOUT. The UTM message can also be evaluated
using an MSGTAC program in order to make this information accessible to the adminis-
trator.

If individual load modules cannot be loaded or if all programs specified in the UTM gener-
ation are not linked in the load module, this does not abort the application replacement. If
an unavailable program is called at a later stage, openUTM generates a PEND ER.

If openUTM has to terminate the program replacement, openUTM generates UTM
message K075. As an insert, UTM message K075 contains the TSN of the task that aborted
the application replacement. In the SYSOUT file of this task, BLS messages and openUTM
messages may indicate the cause of the abort. One possible reason for aborting an appli-
cation replacement may be that an AREA in a newly loaded module is not available. If the
application replacement is aborted, a task of the UTM application may be terminated.
However, the other tasks of the application continue to run. The load modules marked for
replacement remain marked and, as soon as the problem has been rectified, the application
replacement can be initiated again.

Replacing programs during operation Adding programs dynamically

Using openUTM on BS2000 Systems 219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
0

10.4 Adding programs dynamically

Amongst other things, dynamic administration allows for the regeneration of programs while
the application is running. For more details on dynamic administration, see the openUTM
manual “Administering Applications”.

Before these programs can be called, they must first be loaded. In this case, the program
must be linked to the assigned load module and must be made available with a new version
in the program library specified in the LOAD-MODULE statement when generating.

The administrator must then replace this load module with the KDCPROG command or by
a program call. If the load module is contained in a common memory pool, the entire appli-
cation must be replaced, i.e. first of all the module is marked for replacement (e.g. with
KDCPROG) and then the entire application is replaced (e.g. with KDCAPPL PROG=NEW).

Adding programs dynamically Replacing programs during operation

220 Using openUTM on BS2000 Systems

Using openUTM on BS2000 Systems 221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

ul
y

20
1

6
 S

ta
nd

 1
6

:1
4.

58
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.4

_1
6

01
20

0
\0

5_
E

in
sa

tz
_

B
S

2
\e

n\
be

tr
B

S
_e

.k
11

11 Fault tolerance of openUTM

Fault tolerance in this context means that a UTM application can still remain operational
when errors occur in individual program units that force openUTM to abort a transaction.
openUTM then ensures that the application program is terminated and reloaded so that the
error does not spread any further and have a negative effect on other users of the appli-
cation and their data.

With regard to the error behavior of openUTM, a distinction is made between:

● Internal UTM errors and errors in the system environment

These errors result in an abnormal termination of the application, just like the adminis-
tration command KDCSHUT KILL or when issuing a KDCADMI call with operation code
KC_SHUTDOWN and subcode KC_KILL.
openUTM creates a UTM dump for each process of the application. The UTM dump is
edited using the UTM tool KDCDUMP. A description of this procedure can be found in
the openUTM manual “Messages, Debugging and Diagnostics on BS2000 Systems”.

● Errors in the application program

These are errors in program units. They can be divided into two groups:

– errors that lead to the reloading of the application

– errors that permit the program to continue.

Errors detected by openUTM Fault tolerance of openUTM

222 Using openUTM on BS2000 Systems

11.1 Errors detected by openUTM

A program unit is terminated abnormally by openUTM in the following situations:

● A PEND ER or FR was programmed.

● A UTM call supplied a KDCS return code ≥70Z. In this case, openUTM internally sets
PEND ER.

In both situations, openUTM aborts the service. If a PEND FR was programmed, then
openUTM does not take any other action.

If the service was terminated by a PEND ER (in a program or internally), then openUTM
creates

● a UTM dump with REASON=PENDER, which only conveys the data of KDCROOT.

● a memory dump of the class 5 and class 6 memory. This can be analyzed using the
BS2000 utility DAMP.

By default, this memory dump is suppressed because openUTM runs as an ENTER
process. If you want the memory dumps of the class 5 and class 6 memory to be
created, specify the following command in the start procedure (see page 110) before
the application program is loaded:

/MODIFY-TEST-OPTIONS DUMP=YES

openUTM then terminates the affected application program. This prevents follow-up errors
arising due to the possible overwriting of an application program.

With a branch statement in the start procedure, the application program can be loaded
dynamically and openUTM can continue running with the desired number of tasks.

v CAUTION!
If there is no branch statement, the task is terminated and the application is termi-
nated with the last task.

Fault tolerance of openUTM STXIT event

Using openUTM on BS2000 Systems 223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

ul
y

20
1

6
 S

ta
nd

 1
6

:1
4.

58
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.4

_1
6

01
20

0
\0

5_
E

in
sa

tz
_

B
S

2
\e

n\
be

tr
B

S
_e

.k
11

11.2 Errors detected by BS2000 which lead to a STXIT event

In openUTM, STXIT routines are defined for the following event classes:

– PROCHK
– TIMER
– ERROR
– ABEND
– TERM

If the STXIT events PROCHK, TIMER, and ERROR occur, openUTM provides the following
alternatives to the language connection module of the program unit last active:

– output diagnostic information and terminate the program unit abnormally, or
– continue the program unit as defined (e.g. with ON-Condition in PL/I)

If STXIT event ABEND or TERM occurs, openUTM sets PEND ER, terminates the appli-
cation program with TERM and writes the following to SYSOUT:

– the register contents at the time of the event
– the instruction counter at the time of the interrupt
– the interrupt weight

If the program units last active were COBOL, Assembler or SPL program units, all STXIT
events are also handled like TERM and ABEND.

For more information on STXIT events, see the BS2000 manual “Executive Macros”. A
table indicating the assignment of event to interrupt weight can be found in the openUTM
manual “Messages, Debugging and Diagnostics on BS2000 Systems”.

User-defined STXIT routines

Separate STXIT exits can be assigned to the PROCHK and ERROR events in the program
units. In this case, separate administration blocks must be created for these events with the
STXDNEW operand.

These user-defined STXIT routines must be terminated with the EXIT CONTINU=YES
macro call so that openUTM can start its own (and last) STXIT routine of the same event
class.

STXIT event Fault tolerance of openUTM

224 Using openUTM on BS2000 Systems

Using openUTM on BS2000 Systems 225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
2

12 SAT logging

Security-related UTM events can be logged using the BS2000 function SAT (Security Audit
Trail). SAT is used to audit unauthorized infiltration attempts, for example, thereby facili-
tating an immediate response to such events (alarm function). Any possible damage can
thus be minimized or avoided altogether.

The prerequisites for implementing SAT logging are the BS2000 component SECOS and
the subsystem SATCP. openUTM allows you to control SAT logging of UTM events for your
application using the KDCDEF generation (see openUTM manual “Generating Applica-
tions”, MAX statement) and using UTM SAT administration functions (see page 238).

For a UTM application (generated with MAX ...,SECLEV=NO), SAT logging can be
switched on in the UTM generation (MAX ...,SAT=ON) or using UTM SAT administration
functions (KDCMSAT=ON). With UTM SAT administration functions, logging can be
switched off again at any time during operation (KDCMSAT SAT=OFF). When SAT logging
is switched on, minimum logging is implemented.
Minimum logging covers the following UTM events:

– a task signs on to or off from the UTM application
– a UTM SAT administration command is entered
– program components are exchanged using BLS

Other events can also be defined. The logging of these events can be switched on and off
for specific events, specific users, and specific jobs. The predefinition of the events to be
logged is called preselection (see page 227). Preselection can take place in the UTM
generation and using UTM SAT administration functions.

The structure of SAT log records is described in the Appendix on page 332.

v CAUTION!
The BS2000 safety representative (on shipment, this is the BS2000 user ID
$SYSPRIV) can suppress SAT logging (see the BS2000 manual “SECOS”). The
SAT administrator of the UTM application must therefore coordinate with the
BS2000 safety representative. In the absence of coordination, the application is
terminated abnormally and message K126 is output; see the manual openUTM
manual “Messages, Debugging and Diagnostics on BS2000 Systems”.

Security-related UTM events SAT logging

226 Using openUTM on BS2000 Systems

12.1 Security-related UTM events

Eleven defined security-related UTM events can be logged. A result is logged for each
event: success or failure. Success, for example, means that when a user signs on,
openUTM accepts the specified user ID and authentication data.

The table below indicates which UTM events exist and the result that causes the event to
be logged.

Notes

● The event SEL-CMD is the only event also logged if SAT logging is switched off for the
UTM application, providing the generation of the BS2000 permits SAT logging.

● The events TASK-ON, TASK-OFF and CHG-PROG are always logged when logging is
switched on for the UTM application (minimum logging).

● The event “end of transaction” (END-PU with TACIDEN=T or C) is always logged when
logging for END-PU was not explicitly switched off by event-specific preselection (OFF
in the SATSEL statement) and if at least one event was logged for this transaction.

● The other events in the table are only logged if they were defined by preselection and
logging is switched on.

● All UTM events can be linked with the ALARM function of SAT. When the event occurs,
a UTM message is then output at the console of the BS2000 computer.

Name of event Meaning Logging possible

TASK-ON Connect a task to the UTM application Success

TASK-OFF Disconnect a task from the UTM application Success

SIGN Sign on a UTM user Success / Failure

CHANGE-PW Change the user password Success / Failure

START-PU Create a job or start a program unit run Success / Failure

END-PU Terminate a program unit run Success

DATA-ACCESS Access a global service UTM storage area (ULS,
global secondary storage area, TLS)

Success / Failure

ADM-CMD Execute an administration call Success / Failure

SEL-CMD Execute a UTM SAT administration command Success / Failure

CHG-PROG Exchange load modules using BLS Success / Failure

SAT logging Preselection – defining the events to be logged

Using openUTM on BS2000 Systems 227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
2

12.2 Preselection – defining the events to be logged

The events SIGN, CHANGE-PW, START-PU, END-PU with TACAID=P, DATA-ACCESS
and ADM-CMD are not logged automatically, even when logging is switched on. Logging
must also be switched on for the specific events. Controlling whether or not these events
are logged is called preselection. Logging can be controlled for specific events, specific
users, and specific jobs. Preselection can take place in the UTM generation and using UTM
SAT administration functions.

If the preselection values are set via the administration, then the following is true:

● The preselection values for event-driven logging are only valid for the duration of the
application run. The generated values are used again each time the application is
started.

● The preselection values for user and job-specific logging remain in effect, even for
UTM-F. You can transfer them to a new generation with an inverse KDCDEF.

In UTM cluster applications, administrative changes to the preselection values apply
globally to the cluster i.e. to all nodes.

12.2.1 Event-driven SAT logging

SAT logging can be switched on and off individually for each of the events SIGN, CHANGE-
PW, START-PU, END-PU, DATA-ACCESS and ADM-CMD. For the DATA-ACCESS event
(access to UTM storage area), logging can be controlled individually for each of the storage
types global secondary storage area, terminal-specific long-term storage area (TLS), and
user-specific long-term storage area (ULS).

You can specify the following for each individual event:

OFF The event is never logged, even when user-specific or job-specific logging
is switched on.

SUCC The event is logged if the result is success.

FAIL The event is logged if the result is failure.

BOTH The event is logged regardless of the result.

NONE No event-driven logging.

The preselection values for event-driven logging can be set in the UTM generation using
the SATSEL statement. Using UTM SAT administration functions, you can set the prese-
lection values with the command:

KDCMSAT SATSEL=...,EVENT=(...)

This setting is only valid for the duration of the application run.

Preselection – defining the events to be logged SAT logging

228 Using openUTM on BS2000 Systems

Example

The “change password” event (CHANGE-PW) is to be logged if the result is success (the
change was accepted by openUTM) or if the result is failure. In the latter case, the issuing
of an administration command is to be logged.

UTM generation:

SATSEL BOTH,EVENT=CHANGE-PW
SATSEL FAIL,EVENT=ADM-CMD

Administration:

KDCMSAT SATSEL=BOTH,EVENT=CHANGE-PW
KDCMSAT SATSEL=FAIL,EVENT=ADM-CMD

12.2.2 User-driven SAT logging

For each individual UTM user, you can define whether the SIGN, CHANGE-PW, START-
PU, END-PU, DATA-ACCESS, ADM-CMD events initiated by this user and any security-
related events of a participating database are to be logged. However, the events are not
logged for the user if SAT logging is switched off for this event with OFF:

UTM generation: SATSEL OFF,EVENT=...
UTM SAT administration: KDCMSAT SATSEL=OFF,EVENT=...

You can specify the following for each user:

SUCC The events initiated by the user are logged if the result is success.

FAIL The events initiated by the user are logged if the result is failure.

BOTH The events initiated by the user are logged regardless of the result.

NONE No user-driven logging.

The preselection values for user-driven logging can be set in the UTM generation with the
statement:

USER username,...,SATSEL=...

Using UTM SAT administration functions, the preselection values can be set with the
command:

KDCMSAT SATSEL=...,USER=username

Any of the values BOTH, SUCC, FAIL or NONE can be specified for SATSEL.
These settings are retained past the end of the application run, even for UTM-F.

SAT logging Preselection – defining the events to be logged

Using openUTM on BS2000 Systems 229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
2

12.2.3 Job-driven SAT logging

For each individual transaction, you can define whether the CHANGE-PW, START-PU,
END-PU, DATA-ACCESS, ADM-CMD events initiated by the associated program unit and
any security-related events of a participating database are to be logged. In addition, the
creation of jobs of this transaction code (START-PU) is logged. However, an event is not
logged for the transaction code if SAT logging is switched off for this event with OFF.

You can specify the following for each transaction code:

SUCC The events of the program unit run are logged if the result is success.

FAIL The events of the program unit run are logged if the result is failure.

BOTH The events of the program unit run are logged regardless of the result.

NONE No job-driven logging.

The preselection values for job-driven logging can be set in the UTM generation with the
following statement:

TAC tacname,...,SATSEL=...

Using UTM SAT administration functions, you can set the preselection values with the
command:

KDCMSAT SATSEL=...,TAC=tacname

These settings are retained past the end of the application run, even for UTM-F.

Preselection – defining the events to be logged SAT logging

230 Using openUTM on BS2000 Systems

12.2.4 Defining the preselection values

You can specify the preselection values in the UTM generation without switching on SAT
logging. In this case, the specifications are presettings for SAT logging which can be
switched on during operation if required using UTM SAT administration functions. The
defined values can also be changed using UTM SAT administration functions. However,
changes for event-driven logging only apply for the duration of the current application run.

Presettings in the UTM generation:

MAX ...,SAT=OFF
SATSEL ...
TAC ...,SATSEL=...
USER ...,SATSEL=...

Activation by UTM SAT administration:

KDCMSAT SAT=ON

12.2.5 Linking the preselection values

If several preselection values are set for events (event-driven, user-driven, job-driven), the
result is the inclusive-OR operation from the individual preselection values.

The tables below indicate the possible combinations of SAT logging conditions.

Meaning of columns:

EVENT Event-specific activation of logging
(UTM generation SATSEL ...;
UTM SAT administration KDCMSAT SATSEL=...,EVENT=...)

TAC Job-specific activation of logging
(UTM generation TAC ...,SATSEL=...;
UTM SAT administration KDCMSAT SATSEL=...,TAC=...)

USER User-specific activation of logging
(UTM generation USER ...,SATSEL=...;
UTM SAT administration KDCMSAT SATSEL=...,USER=...)

Result Result of inclusive-OR operation, i.e. the combination of preselection
values.

If the value OFF is generated for an EVENT (event not logged), the value OFF is transferred
as the result.

EVENT SUCC

USER SUCC FAIL BOTH NONE

SAT logging Preselection – defining the events to be logged

Using openUTM on BS2000 Systems 231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
2

TAC S
U
C
C

F
A
I
L

B
O
T
H

N
O
N
E

S
U
C
C

F
A
I
L

B
O
T
H

N
O
N
E

S
U
C
C

F
A
I
L

B
O
T
H

N
O
N
E

S
U
C
C

F
A
I
L

B
O
T
H

N
O
N
E

Result S
U
C
C

B
O
T
H

B
O
T
H

S
U
C
C

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

S
U
C
C

B
O
T
H

B
O
T
H

S
U
C
C

EVENT FAIL

USER SUCC FAIL BOTH NONE

TAC S
U
C
C

F
A
I
L

B
O
T
H

N
O
N
E

S
U
C
C

F
A
I
L

B
O
T
H

N
O
N
E

S
U
C
C

F
A
I
L

B
O
T
H

N
O
N
E

S
U
C
C

F
A
I
L

B
O
T
H

N
O
N
E

Result B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

F
A
I
L

B
O
T
H

F
A
I
L

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

F
A
I
L

B
O
T
H

F
A
I
L

EVENT BOTH

USER SUCC FAIL BOTH NONE

TAC S
U
C
C

F
A
I
L

B
O
T
H

N
O
N
E

S
U
C
C

F
A
I
L

B
O
T
H

N
O
N
E

S
U
C
C

F
A
I
L

B
O
T
H

N
O
N
E

S
U
C
C

F
A
I
L

B
O
T
H

N
O
N
E

Result B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

Preselection – defining the events to be logged SAT logging

232 Using openUTM on BS2000 Systems

Example of linking the preselection values

The following preselection values are generated:

Event-specific:

SATSEL FAIL,EVENT=(SIGN,TLS)
SATSEL SUCC,EVENT=(CHANGE-PW,GSSB,ADM-CMD)
SATSEL BOTH,EVENT=(START-PU,ULS)
SATSEL NONE,EVENT=END-PU

User-specific:

USER BSPUSER,SATSEL=FAIL

Job-specific:

TAC BSPTAC,SATSEL=SUCC

The result is therefore the following preselection values. The preselection values are
queried using the UTM SAT administration command KDCISAT.

Event-specific with the KDCISAT command:

EVENT NONE

USER SUCC FAIL BOTH NONE

TAC S
U
C
C

F
A
I
L

B
O
T
H

N
O
N
E

S
U
C
C

F
A
I
L

B
O
T
H

N
O
N
E

S
U
C
C

F
A
I
L

B
O
T
H

N
O
N
E

S
U
C
C

F
A
I
L

B
O
T
H

N
O
N
E

Result S
U
C
C

B
O
T
H

B
O
T
H

S
U
C
C

B
O
T
H

F
A
I
L

B
O
T
H

F
A
I
L

B
O
T
H

B
O
T
H

B
O
T
H

B
O
T
H

S
U
C
C

F
A
I
L

B
O
T
H

N
O
N
E

SAT USER TAC EVENT RESULT

OFF SIGN
CHANGE-PW
START-PU
END-PU
GSSB
TLS
ULS
ADM-CMD

FAIL
SUCC
BOTH
NONE
SUCC
FAIL
BOTH
SUCC

SAT logging Preselection – defining the events to be logged

Using openUTM on BS2000 Systems 233

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
2

User-specific with the command KDCISAT USER=BSPUSER:

Job-specific with the command KDCISAT TAC=BSPTAC:

SAT USER TAC EVENT RESULT

OFF BSPUSER SIGN
CHANGE-PW
START-PU
END-PU
GSSB
TLS
ULS
ADM-CMD

FAIL
BOTH
BOTH
FAIL
BOTH
FAIL
BOTH
BOTH

SAT USER TAC EVENT RESULT

OFF BSPTAC SIGN
CHANGE-PW
START-PU
END-PU
GSSB
TLS
ULS
ADM-CMD

BOTH
SUCC
BOTH
SUCC
SUCC
BOTH
BOTH
SUCC

Rules for SAT logging SAT logging

234 Using openUTM on BS2000 Systems

12.3 Rules for SAT logging

● The events TASK-ON, TASK-OFF, CHG-PROG and, with restrictions END-PU (see
section “Security-related UTM events” on page 226) are always logged when SAT
logging is not switched off for the UTM application.

● All other events are logged when logging is not switched off for the particular event and
when at least one of the three criteria of event-specific, user-specific, or job-specific
preselection is fulfilled for this event.

● UTM logs an event as successful (SUCC) when it has successfully passed the UTM
authorization check and the action can be performed by UTM. Otherwise, the event is
logged as failed (FAIL).

● UTM events initiated by KDCS calls (e.g. DATA-ACCESS) are not logged if the function
cannot be executed due to an illegal value of KCOM, KCLA, KCLM, etc. (see the
openUTM manual „Programming Applications with KDCS”). These areas can only be
incorrectly assigned by a faulty program unit.

● UTM events initiated by KDCS calls are logged as failed if the assignment of KCRN,
KCUS, or KCLT is incorrect. The incorrect assignment of KCRN, KCUS and KCLT can
be caused not only by a faulty UTM program unit but also by a UTM user (e.g. if the
user does not have authorization for the function called).

● From the SAT log records, you can identify whether an event was rendered ineffective
by the subsequent rollback of the transaction:

– The log data record of the respective event contains the identification number of the
transaction which initiated the event (log field UTMTAID).

– You can use the transaction identification to find the associated “end of transaction”
log record (END-PU in the log field UTMSUBC). The transaction status is specified
there in the UTMSTAT field.

The structure of the log records is described in the Appendix in the section “Structure
of SAT log records” (page 332).

● The KDCS call RSET (roll back the transaction while continuing the program unit run)
implicitly initiates the “end of transaction” event with the transaction status “rollback”
(OBJECT2= or UTMSTAT= R), and then initiates the “start of transaction” event
(START-PU).

SAT logging Postselection – evaluating log records

Using openUTM on BS2000 Systems 235

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
2

12.4 Postselection – evaluating log records

Data is logged by SAT in a highly protected global system file (SAT log file) under the
BS2000 ID $SYSAUDIT.

With SATUT, data records can subsequently be selected from the SAT log file and output
to a file (postselection). The log records can be selected using any logged field. A data
record is only transferred if the data fields of the associated event fulfil certain rules. One of
the following conditions can be defined for each field type:

– The value of the field matches an element of a list.
– The value of the field lies within certain limits.
– The data field of the specified field type is available in the data record.

For further information, see the BS2000 manual “SECOS”.

The structure of the log records is described in the Appendix page 332ff.

Administration of SAT logging SAT logging

236 Using openUTM on BS2000 Systems

12.5 Administration of SAT logging

SAT logs selected security-related UTM events for UTM applications. When generating the
application, you define the processing result (success, failure) and the criteria (event-
specific, TAC-specific, or user-specific) on which SAT logging is to be based. This section
describes the UTM SAT administration commands you can use to administer SAT logging
for your UTM application.

The UTM SAT administration commands are separate transaction codes. They must
therefore be defined when generating the application. The UTM SAT administrator can only
call the UTM SAT administration functions using dialog TACs. The names of the transaction
codes are listed in the following table:

In the UTM generation, you can define whether or not SAT logging is to be switched on
automatically each time the application starts. If SAT logging is not switched on, you can
nonetheless generate criteria for SAT logging, which can be switched on and off as required
during operation.

The generated logging values can be changed using the administration command
KDCMSAT. For event-driven logging, the changes apply only for the duration of the current
application run. The changes are retained past the end of the application run for user and
job-driven logging.

You can display the current values with the administration command KDCISAT.

UTM SAT administration commands are entered in line mode. Entries from output created
with edit profiles and formatted entries will be rejected.

UTM SAT administration commands can only be called from UTM user IDs with UTM SAT
administration authorization. UTM SAT administration authorization is assigned to a UTM
user with USER ...,PERMIT=SATADM or PERMIT=(ADMIN,SATADM) when generating
with KDCDEF. UTM administration alone (USER ..,PERMIT=ADMIN) does not imply UTM
SAT administration.

Transaction code Administration functions

KDCMSAT Switch on and off SAT logging
Change SAT logging values
Query the command syntax

KDCISAT Display information on SAT logging values
Query the command syntax

SAT logging Administration of SAT logging

Using openUTM on BS2000 Systems 237

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
2

To be able to enter UTM SAT administration commands, the following conditions must be
fulfilled when generating with KDCDEF:

● The administration program KDCSADM must be defined (PROGRAM statement). The
sample program KDCSADM is supplied with openUTM.

● The UTM SAT administration commands KDCMSAT and KDCISAT must be defined as
transaction codes (TAC statement with PROGRAM=KDCSADM and SATADM=Y).

● At least one user ID must be generated with UTM SAT administration authorization
(USER statement with PERMIT=SATADM). Administration authorization can simultane-
ously be granted to several user IDs. UTM SAT administration authorization is linked to
the user and not to a terminal, i.e. administration functions can be executed from any
terminal. If administration functions are to be restricted to particular terminals, this is
implemented with normal data access control functions (operands KSET= and LOCK=).

Example

The transaction codes for administration are defined with the TAC control statement, the
administration program is defined with the PROGRAM control statement of the UTM tool
KDCDEF:

PROGRAM KDCSADM,COMP=ILCS
:
TAC KDCMSAT ,PROGRAM=KDCSADM,SATADM=Y
TAC KDCISAT ,PROGRAM=KDCSADM,SATADM=Y
:

The operands PROGRAM=KDCSADM and SATADM=Y of the TAC statements can be
omitted with the DEFAULT presetting:

DEFAULT TAC PROGRAM=KDCSADM,SATADM=Y

Notes

● Every access to the TAC KDCMSAT (apart from KDCMSAT HELP) is logged, even if
SAT logging is switched off.

● UTM SAT administration using asynchronous jobs is not possible.

KDCISAT UTM-SAT administration commands

238 Using openUTM on BS2000 Systems

12.6 UTM SAT administration commands

12.6.1 KDCISAT – query information on SAT logging values

The SAT administrator can use the KDCISAT command to obtain information on the values
currently set for SAT logging or query the syntax of the KDCISAT command. KDCISAT
indicates the UTM event classes from which the events are logged for a particular
processing result (positive or negative). The information can also be queried for specific
TACs and/or specific users. The UTM event classes are listed in the description of the
EVENT operand in the KDCMSAT statement (page 241ff).

The output for each KDCISAT inquiry indicates whether SAT logging is switched on or off.

KDCISAT entered without operands:
The output indicates the event classes from which events are logged. For
the individual event classes, it specifies whether successful or failed events
are logged (see Example 1). The values which are set identically for all
users and for all TACs are output, i.e. all SAT logging values that were either
generated in the SATSEL statement or were defined with the command
KDCMSAT SATSEL=...,EVENT=(...).

TAC=tac From the individual event classes, it is indicated which events are specifi-
cally logged for this TAC (see Example 2).

USER=user From the individual event classes, it is indicated which events are specifi-
cally logged for this user.

TAC=tacname,USER=username
For the individual event classes, it is indicated which events are logged in
total for the specified user and the specified TAC. The output includes the
defined event-specific values (KDCISAT without operand), the TAC-specific
values (KDCISAT TAC=...), and the user-specific values (KDCISAT
USER=...) for SAT logging (see Example 3).

HELP Indicates the syntax of this command.

KDCISATË { [TAC=tacname] [, USER=username] | HELP }

UTM-SAT administration commands KDCISAT

Using openUTM on BS2000 Systems 239

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
2

Output of KDCISAT

All information is output at the terminal of the SAT administrator. The RESULT column
indicates whether the system has logged events that indicate positive execution or negative
processing. The value specified in RESULT is the result arising from the combination of the
defined SAT logging conditions. The result is the inclusive-OR operation from the logging
values defined for EVENT and possibly USER and possibly TAC (see the tables in section
“Linking the preselection values” on page 230).

If an invalid USER or TAC is specified, then the UTM message invalid TAC or
invalid USER is output.

Example 1

If you enter:

KDCISAT

the following is output:

SAT USER TAC EVENT 1

1 The meaning of the event classes (EVENT) and the values of RESULT are described for the KDCMSAT
command (page 241ff).

RESULT

ON SIGN
CHANGE-PW
START-PU
END-PU
GSSB
TLS
ULS
ADM-CMD

BOTH
BOTH
NONE
NONE
BOTH
BOTH
BOTH
BOTH

KDCISAT UTM-SAT administration commands

240 Using openUTM on BS2000 Systems

Example 2

If you enter:

KDCISAT TAC=tac1

the following is output:

Example 3

If you enter:

KDCISAT TAC=tac2,USER=user2

the following is output:

SAT USER TAC EVENT RESULT

ON tac1 SIGN
CHANGE-PW
START-PU
END-PU
GSSB
TLS
ULS
ADM-CMD

BOTH
BOTH
NONE
NONE
BOTH
BOTH
BOTH
BOTH

SAT USER TAC EVENT RESULT

ON user2 tac2 SIGN
CHANGE-PW
START-PU
END-PU
GSSB
TLS
ULS
ADM-CMD

BOTH
BOTH
NONE
NONE
BOTH
BOTH
BOTH
BOTH

UTM-SAT administration commands KDCMSAT

Using openUTM on BS2000 Systems 241

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
2

12.6.2 KDCMSAT – modify SAT logging

The conditions for the SAT audit are defined in the UTM generation. You specify the event
classes from which events are to be logged, and you define the processing results
(successful or failed execution) for user-specific, TAC-specific, or event-specific logging.
The UTM SAT administrator can modify these generated values using KDCMSAT:

● Define the logging values with a separate statement for EVENT, TAC or USER.

● Activate or deactivate logging.

In the UTM generation, you can preset the SAT logging values without activating SAT
logging itself. When required, you can then switch on logging during operation with
KDCMSAT SAT=ON. Logging can also be switched on if no values were preset in the
UTM generation. In this case, you can specify the logging values with KDCMSAT.

● Query the syntax of this command.

The modifications for event-driven logging (SATSEL ...,EVENT=) and the switching on and
off (SAT=ON/OFF) only apply until the end of the application run. Modifications for user and
job-driven logging (SATSEL ...,TAC= and SATSEL...,USER=) are retained past the end of
the application run, even for UTM-F. These values can be transferred to a new UTM gener-
ation with an inverse KDCDEF.

In UTM cluster applications, KDCMSAT applies globally to the cluster i.e. to all nodes.

SATSEL = Controls the type of SAT logging.

The value of SATSEL changes the generated logging type for the element
of the application specified in the subsequent operand.

Each time you issue the KDCMSAT command, you can change the setting
for one of the criteria EVENT, TAC, or USER.

BOTH Both successful and failed events are logged.

SUCC Successful events are logged.

KDCMSATË { SATSEL={ BOTH | SUCC | FAIL | NONE | OFF },
{ EVENT=(event1, ..., eventn) |
TAC=(tacname1, ..., tacnamen) |
USER=(username1, ..., usernamen) }

or:

SAT={ OFF | ON }

or:

HELP }

KDCMSAT UTM-SAT administration commands

242 Using openUTM on BS2000 Systems

FAIL Failed events are logged.

NONE No EVENT-specific, TAC-specific, or USER-specific event selection.

OFF This setting is only possible for the EVENT criterion. In this case, no events
are logged for the event classes specified in EVENT, even if SAT logging
was activated in the UTM generation in the USER or TAC command.

EVENT=(event1, ..., eventn)
Specifies the list of event classes for which the SAT logging conditions are
to be changed. The following event classes can be specified and combined
in any way. A maximum of 8 values can be specified.

SIGN Sign-on of a user.

CHANGE-PW
Modification of the password by the user or the UTM administrator.

START-PU
Start of a program unit run or
acceptance of a dialog or asynchronous job.

END-PU End of a program unit run.

GSSB Access to a global secondary storage area.

TLS Access to a terminal-specific long-term storage area (TLS).

ULS Access to a user-specific long-term storage area (ULS).

ADM-CMD
Execution of an administration call.

TAC=(tacname1, ..., tacnamen)
Specifies the list of transaction codes for which the conditions of SAT
logging are to be changed. A list containing a maximum of 10 transaction
codes can be specified.

USER=(username1, ..., usernamen)
Specifies the list of users (USER) for whom the conditions of SAT logging
are to be changed. You can specify a list containing a maximum of 10 user
names.

UTM-SAT administration commands KDCMSAT

Using openUTM on BS2000 Systems 243

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
2

SAT=ON/OFF Switch on/off SAT logging.

ON SAT logging is switched on.

When SAT=ON, you can activate SAT logging when required during the
application run for values that were preset in the UTM generation or were
set with a preceding KDCMSAT command.

OFF SAT logging is switched off.

HELP Shows the syntax of this command.

Output of KDCMSAT

The old and new SAT logging values, which were modified or switched on/off with this
command, are output at the SAT administrator terminal.

Example 1

If you enter:

KDCMSAT SATSEL=SUCC,EVENT=(START-PU,END-PU)

the following is output:

A corresponding table is output for the criteria TAC and USER.

Example 2

If you enter:

KDCMSAT SAT=ON

the following is output:

SAT EVENT SATSEL

NEW OLD

ON START-PU
END-PU

SUCC
SUCC

FAIL
FAIL

SAT NEW OLD

ON OFF

KDCMSAT UTM-SAT administration commands

244 Using openUTM on BS2000 Systems

Using openUTM on BS2000 Systems 245

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
3

13 Accounting

openUTM provides accounting functions that enable the user of a UTM application to
calculate the resources utilized by the users of a UTM application. The UTM accounting
facility uses the resources of the operating system to determine the account data and enter
the data in the operating system’s accounting file.

The data may be evaluated by the accounting procedure of BS2000 (RAV).

Detailed information on the BS2000 accounting system can be found in the BS2000 manual
“RAV - Computer Center Accounting Procedure”.

The accounting functions that the corresponding operating system provides can only record
the resource utilization and performance of a UTM application as a whole. However, if you
want to be able to assign the computer resources used to individual users and charge the
individuals accordingly, then the following must be taken into account for UTM accounting:

● The users of a UTM application are represented by the user IDs defined in the UTM
generation and not by the user IDs of the operating system. You must therefore be able
to assign the resources used by a user to individual UTM user IDs.

● A group of homogenous processes is active in a UTM application. Every process
handles a series of jobs in succession for various users. The resources used within a
process must therefore be determined for each service called (i.e. for individual
program unit runs).

● The time conditions of OLTP operation require that the services be recorded in such a
way that the performance of the application is not impeded.

UTM accounting therefore records the utilization of resources by the individual program
units. This means that the resource utilization can be assigned to the transaction code
(TAC) of the respective program unit and therefore to the UTM user who started the corre-
sponding service.

Accounting

246 Using openUTM on BS2000 Systems

In addition to the utilization of resources determined by UTM accounting, there is also a
basic resource requirement that arises when a UTM application is running but which cannot
be assigned directly to a user. These are:

● Disk space assignment for KDCFILE, SYSLOG, and USLOG files

● CPU utilization and I/Os for
– starting and terminating UTM processes
– handling connections for terminals
– LPUT handling (transfer to USLOG file)
– processing printer output

If the usage of these resources is to be taken into account, then you must charge these
services at a flat rate to the users.

Accounting Definition of terms

Using openUTM on BS2000 Systems 247

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
3

13.1 Definition of terms

This section provides a more detailed explanation of some of the terms that are relevant to
UTM accounting.

Users in the sense of UTM accounting

The user of a UTM application for whom an account is to be created, is represented by the
UTM user ID.

openUTM assigns the utilized resources to the LTERM partners as an alternative in UTM
applications without real user IDs. The LTERM name of the connection user ID (TS appli-
cations and UPIC clients), the LU6 session name (LU6 partners) or the OSI association
name (OSI TP partner) is used for applications or clients that have not explicitly signed on
with a user ID.

In UTM applications without user IDs, openUTM assigns the resources used by terminals,
UPIC clients or TS applications to the LTERM partners instead.

Accounting file

All information that the UTM accounting collects for the user-specific accounting of
resources used is written by openUTM in the accounting file of the operating system.

