
Edition March 2016

©
 S

ie
m

en
s

N
ix

d
or

f
In

fo
rm

at
io

ns
sy

st
em

e
A

G
 1

9
95

P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

15
01

70
1

_U
D

S
_

A
n

w
\e

n
\u

ds
an

w
.v

or

English

UDS/SQL V2.8
Application Programming

FUJITSU Software BS2000

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2016 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

U930-J-Z125-14-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
19

.1
6

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n\
u

ds
an

w
.iv

z

Contents

1 Preface . 11

1.1 Structure of the UDS/SQL documentation . 11

1.2 Objectives and target groups of this manual . 16

1.3 Summary of contents . 17

1.4 Changes since the last edition of the manuals 18

1.5 Notational conventions . 20
1.5.1 Warnings and notes . 20
1.5.2 Non-SDF notational conventions . 20
1.5.3 SDF syntax representation . 22

1.6 Sample database . 27

2 Overview . 29

2.1 The language concept of DML . 29

2.2 The range of functions for DML . 30

3 Transaction concept . 31

3.1 The transaction in multi-DB operation . 32

3.2 The transaction in mono-DB operation . 33

3.3 Rollback . 33

3.4 Page protection . 34

Contents

 U930-J-Z125-14-76

4 Currency table . 37

5 DML functions . 41

5.1 Opening and closing transactions . 43
5.1.1 Opening a transaction or processing chain (READY) 43
5.1.2 Closing a transaction (FINISH) . 45

5.2 Retrieving data . 46
5.2.1 Direct access at record type level . 48
5.2.1.1 Direct access via the database key (FIND/FETCH-1) 48
5.2.1.2 Direct access via the CALC key (FIND/FETCH-2) 49
5.2.1.3 Direct access via any items (FIND/FETCH-3/7) 50
5.2.2 Sequential access at record type level (FIND/FETCH-4) 55
5.2.3 Access to the CRR (FIND/FETCH-5) . 55
5.2.4 Direct access at set level (FIND/FETCH-3/7) . 56
5.2.5 Sequential access at set level (FIND/FETCH-4) . 59
5.2.6 Access to the CRS (FIND/FETCH-5) . 60
5.2.7 Access to the owner of a CRS (FIND/FETCH-6) . 60
5.2.8 Sequential access at realm level (FIND/FETCH-4) 61
5.2.9 Access to the CRA (FIND/FETCH-5) . 61
5.2.10 Transport the CRU completely or partially into the UWA (GET) 62
5.2.11 Retrieve database key values (ACCEPT-1) . 63
5.2.12 Retrieve realm (ACCEPT-2) . 64

5.3 Modifying data . 65
5.3.1 Store a record in the database and connect it into set occurrences (STORE) 65
5.3.2 Connect a record into a set occurrence (CONNECT) 66
5.3.3 Disconnect existing set relationships (DISCONNECT) 67
5.3.4 Modify the CRU or connect it into another set occurrence (MODIFY) 68
5.3.5 Delete records and their set relationships (ERASE) 69
5.3.6 Correlation between type of set membership and data-modifying statements 70

5.4 Protecting records . 71
5.4.1 Activate extended record protection (KEEP) . 71
5.4.2 Deactivate extended record protection (FREE) . 72

5.5 Testing set memberships in the program (IF) . 73
5.5.1 Testing the set membership of the CRU . 73
5.5.2 Testing a set occurrence for member records . 74

Contents

U930-J-Z125-14-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
19

.1
6

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n\
u

ds
an

w
.iv

z

6 Using DML . 75

6.1 Structure of the COBOL/CALL DML programs 76
6.1.1 COBOL DML . 77
6.1.2 CALL DML . 83

6.2 Special features of COBOL DML . 86
Specifying a key for use of the subschema (PRIVACY) 86
Assigning the subschema and setting up the communication area

(DB entry) . 86
COBOL special registers . 88
Transferring a database key value (SET) . 88
Describing error handling routines (USE) . 89
Assigning the COSSD file for compiling a COBOL-DML program 90

6.3 Special features of CALL DML . 92
Testing the structure of the subschema (LOOKC) 94

6.4 Linking, loading and starting a UDS/SQL-TIAM application program 95
6.4.1 Basic aspects . 95

The principle of dynamic loading . 95
Loading the UDS/SQL product modules dynamically 95
Loading the application-specific data modules SSITAB and PLITAB dynamically . . . 98
Loading the configuration-specific table module UDSTRTAB dynamically 99

6.4.2 Linking UDS/SQL-TIAM applications . 100
6.4.3 Starting a COBOL program . 103

6.5 Interoperation in a UDS/SQL-openUTM application 107
Generating a UDS/SQL-openUTM application . 107
Linking UDS/SQL-openUTM applications . 109
Starting a UDS/SQL-openUTM application . 112
Error codes . 113

6.6 Error handling . 114
6.6.1 Interrupt handling for UDS/SQL-TIAM applications 114
6.6.2 Database exception conditions . 117

Using special registers (COBOL DML) or the user information area (CALL DML) . . . 117
Statement codes . 118
Status codes . 119
Combinations of statement codes and status codes 120
FIND/FETCH status codes . 122

6.6.3 CALL DML error handling routine DSCEXT . 124

6.7 Translation table for application-specific sorting 126

Contents

 U930-J-Z125-14-76

7 COBOL DML reference section . 129

7.1 General rules . 130

7.2 ID DIVISION . 131

7.3 DATA DIVISION . 131
SUB-SCHEMA SECTION . 131
DB entry . 132

7.4 PROCEDURE DIVISION . 133
7.4.1 Overview of COBOL DML statements . 133
7.4.2 COBOL DML statements . 139

ACCEPT . 139
CONNECT . 143
DISCONNECT . 144
ERASE . 146
FIND/FETCH . 148
FINISH . 179
FREE . 179
GET . 180
IF . 181
KEEP . 182
MODIFY . 183
READY . 186
SET . 187
STORE . 189
USE . 194

8 CALL DML reference section . 197

8.1 CALL interface . 197

8.2 Parameter definitions . 198
8.2.1 Rules . 199
8.2.2 Format table . 201
8.2.3 Format of secondary option (SOPT) . 203
8.2.4 Format of user information (UINF) . 205
8.2.5 Format of special parameter 1 (SPP1) . 209
8.2.6 Format of special parameter 2 (SPP2) . 210

8.3 CALL DML calls . 211
8.3.1 Overview of the CALL DML functions . 211
8.3.2 Functions of CALL DML . 226

Saving currency information (ACCPTC, ACCPTL) 227

Contents

U930-J-Z125-14-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
19

.1
6

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n\
u

ds
an

w
.iv

z

Establishing set connections (CONNEC) . 229
Releasing existing set connections (DISCON) . 230
Deleting records and their set connections (ERASEC) 231
Retrieval of data (FIND/FTCH) . 232
Concluding processing (FINISC) . 247
Deactivating extended record protection (FREEC) 247
Transporting a record to the record area (GETC) 248
Testing database conditions (IFC) . 250
Activating extended record protection (KEEPC) . 251
Modifying records already stored (MODIF1/2) . 251
Preparing for processing (READYC) . 254
Storing records (STORE1/2, STOR1L/2L) . 256

8.4 CALL DML Assembler macros . 259
DSCAL . 261
DSCAP . 262
DSCDF . 263
DSCPA . 265

8.5 LOOKC function . 266
8.5.1 The LOOKC block . 268
8.5.2 Description of LOOKC parameters . 275
8.5.3 LOOKC tables . 278

8.6 Examples using different programming languages 289

9 Testing DML functions using DMLTEST . 301

9.1 Introduction . 302

9.2 DMLTEST commands . 305
Overview of the DMLTEST commands and general rules 305
ADD . 315
CONTINUE . 316
DBH . 316
DECLARE . 316
DEFINE . 317
DELETE . 317
DISPLAY . 318
DISPOFF . 318
DO . 319
EDT . 321
END . 321
ESCAPE . 321

Contents

 U930-J-Z125-14-76

EXECUTE . 322
HALT . 323
HELP . 323
LANGUAGE . 324
LEAVE . 325
LIST . 326
MOVE . 327
NEXT . 329
PERFORM . 330
PRINT . 331
PROC . 331
PROFF . 332
PROT . 332
REMARK . 332
RUN . 333
SET . 334
SHOW . 336
SUBSCHEMA . 337
SYSTEM . 337
TRACE . 338
WAIT . 339

9.3 The DML statements of DMLTEST . 340
9.3.1 Overview of differences between DMLTEST DML and COBOL DML statements . . 340
9.3.2 The DML statements . 342

9.4 DMLTEST program execution . 359
9.4.1 Interrupts . 359
9.4.2 Communication with one or more databases . 362

9.5 Error messages . 363

10 Appendix . 365

10.1 Status codes . 365
DML status codes . 365
CALL DML status codes . 378

10.2 Description of the "MAIL-ORDERS" schema for the sample database
SHIPPING . 383

10.3 UDS/SQL-openUTM return codes . 390

10.4 Additional diagnostic information in openUTM 394

Contents

U930-J-Z125-14-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
19

.1
6

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n\
u

ds
an

w
.iv

z

Glossary . 401

Abbreviations . 443

Related publications . 447

Index . 453

Contents

 U930-J-Z125-14-76

U930-J-Z125-14-76 11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

49
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

1

1 Preface

The Universal Database System UDS/SQL is a high-performance database system based
on the structural concept of CODASYL. Its capabilities, however, go far beyond those of
CODASYL as it also offers the features of the relational model. Both models can be used
in coexistence with each other on the same data resources.

COBOL DML, CALL DML and (ISO standard) SQL are available for querying and updating
data. COBOL DML statements are integrated in the COBOL language; SQL statements can
be used in DRIVE programs or via an ODBC interface.

To ensure confidentiality, integrity and availability, UDS/SQL provides effective but flexible
protection mechanisms that control access to the database. These mechanisms are
compatible with the openUTM transaction monitor.

The data security concept provided by UDS/SQL effectively protects data against
corruption and loss. This concept combines UDS/SQL-specific mechanisms such as
logging updated information with BS2000 functions such as DRV (Dual Recording by
Volume).

If the add-on product UDS-D is used, it is also possible to process data resources in
BS2000 computer networks. UDS/SQL ensures that the data remains consistent
throughout the network. Distributed transaction processing in both BS2000 computer
networks and networks of BS2000 and other operating systems can be implemented using
UDS/SQL together with openUTM-D or openUTM (Unix/Linux/Windows). UDS/SQL can
also be used as the database in client-server solutions via ODBC servers.

The architecture of UDS/SQL (e.g. multitasking, multithreading, DB cache) and its struc-
turing flexibility provide a very high level of throughput.

1.1 Structure of the UDS/SQL documentation

The “Guide through the manuals” section explains which manuals and which parts of the
manuals contain the information required by the user. A glossary gives brief definitions of
the technical terms used in the text.
In addition to using the table of contents, users can find answers to their queries either via
the index or by referring to the running headers.

Structure of the UDS/SQL documentation Preface

12 U930-J-Z125-14-76

Guide through the manuals

The UDS/SQL database system is documented in five manuals:

– UDS/SQL Design and Definition
– UDS/SQL Application Programming
– UDS/SQL Creation and Restructuring
– UDS/SQL Database Operation
– UDS/SQL Recovery, Information and Reorganization

Further manuals describing additional UDS/SQL products and functions are listed on
page 15.

For a basic introduction the user should refer to chapters 2 and 3 of the “Design and
Definition” manual; these chapters describe

– reasons for using databases

– the CODASYL database model

– the relational database model with regard to SQL

– the difference between the models

– the coexistence of the two database models in a UDS/SQL database

– the characteristic features of UDS/SQL

How the manuals are used depends on the user’s previous knowledge and tasks. Table 1
serves as a guide to help users find their way through the manuals.

Examples

A user whose task it is to write COBOL DML programs should look up the column
“COBOL/CALL DML Programming” under “User task” in the second line of table 1.
There, the following chapters of the “Design and Definition” manual are recommended:

In the same column the user can also see which chapters of the other manual are of
use.

Database administrators who are in charge of database administration and operation
will find the appropriate information under the column “Administration and Operation”.