The accounting file is administered by the BS2000 system administrator. The system
administrator can evaluate this accounting file with the RAV tool.

Resources

This includes the following services:

– technical DP services, particularly CPU utilization and I/Os
– calling a particular program (program charge)

Calculation phase

The calculation phase is used as a starting point for the utilization of the accounting
procedure.

In the calculation phase, openUTM determines the utilization of each resource for each
program unit called and writes the values in the BS2000 accounting file as a calculation
record. See section “Calculation phase” on page 250 for more detailed information.

Definition of terms Accounting

248 Using openUTM on BS2000 Systems

Calculation record

A calculation record is a record which openUTM writes in the BS2000 accounting file for
each program unit run in the calculation phase. The accounting record type is UTMK. The
data fields of the calculation record UTMK are described in the Appendix on page 331.

Weight

A weight (factor) can be defined for each resource. This weight specifies how the resource
is to be evaluated compared with other resources. The utilization of a resource is then intro-
duced into the accounting procedure as the product “weight ∗ resource utilization“. The
weights for the individual resources are entered in the KDCDEF generation in ACCOUNT,
see section “Determining the variant of the accounting procedure” on page 252.

Accounting phase

openUTM determines the resource utilization for each program unit. When the program unit
terminates, openUTM calculates the sum of utilization values based on the weights and the
generated fixed prices.

The following resources are taken into account:

– CPU utilization
– input/output to disk
– generated output jobs for printers
– fixed price for calling a program unit

The result is a number of derived accounting units that are added to the user-specific
accounting unit counter.

openUTM only then writes a record with the contents of this counter in the accounting file
– when the user signs off and is not signed on again to the UTM application via any other

connection,
– when the application is terminated normally,
– or when a particular (generatable) maximum value is exceeded. You specify this

maximum value in the KDCDEF generation with ACCOUNT ...,MAXUNIT= .

You must incorporate the weights in the generation of the application before the start of the
accounting phase. You can choose between the following:
– fixed-price accounting
– utilization-oriented accounting
– combination of both variants

You will find a detailed description of the accounting phase in section “Accounting phase”
on page 254.

Accounting Definition of terms

Using openUTM on BS2000 Systems 249

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
3

The accounting phase of UTM accounting can be enabled and disabled while the UTM
application is running.

Accounting record

An accounting record is a record which openUTM writes to the accounting file in the
accounting phase. The accounting record type is UTMA.
The data fields of the accounting record UTMA are described in the Appendix on page 330.

Accounting units

Accounting units are the product of the utilization and weight of the respective resource.
Only accounting units are counted in the UTM accounting facility. Using RAV, these units
can be converted to costs, which are charged to the users.

Accounting unit counter

In a UTM application, openUTM keeps an accounting unit counter for each user and
thereby accumulates the utilization of accounting units per user.

Fixed-price accounting

With this variant of the accounting function, a constant number of accounting units is calcu-
lated for a program unit run. This number is assigned to the transaction code when the
application is generated. The weights of other resources are zero. In this manner you can
also offer free services, e.g. informational functions.

Utilization-oriented accounting

With this variant of the accounting function, the current utilization of resources is calculated
for a program unit run. The utilization values for the resource are weighted according to the
generated weights. No fixed price is charged for calling program units.

Computer center accounting procedure (RAV)

The records written by UTM applications in the BS2000 accounting file can be processed
further with RAV. The component RAV-UTM is available in RAV for this purpose.

Accounting phases Accounting

250 Using openUTM on BS2000 Systems

13.2 Accounting phases

The following steps are required to execute accounting in UTM applications:

– calculation phase
– determination of the accounting procedure
– accounting phase
– evaluation

13.2.1 Calculation phase

The calculation phase provides approximate values that you can use to determine the
weights and fixed prices for the utilization of a service. openUTM determines the resource
utilization for each program unit run, creates a calculation record of type UTMK at the end
of the program run and writes this record in the accounting file.

The calculation phase can also be enabled or disabled at any time via the UTM adminis-
tration during live operation to check the generated weights and possibly to update them
when regenerating, for example.

You should note, however, that openUTM writes a record in the accounting file after every
program unit run when the calculation phase is activated. This has a negative impact on the
performance of the application.

Activating the calculation phase

The calculation phase can be activated during KDCDEF generation or by administration,
see openUTM manual “Generating Applications” and openUTM manual “Administering
Applications”:

● KDCDEF statement ACCOUNT ACC=CALC

● or via UTM administration:

– using the KDCAPPL CALC=ON command
– or using WinAdmin/WebAdmin
– or using the KDCADMI program call KC_MODIFY_OBJECT with

obj_type=KC_DIAG_AND_ACCOUNT_PAR

In BS2000 accounting the system administrator must activate the record type UTMK.

Accounting Accounting phases

Using openUTM on BS2000 Systems 251

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
3

Deactivating the calculation phase

The calculation phase can only be deactivated by UTM administration:

– using the KDCAPPL CALC=OFF command
– or using WinAdmin/WebAdmin

– or using the KDCADMI program call KC_MODIFY_OBJECT with
obj_type=KC_DIAG_AND_ACCOUNT_PAR

Data of a calculation record

A calculation record contains the following data:

– time stamp of BS2000 accounting
– name of the UTM application
– transaction code (TAC) of the program unit
– CPU utilization in the UTM task (msec)
– CPU utilization in the DB system (msec) if the DB system used returns the corre-

sponding data to openUTM.
– number of I/Os in the UTM task
– number of I/Os in the DB system insofar as the database system provides the relevant

data
– length of the input message in bytes
– length of the output message in bytes
– number of output jobs to printers
– accounting units for LTAC calls
– UTM users that have called the service
– name of the LTERM partner through which the user is signed on
– real time of the program unit run (msec)

Output messages that are intended for a follow-up program unit (e.g. after PEND ER) are
also counted.

With RAV, the calculation records can be used to produce an evaluation which indicates the
average resource utilization per TAC. If several UTM applications are running, an evalu-
ation is produced for each UTM application.

Accounting phases Accounting

252 Using openUTM on BS2000 Systems

13.2.2 Determining the variant of the accounting procedure

You must first determine if you want to use fixed prices, the utilization or a combination of
these two variants for accounting purposes. Your decision depends on if you want to offer
certain services of the application at fixed prices or if you want to charge for the actual
resource utilization.

Fixed-price accounting

In fixed-price accounting, a program unit run costs a constant number of accounting units.
These values are based on the values determined in the calculation phase. This makes
fixed-price accounting the simplest solution.

You specify the number of accounting units in the KDCDEF generation in the TAC
statement in the TACUNIT operand, see the openUTM manual “Generating Applications”.

TAC tacname,PROGRAM=progname,TACUNIT=number_of_accounting_units

The value specified in TACUNIT is added to the user-specific accounting unit counter for
every transaction code called by the user.

You can also provide some services (e.g. informational functions) free of charge when using
fixed-price accounting. You must generate the corresponding transaction codes as follows
to do this:

TAC ... TACUNIT=0

With distributed processing, the same applies to the LTAC statement and the LTACUNIT
operand, see section “Accounting with distributed processing” on page 256.

You must set the weights for the resources to 0 (default value) in the KDCDEF statement
ACCOUNT when using fixed-price accounting.

Utilization-based accounting

In this variant the user is charged for the utilization of resources that are determined in the
current accounting phase. You must specify weights for the individual resources. A weight
is a factor that is multiplied with the number of units used. You can use the utilization data
that you received in the calculation phase to help you choose the weights.

The weights are defined for each application in the KDCDEF statement ACCOUNT, i.e. they
are valid for all program unit runs.

Accounting Accounting phases

Using openUTM on BS2000 Systems 253

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
3

The determination of the weights is inevitably subjective and depends on the installation
environment. You can assign weights to the following resources:

– CPU utilization (ACCOUNT operand CPUUNIT)
– I/O to background memory (ACCOUNT operand IOUNIT)
– printer output (ACCOUNT operand OUTUNIT)

More details can be found in the openUTM manual “Generating Applications”.

Example for the UTM generation of this variant

ACCOUNT ACC=ON,CPUUNIT=15,IOUNIT=5,OUTUNIT=20
TAC tacname,PROGRAM=progname,TACUNIT=0
TAC

The following sum is then added to the accounting unit counter of the user for each trans-
action code call:

15 ∗ CPU utilization + 5 ∗ I/O utilization + 20 ∗ printer output utilization

Combination of fixed-price and utilization-based accounting

You can also combine the two variants above for your accounting purposes by specifying a
certain fixed price for calling a transaction code and then also charging for the utilization of
resources (e.g. the CPU utilization).

The following sum is created and added to the accounting unit counter of the user in the
accounting phase when a transaction code is called:

TACUNIT (fixed price for calling a program unit)
+ CPUUNIT ∗ CPU utilization + IOUNIT∗ I/O utilization
+ OUTUNIT ∗ printer output utilization

Example for the UTM generation of this variant

ACCOUNT ACC=ON,CPUUNIT=15
TAC tacnam1,PROGRAM=progname1,TACUNIT=1
TAC tacnam2,PROGRAM=progname2,TACUNIT=2
:
:

Accounting phases Accounting

254 Using openUTM on BS2000 Systems

13.2.3 Accounting phase

In the accounting phase, openUTM determines the resources utilized per program unit run,
calculates a weighted total from this figure and from the generated weights and fixed prices.
openUTM then adds this result to the accounting unit counter of the UTM user. The value
of this counter is contained in the accounting record which openUTM writes in the
accounting file.

openUTM always writes an accounting record when a certain number of accounting units
have been accumulated for the user, or when the user signs off and is not signed on to the
UTM application via any other connection. The number of accounting units for which
openUTM writes an accounting record is specified in the KDCDEF generation in ACCOUNT
MAXUNIT=. You must note the following:

● You should not select a value for MAXUNIT that is too small because writing accounting
records too often could affect the performance of the application negatively.

● You should not select a value for MAXUNIT that is too large because the accounting
units that have not yet been written to the accounting file could be lost when the appli-
cation crashes (accounting is not subject to transaction management).

After the accounting record has been written to the accounting file, the accounting unit
counter and the counter for the number of TACs called are reset to zero.

Activating the accounting phase

With the KDCDEF control statement ACCOUNT ACC=ON, accounting is also activated for
the UTM application in the UTM generation.

The accounting phase can also be activated and deactivated during live operation by the
UTM administration.

– using the KDCAPPL ACCOUNT=ON command
– or using WinAdmin/WebAdmin
– or using the KDCADMI program call KC_MODIFY_OBJECT with

obj_type=KC_DIAG_AND_ACCOUNT_PAR

In BS2000 accounting, the system administrator must activate the record type UTMA.

Deactivating the accounting phase

The accounting phase can only be deactivated by administration:

– using the KDCAPPL ACCOUNT=OFF command
– or using WinAdmin/WebAdmin
– or using the KDCADMI program call KC_MODIFY_OBJECT with

obj_type=KC_DIAG_AND_ACCOUNT_PAR

Accounting Accounting phases

Using openUTM on BS2000 Systems 255

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
3

Data of the accounting record

The accounting record is of record type UTMA. The accounting record contains the
following data:

– time stamp of BS2000 accounting
– name of the UTM application
– UTM user ID
– time the user signs on via the current connection
– value of the accounting unit counter
– number of TACs called with TACUNIT > 0 since the sign-on or since the last record was

written

You can also collect calculation data while the accounting phase is running. This allows you
to check the weights at any time.

13.2.4 Evaluation

The accounting records in the BS2000 accounting file are the result of the accounting
phase. These records can be evaluated with RAV. The programs required here are compo-
nents of RAV and are supplied with this product. See also the manual “RAV (BS2000/OSD)
- Computer Center Accounting Procedure”.

The structure of the UTM accounting records is described in the Appendix on page 329.

13.2.5 Error situations

If BS2000 accounting cannot write an accounting record due to an error, e.g. because there
is not enough space on the disk, openUTM generates message K079 and terminates the
calculation and/or accounting phase. An insert of message K079 contains the cause of the
error. The application continues execution.

After the error has been corrected, the calculation and/or accounting phase can be reacti-
vated again by the UTM administration (e.g. using the administration command KDCAPPL).

Accounting with distributed processing Accounting

256 Using openUTM on BS2000 Systems

13.3 Accounting with distributed processing

During distributed processing, every participating application can, in principle, start services
in other applications. Accounting in distributed processing is primarily of use when the roles
are unevenly distributed, i.e. one application acts entirely as the job submitter and other
applications assume the job receiver roles. Consequently, in this section, the applications
are referred to as job-submitting applications and job-receiving applications.

The job submitter application (job submitter) uses services provided by program units in
remote partner applications (job receivers). In this case, the job-submitting application can
be charged with the incurred resource utilization as a fixed price. Accounting units are
assigned as a fixed price to the LTACs in the job-submitting application to do this. LTACs
are the transaction codes that are defined in the job-submitting application for a service in
a job-receiving application.

 More details can be found in the openUTM manual “Generating Applications”, LTAC
statement, LTACUNIT operand.

Calculation phase (determining the fixed price)

The average resource utilization of the program units that provided services for the job-
submitting application is determined in the calculation phase in the job-receiving appli-
cation. You can specify fixed prices based on the utilization values determined that will be
charged to the users of LTACs in the job-submitting application.

openUTM counts the accounting units used in the LTAC calls in a field of the calculation
record in the job-submitting application.

Accounting phase

In the job-receiving application, all utilization values that are incurred while processing
jobs for a job-submitting application are assigned as follows:

– With LU6.1, to the sessions (LSES) to the job submitter

– With OSI TP, to the associations (OSI-LPAP ... ,ASSOCIATION-NAME=), if the OSI TP-
job submitter did not sign on under a real user ID

The total for the services provided is therefore charged to the job-submitting application.
The resources used by the individual users of the job-submitting application cannot be
determined.

In the job-submitting application, openUTM adds the number of accounting units
specified in the LTAC statement in the KDCDEF generation when an LTAC is called to the
accounting unit counter of the user of the local application.

Accounting Restrictions

Using openUTM on BS2000 Systems 257

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
2

01
6

 S
ta

n
d

16
:1

4.
58

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

k1
3

13.4 Restrictions

Please note the following when using UTM accounting:

● Transaction logging is not implemented when writing accounting information; this
means that accounting units may be lost if an application crashes. The maximum value
per user can be limited in the UTM generation.

● For applications with distributed processing, each LTAC call is counted in the calcu-
lation phase. No account is taken of whether or not a session could be opened following
PEND processing.

● The recording of resource utilization begins before a program unit starts and ends with
the processing of the PEND call. The remaining processing power (basic utilization) of
the UTM tasks is not charged to the users.

● Rolling back a transaction has the following effects: All values except for CPU and I/Os
are reset. Since openUTM accumulates the utilization values in the PEND processing,
a rollback action can only reset utilization values if they originate in the current program
unit run.

● If only asynchronous jobs have been processed for the user since the last application
start, the sign-on time to the application is shown as zero in the accounting record.

● For the event exit VORGANG, the resource utilization is only recorded at the start of the
service.

● For the event service BADTACS, the program unit weight cannot be taken into account
in the accounting phase.

Restrictions Accounting

258 Using openUTM on BS2000 Systems

Using openUTM on BS2000 Systems 259

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

14 Checking performance with openSM2 and
KDCMON

The performance of a UTM application is influenced by various factors. The determining
factors lie on the one hand in the system environment of a UTM application (configuration
of the working memory, performance capabilities of peripherals) and on the other hand in
the UTM application itself (configuration of the application and structure of the program
units). Performance checks should be carried out at regular intervals while an application
is running, in order to detect performance bottlenecks at an early stage. The following tools
are available for checking the performance of UTM applications:

● BS2000 Software Monitor openSM2

● UTM event monitor KDCMON with the evaluation tool KDCEVAL

● information services of UTM administration

You can also use the tools of the database system, e.g. SESCOS trace for SESAM/SQL.

Software Monitor openSM2

The BS2000 Software Monitor openSM2 provides statistical data on performance and the
utilization of resources. Together with the UTM-SM2 subsystem, it is also possible to
determine and display application-specific data. These functions should be used during
operation in order to monitor the behavior of a UTM application and identify performance
bottlenecks.

KDCMON/openSM2 Checking performance

260 Using openUTM on BS2000 Systems

UTM event monitor KDCMON

The UTM event monitor KDCMON is provided for UTM users. KDCMON records infor-
mation on the runtime characteristics of UTM applications and user program units. If perfor-
mance bottlenecks are detected, then you can collect data using KDCMON. You evaluate
the data collected with the KDCEVAL tool. You can then carry out a detailed analysis based
on this evaluation. See page 273.

KDCMON is therefore an important tool for assessing the performance of a UTM appli-
cation. KDCMON can be used to produce detailed performance evaluations when
measurements with openSM2 or information of the UTM administration point to a perfor-
mance bottleneck.

Information services in the UTM administration

Some information on evaluating the utilization of the application can also be queried using
the UTM administration information services, e.g. via the KDCINF administration
command or via the graphical administration tools WinAdmin/WebAdmin.

The KDCINF STATISTICS command provides, amongst others, data on the utilization of
your UTM application. The KDCSINF STATISTICS command also allows you to obtain
general statistical information on the application and obtain statistics for performance
control as well as for assessing the performance of your UTM application during operation,
for example application load, page pool utilization, number of users currently signed on,
number of dialog or asynchronous transactions performed per second, open dialog and
asynchronous services etc.

The KDCINF PAGEPOOL command supplies further, more detailed data on the current
utilization of the page pool.

You can also use the administration command KDCINF SYSPARM to query whether or not
the UTM application is supplying data to openSM2. For more information, see the
openUTM manual “Administering Applications”.

If you administer the UTM application with the WinAdmin or WebAdmin graphical adminis-
tration workstation, then you can also display the statistical data graphically.

Checking performance openSM2

Using openUTM on BS2000 Systems 261

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

14.1 Recording measurement data with openSM2

The Software Monitor openSM2 in BS2000 records statistical data on performance and the
utilization of resources.

openUTM can supply openSM2 with UTM application data which is important for an initial
evaluation of performance. The set of data is independent of the size of the configuration.
The data indicates the behavior of the entire application.

The measurement data recorded by openSM2 is evaluated by the openSM2 component
SM2R1, as well as the openSM2 component SM2-PA for evaluating user-specific
measurement files. openSM2 collects measured values and, on request, outputs them
directly to the terminal for realtime monitoring (online). openSM2 also collects the
measurement data in a file, and the stored data can be evaluated at a later stage (offline).
In this case, local user programs can evaluate the data in delayed mode. SM2R1 evaluates
the measured values which were recorded by openSM2 and written in a global system
measurement file.

Other openSM2 functions are also available for checking the performance of a UTM appli-
cation, e.g. global process evaluation or measuring the processes of a UTM application and
program analysis by SM2-PA.

Prerequisites for recording UTM measurement data by openSM2

To enable openUTM to supply data to openSM2 and to enable openSM2 to collect, store
and edit UTM data, the following requirements must be fulfilled.

● The UTM-SM2 subsystem must be installed and loaded.

In order for openUTM to supply data to openSM2, the UTM-SM2 subsystem is required.
UTM-SM2 acts as a communication component between the tasks of the UTM appli-
cation and openSM2. It is implemented as a separate subsystem and is included in
BS2000-GA (basic configuration). For a description of how the BS2000 system admin-
istrator is to install the UTM-SM2 subsystem, see page 312 of the Appendix.

UTM-SM2 can be loaded as follows:

1. By the BS2000 system administrator with the command:
/START-SUBSYSTEM SUBSYSTEM-NAME=UTM-SM2

2. Automatically at the start of the application if the application is generated with
MAX SM2=ON.

3. When activating the supply of data via the administration (see below). The appli-
cation must be generated with MAX SM2=OFF or MAX SM2=ON.

openSM2 Checking performance

262 Using openUTM on BS2000 Systems

If required, the UTM-SM2 subsystem can be unloaded during operation using the
STOP-SUBSYSTEM command. This is necessary when exchanging the subsystem,
for example. openSM2 and the UTM applications then automatically terminate their
cooperation with UTM-SM2.

After the subsystem has been loaded dynamically, data supply must be reactivated
explicitly for each UTM application.

● Data supply from openUTM to openSM2 must be generated in the UTM application.

In order that openUTM can supply UTM application data to openSM2, this function must
be specified when generating the application. In this case, specify the value ON or OFF
in the SM2 operand of the MAX statement.

If you specify MAX...,SM2=ON, data supply to openSM2 is automatically activated
when the application starts. If required, it can then be deactivated and reactivated again
during operation using UTM administration functions.

If you specify MAX...,SM2=OFF, data supply to openSM2 is permitted for this appli-
cation. However, it must be explicitly activated during operation using UTM adminis-
tration functions.

If MAX ...,SM2=NO is generated, UTM does not supply data to openSM2 for this appli-
cation. In this case, data supply cannot be activated by UTM administration either.

● Data supply to openSM2 is activated by UTM administration functions.

The UTM administrator can use the command KDCAPPL SM2=ON to activate data
supply to openSM2 if this was allowed for in the UTM generation. Data supply is deacti-
vated with KDCAPPL SM2=OFF.

Using the KDCINF SYSPARM command, the UTM administrator can define whether or
not the application is permitted to supply data to openSM2 and whether it is currently
supplying data.

Data supply to openSM2 can also be activated and deactivated using the “program
interface for administration” or using the graphical administration tools WinAdmin/
WebAdmin.

● The openSM2 administrator (privileged openSM2 user) must initiate the collection of
UTM data by openSM2.

The openSM2 administrator must use the command

START-MEASUREMENT-PROGRAM TYPE=UTM

to instruct openSM2 to collect and evaluate data on UTM applications. The STOP-
MEASUREMENT-PROGRAM command is used to deactivate the function.

Checking performance openSM2

Using openUTM on BS2000 Systems 263

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

If the UTM-SM2 subsystem is loaded, the collection of UTM data can be activated at
any time on the openSM2 side, regardless of whether or not data supply is activated on
the UTM side. However, openSM2 cannot begin to process the data until data supply is
activated by openUTM.

Output and evaluation of measurement data

The openSM2 user can display the data supplied by openUTM on an openSM2 screen in
online mode (UTM report or UTM application report). openSM2 also stores the data in a
global system measurement file. This means that the data can also be evaluated by SM2R1
at a later stage.

The openSM2 screen “UTM-REPORT” contains a tabular overview of data for all UTM
applications currently supplying data to openSM2. One line is output for each UTM appli-
cation.

The openSM2 screen “UTM-REPORT” can be output periodically with the command:

REPORT UTM

Current measured values for one or more selected UTM applications are supplied in the
openSM2 screen “UTM-APPLICATION-REPORT”.

The openSM2 screen “UTM-APPLICATION-REPORT” can be output periodically with the
command:

SELECT-UTM-APPLICATION (application1,application2,...)

For application1,application2,... specify the names of the UTM applications whose behavior
you want to monitor in online mode. For application1,.. you must specify the application
name generated in the MAX statement.

The meaning of the data output is explained in the “openSM2” User Guide; the terms used
are consistent with openUTM usage.

In addition to the option of monitoring the measurement data online, the following evalua-
tions of data from UTM applications are possible with SM2R1:

– reports 128 through 133
– SUMMARY UTM

See also the “openSM2” User Guide.

KDCMON Checking performance

264 Using openUTM on BS2000 Systems

14.2 KDCMON - UTM event monitor

KDCMON is a functionally limited variant of COSMOS. COSMOS is a tool implemented in
BS2000 for checking performance. Only UTM events and certain DB events are recorded
with KDCMON. It is possible to run KDCMON and COSMOS simultaneously on a system;
openSM2 and KDCMON can also be implemented together.

KDCMON can be activated during operation and then deactivated again after the desired
monitoring period. The data can be written to tape or disk. With larger volumes of data, the
data should be recorded on tapes; this avoids backlogs in the data entry.

The tools KDCPMSM and KDCEVAL are available for evaluating the data recorded by
KDCMON:

– KDCPMSM converts the data recorded by KDCMON and sorts it
– KDCEVAL generates the evaluation lists from the converted data

KDCMON can also be implemented when UTM versions are operated in parallel, i.e.
KDCMON can record data from UTM applications running under various UTM versions in
the same BS2000 system.

14.2.1 Starting and stopping data entry

Data entry can be started in two steps:

● First you must start KDCMON.

● Then activate data recording for the UTM applications to be checked.

KDCMON is an independent subsystem in BS2000 and is included in BS2000 basic config-
uration. KDCMON must be installed and loaded by the system administrator. See also
section “KDCMON subsystem” on page 314.

Checking performance KDCMON

Using openUTM on BS2000 Systems 265

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

Starting KDCMON

Before starting KDCMON, you must create a file in which KDCMON is to write the recorded
data. To do this, issue the following commands:

● For recording to disk files:

/SET-FILE-LINK LINK-NAME=KDCMON,FILE-NAME=kdcmonfile-
/ ,ACCESS-METHOD=UPAM

/MODIFY-FILE-ATTRIBUTES FILE-NAME=kdcmonfile-
/ ,SUPPORT=*PUBLIC-DISK(SPACE=*RELATIVE-
/ (PRIMARY-ALLOCATION=xxx,SECONDARY-ALLOCATION=yyy))

xxx and yyy must be multiples of 12 (otherwise DMS error).

● For recording to tape files:

/SET-FILE-LINK LINK-NAME=KDCMON,FILE-NAME=kdcmonfile-
/ ,ACCESS-METHOD=BTAM

/MODIFY-FILE-ATTRIBUTES FILE-NAME=kdcmonfile-
/ ,SUPPORT=*TAPE(VOLUME=xxxxxxx,DEVICE-TYPE=type)

i The block size and record length must not be specified for the file.

You can then start KDCMON under the ID $TSOS. The program for starting KDCMON is
provided in the file SYSPRG.KDCMON.nnn:

/START-EXECUTABLE-PROGRAM FROM-FILE=$userid.SYSPRG.KDCMON.nnn

The version identifier nnn stands for the BS2000 version in which KDCMON is running. See
also section “KDCMON subsystem” on page 314.

i You can also start KDCMON using the SDF command START-KDCMON, see
section “Starting UTM tools via separate SDF commands” on page 316.

The KDCMON program expects the following control parameters:

BUFPAG=size
Specifies the size of the buffer in KDCMON in units of 4 KB.

Permitted values: 1 to 7
Default value: 2 (= recommended value)

KDCMON Checking performance

266 Using openUTM on BS2000 Systems

BUFFER=number
Specifies the number of buffers in KDCMON.

Permitted values: 2 to 128
Default value: 4 (= recommended value)

{TIME= mmm | START | BREAK}
Determines the runtime of KDCMON.

The specification of one of TIME=mmm, START or BREAK terminates the
input of the control parameters.

TIME=mmm Runtime of KDCMON in minutes. After the specified time has elapsed,
KDCMON terminates.

Minimum value: 1
Maximum value: 150

START KDCMON runs for 30 minutes. Corresponds to the specification TIME=30.

Default value: START

BREAK KDCMON runs until RESUME is entered.

v CAUTION!
KDCMON can run for a maximum of 150 minutes; otherwise, the evaluation
tool KDCEVAL cannot evaluate the data.

The buffers have the same meaning in KDCMON as in COSMOS.

The program SYSPRG.KDCMON.nnn must not be terminated during data entry, as
otherwise the KDCMON subsystem will no longer be available and must be unloaded.

Stopping KDCMON

KDCMON terminates after the predefined time set in the parameters TIME=mmm and
START, or after RESUME is entered with BREAK. However, the KDCMON subsystem
remains loaded and can be unloaded using the DSSM command

/STOP-SUBSYSTEM KDCMON

if data entry is not running at this time. If you want to unload KDCMON when data entry has
not concluded in one of the UTM applications, you must specify:

/STOP-SUBSYSTEM KDCMON,FORCED=YES

Checking performance KDCMON

Using openUTM on BS2000 Systems 267

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

Activating and deactivating data entry

After KDCMON has been started successfully, you can record data from all UTM applica-
tions running on the respective system.

KDCMON also records BCAM wait times: If KDCMON is activated for input messages,
BCAM records the wait time spent by these messages in the BCAM transport system
before they are picked up by openUTM. For connections with intense dialog, the wait times
are recorded for all input messages. For other connections, a statistical selection is made
in high-load situations. openUTM transfers this wait time for each message from BCAM and
writes it in the KDCMON records. From this data, KDCEVAL determines the maximum,
minimum, and mean value (specified in seconds). These values are output in the WAIT list
(see page 280).

Using UTM administration functions, you can define the UTM applications from which data
is recorded by KDCMON.
Data entry, including the entry of BCAM wait times, can be activated and deactivated using
the administration command:

KDCDIAG KDCMON={ ON | OFF }

This administration function is also available on the KDCADMI program interface and via
the graphical administration tools WinAdmin/WebAdmin.

You can activate and deactivate data entry for an application during a KDCMON run several
times. Up to 10 data acquisition time intervals are possible.

The UTM administrator can use the following command:

KDCINF SYSPARM

at any time to determine whether or not data is being recorded.

If openUTM detects that the KDCMON function is not available when it attempts to activate
it, then the following message is output to the default destination SYSLOG:

K080 KDCMON is not active

Possible cause:
The KDCMON subsystem was not started or was not installed under $TSOS.

If openUTM detects that the KDCMON function is not available any more while it is
acquiring data, then openUTM deactivates the collection of data and informs the user of this
fact with message K080.

openUTM logs the activation and deactivation of the BCAM wait time with UTM message
K146; the default destination of the UTM message is SYSLOG. UTM message K146 is also
output by openUTM if an error occurs when reading the BCAM wait times. As diagnostic
documentation, openUTM creates a UTM dump with the dump error code ASIS70,
UMES02, or WAIT61. The application then continues to run without recording the BCAM
wait time.

KDCMON Checking performance

268 Using openUTM on BS2000 Systems

14.2.2 Evaluating data

In order to evaluate the KDCMON data, it must first be converted from PAM or BTAM format
to SAM format using the KDCPMSM tool.
The records must then be sorted on the basis of the time stamp recorded in each record.
This is necessary because it is not guaranteed that the records are sorted in chronological
order in the file.

14.2.2.1 Converting the data to the SAM format and sorting the data

The PAMSAM procedure is made available to the user in the procedure library
SYSPRC.UTM.064 for converting and sorting the data.

Before calling the procedure, you must assign the KDCMON file:

● Disk files

/SET-FILE-LINK LINK-NAME=KDCMON,FILE-NAME=kdcmonfile,ACCESS-METHOD=UPAM

● Tape files

/SET-FILE-LINK LINK-NAME=KDCMON,FILE-NAME=kdcmonfile,ACCESS-METHOD=BTAM

/MODIFY-FILE-ATTRIBUTES FILE-NAME=kdcmonfile -
/ ,SUPPORT=*TAPE(VOLUME=xxxxxxx,DEVICE-TYPE=TAPE-C4)

The PAMSAM procedure is called as follows:

CALL-PROCEDURE NAME=SYSPRC.UTM.064(PAMSAM),PROCEDURE-PARAMETERS=(
[,KDCPMSM=kdcpmsm-progname][,SAMFILE=samfile]
[,SORT=sortprogram])

Meaning of the parameters and default values

kdcmonfile PAM or BTAM file with the recorded data to be converted.

kdcpmsm-progname
Name of the KDCPMSM tool in the file
SYSPRG.KDCMON.nnn.KDCPMSM:
nnn=170 for BS2000/OSD-BC V8.0
nnn=180 for BS2000/OSD-BC V9.0
nnn=190 for BS2000 OSD/BC V10.0

samfile Name of the output file in SAM format in which PAMSAM is to write the data
records sorted according to time stamp.

sortprogram Name of the BS2000 utility SORT.

Checking performance KDCMON

Using openUTM on BS2000 Systems 269

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

The file KDCMON.WORK is created while the procedure is running; this file is deleted again after
the sorting run.

Following the procedure run, the data converted to SAM format and sorted according to
time stamp is contained in the file samfile, which was specified in the SAMFILE parameter.

If the KDCPMSM tool is terminated incorrectly, process switch 3 is set to ‘on’.

14.2.2.2 Evaluating data with the KDCEVAL tool

The sorted data can be evaluated with KDCEVAL. The evaluation can be carried out inter-
actively and in batch mode. KDCEVAL requires you to enter parameters for control
purposes.

Only data from one application can be evaluated in a run. The user can restrict the evalu-
ation to part of the recorded data by specifying a desired time interval (parameter TIME=).
If data entry was activated and deactivated several times for the application within the
evaluation time limits, a separate evaluation is carried out for each entry period (from
KDCMON=ON to KDCMON=OFF), whereby a maximum of 10 such entry periods are
possible.

The evaluation tool KDCEVAL is started with:

/SET-FILE-LINK LINK-NAME=KDCMON,FILE-NAME=samfile -
,BUFFER-LENGTH=BY-CATALOG -
,BLOCK-CONTROL-INFO=BY-CATALOG

/ START-EXECUTABLE-PROGRAM -
/ FROM-FILE = *LIBRARY-ELEMENT(-
/ LIBRARY = SYSLNK.UTM.064.UTIL -
/ ,ELEMENT-OR-SYMBOL = KDCEVAL -
/ ,TYPE = L)

i You can also start KDCEVAL using the SDF command START-KDCEVAL, see
section “Starting UTM tools via separate SDF commands” on page 316.

Meaning of parameter

samfile Name of the output file of PAMSAM,
i.e. the SAM file with the sorted data records.

After the evaluation program has been started interactively, KDCEVAL outputs the following
message to request the input of control parameters:

PLEASE ENTER COMMANDS OR 'HELP' OR 'END'

KDCMON Checking performance

270 Using openUTM on BS2000 Systems

KDCEVAL control parameters

The program reads the SYSDTA parameters from SYSDTA. The individual commands you
can use to control the evaluation have the following format:

APPLINAME applicationname
Name of the application for which the evaluation is to be carried out. If the
file contains data from several applications, a separate evaluation must be
implemented for each application. It is not possible to carry out an evalu-
ation for more than one application.

TIME FROM={ t1 | START }, TO={ t2 | STOP }
Time specification for defining the evaluation time limits.

FROM=t1 Start time of the evaluation in seconds.
The time is specified relative to the start of KDCMON in seconds.

FROM=START
The evaluation starts at the beginning of the file.

TO=t2 End time of the evaluation.
The time is specified relative to the start of KDCMON in seconds.

TO=STOP The evaluation continues until the end of the file.

The following apply for t1 and t2:

Minimum value: 0
Maximum value: 99999999

LIST { (list1, list2,...,listn [,TABLE]) | (STD [,TABLE]) | (ALL [,TABLE]) }
list1, list2,...,listn
Names of the individual lists to be evaluated. The names that you can
specify here are indicated on page 273. The TRACE and TRACE2 lists
must not be specified at the same time.

STD This evaluation covers the lists TASKS, SUMM, TIMES and TCLASS.

ALL The evaluation covers all lists apart from TRACE and TRACE2.

If TRACE or TRACE2 is also to be evaluated, you must specify LIST (ALL,
TRACE) or LIST (ALL, TRACE2).

If ALL or STD is specified without TABLE, the round brackets can be
omitted.

TABLE If TABLE is specified in addition, the lists are created in a table format that
can be processed on PC with Excel or another spreadsheet program, see
page 272. TABLE only works on the segregated lists TASKS, TIMES,
TCLASS, TACCL, TACPT and TACLIST.