General information B = Basic information

Schema DDL D = Detailed information

SSL D = Detailed information

Subschema DDL L = Learning the functions

Preface Structure of the UDS/SQL documentation

U930-J-Z125-14-76 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

49
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

1

Contents of the five

main manuals

User task

Design
and

definition

COBOL/
CALL DML

programming

SQL
program-

ming

Creation
and re-

structuring

Administra-
tion and

operation

Working
with

openUTM

Working
with
IQS

Working
with

UDS-D

Manual UDS/SQL Design and Definition

Preface B – – – – B B –

General information B B B B B B – –

Designing the database B – – – – – – –

Schema DDL L D – L L – – –

SSL L D – L L – – –

Subschema DDL L L – L L – – –

Relational schema L – D – – – – –

Structure of pages D – – D D – – –

Structure of records and tables D – – D D – – –

Reference section S – – S – – – –

Manual UDS/SQL Application Programming

Preface – B – – – B B –

Overview – B – – – – – –

Transaction concept – L – L L D D –

Currency table – L – L L – – –

DML functions D L – L – – – –

Using DML – L – D – – – –

COBOL DML reference section – L – – – – – –

CALL DML reference section – L – – – – – –

Testing DML functions
using DMLTEST

– L – – – – – –

Table 1: Guide through the manuals (part 1 of 3)

Structure of the UDS/SQL documentation Preface

14 U930-J-Z125-14-76

Manual UDS/SQL Creation and Restructuring

Preface – – – B – B B –

Overview – – – B B – – –

Database creation – – – L – – – –

Defining access rights – – – L – – – –

Storing and unloading
data

D – – L – D – –

Restructuring the database D – – L – – – –

Renaming database objects D – – L – – – –

Database conversion D – – L – – – –

Database conversion using
BTRANS24

– – – D – – – –

Manual UDS/SQL Database Operation

Preface – – – – B B B –

The database handler – – – – L – – D

DBH load parameters – – – – L – – D

Administration – – – – L – – D

High availability – – – – B – – –

Resource extension and reorgan-
isation during live operation

D – – – B – – –

Saving and recovering a database
in the event of errors

D – – D L D – D

Optimizing performance – – – – D – – D

Using BS2000 functionality – – – – D – – –

The SQL conversation – – – – L – – –

UDSMON – – – – D – – –

General functions of the
utility routines

– – – – D – – –

Using IQS – – – L D – D –

Using UDS-D D D – D D D – D

Function codes of DML statements – D – – D – – –

Contents of the five

main manuals

User task

Design
and

definition

COBOL/
CALL DML

programming

SQL
program-

ming

Creation
and re-

structuring

Administra-
tion and

operation

Working
with

openUTM

Working
with
IQS

Working
with

UDS-D

Table 1: Guide through the manuals (part 2 of 3)

Preface Structure of the UDS/SQL documentation

U930-J-Z125-14-76 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

49
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

1

Manual
UDS/SQL Recovery, Information and Reorganization

Preface – – – – B B B –

Updating and reconstructing a
database

D – – D L D – –

Checking the consistency of a
database

– – – – L – – –

Output of database information D – – D L – – –

Executing online services D – – D L – – –

Database reorganization D – – D L – – –

Controlling the reuse of
deallocated database keys

D – – D L – – –

Additional Manuals

UDS/SQL Messages D D D D D D D D

UDS/SQL System
Reference Guide

S S – S S S S S

IQS – – – D D – L –

ADILOS – – – – D – L –

KDBS – L 1 – D – – – –

SQL for UDS/SQL
Language Reference Manual

– – D – D – – –

1 only for COBOL-DML

B provides basic information for users with no experience of UDS/SQL

L helps the user learn functions

D provides detailed information

S provides a reference to syntax rules for practical work with UDS/SQL

Contents of the five

main manuals

User task

Design
and

definition

COBOL/
CALL DML

programming

SQL
program-

ming

Creation
and re-

structuring

Administra-
tion and

operation

Working
with

openUTM

Working
with
IQS

Working
with

UDS-D

Table 1: Guide through the manuals (part 3 of 3)

Objectives and target groups of this manual Preface

16 U930-J-Z125-14-76

Additional notes on the manuals

References to other manuals appear in abbreviated form. For example:

(see the “Application Programming” manual, CONNECT)

advises the user to look up CONNECT in the “Application Programming” manual.
The complete titles of the manuals can be found under “Related publications“ at the back
of the manual.

UDS/SQL Messages

This manual contains all messages output by UDS/SQL. The messages are sorted in
ascending numerical order, or in alphabetical order for some utility routines.

UDS/SQL System Reference Guide

The UDS/SQL System Reference Guide gives an overview of the UDS/SQL functions and
formats.

SQL for UDS/SQL
Language Reference Manual

This manual describes the SQL DML language elements of UDS/SQL.
In addition to UDS/SQL-specific extensions, the language elements described include
dynamic SQL as an essential extension of the SQL standard.

1.2 Objectives and target groups of this manual

The manual is directed at the programmer of database applications whose job it is to
convert problem definitions into statement sequences to be executed on UDS/SQL
databases. The resulting program must also take into account the structure of the database
and, if necessary, influence this structure. The subschema required for the application must
contain all the necessary information.

Preface Summary of contents

U930-J-Z125-14-76 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

49
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

1

1.3 Summary of contents

What does this manual contain?

In its introduction, this manual describes the language concept and range of functions of
the Data Manipulation Language DML.

The chapters which follow describe the transaction concept and the functioning of the
currency table.

In order to assist the user in programming applications, the functions of the various DML
statements are explained using COBOL DML as the example. DML application and testing
is described in the subsequent chapters. The reference sections are divided as follows:

– COBOL DML, which is integrated into the language scope of the ANSCOBOL compiler
COBOL85, and

– CALL DML, which is accessed via the CALL interface of the various programming
languages.

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Changes since the last edition of the manuals Preface

18 U930-J-Z125-14-76

1.4 Changes since the last edition of the manuals

The main changes introduced in UDS/SQL V2.8 in comparison with Version V2.7 are listed
in table 2 below together with the manuals and the sections in which the changes are
described. If a specific topic has been dealt with in more than one manual, the manual in
which a detailed description appears is listed first. The following codes are used in the
“Manual” column for the individual manuals involved:

DES Design and Definition DBO Database Operation

APP Application Programming RIR Recovery, Information and Reorganization

CRE Creation and Restructuring MSG Messages

Topic Manual Chapter

UDSMON utility: Improvements concerning transaction time and
DB counters

For output to terminal and output to printer: In the UDS/SQL
monitor mask COUNTER, the unit for displaying the AVG
TRANSACTION TIME is improved to seconds with milliseconds
after the decimal point to enable monitoring of short transactions.

DBO 11

New DISPLAY DBCOUNTERS command in UDSMON for displaying
database counters

DBO 11

BSTATUS utility: Limit the TABLE STATISTICS FOR OWNER IN SET

Improved DISPLAY TABLE FOR OWNER statement to enable limiting
the TABLE STATISTICS FOR OWNER IN SET to specific owner records
or ranges of records.

RIR 6

New BSTATUS utility routine messages MSG 3

New BPRECORD utility routine message 2553 in case of value 0
being specified as a start value in RSQ range.

MSG 3

Database Operation: The number of DML statements and I/O opera-
tions are counted per database.

DBO
MSG

4
2

BOUTLOAD utility: Output in CSV format CRE
MSG

5
3

COPY-RECORD statement: New CSV-OUTPUT operand CRE 5

New output file format CSV CRE 5

Table 2: Changes in version V2.8 compared to V2.7

Preface Changes since the last edition of the manuals

U930-J-Z125-14-76 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

49
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

1

General information

The name BS2000/OSD-BC for the BS2000 basic configuration has changed and from
Version V10.0 becomes: BS2000 OSD/BC.

ONLINE-UTILITY – Reorganize probable position pointers (PPPs)

New DML REORGPPP - Reorganize PPPs RIR 8

New SDF statements: SET-REORGANIZE-PPP-PARAMETERS,
SHOW-REORGANIZE-PPP-PARAMETERS

RIR 8

New procedure statement REORGPPP RIR 8

New predefined variables: REORG-PPP-CURRENT, REORG-PPP-
LOCKED, REORG-PPP-PAGES

RIR 8

New predefined standard procedure *STDREPPP RIR 8

New example „Reorganizing pointers“ RIR 8

New status codes with progress information of the online utility
REORGPPP and new error codes

APP 10

Topic Manual Chapter

Table 2: Changes in version V2.8 compared to V2.7

Non-SDF notational conventions Preface

20 U930-J-Z125-14-76

1.5 Notational conventions

This section provides an explanation of the symbols used for warnings and notes as well
as the notational conventions used to describe syntax rules.

1.5.1 Warnings and notes

1.5.2 Non-SDF notational conventions

 Points out particularly important information

 CAUTION! Warnings

Language element Explanation Example

KEYWORD Keywords are shown in underlined uppercase
letters. You must specify at least the underlined
parts of a keyword.

DATABASE-KEY

MANUAL

OPTIONAL WORD Optional words are shown in uppercase letters
without underlining. Such words may be omitted
without altering the meaning of a statement.

NAME IS

ALLOWED

PAGES

variable Variables are shown in italic lowercase letters. In
a format which contains variables, a current value
must be entered in place of each variable.

item-name

literal-3

integer

lEither⎫
m }
nor ~

Exactly one of the expressions enclosed in braces
must be specified.
Indented lines belong to the preceding
expression.
The braces themselves must not be specified.

lCALC ⎫
m }
nINDEX~

lVALUE IS ⎫
m }
nVALUES ARE ~

[optional] The expression in square brackets can be
omitted. UDS/SQL then uses the default value
The brackets themselves must no be specified.

[IS integer]

[WITHIN realm-name]

Table 3: Notational conventions (part 1 of 2)

i
!

Preface Non-SDF notational conventions

U930-J-Z125-14-76 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

49
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

1

All other characters such as () , . ; “ = are not metacharacters;
they must be specified exactly as they appear in the formats.

 ...
or
,...

The immediately preceding expression can be
repeated several times if required. The two
language elements distinguish between repeti-
tions which use blanks and those which use
commas.

item-name,...

{SEARCH
KEY.....}...

.....
or
 .
 .

Indicates where entries have been omitted for
reasons of clarity. When the formats are used,
these omissions are not allowed.

SEARCH KEY IS
RECORD NAME
 ..
 .

.
The period must be specified and must be
followed by at least one blank. The underline must
not be specified.

SET SECTION.

03 item-name..... .

Space Means that at least one blank has to be specified. USING CALC

Language element Explanation Example

Table 3: Notational conventions (part 2 of 2)

SDF syntax representation Preface

22 U930-J-Z125-14-76

1.5.3 SDF syntax representation

This syntax description is based on SDF Version 4.7. The syntax of the SDF
command/statement language is explained in the following three tables.

Table 4: Metasyntax

Certain characters and representations are used in the statement formats; their meaning is
explained in table 4.

Table 5: Data types

Variable operand values are represented in SDF by data types. Each data type represents
a specific value set. The number of data types is limited to those described in table 5.

The description of the data types is valid for all commands and statements. Therefore only
deviations from table 5 are explained in the relevant operand descriptions.

Table 6: Data type suffixes

The description of the “integer” data type in table 6 also contains a number of items in italics.
The italics are not part of the syntax, but are used merely to make the table easier to read.

The description of the data type suffixes is valid for all commands and statements.
Therefore only deviations from table 6 are explained in the relevant operand descriptions.

Representation Meaning Examples

UPPERCASE LETTERS

Uppercase letters denote
keywords. Some keywords
begin with *.

OPEN DATABASE

COPY-NAME = *NONE

=
The equal sign connects an
operand name with the
associated operand values.

CONFIGURATION-NAME = <name 1..8>

< >

Angle brackets denote variables
whose range of values is
described by data types and
their suffixes (Tables 5 and 6).

DATABASE = <dbname>

Underscoring
Underscoring denotes the
default value of an operand.

SCHEMA-NAME = *STD

/
A slash separates alternative
operand values.

CMD = *ALL / <dal-cmd>

(...)
Parentheses denote operand
values that initiate a structure.

*KSET-FORMAT(...)

Table 4: Metasyntax (part 1 of 2)

Preface SDF syntax representation

U930-J-Z125-14-76 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

49
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

1

Indentation

Indentation indicates that the
operand is dependent on a
higher-ranking operand.

USER-GROUP-NAME = *KSET-FORMAT(...)

*KSET-FORMAT(...)

⏐ HOST = <host>

⏐
⏐

A vertical bar identifies related
operands within structure. Its
length marks the beginning and
end of a structure. A structure
may contain further structures.
The number of vertical
preceding an operand corre-
sponds to the depth of the
structure.

USER-GROUP-NAME = *ALL-EXCEPT(...)

*ALL-EXCEPT(...)

⏐ NAME = *KSET-FORMAT(...)

⏐ *KSET-FORMAT(...)

⏐ ⏐ HOST = <host>

⏐ ⏐ ...

,
A comma precedes further
operands at the same structure
level.

,SPACE = STD

list-poss(n):

list-poss signifies that the
operand values following it may
be entered as a list. If a value is
specified for (n), the list may
contain no more than that
number of elements. A list of two
or more elements must be
enclosed in parentheses.