Checking performance KDCMON

Using openUTM on BS2000 Systems 271

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

OPTION DECIMAL-SEPARATOR={ COMMA | POINT }

DECIMAL-SEPARATOR=COMMA
The comma is used as the decimal separator.

DECIMAL-SEPARATOR=POINT
The period is used as the decimal separator; this is the default value.

 END This command terminates parameter input.

The HELP command can also be entered with interactive evaluations. The syntax of the
commands and the possible list names are output in this case.

Errors and messages

● If KDCEVAL is terminated incorrectly, process switch 3 is set to ‘on’.

● If one of the commands APPLINAME, TIME or LIST is missing, the evaluation is
aborted with the following error message:

MANDATORY COMMAND MISSING

● In the case of a syntax error, the following message and the incorrect command are
displayed:

ERROR IN COMMAND

● If the time specifications t1 and t2 are inconsistent, the following message is output:

KDCEVAL: WRONG TIME INPUT

● If no records are found in the file for the application or if no data exists within the evalu-
ation time limits, one of the following messages is output:

NO EVALUATION : NO RECORD WITH APPLINAME FOUND

or

NO EVALUATION : NO RECORD IN TIME_INTERVAL

● If a DMS error occurs, the following messages are output:

KDCEVAL: DMS-ERROR Dxxx FOR INPUT FILE
KDCEVAL: NO EVALUATION

(Dxxx = DMS error code)

KDCMON Checking performance

272 Using openUTM on BS2000 Systems

● Version check:

It is only possible to evaluate KDCMON data using KDCEVAL if KDCEVAL has the
same UTM version as the UTM system code. KDCEVAL checks the version of the
KDCMON data. If KDCEVAL identifies an illegal version, KDCEVAL aborts the evalu-
ation with the following message:

NO EVALUATION: INPUT FILE FROM INVALID UTM VERSION

Result of the KDCEVAL evaluation

KDCEVAL writes the result of the evaluation into the files of a file generation group (FGG)
with the name:

KDCMON.appliname

The FGG contains a maximum of 10 generations. When the evaluation is started, any
existing file generation of this name is deleted.

If data entry was deactivated several times during a KDCMON run, then KDCEVAL writes
the evaluation data of each interval to a separate file.

14.2.3 Processing evaluation data on the PC

If you specify the TABLE operand in addition to the list name in the LIST control parameter
for KDCEVAL, the lists are created in table form. This type of processing is only possible for
TASKS, TIMES, TCLASS, TACCL, TACPT, and TACLIST lists.

The lists generated in this way can be processed and formatted graphically on a PC using
a spreadsheet program such as Microsoft Excel. The macro kdceval.xls is supplied on
the WinAdmin data medium for Excel.

Carry out the following steps:

1. Transfer the list file generated by KDCEVAL to a PC using ftp or openFT and copy the
macro kdceval.xls from the WinAdmin data medium on this PC.

The macro requires that the file to be evaluated has the suffix .txt.

2. Call the macro (kdceval.xls) and read the list file into Excel. Excel then creates a
separate spreadsheet for each list, as well as an additional sheet with summary infor-
mation.

3. Process the individual lists as desired, e.g. by sorting a list and then converting it into a
curve chart or bar chart.

Checking performance KDCMON

Using openUTM on BS2000 Systems 273

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

14.2.4 Evaluation lists

Each evaluation list includes the following:

– a title containing the name of the evaluation list
– a header, which is identical for all lists
– the specific evaluation list

The list header is structured as follows:

NAME OF APPLICATION : applname DATE : 2016-05-11 BS2000 VERSION :V180 openUTM VERSION:V06.4A

COMMENCEMENT TIME : sec SEC. KDCMON START : 16:46:26 KDCEVAL VERSION:V06.4A00

END TIME : sec SEC. APPLICATION RECORDING START : 16:46:32

SYSTEM INFORMATION : processor ,Number CPUs : 3, Bitmode : 32 Bit

The fields are explained below:

NAME OF APPLICATION
Name of the application.

DATE Date of data entry with KDCMON.

BS2000 VERSION BS2000 version of the system on which KDCMON was running.

COMMENCEMENT TIME
Start time of the selected evaluation period
(relative to the start time of KDCMON)

KDCMON START Start time of KDCMON.

END TIME End time of the selected evaluation period
(relative to the start time of KDCMON).

APPLICATION RECORDING START
Start time of data entry for the UTM application.

In the case of the TRACE and TRACE2 lists, END TIME contains the value 999999 if the
entire file is evaluated (parameter TIME FROM=START,TO=STOP).

The processing times are always the ELAPSED TIME (real time).

The following individual evaluations and combinations of evaluations are possible:

TASKS UTILIZATION OF THE UTM TASKS

SUMM TRANSACTION EVALUATION

TIMES DISTRIBUTION OF PROCESSING TIMES

KCOP KDCS CALLS STATISTIC

KDCMON Checking performance

274 Using openUTM on BS2000 Systems

WAIT WAITING TIMES

TCLASS EVALUATION OF THE TAC CLASSES

TACCL TAC SPECIFIC TAC CLASS EVALUATION

TACPT TAC SPECIFIC DISTRIBUTION OF PROCESSING TIMES

TACLIST TAC SPECIFIC STATISTICS

TRACE TASK SPECIFIC TRACES

TRACE2 TASK PERFORMANCE TRACES

The individual evaluation lists are described below.

Checking performance KDCMON

Using openUTM on BS2000 Systems 275

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

TASKS: UTILIZATION OF THE UTM TASKS

This list provides an overview of the utilization levels of the processes of the application.
Furthermore, the CPU utilization and the number of input and output operations (I/Os) are
indicated for each individual UTM process and the sum is displayed for all tasks of the
application.

 1 = Program
 2 = System code
 3 = Database
 4 = Bourse Wait
|------------------------|
| TSN | START TIME | TASK UTILIZATION , Number Used Tasks: 6 , Number System Tasks: 0
| 3FYF | 16:46:32.914551 | <----------1---------><----2----><----3----><---------------------------4-------------------------->
| 3FYC | 16:46:37.661807 | 2<--4-->
| 3FYD | 16:46:32.924186 | <---4-->
| 3FYE | 16:46:32.936194 | <----------1---------><----2----><-----3----><--------------------------4-------------------------->
| 3FYA | 16:46:32.928063 | <-----------1----------><-----2-----><-----3----><------------------------4------------------------>
| 3FYB | 16:46:32.917157 | <----------1---------><----2----><----3----><---------------------------4-------------------------->
|------|-----------------|

TSN CPU-time Number I/O Program System Database Bourse Wait System Task
3FYF 19188 6995 65410 34683 32640 160486 N
3FYC 1852 933 19 5009 111 283332 N
3FYD 1084 490 46 2808 29 290326 N
3FYE 19389 6964 66356 34615 35336 156890 N
3FYA 20056 7150 70596 38931 35553 148124 N
3FYB 19133 6904 64621 35138 32592 160865 N
Summ 80702 29436

Explanation of the terms in the list:

TSN TASK SEQUENCE NUMBER of the UTM process.

START TIME Time of the first record of this process (absolute).

Program Proportion of processing time of the application program in the UTM
process. This time also includes the SVC handling of the SVCs called from
the application programs.

System code Proportion of processing time of the UTM system code.

Database Proportion of time required to process the database calls.
If the processing of a database call necessitates a process switch, this time
also includes the wait time of the UTM process.

Bourse Wait Proportion of time awaited by the process for new jobs to enter the job
queue.

System Task Specifies whether this task is a UTM system process for the application.

The times output in the columns Program, System, Database and Bourse Wait are real
times. The unit used is milliseconds (in the same way as for the CPU time).A reduction in
the number of tasks during the evaluation time limits must be avoided for the TASKS evalu-
ation as this would lead to distorted results. For such a use case you should use other
evaluation time limits.

KDCMON Checking performance

276 Using openUTM on BS2000 Systems

SUMM: TRANSACTION EVALUATION

This list provides an overview of the services and transactions for the evaluation period.
The list only includes transactions that lie completely within the evaluation period. The
evaluation tool KDCEVAL also indicates the CPU utilization of all program unit runs that
were terminated within the evaluation time limits:

|---|
| COUNT OF TRANSACTIONS : 8229 | 1)

| |
| COUNT OF SERVICES : 8229 |
| |
| COUNT OF DIALOG STEPS : 8229 |
| |
| NUMBER OF DIALOG STEPS PER SECOND : 28.08 |
| |
| NUMBER OF DB CALLS PER TRANSACTION : 9 |
| |
| TOTAL CPU-TIME USED IN MSEC : 77741 | 2)

|---|

1) The KDCDIAG transaction for activating and deactivating the event monitor is not
counted.

2) This line indicates the total CPU utilization of the individual program unit runs. This also
includes the CPU utilization in the UTM and operating system code, insofar as this
occurs within the program unit runs, as well as the start and end processing for the
program units in openUTM. Other actions of the UTM tasks that do not belong directly
to program units are not included in these values.

Checking performance KDCMON

Using openUTM on BS2000 Systems 277

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

TIMES: DISTRIBUTION OF PROCESSING TIMES

In tabular form, this list indicates a distribution of processing times in milliseconds for the
program units. These times do not include the wait time before processing by openUTM.

The list has the following format:

This list indicates the number of complete program unit runs and the percentage for the
respective time class.

PROCESSING TIMES
(MSEC)

NUMBER PERCENT

 0 - 100
 101 - 200
 201 - 500
 501 - 1000
 1001 - 2000
 2001 - 5000
 5001 - 10000
 10001 - 20000
 20001 - 50000
 50001 - 100000
 > 100000

 76
 45
 7
 1
 0
 0
 0
 0
 0
 0
 0

 58.91
 34.88
 5.42
 0.77
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00

KDCMON Checking performance

278 Using openUTM on BS2000 Systems

KCOP: UTM CALLS STATISTIC

This table specifies how often the individual UTM calls occurred in the evaluation period.

Calls that are not included in the list of calls known to KDCEVAL appear under others.

This list also contains calls that are issued by openUTM for internal processing and are not
available to the user:

CONT Call following formatting or database communication.

ADMI UTM administration action

WAIT End of processing of a program run.

NOOP Record event data for DB calls.

The KCOP list has the following format:

-----------------------------		-----------------------------				
OP	OM	NUMBER		OP	OM	NUMBER
-----------------------------		-----------------------------				
ADMI 7		MPUT HM 0				
APRO AM 0		MPUT ID 0				
APRO DM 0		MPUT NE 0				
APRO IN 0		MPUT NT 34761				
CONT 17338		MPUT PM 0				
CTRL AB 0		MPUT RM 0				
CTRL EC 0		NOOP 0				
CTRL PE 0		PADM AC 0				
CTRL PR 0		PADM AI 0				
CTRL SC 0		PADM AT 0				
DADM CS 0		PADM CA 0				
DADM DA 0		PADM CS 0				
DADM DL 0		PADM OK 0				
DADM MA 0		PADM PI 0				
DADM MV 0		PADM PR 0				
DADM RQ 0		PEND ER 0				
DADM UI 0		PEND FC 0				
DGET BF 0		PEND FI 8231				
DGET BN 0		PEND FR 0				
DGET FT 0		PEND KP 0				
DGET NT 0		PEND PA 0				
DGET PF 0		PEND PR 0				
DGET PN 0		PEND PS 0				
DPUT NE 0		PEND RE 0				
DPUT NI 0		PEND RS 0				
DPUT NT 0		PEND SP 0				
DPUT RP 0		PGWT CM 0				

Checking performance KDCMON

Using openUTM on BS2000 Systems 279

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

DPUT QE 0		PGWT KP 0
DPUT QI 0		PGWT PR 0
DPUT QT 0		PGWT RB 0
DPUT +I 0		PGWT RT 0
DPUT -I 0		PGWT ST 0
DPUT +T 0		PTDA 0
DPUT -T 0		QCRE NN 0
FGET 0		QCRE WN 0
FPUT NE 0		QREL RL 0
FPUT NT 0		RSET 6907
FPUT RP 0		SGET GB 0
FPUT UF 0		SGET KP 0
GTDA 0		SGET RL 0
INFO CD 0		SGET US 0
INFO CK 0		SIGN CK 0
INFO DT 0		SIGN CL 0
INFO FH 0		SIGN CP 0
INFO GN 0		SIGN OB 0
INFO LO 0		SIGN OF 0
INFO PC 0		SIGN ON 0
INFO SI 0		SIGN ST 0
INIT 8230		SMSG 0
INIT PU 0		SPUT DL 0
INIT MD 0		SPUT ES 0
LPUT 0		SPUT GB 0
MCOM BC 0		SPUT MS 0
MCOM EC 0		SPUT US 0
MGET 8230		SREL GB 0
MGET NT 0		SREL LB 0
MPUT CM 0		UNLK DA 0
MPUT EM 0		UNLK GB 0
MPUT ES 0		UNLK US 0
MPUT GC 0		WAIT 8232
OTHERS 0		
-----------------------------		-----------------------------

KDCMON Checking performance

280 Using openUTM on BS2000 Systems

WAIT: WAITING TIMES

To establish bottleneck situations, openUTM inserts measuring jobs into the job queue at
regular intervals if KDCMON is activated. The wait time of the jobs in the UTM queue can
be determined on the basis of the time at which the job was introduced (absolute time
stamp) and the time of processing. The time difference between the individual pseudo jobs
is approximately 10 seconds.

The following information is logged in the WAIT list:

● The WAITING TIME column indicates the established wait time for each pseudo job in
seconds.

● For these wait times, the evaluation tool KDCEVAL also calculates the maximum,
minimum, and mean value in seconds and outputs these values under UTM WAITING
TIMES.

● The NUMBER OF TASKS column indicates the number of processes available in the
application at this time. The UTM system processes are not included in this number.

● The BCAM wait times are output in seconds in the BCAM WAITING TIMES section.
BCAM V12.0 or later measures the time spent in the BCAM transport system by input
messages for the application before they are retrieved by openUTM.

NUMBER OF MESSAGES indicates the number of KDCMON records in the monitoring
period that were generated in a program unit run and for whose message BCAM
supplied a wait time. When KDCMON recording is activated (and hence also time
recording in BCAM), there are generally messages already in the BCAM message pool.
When openUTM retrieves these messages from BCAM, openUTM does not receive a
wait time for them. These messages are not included in the value for NUMBER OF
MESSAGES.

If the wait time is too long, the number of UTM tasks should be increased.

Checking performance KDCMON

Using openUTM on BS2000 Systems 281

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

The WAIT list has the following format:

 TIME STAMP WAITING TIME NUMBER OF TASKS

 10:33:35.742 0.018 1

 10:33:45.781 0.008 2

 10:33:55.841 0.007 3

 10:33:66.027 0.008 3

 10:33:76:087 0.008 3

 10:33:86:112 0.007 3

 10:33:96:123 0.007 3

UTM WAITING TIMES:

TIME STAMP : 10:33:35.742 WAITING TIME MAXIMUM : 0.018

TIME STAMP : 10:33:41.740 WAITING TIME MINIMUM : 0.007

NUMBER OF ENTRIES: 7 WAITING TIME AVERAGE : 0.009

BCAM WAITING TIMES:L

TIME STAMP : 10:23:35.742 WAITING TIME MAXIMUM : 0.728

TIME STAMP : 10:39:35.740 WAITING TIME MINIMUM : 0.027

NUMBER OF MESSAGES: 200 WAITING TIME AVERAGE : 0.125

KDCMON Checking performance

282 Using openUTM on BS2000 Systems

TCLASS: EVALUATION OF THE TAC CLASSES

The TCLASS list contains an overview of job processing of TACs in the individual TAC
classes (1 through 6) in tabular form. In the evaluation, all dialog TACs to which no TAC
class was assigned during generation with KDCDEF are combined into TAC class 0.

In the UTM generation, the user can define the maximum number of tasks that can operate
for a TAC class at any one time. When this number is reached, subsequent jobs are placed
in a TAC class-specific queue.

The TCLASS list contains the following information:

● The NUMBER OF CALLS column indicates the number of TAC calls in the evaluation
period for a TAC class.

● The DISTRIBUTION IN PERCENT column contains percentage values.
The subcolumn NUMBER CALLS specifies the percentage of calls of a TAC class
within the number of all TAC calls. The next two columns contain a percentage
breakdown of the calls of this TAC class into the following categories:

– calls that were processed immediately (WAITTIME=0), and
– calls that had to be placed in a TAC class-specific queue (WAITTIME>0).

TAC-
CLASS

NUMBER
CALLS

DISTRIBUTION IN PERCENT AVERAGE
WAIT TIME
(IN MSEC)

MAXIMUM
WAIT TIME
(IN MSEC)

MINIMUM
WAIT TIME
(IN MSEC)

NUMBER
CALLS

WAIT
TIME=0

WAIT
TIME>0

 0 21 30.87

 1
 2
 3
 .
 .
 8

 2
 4
 3
 .
 .
 5

 2.94
 5.88
 4.41
 .
 .
 7.35

100.00
 75.00
100.00
 .
 .
 80.00

 0.00
 25.00
 0.00
 .
 .
 20.00

 0
 3000
 0
 .
 .
 5000

 0
 5000
 0
 .
 .
 8000

 0
 1000
 0
 .
 .
 2000

 9
 10
 11
 12
 .
 .
 16

 2
 3
 4
 3
 .
 .
 5

 2.94
 4.41
 5.88
 4.41
 .
 .
 7.35

 90.00
100.00
 75.00
100.00
 .
 .
 80.00

 10.00
 0.00
 25.00
 0.00
 .
 .
 20.00

 4000
 0
 3000
 0
 .
 .
 5000

 0
 5000
 0
 .
 .
 8000

 0
 1000
 0
 .
 .
 2000

 90.00 10.00 4000

41 DIALOG TACS WERE CALLED
27 ASYNCHRONOUS TACS WERE CALLED

Checking performance KDCMON

Using openUTM on BS2000 Systems 283

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

● The values in the columns AVERAGE / MINIMUM / MAXIMUM WAIT TIME refer to the
jobs which openUTM temporarily placed in a TAC class-specific queue. The average
minimum or maximum wait time of a job per TAC class is displayed.

i The average wait time of jobs per TAC class can also be queried with the adminis-
tration command KDCINF TACCLASS or with the corresponding function in
WinAdmin/WebAdmin or KDCADMI while an application is running.

Wait time for dialog jobs

In the case of dialog jobs, the wait time is the period between the acceptance of the job by
the application (job retrieved from the queue of the application) and the start of the program
unit.

Wait times for asynchronous jobs

openUTM also records the wait time of asynchronous jobs. The wait time is defined as
follows:

If the asynchronous job was not created in the current application run, the asynchronous
wait time is always taken to be the time difference between the start of the application and
the start of the asynchronous job.

Asynchronous job Definition of “wait time”

Input asynchronous TAC Period between the acceptance of the job by openUTM and the
start of the asynchronous service.

FPUT call in the program unit Period between the end of the transaction in which the FPUT job
was executed, and the start of the asynchronous service.

DPUT job in the program unit Period between the conversion of the DPUT into FPUT and the
start of the asynchronous service.

KDCMON Checking performance

284 Using openUTM on BS2000 Systems

TACCL: TAC SPECIFIC TAC CLASS EVALUATION

The TACCL list contains the same information as the TCLASS list, broken down according
to the individual transaction codes. It lists all TACs that were called in the evaluation period.
The TACs are listed in the sequence they first occurred. For an explanation of the individual
columns, see the description of the TCLASS list format.

No WAIT TIME specifications are entered for TACs of TAC class 0.

TACPT: TAC SPECIFIC DISTRIBUTION OF PROCESSING TIMES

This table lists the minimum (MIN), maximum (MAX), and mean (MEAN) processing time
in milliseconds for all TACs processed within the evaluation period. It only includes the
TACs whose start and end time lie within the evaluation period. The list has the following
format:

The table is sorted in descending order according to the mean processing times. Only TACs
with a mean processing time > 0 are displayed. The times that are output are the real times
(elapsed times).

TAC TAC-
CLASS

NUMBER
CALLS

DISTRIBUTION IN PERCENT AVERAGE
WAIT TIME
(IN MSEC)

NUMBER
CALLS

WAIT
TIME=0

WAIT
TIME> 0

TAC1 0 10 22.50

TAC2 5 5 11.25 60.00 40.00 1000

TAC3 2 1 2.50 0.00 100.00 3256

TAC4 13 12 23.40 40.00 60.00 2000

TAC5 15 17 26.20 55.00 45.00 4000

 TAC PROCESSING TIME PER TAC (IN MSEC)

 MEAN MIN MAX

 TAC1 150000 125000 175000

 TAC2 35000 19000 45000

 TAC3 24500 20000 29000

Checking performance KDCMON

Using openUTM on BS2000 Systems 285

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

TACLIST: TAC SPECIFIC STATISTICS

This list contains the following TAC-specific information:

● The average size of the communication area (column AVERAGE SIZE OF KB)

● The average number of database calls, broken down according to:

– calls from the application program units (FROM USER column), and

– calls used for coordination between openUTM and the database system (FROM
SYSTEM column).

● The breakdown of processing time into:

1: program
2: system code
3: data base (these times have the same meaning as in the TASKS list)

The list has the following format:

The list is not sorted; the TACs appear in the sequence in which they first occur.

The list only includes TACs whose start and end times lie within the analysis period.

1 2

3

1 2 3

1

1 2

1 2 3

2

TAC NUMBER
CALLS

AVERAGE DB CALLS AVERAGE
SIZE OF KBFROM USER FROM SYSTEM

TAC1 5 15 2 256

TAC2 18 0 0 1024

TAC3 3 200 2 3000

TAC4 70 0 0 1024

TAC5 500 32 2 30000

KDCMON Checking performance

286 Using openUTM on BS2000 Systems

TRACE: TASK SPECIFIC TRACES

TRACE lists can be created for a more precise analysis of the execution of a UTM appli-
cation. This list contains all UTM calls for the individual UTM processes in chronological
order.

For space reasons, a list can contain the data from a maximum of 6 processes. If data for
more than 6 processes exists for the evaluation period, the evaluation tool KDCEVAL
creates a second TRACE list with the next maximum 6 processes and appends this list to
the first list in the same file. It is thus possible to analyze the chronological execution of up
to 12 processes.

If data from more than 12 processes exists in the evaluation period, KDCEVAL creates the
evaluation lists for 12 processes. KDCEVAL does not evaluate any data for the remaining
processes, and logs this fact in a UTM message specifying the TSNs.

The list is sorted in chronological order.

The TIME STAMP column contains the time stamp of the corresponding call that was
logged (in microseconds).

The TRACE list records the following events and data:

● The transaction code called (TAC).

● The transaction ID. In openUTM, a unique transaction ID is assigned to each trans-
action. This identifier is also transferred to the attached databases on the UTM-DB
interface. In this way, it is possible to link database traces with these UTM traces and
establish relationships between UTM and DB processes. The transaction ID is made up
of four parts:

SC Session counter: This counts the application runs. The number is 1 after a
regeneration, and is incremented by 1 each time the application starts.

VC Service counter: This counts the services within the application run and runs up
to 16 777 216 (224).

TC Transaction counter: This counts the transactions within a service and runs up
to 32 768 (215).

VN Conversation number: this is the number of an internal UTM table for the
administration of services.

These four parts are logged after the KDCS call INIT.
The VC and TC specifications are of interest to the user.

Checking performance KDCMON

Using openUTM on BS2000 Systems 287

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

● All UTM calls with operation modifications. Internal UTM calls (WAIT, CONT, ...) are also
listed.

The following are also logged:

– KCMF for KCMF-relevant calls

– KCRN for KCRN-relevant calls

– KCLT for PADM/DADM calls

– In the event of an abort with PEND ER/ FR as diagnostic information:
– the TAC of the program unit that caused the abort
– the return codes KCRCDC and KCRRCC
– VC and TC for the assignment to the aborted service

– With a PEND RS as diagnostic information:
– the TAC of the current program unit
– VC and TC for the assignment to the service

– With DB calls FITA and CATA:
– VC and TC for the assignment to the service

● All database calls, if the UTM application is coordinating with a non-XA database
system (generated with the KDCDEF control statement DATABASE).

Calls to such a database system are logged with the following entry:

opcode db-time

Where opcode is the operation code of the database call according to the IUTMDB
interface. See also the description of DB-DIAGAREA in the openUTM manual
“Messages, Debugging and Diagnostics on BS2000 Systems”, chapter UTM dump. db-
time specifies how much time was required to process the database call (real time in
microseconds).

Example: FITA 115

If SESCOS is activated for a SESAM-DBH, calls to the SESAM database are logged by
the following entry, which enables the assignment between TRACE list and SESCOS
evaluation:

ppxyttttnnnmmmmmmmm

pp Operation code of the database call as a hexadecimal value, e.g.
14=DBFITA. See DB-DIAGAREA for values.

x Configuration name of the SESAM-DBH.
Value range: Ë, A-Z, 0-9
Value ‘-’: Information was not supplied by SESAM.

KDCMON Checking performance

288 Using openUTM on BS2000 Systems

y Communication name of the SESAM-DBH.
Value range: Ë, A-Z, 0-9

tttt TSN of the DBH task.

nnn Serial number of the SESCOS file.

mmmmmmmm
Serial number in the SESCOS file.
The numbers nnn and mmmmmmmm are specified with leading blanks.

As long as no process switch takes place, all calls for processing a dialog step are listed in
succession in the same TSN column. Following a PEND PA/PR/SP, a process switch can
occur when changing a TAC class. The interruption of a process by the operating system
can be seen by the fact that the calls are continued in another process column midway
through the processing of a dialog step.

Below is an example of the TRACE list. It shows an excerpt from the execution of a UTM
application with database calls to UDS and SESAM.

Checking performance KDCMON

Using openUTM on BS2000 Systems 289

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

The TRACE evaluation list has the following format:

TIME STAMP | TSN: 12A2 | | TSN: 12A6
-------------------+-------------------+--------+----------------------

16:54:43.341343 | ADMI | |
16:64:43.343456 | MPUT NT | |
16:54:43.347123 | MPUT NT | |
16:54:43.348768 | PEND FI | |
16:54:43.403458 | WAIT | |

 16:54:52.502987 | CONT | . . . |
 16:54:52.555234 | USRC 25 | | UDS

16:54:52.555458 | TAC1 | |
16:54:52.555458 | INIT | |
16:54:52.555458 | SC : 1 | |
16:54:52.555458 | VC : 32 | . . . |
16:54:52.555458 | TC : 1 | |
16:54:52.555458 | VN : 2 | |
16:54:52.559982 | MGET | |
16:54:52.561345 | USRC 27 | | UDS
16:54:52.570679 | | | CONT

 16:54:52.572157 | | | USRC 12 UDS
16:54:52.578676 | | | TAC2
16:54:52.578676 | | | INIT
16:54:52.578676 | | | SC : 1
16:54:52.578676 | | | VC : 26
16:54:52.578676 | | | TC : 17
16:54:52.578676 | | | VC : 7
16:54:52.580236 | | | CONT
16:54:52.581987 | | . . . | FGET
16:54:52.584765 | | | SGET GB GSSB12
16:54:52.586675 | | | FPUT NT BRC1023
16:54:52.589345 | | | FGET
16:54:52.596289 | | | LPUT
16:54:52.599238 | | | GTDA TLS1
16:54:52.602457 | | | SPUT DL LSSB2
16:54:52.605378 | | | FPUT NE BRC1023
16:54:52.612459 | | . . . | PEND FI
16:54:52.615128 | | | WAIT
16:54:52.616345 | | | CONT
16:54:52.618146 | | | TAC13
16:54:52.620346 | | | INIT
16:54:52.620346 | | | SC : 1
16:54:52.620346 | | | VC : 38
16:54:52.620346 | | | TC : 1
16:54:52.620346 | | | VN : 7

. | . | . . . | .

. | . | . . . | .
16:54:52.653567 | | | PEND ER TAC13
16:54:52.653567 | | | 74Z KM03
16:54:52.653567 | | | VC : 38
16:54:52.653567 | | | TC : 1

. | . | . . . | .

. | . | . . . | .

KDCMON Checking performance

290 Using openUTM on BS2000 Systems

Continued:

To help you understand the list, the database calls in the example are identified by arrows,
which are not contained in the original TRACE list.

TIME STAMP | TSN: 12A2 | | TSN: 12A6
-------------------+-------------------+--------+----------------------

. | . | . . . | .

. | . | . . . | .
17:13:47.851578 |10A 0PL1 1 21| | SESAM
17:13:47.868237 |10A 0PL1 1 22+- -+- SESAM
17:13:47.886129 |10-- | | SESAM
17:13:47.887247 | MPUT NE *MULTIF | |
17:13:47.902786 | PEND RE MULTI | |
17:13:47.930873 | CONT | |
17:13:48.026234 |14A 0PL1 1 23+- -+- SESAM
17:13:48.026234 | VC : 34 | |
17:13:48.026234 | TC : 26 | |
17:13:48.186984 | CONT | |
17:13:48.217567 | WAIT | |

. | . | |

. | . | |

Checking performance KDCMON

Using openUTM on BS2000 Systems 291

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

TRACE2: TASK PERFORMANCE TRACE

The most important events in the program units of the applications are contained in the
TRACE2 evaluation list in sequence. Since the evaluation is not broken down into columns
for the UTM tasks as in the TRACE list, the TRACE2 list can show any number of tasks. In
addition to the entries of the TRACE evaluation, TRACE2 also contains important data for
performance analysis.

The entries in the evaluation are sorted in chronological order. The TIME STAMP column
contains the time stamp of the event (in microseconds).

The TRACE2 evaluation list records the following events and data:

● Start of a program unit as an entry strt >>> tac with

– Transaction code of the program unit
– TAC class
– Current I/O and CPU stamp (in milliseconds)
– Wait time of message BCAM
– Wait time of job in the TAC class

● All UTM function calls with operation code and modification, plus the information:

– KCMF for KCMF-relevant calls
– KCRN for KCRN-relevant calls
– KCLT for PADM and DADM calls
– For PEND calls with KCOM = ER/FR/RS and for the database calls FITA and CATA,

the transaction ID (SC,VC,TC, and VN) for the assignment to the aborted service.
– If KCRCCC ≠ 0, the return codes KCRCDC and KCRRCC and the transaction ID

(SC,VC,TC and VN).

● All database calls, if the UTM application is coordinating with the DB system. The calls
to the database system are logged with an entry DBCL opcode db-time.

opcode and db-time mean the same as in the TRACE list.

If SESCOS is activated at the DBH side, the information
SESCOS-INFO -->xyttttnnnmmmmmmmm is also logged for calls to the SESAM database
system. The values enable the assignment of TRACE2 lists and SESCOS evaluation.
See also the description of the fields for the TRACE list on page 287.

● End of the program unit as an entry WAIT end<<<< with

– CPU utilization in the program unit in microseconds in the “CPU” column
– I/O utilization in the program unit in the “I/O” column

● A logical processor number supplied by KDCMON.

Each number thus identifies a CPU. The number is indicated in the “ID” column. On
multiprocessor systems, you can thereby determine which UTM tasks run in parallel.

KDCMON Checking performance

292 Using openUTM on BS2000 Systems

The structure elements <<<<<< in the list make it easier to read the entries.

The TRACE2 evaluation list has the following format. The first page shows the left part and
the following page shows the right part of the list:

left-hand section of list

 TIME STAMP | TRACE: |ID TSN | SC VC TC
------------------+------------------+--------+---------------------------
12:36:49.335347 | MPUT NT ---------| 4 1BT1 | 1 4 1
12:36:49.336876 | PEND FI ---------| 4 " |
12:36:49.362784 | WAIT ---------| 4 " |
 12:36:55.371234 + strt >>>KDCAPPL + 4 " + 1 5 1
12:36:55.371897 | INIT ---------| 4 " |

. | . | . | .

. | . | . | .
12:36:55.372459 | MPUT NT ---------| 4 " |
12:36:55.372897 | PEND FI ---------| 4 " |
12:36:55.411213 | WAIT ---------| 4 " |
12:36:55.411569 + WAIT end<<<<< + 4 " |<<<<<<<<<<<<<<<<<<<<<<<<<<<
 12:37:03.408459 | strt >>>PERWRT01 | 4 1BT0 | 1 6 1
12:37:03.431278 | INIT ---------| 4 " |

. | . | . | .

. | . | . | .
12:37:04.095678 + SPUT US ---------+ 4 " +---------------------------
12:37:04.095678 | CC DC 46Z 0000 | 4 " | 1 6 1
12:37:04.257469 | MPUT NE ---------| 4 " |
12:37:04.257675 + PEND RE ---------+ 4 " +---------------------------
12:37:04.897239 | WAIT ---------| 4 " |
12:37:04.897983 | WAIT end<<<<< | 4 " |<<<<<<<<<<<<<<<<<<<<<<<<<<<
 12:37:08.748349 | strt >>>PERWRT02 | 4 " | 1 6 2
12:37:08.749789 + INIT ---------+ 4 " +---------------------------

. | . | . | .

. | . | . | .
12:37:12.034127 + MPUT NE ---------+ 4 " +---------------------------
12:37:12.035369 | PEND FI ---------| 4 " |
 12:37:21.682389 | WAIT end<<<<< | 4 " |<<<<<<<<<<<<<<<<<<<<<<<<<<<
12:37:21.682982 | strt >>>ATAC1016 | 4 " | 1 11 1

. | . | . | .

. | . | . | .
12:37:31.683128 | PEND FI ---------| 4 " |
12:37:31.685369 + strt >>>ATAC1010 + 1 1BT1 + 1 12 1
12:37:31.706698 | WAIT ---------| 4 1BT0 | 1 11 1
12:37:31.706887 | WAIT end<<<<< | 4 " |<<<<<<<<<<<<<<<<<<<<<<<<<<<
12:37:31.706987 | strt >>>ASYNTCCL | 4 " | 1 13 1

. | . | . | .

. | . | . | .
13:23:56.602289 + DBCL USRC 18256| 1 " |
13:23:56.621389 | DBCL USRC 215| 1 " |
13:23:56.626489 | PEND RE ---------+ 1 " |

. | . | . | .

. | . | . | .
13:23:56.639578 | CONT ---------| 1 " |
13:23:56.737897 | DBCL FITA 64923| 4 " | 1 14 30

. | . | . | .

. | . | . | .

Checking performance KDCMON

Using openUTM on BS2000 Systems 293

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
4

right-hand section of list

VN |KCRN CPU |KCMF I/O |TACCLASS Q.TIME|BCAM W.TIME
----+-------------+-------------+---------------+-----------

3 | | | |
| | | |
| | | |

3 + 399 + 314 + 0* 0 + 0
| | | |
| . | . | . | .
| . | . | . | .

<<<<| +567 | +2 |<<<<<<<<<<<<<<<|<<<<<<<<<<<
3 | 437 | 412 | 0* 0 | 0
| | | |
| . | . | . | .
| . | . | . | .

----+ ULSA +-------------+---------------+----------
3 | | | |
| | BELL | |

----+ PERWRT02 +-------------+---------------+----------
| | | |

<<<<| +50123 | +70 |<<<<<<<<<<<<<<<|<<<<<<<<<<<
3 | 488 | 482 | 0* 0 | 1

----+-------------+-------------+---------------+----------
.| . | . | . | .
.| . | . | . | .