NAME = list-poss(30): <subschema-name>

Data type Character set Special rules

alog-seq-no 0..9 1..9 characters

appl A..Z
0..9
$,#,@

Structure identifier:
hyphen

1..8 characters
String that can consist of a number of substrings
separated by hyphens; first character A..Z or $, #, @
Strings of less than 8 characters are filled internally with
underscore characters.

catid A..Z
0..9

1..4 characters
must not start with the string PUB

copyname A..Z
0..9

1..7 characters, starting with A..Z

Table 5: Data types (part 1 of 4)

Representation Meaning Examples

Table 4: Metasyntax (part 2 of 2)

SDF syntax representation Preface

24 U930-J-Z125-14-76

c-string EBCDIC characters 1..4 characters
Must be enclosed in single quotes; the letter C may be
used as a prefix.
Single quotes within c-string must be specified twice.

csv-filename A..Z
0..9
Structure identifier:
hyphen

1..30 characters
Must be enclosed in single quotes

dal-cmd A..Z
0..9
hyphen

1..64 characters

date 0..9

Structure identifier:
hyphen

Date specification
Input format: yyyy-mm-dd
yyyy : year; may be 2 or 4 digits long
mm : month
dd : day

dbname A..Z
0..9

1..17 characters, starting with A..Z

device A..Z
0..9
$,#,@

Structure identifier:
hyphen

5..8 characters, starting with A..Z or 0..9
String that can consist of a number of substrings
separated by hyphens and and whicch corresponds to a
device. In the dialog guidance, SDF shows the permis-
sible operand values. Information as the possible
devices can be found in the relevant operand
description.

host A..Z
0..9
$,#,@

Structure identifier:
hyphen

1..8 characters
String that can consist of a number of substrings
separated by hyphens; first character A..Z or $, #, @
Strings of less than 8 characters are filled internally with
underscore characters.

integer 0..9,+,- + or - may only be the first character.

kset A..Z
0..9
$,#,@

Structure identifier:
hyphen

1..8 characters
String that can consist of a number of substrings
separated by hyphens; first character A..Z or $, #, @
Strings of less than 8 characters are filled internally with
underscore characters.

name A..Z
0..9
$,#,@

1..8 characters
Must not consist only of 0..9 and must not start with a
digit

Data type Character set Special rules

Table 5: Data types (part 2 of 4)

Preface SDF syntax representation

U930-J-Z125-14-76 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

49
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

1

realm-name A..Z
0..9

Structure identifier:
hyphen

1..30 characters
String that may consist of a number of substrings by
hyphens;
first character: A..Z

realmref 0..9 1..3 characters

record-name A..Z
0..9

Structure identifier:
hyphen

1..30 characters
String that can consist of a number of substrings
separated by hyphens;
first character: A..Z
In the case of record types with a search key it is recom-
mendable to use names with no more than 26
characters, otherwise the set name created implicitly
(SYS_...) will be truncated in accordance with the
restriction on the name length for sets.

recordref 0..9 1..3 characters

schema-name A..Z
0..9

Structure identifier:
hyphen

1..30 characters
String that can consist of a number of substrings
separated by hyphens;
first character: A..Z

set-name A..Z
0..9

Structure identifier:
hyphen

1..30 characters
String that can consist of a number of substrings
separated by hyphens;
first character: A..Z

structured-name A…Z
0…9
$, #, @
hyphen

Alphanumeric string which may comprise a number of
substrings separated by a hyphen. First character: A...Z
or $, #, @

subschema-name A..Z
0..9

Structure identifier:
hyphen

1..30 characters
String that can consist of a number of substrings
separated by hyphens;
first character: A..Z

Data type Character set Special rules

Table 5: Data types (part 3 of 4)

SDF syntax representation Preface

26 U930-J-Z125-14-76

time 0..9

Structure identifier:
colon

Time-of-day specification

Input format: lhh:mm:ss⎫
 mhh:mm }
 nhh ~

hh, mm, ss:
Leading zeros may be omitted

userid A..Z

0..9
$,#,@

1..8 characters, beginning with A..Z or $,#,@
BPRIVACY:
Strings of less than 8 characters are filled internally with
underscore characters.

volume A..Z
0..9
$,#,@

1..6 characters starting with A..Z or 0..9

x-string Hexadecimal:
00..FF

1..8 characters
Must be enclosed in single quotes and prefixed with the
letter X.There may be an odd number of characters

Suffix Meaning

x..y unit For the “integer” data type: range specification.
x Minimum value permitted for “integer”. x is an (optionally signed)

integer.
y Maximum value permitted for “integer”. y is an (optionally signed)

integer.
unit for “integer” only: additional units.

The following units may be specified:
Mbyte, Kbyte, seconds

Table 6: Data type suffixes

Data type Character set Special rules

Table 5: Data types (part 4 of 4)

Preface Sample database

U930-J-Z125-14-76 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

49
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

1

1.6 Sample database

The examples given in this manual refer to the following database:

Figure 1: Mail order schema

CUSTOMER

Realm: CUSTOMER-ORDER-RLM Realm: ARTICLE-RLM
Realm:

PURCHASE-ORDER-RLM

CST-ORDERS INSTALMENT

ORD-ITEM

ART-TYPE ART-SELECTION

ART-DESCR

ARTICLE

SUBSET

COLORS MATERIALS

SUPPLIER

PURCHASE-
ORDER

P-ORD-ITEM

SYSTEM

SYSTEM

CST-ORD-
PLACED

CST-ORD-
CONTENTS

OUTSTANDING

HIRE-
PURCHASE

OFFER SHORT-LIST

P-ORD-
SPEC

MIN-STOCK-
LEVEL

CONTAINING CONTAINED-IN

SUPPLIERS

REORDERED-
ARTICLES

ARTICLES-
AVAILABLE

ORDERED-
ARTICLES

REORDERED-
ARTICLES

P-ORD-
PLACED

P-ORD-
RECEIVED

P-ORD-
CONTENTS

CALC
CALC

DIRECT-
LONG

Realms: CLOTHING, HOUSEHOLD-GOODS,
SPORTS-ARTICLES, FOOD,
LEISURE, STATIONARY

Sample database Preface

28 U930-J-Z125-14-76

U930-J-Z125-14-76 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
17

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
2

2 Overview

2.1 The language concept of DML

The language resources available for data processing using files and file systems are not
adequate for users wishing to program database applications.

The Data Manipulation Language (DML) has been introduced for the Universal Database
System UDS/SQL and conforms to the CODASYL language concept for databases. It is not
designed to operate with one specific programming language but can be implemented in
conjunction with a number of different programming languages.

DML exists in two different forms:

– COBOL DML is integrated into the language scope of the ANSCOBOL compiler
COBOL85 and COBOL2000

– CALL DML can be accessed via the CALL interface of the programming languages
Assembler, COBOL, C, FORTRAN, PASCAL and PL/1.

The DML statements take account of the relationships between records as defined in the
schema for a database. They execute the changes to the database which have been
prepared in the communication area of the program. Other processing of data must be
carried out within the application program using the chosen programming language. The
communication area in the application program is the UWA (User Work Area).

The range of functions for DML Overview

30 U930-J-Z125-14-76

Figure 2: Access range of COBOL and DML statements

2.2 The range of functions for DML

The functions available in DML are:

– opening and closing transactions
– retrieving data
– modifying data
– protecting records
– testing conditions

These functions can only be accessed on the condition that changes made to the database
do not adversely affect other users. In UDS/SQL this is taken care of by the transaction
concept and the associated recovery concept.

Database

Access range

 of

DML statements

.
User . UWA

.
program . record area

.

Access range

 of

COBOL statements
Input and
output files

U930-J-Z125-14-76 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
49

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
3

3 Transaction concept

A transaction consists of a logically complete sequence of DML statements. It begins with
READY and ends with FINISH. This sequence of statements is used to process related
tasks. A transaction should be as short as possible so as not to block the individual realms
and pages of the database(s) for too long. Wherever possible, a transaction should not be
longer than 2000 DML statements in batch mode or more than 20 DML statements in an
online application. The transaction concept of UDS/SQL ensures that different users can
utilize the database(s) without impeding each other.

The transaction concept ensures the logical consistency of the database and the recovery
of data.

A transaction is a logically related sequence of DML statements. It is executed either
completely or, if there is an error, not at all. This means that the accessed databases are
always in a consistent state.
Recovery measures are also performed for each transaction; these can be defined by the
user at the start of the transaction to suit the application involved.

When the transaction is opened, the user defines the realms with which he or she wishes
to work and the required type of access to the database (USAGE-MODE). The user deter-
mines whether other users may work with these realms and is thus able to protect data
against unauthorized access.

If the linked-in DBH is used, the protection functions are not relevant since there is only one
user.

Multi-/Mono-DB operation Transaction concept

32 U930-J-Z125-14-76

3.1 The transaction in multi-DB operation

In multi-DB operation, several databases form the multi-DB configuration. A transaction can
access all the databases within this configuration.

Figure 3: Transaction and processing chains in multi-DB operation

Each database must be opened with a READY statement. For this reason a transaction in
multi-DB operation includes several READY statements. The first READY statement opens
the transaction and simultaneously opens the first processing chain. Each subsequent
READY statement opens a further processing chain. A processing chain is a sequence of
DML statements addressed to one database within a transaction. All processing chains are
concluded by a common FINISH statement, which simultaneously terminates the trans-
action.

In multi-DB operation a transaction consists of several processing chains, in COBOL DML
each chain is processed within a separate application module.

In one transaction it is possible to use both processing chains containing COBOL DML and
CALL DML statements. However, either COBOL DML statements only or CALL DML state-
ments only can be used within a processing chain.

If there is an error in any READY statement of the transaction, the entire transaction is rolled
back.

READY for database A
. Processing
. chain A
.

READY for database B
Trans- . Pro-
action . cessing

. chain B
READY for database C

. Pro-

. cessing

. chain C
FINISH

Transaction concept Mono-DB operation

U930-J-Z125-14-76 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
49

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
3

3.2 The transaction in mono-DB operation

In this type of application the single processing chain corresponds to the transaction (see
figure 3). There is only one READY statement per transaction.

3.3 Rollback

Rollback cancels the modifications made by the transaction if, for example, the transaction
could not be concluded with FINISH before the end of the program.

In some situations UDS/SQL has to execute a rollback of the entire transaction instead of
executing the called DML statement.
This is the case, for example, if two or more transactions are blocking each other by
attempting to access blocks, realms or other resources (tables, tasks) which are locked.
The term used to describe this situation is “deadlock”. One of the transactions which are
causing the deadlock is rolled back.

Transaction rollback can also be caused by:

– serious user errors

– premature termination by the database administrator (DAL command ABORT,
CLOSE CALLS)

– input/output errors in realms or log files

A rollback must be recognized by the application program (see section “Error handling” on
page 114). In addition, you can also specify a USE statement with certain database
exception conditions and define appropriate recovery routines via the DECLARATIVES of
a COBOL DML program (see section “Database exception conditions” on page 117).

Page protection Transaction concept

34 U930-J-Z125-14-76

3.4 Page protection

An important consideration in the introduction of database systems is the centralization of
data in a database. This also means, however, that concurrent transactions access the
database simultaneously.

Whereas the database may be accessed by several users simultaneously for read-only
access, only one user at a time may access the data for updates.

The DBH must therefore take protective measures to ensure that the data remains
consistent state and to guarantee an error-free execution sequence.

Example

Two programs add a value of 50 each to an item in the database with an initial value of
100. The result will be 200 in this case only if the second program performs its access
after the first program has written back the value of 150 into the item. If both programs
could read and modify the data at the same time, it is possible that the end result would
be 150.

There are two levels of locking that help to maintain consistency:

– locking at the realm level (see section “Opening a transaction or processing chain
(READY)” on page 43)

– locking at the page level (FIND, FETCH, modifying data, KEEP, FREE);
a page is locked as soon as a record of that page is accessed.

Each of these locking levels are, in turn, protected by two types of locks:

– Exclusive locks:
Only one transaction has access to the data.

– Shared locks:
Multiple transactions may access the data at the same time, provided no exclusive lock
was set.

Transaction concept Page protection

U930-J-Z125-14-76 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
49

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
3

The above two locks are used for page protection on the page level as follows:

– On retrieving data (FIND/FETCH), any page that has not been locked is protected
against updates from other transactions (shared lock) by the page protection
mechanism.

– On updating data, the page in which a record is being updated is protected against all
access from other transactions by an exclusive lock. If pages with secondary data (e.g.
table entries) are involved, these pages are also locked by the page protection
mechanism.

This ensures that deadlocks are prevented in read-only applications.

The page protection can be retained only till the end of the transaction.