----+-------------+-------------+---------------+----------
| | | |

<<<<| +2890 | +6 |<<<<<<<<<<<<<<<|<<<<<<<<<<<
20 | 524 | 539 |16* 310 | 0

| . | . | . | .
| . | . | . | .
| | | |

21 + 420 + 338 +10* 10313 + 0
20 | | | |
<<<<| +324 | +2 |<<<<<<<<<<<<<<<|<<<<<<<<<<<
20 | 525 | 541 |16* 53 | 0

| . | . | .. | .
| . | . | .. | .
| SESCOS-INFO--> A 0PL1 1 21|
| SESCOS-INFO--> A 0PL1 1 22|
MULTI		
.	.	.
.	.	.

22 | SESCOS-INFO--> A 0PL1 1 23|
| . | . | . | .
| . | . | . | .

KDCMON Checking performance

294 Using openUTM on BS2000 Systems

Using openUTM on BS2000 Systems 295

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
5

15 Load simulation with Workload Capture and
Replay

Thanks to the Workload Capture & Replay function, it is possible to record UTM application
communications with UPIC clients and then replay these in combination with adjustable
load profiles. In this way, it is possible to test the behavior of the UTM application at high
loads under real-life conditions.

Workload Capture & Replay consists of the following components:

● UPIC Capture: Records communication with the UPIC client.

The trace function BTRACE (BCAM trace), which is present on all the server platforms,
is used to record UPIC sessions.

It may then also be necessary to merge the traces.

● UPIC Analyzer: Used to analyze the recorded communication.

Analysis is performed using the program UPICAnalyzer which is supplied with UPIC on
64-bit Linux systems.

● UPIC Replay: Used to replay the recorded UPIC session with different load parameters
(speed, number of clients).

This is done using the program UPICReplay which is supplied with UPIC on 64-bit Linux
systems.

You perform the following steps to run the Workload Capture & Replay function:

1. Enable the BCAM trace and start UPIC communication, see section “Recording the
UPIC conversation (UPIC Capture)” on page 298.

2. Stop the BCAM trace and merge the BCAM trace entries in a trace file (if necessary),
see section “Merging trace entries” on page 298.

Workload Capture and Replay

296 Using openUTM on BS2000 Systems

These two steps are illustrated in the figure below.

3. Perform a binary transfer of the trace file to the UPIC client on a 64-bit Linux system.
The UPIC client must be of version 6.3 or higher.

4. Create a UPIC ReplayFile on the 64-bit Linux system on which the UPIC client is
installed. To do this, call the program UpicAnalyzer with the trace file as input file, see
the figure. For details, see section “Preparing data using the program UpicAnalyzer” on
page 299.

Workload Capture and Replay

Using openUTM on BS2000 Systems 297

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
5

5. Start the program UpicReplay with the UPIC ReplayFile as the input file, see the figure.
For details, see section “Replaying the UPIC session using the program UpicReplay”
on page 300.

UPIC Capture Workload Capture and Replay

298 Using openUTM on BS2000 Systems

15.1 Recording the UPIC conversation (UPIC Capture)

For this step, the UTM application can be running on any UTM platform. (BS2000, Unix,
Linux, or Windows system).

The UPIC clients can run on any UPIC platform. Even UPIC clients based on JUpic Java
classes are supported.

During this phase, the communication between the UTM application and the UPIC clients
must be recorded in full and the trace length must be greater than the maximum message
length. This is achieved using the UTM function BCAM trace.

Please note that it must also be possible to repeat the required UTM services as often as
necessary.

To do this, proceed as follows:

1. Start the BCAM trace by setting the start parameter BTRACE=ON,length, see page 93.
You are recommended to specify the maximum value for length to prevent messages
from being truncated. You can also enable the BCAM trace by means of the adminis-
tration functions (KDCDIAG command or via WinAdmin/WebAdmin). In this case,
however, the default value (256 bytes) is assumed for length, if you have not specified
any other length with the BTRACE start parameter.

2. Perform the UPIC conversations between the UPIC client and the UTM application that
are required for the load simulation. This also includes all aspects of establishing the
connection to the UPIC clients. The associated UTM services must be fully completed
at least once.

3. End the BCAM trace by means of the KDCDIAG command or via WinAdmin/
WebAdmin.

This step results in binary TRACE files for all UTM processes. For details on the BTRACE
files, see openUTM manual ”Messages, Debugging and Diagnostics”.

15.2 Merging trace entries

This step is necessary if the UTM application was running with more than one process
during recording, a scenario that generally applies in the case of UTM applications running
at medium or high load.

In this step, the binary BTRACE files of all UTM processes are sorted and entered in a
common BTRACE file on the basis of their timestamps. This process step must always run
on the same platform as step 1 (UPIC Capture).

On BS2000 systems, you do this using the BS2000 utility program SORT.

Workload Capture and Replay UpicAnalyzer

Using openUTM on BS2000 Systems 299

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
5

This step results in a sorted binary BTRACE file that contains all the trace entries in the
correct temporal sequence.

You can use the provided BTRACE example procedure for sorting, see section “Sample
procedures” on page 352.

15.3 Preparing data using the program UpicAnalyzer

The program UpicAnalyzer is supplied with UPIC on Linux (64-bit). UpicAnalyzer reads the
trace records from a BTRACE trace, filters out the UPIC trace records, prepares these and
writes them to a file in a specific format (UPIC ReplayFile Layout). This file can then be used
as the input file for the program UpicReplay.

UpicAnalyzer is called as follows from the Linux shell:

UpicAnalyzer inputfile outputfile

Meaning of the parameters

inputfile Name of the BTRACE file that you have transferred to the Linux system.

outputfile Name of the output file (UPIC ReplayFile). You can use this file to play back
the UPIC session with UpicReplay.

The program UpicAnalyzer recognizes the type of platform on which the trace file was
created and processes the contents in the light of the platform's specific characteristics.

Example

The transferred trace file has the name btrc.sorted. It has to be prepared and the output
written to the file Replayfile. The call is as follows:

UpicAnalyzer btrc.sorted Replayfile

Output:
Program "UpicAnalyzer": Version 6.4 build yyyy-mm-dd on Linux Intel ,64 Bit ,Little-Endian
started
inputfile "btrc.sorted"
outputfile "Replayfile"

109 UTM BCAM trace records with 17218 bytes read.
25 UPIC replay records with 2046 bytes written.
Program "UpicAnalyzer" finished.

UpicReplay Workload Capture and Replay

300 Using openUTM on BS2000 Systems

15.4 Replaying the UPIC session using the program UpicReplay

The program UpicReplay is a UPIC client program that is supplied with UPIC on Linux
(64-bit). Before replaying the session, you may need to adapt the UPIC configuration and/
or the generation of the UTM application.

To replay the session, you should use the same UTM platform as for recording. Exceptions
are possible, see “Different platforms for Capture and Replay” on page 301.

15.4.1 Adapting the UPIC configuration and UTM generation

To perform the operation on a Linux system, you need the side information file upicfile
containing at least one entry with the name UPREPLAY. The entry must have the prefix SD.
For exceptions, see “Different platforms for Capture and Replay” on page 301.

This entry must be a valid entry with the TAC of a service of the UTM application. (e.g.
"DEMO"). The program UpicReplayuses this entry to address the UTM application. The
program UpicReplay may set the TAC appropriately using data from the replay file.

Example of a upicfile entry

Replay with the TAC DEMO. The UTM application UTMTEST1 runs on the computer
HOST5678.

SDUPREPLAY UTMTEST1.HOST5678 DEMO LISTENER-PORT=102 T-TSEL-Format=T

UTMTEST1 must have been generated either in MAX APPLINAME or in a BCAMAPPL
statement.

Notes on UTM generation

During the UPIC Replay step, and in particular in the case of high load, the UTM application
may need to permit more UPIC connections from the program UpicReplay than were origi-
nally present during recording. Consequently, it is advisable to use an adequately dimen-
sioned UPIC terminal pool with multiconnect functionality for UPIC access, e.g.:

TPOOL LTERM=REPL,PTYPE=UPIC-R,CONNECT=MULTI,NUMBER=1000

In this case, up to 1000 UPIC clients can sign on simultaneously via the terminal pool.

If the UPIC Replay step runs at high load then it may be necessary to increase load-
dependent generation parameters. In particular, you must pay attention to the following:

● The UTM cache must be sufficiently large (MAX CACHESIZE)

● The page pool must be sufficiently large (MAX PGPOOL)

● The number of UTM tasks must be sufficient (MAX TASKS)

Workload Capture and Replay UpicReplay

Using openUTM on BS2000 Systems 301

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
5

● The number of permitted concurrent users must be sufficiently large (MAX CONN-
USERS)

Different platforms for Capture and Replay

During replay, the data is transferred 1:1 to the UTM application. If the data includes, for
example, hardware-dependent binary data, then this leads to errors if there is a change of
platform. Consequently, the following applies:

● It is not possible to record a UTM application session on BS2000 and then replay this
with a UTM application on a Unix, Linux or Windows system. Reason: The data in the
trace file is present in EBCDIC format and conversion to ASCII is not supported in
UPIC.

● It is not possible to switch between 32-bit and 64-bit platforms even within one and the
same family of platforms.

● It is possible to record a UTM application session on a Unix, Linux or Windows system
and then subsequently play this back using a UTM application on a BS2000 system.
One prerequisite is that only pure ASCII text data is transferred during the session.

In this case, you must enter HD as the prefix in the upicfile in order to ensure that the
data is converted correctly between ASCII and EBCDIC.

15.4.2 Calling UpicReplay

UpicReplay plays the recorded UPIC conversations back again, see “Functioning of
UpicReplay” on page 302. During this step, log messages and warnings are output to stdout
and debugging or error messages are output to stderr.

UpicReplay is called as follows from a Linux shell:

UpicReplay InputFileName [-c<numberOfClients>]
 [-s<speedPercentage>] [-d[d]]

Meaning of the parameters

InputFileName
Name of the UPIC ReplayFile that you have created with UpicAnalyzer.

Mandatory parameter.

-c<numberOfClients>
numberOfClients specifies the number of UPIC clients for which the recorded
conversations are to be replayed.

Default: 1, (corresponds to -c1) i.e. only one client is simulated.
The actual limit depends on the relevant system limit

UpicReplay Workload Capture and Replay

302 Using openUTM on BS2000 Systems

-s<speedPercentage>
speedPercentage specifies the replay speed as a percentage of the original
speed. This makes it possible to simulate long and short thinking times.

Default: 100 (corresponds to -s100) d.h. original speed

-s200 means 200%, i.e. twice the speed, achieved by halving the thinking
time.

-d Enable debug output to stderr, i.e. debug messages are output on thread
generation and there are fewer messages on send and receive calls.

-dd Enables extended debug output to stderr, i.e. detailed debug messages are
output. This option is only intended for internal UpicReplay diagnoses.

-dd is only of value when simulating a small number of clients.

Standard: no debug output.

Example

The UPIC conversations recorded in the file Replay.1239 are to be replayed at normal speed
for 100 clients. The call is as follows:

UpicReplay Replay.1239 -c100

15.4.3 Functioning of UpicReplay

Whenever possible, UpicReplay replays the communication exactly as it was during
recording:

● A UPIC thread that replays the relevant UPIC conversation of the UPIC client is
generated for each UPIC PTERM/LTERM for which a trace record is found in the UPIC
ReplayFile.

● This UPIC thread runs in a loop that sends all the input messages to the UTM service
in the same way as during recording, i.e. with the same data content and control flow.
The procedure is similar for the retrieval of output messages from the UTM application.
In this case, the content of the output messages is not checked.

Workload Capture and Replay UpicReplay

Using openUTM on BS2000 Systems 303

D
ok

us
ch

a
bl

o
ne

n
 1

9x
24

 V
er

si
o

n
7.

31
us

 fÐ
ê¬

½
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 0
7

.0
3.

20
07

¬
¨¬

©
 c

og
ni

ta
s

G
m

bH
 2

00
14

.
Ju

li
20

16

S
ta

nd
 1

6:
14

.5
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

1
20

0\
05

_
E

in
sa

tz
_

B
S

2\
en

\b
et

rB
S

_e
.k

1
5

Problems on replay

In the following cases, discrepancies occur between the recording and its reproduction on
replay:

● Incomplete recording

A UPIC conversation (i.e. a UTM service) was started before recording via BCAM trace
was activated.

A corresponding message is output and all input messages from this started conver-
sation for this client are discarded.

The UPIC client then searches the recording for the start of a new conversation for this
UPIC client:

– If a new conversation is found in the records recorded for this PTERM/LTERM then
this client first waits in accordance with the recorded timestamps and then starts the
load simulation from this point.

– If no new conversation is found then this UPIC replay thread is terminated without
communication with the UTM application.

● Truncated service

During replay, a UTM service is terminated (normally or abnormally) after fewer commu-
nication steps than in the recording of the UTM application. This can occur:

– if the application program is not able to process the recorded input data correctly
because, for example, the input message contains time specifications which are
rejected by the program as "late". The UTM service is therefore terminated prema-
turely.

– if an impermissible UTM transfer admission is used during replay, e.g. missing UTM
administration authorization.

In this case, a corresponding message is output and the UPIC Replay thread rejects
further messages until it finds a new start of conversation for this client in the recording.
The UPIC thread then continues at this start of conversation following a corresponding
pause time or it terminates if no further conversation is found for this UPIC client.

● Conversation too long

On replay, a UTM service has more communication steps than during recording.

The UPIC thread terminates this service abnormally by disconnecting the connection
due to unrecorded input data. It also generates a specific warning.

The start of the next conversation for this client is then searched for in the recording.
The UPIC thread then continues at this start of conversation following a corresponding
pause time or it terminates if no further conversation is found for this UPIC client.

KDCMON/SM2 Checking performance

304 Using openUTM on BS2000 Systems

● Incomplete input message

An input message could not be fully recorded due to the trace record length restriction,
despite an effort to compress it during recording.

The record is rejected with a warning and the start of the next conversation for this client
is searched for in the recording.

The UPIC thread then continues at this start of conversation following a corresponding
pause time or it terminates if no further conversation is found for this UPIC client.

● Other errors

Another, unexpected return code, not covered by the cases listed above, is reported at
the UPIC program interface.

This situation can occur, for example, if the UTM application is either inaccessible or
rejects the establishment of a connection.

In such cases, the UPIC thread outputs an error message.

The relevant UPIC thread is terminated without searching for new conversations for this
client in the recording. All other UPIC conversations that are not directly affected by this
problem continue to run unchanged.

Using openUTM on BS2000 Systems 305

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

16 Appendix

16.1 Installing openUTM

openUTM is normally installed using IMON. openUTM is loaded as a subsystem of BS2000
operating system. This means that various versions of openUTM can be loaded as
independent UTM subsystems.

If you want to monitor the performance of your applications using SM2 or KDCMON, you
must load the UTM-SM2 subsystem or the KDCMON subsystem in addition to the UTM
subsystem.

If you want to use the encryption functions of openUTM, then you must order and install the
openUTM-CRYPT add-on product.

If you wish to operate a UTM cluster application, you will find the necessary information in
the section “Installing and preparing a UTM cluster application for use” on page 143.

Below is a summary of the specific information on openUTM, UTM-SM2 and KDCMON
required for the installation.

Version dependencies to other software products such as database systems, FHS etc. and
specifications on compiler versions and compatible runtime systems can be found in the
Release Notice. This is supplied as an edited file on the product tape. The compiler version
and runtime system information is also listed in section “Compiler versions, runtime
systems, KDCDEF options” on page 322.

Installing openUTM Appendix

306 Using openUTM on BS2000 Systems

16.1.1 UTM system code

Components of the UTM system code

The UTM system code contains the following components:

– the base system
– the mapping module for the respective BS2000 version
– the modules for UTM-D functions
– the modules for the encryption function, if any

These components are treated as separate units when loading and are loaded in the order
given.

Mapping modules - execution of openUTM under various BS2000 versions

The modules of the UTM base system are independent of the operating system version.
When openUTM requires the functions of the operating system, it calls them via “neutral
interfaces”. The neutral interfaces are mapped to system-specific interfaces in a mapping
module. This technique allows you to implement a UTM version in various operating system
versions.

A mapping module (= prelinked module) exists for each BS2000 version in which openUTM
can run:

The mapping module belonging to the BS2000 version is loaded dynamically from the
library containing the UTM base system. The link to the base system is established.

Mapping module BS2000 version Platform

KCYV170 BS2000/OSD-BC V8.0 S server + SQ server

KCYV180 BS2000/OSD-BC V9.0 S server + SQ server

KCYV190 BS2000 OSD/BC V10.0 S server + SQ server +
SE server

Appendix Installing openUTM

Using openUTM on BS2000 Systems 307

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

Name spaces for modules of the UTM system code

Three separate name spaces exist for the object modules of the components of the UTM
system code. The names for ENTRYs and EXTRNs begin with:

– KCS in the base system
– KCY in the mapping modules
– KCD in the UTM-D modules
– KCO in XAP-TP modules
– KCE in the encryption modules
– KCC in the cluster modules

Shipment and selectable units

All components for the use of the UTM-D functions are supplied as part of the
openUTM V6.4 selectable unit. A license is required, however, to use the UTM-D functions.

The encryption component openUTM-CRYPT V6.4 is a separate selectable unit for legal
reasons and must be ordered separately. You will find installation instructions below.

UTM system code

The entire system code of openUTM V6.4 is supplied in the following library:

– SYSLNK.UTM.064.TPR (on S servers adn SU /390 of SE servers) or

– SKMLNK.UTM.064.TPR (SQ servers and SU x86 of SE servers)

This library contains the system code of the openUTM V6.4A base system, the mapping
modules for the BS2000 versions and the system code of the UTM-D modules.

The corrections for all modules of the UTM system code are contained in the REP file
SYSREP.UTM.064. The REP file is created from the supplied file SYSRMS.UTM.064
during the installation with IMON. The corrections are inserted when loading the UTM
subsystem.

The NOREF file SYSNRF.UTM.064 is also supplied. This file contains the names of the
modules required for REP processing.

Loading UTM system code Appendix

308 Using openUTM on BS2000 Systems

Encryption code

The encryption component for openUTM can be found in the separate selectable unit
openUTM-CRYPT V6.4. The UTM system code only contains the module KCNOCRYP that
functions as a replacement for the real encryption code.

To utilize the encryption functions you must order the openUTM-CRYPT V6.4 add-on
product. openUTM-CRYPT contains the module KCECRYP with the encryption code. You
must copy KCECRYP in the UTM library before starting the UTM subsystem by calling the
procedure SYSPRC.UTM.064 (COPY-CRYPT). This procedure copies the KCECRYP
module to SYSLNK.UTM.064.TPR or SKMLNK.UTM.064.TPR and the KCECRYPU
module to SYSLNK.UTM.064.UTIL.

The KCECRYP module is then loaded dynamically via autolink from the library with the
UTM system modules.

16.1.2 Loading UTM system code

Creating entries in the subsystem catalog for openUTM

The UTM system code runs as a UTM subsystem of the BS2000 operating system. The
entire UTM system code including the mapping module and the UTM-D modules is loaded
by BS2000 subsystem management (DSSM).

The system administrator can modify the subsystem catalog during operation. SSD objects
(subsystem declaration objects) are supplied with openUTM. Using these SSD objects, the
system administrator can create an entry for the UTM subsystem in the subsystem catalog.

The following SSD objects are supplied with openUTM V6.4:

The UTM-D modules are contained in the delivery package.

File Implementation

SYSSSC.UTM.064.170 openUTM on BS2000/OSD-BC V8.0 (on S servers and SQ servers)

SYSSSC.UTM.064.180 openUTM on BS2000/OSD-BC V9.0 (on S servers and SQ servers)

SYSSSC.UTM.064.190 openUTM on BS2000 OSD/BC V10.0 (on S servers and SE servers)

Appendix Unloading UTM system code

Using openUTM on BS2000 Systems 309

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

The following default settings apply in the subsystem catalog entry created by the system
administrator with these SSD objects:

● Load time:
The UTM subsystem must be explicitly loaded with the command START-SUBSYSTEM.

● Installation user ID: *DEFAULT-USERID

● Load library:
SYSLNK.UTM.064.TPR on S servers and SU /390 of the SE server
SKMLNK.UTM.064.TPR on SQ servers and SU x86 of the SE server

● REP file: SYSREP.UTM.064

The system administrator can modify these default values using the command MODIFY-
SUBSYSTEM-PARAMETER.

Loading

The UTM subsystem is loaded as follows, depending on the entry in the subsystem catalog:

16.1.3 Unloading UTM system code

The entire UTM system code, including the mapping module and openUTM-D functions,
can only be unloaded if no UTM application is running. To unload the openUTM system
code, the system administrator must enter the following command:

/STOP-SUBSYSTEM SUBSYSTEM-NAME=UTM, VERSION=’06.4’

After it has been unloaded, the UTM system code can be loaded dynamically, i.e. the UTM
system code can be completely exchanged while the BS2000 system is running. This
function can be used to change over to a UTM corrections version or to a new UTM version.

The dynamic loading can be initiated using the command START-SUBSYSTEM. If it was
specified in the subsystem catalog entry for openUTM that the UTM system code is to be
loaded with the first start of a UTM application, the next start of a UTM application initiates
the dynamic loading of the UTM system code.

Explicit loading by the BS2000 system administrator with:
/START-SUBSYSTEM SUBSYSTEM-NAME=UTM, VERSION=’06.4’

CREATIM=ONCREA
(default)

Implicit loading when the system is powered up CREATIM=AFTSR

Implicit loading with the first UTM application start CREATIM=ONCALL

Installing product files Appendix

310 Using openUTM on BS2000 Systems

16.1.4 Installing product files

The name *DEFAULT-USERID is predefined as the installation name in the supplied SSD
object for each of the UTM product files listed below.

SYSLNK.UTM.064.TPR
SKMLNK.UTM.064.TPR
SYSREP.UTM.064

The BS2000 system administrator can also change these predefined names during the
installation of the UTM product files. He/she must note the following when doing so:

● The installation name of the REP file must thus begin with "SYSREP." because IMON
creates the REP file from the RMS file during the installation.

● The installation name of the NRF file must be the same as the name of the REP file
except that the character string ”SYSREP” is replaced by “SYSNRF".

16.1.5 Message files

The message file SYSMES.UTM.064 is supplied with openUTM for outputting UTM
messages via the BS2000 message processing facility. When installing with IMON, the
corresponding file is automatically added to the BS2000-message file.

16.1.6 REP files and RMS files

Object corrections are supplied in the form of an RMS file. From this file, the system admin-
istrator creates a REP file when installing directly with RMS. The following RMS files are
supplied for openUTM V6.4, UTM-SM2, and KDCMON:

Here, nnn depends on the BS2000 version, as follows:

nnn=170 for BS2000/OSD-BC V8.0
nnn=180 for BS2000/OSD-BC V9.0
nnn=190 for BS2000 OSD/BC V10.0

Subsystem RMS file REP file

UTM SYSRMS.UTM.064 SYSREP.UTM.064

UTM-SM2 SYSRMS.UTM-SM2.nnn SYSREP.UTM-SM2.nnn

KDCMON SYSRMS.KDCMON.nnn SYSREP.KDCMON.nnn

Appendix Parallel mode

Using openUTM on BS2000 Systems 311

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

16.1.7 Operating several UTM versions in parallel

Several UTM versions can be loaded in parallel in the same BS2000 operating system and
can be implemented simultaneously in production operation.

This function is particularly advantageous when changing over to a new UTM version. You
can then try out individual UTM applications with the follow-up UTM version during
production operation. The changeover of several UTM applications from one UTM version
to another within a computer can thus be tested and implemented in stages.

When operating several UTM versions in parallel, please note the following:

● All UTM versions must be entered in the BS2000 subsystem catalog. The entries must
permit the parallel operation of several UTM versions. The SSD objects supplied with
openUTM include this permission.

● When loading the UTM system code with the command START-SUBSYSTEM you must
specify the parameter VERSION-PARALLELISM=*COEXISTENCE-MODE.

● All parts of the application must be created with the files/libraries of the same UTM
version.

● UTM applications in various UTM versions must not have the same name. openUTM
prevents the start of the second application with the same name.

Loading/unloading the UTM-SM2 subsystem Appendix

312 Using openUTM on BS2000 Systems

16.1.8 UTM-SM2 subsystem

The SM2 event monitor can store performance values for active UTM applications in the
SM2 measurement file and output them to the screen. A prerequisite is that the UTM-SM2
component is installed. UTM-SM2 is included in BS2000-GA (basic configuration). UTM-
SM2 is loaded as an independent subsystem of BS2000.

Components

UTM-SM2 contains the following libraries and files:

The identifier nnn stands for the UTM-SM2 version:

nnn=170 for UTM-SM2 V17.0 on BS2000/OSD-BC V8.0
nnn=180 for UTM-SM2 V18.0 on BS2000/OSD-BC V9.0
nnn=190 for UTM-SM2 V19.0 on BS2000 OSD/BC V10.0

When installation is performed using IMON, the REP file is generated from the supplied file
SYSRMS.UTM-SM2.nnn.

Entries in the subsystem catalog

With the SSD object, the system administrator can create an entry for the UTM-SM2
subsystem in the subsystem catalog of the BS2000 during operation.

With the standard installation, IMON automatically creates the entry in the subsystem
catalog for UTM-SM2.

The following default values apply in the SSD objects SYSSSC.UTM-SM2.nnn and
SPMSSC.UTM-SM2.nnn:

● Load time:
UTM-SM2 must be explicitly loaded with the command START-SUBSYSTEM.

● Installation user ID:
*DEFAULT-USERID

Name Contents

SYSLNK.UTM-SM2.nnn
SKMLNK.UTM-SM2.nnn

Load library for S servers and SU /390 of the SE server
Load library for SQ servers and SU x86 of the SE server

SYSSSC.UTM-SM2.nnn SSD object for BS2000 operating system

SYSREP.UTM-SM2.nnn REP file

Appendix Loading/unloading the UTM-SM2 subsystem

Using openUTM on BS2000 Systems 313

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

● Load library:
SYSLNK.UTM-SM2.nnn on S servers and SU /390 of the SE server
SKMLNK.UTM-SM2.nnn on SQ servers and SU x86 of the SE server

● REP file: SYSREP.UTM-SM2.nnn

The system administrator can change the default values for the load library and for the REP
file using the command MODIFY-SUBSYSTEM-PARAMETER. If the default values in the
SSD object are not changed, the delivery components must be installed under the ID
$TSOS.

The REP file must be created as shareable in this case.

i The default value for the load time must not be changed by the system adminis-
trator.

Loading the UTM-SM2 subsystem

UTM-SM2 can be loaded via a system administrator command as well as via openUTM.

● Loading via a command:

/START-SUBSYSTEM SUBSYSTEM-NAME=UTM-SM2

● Loading via openUTM (there are two possibilities here):

– UTM-SM2 is automatically loaded at the start of the application if the application is
generated with MAX SM2=ON.

– UTM-SM2 is loaded implicitly by the administration when the data is supplied if the
application is generated with MAX SM2=OFF or MAX SM2=ON.

Unloading UTM-SM2

UTM-SM2 is unloaded with the command:

/STOP-SUBSYSTEM SUBSYSTEM-NAME=UTM-SM2

Loading/unloading the KDCMON subsystem Appendix

314 Using openUTM on BS2000 Systems

16.1.9 KDCMON subsystem

The UTM event monitor KDCMON is implemented as an independent subsystem of the
BS2000. You can use KDCMON to monitor UTM applications running on different
openUTM versions KDCMON is included in BS2000-GA (basic configuration).

Delivery components

The libraries, files and programs listed below are required to implement KDCMON

Where nnn stands for the KDCMON version:

nnn=170 for KDCMON V17.0 on BS2000/OSD-BC V8.0
nnn=180 for KDCMON V18.0 on BS2000/OSD-BC V9.0
nnn=190 for KDCMON V19.0 on BS2000 OSD/BC V10.0

When installation is performed using IMON, the REP file is generated from the supplied file
SYSRMS.KDCMON.nnn.

Entries in the subsystem catalog

With the SSD object, the system administrator can create an entry for the KDCMON
subsystem in the subsystem catalog of the BS2000 during operation.

With the standard installation, IMON automatically creates the entry in the subsystem
catalog for KDCMON.

Name Contents

SYSLNK.KDCMON.nnn
SKMLNK.KDCMON.nnn

Load library for S servers and SU /390 of the SE server
Load library for SQ servers and SU x86 of the SE server

SYSSSC.KDCMON.nnn SSD object for BS2000 operating system

SYSREP.KDCMON.nnn REP file

SYSMES.KDCMON.nnn Message file for BS2000 operating system

SYSPRG.KDCMON.nnn Program to start KDCMON

SYSPRG.KDCMON.nnn.KDCPMSM Program to convert and sort the performance data

Appendix Loading/unloading the KDCMON subsystem

Using openUTM on BS2000 Systems 315

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

The following default values apply in the SSD objects SYSSSC.KDCMON.nnn:

● Load time: KDCMON is implicitly loaded with the first call.

● Installation user ID:
*DEFAULT-USERID

● Load module library:
SYSLNK.KDCMON.nnn on S servers and SU /390 of the SE server
SKMLNK.KDCMON.nnn on SQ servers and SU x86 of the SE server

● REP file: SYSREP.KDCMON2.nnn

The system administrator can change the default values for the load library and for the REP
file using the command MODIFY-SUBSYSTEM-PARAMETER. If the default values in the
SSD object are not changed, the delivery components must be installed under the ID
TSOS.

The REP file must always be created as shareable.

i The default value for the load time cannot be changed by the system administrator.

Installing the KDCMON subsystem

The KDCMON components supplied are stored under *DEFAULT-USERID during the
installation.

The message file SYSMES.KDCMON.nnn must be registered with the command:

/MODIFY-MSG-FILE-ASSIGNMENT ADD-FILE=SYSMES.KDCMON.nnn

Loading the KDCMON subsystem

To load KDCMON you must start the program SYSPRG.KDCMON.nnn under the ID TSOS
or explicitly with:

/START-SUBSYSTEM SUBSYSTEM-NAME=KDCMON

Unloading the KDCMON subsystem

The KDCMON subsystem is unloaded with the DSSM command:

/STOP-SUBSYSTEM SUBSYSTEM-NAME=KDCMON

If you want to unload KDCMON when data is still being recorded in one of the UTM
applications, you must specify:

/STOP-SUBSYSTEM SUBSYSTEM-NAME=KDCMON,FORCED=YES

Calling UTM tools Appendix

316 Using openUTM on BS2000 Systems

16.2 Calling UTM tools

You can start the UTM tools by means of START-EXECUTABLE-PROGRAM or using
separate SDF commands.

16.2.1 Starting UTM tools via START-EXECUTABLE-PROGRAM

The UTM tools are generated as LLMs and are shipped in the program library
SYSLNK.UTM.064.UTIL. Each tool is called as follows.

/START-EXECUTABLE-PROGRAM FROM-FILE= -
/ *LIBRARY-ELEMENT(LIBRARY=$user-id.SYSLNK.UTM.064.UTIL,-
/ ELEMENT-OR-SYMBOL=toolname)

toolname is the name of the tool, e.g. KDCDEF, and $user-id is the installation user ID (IMON
installation path).

16.2.2 Starting UTM tools via separate SDF commands

The commands for the UTM tools are stored in the SDF UTM application area.

The following commands are available:

START-CALLUTM

START-KDCBTRC

START-KDCCSYSL

START-KDCDEF

START-KDCDUMP

START-KDCEVAL

START-KDCMMOD

START-KDCMON

START-KDCMTXT

START-KDCPMSM

START-KDCPSYSL

START-KDCUPD

START-XATMIGEN

Appendix Calling UTM tools

Using openUTM on BS2000 Systems 317

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

Shared parameters for all commands:

MONJV =
Specifies a job variable for monitoring the program run.
Default: *NONE

MONJV = *NONE
No monitor job variable is used.

CPU-LIMIT =
Maximum CPU time in seconds that the program may take at runtime.
Default: *JOB-REST

CPU-LIMIT = *JOB-REST
The remaining CPU time is to be used for the job.

CPU-LIMIT = <integer 1..32767 seconds>
Only the specified time is to be used

VERSION =
Product version of the tool that is to be started.

VERSION = *STD
The product version is not explicitly specified.
The product version is selected as follows:

1. The version previously defined with the /SELECT-PRODUCT-VERSION command.
2. The highest UTM version installed with IMON.

Specify the version as follows:

<product-version> : Format mm.n<a<so>>

mm Main version 1..99
n Revision version 0..9
a Manual release A..Z (can be omitted)
so Correction state 00..99 (can be omitted)

i As you are guided through the dialog, keep entering ? to keep this output, see also
“Example 2” on page 319.

You can display the installed UTM versions as follows:

/SHOW-INSTALLATION-PATH INSTALLATION-UNIT=UTM(VERSION=*ALL), -
LOGICAL-IDENTIFIER=*NONE

Calling UTM tools Appendix

318 Using openUTM on BS2000 Systems

Additional parameters for the START-CALLUTM command:

TRANSPORT-SYSTEM =
Specifies the transport system used by CALLUTM.
Default: *SOCKET

TRANSPORT-SYSTEM = *SOCKET
The SOCKET transport system is used.

TRANSPORT-SYSTEM = *CMX
The CMX transport system is used.

You can display the complete syntax using the following commands:

/START-SDF-A
//OPEN-SYNTAX-FILE $.SYSSDF.UTM.064, MODE = *READ,TYPE=*SYSTEM
//SHOW OBJECT = *DOM(UTM),SIZE=*MAX,IMPL-INFO=*NO(LANGUAGE=D)
//END

Example 1

Calling the CALLUTM tool via a separate SDF command:

/START-CALLUTM?

COMMAND : START-CALLUTM

--
TRANSPORT-SYSTEM = *SOCKET
VERSION = *STD
MONJV = *NONE
CPU-LIMIT = *JOB-REST

--
NEXT = *EXECUTE
KEYS : F1=? F3=*EXIT F5=*REFRESH F6=*EXIT-ALL F9=REST-SDF-IN
 F11=*EXECUTE F12=*CANCEL

Appendix Calling UTM tools

Using openUTM on BS2000 Systems 319

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

Example 2

Calling the KDCDEF tool via a separate SDF command:

/START-KDCDEF?

If you now enter “?” twice in the VERSION field then you will see the following output

COMMAND : START-KDCDEF
OPERANDS : VERSION=*STD

--
VERSION = *STD
 *STD or product-version
 product version for KDCDEF mm.r<u<so>>
 Manual release u and Correction state so are optional
 -
 <product-version> : format mm.r<u<so>>
 mm : Main version 1..99
 r : Revision version 0..9
 u : Manual release A..Z
 so : Correction state 00..99
MONJV = *NONE
CPU-LIMIT = *JOB-REST

--
NEXT = *EXECUTE
*EXECUTE"F3" / Next-cmd / *CONTINUE / *EXIT"K1" / *EXIT-ALL"F1" / *TEST"F2"

Memory classes Appendix

320 Using openUTM on BS2000 Systems

16.3 Memory classes of a UTM application

For the storage space required by the UTM product files and of a UTM application, refer to
the release notice.

The table below lists the components that require address space in one of the memory
classes 4, 5 or 6 while UTM applications are running:

1. openUTM system code:
The UTM system code, including the operating system adaptation module, is loaded by
BS2000 subsystem management DSSM in the class 4 memory. The UTM base compo-
nents, including the operating system-adapter module and the UTM-D code including
XAP-TP, belong to the UTM system code. Further details can be found in section
“Installing openUTM” on page 305.

2. The UTM encryption code is likewise loaded by DSSM in the class 4 memory. See also
“Encryption code” on page 308.

3. Static KAA tables (KDC Application Area):
KDCDEF outputs message K450 KDCFILE generated; KAA-size:nnnK;... in the UTM
generation to indicate that the static KAA tables occupy nnn KB. When the application
starts, openUTM reads these tables into a memory pool in class 5 memory. The
memory pool occupies nnn KB, rounded off to a multiple of 1 MB.

The inclusion of a user and a terminal results in an additional requirement of (at least)
1 KB. This value increases for “extras” like stacking, TLS, ULS, etc. To allow for the
space requirement by extending the configuration, it is better to enter the number of
objects with RESERVE statements in the KDCDEF input and let KDCDEF calculate the
space requirement itself.

Component Class

openUTM V6.2 system code 4 1.

openUTM-CRYPT V6.2 system code 4 2.

Static KAA tables 5 3.

Dynamic KAA tables 5 4.

Cache (5) 5.

KTA tables 5 6.

ROOT system modules 6

Additional requirement for formatting 6 7.

Additional requirement for DB system 6 8.

Administration program KDCADM 6

Program units of the user 6 9.

Appendix Memory classes

Using openUTM on BS2000 Systems 321

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

4. Dynamic KAA tables:
The space requirement for a terminal is at least 1 KB. openUTM first uses the section
at the end of the memory pool, which was created for the static KAA tables. If this space
is not sufficient, openUTM creates one or more additional memory pools for the
dynamic tables in class 5 memory.

5. Cache:
All processes of a UTM application use the cache as a buffer area for I/Os to the page
pool on the KDCFILE. openUTM creates the cache as a memory pool in class 5
memory of the program space, or in one or more data spaces. By creating the cache in
a data space, the program space can be released. Location and size of the cache are
determined by the KDCDEF parameters MAX CACHESIZE=(number,..., PS | DS) and
BLKSIZE=blocksize.

Example
If blocksize=2K, its size is number ∗ 2KB, rounded off to a multiple of 1 MB.

6. KTA tables (KDC Task Area):
This area contains process-specific administrative data and is created in the class 5
memory. It is at least 8 KB long. The space requirement increases in accordance with
the KDCDEF generation parameters.

7. Additional requirement for formatting:
The code of the format handling system is loaded dynamically. For information on the
memory requirement for the format handling system, see the description of FHS. The
memory requirement for the formats is added to this.

8. Additional requirement for database system:
The connection module of the database system can be linked statically or dynamically.
The memory requirement can be found in the information for the respective database
system.

9. Program units of the user:
The memory requirement is indicated in the linkage editor list.

Compiler versions, runtime systems, KDCDEF options Appendix

322 Using openUTM on BS2000 Systems

16.4 Compiler versions, runtime systems, KDCDEF options

In this section you will find information on which versions of the compiler and runtime
systems of the individual programming languages you can use to create UTM program
units. The following data is listed in a table for each programming language supported by
openUTM:

● versions of the compiler that you can use to create the objects (OM or LLM) of a UTM
program unit

● versions of the runtime system that are suitable for these program units

● values for the COMP operand of the PROGRAM control statement that you must
specify in the KDCDEF generation to add these program units to the application config-
uration

In particular, you can determine from the table which combinations of compiler version,
version of the runtime system and COMP values are allowed.

You will also find information on the compiler and runtime system versions allowed in the
CRTE manual and in the documentation for the various compilers (Release Notes,
manuals).

Note that compiler versions are listed in the following for which support has already been
set. The reason for this is that there are older programs available as objects in some
customer applications, and these objects will continue to be used.

You should generally use the compiler and runtime system versions that are still supported
for all further developments and new developments! Otherwise you may not place warranty
claims or have the right to receive corrections when a problem arises.

In general, the notes and restrictions in the Release Notes and compiler manuals are to be
observed.

i openUTMV6.4 requires a specific CRTE version. Please refer to the release notes
for more details.

Appendix Compiler versions, runtime systems, KDCDEF options

Using openUTM on BS2000 Systems 323

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

Mixing languages in an application

Mixing languages means that a UTM application can be compiled from program units which
were generated with compilers using different languages and which thus use different
runtime systems when operating. The following should be noted, however:

A UTM application is only permitted to contain one runtime system for each programming
language that is supported by openUTM and must be generated with
PROGRAM ... COMP≠ILCS.

Mixing languages in a program unit

openUTM also allows you to mix languages within a single program unit, i.e. program units
can consist of several source codes written in different programming languages. A
requirement for this to function is that the program components are called in accordance
with the same logical operand conventions; see the CRTE manual. In particular, the data
displays when transferring parameters and when accessing shared data structures must be
identical.

v CAUTION!
The instructions in section “Information for applications with ILCS program units” on
page 70 are to be followed closely.

The following cases arise when calling Assembler subroutines:

● The calling program as well as the subroutine called are ILCS programs. In this case,
there are no restrictions to observe.

It is possible to program Assembler ILCS programs with Z-macros. See the openUTM
manual “Programming Applications with KDCS for Assembler”.

● The calling and the called program are not ILCS programs, but they observe the same
logical operation conventions. The logical operation conventions are described in the
user manuals for the corresponding programming languages.

Errors in the logical language operations or address errors can arise when switching to a
different language in the following constructions:

– C function calls
– Assembler function calls with @-macros
– calls to third-party software
– database calls
– formatting system calls

Compiler versions, runtime systems, KDCDEF options Appendix

324 Using openUTM on BS2000 Systems

16.4.1 Assembler

Comments on the table

1 If you specify COMP=ASSEMB, then you may not use the ASSEMBH runtime system.
The reason is because the ASSEMBH runtime systems version V1.1 and higher do not
use ILCS. The result is an unauthorized mix of non-ILCS and ILCS parts of the program.

2 The compiler and the runtime system must have a correction status of V1.2C or higher
and the Assembler program must be ILCS-compatible.
There are to ways to make an Assembler program ILCS-compatible:

– You use the Assembler macros ZSTRT, ZCALL and ZEND in the ZSTRT ILCS=YES
variant. Please note that the variant ZSTRT ILCS=NO (not ILCS-compatible) is the
default value!

– You use the macros @ENTR ... ILCS=YES..., @PASS and @EXIT.

16.4.2 C/C++

Comments on the table

1 We also strongly recommend that you always use the latest corrections version for
compilers and runtime systems.

2 You can also set COMP=C. However, KDCDEF overwrites this value with COMP=ILCS
without warning.

Compiler Runtime system PROGRAM..., COMP=

ASSEMBH V1.2C — ASSEMB 1

ASSEMBH V1.2C 2 ASSEMBH V1.2C ILCS

Compiler Runtime system PROGRAM..., COMP=

C/C++ V3.2A CRTE1 as of V2.8E on BS2000/OSD-BC V8.0
CRTE1 as of V2.9A on BS2000/OSD-BC V9.0
CRTE1 V10.0A on BS2000 OSD/BC V10.0

ILCS 2

Appendix Compiler versions, runtime systems, KDCDEF options

Using openUTM on BS2000 Systems 325

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

16.4.3 COBOL

Comments on the table

1 We also strongly recommend that you always use the latest corrections version for
compilers and runtime systems.

2 The objects generated by COBOL85 or COBOL2000 are equally suitable for ILCS
linking and non-ILCS linking; there is no compiler option for specifically creating ILCS
or non-ILCS objects.

COMP=ILCS means that ILCS linking is used. COMP=COB1 means non-ILCS linking
(= old-style linking).

The value of COMP= can be set on the basis of the following criteria:

– COMP=ILCS is specified if all activated subroutines also have ILCS capability.

– COMP=COB1 must always be specified if the Cobol module calls subroutines that
do not have ILCS capability.

Compiler options

The table below provides an overview of which COMOPT parameters must be set in accor-
dance with the compiler used, and what must be noted in the process.

Compiler Runtime system PROGRAM ..., COMP=

COBOL85 V2.3A CRTE1 as of V2.8E on BS2000/OSD-BC V8.0
CRTE1 as of V2.9A on BS2000/OSD-BC V9.0
CRTE1 V10.0A on BS2000 OSD/BC V10.0

ILCS / COB1 2

COBOL2000 V1.4A
or later

CRTE1 as of V2.8E on BS2000/OSD-BC V8.0
CRTE1 as of V2.9A on BS2000/OSD-BC V9.0
CRTE1 V10.0A on BS2000 OSD/BC V10.0

ILCS / COB1 2

COMOPT parameter Compiler Comment

CHECK-CALLING-HIERARCHY=NO COBOL85
COBOL2000

Only if COMP=COB1, i.e. with non-
ILCS linking.

MARK-LAST-PARAMETER=YES COBOL2000 Recommended

Compiler versions, runtime systems, KDCDEF options Appendix

326 Using openUTM on BS2000 Systems

Mixing Cobol programs

If a program unit is generated with COMP=COB1, it may comprise modules compiled with
the COB1, COBOL85, or COBOL2000 compiler. If the program unit is generated with
COMP=ILCS, it can only comprise modules compiled with the COBOL85 or COBOL2000
compiler.

Within an application, program units generated with COMP=ILCS can coexist with program
units generated with COMP=COB1.

16.4.4 Fortran

Comments on the table

1 For the FOR1 V2.2C compiler, ILCS capability is set using the compiler option:

– If the program unit was compiled with the compiler option
COMOPT LINKAGE=FOR1-SPECIFIC, then COMP=FOR1 must be specified in
the PROGRAM statement. This compiler option specifies that the program uses the
“old” FOR1 interface.

– If the program unit was compiled with the compiler option COMOPT
LINKAGE=STD (default value), then COMP=ILCS must be specified in the
PROGRAM statement. compiler option specifies that the program uses the ILCS
interface.

2 The Fortran90 program units must be compiled with the following compiler option:

COMPILER-ACTION = OBJECT-GENERATION(... , LINKAGE = ILCS)

Notes on mixing languages

A UTM application may contain FOR1 program units that have been entered in the config-
uration with different values for PROGRAM ...,COMP= . In this manner, program units can
co-exist in a UTM application where one program unit uses the “old” FOR1 interface and
another uses the ILCS interface.

Compiler Runtime system PROGRAM ...,COMP=

FOR1 V2.2C 1 FOR1 V2.2 ILCS

Fortran90 V1.0A 2 Fortran90 V1.0 ILCS

Appendix Compiler versions, runtime systems, KDCDEF options

Using openUTM on BS2000 Systems 327

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

16.4.5 Pascal

16.4.6 PL/I

Comments

1 Please note that the compiler objects must be of the same version as the runtime
system used. You may not link several PLI1 runtime systems in a UTM application.

2 You can also create ILCS program units with PLI1 versions ≥ V4.2A. You will need to
specify OPTIONS(ILCS) in the PROCEDURE statement to do this. You must then make
sure that your UTM application only contains PL/I program units that are ILCS-
compatible.

16.4.7 SPL4

Comments on the table

1 The SPL V2.9A runtime system is supplied with openUTM. However, this may change
with a corrections update. Please read the latest Release Notice for more information.

2 The ILCS capability of the program unit depends on the compiler option:

– If the program unit is compiled with compiler option GEN=(ILCS=NO) (non-ILCS
linking), it must be generated with COMP=SPL4.

– If the program unit is compiled with compiler option GEN=(ILCS=YES) (ILCS
linking), it must be generated with COMP=ILCS.

Compiler Runtime system PROGRAM...,COMP=

Pascal-XT V2.2B or later V2.2 ILCS

Compiler Runtime system PROGRAM...,COMP=

PLI1 V4.2 1 PLI1

PLI1 V4.2 or later 2 1 ILCS

Compiler Runtime system PROGRAM...,COMP=

SPL4 V2.9Aor later 1 SPL4 / ILCS 2

Compiler versions, runtime systems, KDCDEF options Appendix

328 Using openUTM on BS2000 Systems

16.4.8 Notes on upgrading from an older UTM version

Check the following points to identify which COMP=... value is appropriate for a program
unit:

● Which compiler was used to compile the program unit? Which version of the compiler
was used? Which compiler options were set?
Was an object with ILCS capability thus created?

For more clarification, please read the information on the individual compilers provided
from page 324 onwards.

● Does the program unit call subroutines? Do these subroutines have ILCS capability?

If both the program unit and all subroutines (if any) have ILCS capability, the program
unit should be generated with COMP=ILCS.

If the program unit or any of the subroutines do not have ILCS capability, or if this cannot
be established, please proceed as follows:

– In the case of non-Cobol program units, the previous COMP=... value should be
retained initially.

– In the case of Cobol program units, set COMP=COB1 even if the program was
compiled with the COBOL85 compiler. The former Cobol RTS must be provided
when linking the UTM application program.

i It is thus strongly advisable to change over to ILCS linking when upgrading an
older UTM application. The advantage of ILCS linking is that programs in various
programming languages can be activated together without problems, and that the
maintenance and further development of the compilers and runtime systems are
secured.

Appendix Accounting records

Using openUTM on BS2000 Systems 329

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

16.5 Structure of the accounting records of openUTM

The accounting records of openUTM are written in the BS2000 accounting file and are
evaluated with RAV. The records comply with the conventions for BS2000 accounting
records. The first 24 bytes are therefore reserved for BS2000 accounting, and the
remaining data contains UTM-specific information.

The following two record types exist:

● Accounting records (UTMA record type)

● Calculation records (UTMK record type)

These records are described in chapter “Accounting” on page 245.

You will need the BS2000 macro ARDS to determine the structure of the accounting and
calculation records in the BS2000 accounting file.

If ARDS is called with UTM=NEW, it uses the UTM macros KDCUTMA and KDCUTMK,
which are located in the UTM macro library SYSLIB.UTM.064.ASS. They describe the
structure of the accounting records and calculation records.

If ARDS is called with UTM=OLD, then the BS2000 macros ARDSUTMA and ARDSUTMK
are used.

Accounting records Appendix

330 Using openUTM on BS2000 Systems

16.5.1 Structure of an accounting record

Explanation of comments:

1) Identifier of the accounting record in BS2000 accounting.

2) Name of the user. In a UTM application without generated users, openUTM enters the
name of the LTERM partner.

3) Sign-on time for this user (USER) to this LTERM in seconds, relative to the time base
of the BS2000 version.
If only asynchronous TACs were called for this USER in the current run of the UTM
application, this field contains binary zero.

4) Format: yymmddhhmmss (year/month/day/hour/minute/second)

5) Sum of the accounting units for this user since the last accounting record was written
or since the sign-on time.

X' 00'
X' 0042' X' 4040'

X' 04'
C' UTMA' 1)

X' 08'
Time stamp of BS2000 accounting

X' 10'
X' 0010' X' 0018'

X' 14'
Reserved for BS2000 accounting

X' 18'
Application name of UTM application

X' 20'
Name of the UTM user (USER name)

2)

X' 28'
Sign-on time 3)

X' 2C'

Date and time of record creation 4)

X' 38'
Accounting unit counter 5)

X' 3C'
Number of TACs called with TACUNIT > 0

X' 40'
Expansion header (X' 0000')

X' 42'

Appendix Calculation record

Using openUTM on BS2000 Systems 331

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

16.5.2 Structure of a calculation record

Explanation of comments:

1) Identifier of the record in BS2000 accounting.

2) See KDCDEF statement LTAC...,LTACUNIT=.

X' 00'
X' 005E' X' 4040'

X' 04'
C' UTMK' 1)

X' 08'

Time stamp of BS2000 accounting
X' 10'

X' 0010' X' 0034'
X' 14'

Reserved for BS2000 accounting
X' 18'

Application name of the UTM application

x' 20'
Transaction code of the program unit

X' 28'
CPU time in openUTM (msec)

X' 2C'
CPU time in the database system (msec)

X' 30'
Number of I/Os in openUTM

X' 34'
Number of I/Os in the database system

X' 38'
Length of the input message

X' 3c'
Length of the output message

X' 40'
Number of asynchronous outputs

X' 44'
Accounting units for LTACs 2)

X' 48'
Name of the UTM user

X' 58'
Real time of the program unit run (in msec)

X' 5C'
Expansion header (X' 0000')

X' 5E'

X' 50'
Name of the LTERM partner

SAT log records Appendix

332 Using openUTM on BS2000 Systems

16.6 Structure of SAT log records

Security-related UTM events can be logged using the BS2000 function SAT (Security Audit
Trail). These UTM events are logged with SAT for auditing purposes, as required for F2/Q3
mode (ITS catalog). When SAT logging is switched on, minimum logging is implemented.
Other events can also be defined. The logging of such events in the SAT log records can
be switched on and off for specific events, specific users and specific jobs.

16.6.1 Meaning of the log data fields used by openUTM

openUTM creates a SAT log record for each event. Each log record transferred by
openUTM to SAT comprises a part with a fixed structure and length, the SAT header,
followed by a part with variable structure and length.

The SAT header contains the date and time, the BS2000 user, the TSN, the current BS2000
event, and its result. Only the following fields are defined by openUTM:

The variable part contains individual UTM-specific data fields, each of which is preceded by
a length field and a SAT identifier. The type and number of the individual data fields
depends on the type of UTM event.

The following tables indicate the log data fields used by openUTM (arranged alphabeti-
cally), the meaning of the field contents, and its data type.

UTM events can be linked with the ALARM function of SAT. Apart from a few exceptions,
the data type for SAT-ALARM matches the data type for SATUT. In the table on page 334,
the ALARM data type is specified in brackets () if it differs from the data type for SATUT.

Field name Meaning Type

EVT Type of event C string (1..3)
with openUTM, always “TRM”

RES Result of event Set: Success/Failure (“S” / “F”)

Field name Meaning Type

ACCTYP Access type of UTM storage area Set: C / D / READ / WRITE

APPLNAM BCAM application name C string (1..8)

CALLER Address of caller X string (1..4)
(ALARM: X string 4..4)

COMMAND Name of UTM-SAT administration command
or administration program interface

C string (1..8)

DATNAM1 Name of UTM storage area C string (1..8)

Appendix SAT log records

Using openUTM on BS2000 Systems 333

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

DATNAM2 Name of UTM object C string (1..8)

DATTYP Type of UTM storage area Set: G / T / U

LTERM LTERM partner name for clients and printers C string (1..8)

MUXLTRM MUX transport connection C string (1..8)

OBJECT1 Name of UTM object or administration
program interface: name of modified field

C string (1..8)

OBJECT2 Name of UTM object or administration
program interface: content of modified field

C string (1..8)

OBJECT3 Administration program interface:
object type

C string (1..8)

PTERM BCAM name C string (1..8)

TACIDEN Transaction identifier Set: G/T/D/C/P

TACNAM Transaction code C string (1..8)

USER2 UTM user name C string (1..8)

UTMAPPL UTM application name C string (1..8)

UTMHEX3 RC of administration program interface C string (1..8)

UTMNAME Name of load module or administration
program interface: name of UTM object

C string (1..32)

UTMOBJ4 Program load mode or administration program
interface: subopcode1 or “FORMATTR” or
field name

C string (1..8)
(ALARM: C string 8..8)

UTMOBJ5 Administration program interface:
format attribute or field name

C string (1..8)

UTMOBJ6 Load module version C string (1..24)
(ALARM: C string 64..64)

UTMREAS KDCS return code 1

Administration program interface: blank
C string (1..8)

UTMSTAT Transaction status C string (1)

UTMSUBC UTM event Set: CHANGE-PW / SIGN /
DATA-ACCESS / ADM-CMD /
START-PU / END-PU / TASK-ON /
TASK-OFF / SEL-CMD/
CHG-PROG

Field name Meaning Type

SAT log records Appendix

334 Using openUTM on BS2000 Systems

16.6.2 Defining the data fields

This section describes the log data fields that are defined when logging the individual
events.

The following tables provide an overview of which log data fields are defined in accordance
with the events. The log data fields are listed in the sequence in which they appear in the
SAT log record. The field contents are then explained for the individual events.

Meaning of the entries in the following tables:

UTMTAID Transaction identification 2 X string (1..4)
(ALARM: X string 4..4)

UTMUSER UTM user name C string (1..8)

1 With the UTM events CHANGE-PW, START-PU, END-PU and DATA-ACCESS, the return code is made up of
the compatible and the incompatible KDCS return code.

2 The transaction identification (TA-ID) comprises a 2-byte service counter (within a session) and a 2-byte trans-
action counter (within a service). It is made available at the IUTMDB interface to the database for SAT logging
of database events. The transaction identification is used to assign an event to the transaction which created it.

— Field not defined

Y Field defined (mandatory fields in the context of SAT)

O Field defined in certain cases

Field name Meaning Type

Appendix SAT log records

Using openUTM on BS2000 Systems 335

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

Field name UTM events

TA
S

K
-O

N

TA
S

K
-O

F
F

S
IG

N

C
H

A
N

G
E

-P
W

S
TA

R
T-

P
U

E
N

D
-P

U

D
A

TA
-A

C
C

E
S

S

A
D

M
-C

M
D

S
E

L
-C

M
D

C
H

G
-P

R
O

G

APPLNAM - - O - - - - O - -

UTMUSER - - Y Y Y Y Y Y Y -

UTMAPPL Y Y Y Y Y Y Y Y Y Y

UTMSUBC Y Y Y Y Y Y Y Y Y Y

LTERM - - Y - O Y - O - -

PTERM - - Y - - - - O - -

MUXLTRM - - O - - - - O - -

DATNAM1 - - - - - - Y - - -

DATNAM2 - - - - - - O O O -

DATTYP - - - - - - Y - - -

ACCTYP - - - - - - Y - - -

COMMAND - - - - - - - Y Y -

OBJECT1 Y Y Y Y Y Y - O O -

OBJECT2 O - - - O - - O O -

OBJECT3 - - - - - - - O - -

CALLER - - - - - - - - - -

TACNAM - - - Y O Y Y Y Y -

TACIDEN - - - - Y Y - - - -

USER2 - - - - - - - O O -

UTMNAME - - - - - - - O - Y

UTMTAID - - Y Y Y Y Y Y Y Y

UTMSTAT - - - - - Y - - - -

UTMREAS - - Y Y Y Y Y Y Y -

UTMOBJ4 - - - - - - - O - Y

UTMOBJ5 - - - - - - - O - -

UTMOBJ6 - - - - - - - O - Y

UTMHEX3 - - - - - - - Y - -

SAT log records Appendix

336 Using openUTM on BS2000 Systems

The structure of the variable part of the log record is described in detail below for each
event.

TASK-ON: Connect a task to the UTM application

UTMAPPL Name of the active application.

UTMSUBC TASK-ON

OBJECT1 F for the first task or
N for a follow-up task (next task) or
L is initiated with a program exchange or with PEND ER
(load program).

TASK-OFF: Sign off a task from the UTM application

Only the normal termination of a task is logged.

UTMAPPL Name of the active application.

UTMSUBC TASK-OFF

OBJECT1 Last task: yes “Y” or no “N”

SIGN: Sign on a UTM user

APPLNAM BCAM application name.

UTMUSER Name of the user/client that initiates the event.

UTMAPPL Name of the active application.

UTMSUBC SIGN

LTERM Name of the LTERM partner via which the user/client connects to the appli-
cation.

PTERM BCAM name of the user/client assigned to defined LTERM partners.

MUXLTRM PTERM name of the MUX transport connection.

UTMTAID Transaction identification or zero.

OBJECT1 BCAM processor name.

UTMREAS KCRSIGN return field.

Appendix SAT log records

Using openUTM on BS2000 Systems 337

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

CHANGE-PW: Change password

CHANGE-PW is also initiated if a user password is modified by the UTM administrator.

UTMUSER Name of the UTM user who initiated the event (possibly administrator ID).

UTMAPPL Name of the active application.

UTMSUBC CHANGE-PW

OBJECT1 Name of the user ID whose password is changed.

UTMREAS KDCS return codes.

TACNAM Transaction code of active program unit.

UTMTAID Transaction identification or zero.

START-PU: Create a job or start a program unit

UTMUSER Name of the UTM user who initiates the event.

UTMAPPL Name of the active application.

UTMSUBC START-PU (start program unit).

LTERM Name of the defined LTERM partner or blank.

OBJECT1 If TACIDEN=G: TAC of the job.
If TACIDEN=C/T/P: TAC of the active service.

OBJECT2 If TACIDEN=G: DPUT identification of the job created.

UTMREAS KDCS return codes (if TACIDEN=G).

UTMTAID Transaction identification of the active transaction or zero.

TACNAM TAC of the active program unit.

TACIDEN Transaction identifier. Possible values (the values G, C, T, P are mutually
exclusive):

G For generated job
Dialog jobs are only logged as generated if they cannot be started immedi-
ately due to TAC class control.

C For start of conversation
A conversation begins with this program unit.

T For start of transaction
A follow-up transaction of a conversation begins with this program unit.

P For start of a follow-up program unit within a transaction

SAT log records Appendix

338 Using openUTM on BS2000 Systems

The creation of messages to an LTERM partner is not logged.
A confirmation job (to a TAC) is only logged as generated when, on the basis of the result
of the main job run, it is selected and converted to a main job. The destination of the
executed main job is then output in the field LTERM or TACNAM.

END-PU: Terminate a program unit

UTMUSER Name of the UTM user who initiates the event.

UTMAPPL Name of the active application.

UTMSUBC END-PU (end program unit).

LTERM Name of the defined LTERM partner or blank.

OBJECT1 Transaction code of the active service.

UTMSTAT The field is only defined if TACIDEN=T or C. It then contains the transaction
status:

C Transaction logging (Commit)

R Roll back the transaction

UTMTAID Transaction identification.

TACNAM Transaction code of active program unit.

TACIDEN Possible values:

C End of the program unit and of the conversation.

T End of the program unit and of the transaction; the conversation is
continued.

P End of the program unit; the transaction is continued.

UTMREAS KDCS return codes.

DATA-ACCESS: Access to a UTM storage area

UTMUSER Name of the UTM user who initiates the event.

UTMAPPL Name of the active application.

UTMSUBC DATA-ACCESS

DATNAM1 Name of the UTM storage area addressed.

DATNAM2 If DATTYP=ULS: UTM user
If DATTYP=TLS: LTERM partner for clients and printers,
otherwise blank

Appendix SAT log records

Using openUTM on BS2000 Systems 339

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

DATTYP Type of storage area:

G GSSB

U ULS

T TLS

ACCTYP Type of storage access:

READ Read access

WRITE Write access

C Create

D Delete

UTMREAS KDCS return codes.

UTMTAID Transaction identification.

TACNAM Transaction code of active program unit.

ADM-CMD: Call the administration program interface

UTMUSER Name of the UTM user who initiates the event.

UTMAPPL Name of the active application.

UTMSUBC ADM-CMD

COMMAND DADM (KDCS call) or call of the program interface for administration:

CHNGAPPL / CREATE / CREASTMT / DELETE / DUMP / ENCRYPT /
GETOBJ / LOCKMGMT / MODIFY / ONLIMP / PETTA / SENDMSG /
SHUTDOWN / SPOOLOUT / SYSLOG / UPDIPADR / USLOG

UTMHEX3 Return code of administration program interface.

UTMTAID Transaction identification.

USER2 Session, user or blank.

The fields DATNAM2, LTERM and OBJECT1 may be output as blank.

i With some function calls of the program interface, various actions are possible. In
this case, SAT writes a log record for each action and logs the parameters, whereby
the parameter value is only output if the parameter has changed.

See also the openUTM manual “Administering Applications”.

SAT log records Appendix

340 Using openUTM on BS2000 Systems

In certain cases, the following additional fields are defined, depending on COMMAND:

● COMMAND: CHNGAPPL

UTMOBJ4 Subopcode1 (NEW/OLD for PROGRAM)

● COMMAND: CREATE

OBJECT3 Object type

UTMNAME Object name

● COMMAND: DELETE

OBJECT3 Object type

UTMOBJ4 Subopcode1 (DELAY/IMMEDIAT)

UTMNAME Object name

● COMMAND: ENCRYPT

OBJECT1 Subopcode1 (CREATEK, ACTIVATK, DELETEK, REAACTK,
REANEWK)

● COMMAND: LOCKMGMT

OBJECT1 Subopcode1

● COMMAND: MODIFY

OBJECT3 Object type or parameter type

Additional fields are logged, depending on the object type or parameter
type:

Object type Logged fields

CLNODE OBJECT1: Parameter
UTMOBJ6: Parameter value

KSET OBJECT1: Keys

LOADMODU OBJECT1: “Version”
UTMOBJ6: Version
UTMNAME: Name of load module to be modified

LPAP OBJECT1: Parameter
OBJECT2: Parameter value
UTMNAME: Name of LPAP partner to be modified

LSES OBJECT1: Parameter
OBJECT2: Parameter value
UTMNAME: Name of LSES and CON triplet to be modified

Appendix SAT log records

Using openUTM on BS2000 Systems 341

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

LTAC OBJECT1: Parameter
OBJECT2: Parameter value
UTMNAME: Name of LTAC to be modified

LTERM OBJECT1: Parameter
OBJECT2: Parameter value
UTMNAME: Name of LTERM partner to be modified
UTMOBJ4: „FORMATATTR“
UTMOBJ5: Formata ttribute

MUX OBJECT1: Parameter
OBJECT2: Parameter value
UTMNAME: Name of MUX triplet to be modified

OSICON OBJECT1: Parameter
OBJECT2: Parameter value
UTMNAME: Name of OSI-CON to be modified

OSILPAP OBJECT1: Parameter
OBJECT2: Parameter value
UTMNAME: Name of OSI-LPAP partner to be modified

PTERM PTERM: Name of client/printer to be modified (PRTM)
OBJECT1: Parameter
OBJECT2: Parameter value
UTMNAME: Name of PTERM triplet to be modified

TAC OBJECT1: Parameter
OBJECT2: Parameter value
UTMNAME: Name of TAC to be modified
UTMOBJ6: Parameter value

TACCLASS OBJECT1: Parameter
OBJECT2: Parameter value
UTMNAME: Name of TACCLASS to be modified

TPOOL LTERM: LTERM prefix
OBJECT1: Parameter1
OBJECT2: Parameter value1
UTMOBJ4: Parameter2
UTMOBJ5: Parameter value2
UTMNAME: Name of TPOOL to be modified
(LTERM prefix, PRONAM, PTYPE, BCAMAPPL)

USER OBJECT1: Parameter
OBJECT2: Parameter value
UTMOBJ4: “FORMATTR”
UTMOBJ5: Format attribute
UTMNAME: Name of USER to be modified

Object type Logged fields

SAT log records Appendix

342 Using openUTM on BS2000 Systems

● COMMAND: ONLIMP

OBJECT1 „KC_ALL“

● COMMAND: SENDMSG

LTERM LTERM name or “KDCALL”

● COMMAND: SHUTDOWN

OBJECT1 Subopcode1

OBJECT2 Parameter value

● COMMAND: SPOOLOUT

OBJECT1 “SPOOLOUT”

OBJECT2 “ON”

● COMMAND: SYSLOG

OBJECT1 Subopcode1

UTMOBJ6 Parameter value

● COMMAND: UPDIPADR

OBJECT1 Subopcode1

Parameter type Logged fields

CCURRPAR OBJECT1: Parameter
UTMOBJ4: Parameter value 1
UTMOBJ5: Parameter value 2

CLPAR OBJECT1: Parameter
UTMOBJ4: Parameter value

CURRPAR OBJECT1: Parameter
UTMOBJ6: Parameter value

DIAGACCP OBJECT1: Parameter
OBJECT2: Parameter value 1
UTMOBJ6: Parameter value 2

MAXPAR OBJECT1: Parameter
OBJECT2: Parameter value

TASKSPAR OBJECT1: Parameter
OBJECT2: Parameter value

TIMERPAR OBJECT1: Parameter
OBJECT2: Parameter value

Appendix SAT log records

Using openUTM on BS2000 Systems 343

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

● COMMAND: USLOG

OBJECT1 Subopcode1

SEL-CMD: Execute a preselection command

If the name or value of a parameter is longer than 8 characters, the abbreviation described
in UTM-SAT administration is output in the log data field.

UTMUSER Name of the UTM user who initiates the event.

UTMAPPL Name of the active application.

UTMSUBC SEL-CMD

COMMAND Specification of the UTM-SAT administration command: MSATSEL or
MSATPROT.

UTMREAS Internal system return code.

UTMTAID Transaction identification.

TACNAM Transaction code of active program unit.

USER2 User or blank.

The fields DATNAM2, LTERM and OBJECT1 may be output as blank.

The following additional fields are defined, depending on COMMAND:

● MSATSEL (control preselection, command KDCMSAT SATSEL=...)

A separate log data record is written for each name specified. Only one of the fields
USER2, DATNAM2 or OBJECT1 is defined:

USER2 UTM user as preselection object.

DATNAM2 TAC as preselection object.

OBJECT1 Event as preselection object.

OBJECT2 Preselection value (NONE, SUCC, FAIL, BOTH or OFF).

● MSATPROT (Control SAT logging, command KDCMSAT SAT=...)

OBJECT2 Logging switched on (ON) or off (OFF).

SAT log records Appendix

344 Using openUTM on BS2000 Systems

CHG-PROG: Exchange a load module

UTMAPPL Name of the active UTM application.

UTMSUBC CHG-PROG

UTMNAME Name of the module to be exchanged.

UTMOBJ4 Load mode of the module to be exchanged.

UTMOBJ6 New module version.

UTMTAID Transaction identification if UTMOBJ4=ON-CALL, otherwise zero.

i For UTMOBJ4=ON-CALL, note that CHG-PROG is always logged as successful.
The associated END-PU log data record indicates whether or not the exchange was
successful. (In the event of an error, a PEND ER occurs with the corresponding
KDCS return codes.) The initial loading is also logged as an exchange.

Appendix Sample programs

Using openUTM on BS2000 Systems 345

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

16.7 Sample programs

openUTM is shipped as standard with sample programs that make it easier for you to create
applications. Some of these sample programs are explained in more detail below. The
sample programs for administration can be found in the openUTM manual “Administering
Applications”.

16.7.1 Sample programs for the sign-on service

Using the sample programs for the sign-on service, you can implement a simple sign-on
service with FHS format output.

Both compiled objects and source programs (COBOL) are supplied. The new functions can
thus be tried out quickly without programming. The source programs represent a
programming template that can be used if you want to implement a sign-on service adapted
to your own requirements.

Functions

The programs are suitable for all generation variants.

If required, the terminal user is requested to input sign-on data after the connection has
been established. For this purpose, the sign-on service outputs a “welcome format”
containing two input fields for the user ID and password. The password must be specified
in printable form. Please remember when specifying the user ID and password that small
letters are converted to capital letters.

If openUTM rejects the sign-on data, the sign-on service repeats the request for input. It
then outputs the same format, though it now contains information on the rejection. After
three failed attempts, the sign-on service is terminated.

If openUTM accepts the sign-on data, the sign-on service proceeds as follows:

● No service restart:
A start format is output if one is generated; otherwise, a request is issued for input in
line mode.