In cases where no contending access (for READY EXCLUSIVE) or modification of the
database (for READY PROTECTED RETRIEVAL) is possible at the realm level, the page
protection routines are deactivated; for READY PROTECTED UPDATE, shared locking is
dropped only for updating transactions. The locks then apply only at the realm level in
accordance with the specified READY mode (see the READY statement on page 43).

To prevent concurrently active transactions from impeding each other unnecessarily with
long-term locks, it is recommended in interactive operation that you terminate each trans-
action with FINISH after a few modification operations and then open a new transaction with
READY whenever possible.

The pages of the Free Place Administration table (FPA) and the Database Key Translation
Table (DBTT) are not subject to page protection. The entries in these tables always refer to
a quite specific data page and can only be modified when this data page has been modified
and thus locked. Explicit locking of these table entries is therefore superfluous. Different
transactions can modify different entries in an FPA or DBTT page at the same time.

Page protection Transaction concept

36 U930-J-Z125-14-76

U930-J-Z125-14-76 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
4

4 Currency table

The DBH enters certain current database key values into the currency table. This currency
table information can, for example, be used to access the record of a record type whose
database key value is stored in the table.
The currency table is always maintained for one processing chain at a time and is reset at
FINISH.

A database key value is held in the currency table for each record type, set and realm of a
subschema and for the processing chain. The records belonging to these database key
values are as follows:

– CRR (Current Record of Record): current record of record type

– CRS (Current Record of Set): current record of set

– CRA (Current Record of Area): current record of realm

– CRU (Current Record of Run-unit): current record of processing chain

A record becomes the current record in the currency table when it is accessed by the DML
statements FIND, STORE, ERASE, CONNECT and MODIFY.

The entries in the currency table are also used in the execution of a FIND NEXT statement.
FIND NEXT (FIND-4) selects the record logically following the current record of the record
type, the set occurrence or the realm.

The structure and value ranges for database key values are discussed in detail in the
“Design and Definition” manual.
All cases where there are individual restrictions with respect to the structure
(DATABASE-KEY/DATABASE-KEY-LONG) or value range for a database key value
described in the present manual are indicated where appropriate by means of a special
note.

Currency table

38 U930-J-Z125-14-76

Examples

1. The FIND-4 statement is used to select the record following the CRS.

2. The FIND-5 statement is used to reset the currency table information to its previous
state.

3. In the FIND-7 statement

FIND PERSONNEL-RECORD WITHIN PERSONNEL-SET CURRENT USING ACTIVITY

the DBH interprets the currency information to determine the set occurrence from
which the PERSONNEL-RECORD is to be selected. It checks which record is the
current record in the PERSONNEL-SET. The PERSONNEL-RECORD is then
selected from the set occurrence to which the current record belongs.

Figure 4: Set occurrences to illustrate the currency table

SECTOR

Set-1

PR

DEPARTMENT SALES

Realm-A

Realm-B
Start of transaction

Set-2

JONES

POULTON

PERSONNEL HUBER

MILLER

SALES

WALKER

MACKEY

Currency table

U930-J-Z125-14-76 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
4

Some DML statements allow the user to specify whether the automatic updating of infor-
mation in the currency table is to be suppressed. This is done by means of the RETAINING
option (see section “Retrieving data” on page 46, for example).

Updates of all currency information apart from that of the CRU can be suppressed.

Database
key of
CRU

Database key
of CRA

Database key
of CRS

Database key
of CRR

REALM-A REALM-B SET-1 SET-2 SECTOR DEPT. PERSONNEL

READY 0 0 0 0 0 0 0 0

Retrieval
of

POULTON
WALKER
SALES
PR
JONES

POULTON
WALKER
SALES
PR
JONES

 0
 0
SALES
PR
PR

POULTON
WALKER
WALKER
WALKER
JONES

 0
 0
SALES
PR
PR

POULTON
WALKER
SALES
PR
JONES

 0
 0
 0
 0
 0

 0
 0
SALES
PR
PR

POULTON
WALKER
WALKER
WALKER
JONES

FINISH 0 0 0 0 0 0 0 0

Table 7: Changes in the currency table

Currency table

40 U930-J-Z125-14-76

U930-J-Z125-14-76 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

50
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

5

5 DML functions

The DML functions are divided into five groups:

– opening and closing transactions
– retrieving data
– modifying data
– protecting records
– testing set memberships

This chapter deals with the conversion of user jobs into DML statements. The functions are
explained using COBOL DML statements.

DML functions

42 U930-J-Z125-14-76

The following table 8 shows the COBOL DML statements together with the corresponding
CALL DML formats

The SET and USE statements are described in section “Special features of COBOL DML”
on page 86. The LOOKC function is presented in section “Special features of CALL DML”
on page 92 and explained in detail in section “LOOKC function” on page 266. The syntax
rules and formats for COBOL DML and the syntax rules and parameter definitions for CALL
DML are described in chapter “COBOL DML reference section” on page 129 and chapter
“CALL DML reference section” on page 197, respectively.

COBOL-DML CALL-DML

ACCEPT ACCPTC, ACCPTL

CONNECT CONNEC

DISCONNECT DISCON

ERASE ERASEC

FETCH1-7 FTCH1, FTCH1L, FTCH2-7

FIND1-7 FIND1, FIND1L, FIND2-7

FINISH FINISC

FREE FREEC

GET GETC

IF IFC

KEEP KEEPC

- LOOKC

MODIFY MODIF1

- MODIF2

READY READYC

SET -

STORE STORE1, STOR1L

- STORE2, STOR2L

USE -

Table 8: COBOL DML statements and the corresponding CALL DML functions

DML functions READY

U930-J-Z125-14-76 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

50
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

5

5.1 Opening and closing transactions

Processing can be controlled as follows:

– by opening a transaction and specifying usage modes (READY)

– by closing the transaction (FINISH)

5.1.1 Opening a transaction or processing chain (READY)

 lEXCLUSIVE⎫ lRETRIEVAL⎫
 READY[realm-name,...][USAGE-MODE IS[m }] m }]
 nPROTECTED~ nUPDATE ~

The READY statement opens a transaction or a processing chain (multi-DB mode) for a
database. READY defines the usage modes and specifies the realms to be used.

One READY statement must be specified for each database that the user wishes to access.
The first READY also opens the transaction.

The realm names specified must refer to realms within the user’s subschema.

The usage mode of the realms is defined by USAGE-MODE:

● Access by other processing chains which also wish to work with the realms:

EXCLUSIVE: No other processing chain may use these realms simultaneously.

PROTECTED: Other processing chains may not modify data simultaneously.

● Access by the user’s processing chain:

RETRIEVAL: Retrieve data

UPDATE: Retrieve and update data

If USAGE-MODE is not specified, USAGE-MODE RETRIEVAL is assumed.

The combinations offered by these two specifications give six possible usage modes for a
processing chain, but these are not all compatible with the usage modes of other
processing chains.

READY DML functions

44 U930-J-Z125-14-76

The following table shows which usage modes are permitted concurrently for one realm in
mono-DB operation::

Example

If a realm is already opened with USAGE-MODE UPDATE or EXCLUSIVE
RETRIEVAL, it cannot be opened by a further processing chain with READY USAGE
MODE PROTECTED UPDATE.

The READY statement is executed only if the defined usage mode matches those of the
other processing chains that are accessing the same realms. Otherwise, the system delays
the execution until the incompatible processing chains are completed.

Two processing chains are not allowed to concurrently access the same database within
one transaction.
This restriction prevents two processing chains of the same user from becoming
deadlocked because they have the same access rights at the realm level.

RETRIEVAL UPDATE PROTECTED
RETRIEVAL

PROTECTED
UPDATE

EXCLUSIVE
RETRIEVAL

EXCLUSIVE
UPDATE

RETRIEVAL X1

1 X possible

 (X)2

2 (X) deadlock possible

 X (X) -3

3 - not possible

 -

UPDATE (X) (X) - - - -

PROTECTED
RETRIEVAL

 X - X - - -

PROTECTED
UPDATE

 (X) - - - - -

EXCLUSIVE
RETRIEVAL

 - - - - - -

EXCLUSIVE
UPDATE

 - - - - - -

Table 9: Permitted combinations of USAGE MODE for mono-DB operation

DML functions FINISH

U930-J-Z125-14-76 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

50
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

5

5.1.2 Closing a transaction (FINISH)

FINISH[WITH CANCEL]

A transaction is terminated by means of FINISH.
This simultaneously terminates all open processing chains of this transaction and closes all
realms which were opened by these processing chains. When the transaction is completed,
the before-images and the currency tables are deleted. The temporary realm is released.
Any extension of record protection via KEEP is cancelled.

If the user terminates the transaction with WITH CANCEL, e.g. during a test run of the
program, the DBH rolls back all changes made by the processing chains of this transaction.
If no RLOG files exist, e.g. where PP LOG=NO, or if the RLOG files are defective, the
affected database is flagged as defective and locked for transactions until the database
administrator has returned the database to a consistent state, which also includes rolling
back previous transactions.

FIND/FETCH DML functions

46 U930-J-Z125-14-76

5.2 Retrieving data

There are four DML statements available for retrieving data from the database:

FIND searches for a record in the database, enters its database key value into the
currency table, and identifies it as the current record. This record can be directly
accessed by UDS/SQL via the database key with the statement sequence
ACCEPT, FIND-1 so long as the record is identified in the currency table.

GET delivers the record marked as the current record (CRU) in the currency table to the
application program in the User Work Area (UWA).

FETCH
combines the functions of FIND and GET, i.e. it not only searches for a record in the
database and enters its database key value in the currency table, but also delivers
the record to the UWA of the application program.

ACCEPT
delivers to the application program the database key value of a record indicated in
the currency table or the name of the realm in which the record is stored.

These DML statements are described in the sections below. In the description no differen-
tiation is made between FIND and FETCH. It is taken as read that FETCH additionally
delivers the last record accessed to the application program.

Finding a record in the database

 lFIND ⎫
 m } record-selection-expression[RETAINING CURRENCY]
 nFETCH~

The record-selection-expression enables the user to define how records are to be accessed.
The access options are explained in the next chapters.

UDS/SQL identifies a selected record by overwriting all the relevant columns of the
currency table with the database key value for the record. The database key value for a
previously selected record thus disappears from these columns of the currency table: this
latter record can then only be retrieved using a new search procedure in the database.

The RETAINING option may be used to suppress the updating of currency table entries
when the user wishes to preserve the database key value of a previous record.

DML functions FIND/FETCH

U930-J-Z125-14-76 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

50
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

5

Explicit control of currency table updating

 l MULTIPLE ⎫
 o o
 RETAINING CURRENCY FOR m lSETS ⎫ }
 o[REALM][RECORD][m }]o
 n nset-name,...~ ~

The user can suppress the updating of any currency table entry except the CRU by adding
the following specification to the FIND/FETCH statement.

If updating has been suppressed using RETAINING, the currency table can be updated
subsequently to the most recent status without having to search for the record again in the
database:

 lFIND ⎫ lSETS ⎫
 m } CURRENT[RETAINING CURRENCY FOR[REALM][RECORD][m }]]
 nFETCH~ nset-name,...~

This statement transfers the database key value of the CRU, which always remains current,
to the other relevant columns in the currency table.
RETAINING can also be used in this case to specify which columns should be excluded
from the update.

FIND/FETCH-1 DML functions

48 U930-J-Z125-14-76

5.2.1 Direct access at record type level

With this type of access the contents of an item or combination of items are used to select
a record. The collection of records from which the record is to be selected comprises all
records of one record type. The items can be any items of the record type.

5.2.1.1 Direct access via the database key (FIND/FETCH-1)

 lFIND ⎫ lPRIOR ⎫
 m }[record-name] DATABASE-KEY IS item-name [OR m }]
 nFETCH~ nNEXT ~

Each record has a key which is unique within the database; this is known as the database
key value.
If the user transfers a database key value into the item item-name, UDS/SQL delivers the
associated record. UDS/SQL can also check whether the record belongs to record type
record-name.

The item item-name must be defined with USAGE IS DATABASE-KEY or USAGE IS
DATABASE-KEY-LONG.
If you want to search for a record with a database key value containing a REC-REF > 254
and/or an RSQ > 224-1, item-name must be defined with USAGE IS DATABASE-KEY-LONG.

When you specify OR PRIOR/NEXT, the record with the next lowest/next highest database
key is made available if no record with the specified database key exists. A special status
code then shows that the record with the DATABASE-KEY which was initially specified has
not been selected.