● Service restart:
The screen restart of the open service is initiated.

English text is output on the terminal. The comments in the source program are also in
English.

Sample programs Appendix

346 Using openUTM on BS2000 Systems

Components

The sample programs for the sign-on service are located in the library
SYSLIB.UTM.064.EXAMPLE.

Integration in a UTM application

To integrate the sample sign-on service in a UTM application, the KDCDEF generation
statements must be extended as follows:

PROGRAM KDCSIGN1,COMP=ILCS
PROGRAM KDCSIGN2,COMP=ILCS
TAC KDCSGNTC,PROGRAM=KDCSIGN1
TAC TACSIGN2,PROGRAM=KDCSIGN2,CALL=NEXT

The TAC name TACSIGN2 is programmed. It is defined as a constant at the start of both
program units and can thus be changed easily if required.

The standard primary working area must be at least 600 bytes, the communication area at
least 2 bytes long (see MAX statement in the openUTM manual “Generating Applications”).

The linkage editor statement must be extended as follows:

INCLUDE-MODULES LIBRARY=$userid.SYSLIB.UTM.064.EXAMPLE
,ELEMENT=(KDCSIGN1, KDCSIGN2)

The screen format FORSIGN must be incorporated in the format library of the application.
The format is suitable for terminals of types 8160, 9750, 9755 and 9763.

The program unit SIGN1 uses the COBOL85-specific statement EVALUATE.

Element LMS type Meaning

SIGN1 S COBOL source → 1st program unit

SIGN2 S COBOL source → 2nd program unit

KDCSIGN1 R Object module → 1st program unit

KDCSIGN2 R Object module → 2nd program unit

FORSIGN R Screen format (' *' format)

FORSIGN S Addressing tool

FORSIGN F IFG source

Appendix Sample programs

Using openUTM on BS2000 Systems 347

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

16.7.2 Sample programs for a publish / subscribe server

These sample programs are intended to illustrate how to implement a simple publish and
subscribe service in a UTM application.

Function

A user can subscribe to a service. That user then receives all messages published as of
that time in their USER queue.
The possible commands for this service are:
– help: Get help text
– subscribe: Subscribe to messages
– unsubscribe: Cancel subscription to messages
– who: Output the names of the subscribers
– publish <message>: Publish a message

The service is provided by an asynchronous service with the TAC PUBSUBA which
constantly listens for jobs at the TAC queue PUBSUBMQ. Users communicate with the
service over the dialog service PUPSUBD. Job confirmations are sent to the USER queue
of the user and can, for instance, be read using the dialog program UPDGET (see sample
programs for asynchronous processing for a UPIC client). In addition, PU can be queried
in the INIT of each program unit to establish whether messages are waiting in the user's
queue.

The service need only be started once by calling the TAC PUBSUBA. The open
asynchronous service is then retained throughout the entire duration of the application. It is
transferred to the new application by KDCUPD when a new generation is performed.

If the asynchronous service terminates abnormally as the result of an error, the most
recently processed job is placed in the dead letter queue.

Sample programs Appendix

348 Using openUTM on BS2000 Systems

Delivery

On BS2000 systems, source programs and object modules are supplied as members of the
library SYSLIB.UTM.064.EXAMPLE.

UTM generation

The statements for the program units in the KDCDEF run are specified as comments in the
individual source files. This also applies to the statement for the TAC queue "PUBSUBMQ".

At least one GSSB must be generated (MAX GSSBS), as the service uses the GSSB
"PUBSUBGB" to manage the subscribers.

If the most recently processed job is to be placed in the dead letter queue after the service
is cancelled, MAX REDELIVERY = (...,0) must be generated. Is this is not done, the job
remains in the job queue PUBSUBMQ.

Element LMS type Meaning

PUBSUBD.C S Issues a request to the publish/subscribe service,
dialog program unit

PUBSUBA.C S Implements the publish/subscribe service, asynchronous
program unit

PUBSUBD#LLM R Object module for PUBSUBD.C

PUBSUBA#LLM R Object module for PUBSUBA.C

Appendix Sample programs

Using openUTM on BS2000 Systems 349

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

16.7.3 Sample program for moving messages from the dead letter queue
selectively

Function

The dialog program moves all messages from the dead letter queue using a specified
original destination and a specified new destination. This means that two TACs are
expected as input - a total of 16 characters. The program confirms the number of messages
moved.

Delivery

on BS2000 systems, source programs and object modules are supplied as members of the
library SYSLIB.UTM.064.EXAMPLE.

UTM generation

The statements for the program units in the KDCDEF run are specified as comments in the
individual source files.

16.7.4 CPI-C sample programs

You will find the CPI-C sample programs in the library SYSLIB.UTM.064.XOPEN.

Element LMS type Meaning

DADMMVS S Moves messages with a particular original destination from the
dead letter queue, COBOL dialog program unit

DADMMVSC.C S Analog dialog program in C

DADMMVS R Object module for DADMMVS

DADMMVS#LLM R Object module for DADMMVSC.C

Element LMS type Meaning

KCPSAM1.C S C source → Asynchronous part

KCPSAM2.C S C source → Synchronous part

KCPSAM1#LLM R Object module → Asynchronous part

KCPSAM2#LLM R Object module → Synchronous part

Sample programs Appendix

350 Using openUTM on BS2000 Systems

16.7.5 Sample programs for asynchronous processing with UPIC clients

Three program units, namely UPDIAL, UPASYN and UPDGET, are supplied with openUTM
for asynchronous processing with UPIC clients.

Functions

These three program units illustrate how to issue asynchronous requests from a UPIC client
and how to receive asynchronous result information.

In this example, the asynchronous message is first sent to the USER queue of the user ID
under which the UPIC client signed on. The message is then read by an interactive program
unit and output on the client. The advantage of asynchronous processing is that the user at
the UPIC client can enter a new request as soon as the current request is accepted and is
not blocked until the request is completed.

These three programs have the following functions:

● UPDIAL reads an input message, sends it to the UPASYN program unit as an
asynchronous request, and outputs a request confirmation on the client.

● UPASYN receives the message, waits 5 seconds to simulate complex processing, and
writes the result in the USER queue of the user ID under which the UPIC client signed
on.

● UPDGET waits (60 seconds) and reads the user ID of the service (if the dialog message
is empty) or the user ID passed in the dialog message from the USER queue. This
means that the UPDGET can run under a different user ID (e.g. without using a security
user) from the UPDIAL and UPASYN services and fetch the message from the user
queue of the user that started the UPDIAL service.

If a dialog message that is not empty does not contain a valid user ID, UPDGET termi-
nates with an error message. If no queue message is available, UPDGET is started
again as soon as a message arrives or when the wait time has elapsed. If a queue
message is available, it is sent to the UPIC client with MPUT and its own TAC is called
again with PEND-RE in order to wait for the next message.

Components

The source programs and object modules are supplied as elements of the
SYSLIB.UTM.064.EXAMPLE library. The sample programs should only be run in
conjunction with a UPIC client program adjusted appropriately.

Appendix Sample programs

Using openUTM on BS2000 Systems 351

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

Integration in a UTM application

If the client is only to run with users generated with RESTART=NO, the procedure is as
follows:

The UPIC client maintains two connections to the UTM application and signs on with the
same user ID for openUTM. In the first thread, the client starts the interactive service
UPDGET to read the asynchronous messages. In the second thread, the client starts the
interactive service UPDIAL on explicit request, which then generates an asynchronous
request for UPASYN.

If the client is also to run with users generated with RESTART=YES, the following
procedure is possible:

The client only signs on as a security user in the second thread, and in the first thread signs
on without explicitly specifying a security user. openUTM therefore allocates it a user
permanently assigned to the connection. The first thread then also returns the name of the
security user in the dialog message when UPDGET is started (and at every step in the
dialog).

Sample procedures Appendix

352 Using openUTM on BS2000 Systems

16.8 Sample procedures

openUTM is supplied as standard with sample procedures that should simplify your work
with openUTM. The procedures are designed as tools and templates that you can modify
and extend in accordance with your requirements. The procedures contain comments in
English.

These procedures have already been compiled (SYSJ members) so that they will also run
in the basic configuration with SDF-P-BASYS. The source files are contained in
SYSLIB.UTM.064.EXAMPLE.

The SYSPRC.UTM.064 library contains the following procedures:

Procedure Function

BTRACE Mix BCAM trace output files and evaluate with the KDCBTRC program

COPY-CRYPT Copy encryption module (encryption code) to the UTM system code
library

DUMP Evaluate UTM dumps

FGGUSLOG Create user log file as file generation group (FGG) and switch to the
new user log file generation

GEN Generate UTM application

LINK Link UTM application program

MSGMOD Create user-specific (message) modules

PAMSAM Edit and sort data recorded by KDCMON

SLOG-FGG Evaluate individual file generations of a SYSLOG-FGG

START-APPL-ENTER-
PROC

Create an SDF procedure for starting an UTM application via ENTER-
PROC

SHOW-ETPND Display ETPND of a UTM module

START-BLS-APPLI-
CATION

Start UTM production application with BLS

SYSLOG Edit SYSLOG file

UPD Transfer data to KDCFILE with KDCUPD

UTM-C.EMERGENCY Emergency script for node failure in a UTM cluster application

UTM-C.FAILURE Failure script for node failure in a UTM cluster application

Appendix XS-support of UTM applications

Using openUTM on BS2000 Systems 353

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

nd
 1

6
:1

4.
59

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_e
.a

n
h

16.9 XS-support of UTM applications

This section contains a few particularities that you should take into consideration when
linking and starting UTM applications that are to be loaded into the upper address space of
a XS system and that are to run in 31-bit mode. You will need to be familiar with XS
programming and the use of XS.

openUTM only supports applications that:

● are completely XS-compatible and run in 31-bit mode or

● are not XS-compatible and are completely loaded in the lower address space (i.e. below
16 Mbyte) and run in 24-bit mode.

A UTM application can therefore only be loaded into the upper address space (>16 Mbyte)
and run in 31-bit mode when all the components of the UTM application program are
XS-compatible.

v CAUTION!
UTM applications in “mixed mode” (i.e. applications that switch between 24-bit and
31-bit address modes) are not supported by openUTM. This means that openUTM
cannot guarantee that a UTM application will run properly if a program unit that runs
in 31-bit mode will dynamically load modules in 24-bit and switch to the appropriate
address mode by itself when entering these modules, for example.

Compiling and linking

The following rules are to be observed when compiling and linking an XS-compatible UTM
application:

● All program units must be compiled with the attributes AMODE=ANY (addressing
mode) and RMODE = ANY (resident mode).

● When linking the UTM application, the binder checks the AMODE and RMODE attri-
butes for all program units and sets a pseudo-RMODE for the object module of the UTM
application created. The BINDER bases its setting on the “weakest” component, i.e. the
module is only assigned the attribute RMODE=ANY when all components have the
RMODE=ANY attribute. If a component was compiled with RMODE=24, the module is
assigned RMODE=24.

The AMODE attribute is determined by the program section (CSECT) that contains the
entry point of the object module.
You will find more information in the BS2000 manual “Dynamic Binder Loader / Starter”.

XS-support of UTM applications Appendix

354 Using openUTM on BS2000 Systems

Particularities when starting a UTM application

Whether the UTM application is loaded into the upper or lower address space depends on
the UTM application program itself and on the value of the PROGRAM-MODE parameter
that you specified when calling the START-EXECUTABLE-PROGRAM command.

● For PROGRAM-MODE=24 the application is loaded into the lower address space and
the 24-bit mode is set.

● For PROGRAM-MODE=ANY:
Whether the UTM application is loaded into the upper or lower address space and
which addressing mode is set depends on the attributes AMODE and RMODE of the
load module (see section “Compiling and linking” on page 353).

If the Binder-Loader System (BLS) detects at the start of the application that all compo-
nents of the UTM application loaded at the start of the application are XS-compatible,
then the UTM application is loaded into the upper address space.

If openUTM is to dynamically load a non-XS-compatible module in the start phase of an
application loaded in the upper address space, then openUTM aborts the start procedure
with an appropriate error message.

You should also note that no 24_bit modules (ONCALL) may be loaded dynamically during
live operation by an application program that runs in the upper address space.

A UTM application can also be loaded into the upper address space with
START-EXECUTABLE-PROGRAM.

To ensure that a non-XS-compatible UTM application is loaded into the lower address
space and runs in 24-bit mode, you need to add a MODIFY-SYMBOL-ATTRIBUTES
statement with AMODE=24 when linking the UTM application.

Memory allocation of UTM applications

openUTM creates the application-specific tables and data areas (KAA, KTA, slots and UTM
cache in class 5 memory in the upper address space. Address space is therefore not taken
away from UTM applications that run in the lower address space.

By means of MAX CACHE generation, the UTM cache can also be stored in one or more
data spaces.

The KDCDEF, KDCDUMP and KDCUPD tools

The UTM tools KDCDEF, KDCDUMP and KDCUPD only run in the upper address space
(> 16 MByte).

Using openUTM on BS2000 Systems 355

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

Glossary

A term in italic font means that it is explained somewhere else in the glossary.

abnormal termination of a UTM application
Termination of a UTM application, where the KDCFILE is not updated. Abnormal
termination is caused by a serious error, such as a crashed computer or an error
in the system software. If you then restart the application, openUTM carries out
a warm start.

abstract syntax (OSI)
Abstract syntax is defined as the set of formally described data types which can
be exchanged between applications via OSI TP. Abstract syntax is independent
of the hardware and programming language used.

acceptor (CPI-C)
The communication partners in a conversation are referred to as the initiator and
the acceptor. The acceptor accepts the conversation initiated by the initiator
with Accept_Conversation.

access list
An access list defines the authorization for access to a particular service, TAC
queue or USER queue. An access list is defined as a key set and contains one or
more key codes, each of which represent a role in the application. Users or
LTERMs or (OSI) LPAPs can only access the service or TAC queue/USER queue
when the corresponding roles have been assigned to them (i.e. when their key
set and the access list contain at least one common key code).

access point (OSI)
See service access point.

ACID properties
Acronym for the fundamental properties of transactions: atomicity, consistency,
isolation and durability.

administration
Administration and control of a UTM application by an administrator or an
administration program.

Glossary

356 Using openUTM on BS2000 Systems

administration command
Commands used by the administrator of a UTM application to carry out adminis-
tration functions for this application. The administration commands are imple-
mented in the form of transaction codes.

administration journal
See cluster administration journal.

administration program
Program unit containing calls to the program interface for administration. This can
be either the standard administration program KDCADM that is supplied with
openUTM or a program written by the user.

administrator
User who possesses administration authorization.

AES
AES (Advanced Encryption Standard) is the current symmetric encryption stan-
dard defined by the National Institute of Standards and Technology (NIST) and
based on the Rijndael algorithm developed at the University of Leuven (Bel-
gium). If the AES method is used, the UPIC client generates an AES key for
each session.

Apache Axis
Apache Axis (Apache eXtensible Interaction System) is a SOAP engine for the
design of Web services and client applications. There are implementations in
C++ and Java.

Apache Tomcat
Apache Tomcat provides an environment for the execution of Java code on Web
servers. It was developed as part of the Apache Software Foundation's Jakarta
project. It consists of a servlet container written in Java which can use the JSP
Jasper compiler to convert JavaServer pages into servlets and run them. It also
provides a fully featured HTTP server.

application cold start
See cold start.

application context (OSI)
The application context is the set of rules designed to govern communication
between two applications. This includes, for instance, abstract syntaxes and
any assigned transfer syntaxes.

Glossary

Using openUTM on BS2000 Systems 357

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

application entity (OSI)
An application entity (AE) represents all the aspects of a real application which
are relevant to communications. An application entity is identified by a globally
unique name (“globally” is used here in its literal sense, i.e. worldwide), the
application entity title (AET). Every application entity represents precisely one
application process. One application process can encompass several application
entities.

application entity qualifier (OSI)
Component of the application entity title. The application entity qualifier identifies
a service access point within an application. The structure of an application entity
qualifier can vary. openUTM supports the type “number”.

application entity title (OSI)
An application entity title is a globally unique name for an application entity
(“globally” is used here in its literal sense, i.e. worldwide). It is made up of the
application process title of the relevant application process and the application entity
qualifier.

application information
This is the entire set of data used by the UTM application. The information com-
prises memory areas and messages of the UTM application including the data
currently shown on the screen. If operation of the UTM application is coordi-
nated with a database system, the data stored in the database also forms part
of the application information.

application process (OSI)
The application process represents an application in the OSI reference model. It
is uniquely identified globally by the application process title.

application process title (OSI)
According to the OSI standard, the application process title (APT) is used for
the unique identification of applications on a global (i.e. worldwide) basis. The
structure of an application process title can vary. openUTM supports the type
Object Identifier.

application program
An application program is the core component of a UTM application. It com-
prises the main routine KDCROOT and any program units and processes all jobs
sent to a UTM application.

application restart
see warm start

Glossary

358 Using openUTM on BS2000 Systems

application service element (OSI)
An application service element (ASE) represents a functional group of the appli-
cation layer (layer 7) of the OSI reference model.

application warm start
see warm start.

association (OSI)
An association is a communication relationship between two application enti-
ties. The term “association” corresponds to the term session in LU6.1.

asynchronous conversation
CPI-C conversation where only the initiator is permitted to send. An asynchro-
nous transaction code for the acceptor must have been generated in the UTM
application.

asynchronous job
Job carried out by the job submitter at a later time. openUTM includes message
queuing functions for processing asynchronous jobs (see UTM-controlled queue
and service-controlled queue). An asynchronous job is described by the asynchro-
nous message, the recipient and, where applicable, the required execution time.
If the recipient is a terminal, a printer or a transport system application, the asyn-
chronous job is a queued output job. If the recipient is an asynchronous service of
the same application or a remote application, the job is a background job.
Asynchronous jobs can be time-driven jobs or can be integrated in a job complex.

asynchronous message
Asynchronous messages are messages directed to a message queue. They are
stored temporarily by the local UTM application and then further processed
regardless of the job submitter. Distinctions are drawn between the following
types of asynchronous messages, depending on the recipient:
– In the case of asynchronous messages to a UTM-controlled queue, all further

processing is controlled by openUTM. This type includes messages that
start a local or remote asynchronous service (see also background job) and
messages sent for output on a terminal, a printer or a transport system
application (see also queued output job).

– In the case of asynchronous messages to a service-controlled queue, further
processing is controlled by a service of the application. This type includes
messages to a TAC queue, messages to a USER queue and messages to a
temporary queue. The USER queue and the temporary queue must belong
to the local application, whereas the TAC queue can be in both the local
application and the remote application.

Glossary

Using openUTM on BS2000 Systems 359

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

asynchronous program
Program unit started by a background job.

asynchronous service (KDCS)
Service which processes a background job. Processing is carried out indepen-
dently of the job submitter. An asynchronous service can comprise one or more
program units/transactions. It is started via an asynchronous transaction code.

audit (BS2000 systems)
During execution of a UTM application, UTM events which are of relevance in
terms of security can be logged by SAT for auditing purposes.

authentication
See system access control.

authorization
See data access control.

Axis
See Apache Axis.

background job
Background jobs are asynchronous jobs destined for an asynchronous service of
the current application or of a remote application. Background jobs are particu-
larly suitable for time-intensive processing or processing which is not time-crit-
ical and where the results do not directly influence the current dialog.

basic format
Format in which terminal users can make all entries required to start a service.

basic job
Asynchronous job in a job complex.

browsing asynchronous messages
A service sequentially reads the asynchronous messages in a service-controlled
queue. The messages are not locked while they are being read and they remain
in the queue after they have been read. This means that they can be read simul-
taneously by different services.

bypass mode (BS2000 systems)
Operating mode of a printer connected locally to a terminal. In bypass mode,
any asynchronous message sent to the printer is sent to the terminal and then redi-
rected to the printer by the terminal without being displayed on screen.

Glossary

360 Using openUTM on BS2000 Systems

cache
Used for buffering application data for all the processes of a UTM application.
The cache is used to optimize access to the page pool and, in the case of UTM
cluster applications, the cluster page pool.

CCS name (BS2000 systems)
See coded character set name.

client
Clients of a UTM application can be:
– terminals
– UPIC client programs
– transport system applications (e.g. DCAM, PDN, CMX, socket applications

or UTM applications which have been generated as transport system applica-
tions).

Clients are connected to the UTM application via LTERM partners.
openUTM clients which use the OpenCPIC carrier system are treated just like
OSI TP partners.

client side of a conversation
This term has been superseded by initiator.

cluster
A number of computers connected over a fast network and which in many cases
can be seen as a single computer externally. The objective of clustering is gen-
erally to increase the computing capacity or availability in comparison with a sin-
gle computer.

cluster administration journal
The cluster administration journal consists of:
– two log files with the extensions JRN1 and JRN2 for global administration

actions,
– the JKAA file which contains a copy of the KDCS Application Area (KAA).

Administrative changes that are no longer present in the two log files are
taken over from this copy.

The administration journal files serve to pass on to the other node applications
those administrative actions that are to apply throughout the cluster to all node
applications in a UTM cluster application.

cluster configuration file
File containing the central configuration data of a UTM cluster application. The
cluster configuration file is created using the UTM generation tool KDCDEF.

Glossary

Using openUTM on BS2000 Systems 361

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

cluster filebase
Filename prefix or directory name for the UTM cluster files.

cluster GSSB file
File used to administer GSSBs in a UTM cluster application. The cluster GSSB
file is created using the UTM generation tool KDCDEF.

cluster lock file
File in a UTM cluster application used to manage cross-node locks of user data
areas.

cluster page pool
The cluster page pool consists of an administration file and up to 10 files con-
taining a UTM cluster application’s user data that is available globally in the clus-
ter (service data including LSSB, GSSB and ULS). The cluster page pool is cre-
ated using the UTM generation tool KDCDEF.

cluster start serialization file
Lock file used to serialize the start-up of individual node applications (only on
Unix systems and Windows systems).

cluster ULS file
File used to administer the ULS areas of a UTM cluster application. The cluster
ULS file is created using the UTM generation tool KDCDEF.

cluster user file
File containing the user management data of a UTM cluster application. The
cluster user file is created using the UTM generation tool KDCDEF.

coded character set name (BS2000 systems)
If the product XHCS (eXtended Host Code Support) is used, each character set
used is uniquely identified by a coded character set name (abbreviation: “CCS
name” or “CCSN”).

cold start
Start of a UTM application after the application terminates normally (normal ter-
mination) or after a new generation (see also warm start).

communication area (KDCS)
KDCS primary storage area, secured by transaction logging and which contains
service-specific data. The communication area comprises 3 parts:
– the KB header with general service data
– the KB return area for returning values to KDCS calls

Glossary

362 Using openUTM on BS2000 Systems

– the KB program area for exchanging data between UTM program units
within a single service.

communication resource manager
In distributed systems, communication resource managers (CRMs) control
communication between the application programs. openUTM provides CRMs
for the international OSI TP standard, for the LU6.1 industry standard and for
the proprietary openUTM protocol UPIC.

configuration
Sum of all the properties of a UTM application. The configuration describes:
– application parameters and operating parameters
– the objects of an application and the properties of these objects. Objects

can be program units and transaction codes, communication partners,
printers, user IDs, etc.

– defined measures for controlling data and system access.
The configuration of a UTM application is defined at generation time (static con-
figuration) and can be changed dynamically by the administrator (while the
application is running, dynamic configuration). The configuration is stored in the
KDCFILE.

confirmation job
Component of a job complex where the confirmation job is assigned to the basic
job. There are positive and negative confirmation jobs. If the basic job returns a
positive result, the positive confirmation job is activated, otherwise, the negative
confirmation job is activated.

connection bundle
see LTERM bundle.

connection user ID
User ID under which a TS application or a UPIC client is signed on at the UTM
application directly after the connection has been established. The following
applies, depending on the client (= LTERM partner) generation:
– The connection user ID is the same as the USER in the LTERM statement

(explicit connection user ID). An explicit connection user ID must be
generated with a USER statement and cannot be used as a “genuine” user
ID.

Glossary

Using openUTM on BS2000 Systems 363

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

– The connection user ID is the same as the LTERM partner (implicit
connection user ID) if no USER was specified in the LTERM statement or if
an LTERM pool has been generated.

In a UTM cluster application, the service belonging to a connection user ID
(RESTART=YES in LTERM or USER) is bound to the connection and is there-
fore local to the node.
A connection user ID generated with RESTART=YES can have a separate ser-
vice in each node application.

contention loser
Every connection between two partners is managed by one of the partners. The
partner that manages the connection is known as the contention winner. The
other partner is the contention loser.

contention winner
A connection's contention winner is responsible for managing the connection.
Jobs can be started by the contention winner or by the
contention loser. If a conflict occurs, i.e. if both partners in the communication
want to start a job at the same time, then the job stemming from the contention
winner uses the connection.

conversation
In CPI-C, communication between two CPI-C application programs is referred
to as a conversation. The communication partners in a conversation are
referred to as the initiator and the acceptor.

conversation ID
CPI-C assigns a local conversation ID to each conversation, i.e. the initiator and
acceptor each have their own conversation ID. The conversation ID uniquely
assigns each CPI-C call in a program to a conversation.

CPI-C
CPI-C (Common Programming Interface for Communication) is a program
interface for program-to-program communication in open networks standard-
ized by X/Open and CIW (CPI-C Implementor's Workshop).
The CPI-C implemented in openUTM complies with X/Open’s CPI-C V2.0 CAE
Specification. The interface is available in COBOL and C. In openUTM, CPI-C
can communicate via the OSI TP, LU6.1 and UPIC protocols and with
openUTM-LU62.

Cross Coupled System / XCS
Cluster of BS2000 computers with the Highly Integrated System Complex Multiple
System Control Facility (HIPLEX® MSCF).

Glossary

364 Using openUTM on BS2000 Systems

data access control
In data access control openUTM checks whether the communication partner is
authorized to access a particular object belonging to the application. The
access rights are defined as part of the configuration.

data space (BS2000 systems)
Virtual address space of BS2000 which can be employed in its entirety by the
user. Only data and programs stored as data can be addressed in a data space;
no program code can be executed.

dead letter queue
The dead letter queue is a TAC queue which has the fixed name
KDCDLETQ. It is always available to save queued messages sent to transac-
tion codes or TAC queues but which could not be processed. The saving of
queued messages in the dead letter queue can be activated or deactivated for
each message destination individually using the TAC statement's
DEAD-LETTER-Q parameter.

DES
DES (Data Encryption Standard) is an international standard for encrypting
data. One key is used in this method for encoding and decoding. If the DES
method is used, the UPIC client generates a DES key for each session.

dialog conversation
CPI-C conversation in which both the initiator and the acceptor are permitted to
send. A dialog transaction code for the acceptor must have been generated in
the UTM application.

dialog job, interactive job
Job which starts a dialog service. The job can be issued by a client or, when two
servers communicate with each other (server-server communication), by a differ-
ent application.

dialog message
A message which requires a response or which is itself a response to a request.
The request and the response both take place within a single service. The
request and reply together form a dialog step.

dialog program
Program unit which partially or completely processes a dialog step.

Glossary

Using openUTM on BS2000 Systems 365

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

dialog service
Service which processes a job interactively (synchronously) in conjunction with
the job submitter (client or another server application) . A dialog service pro-
cesses dialog messages received from the job submitter and generates dialog
messages to be sent to the job submitter. A dialog service comprises at least
one transaction. In general, a dialog service encompasses at least one dialog
step. Exception: in the event of service chaining, it is possible for more than one
service to comprise a dialog step.

dialog step
A dialog step starts when a dialog message is received by the UTM application. It
ends when the UTM application responds.

dialog terminal process (Unix , Linux and Windows systems)
A dialog terminal process connects a terminal of a Unix, Linux or Windows sys-
tem with the work processes of the UTM application. Dialog terminal processes
are started either when the user enters utmdtp or via the LOGIN shell. A sepa-
rate dialog terminal process is required for each terminal to be connected to a
UTM application.

Distributed Lock Manager / DLM (BS2000 systems)
Concurrent, cross-computer file accesses can be synchronized using the
Distributed Lock Manager.
DLM is a basic function of HIPLEX® MSCF.

distributed processing
Processing of dialog jobs by several different applications or the transfer of back-
ground jobs to another application. The higher-level protocols LU6.1 and OSI TP
are used for distributed processing. openUTM-LU62 also permits distributed
processing with LU6.2 partners. A distinction is made between distributed pro-
cessing with distributed transactions (transaction logging across different applica-
tions) and distributed processing without distributed transactions (local transac-
tion logging only). Distributed processing is also known as server-server
communication.

distributed transaction
Transaction which encompasses more than one application and is executed in
several different (sub)-transactions in distributed systems.

distributed transaction processing
Distributed processing with distributed transactions.

Glossary

366 Using openUTM on BS2000 Systems

dynamic configuration
Changes to the configuration made by the administrator. UTM objects such as
program units, transaction codes, clients, LU6.1 connections, printers or user IDs can
be added, modified or in some cases deleted from the configuration while the
application is running. To do this, it is necessary to create separate administra-
tion programs which use the functions of the program interface for administration.
The WinAdmin administration program or the WebAdmin administration pro-
gram can be used to do this, or separate administration programs must be cre-
ated that utilize the functions of the administration program interface.

encryption level
The encryption level specifies if and to what extent a client message and pass-
word are to be encrypted.

event-driven service
This term has been superseded by event service.

event exit
Routine in an application program which is started automatically whenever cer-
tain events occur (e.g. when a process is started, when a service is terminated).
Unlike event services, an event exit must not contain any KDCS, CPI-C or XATMI
calls.

event function
Collective term for event exits and event services.

event service
Service started when certain events occur, e.g. when certain UTM messages are
issued. The program units for event-driven services must contain KDCS calls.

filebase
UTM application filebase
On BS2000 systems, filebase is the prefix for the KDCFILE, the user log file
USLOG and the system log file SYSLOG.
On Unix, Linux and Windows systems, filebase is the name of the directory
under which the KDCFILE, the user log file USLOG, the system log file SYS-
LOG and other files relating to to the UTM application are stored.

generation
See UTM generation.

global secondary storage area
See secondary storage area.

Glossary

Using openUTM on BS2000 Systems 367

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

hardcopy mode
Operating mode of a printer connected locally to a terminal. Any message which
is displayed on screen will also be sent to the printer.

heterogeneous link
In the case of server-server communication: a link between a UTM application and
a non-UTM application, e.g. a CICS or TUXEDO application.

Highly Integrated System Complex / HIPLEX®
Product family for implementing an operating, load sharing and availability clus-
ter made up of a number of BS2000 servers.

HIPLEX® MSCF
(MSCF = Multiple System Control Facility)
Provides the infrastructure and basic functions for distributed applications with
HIPLEX®.

homogeneous link
In the case of server-server communication: a link between two UTM applications.
It is of no significance whether the applications are running on the same oper-
ating system platforms or on different platforms.

inbound conversation (CPI-C)
See incoming conversation.

incoming conversation (CPI-C)
A conversation in which the local CPI-C program is the acceptor is referred to as
an incoming conversation. In the X/Open specification, the term “inbound con-
versation” is used synonymously with “incoming conversation”.

initial KDCFILE
In a UTM cluster application, this is the KDCFILE generated by KDCDEF and
which must be copied for each node application before the node applications
are started.

initiator (CPI-C)
The communication partners in a conversation are referred to as the initiator and
the acceptor. The initiator sets up the conversation with the CPI-C calls
Initialize_Conversation and Allocate.

insert
Field in a message text in which openUTM enters current values.

Glossary

368 Using openUTM on BS2000 Systems

inverse KDCDEF
A function which uses the dynamically adapted configuration data in the KDC-
FILE to generate control statements for a KDCDEF run. An inverse KDCDEF
can be started “offline” under KDCDEF or “online” via the program interface for
administration.

JDK
Java Development Kit
Standard development environment from Oracle Corporation for the develop-
ment of Java applications.

job
Request for a service provided by a UTM application. The request is issued by
specifying a transaction code. See also: queued output job, dialog job, background
job, job complex.

job complex
Job complexes are used to assign confirmation jobs to asynchronous jobs. An
asynchronous job within a job complex is referred to as a basic job.

job-receiving service (KDCS)
A job-receiving service is a service started by a job-submitting service of another
server application.

job-submitting service (KDCS)
A job-submitting service is a service which requests another service from a dif-
ferent server application (job-receiving service) in order to process a job.

KDCADM
Standard administration program supplied with openUTM. KDCADM provides
administration functions which are called with transaction codes (administration
commands).

KDCDEF
UTM tool for the generation of UTM applications. KDCDEF uses the configuration
information in the KDCDEF control statements to create the UTM objects KDC-
FILE and the ROOT table sources for the main routine KDCROOT.
In UTM cluster applications, KDCDEF also creates the cluster configuration file,
the cluster user file, the cluster page pool, the cluster GSSB file and the cluster ULS
file.

Glossary

Using openUTM on BS2000 Systems 369

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

KDCFILE
One or more files containing data required for a UTM application to run. The
KDCFILE is created with the UTM generation tool KDCDEF. Among other
things, it contains the configuration of the application.

KDCROOT
Main routine of an application program which forms the link between the program
units and the UTM system code. KDCROOT is linked with the program units to
form the application program.

KDCS message area
For KDCS calls: buffer area in which messages or data for openUTM or for the
program unit are made available.

KDCS parameter area
See parameter area.

KDCS program interface
Universal UTM program interface compliant with the national DIN 66 265 stan-
dard and which includes some extensions. KDCS (compatible data communi-
cations interface) allows dialog services to be created, for instance, and permits
the use of message queuing functions. In addition, KDCS provides calls for distrib-
uted processing.

Kerberos
Kerberos is a standardized network authentication protocol (RFC1510) based
on encryption procedures in which no passwords are sent to the network in
clear text.

Kerberos principal
Owner of a key.
Kerberos uses symmetrical encryption, i.e. all the keys are present at two loca-
tions, namely with the key owner (principal) and the KDC (Key Distribution Cen-
ter).

key code
Code that represents specific access authorization or a specific role. Several
key codes are grouped into a key set.

key set
Group of one or more key codes under a particular a name. A key set defines
authorization within the framework of the authorization concept used (lock/key
code concept or access list concept). A key set can be assigned to a user ID, an
LTERM partner an (OSI) LPAP partner, a service or a TAC queue.

Glossary

370 Using openUTM on BS2000 Systems

linkage program
See KDCROOT.

local secondary storage area
See secondary storage area.

Log4j
Log4j is part of the Apache Jakarta project. Log4j provides information for log-
ging information (runtime information, trace records, etc.) and configuring the
log output. WS4UTM uses the software product Log4j for trace and logging func-
tionality.

lock code
Code protecting an LTERM partner or transaction code against unauthorized
access. Access is only possible if the key set of the accesser contains the appro-
priate key code (lock/key code concept).

logging process
Process in Unix, Linux and Windows systems that controls the logging of
account records or monitoring data.

LPAP bundle
LPAP bundles allow messages to be distributed to LPAP partners across sev-
eral partner applications. If a UTM application has to exchange a very large
number of messages with a partner application then load distribution may be
improved by starting multiple instances of the partner application and distribut-
ing the messages across the individual instances. In an LPAP bundle, openUTM
is responsible for distributing the messages to the partner application instances.
An LPAP bundle consists of a master LPAP and multiple slave LPAPs. The
slave LPAPs are assigned to the master LPAP on UTM generation. LPAP bun-
dles exist for both the OSI TP protocol and the LU6.1 protocol.