DML functions FIND/FETCH-2

U930-J-Z125-14-76 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

50
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

5

5.2.1.2 Direct access via the CALC key (FIND/FETCH-2)

 lFIND ⎫
 m } ANY record-name
 nFETCH~

This FIND statement may only be used if a CALC key is defined for record type record-name
in the schema (see the “Design and Definition” manual, LOCATION MODE clause). The
user must previously have supplied the items defined as a CALC key in the schema with
the CALC key value of the desired record. UDS/SQL accesses the record by converting this
value into a relative page number by means of a hash procedure.

When the record type record-name is distributed over more than one realm, the user must
also previously have supplied the AREA-ID item (see the “Design and Definition” manual,
WITHIN clause) with the name of the realm containing the required record if the record type
is not the member record type of a distributable list.

If DUPLICATES ARE ALLOWED is declared in the schema, a CALC key value can belong
to several records of the record type. The above statement, however, delivers one record
only. For each further record of the record type with the same CALC key value in the same
realm, the user must write a statement in the following form:

 lFIND ⎫
 m } DUPLICATE record-name
 nFETCH~

This statement can be used sensibly only if the CALC key of record type record-name is
defined by DUPLICATES ARE ALLOWED in the schema. UDS/SQL then searches in this
record type for a record that is different from the CRR, but possesses the same CALC key
value as the CRR and lies within the same realm as the CRR. UDS/SQL uses the
associated hash procedure for the search.

The statement must be repeated for each duplicate to be searched for. It cannot be
guaranteed that all records which belong to one CALC key value will be found unless the
search for the first record is made in each realm which contains records of the record type
with

 lFIND ⎫
 m } ANY record-name
 nFETCH~

FIND/FETCH-3/7 DML functions

50 U930-J-Z125-14-76

5.2.1.3 Direct access via any items (FIND/FETCH-3/7)

There are three options available for searching for records using specified item contents:

– You specify item contents from the CRR and search for a duplicate.

– You specify the desired item contents in the UWA and search for a record having these
item contents.

– You specify the desired item contents in the UWA or in the statement itself and link
these with a search expression in which parentheses, the logical operators AND, OR,
NOT and the relational operators >, < and = can be used.
In this case, the item contents need not be specified completely. A mask can be used
to edit out the section of an item for which no value is to be specified. UDS/SQL
searches for all records which satisfy the search expression and makes them into
member records of an implicit dynamic set. If RESULT IN is entered, these sets also
become members in an explicit dynamic set.
The dynamic sets can be processed further using DML statements, applying different
search criteria, for instance.
The implicit dynamic set can be sorted in ascending or descending order
(SORTED BY).

The access types are explained in detail below.

Specifying item contents from the CRR

 lFIND ⎫
 m } DUPLICATE WITHIN record-name USING record-element-name,...
 nFETCH~

UDS/SQL searches for a record of record type record-name which matches the CRR of this
record type in the specified record elements.

DML functions FIND/FETCH-3/7

U930-J-Z125-14-76 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

50
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

5

Specifying item contents in the UWA

 lFIND ⎫ lPRIOR ⎫
 m } record-name USING record-element-name,...[OR m }]
 nFETCH~ nNEXT ~

UDS/SQL searches for a record of record type record-name with record elements that match
the values preset in the UWA. The user must supply the desired values for these record
elements beforehand in the UWA.

By specifying OR PRIOR/NEXT, the user can cause the prior/next record to be made
available if there is no record that matches the specified values. A special status code
indicates that the record with the specified values has not been selected. record-element-
name,... must be defined as SEARCH KEY USING INDEX. The following record is deter-
mined by the sort sequence.

If there is more than one record, the above statement only delivers the first record. For each
further record, the following statement must be used:

 lFIND ⎫
 m } DUPLICATE WITHIN record-name USING record-element-name,...
 nFETCH~

The same record elements that were used to select the first record must be specified here.
This statement is explained above (see “Specifying item contents from the CRR” on
page 50).

FIND/FETCH-3/7 DML functions

52 U930-J-Z125-14-76

Combining item contents into a search expression

 lFIND ⎫
 m } record-name[USING search-expression][RESULT IN set-name-1]
 nFETCH~
 [LIMITED BY set-name-2][TALLYING item-name-1]

 lASCENDING ⎫ lBY⎫
 [SORTED[m }][m }]
 nDESCENDING~ nON~

 record-element-name-1[[,]record-element-name-2]...

 lASCENDING ⎫ lBY⎫
 [[,][m }][m }]
 nDESCENDING~ nON~

 record-element-name-3[[,]record-element-name-4]...]...]

 lcomplex-1[AND complex-2]⎫
 search-expression ::= m }
 ncomplex-2 ~

 lAND⎫
 complex-1 ::= [NOT]condition-1[m }[NOT] condition-1]...
 nOR ~

 condition-1 ::= record-element-name-5[WITH MASK mask] IS

 lEQUAL ⎫
 o = o
 oGREATER THANo litem-name-2⎫
 [NOT]m } m }
 o > o nliteral-1 ~
 oLESS THAN o
 n < ~

 complex-2 ::= condition-2[AND condition-2]...

 condition-2 ::= record-element-name-6 IS NEXT

 lGREATER THAN⎫
 o > o litem-name-3⎫
 [NOT]m } m }
 oLESS THAN o nliteral-2 ~
 n < ~

DML functions FIND/FETCH-3/7

U930-J-Z125-14-76 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

50
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

5

This statement can select from the database not just one record, but all records of the
record type record-name which satisfy the conditions of the search expression.

FIND statements which select only one record from the database use the currency table to
store the result of the selection.
When a collection of records is selected, UDS/SQL stores the result of the selection in a
dynamic set, making the records selected into member records of the dynamic set. Only the
first record found becomes the current record in the currency table. The dynamic set can
be used for record selection by further FIND statements.

In search-expression the user formulates comparison conditions by specifying item contents
or parts of item contents which must occur in the records being searched for. The
comparison can be with a value specified in the statement itself or with the contents of an
item defined in the COBOL program.

In a search-expression of the form complex-1 AND complex-2, all records that satisfy complex-
1 are determined first. This set of records that satisfy complex-1 is then used as a starting
point from which records that match the condition(s) in complex-2 are selected.

The condition-2 conditions in complex-2 are evaluated in order, starting with the
left-most condition.

Adding NEXT restricts the selected set of condition-2 in complex-2 to those records of the
record type record-name that contain the value W with the following two characteristics as
record-element-6:

– W matches the comparison in condition-2.

– From all values in the database for record-element-6 that match the comparison in
condition-2, W lies closest to the comparison value specified by literal-2 or item-name-3.

● Masking out sections of item contents

Using WITH MASK mask the user can define parts of record-element-name-5 which are to
be ignored by UDS/SQL in a comparison condition.

● Inserting all records of the record type into a dynamic set

If no search expression is specified, all records of the record type become member
records in a dynamic set.

● Limiting collection of records to be searched to a dynamic set

A dynamic set to which UDS/SQL is to limit the search for records can be named by
specifying LIMITED BY set-name-2. This means that UDS/SQL only takes into account
records which belong to record type record-name and are at the same time member
records of the dynamic set.

FIND/FETCH-3/7 DML functions

54 U930-J-Z125-14-76

● Counting the records in the collection of records selected

The records contained in the collection of records selected can be counted using
TALLYING. UDS/SQL transfers the number of records found to item item-name-1

● Sorting the records in the collection of records selected

SORTED BY is used to sort the records contained in the collection of records selected.
record-element-name-1 through record-element-name-4 must be elements of the
record-name record type. ASCENDING causes the records to be sorted in ascending
order, DESCENDING in descending order. The default for the first entry is ASCENDING
and for a repeated entry, the default is the currently valid sorting order. All the sort items
must be sorted in the same direction.

● Accessing a duplicate

When selecting a collection of records, UDS/SQL stores the result of the selection in a
dynamic set. Only the first record found becomes the current record in the currency
table. If no RESULT clause is used, the the following statement must be entered for
each further record to be called from the result of the selection:

 lFIND ⎫
 m } DUPLICATE WITHIN record-name
 nFETCH~

This statement always refers to the last collection of records selected since the dynamic
set always contains only the result of the last search expression.

record-name must designate the record type which was processed with the previous
search expression. UDS/SQL then delivers the record which follows the CRS in the
dynamic set.

● Further processing of the result of the selection

The selection resulting from a search expression is stored by UDS/SQL in an implicit
dynamic set. This is a set which cannot be accessed by means of a name.

RESULT IN set-name-1 can be used to name a dynamic set which is already defined in
the schema and is to accept the result of a search expression. The result stored in this
dynamic set can be processed further at set level using FIND/FETCH-4 statements.

DML functions FIND/FETCH-4/5

U930-J-Z125-14-76 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

50
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

5

5.2.2 Sequential access at record type level (FIND/FETCH-4)

With this type of access a record is selected on the basis of the position which it occupies
within the logical sequence of all records of one record type.
The sequence is determined by ascending order of database key values.

 lLAST ⎫
 o o
 oFIRST o
 o o
 lFIND ⎫ oNEXT o
 m } m } record-name
 nFETCH~ oPRIOR o
 o o
 ointeger o
 o o
 nitem-name~

This option allows the user to select from record type record-name either the last or first
record, the successor or predecessor of the CRR, or the record whose position corre-
sponds to the specified numeric value.

5.2.3 Access to the CRR (FIND/FETCH-5)

 lFIND ⎫
 m } CURRENT record-name
 nFETCH~

This statement is used to access the CRR of record type record-name and thus reset the
currency information to an earlier status.
The CRR again becomes the current record in all affected columns of the currency table or
does so wherever updating has not been suppressed by the RETAINING parameter.

FIND/FETCH-3/7 DML functions

56 U930-J-Z125-14-76

5.2.4 Direct access at set level (FIND/FETCH-3/7)

This type of access is used to select a record via the contents of an item or a combination
of items. The collection of records used for the search are all the records of a set occur-
rence. The items can be any items of the member record type.
UDS/SQL always uses the set occurrence associated with the CRS as the collection of
records from which the selection is made.

There are three ways of searching for records using specified item contents:

– Item contents from the CRS are specified, and a search is made for a duplicate
(FIND-3)

– The desired item contents are specified in the UWA, and a search is made for a record
having these item contents

– The desired item contents are specified in the UWA or in the statement itself, and these
contents are linked to a search expression in which parentheses, the logical operators
AND, OR and NOT, and the relational operators >, < and = can be used.
In this case, the item contents need not be specified completely. A mask can be used
to mask out sections of an item for which no value is to be specified. UDS/SQL
searches for for all records which satisfy the conditions of the search expression and
makes them members of an implicit dynamic set. Input of RESULT IN causes the
records to also become members of an explicit dynamic set.
The dynamic sets can be processed further using DML statements, applying different
search criteria, for instance.
The implicit dynamic set can be sorted in ascending or descending order
(SORTED BY).

These access methods are described in detail below.

Specifying item contents from the CRS

 lFIND ⎫
 m } DUPLICATE WITHIN set-name USING record-element-name,...
 nFETCH~

From the set occurrence which contains the CRS of set set-name UDS/SQL selects a
member record which is different from the CRS and matches the CRS in the specified
record elements.

DML functions FIND/FETCH-3/7

U930-J-Z125-14-76 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

50
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

5

Specifying item contents in the UWA

 lFIND ⎫
 m } record-name WITHIN set-name[CURRENT]
 nFETCH~
 lPRIOR⎫
 USING record-element-name,...[OR m }]
 nNEXT ~

From an occurrence of set set-name UDS/SQL selects a record with record elements that
match the values specified in the UWA. The set occurrence must first be selected and the
record elements in the UWA supplied with the desired values. The set occurrences are
selected in accordance with the selection method defined for this set in the schema. If the
selection method is defined as SELECTION THRU LOCATION MODE OF OWNER, this
can be deactivated by specifying CURRENT. The set occurrence can then be selected via
the CRS.
set-name must not be a dynamic set.

By specifying OR PRIOR or OR NEXT, the user can have the immediately preceding or
following record be selected as a hit if no record that matches the specified values exists.
A special status code then indicates that the exact record was not found.
record-element-name,... must be defined as ASCENDING/DESCENDING/SEARCH KEY
USING INDEX. The next record is determined by the sort sequence of the key.

If there is more than one record with the specified item contents and OR PRIOR is not used,
each subsequent record can be read with the following statement:

 lFIND ⎫
 m } DUPLICATE WITHIN set-name USING record-element-name,...
 nFETCH~

Note that the same record elements used to select the first record must be specified. This
statement is explained above (see “Specifying item contents from the CRS” on page 56).

FIND/FETCH-3/7 DML functions

58 U930-J-Z125-14-76

Combining item contents into a search expression

 lFIND ⎫
 m } record-name WITHIN setname-1[CURRENT][USING search-expression]
 nFETCH~

 [RESULT IN setname-2][LIMITED BY set-name-3][TALLYING itemname]

 lASCENDING ⎫ lBY⎫
 [SORTED[m }][m }]
 nDESCENDING~ nON~

 record-element-name-1[[,]record-element-name-2]...

 lASCENDING ⎫ lBY⎫
 [[,][m }][m }]
 nDESCENDING~ nON~

 record-element-name-3[[,]record-element-name-4]...]...]

 search-expression ::= see page 52

This statement operates in the same way as direct access using search expressions at
record type level (see page 52). Explanations will therefore be given only for those points
in which this type of access differs from access at record type level.

The statement searches through a set occurrence of set setname-1, which must be defined
beforehand. The set occurrences are selected in accordance with the selection method
defined for this set in the schema. If the selection method defined there is SELECTION
THROUGH LOCATION MODE OF OWNER, this can be deactivated by specifying
CURRENT. The set occurrence can then be selected via the CRS.

● Inserting all member records of the set occurrence into a dynamic set

If no search expression is specified, all member records of the set occurrence become
member records in a dynamic set.

● Searching through two set occurrences simultaneously

LIMITED BY setname-3 can be used to give the name of a dynamic set to which the
search for records by UDS/SQL will be limited. This means that UDS/SQL only takes
account of those records which

– are member records in the selected set occurrence of set setname-1 and
– are simultaneously member records in the specified dynamic set.

DML functions FIND/FETCH-4

U930-J-Z125-14-76 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

50
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

5

● Accessing a duplicate

When a collection of records is selected, UDS/SQL stores the results of the selection in
a dynamic set. Only the first record found becomes the current record in the currency
table. If no RESULT clause is used, the following statement must be entered for each
further record to be called from the result of the selection:

 lFIND ⎫
 m } DUPLICATE WITHIN set-name
 nFETCH~

This statement always applies to the most recently selected collection of records since
the implicit dynamic set always contains only the result of the last search expression.

set-name must designate the set which was processed with the previous search
expression. UDS/SQL then delivers the record following the CRS in the dynamic set.

5.2.5 Sequential access at set level (FIND/FETCH-4)

This type of access is used to select a record on the basis of its position within the logical
sequence of all records of a set occurrence. The order is determined in the schema by
means of the ORDER clause for this set. In this order the owner record is at the same time
the predecessor of the first and the successor of the last member record.

 lLAST ⎫
 o o
 oFIRST o
 o o
 lFIND ⎫oNEXT o lrecord-name⎫
 m }m } m } WITHIN set-name
 nFETCH~oPRIOR o nRECORD ~
 o o
 ointeger o
 o o
 nitem-name~

From the set occurrence which contains the CRS of set set-name, the user can select the
first or the last record, the predecessor or the successor of the CRS, or the record whose
position corresponds to a specified numeric value. If record-name is specified, UDS/SQL
only selects the record if record-name indicates the member record type of the set.

FIND/FETCH-5/6 DML functions

60 U930-J-Z125-14-76

5.2.6 Access to the CRS (FIND/FETCH-5)

 lFIND ⎫
 m } CURRENT[record-name] WITHIN set-name
 nFETCH~

This gives access to the CRS of set set-name and thus resets the currency information to an
earlier status. The CRS of set set-name again becomes the current record in all relevant
columns of the currency table or in those columns where updating has not been suppressed
using RETAINING. If record-name is specified, UDS/SQL only accesses the CRS if
record-name indicates the member record type of the set and the CRS is a member record.

5.2.7 Access to the owner of a CRS (FIND/FETCH-6)

 lFIND ⎫
 m } OWNER WITHIN set-name
 nFETCH~

This statement searches for the owner record in the set occurrence of set set-name, which
contains the CRS. If the CRS is already the owner record, only the currency table is updated
since there is no need to search for the record once more in the database.

DML functions FIND/FETCH-4/5

U930-J-Z125-14-76 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

50
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

5

5.2.8 Sequential access at realm level (FIND/FETCH-4)

 lLAST ⎫
 o o
 oFIRST o
 o o
 lFIND ⎫ oNEXT o lrecord-name⎫
 m } m } m } WITHIN realm-name
 nFETCH~ oPRIOR o nRECORD ~
 o o
 ointeger o
 o o
 nitem-name~

This type of access can be used to select a record on the basis of the position which it
occupies within the logical sequence of records in the collection of records in which the
search is made. The records selected can be:

– for record-name: all records in the realm realm-name that belong to record type record-
name. The realm name must be named in the schema in the WITHIN clause of this
record type;

– for RECORD: all records of the realm realm-name.

In both cases the order of the records is determined by ascending order of database key
values.

From the record selection, the user can select the last record, the first record, the next or
prior record to the CRA or the record whose position corresponds to a specified numeric
value.

5.2.9 Access to the CRA (FIND/FETCH-5)

 lFIND ⎫
 m } CURRENT[record-name] WITHIN realm-name
 nFETCH~

This is used to reset the currency information to an earlier status. The CRA of realm
realm-name again becomes the current record in all relevant columns of the currency table
except those where updating has been suppressed using the RETAINING parameter. If
record-name is specified, UDS/SQL only accesses the CRA if it belongs to the specified
record type.

GET DML functions

62 U930-J-Z125-14-76

5.2.10 Transport the CRU completely or partially into the UWA (GET)

 lrecord-name ⎫
 GET[m }]
 nrecord-element-name,...~

This statement makes available in the application program the last record selected from the
database - this record always becomes the CRU - by transporting it completely or partially
to the UWA.
A selection of record elements can be specified if the complete CRU is not required.
In as far as it transports the complete CRU into the UWA, the function is integrated into the
FETCH statement. In this case the following applies:

FIND + GET = FETCH

DML functions ACCEPT-1

U930-J-Z125-14-76 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

50
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

5

5.2.11 Retrieve database key values (ACCEPT-1)

 lrecord-name⎫
 ACCEPT item-name-1 FROM[mrealm-name }] CURRENCY
 nset-name ~

This format transfers a database key value from the currency table to item-name-1.

The following database key value is transferred to item-name-1:

– fori record-name: database key value of the CRR

– for realm-name: database key value of the CRA

– for set-name: database key value of the CRS

If none of these names are specified, the database key value of the CRU is supplied.

The item item-name-1 must be defined with USAGE IS DATABASE-KEY or USAGE IS
DATABASE-KEY-LONG.
If the database key value from the currency table contains a REC-REF > 254 and/or an
RSQ > 224-1, item-name-1 must be defined with USAGE IS DATABASE-KEY-LONG.
Otherwise the value 0 is returned in item-name-1 and the DATABASE-STATUS 15 102 is
output.

If the specified current record is not known, the value 0 is likewise returned in
item-name-1, and the DATABASE-STATUS 15 102 is output.

ACCEPT-2 DML functions

64 U930-J-Z125-14-76

5.2.12 Retrieve realm (ACCEPT-2)

 lrecord-name⎫
 ACCEPT item-name-2 FROM[mset-name }] REALM-NAME
 nitem-name-3~

This format transfers the name of the realm to which the specified currency information
refers to item-name-2.

The following realm name is transferred to item-name-2:

– for record-name: name of the realm to which the CRR belongs

– for set-name: name of the realm to which the CRS belongs

– for item-name-3: name of the realm containing the record whose database key value is
located in item-name-3

The item item-name-3 must be defined with USAGE IS DATABASE-KEY or USAGE IS
DATABASE-KEY-LONG.
If you want to search for a record whose database key value contains a REC-REF > 254
and/or an RSQ > 224-1, item-name-3 must be defined with USAGE IS DATABASE-KEY-
LONG.

If neither record-name, set-name nor item-name-3 are specified, the realm name to which the
CRU belongs is supplied.

DML functions STORE

U930-J-Z125-14-76 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

50
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

5

5.3 Modifying data

Data can be modified as follows:

– storing new records and connecting them into set occurrences (STORE)

– connecting records into set occurrences (CONNECT, MODIFY)

– removing records from set occurrences (DISCONNECT, MODIFY)

– modifying item contents (MODIFY)

– erasing records and set relationships (ERASE)

5.3.1 Store a record in the database and connect it into set occurrences
(STORE)

 lMULTIPLE ⎫
 o o
 STORE record-name[RETAINING CURRENCY FORm lSETS ⎫ }]
 o[REALM][RECORD][m }]o
 n nset-name,...~ ~

STORE transfers all item contents of record type record-name from the UWA into the
database. The items must be provided with the desired values beforehand in the UWA.
Items of the record type which are not in the record area of UWA are automatically filled
with binary zeros by UDS/SQL when they are stored. (The latter is not the case if the
records have been stored in compressed form using CALL DML; see STORE2 and
STOR2L on page 258). The record becomes the current record in all relevant columns of
the currency table.

In each set for which the record type is defined as owner in the schema, the stored record
becomes the owner of a new empty set occurrence. If the set occurrence population for the
set was defined as greater than 0 for the set in the SSL, then the associated tables are also
set up.
In addition the record is inserted into all sets for which the record type is defined as
AUTOMATIC member in the schema. In this case the set occurrences which are to accept
the record and where necessary the insertion points within the set occurrences must be
defined beforehand.
When the record type is distributed over more than one realm in accordance with the
schema, the associated AREA-ID item must also previously have been supplied with the
name of the required realm (see the “Design and Definition” manual, WITHIN clause) if the
record type is not the member record type of a distributable list. When a member record of

CONNECT DML functions

66 U930-J-Z125-14-76

a distributable list is stored, the AREA_ID is ignored. Free space for new level 0 pages
which are to be created in the distributable list is searched for in the current favored realm
("preferred realm“).

5.3.2 Connect a record into a set occurrence (CONNECT)

 lset-name-1,...⎫
 CONNECT[record-name] TO m }
 nALL ~

 lset-name-2,...⎫
 [RETAINING CURRENCY FOR m }]
 nSETS ~

The CONNECT statement operates on the CRU.
If a record type has been defined as a MANUAL member of a set, a record of this record
type can only be inserted into this set with a CONNECT statement. The record must already
be stored in the database.

The CONNECT statement operates on the following types of set membership of member
records:

● MANDATORY MANUAL
A record is inserted as a MANUAL member (since it is a MANDATORY member record,
it cannot be removed from the set occurrence using DISCONNECT, but only be trans-
ferred to a different set occurrence or deleted by means of ERASE.

● OPTIONAL AUTOMATIC
A record which has already been a member record of an occurrence of the set is
inserted again (this AUTOMATIC member record was inserted with STORE and could
be removed again with DISCONNECT since it is an OPTIONAL member record).

● OPTIONAL MANUAL
A record is inserted for the first time after a STORE statement (MANUAL member
record) or is inserted again as an OPTIONAL member record after a DISCONNECT
statement.

In record-name the user names the record type with one of the 3 types of set membership
given in set-name-1,.... The CRU must belong to the records of the specified record type.
If no record name is specified the record type is determined from the description of the first
set specified.

DML functions DISCONNECT

U930-J-Z125-14-76 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

50
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

5

The set occurrence is selected via the relevant CRS. After execution of the CONNECT
statement, the CRU becomes the CRS of each set into which it was inserted.
If RETAINING is used, the updating of currency table information is suppressed for
setname-2,.... If SETS is specified, the currency information for all sets involved remains
unchanged.

5.3.3 Disconnect existing set relationships (DISCONNECT)

Removing a record from set occurrences

 lset-name,...⎫
 DISCONNECT[record-name] FROM m }
 nALL ~

This DISCONNECT statement operates on the CRU. It removes the CRU from the set
occurrences of all specified sets. The record type in these sets must be optional member
record type (i.e. set membership OPTIONAL MANUAL or OPTIONAL AUTOMATIC).
The record type record-name must match the record type of the CRU.

If no record name is specified, the record type is determined from the description of the first
set specified.

The DISCONNECT statement does not modify the currency table information.

Removing all member records from dynamic sets

 DISCONNECT ALL FROM set-name,...

This format operates on all records of set-name,....
If all member records are to be removed from a dynamic set, this format of the
DISCONNECT statement should be used.

set-name,... must be dynamic sets.

With this format it is also possible to specify result sets of a FIND-7 statement.
The DISCONNECT statement does not modify the currency table information.

MODIFY DML functions

68 U930-J-Z125-14-76

5.3.4 Modify the CRU or connect it into another set occurrence (MODIFY)

 lrecord-name ⎫ lINCLUDING⎫ lALL ⎫
 MODIFY m }[m } m } MEMBERSHIP]

nrecord-element-name,...~ nONLY ~ nset-name-1,...~

 lSETS ⎫
 [RETAINING CURRENCY FOR m }]
 nset-name-2,...~

MODIFY can modify item contents of the CRU or disconnect the CRU from one set occur-
rence and connect it into another set occurrence of the same set.