LPAP partner
In the case of distributed processing via the LU6.1 protocol, an LPAP partner for
each partner application must be configured in the local application. The LPAP
partner represents the partner application in the local application. During com-
munication, the partner application is addressed by the name of the assigned
LPAP partner and not by the application name or address.

LTERM bundle
An LTERM bundle (connection bundle) consists of a master LTERM and multi-
ple slave LTERMs. An LTERM bundle (connection bundle) allows you to distrib-
ute queued messages to a logical partner application evenly across multiple
parallel connections.

Glossary

Using openUTM on BS2000 Systems 371

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

LTERM group
An LTERM group consists of one or more alias LTERMs, the group LTERMs
and a primary LTERM. In an LTERM group, you assign multiple LTERMs to a
connection.

LTERM partner
LTERM partners must be configured in the application if you want to connect cli-
ents or printers to a UTM application. A client or printer can only be connected if
an LTERM partner with the appropriate properties is assigned to it. This assign-
ment is generally made in the configuration, but can also be made dynamically
using terminal pools.

LTERM pool
The TPOOL statement allows you to define a pool of LTERM partners instead
of issuing one LTERM and one PTERM statement for each client. If a client
establishes a connection via an LTERM pool, an LTERM partner is assigned to
it dynamically from the pool.

LU6.1
Device-independent data exchange protocol (industrial standard) for transac-
tion-oriented server-server communication.

LU6.1-LPAP bundle
LPAP bundle for LU6.1 partner applications.

LU6.1 partner
Partner of the UTM application that communicates with the UTM application via
the LU6.1 protocol.
Examples of this type of partner are:
– a UTM application that communicates via LU6.1
– an application in the IBM environment (e.g. CICS, IMS or TXSeries) that

communicates via LU6.1

main process (Unix systems / Windows systems)
Process which starts the UTM application. It starts the work processes, the UTM
system processes, printer processes, network processes, logging process and the timer
process and monitors the UTM application.

main routine KDCROOT
See KDCROOT.

management unit
SE Servers component; in combination with the SE Manager, permits centralized,
web-based management of all the units of an SE server.

Glossary

372 Using openUTM on BS2000 Systems

mapped host name
Mapping of the UTM host name to a real host name or vice versa.

message definition file
The message definition file is supplied with openUTM and, by default, contains
the UTM message texts in German and English together with the definitions of
the message properties. Users can take this file as a basis for their own mes-
sage modules.

message destination
Output medium for a message. Possible message destinations for a message
from the openUTM transaction monitor include, for instance, terminals, TS appli-
cations, the event service MSGTAC, the system log file SYSLOG or TAC queues,
asynchronous TACs, USER queues, SYSOUT/SYSLST or stderr/stdout.
The message destinations for the messages of the UTM tools are SYSOUT/
SYSLST and stderr/stdout.

message queue
Queue in which specific messages are kept with transaction management until
further processed. A distinction is drawn between service-controlled queues and
UTM-controlled queues, depending on who monitors further processing.

message queuing
Message queuing (MQ) is a form of communication in which the messages are
exchanged via intermediate queues rather than directly. The sender and recip-
ient can be separated in space or time. The transfer of the message is indepen-
dent of whether a network connection is available at the time or not. In
openUTM there are UTM-controlled queues and service-controlled queues.

MSGTAC
Special event service that processes messages with the message destination
MSGTAC by means of a program. MSGTAC is an asynchronous service and is
created by the operator of the application.

multiplex connection (BS2000 systems)
Special method offered by OMNIS to connect terminals to a UTM application. A
multiplex connection enables several terminals to share a single transport con-
nection.

multi-step service (KDCS)
Service carried out in a number of dialog steps.

multi-step transaction
Transaction which comprises more than one processing step.

Glossary

Using openUTM on BS2000 Systems 373

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

Network File System/Service / NFS
Allows Unix systems to access file systems across the network.

network process (Unix systems / Windows systems)
A process in a UTM application for connection to the network.

network selector
The network selector identifies a service access point to the network layer of the
OSI reference model in the local system.

node
Individual computer of a cluster.

node application
UTM application that is executed on an individual node as part of a UTM cluster
application.

node bound service
A node bound service belonging to a user can only be continued at the node
application at which the user was last signed on. The following services are
always node bound:
– Services that have started communications with a job receiver via LU6.1 or

OSI TP and for which the job-receiving service has not yet been terminated
– Inserted services in a service stack
– Services that have completed a SESAM transaction
In addition, a user’s service is node bound as long as the user is signed-on at
a node application.

node filebase
Filename prefix or directory name for the node application's KDCFILE, user log
file and system log file.

node recovery
If a node application terminates abnormally and no rapid warm start of the appli-
cation is possible on its associated node computer then it is possible to perform
a node recovery for this node on another node in the UTM cluster. In this way,
it is possible to release locks resulting from the failed node application in order
to prevent unnecessary impairments to the running UTM cluster application.

normal termination of a UTM application
Controlled termination of a UTM application. Among other things, this means
that the administration data in the KDCFILE are updated. The administrator ini-
tiates normal termination (e.g. with KDCSHUT N). After a normal termination,
openUTM carries out any subsequent start as a cold start.

Glossary

374 Using openUTM on BS2000 Systems

object identifier
An object identifier is an identifier for objects in an OSI environment which is
unique throughout the world. An object identifier comprises a sequence of inte-
gers which represent a path in a tree structure.

OMNIS (BS2000 systems)
OMNIS is a “session manager” which lets you set up connections from one ter-
minal to a number of partners in a network concurrently OMNIS also allows you
to work with multiplex connections.

online import
In a UTM cluster application, online import refers to the import of application data
from a normally terminated node application into a running node application.

online update
In a UTM cluster application, online update refers to a change to the application
configuration or the application program or the use of a new UTM revision level
while a UTM cluster application is running.

open terminal pool
Terminal pool which is not restricted to clients of a single computer or particular
type. Any client for which no computer- or type-specific terminal pool has been
generated can connect to this terminal pool.

OpenCPIC
Carrier system for UTM clients that use the OSI TP protocol.

OpenCPIC client
OSI TP partner application with the OpenCPIC carrier system.

openSM2
The openSM2 product line offers a consistent solution for the enterprise-wide
performance management of server and storage systems. openSM2 offers the
acquisition of monitoring data, online monitoring and offline evaluation.

openUTM application
See UTM application.

openUTM cluster
From the perspective of UPIC clients, not from the perspective of the server:
Combination of several node applications of a UTM cluster application to form
one logical application that is addressed via a common symbolic destination
name.

Glossary

Using openUTM on BS2000 Systems 375

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

openUTM-D
openUTM-D (openUTM distributed) is a component of openUTM which allows
distributed processing. openUTM-D is an integral component of openUTM.

OSI-LPAP bundle
LPAP bundle for OSI TP partner applications.

OSI-LPAP partner
OSI-LPAP partners are the addresses of the OSI TP partners generated in
openUTM. In the case of distributed processing via the OSI TP protocol, an OSI-
LPAP partner for each partner application must be configured in the local appli-
cation. The OSI-LPAP partner represents the partner application in the local
application. During communication, the partner application is addressed by the
name of the assigned OSI-LPAP partner and not by the application name or
address.

OSI reference model
The OSI reference model provides a framework for standardizing communica-
tions in open systems. ISO, the International Organization for Standardization,
described this model in the ISO IS7498 standard. The OSI reference model
divides the necessary functions for system communication into seven logical
layers. These layers have clearly defined interfaces to the neighboring layers.

OSI TP
Communication protocol for distributed transaction processing defined by ISO.
OSI TP stands for Open System Interconnection Transaction Processing.

OSI TP partner
Partner of the UTM application that communicates with the UTM application via
the OSI TP protocol.
Examples of such partners are:
– a UTM application that communicates via OSI TP
– an application in the IBM environment (e.g. CICS) that is connected via

openUTM-LU62
– an application of the OpenCPIC carrier system of the openUTM client
– applications from other TP monitors that support OSI TP

outbound conversation (CPI-C)
See outgoing conversation.

outgoing conversation (CPI-C)
A conversation in which the local CPI-C program is the initiator is referred to as
an outgoing conversation. In the X/Open specification, the term “outbound con-
versation” is used synonymously with “outgoing conversation”.

Glossary

376 Using openUTM on BS2000 Systems

page pool
Part of the KDCFILE in which user data is stored.
In a standalone application this data consists, for example, of dialog messages,
messages sent to message queues, secondary memory areas.
In a UTM cluster application, it consists, for example, of messages to message
queues, TLS.

parameter area
Data structure in which a program unit passes the operands required for a UTM
call to openUTM.

partner application
Partner of a UTM application during distributed processing. Higher communica-
tion protocols are used for distributed processing (LU6.1, OSI TP or LU6.2 via
the openUTM-LU62 gateway).

postselection (BS2000 systems)
Selection of logged UTM events from the SAT logging file which are to be eval-
uated. Selection is carried out using the SATUT tool.

prepare to commit (PTC)
Specific state of a distributed transaction
Although the end of the distributed transaction has been initiated, the system
waits for the partner to confirm the end of the transaction.

preselection (BS2000 systems)
Definition of the UTM events which are to be logged for the SAT audit. Preselec-
tion is carried out with the UTM-SAT administration functions. A distinction is
made between event-specific, user-specific and job-specific (TAC-specific) pre-
selection.

presentation selector
The presentation selector identifies a service access point to the presentation
layer of the OSI reference model in the local system.

primary storage area
Area in main memory to which the KDCS program unit has direct access, e.g.
standard primary working area, communication area.

print administration
Functions for print control and the administration of queued output jobs, sent to a
printer.

Glossary

Using openUTM on BS2000 Systems 377

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

print control
openUTM functions for controlling print output.

printer control LTERM
A printer control LTERM allows a client or terminal user to connect to a UTM
application. The printers assigned to the printer control LTERM can then be
administered from the client program or the terminal. No administration rights
are required for these functions.

printer control terminal
This term has been superseded by printer control LTERM.

printer group (Unix systems)
For each printer, a Unix system sets up one printer group by default that con-
tains this one printer only. It is also possible to assign several printers to one
printer group or to assign one printer to several different printer groups.

printer pool
Several printers assigned to the same LTERM partner.

printer process (Unix systems)
Process set up by the main process for outputting asynchronous messages to a
printer group. The process exists as long as the printer group is connected to the
UTM application. One printer process exists for each connected printer group.

process
The openUTM manuals use the term “process” as a collective term for pro-
cesses (Unix systems / Windows systems) and tasks (BS2000 systems).

processing step
A processing step starts with the receipt of a dialog message sent to the UTM
application by a client or another server application. The processing step ends
either when a response is sent, thus also terminating the dialog step, or when a
dialog message is sent to a third party.

program interface for administration
UTM program interface which helps users to create their own administration pro-
grams. Among other things, the program interface for administration provides
functions for dynamic configuration, for modifying properties and application
parameters and for querying information on the configuration and the current
workload of the application.

Glossary

378 Using openUTM on BS2000 Systems

program space (BS2000 systems)
Virtual address space of BS2000 which is divided into memory classes and in
which both executable programs and pure data are addressed.

program unit
UTM services are implemented in the form of one or more program units. The
program units are components of the application program. Depending on the
employed API, they may have to contain KDCS, XATMI or CPIC calls. They can
be addressed using transaction codes. Several different transaction codes can
be assigned to a single program unit.

queue
See message queue.

queued output job
Queued output jobs are asynchronous jobs which output a message, such as a
document, to a printer, a terminal or a transport system application.
Queued output jobs are processed by UTM system functions exclusively, i.e. it
is not necessary to create program units to process them.

Quick Start Kit
A sample application supplied with openUTM (Windows systems).

redelivery
Repeated delivery of an asynchronous message that could not be processed cor-
rectly because, for example, the transaction was rolled back or the asynchronous
service was terminated abnormally. The message is returned to the message
queue and can then be read and/or processed again.

reentrant program
Program whose code is not altered when it runs. On BS2000 systems this con-
stitutes a prerequisite for using shared code.

request
Request from a client or another server for a service function.

requestor
In XATMI, the term requestor refers to an application which calls a service.

resource manager
Resource managers (RMs) manage data resources. Database systems are
examples of resource managers. openUTM, however, also provides its own
resource managers for accessing message queues, local memory areas and

Glossary

Using openUTM on BS2000 Systems 379

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

logging files, for instance. Applications access RMs via special resource man-
ager interfaces. In the case of database systems, this will generally be SQL and
in the case of openUTM RMs, it is the KDCS interface.

restart
See screen restart,
see service restart.

RFC1006
A protocol defined by the IETF (Internet Engineering Task Force) belonging to
the TCP/IP family that implements the ISO transport services (transport
class 0) based on TCP/IP.

RSA
Abbreviation for the inventors of the RSA encryption method (Rivest, Shamir
and Adleman). This method uses a pair of keys that consists of a public key and
a private key. A message is encrypted using the public key, and this message
can only be decrypted using the private key. The pair of RSA keys is created by
the UTM application.

SAT audit (BS2000 systems)
Audit carried out by the SAT (Security Audit Trail) component of the BS2000
software product SECOS.

screen restart
If a dialog service is interrupted, openUTM again displays the dialog message of
the last completed transaction on screen when the service restarts provided that
the last transaction output a message on the screen.

SE manager
Web-based graphical user interface (GUI) for the SE series of Business
Servers. SE Manager runs on the management unit and permits the central
operation and administration of server units (with /390 architecture and/or x86
architecture), application units (x86 architecture), net unit and peripherals.

SE server
A Business Server from Fujitsu's SE series.

secondary storage area
Memory area secured by transaction logging and which can be accessed by the
KDCS program unit with special calls. Local secondary storage areas (LSSBs)
are assigned to one service. Global secondary storage areas (GSSBs) can be

Glossary

380 Using openUTM on BS2000 Systems

accessed by all services in a UTM application. Other secondary storage areas
include the terminal-specific long-term storage (TLS) and the user-specific long-term
storage (ULS).

selector
A selector identifies a service access point to services of one of the layers of the
OSI reference model in the local system. Each selector is part of the address of
the access point.

semaphore (Unix systems / Windows systems)
Unix systems and Windows systems resource used to control and synchronize
processes.

server
A server is an application which provides services. The computer on which the
applications are running is often also referred to as the server.

server-server communication
See distributed processing.

server side of a conversation (CPI-C)
This term has been superseded by acceptor.

service
Services process the jobs that are sent to a server application. A service of a
UTM application comprises one or more transactions. The service is called with
the service TAC. Services can be requested by clients or by other servers.

service access point
In the OSI reference model, a layer has access to the services of the layer
below at the service access point. In the local system, the service access point
is identified by a selector. During communication, the UTM application links up to
a service access point. A connection is established between two service access
points.

service chaining (KDCS)
When service chaining is used, a follow-up service is started without a dialog
message specification after a dialog service has completed .

service-controlled queue
Message queue in which the calling and further processing of messages is con-
trolled by services. A service must explicitly issue a KDCS call (DGET) to read
the message. There are service-controlled queues in openUTM in the variants
USER queue, TAC queue and temporary queue.

Glossary

Using openUTM on BS2000 Systems 381

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

service restart (KDCS)
If a service is interrupted, e.g. as a result of a terminal user signing off or a UTM
application being terminated, openUTM carries out a service restart. An asynchro-
nous service is restarted or execution is continued at the most recent synchroni-
zation point, and a dialog service continues execution at the most recent synchro-
nization point. As far as the terminal user is concerned, the service restart for a
dialog service appears as a screen restart provided that a dialog message was
sent to the terminal user at the last synchronization point.

service routine
See program unit.

service stacking (KDCS)
A terminal user can interrupt a running dialog service and insert a new dialog ser-
vice. When the inserted service has completed, the interrupted service contin-
ues.

service TAC (KDCS)
Transaction code used to start a service.

session
Communication relationship between two addressable units in the network via
the SNA protocol LU6.1.

session selector
The session selector identifies an access point in the local system to the services
of the session layer of the OSI reference model.

shared code (BS2000 systems)
Code which can be shared by several different processes.

shared memory
Virtual memory area which can be accessed by several different processes
simultaneously.

shared objects (Unix systems / Windows systems)
Parts of the application program can be created as shared objects. These objects
are linked to the application dynamically and can be replaced during live oper-
ation. Shared objects are defined with the KDCDEF statement SHARED-
OBJECT.

sign-on check
See system access control.

Glossary

382 Using openUTM on BS2000 Systems

sign-on service (KDCS)
Special dialog service for a user in which program units control how a user signs
on to a UTM application.

single-step service
Dialog service which encompasses precisely one dialog step.

single-step transaction
Transaction which encompasses precisely one dialog step.

SOA
(Service-Oriented Architecture)
SOA is a system architecture concept in which functions are implemented in the
form of re-usable, technically independent, loosely coupled services. Services
can be called independently of the underlying implementations via interfaces
which may possess public and, consequently, trusted specifications. Service
interaction is performed via a communication infrastructure made available for
this purpose.

SOAP
SOAP (Simple Object Access Protocol) is a protocol used to exchange data
between systems and run remote procedure calls. SOAP also makes use of the
services provided by other standards, XML for the representation of the data
and Internet transport and application layer protocols for message transfer.

socket connection
Transport system connection that uses the socket interface. The socket inter-
face is a standard program interface for communication via TCP/IP.

standalone application
See standalone UTM application.

standalone UTM application
Traditional UTM application that is not part of a UTM cluster application.

standard primary working area (KDCS)
Area in main memory available to all KDCS program units. The contents of the
area are either undefined or occupied with a fill character when the program unit
starts execution.

start format
Format output to a terminal by openUTM when a user has successfully signed
on to a UTM application (except after a service restart and during sign-on via the
sign-on service).

Glossary

Using openUTM on BS2000 Systems 383

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

static configuration
Definition of the configuration during generation using the UTM tool KDCDEF.

SYSLOG file
See system log file.

synchronization point, consistency point
The end of a transaction. At this time, all the changes made to the application
information during the transaction are saved to prevent loss in the event of a
crash and are made visible to others. Any locks set during the transaction are
released.

system access control
A check carried out by openUTM to determine whether a certain user ID is
authorized to work with the UTM application. The authorization check is not car-
ried out if the UTM application was generated without user IDs.

system log file
File or file generation to which openUTM logs all UTM messages for which
SYSLOG has been defined as the message destination during execution of a UTM
application.

TAC
See transaction code.

TAC queue
Message queue generated explicitly by means of a KDCDEF statement. A TAC
queue is a service-controlled queue that can be addressed from any service using
the generated name.

temporary queue
Message queue created dynamically by means of a program that can be deleted
again by means of a program (see service-controlled queue).

terminal-specific long-term storage (KDCS)
Secondary storage area assigned to an LTERM, LPAP or OSI-PAP partner and
which is retained after the application has terminated.

time-driven job
Job which is buffered by openUTM in a message queue up to a specific time until
it is sent to the recipient. The recipient can be an asynchronous service of the
same application, a TAC queue, a partner application, a terminal or a printer.
Time-driven jobs can only be issued by KDCS program units.

Glossary

384 Using openUTM on BS2000 Systems

timer process (Unix systems / Windows systems)
Process which accepts jobs for controlling the time at which work processes are
executed. It does this by entering them in a job list and releasing them for pro-
cessing after a time period defined in the job list has elapsed.

TNS (Unix systems / Windows systems)
Abbreviation for the Transport Name Service. TNS assigns a transport selector
and a transport system to an application name. The application can be reached
through the transport system.

Tomcat
see Apache Tomcat

transaction
Processing section within a service for which adherence to the ACID properties
is guaranteed. If, during the course of a transaction, changes are made to the
application information, they are either made consistently and in their entirety or
not at all (all-or-nothing rule). The end of the transaction forms a synchronization
point.

transaction code/TAC
Name which can be used to identify a program unit. The transaction code is
assigned to the program unit during static or dynamic configuration. It is also pos-
sible to assign more than one transaction code to a program unit.

transaction rate
Number of transactions successfully executed per unit of time.

transfer syntax
With OSI TP, the data to be transferred between two computer systems is con-
verted from the local format into transfer syntax. Transfer syntax describes the
data in a neutral format which can be interpreted by all the partners involved.
An Object Identifier must be assigned to each transfer syntax.

transport selector
The transport selector identifies a service access point to the transport layer of
the OSI reference model in the local system.

transport system application
Application which is based directly on a transport system interface (e.g. CMX,
DCAM or socket). When transport system applications are connected, the part-
ner type APPLI or SOCKET must be specified during configuration. A transport
system application cannot be integrated in a distributed transaction.

Glossary

Using openUTM on BS2000 Systems 385

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

TS application
See transport system application.

typed buffer (XATMI)
Buffer for exchanging typed and structured data between communication part-
ners. Typed buffers ensure that the structure of the exchanged data is known to
both partners implicitly.

UPIC
Carrier system for openUTM clients. UPIC stands for Universal Programming
Interface for Communication.

UPIC Analyzer
Component used to analyze the UPIC communication recorded with UPIC
Capture. This step is used to prepare the recording for playback using UPIC
Replay.

UPIC Capture
Used to record communication between UPIC clients and UTM applications so
that this can be replayed subsequently (UPIC Replay).

UPIC client
The designation for openUTM clients with the UPIC carrier system.

UPIC Replay
Component used to replay the UPIC communication recorded with UPIC
Capture and prepared with UPIC Analyzer.

user exit
This term has been superseded by event exit.

user ID
Identifier for a user defined in the configuration for the UTM application (with an
optional password for system access control) and to whom special data access
rights (system access control) have been assigned. A terminal user must specify
this ID (and any password which has been assigned) when signing on to the
UTM application. On BS2000 systems, system access control is also possible
via Kerberos.
For other clients, the specification of a user ID is optional, see also connection
user ID.
UTM applications can also be generated without user IDs.

Glossary

386 Using openUTM on BS2000 Systems

user log file
File or file generation to which users write variable-length records with the
KDCS LPUT call. The data from the KB header of the KDCS communication area
is prefixed to every record. The user log file is subject to transaction manage-
ment by openUTM.

USER queue
Message queue made available to every user ID by openUTM. A USER queue is
a service-controlled queue and is always assigned to the relevant user ID. You
can restrict the access of other UTM users to your own USER queue.

user-specific long-term storage
Secondary storage area assigned to a user ID, a session or an association and which
is retained after the application has terminated.

USLOG file
See user log file.

UTM application
A UTM application provides services which process jobs from clients or other
applications. openUTM is responsible for transaction logging and for managing
the communication and system resources. From a technical point of view, a
UTM application is a process group which forms a logical server unit at runtime.

UTM cluster application
UTM application that has been generated for use on a cluster and that can be
viewed logically as a single application.
In physical terms, a UTM cluster application is made up of several identically
generated UTM applications running on the individual cluster nodes.

UTM cluster files
Blanket term for all the files that are required for the execution of a UTM cluster
application. This includes the following files:
– Cluster configuration file
– Cluster user file
– Files belonging to the cluster page pool
– Cluster GSSB file
– Cluster ULS file
– Files belonging to the cluster administration journal*
– Cluster lock file*
– Lock file for start serialization* (only in Unix systems and Windows systems)
The files indicated by * are created when the first node application is started. All
the other files are created on generation using KDCDEF.

Glossary

Using openUTM on BS2000 Systems 387

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

UTM-controlled queue
Message queues in which the calling and further processing of messages is
entirely under the control of openUTM. See also asynchronous job, background job
and asynchronous message.

UTM-D
See openUTM-D.

UTM-F
UTM applications can be generated as UTM-F applications (UTM fast). In the
case of UTM-F applications, input from and output to hard disk is avoided in
order to increase performance. This affects input and output which UTM-S uses
to save user data and transaction data. Only changes to the administration data
are saved.
In UTM cluster applications that are generated as UTM-F applications (APPLI-
MODE=FAST), application data that is valid throughout the cluster is also
saved. In this case, GSSB and ULS data is treated in exactly the same way as
in UTM cluster applications generated with UTM-S. However, service data relat-
ing to users with RESTART=YES is written only when the relevant user signs
off and not at the end of each transaction.

UTM generation
Static configuration of a UTM application using the UTM tool KDCDEF and cre-
ation of an application program.

UTM message
Messages are issued to UTM message destinations by the openUTM transaction
monitor or by UTM tools (such as KDCDEF). A message comprises a message
number and a message text, which can contain inserts with current values.
Depending on the message destination, either the entire message is output or
only certain parts of the message, such as the inserts).

UTM page
A UTM page is a unit of storage with a size of either 2K, 4K or 8 K. In standalone
UTM applications, the size of a UTM page on generation of the UTM application
can be set to 2K, 4K or 8 K. The size of a UTM page in a UTM cluster application
is always 4K or 8 K. The page pool and the restart area for the KDCFILE and
UTM cluster files are divided into units of the size of a UTM page.

Glossary

388 Using openUTM on BS2000 Systems

utmpath (Unix systems / Windows systems)
The directory under which the openUTM components are installed is referred to
as utmpath in this manual.
To ensure that openUTM runs correctly, the environment variable UTMPATH
must be set to the value of utmpath. On Unix and Linux systems, you must set
UTMPATH before a UTM application is started. On Windows systems UTM-
PATH is set in accordance with the UTM version installed most recently.

UTM-S
In the case of UTM-S applications, openUTM saves all user data as well as the
administration data beyond the end of an application and any system crash
which may occur. In addition, UTM-S guarantees the security and consistency
of the application data in the event of any malfunction. UTM applications are
usually generated as UTM-S applications (UTM secure).

UTM SAT administration (BS2000 systems)
UTM-SAT administration functions control which UTM events relevant to secu-
rity which occur during operation of a UTM application are to be logged by SAT.
Special authorization is required for UTM-SAT administration.

UTM system process
UTM process that is started in addition to the processes specified via the start
parameters and which only handles selected jobs. UTM system processes
ensure that UTM applications continue to be reactive even under very high
loads.

UTM terminal
This term has been superseded by LTERM partner.

virtual connection
Assignment of two communication partners.

warm start
Start of a UTM-S application after it has terminated abnormally. The application
information is reset to the most recent consistent state. Interrupted dialog ser-
vices are rolled back to the most recent synchronization point, allowing processing

Glossary

Using openUTM on BS2000 Systems 389

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

0
16

 S
ta

nd
 1

6:
14

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
05

_E
in

sa
tz

_B
S

2\
en

\b
et

rB
S

_e
.m

ix

to be resumed in a consistent state from this point (service restart). Interrupted
asynchronous services are rolled back and restarted or restarted at the most
recent synchronization point.
For UTM-F applications, only configuration data which has been dynamically
changed is rolled back to the most recent consistent state after a restart due to
a preceding abnormal termination.
In UTM cluster applications, th e global locks applied to GSSB and ULS on
abnormal termination of this node application are released. In addition, users
who were signed on at this node application when the abnormal termination
occurred are signed off.

WebAdmin
Web-based tool for the administration of openUTM applications via a Web
browser. WebAdmin includes not only the full function scope of the adminis-
tration program interface but also additional functions.

Web service
Application which runs on a Web server and is (publicly) available via a stan-
dardized, programmable interface. Web services technology makes it possible
to make UTM program units available for modern Web client applications inde-
pendently of the programming language in which they were developed.

WinAdmin
Java-based tool for the administration of openUTM applications via a graphical
user interface. WinAdmin includes not only the full function scope of the admin-
istration program interface but also additional functions.

work process (Unix systems / Windows systems)
A process within which the services of a UTM application run.

workload capture & replay
Family of programs used to simulate load situations; consisting of the main
components UPIC Capture, UPIC Analyzer and Upic Replay and - on Unix, Linux
and Windows systems - the utility program kdcsort. Workload Capture & Replay
can be used to record UPIC sessions with UTM applications, analyze these and
then play them back with modified load parameters.

WS4UTM
WS4UTM (WebServices for openUTM) provides you with a convenient way of
making a service of a UTM application available as a Web service.

Glossary

390 Using openUTM on BS2000 Systems

XATMI
XATMI (X/Open Application Transaction Manager Interface) is a program inter-
face standardized by X/Open for program-program communication in open net-
works.
The XATMI interface implemented in openUTM complies with X/Open’s XATMI
CAE Specification. The interface is available in COBOL and C. In openUTM,
XATMI can communicate via the OSI TP, LU6.1 and UPIC protocols.

XHCS (BS2000 systems)
XHCS (Extended Host Code Support) is a BS2000 software product providing
support for international character sets.

XML
XML (eXtensible Markup Language) is a metalanguage standardized by the
W3C (WWW Consortium) in which the interchange formats for data and the
associated information can be defined.

Using openUTM on BS2000 Systems 391

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

li
2

01
6

 S
ta

n
d

16
:1

4.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

ab
k

Abbreviations

Please note: Some of the abbreviations used here derive from the German acronyms used
in the original German product(s).

ACSE Association Control Service Element

AEQ Application Entity Qualifier

AES Advanced Encryption Standard

AET Application Entity Title

APT Application Process Title

ASCII American Standard Code for Information Interchange

ASE Application Service Element

Axis Apache eXtensible Interaction System

BCAM Basic Communication Access Method

BER Basic Encoding Rules

BLS Binder - Loader - Starter (BS2000 systems)

CCP Communication Control Program

CCR Commitment, Concurrency and Recovery

CCS Coded Character Set

CCSN Coded Character Set Name

CICS Customer Information Control System

CID Control Identification

CMX Communication Manager in Unix, Linux and Windows Systems

COM Component Object Model

CPI-C Common Programming Interface for Communication

CRM Communication Resource Manager

CRTE Common Runtime Environment (BS2000 systems)

DB Database

DC Data Communication

DCAM Data Communication Access Method

Abbreviations

392 Using openUTM on BS2000 Systems

DES Data Encryption Standard

DLM Distributed Lock Manager (BS2000 systems)

DMS Data Management System

DNS Domain Name Service

DP Distribted Processing

DSS Terminal (Datensichtstation)

DTD Document Type Definition

DTP Distributed Transaction Processing

EBCDIC Extended Binary-Coded Decimal Interchange Code

EJB Enterprise JavaBeansTM

FGG File Generation Group

FHS Format Handling System

FT File Transfer

GSSB Global Secondary Storage Area

HIPLEX® Highly Integrated System Complex (BS2000 systems)

HLL High-Level Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IFG Interactive Format Generator

ILCS Inter-Language Communication Services (BS2000 systems)

IMS Information Management System (IBM)

IPC Inter-Process Communication

IRV International Reference Version

ISO International Organization for Standardization

Java EE Java Platform, Enterprise Edition

JCA Java EE Connector Architecture

JDK Java Development Kit

KAA KDCS Application Area

KB Communication Area

KBPRG KB Program Area

KDCADMI KDC Administration Interface

KDCS Compatible Data Communication Interface

Abbreviations

Using openUTM on BS2000 Systems 393

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

li
2

01
6

 S
ta

n
d

16
:1

4.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

ab
k

KTA KDCS Task Area

LAN Local Area Network

LCF Local Configuration File

LLM Link and Load Module (BS2000 systems)

LSSB Local Secondary Storage Area

LU Logical Unit

MQ Message Queuing

MSCF Multiple System Control Facility (BS2000 systems)

NB Message Area

NEA Network Architecture for BS2000 Systems

NFS Network File System/Service

NLS Native Language Support

OLTP Online Transaction Processing

OML Object Module Library

OSI Open System Interconnection

OSI TP Open System Interconnection Transaction Processing

OSS OSI Session Service

PCMX Portable Communication Manager

PID Process Identification

PIN Personal Identification Number

PLU Primary Logical Unit

PTC Prepare to commit

RAV Computer Center Accounting Procedure

RDF Resource Definition File

RM Resource Manager

RSA Encryption algorithm according to Rivest, Shamir, Adleman

RSO Remote SPOOL Output (BS2000 systems)

RTS Runtime System

SAT Security Audit Trail (BS2000 systems)

SECOS Security Control System

SEM SE Manager

SGML Standard Generalized Markup Language

SLU Secondary Logical Unit

Abbreviations

394 Using openUTM on BS2000 Systems

SM2 Software Monitor 2

SNA Systems Network Architecture

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SPAB Standard Primary Working Area

SQL Structured Query Language

SSB Secondary Storage Area

SSO Single Sign-On

TAC Transaction Code

TCEP Transport Connection End Point

TCP/IP Transport Control Protocol / Internet Protocol

TIAM Terminal Interactive Access Method

TLS Terminal-Specific Long-Term Storage

TM Transaction Manager

TNS Transport Name Service

TP Transaction Processing (Transaction Mode)

TPR Privileged Function State in BS2000 systems (Task Privileged)

TPSU Transaction Protocol Service User

TSAP Transport Service Access Point

TSN Task Sequence Number

TU Non-Privileged Function State in BS2000 systems (Task User)

TX Transaction Demarcation (X/Open)

UDDI Universal Description, Discovery and Integration

UDS Universal Database System

UDT Unstructured Data Transfer

ULS User-Specific Long-Term Storage

UPIC Universal Programming Interface for Communication

USP UTM Socket Protocol

UTM Universal Transaction Monitor

UTM-D UTM Variant for Distributed Processing in BS2000 systems

UTM-F UTM Fast Variant

UTM-S UTM Secure Variant

UTM-XML openUTM XML Interface

Abbreviations

Using openUTM on BS2000 Systems 395

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

li
2

01
6

 S
ta

n
d

16
:1

4.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

01
2

00
\0

5_
E

in
sa

tz
_B

S
2\

e
n\

be
tr

B
S

_
e.

ab
k

VGID Service ID

VTSU Virtual Terminal Support

WAN Wide Area Network

WS4UTM Web-Services for openUTM

WSDD Web Service Deployment Descriptor

WSDL Web Services Description Language

XA X/Open Access Interface
(X/Open interface for acess to the resource manager)

XAP X/OPEN ACSE/Presentation programming interface

XAP-TP X/OPEN ACSE/Presentation programming interface Transaction Process-
ing extension

XATMI X/Open Application Transaction Manager Interface

XCS Cross Coupled System

XHCS eXtended Host Code Support

XML eXtensible Markup Language

Abbreviations

396 Using openUTM on BS2000 Systems

Using openUTM on BS2000 Systems 397

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

01
6

 S
ta

n
d

16
:1

4
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

00
\0

5
_E

in
sa

tz
_B

S
2\

en
\b

et
rB

S
_e

.li
t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

i PDF files of all openUTM manuals are included on the openUTM Enterprise DVD
with open platforms and on the openUTM WinAdmin DVD (for BS2000 systems).

openUTM documentation

openUTM
Concepts and Functions
User Guide

openUTM
Programming Applications with KDCS for COBOL, C and C++
Core Manual

openUTM
Generating Applications
User Guide

openUTM
Using openUTM Applications on BS2000 Systems
User Guide

openUTM
Using openUTM Applications on Unix, Linux and Windows Systems
User Guide

openUTM
Administering Applications
User Guide

openUTM
Messages, Debugging and Diagnostics on BS2000 Systems
User Guide

http://manuals.ts.fujitsu.com

Related publications

398 Using openUTM on BS2000 Systems

openUTM
Messages, Debugging and Diagnostics on Unix, Linux and Windows Systems
User Guide

openUTM
Creating Applications with X/Open Interfaces
User Guide

openUTM
XML for openUTM

openUTM Client (Unix systems)
for the OpenCPIC Carrier System
Client-Server Communication with openUTM
User Guide

openUTM Client
for the UPIC Carrier System
Client-Server Communication with openUTM
User Guide

openUTM WinAdmin
Graphical Administration Workstation for openUTM
Description and online help system

openUTM WebAdmin
Web Interface for Administering openUTM
Description and online help system

openUTM, openUTM-LU62
Distributed Transaction Processing
between openUTM and CICS, IMS and LU6.2 Applications
User Guide

openUTM (BS2000)
Programming Applications with KDCS for Assembler
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for Fortran
Supplement to Core Manual

Related publications

Using openUTM on BS2000 Systems 399

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

01
6

 S
ta

n
d

16
:1

4
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

00
\0

5
_E

in
sa

tz
_B

S
2\

en
\b

et
rB

S
_e

.li
t

openUTM (BS2000)
Programming Applications with KDCS for Pascal-XT
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for PL/I
Supplement to Core Manual

WS4UTM (Unix systems and Windows systems)
WebServices for openUTM

openUTM
Master Index

Related publications

400 Using openUTM on BS2000 Systems

Documentation for the openSEAS product environment

BeanConnect
User Guide

JConnect
Connecting Java Clients to openUTM
User documentation and Java docs

WebTransactions
Concepts and Functions

WebTransactions
Template Language

WebTransactions
Web Access to openUTM Applications via UPIC

WebTransactions
Web Access to MVS Applications

WebTransactions
Web Access to OSD Applications

Related publications

Using openUTM on BS2000 Systems 401

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

01
6

 S
ta

n
d

16
:1

4
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

00
\0

5
_E

in
sa

tz
_B

S
2\

en
\b

et
rB

S
_e

.li
t

Documentation for the BS2000 environment

AID
Advanced Interactive Debugger
Core Manual
User Guide

AID
Advanced Interactive Debugger
Debugging of COBOL Programs
User Guide

AID
Advanced Interactive Debugger
Debugging of C/C++ Programs
User Guide

BCAM
BCAM Volume 1/2
User Guide

BINDER
User Guide

BS2000 OSD/BC
Executive Macros
User Guide

BLSSERV
Dynamic Binder Loader / Starter in BS2000/OSD
User Guide

DCAM
COBOL Calls
User Guide

DCAM
Macros
User Guide

DCAM
Program Interfaces
Description

Related publications

402 Using openUTM on BS2000 Systems

FHS
Format Handling System for openUTM, TIAM, DCAM
User Guide

IFG for FHS
User Guide

HIPLEX AF
High-Availability of Applications in BS2000/OSD
Product Manual

HIPLEX MSCF
BS2000 Processor Networks
User Guide

IMON
Installation Monitor
User Guide

MT9750 (MS Windows)
9750 Emulation under Windows
Product Manual

OMNIS/OMNIS-MENU
Functions and Commands
User Guide

OMNIS/OMNIS-MENU
Administration and Programming
User Guide

OSS (BS2000)
OSI Session Service
User Guide

RSO
Remote SPOOL Output
User Guide

SECOS
Security Control System
User Guide

Related publications

Using openUTM on BS2000 Systems 403

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

01
6

 S
ta

n
d

16
:1

4
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

00
\0

5
_E

in
sa

tz
_B

S
2\

en
\b

et
rB

S
_e

.li
t

SECOS
Security Control System
Ready Reference

SESAM/SQL
Database Operation
User Guide

openSM2
Software Monitor
Volume 1: Administration and Operation

TIAM
User Guide

UDS/SQL
Database Operation
User Guide

Unicode in BS2000/OSD
Introduction

VTSU
Virtual Terminal Support
User Guide

XHCS
8-Bit Code and Unicode Support in BS2000/OSD
User Guide

Related publications

404 Using openUTM on BS2000 Systems

Documentation for the Unix, Linux and Windows system environment

CMX V6.0 (Unix systems)
Betrieb und Administration (only available in German)
User Guide

CMX V6.0
Programming CMX Applications
Programming Guide

OSS (UNIX)
OSI Session Service
User Guide

PRIMECLUSTERTM

Concepts Guide (Solaris, Linux)

openSM2
The documentation of openSM2 is provided in the form of detailed online help systems,
which are delivered with the product.

Related publications

Using openUTM on BS2000 Systems 405

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

.
Ju

ly
 2

01
6

 S
ta

n
d

16
:1

4
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

00
\0

5
_E

in
sa

tz
_B

S
2\

en
\b

et
rB

S
_e

.li
t

Other publications

XCPI-C (X/Open)
Distributed Transaction Processing
X/Open CAE Specification, Version 2
ISBN 1 85912 135 7

Reference Model Version 2 (X/Open)
Distributed Transaction Processing
X/Open Guide
ISBN 1 85912 019 9

TX (Transaction Demarcation) (X/Open)
Distributed Transaction Processing
X/Open CAE Specification
ISBN 1 85912 094 6

XTAMI (X/Open)
Distributed Transaction Processing
X/Open CAE Specification
ISBN 1 85912 130 6

XML
W3C specification (www consortium)
Web page: http://www.w3.org/XML

FUJITSU Software BS2000 BS2IDE
Eclipse-based Integrated Development Environment for BS2000
Web page: https://bs2000.ts.fujitsu.com/bs2ide/

http://www.w3.org/XML
https://bs2000.ts.fujitsu.com/bs2ide/

Related publications

406 Using openUTM on BS2000 Systems

Using openUTM on BS2000 Systems 407

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

n
d

16
:1

9.
48

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_
e.

si
x

Index

24-bit mode 353
31-bit mode 353

A
abnormal application termination, restart 114
abnormal termination

application 121
of node application 166
program unit 222
restart 114
UTM database application 137

abnormalities
sign-on service 196

access database 98
access list concept 202
accounting 245

fixed-price 249
record structure 329
resource utilization 245
structure of accounting records 329
utilization-oriented 249
UTM database application 139
with distributed processing 256

accounting phase 248, 250, 254
accounting record 249

structure 329
accounting unit counter 249
accounting units 249
activate

SAT logging 225
STXIT routines 105
test mode 107

adding programs 219
ADMI trace 96

ADMI-TRACE 96
administration

SAT audit 236
administration authorization 198
administration journal 150, 173, 360
administration program 237
ALTERNATE-LIBRARIES=NO 60
ALTERNATE-LIBRARIES=YES 60
analyze performance bottlenecks 260
application

abnormal termination 121
memory utilization 320
optimize load structure 31, 38
query status 119
terminate 119
with user IDs 201

application data 166
after failure of a node 166

application logic 51
application operation

preparation 71
application program

generate 51
link 55
load 222
start commands 110
structure 31

assemble ROOT table source 51
asynchronous message

output 208
asynchronous processing

for UPIC client 350
ASYNTASKS 96

Index

408 Using openUTM on BS2000 Systems

audit
administer 241
information on 238
SAT 225, 332

autolink function 34, 60
example 61

automatic KDCSIGN 187
automatic size monitoring

SYSLOG 75, 81, 82
automatic start

after application termination 114

B
base

SYSLOG-FGG 78
base name 71, 95
basic format, output 207
batch processes 91
BCAM

terminate 120
BCAM trace

for Capture & Replay 295
BCAM wait times

record 267
BINDER statements 59
blanked, password 181
BLS 213
BS2000

openUTM subsystem 308
user ID 89

BTRACE 96, 352
bulletin 195

C
calculation phase 247, 250
calculation record 248

structure 329
calls

UTM tools 316
catalogs

UTM cluster application 152
CATID 97
CC- 99
CIS 123

class 4 memory 44
class 6 memory 44, 46
cluster 141

failure detection 164
cluster administration journal 360
cluster configuration file 149
cluster GSSB file 150
cluster page pool files 150
cluster ULS file 150
cluster user file 150
cluster_filebase 149
CLUSTER-FILEBASE 96
cobrtcb2 352
cold start 113
commands

to start the application 110
common memory pool

generate 46
shared code 46

compile
XS-compatible program unit 353

compiler
supported versions 322

configure
UTM cluster application 158

connection module 126
database 125
for databases 124
format handling system 55

connection module (DB) 126
connection password 103
connection user ID 187
COPY-CRYPT 352
COSMOS 264
CPI-C

trace function 97
CPI-C sample programs 349
CPI-C trace function 97
CPIC-TRACE 97
create

SYSLOG-FGG 75
user log file 85

CRTE
load as subsystem 65

Index

Using openUTM on BS2000 Systems 409

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

n
d

16
:1

9.
48

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_
e.

si
x

D
data areas

shareable 48, 56
data entry

start (KDCMON) 267
data evaluation

KDCMON 268
DATABASE 124
database 124

connection to UTM 123
database calls

record 291
database connection module 55, 124, 125
database key 98
database system

start parameters 98
date

in messages 108
DB system

as subsystem 126
DB-CONNECT-TIME 98
DB-DIAGAREA 140
DBH

in a cluster 158
DBKEY 98
DC 99
DEBUG

start parameter 135
diagnostic documentation

abnormal termination 122
diagnostics

UTM cluster application 177
UTM database application 140
UTM errors 107
with SYSLOG 73
write diagnostic data to file 107

dialog message
output last 210

distributed processing
accounting 256

documentation
summary 16

DSSM statements 308
KDCMON 314
UTM-SM2 312

DUMP 352
dump files

file name prefix 100
DUMP-CONTENT 98
DUMP-MESSAGE 99

reset value 99
DUMP-USERID 101
dynamic addition

programs 219

E
enable

STXIT routines 105
enable/disable BCAM trace function 96
encryption module 308
END 95
ENTER-JOB command 91
ENTER-PROC command 91
ENTER-PROC-INPUT 101
entry name of database 124
error message

at application start 113
errors

system environment 221
evaluate

KDCMON measurement data 268
openSM2 measurement data 263

evaluation lists
KDCMON 273

event exits 35, 38, 41
event services 35, 38, 41
event-driven SAT logging 227, 229
events

security-related (SAT) 226
example

create FGG on private disk 86
create user log file 86
link LLM with autolink 61
link shareable modules (OM format) 62
start procedure 352
UTM cluster application 154

Index

410 Using openUTM on BS2000 Systems

exchange
shared code 44
subsystems 45

execution, coordinate 54
external references 58

resolve 36

F
F2/Q3 mode

security criteria 332
failover 131
failure detection

actions 164
sample procedures (cluster) 165

failure of a node
application data 166

failure script
restart after node failure 167

FGG
create on private disk 86
PRIVATE DISK 79
PUBLIC DISK 79
switch to next 87

FGGUSLOG 352
FHS-DE formats 211
file generation group, see FGG
file name prefix 149
FILEBASE 95
filebase.SLOG

SYSLOG name 74
files

required for application operation 71
files local to the nodes 151
fixed-price accounting 249
format

UTM SAT administration commands 238
format handling system

start parameters 109
format libraries 51
formatted dialog 195
function keys 184
function variants of UTM 208

G
GEN 352
generate

application program 51
shareable modules 48
UTM database application 124
UTM database connection 124

global application pool 46, 47
grace sign-on 183

I
ID card 183

ID card reader 183
insert 183

identifier overflow protection 81
ILCS 328
IMON 305
initial KDCFILE 153
insert

ID card 183
install

product files 310
UTM 305
UTM cluster application 143
UTM-SM2 312

installation user ID 309
instruction counter 223
INT 103
intermediate dialog 193
internal OSS trace records 103
interrupt weight 223
interrupted service 198
IUTMDB 123

J
job switch 119
job variable 119

node failure 167
JOIN entry 91

Index

Using openUTM on BS2000 Systems 411

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

n
d

16
:1

9.
48

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_
e.

si
x

K
K/F key

user commands 206
K000 99
K001 198
K003 212
K005 203
K008 199
K009 203
K018 212
K019 212
K021 204
K027 197
K028 186
K049 140
K050 113
K051 113
K068 140
K071 140
K078 90
K079 255
K080 267
K092 186
K094 184
K097 183
K120 183
K121 186
K123 203
K136 74
K138 74
K155 186
KAA tables

dynamic 321
static 320

KCECRYP 308
KCNOCRYP 308
KDCADM 55
KDCADMI

trace 96
KDCADMI trace function 96
KDCDISP 210

FHS-DE formats 211

KDCEVAL 269
messages 271
result 272

KDCFILE 71
base name 95
node application 151
UTM cluster application 96, 153

KDCFOR 207
KDCISAT 238

example 239
output 239

KDCLAST 211
FHS-DE formats 211

KDCLOG 87
KDCMON 260, 264

control parameters 265
evaluate data 268
evaluation list 273
load 315
selectable units 314
start 265
start data entry 267
starting data acquisition 267
unload 315
UTM database application 139

KDCMSAT 241
output 243

KDCOFF 183, 212
from program 204

KDCOFF BUT 212
KDCOUT 208
KDCROOT 54, 55

runtime system 56
KDCS return code 222
KDCSADM 55
KDCSHUT 119
KDCSIGN 181

automatic 187
with ID card 183

KDCSWTCH 198
KF58 74

Index

412 Using openUTM on BS2000 Systems

L
language connection module 56
language-specific runtime systems 51
last dialog message, output 210
last output, repeat 211
LCS program units 70
LEASY 123
LINK 352
link

application program 55
example with autolink function 61
runtime system 64
UTM database application 125
XS-compatible UTM application 353

link load module 57
link name

SYSLOG 74, 75
LLM format

subsystems 45
LLMs 57

slices 58
static linking 59

load
KDCMON 315
order of modules 36
shared code 44
UTM system code 309
UTM-SM2 313

load mode 33
load module (BLS)

static linking 59
load modules

division of objects 41
libraries 33
static linking 42

load order 111
load procedure 34
load structure

recommendations 38
LOAD-MODE=ONCALL 37
LOAD-MODE=POOL 37
local application pool 46
local monitoring

node application 163

lock/keycode concept 202
logging

SAT 225, 332
logging values

information on 238
logical machine number 291
loss of connection to the client

measures in the cluster 167
lower address space 353

M
magnetic strip card 183
main program 54
main routine KDCROOT 54
mapping modules

BS2000 versions 306
ME 99
measurement data

evaluate (openSM2) 263
record (openSM2) 261

measures
after failure of a node 167
after loss of connection to the client 167

memory class required 320
memory dump 222
memory utilization

UTM application 320
message

output asynchronous 208
message file

insert in BS2000 message file 310
message module, user-specific 56
messages

incorrect authorization 203
KDCEVAL 271
sign on with user ID 181

messages with date and time 108
metasyntax 29
minimum logging (SAT) 225
modules

load 36
monitor performance 259

Index

Using openUTM on BS2000 Systems 413

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

n
d

16
:1

9.
48

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_
e.

si
x

monitoring
node application 163
UTM cluster application 163

MPOOL statement 46
MSCF 363
MSGMOD 352
MSGTAC 184
multi-DB operation 123

N
name spaces

UTM system code 307
UTM system code modules 307

node 141
node application 141

abnormal termination 166
failure detection 164
KDCFILE 96, 151
local monitoring 163
monitoring 163
online import of application data 170
sample procedures for failure detection 165
terminating 175

node failure 166
node failure in the cluster

measures 167
node recovery 168

configuring 168
messages 169
name of the node application 102
prerequisites 168
rolling back PTCs 103
start parameters 168
starting 169

node_filebase 151
NODE-TO-RECOVER 102
nonprivileged subsystems 44
normal termination

application 119
notational conventions 29
number

asynchronous services 96
processes at application start 106

O
object module 57
objects

shareable 43
OM 57
OM format

subsystems 45
online import

application data (cluster) 170
openSM2 261

realtime monitoring 261
record measurement data, prerequisite 261

openSM2 measurement data
evaluate 263

openUTM
behavior in the event of a failover 132
XA-DEBUG messages 132
XA-DEBUG parameters 135

openUTM revision levels
UTM cluster application 176

Oracle 123
Oracle password 130
Oracle Real Application Clusters

failover 131
Oracle user name 130
Oracle® 10g 134
Oracle® Real Application Clusters

UTM cluster application 160
order when loading 111
OSI TP clients

sign on 188
OSS calls 103
OSS trace function

switch on/off 103
OTRACE 103
output

asynchronous message 208
basic format 207
KDCISAT 239
KDCMSAT 243
last dialog message 210
openSM2 measurement data 263
repeat 211
start format 198

Index

414 Using openUTM on BS2000 Systems

P
PAMSAM 352
parallel mode

UTM 311
PASSWORD 103
password

at sign-on 181
during sign-on 181
monitor time span 195

PCMX 20
PEND ER 222, 223
performance

monitoring 259
performance analysis

KDCMON 260
TRACE2 291

performance bottlenecks
analyze 259

performance check 259
performance control

UTM database application 139
plausibility check 107
pool

global application 46
local application 46

postselection 235
prefix

start parameters 93
SYSLST 72
SYSOUT 72

preselection
SAT logging 227

preselection values
define 230
link 230

PRIMARY-ALLOCATION
SYSLOG-FGG 80

private slice 33
processor number, logical 291
product files

install 310
program

add dynamically 219

program components
load at program call 32
load at start 32
static linking 31
unload 42

program replacement
ONCALL load module 216
STARTUP load module 216

program unit 51, 55
abnormal termination 222

program unit end
record 291

program unit start
record 291

proof of authorization
automatic 187

PROT 103
PTC

rollback (node recovery) 103
public slice 33
PUBSUBA

publish/subscribe example
(asynchronous) 348

PUBSUBD
publish/subscribe example (dialog) 348

R
RAV 249
Readme files 22
realtime monitoring

openSM2 261
REASON 222
recovery phase 137
register contents 223
REP file 307
repeat

output 211
repeated elements 59
REPFILE 307
replace

load module in CMP 217
ONCALL load module 216
STARTUP load module 216

Index

Using openUTM on BS2000 Systems 415

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

n
d

16
:1

9.
48

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_
e.

si
x

reset
DUMP-MESSAGE value 99

RESET-PTC 103
resolve

external references 36
resource 247
resources 253

check utilization 259
utilization 139

restart 113, 198
RESTART=YES

UTM cluster application 147
ROOT

system module 54
ROOT system modules 51
ROOT table

link statically 52
ROOT table module

load dynamically 51
ROOTNAME 104
RTS 322
RUN-MODE 111
runtime characteristics, recording for UTM

users 260
runtime modules

KDCROOT 55
runtime system 51

compatible 322
KDCROOT 56
link 64
load as subsystem 65
programming language 56

S
sample procedures 352
sample programs

sign-on service 345
SAT log data fields

define 334
meaning 332

SAT log record
structure 332

SAT logging 225, 332
activate 225
administer 236, 241
evaluate 235
event-driven 227
job-driven 229
preselection 227
rules 234
user-driven 228
UTM database application 138

SAT logging values
information on 238

SAT minimum logging 225
SAT preselection 241
scenarios

UTM sign-on check 184
SCOPE=GLOBAL 47
SECONDARY-ALLOCATION

SYSLOG-FGG 80
security-related UTM events 226
selectable units

KDCMON 314
UTM-SM2 312

SERV 103
service

user ID 201
service restart 201

UTM cluster application 147
UTM-F (cluster) 148

SESAM
as subsystem 126

SESAM/SQL 123
SESAM/SQL-DCN 158
SESCOS evaluation 287
SFUNC 206
SG- 99
shareable data area 43, 48, 56
shareable module

link (OM format) 62
shareable objects 43

generate 48
shareable parts as subsystem 65
shareable program units 43

Index

416 Using openUTM on BS2000 Systems

shareable programs
common memory pools 31
nonprivileged subsystems 44
system memory 31

shared code 43
common memory pool 46
exchange 44
load 44

SHOW-ETPND 352
sign off

from UTM application 204, 212
with KDCOFF command 204
with timeout 204

sign on
incorrect input 184
via OSI TP clients 188
via TS applications 187
via UPIC clients 187
via Web 190
without user ID 198

sign-off 138
sign-on 138
sign-on attempts

maximum number 184
statistics 195

sign-on check 181, 199
variants 184

sign-on concept
messages 203

sign-on process
with SIGNON services 192

sign-on service
abnormalities 196
errors 196
possible applications 195
sample programs 197, 345
unsuccessful attempts 196

SIGNON service
for UTM database application 138

SIGNON services 192
size

page pool (log files) 85

size monitoring
automatic 75, 81, 82
suspended 83

slices
by attributes 58
LLMs 58

SLOG-FGG 352
SM2

selectable units for UTM-SM2 312
SORT

for Capture & Replay 298
SPI 103
standalone UTM application 13
START 95
start

after abnormal application termination 114
application 89
commands 110
KDCMON 265
UTM database application 127
UTM production application 89
with WinAdmin 92

START command 95
start commands 95
start format

output 198
start LLM 31, 36, 41, 51, 57
start parameter

failover 131
openstring 128
RMXA 128
RMXA DEBUG= 136
UTM 94
XA support 128

start parameter file
UTM cluster application 153

start parameters
database application 109
format handling system 109
prefix 93
syntax 94
UTM database application 127

start procedure 91

Index

Using openUTM on BS2000 Systems 417

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

n
d

16
:1

9.
48

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_
e.

si
x

start services
from OSI TP client 200
from TS applications 200
from UPIC 200

START-APPL-ENTER-PROC 352
START-BLS-APPLICATION

start procedure (example) 352
STARTNAME 104
static linking

load module (BLS) 59
statistics

sign-on attempts 195
utilization 261

stop UTM database application 127
storage space control

SYSLOG-FGG 81
structure

accounting records 330
application program 31
calculation record 331
SAT log record 332
UTM accounting records 329

STXIT event 223
STXIT routine

user-defined 223
STXIT routines

activate 105
enabling 105

STXIT-LOG 105
subsystem catalog 308

KDCMON entries 314
UTM entries 308
UTM-SM2 entries 312

subsystems
exchange 45
nonprivileged 44
UTM 308
UTM-SM2 312

switch
FGG 87
SYSLOG file 73, 83
SYSOUT/SYSLST 71
to next FGG 87

switchable system log file (SYSLOG) 73

SYSLIB.UTM.064.EXAMPLE 346
SYSLNK.UTM.064 55
SYSLNK.UTM.064.UTIL 316
SYSLOG 352

as a simple file 74
as FGG 75
automatic size monitoring 75
behavior with write errors 84
filebase.SLOG 74
link name 74, 75
overwrite file generations cyclically 81
switch 75, 83, 84
UTM cluster application 162
write error 84

SYSLOG file 73
SYSLOG-FGG 73

automatic size monitoring 82
base 78
checking memory allocation 81
create 77
create file generation automatically 79
maximum number of file generations 77
retain generations 82
suspended size monitoring 83

SYSLST 71
prefix 72

SYSOUT 71
prefix 72

SYSPRC.UTM.064 352
SYSPROT 105
system access control 181
system code

components 306
name spaces 307

system error 122
system files

switching 71
SYSLST 71
SYSOUT 71

system log file 71
SYSLOG 73

system memory
shareable programs 31

Index

418 Using openUTM on BS2000 Systems

T
table module

KDCROOT 55
TABLIB 106
TAC-driven

SAT logging 229
task

start 106
terminate 120

task evaluation
global, openSM2 261

TASKS-IN-PGWT 106
terminals

sign on to openUTM 180
terminate

node application 175
UTM application 119
UTM cluster application 175
UTM task 120

test mode 107
activate 107
write diagnostic data to file 107

TESTMODE 107
TFT entry 119
time

in messages 108
timeout 204
tool

KDCEVAL 269
trace area (internal) 107
trace files 109
trace function, OSS

switch on/off 103
trace records 103
TRACE2 291

format 292
TS applications

sign on 187
TX

trace function 107
TX-TRACE 107
type 124

U
U02 203
U16 203
UDS-D 158
UDS/SQL 123
unload

KDCMON 315
UTM system code 309
UTM-SM2 313

unsuccessful attempts
in sign-on service 196

UPD 352
upgrade

from UTM 328
UPIC client

asynchronous processing 350
UPIC clients

sign on 187
UpicAnalyzer 299

program 299
UpicReplay

program 300
upper address space 353
USD

as subsystem 126
user 247
user commands 206
user ID

during sign-on 181
UTM cluster application 152

user log
page pool size 85

user log file 71, 85
create 85
double 87

user storage area 44, 46
user-defined STXIT routines 223
user-driven SAT logging 228
user-specific message module 56
utilization

resources, check 259
statistics 261

utilization-oriented accounting 249

Index

Using openUTM on BS2000 Systems 419

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
14

. J
ul

y
20

1
6

 S
ta

n
d

16
:1

9.
48

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

4
_1

6
01

20
0

\0
5_

E
in

sa
tz

_
B

S
2

\e
n\

be
tr

B
S

_
e.

si
x

UTM
install 305
parallel mode 311
selectable units 307

UTM application
abnormal termination 121
memory utilization 320
sign off 204
start 89
terminate 119

UTM cluster application 13, 141
administering 171
administration actions global to the

cluster 172
administration actions local to the node 173
administration journal 173
base name 96
catalogs 152
cluster administration journal 360
configuring a database 158
diagnostics 177
encryption capability 162
example 154
files 149
files local to the nodes 151
generating 144
generating reserve nodes 145
global memory areas 146
installing 143
journal files 150
KDCDEF statements 144
KDCFILE 96, 153
monitoring 163
online import of application data 170
openUTM revision levels 176
Oracle® Real Application Clusters 160
properties 141
service restart 147
start parameters 153
starting 161
storage location of files 149
SYSLOG 162
terminating 175
user ID 152

UTM cluster application (cont.)
UTM cluster files 149

UTM cluster files 149
UTM database application 123

diagnostics 140
link 125
performance control 139
start and stop 127
terminate abnormally 137

UTM database connection 123
UTM dump 121, 221

for K message 99
under another user ID 101

UTM event monitor 260, 264
UTM events

security-related (SAT) 226
UTM function calls

record 291
UTM message

sign on with ID card 183
UTM message destination SYSLOG 73
UTM message file

insert in BS2000 message file 310
UTM message module 51
UTM report

openSM2 263
UTM SAT administration 236
UTM SAT administration commands 236

format 238
UTM SAT administrator 236
UTM sign-on check 199
UTM system code

components 306
load 308, 309
name spaces 307
unload 309

UTM system process 106
KDCMON(TASKS) 275

UTM task, terminate 120
UTM tools

call 316
UTM user commands 206
UTM-C.CFG 149
UTM-C.CPMD 150

Index

420 Using openUTM on BS2000 Systems

UTM-C.CPnn 150
UTM-C.EMERGENCY 352
UTM-C.FAILURE 352
UTM-C.GSSB 150
UTM-C.JKAA 150
UTM-C.JRN1 150
UTM-C.JRN2 150
UTM-C.LOCK 150
UTM-C.ULS 150
UTM-C.USER 150
UTM-F 208
UTM-MSG-DATE 108
UTM-S 208
UTM-S application

warm start 113
UTM-SM2 261

load 313
selectable units 312
unload 313

UTM-STXIT 105

V
variants

sign-on check 184
version number 33, 35
violation of access rights

messages 203

W
warm start 113, 122

UTM database application 137
Web

sign on 190
WebTransactions 190
weight 248

determining 253
WinAdmin

start with 92
work processes

number 106
write error

SYSLOG 84

X
XA support 128

multiple instances 128
with failover 131

XAP-TP module 103
XAP-TP system programming interface 103
XATMI trace function 108
XATMI-TRACE 108
XS support of openUTM 353

	Contents
	Preface
	Summary of contents and target group
	Summary of contents of the openUTM documentation
	openUTM documentation
	Documentation for the openSEAS product environment
	Readme files

	Innovations in openUTM V6.4
	New server functions
	New client functions
	New and modified functions for openUTM WinAdmin
	New functions for openUTM WebAdmin

	Notational conventions

	Defining the application program structure
	Generating load modules
	Loading modules
	Recommendations for structuring the application
	Rules and restrictions
	Using shared code
	Shared code in system memory
	Shared code in common memory pools
	Local application pool
	Global application pool
	Generating shareable objects that are loaded in a common memory pool

	Creating the application program
	Components of the application program
	Linking the application program
	LLMs with slices
	Linking LLMs
	Linking LLMs to public/private slices
	Linking runtime systems
	Shareable runtime system parts as subsystem
	Shareable runtime system parts in a common memory pool
	Linking runtime systems to an LLM

	Linking the start LLM

	Information for applications with ILCS program units

	Files required for operation
	System files SYSOUT and SYSLST
	System log file SYSLOG
	SYSLOG as a simple file
	File generation group SYSLOG-FGG
	Creating the SYSLOG-FGG
	Creating a file generation
	Identifier overflow protection
	Retaining SYSLOG generations
	Automatic size monitoring

	Behavior in the event of write errors

	User log file
	Creating the user log file
	Double user log file
	Switching to the next file generation
	Response to write errors

	Starting a UTM application
	Start parameters of the application
	Start parameters for openUTM
	Start parameters for the database system
	Start parameters for the format handling system

	Starting the application
	Cold start and warm start
	Error messages at the application start
	Restarting after an abnormal application termination
	Basic structure of an SDF start procedure

	Terminating a UTM application
	Terminating a UTM application normally
	Terminating a UTM application abnormally
	Diagnostic documentation for a problem report

	UTM database application
	Generating a UTM database connection
	Linking a UTM database application
	Starting and stopping a UTM database application
	Start parameters for a UTM database application
	Start parameters for a UTM database application with XA support
	Multiple instances
	Using the Oracle user name and Oracle password from the UTM generation
	Start parameters for failover with Oracle® Real Application Clusters
	Debug parameters

	Termination of a UTM database

	Operating a UTM database application
	User sign-on and sign-off
	SAT logging
	Accounting
	Performance control
	Diagnostics

	UTM cluster application
	Properties of a UTM cluster application
	Installing and preparing a UTM cluster application for use
	Installation
	UTM generation
	Special UTM generation statements for UTM cluster applications
	Generating reserve nodes

	Using global memory areas
	Service restart
	Runtime environment
	Files
	Location of the files

	Preparation for use
	Examples
	Example 1: Storing all files under one user ID
	Example 2: Storing the files under different user IDs

	Configuration of a UTM cluster application with a database
	Starting a UTM cluster application
	Monitoring of node applications and failure detection
	Local monitoring of a node application
	Application monitoring of the node applications
	Actions performed by the node applications if a failure is detected
	Application data after abnormal termination of a node application
	Measures taken when a node application has been terminated abnormally
	Measures taken for users
	Measures to be taken by the administrator
	Node recovery

	Online import of application data
	Administering a UTM cluster application
	Actions global to the cluster and actions local to a node
	Administration journal
	Reducing the number of nodes

	Shutting down a UTM cluster application
	Use of openUTM revision levels in the UTM cluster application
	Debugging a UTM cluster application

	Working with a UTM application
	Sign-on process with user IDs
	Standard sign-on process for terminals
	Standard sign-on dialog
	Automatic KDCSIGN

	Sign-on process for UPIC clients and TS applications
	Sign-on process for OSI TP partner
	Sign-on process in the World Wide Web via WebServices (WS4UTM)
	Sign-on process in the World Wide Web via WebTransactions
	Multiple sign-ons under one user ID
	Sign-on process with sign-on services
	Sign-on service for terminals
	Sign-on service for TS applications
	Sign-on service for UPIC clients
	Possible applications for the sign-on service
	Properties of sign-on services
	Sample programs for the sign-on service

	Behavior in the event of locked clients/LTERM partners

	Sign-on process without user IDs
	Calling UTM services
	Starting services from the terminal
	Starting services from the UPIC client and OSI TP partner
	Starting services from TS applications
	Service restarts

	Sign-on concept of openUTM
	Signing off from a UTM application
	UTM user commands for terminals
	KDCFOR - output the basic format
	KDCOUT - output asynchronous messages
	KDCDISP - output the last dialog message
	KDCLAST - repeat the last output
	KDCOFF - sign off from a UTM application

	Replacing programs during operation
	Linking and generating
	Replacing application parts
	Replacing a load module with LOAD-MODE=STARTUP
	Replacing a load module with LOAD-MODE=ONCALL
	Replacing a load module in a common memory pool

	Replacing the entire application
	Adding programs dynamically

	Fault tolerance of openUTM
	Errors detected by openUTM
	Errors detected by BS2000 which lead to a STXIT event

	SAT logging
	Security-related UTM events
	Preselection – defining the events to be logged
	Event-driven SAT logging
	User-driven SAT logging
	Job-driven SAT logging
	Defining the preselection values
	Linking the preselection values

	Rules for SAT logging
	Postselection – evaluating log records
	Administration of SAT logging
	UTM SAT administration commands
	KDCISAT – query information on SAT logging values
	KDCMSAT – modify SAT logging

	Accounting
	Definition of terms
	Accounting phases
	Calculation phase
	Determining the variant of the accounting procedure
	Accounting phase
	Evaluation
	Error situations

	Accounting with distributed processing
	Restrictions

	Checking performance with openSM2 and KDCMON
	Recording measurement data with openSM2
	KDCMON - UTM event monitor
	Starting and stopping data entry
	Evaluating data
	Converting the data to the SAM format and sorting the data
	Evaluating data with the KDCEVAL tool

	Processing evaluation data on the PC
	Evaluation lists
	TASKS: UTILIZATION OF THE UTM TASKS
	SUMM: TRANSACTION EVALUATION
	TIMES: DISTRIBUTION OF PROCESSING TIMES
	KCOP: UTM CALLS STATISTIC
	WAIT: WAITING TIMES
	TCLASS: EVALUATION OF THE TAC CLASSES
	TACCL: TAC SPECIFIC TAC CLASS EVALUATION
	TACPT: TAC SPECIFIC DISTRIBUTION OF PROCESSING TIMES
	TACLIST: TAC SPECIFIC STATISTICS
	TRACE: TASK SPECIFIC TRACES
	TRACE2: TASK PERFORMANCE TRACE

	Load simulation with Workload Capture and Replay
	Recording the UPIC conversation (UPIC Capture)
	Merging trace entries
	Preparing data using the program UpicAnalyzer
	Replaying the UPIC session using the program UpicReplay
	Adapting the UPIC configuration and UTM generation
	Calling UpicReplay
	Functioning of UpicReplay

	Appendix
	Installing openUTM
	UTM system code
	Loading UTM system code
	Unloading UTM system code
	Installing product files
	Message files
	REP files and RMS files
	Operating several UTM versions in parallel
	UTM-SM2 subsystem
	KDCMON subsystem

	Calling UTM tools
	Starting UTM tools via START-EXECUTABLE-PROGRAM
	Starting UTM tools via separate SDF commands

	Memory classes of a UTM application
	Compiler versions, runtime systems, KDCDEF options
	Assembler
	C/C++
	COBOL
	Fortran
	Pascal
	PL/I
	SPL4
	Notes on upgrading from an older UTM version

	Structure of the accounting records of openUTM
	Structure of an accounting record
	Structure of a calculation record

	Structure of SAT log records
	Meaning of the log data fields used by openUTM
	Defining the data fields

	Sample programs
	Sample programs for the sign-on service
	Sample programs for a publish / subscribe server
	Sample program for moving messages from the dead letter queue selectively
	CPI-C sample programs
	Sample programs for asynchronous processing with UPIC clients

	Sample procedures
	XS-support of UTM applications

	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