If only the first-named function is required, neither ONLY nor INCLUDING may be specified.

If ONLY is specified, UDS/SQL executes the second function only.
If INCLUDING is specified, UDS/SQL executes both functions.
The functions are described separately below.

Modifying item contents of the CRU

 lrecord-name ⎫ lSETS ⎫
 MODIFY m } [RETAINING CURRENCY FOR m }]
 nrecord-element-name,...~ nset-name,...~

UDS/SQL transfers, from the UWA to the CRU, either all item contents of record type record-
name or just the item contents of the specified record elements. The desired contents for the
items to be modified must be supplied by the user beforehand in the UWA.

If MODIFY is used to modify key values, UDS/SQL automatically updates all the associated
access paths such as hash areas and tables, plus the DBTT. In particular the order of
records within a set occurrence may be changed.
The database key value of a record cannot be changed even if the associated database key
item is overwritten with a new value.

DML functions ERASE

U930-J-Z125-14-76 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

50
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

5

Connecting the CRU into another set occurrence

 lALL ⎫
 MODIFY record-name ONLY m } MEMBERSHIP
 nset-name,...~

 lSETS ⎫
 [RETAINING CURRENCY FOR m }]
 nset-name,...~

In those sets in which the CRU is already a member of a set occurrence, the CRU can be
assigned to another owner record. The CRU can be removed from all its set occurrences
and inserted into another set occurrence of the same set or a selection of sets in which this
is to occur can be named by the user.

Before the CRU can be reconnected in a set, the user must first define the set occurrence
into which the CRU is to be connected and also, if necessary, its position within the set
occurrence.

5.3.5 Delete records and their set relationships (ERASE)

 lPERMANENT⎫
 ERASE record-name [mSELECTIVE} MEMBERS]
 nALL ~

The ERASE statement operates on the CRU. The record type of record-name must be the
same as the record type of the CRU.

The ERASE statement removes the CRU from all set occurrences in which it is a member
record and deletes it. After the deletion the storage space is available again. The database
key value does not become available again until after termination of the transaction.

When a record is deleted its relationship to other records must also be taken into consider-
ation at the same time.

The entry of the CRU in the currency table is deleted.
The other entries in the currency table are marked as deleted. The option of making
sequential searches (FIND/FETCH NEXT) is retained.

All record types and set relationships referenced either directly or indirectly via the ERASE
statement, must be contained in the subschema. All realms which are named in the WITHIN
clause of the record types involved must be present in the subschema.

Combinations DML functions

70 U930-J-Z125-14-76

5.3.6 Correlation between type of set membership and data-modifying
statements

Type of set
membership

Set membership is
established by

Set membership is
canceled by

Switches between
set occurrences

STORE CONNECT ERASE DISCONNECT MODIFY

MANDATORY
AUTOMATIC

 YES NO YES NO YES

MANDATORY
MANUAL

 NO YES YES NO YES

OPTIONAL
AUTOMATIC

 YES YES YES YES YES

OPTIONAL
MANUAL

 NO YES YES YES YES

Table 10: Combinations of type of set membership and statements for modifying data

DML functions KEEP

U930-J-Z125-14-76 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

50
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

5

5.4 Protecting records

Pages which are not protected against use by other transactions either at realm level (by
USAGE-MODE EXCLUSIVE or PROTECTED RETRIEVAL) or at page level (automatic
protection mechanism for updated pages) have the option of data protection at record level:

– activate extended record protection (KEEP)
– deactivate extended record protection (FREE)

Note that the protection for the page containing the CRU (shared lock) is always present.

In order to protect the record beyond this period, however, record protection must be
extended by using KEEP.

5.4.1 Activate extended record protection (KEEP)

 KEEP

This statement protects the CRU from access by another transaction even when it is no
longer the CRU. This KEEP status can only be cancelled by FINISH (termination of trans-
action) or FREE.

If the realm to which the record belongs has been opened with USAGE-MODE UPDATE,
the KEEP statement will create exclusive access rights for the page in which the record
(CRU) is located. In other words, information from this page will only be accessible to the
transaction involved.

If the realm to which this record belongs has been opened with USAGE-MODE
RETRIEVAL, the KEEP statement sets a shared lock (see page 34) for the page in which
the record (CRU) is located. This means that other transactions can only obtain read access
to a page.

This page access protection remains in effect until the next FREE or the end of the
transaction.

FREE DML functions

72 U930-J-Z125-14-76

5.4.2 Deactivate extended record protection (FREE)

 FREE[ALL]

This statement cancels the KEEP status.

If ALL is not specified, the KEEP status is only cancelled for the CRU. It is only possible to
work without ALL if the record that was given extended protection by KEEP has been made
the CRU again.

If ALL is specified, all the records that were provided with extended protection by KEEP are
freed again for other transactions. The normal CRU record protection is, however, retained
in both cases.

DML functions IF

U930-J-Z125-14-76 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

50
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

5

5.5 Testing set memberships in the program (IF)

5.5.1 Testing the set membership of the CRU

 lOWNER ⎫ lstatement-1 ⎫ lstatement-2 ⎫
 IF[NOT][setname] mMEMBER} m }[ELSE m }].
 nTENANT~ nNEXT SENTENCE~ nNEXT SENTENCE~

The following individual tests are performed:

– with OWNER: whether the CRU possesses member records;

– with MEMBER: whether the CRU is a member record in a set occurrence;

– with TENANT: whether the CRU is the owner of a non-empty set occurrence or a
member record in a set occurrence.

If set-name is specified, only the named set is tested; dynamic sets may not be specified. If
set-name is not specified, all sets of the subschema are tested in which the record type of
the CRU is owner or member.

The result of the test is “TRUE” if the condition is fulfilled. In this case a branch is made to
statement-1 or NEXT SENTENCE.
If the result is “FALSE”, a branch is made to statement-2 or NEXT SENTENCE.

If NEXT SENTENCE is specified, a branch is made to the statement following the IF
statement.

If a database exception condition arises (see section “Database exception conditions” on
page 117) during execution of an IF statement, the condition “FALSE” is assumed, and a
branch is made to statement-2 or NEXT SENTENCE.

IF DML functions

74 U930-J-Z125-14-76

5.5.2 Testing a set occurrence for member records

 lstatement-3 ⎫ lstatement-4 ⎫
 IF setname IS[NOT] EMPTY m }[ELSE m }].
 nNEXT SENTENCE~ nNEXT SENTENCE~

set-name is used to select the set occurrence via the CRS. A dynamic set may not be
specified.

The result of the test is “TRUE” if the condition is fulfilled. In this case a branch is made to
statement-3 or NEXT SENTENCE.
If the result is “FALSE”, a branch is made to statement-4 or NEXT SENTENCE.

If a database exception condition arises (see section “Database exception conditions” on
page 117) during execution of an IF statement, the condition “FALSE” is assumed, and a
branch is made to statement-4 or NEXT SENTENCE.

U930-J-Z125-14-76 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

6 Using DML

This chapter deals with the special features of COBOL DML and CALL DML and shows
their different uses.

The chapter contains a description of the functions in which COBOL DML and CALL DML
differ. The relevant formats can be found on pages 129 and 197.

Structure of the COBOL/CALL DML programs Using DML

76 U930-J-Z125-14-76

6.1 Structure of the COBOL/CALL DML programs

COBOL DML program

Figure 5: Structure of a COBOL DML program

CALL DML program

Figure 6: Structure of a CALL DML program

DB application module

COBOL runtime system

Subschema module

UWA (BIB)

Connection module

DB application modules(s)

CALL DML converter

BIB

Connection module

COMMON MEMORY: SSITAB modules

with DSCEXT error exit

Using DML COBOL DML

U930-J-Z125-14-76 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

6.1.1 COBOL DML

COBOL DML is used in 3 divisions of a COBOL program:

– the ID DIVISION,
– the DATA DIVISION, and
– the PROCEDURE DIVISION

The DML statements are included in the range of functions of the ANSCOBOL compilers
COBOL85 and COBOL2000.
The rules and formats for DML statements can be found in chapter “COBOL DML reference
section” on page 129.

Program preparation

The prerequisites for an executable COBOL DML program are:

– One or more application modules
– One or more subschemas which are entered in the COBOL Subschema Directory

(COSSD).

Program structure

One or more databases can be used at the same time.

The examples that follow illustrate how to work with a single database (mono-DB operation)
and multiple databases (multi-DB operation).

COBOL DML/mono-DB operation Using DML

78 U930-J-Z125-14-76

Mono-DB operation

The structure of a DB application program in mono-DB operation can be seen from the illus-
tration below:

Figure 7: Structure of a COBOL DML program in mono-DB operation

IDENTIFICATION DIVISION.
.
.

DATA DIVISION.
.
.

SUB-SCHEMA SECTION.
DB entry 1)

.
PROCEDURE DIVISION.
DECLARATIVES.
special routine SECTION.

USE statements 2)
.
.
.

END DECLARATIVES.
.
.

READY statement 3)
.
.
.
.

COBOL statements
Transaction DML statements 4)

.

.

.

.
FINISH statement 5)

.

.

.
STOP RUN.

Using DML COBOL DML/mono-DB operation

U930-J-Z125-14-76 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

1) The DB entry in the SUB-SCHEMA SECTION specifies the name of the subschema
which the program is to access. The COBOL compiler uses the DB entry to find the
subschema in the COSSD. This subschema is compiled into a module which
contains the UWA and the user communication area. The compiler then stores the
subschema module in the common area of the COBOL program.

All subschema-related information that is required by the DBH to access the
database is thus made available.

2) The USE statement can be used to define statement sequences within the
DECLARATIVES which will be executed if a DB exception condition occurs.

3) The READY statement secures the users’ rights of access to the realms required
for their processing applications. It represents the start of a transaction.

4) DML statements permit the database to be accessed (e.g. STORE, FIND).

5) FINISH terminates processing of all resources opened by READY (realms and data
pages). This terminates the transaction.

COBOL DML/multi-DB operation Using DML

80 U930-J-Z125-14-76

Multi-DB operation

In COBOL DML only one subschema of a database can be specified in the DB entry of the
SUB-SCHEMA SECTION of an application module. If there is a requirement to access
several databases a separate COBOL module must be generated for each database.

Example 1

A control module is generated to coordinate two DB application modules.

Figure 8: Structure of COBOL DML programs for multi-DB operation

Control module

IDENTIFICATION DIVISION.
PROGRAM-ID. DBCONTROL.

DATA DIVISION.
WORKING-STORAGE SECTION.

1)
PROCEDURE DIVISION.

CALL-1 2)
CALL-2
CALL-3
CALL-4
CALL-5

STOP RUN.

DB application modules

IDENTIFICATION DIVISION. IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-DBA. PROGRAM-ID. PROG-DBB.

. .

. .

. .
DATA DIVISION. DATA DIVISION.
LINKAGE SECTION. LINKAGE SECTION.
SUB-SCHEMA SECTION. SUB-SCHEMA SECTION.

DB entry A 3) DB entry B
. .
. .

PROCEDURE DIVISION. PROCEDURE DIVISION.
ENTRY-1 ENTRY-2
READY statement (for 4) READY statement (for
DB-A) DB-B)
EXIT PROGRAM. EXIT PROGRAM.
ENTRY-3 ENTRY-4
DML statements (for DML statements (for
DB-A) DB-B)
EXIT PROGRAM. EXIT PROGRAM.
ENTRY-5
FINISH-statement 5)
EXIT PROGRAM.

Using DML COBOL DML/multi-DB operation

U930-J-Z125-14-76 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

1) The control module does not contain a SUB-SCHEMA SECTION.

2) The entry points into the DB application modules are defined via CALLs.

3) Each module specifies a subschema of a database.

4) The first READY statement executed opens a transaction and simultaneously
opens a processing chain. Each further READY statement in a different DB appli-
cation module opens another processing chain.

5) In multi-DB operation there is only one FINISH statement; this closes all opened
processing chains and at the same time terminates the transaction. It makes no
difference from which DB application module this FINISH statement is issued (in
this example it is issued by PROG-DBA).

COBOL DML/multi-DB operation Using DML

82 U930-J-Z125-14-76

Example 2

The control is integrated in the two application modules.

Figure 9: As figure 8 but without control module

1) The second program is called from the first DB application module and assumes
control until the EXIT PROGRAM statement returns control to the calling module.

3), 4), 5)

See explanations for “Example 1” on page 80.

IDENTIFICATION DIVISION IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-DBA. PROGRAM-ID. PROG-DBB.

. .

. .

. .
DATA DIVISION. DATA DIVISION.

. .

. .

. LINKAGE SECTION.

. .

. .
SUB-SCHEMA SECTION. SUB-SCHEMA SECTION.

DB entry A 3) DB entry B

PROCEDURE DIVISION. PROCEDURE DIVISION.
READY statements (for 4) READY statements (for
DB-A) DB-B)
DML statements (for DML statements (for
DB-A) DB-B)

. .

. .
CALL to PROG-DBB 1)

. EXIT PROGRAM.
FINISH statement 5)
STOP RUN.

Using DML CALL DML

U930-J-Z125-14-76 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

6.1.2 CALL DML

CALL DML makes available DML features in a form which is independent of the
programming language used.

The rules of DML - in as far as they are relevant to database access - are also valid for CALL
DML. The formulation of CALL DML calls is basically different from that of COBOL DML.
The COBOL DML statements which are processed by the COBOL compiler are omitted and
are replaced by the subroutine call “CALL” and a number of parameters. These parameters
(function code, function option, secondary option, etc.) describe the call and transfer the
database name and the data (user information, record area).

This transfer of call information necessitates certain functional differences compared with
COBOL DML: CALL DML requires a special converter. The CALL DML converter does not
translate the database calls into the form in which they can be processed by the database
handler until runtime, when it also checks them for correct syntax and validity.

The parameters of the CALL DML calls themselves, however, also cannot be entered by
the user or read in from a file until runtime. Additional support for this process is provided
by the LOOKC function, which is not contained in COBOL DML; this function allows access
to structure information on the subschema.

CALL DML programs can be executed under openUTM.

The relevant subschema need not be known at the time of CALL DML application program
compilation. No functions are required which exceed the normal compiler range.

The transfer areas for records and parameters are defined by the user.

The addresses of the required transfer areas are transferred as part of each CALL DML call;
these areas may thus be changed for every call or reversed at the user’s discretion.

Generating a CALL DML program

An executable CALL DML program contains the following components:

– one or more application modules,

– UDS/SQL connection modules, and

– one SSITAB module per subschema, created with the BCALLSI utility (see the
“Creation and Restructuring” manual).

CALL DML/program structure Using DML

84 U930-J-Z125-14-76

Program structure

CALL DML allows more than one database to be accessed from the same module (multi-
DB operation). The example below shows the program structure for multi-DB operation.

Figure 10: Structure of CALL DML programs for multi-DB operation

IDENTIFICATION DIVISION.
PROGRAM-ID. DBCALL.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 USERINFAREA 1)
02...
.
.

PROCEDURE DIVISION.
ERROR ROUTINE.

ENTRY "DSCEXT". 2)
.
.

EXECUTION ROUTINE.
.
.
READYC call for DB1 subschema 3)
.
SAVE statement for DBID to DBID1 4)
.
MOVE statement for DBID1 to USERINF 5)
CALL DML call
.
.
READYC call for DB2 subschema 6)
.
SAVE statement for DBID to DBID 2 4)
.
.
MOVE statement for DBID1 to USERINF 5)
CALL DML call
.
.
MOVE statement for DBID2 to USERINF 7)
CALL DML call
.
FINISC call 8)
.
STOP RUN.

Using DML CALL DML/program structure

U930-J-Z125-14-76 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

1) The transfer areas for records and parameters must be defined in the program in
CALL DML. The parameter area user-information must be generated in accordance
with a preset format.

2) The program must contain an error routine with the ENTRY name of DSCEXT
(see section “CALL DML error handling routine DSCEXT” on page 124).

3) The CALL with function code name READYC opens the transaction. The first
READYC call simultaneously opens the processing chain for the specified
subschema of database DB1. A unique database identifier is passed to the user via
the user information area.

4) The database identifier must be saved in an item.

5) The database identifier must be transferred with each CALL DML call (except
READYC), since all CALL DML calls are assigned to their respective databases
via the database identifier.

6) The second READYC call opens access to the database DB2.

7) Database DB2 is assigned to the following CALL DML call only when database
identifier DBID2 is transferred.

8) FINISC terminates the processing of all resources reserved by READYC. This
simultaneously terminates the transaction.

Special features of COBOL DML Using DML

86 U930-J-Z125-14-76

6.2 Special features of COBOL DML

Specifying a key for use of the subschema (PRIVACY)

 [PRIVACY. PRIVACY KEY FOR COMPILE IS literal.]

If a lock against access to the subschema is defined by the PRIVACY LOCK FOR
COMPILE clause in the subschema being used, an appropriate key, called a PRIVACY
KEY, must be specified in the COBOL program during compilation. The PRIVACY KEY
clause is given in the IDENTIFICATION DIVISION.

Assigning the subschema and setting up the communication area
(DB entry)

The DB entry is entered in the Data Division of the COBOL program as part of the
SUBSCHEMA SECTION.

 DB subschema-name WITHIN schema-name.

The DB entry specifies which subschema is to be used by your COBOL DML program.

This entry is evaluated both during compilation and when executing the program.

The subschema determines the record area, which not exceed 65 535 bytes in length. The
actual length of the record area is, in turn, essentially determined by the length of the record
types contained in the underlying subschema. The record area holds one record of each
record type in the subschema and also includes the IMPLICITLY-DEFINED-DATA-NAMES,
i.e. the area for implicitly-defined items of the database (e.g. the AREA-ID items of WITHIN
clauses of the schema).

Using DML Special features of COBOL DML

U930-J-Z125-14-76 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

 Record areas of up to 65 535 bytes in length can be used with COBOL2000 or
COBOL85 as of V2.2C21, provided the statement SUBSCHEMA FORM IS OLD
was not specified during compilation of the subschema (see the “Creation and
Restructuring” manual).

During compilation, the user work area (UWA) is generated. The contents of this UWA are
a component of the application program and depend on the subschema called. Before the
COBOL DML program is compiled with the COBOL compiler, the database to be processed
must be assigned with the link name DATABASE:
/ADD-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname

The following areas are always generated in the UWA:

– SYSTEM-COMMUNICATION-LOCATIONS (contains the COBOL special registers;
see page 88)

– RECORD AREA

– PRIVACY RECORD (contains the items for the BPRIVACY locks):

The PRIVACY RECORD need not be filled by the COBOL program; existing entries, if
any, are ignored by UDS/SQL. The PRIVACY data is transferred to UDS/SQL by
openUTM or BS2000 outside the COBOL program.

All items can be referenced in a COBOL program by using the names generated in
the UWA.

If several modules are linked together to form a program, each module can contain one DB
entry.
The DB entry leads to the execution of a start routine which calls the Database Handler.
At application program runtime when the READY statement is executed, the name of the
subschema is taken from the DB entry and transferred to the DATA Base Handler which
then loads a corresponding Subschema Information Area SSIA. The SSIA is the internal
representation of the subschema used by the DBH. All SSIAs are stored in the Database
Directory (DBDIR).

Besides the SSIAs, each database also has its own Schema Information Area (SIA). This
SIA can be accessed by the DBH at any time in order to obtain the schema information
required to execute DML statements.

i

Special features of COBOL DML Using DML

88 U930-J-Z125-14-76

COBOL special registers

The COBOL special registers are storage areas generated by the COBOL compiler. These
special registers are only set up once for each DB entry. The user can access the values of
the special registers in the COBOL DML program.

The registers have the following formats:

DATABASE-REALM-NAME PIC X(30)
DATABASE-RECORD-NAME PIC X(30)
DATABASE-SET-NAME PIC X(30)
DATABASE-STATUS PIC 9(5)

The DBH modifies the values of the COBOL special registers following DML statements
and enters the current values (see “Using special registers (COBOL DML) or the user infor-
mation area (CALL DML)” on page 117).

Transferring a database key value (SET)

 SET item-name-1,... TO item-name-2

This statement transfers a database key value into one or more items. All items used must
be defined with USAGE IS DATABASE-KEY or USAGE IS DATABASE-KEY-LONG. The
contents of item-name-2 are transferred to item-name-1,....

More information on transferring database key values with the SET statement can be found
in chapter “COBOL DML reference section” under “SET” on page 187.

Using DML Special features of COBOL DML

U930-J-Z125-14-76 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

Describing error handling routines (USE)

 lOTHER ⎫
 USE FOR DATABASE-EXCEPTION[ON m }].
 nliteral-1,...~

The USE statement initiates routines for handling database exception conditions (see
section “Database exception conditions” on page 117). These routines may only be
specified in the DECLARATIVES of a COBOL DML program.

Database exception conditions do not occur only as a result of errors. The DBH fills the
COBOL special registers after every COBOL DML statement. By checking the DATABASE-
STATUS with the USE statement, you could, for example, also determine whether or not a
duplicate record has been found. You can program specific routines depending on the type
of database exception condition (see table 15 on page 119).

Different USE statements can be defined to control the program. This can be achieved by
two methods:

– by interrogating the database exception conditions that occur when a DML statement
cannot be completed successfully

– by using a specific exception condition as a switch for the program logic.

The DECLARATIVES of a COBOL DML program are executed after each DML statement
that has created a database exception condition. This helps to reduce the programming
overhead.

Special features of COBOL DML Using DML

90 U930-J-Z125-14-76

Assigning the COSSD file for compiling a COBOL-DML program

When a COBOL-DML application program is compiled, the COBOL compiler must read the
COSSD file of the database concerned. You must consequently assign the COSSD file to
the COBOL compiler in one of the following ways:

● Assignment via LINK-NAME=UDSCOSSD

● Assignment via LINK-NAME=DATABASE

Assignment via LINK-NAME=UDSCOSSD

This procedure is only supported by the COBOL2000 compiler Version 1.4 or higher.

The COBOL compiler is explicitly assigned the COSSD file using the command

/ADD-FILE-LINK LINK-NAME=UDSCOSSD, -
/ FILE-NAME=[:catid:][$userid.]dbname.COSSD

Here :catid: and $userid are the catalog ID and user ID under which the COSSD file is
cataloged. If :catid: or $userid is not specified, the file name is completed according to
the standard rules of BS2000.

The COSSD file must be cataloged under the name specified in the command as a COSSD
file is not searched for at another position when an error occurs.

 This procedure is essential if multiple COSSD files with the corresponding database
name exist in all catalogs which can be accessed locally from the user ID.

If a UDS/SQL pubset declaration exists, it is not taken into account.

Example of a command sequence:

/ADD-FILE-LINK LINK-NAME=UDSCOSSD,FILE-NAME=dbname.COSSD
/START-COBOL2000-COMPILER -
/SOURCE=cobolsource, -
/COMPILER-ACTION=MODULE-GENERATION(MODULE-FORMAT=LLM), -
/MODULE-OUTPUT=*LIBRARY(LIBRARY=library-1,ELEMENT=element)

i

Using DML Special features of COBOL DML

U930-J-Z125-14-76 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

Assignment via LINK-NAME=DATABASE

This procedure is supported by all COBOL2000 and COBOL85 compilers.

The COBOL compiler is notified of the database name using the command

/SET-FILE-LINK LINK-NAME=DATABASE, -
/ FILE-NAME=[:catid:][$userid.]dbname

If a :catid: is specified in the SET-FILE-LINK command, it is ignored. The COBOL
compiler then searches for a COSSD file with the name dbname.COSSD in all catalogs
which can be accessed locally from the user ID which was specified explicitly in the SET-
FILE-LINK command or which was supplemented by BS2000.

 This procedure can be used only if only one COSSD file with the relevant database
name exists in all catalogs which can be accessed locally from the user ID.

If a UDS/SQL pubset declaration exists, it is not taken into account.

If an assignment for LINK=UDSCOSSD also exists, only the procedure for
LINK=UDSCOSSD is used.

Example of a command sequence:

Error handling

If the COBOL compiler cannot access the COSSD file, it issues the message
ERROR ACCESSING SUB-SCHEMA.

This message is also output if, in the event of assignment via LINK-NAME=DATABASE, the
file exists more than once in different pubsets. In this case use specific assignment of the
COSSD file via LINK-NAME=UDSCOSSD.

/SET-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=dbname
/START-COBOL2000-COMPILER -
/SOURCE=cobolsource, -
/COMPILER-ACTION=MODULE-GENERATION(MODULE-FORMAT=LLM), -
/MODULE-OUTPUT=*LIBRARY(LIBRARY=library-1,ELEMENT=element)

i

Special features of CALL DML Using DML

92 U930-J-Z125-14-76

6.3 Special features of CALL DML

Conversion at program runtime

The CALL DML calls are not converted into the form required by the DBH until program
runtime. Nor are they checked for validity until then. This means that CALL DML is much
more flexible in use since it is also possible to generate the calls according to the data
entered during the program run.

Abbreviated record format

The strict subschema record format can be replaced by an abbreviated record format. Then
space must be provided in the program only for the required items. The abbreviated record
format is possible for the calls GETC, MODIF2, STORE2 and STOR2L; the format is
accessed via the secondary option parameter VAR. This only affects the length of the
record in the database if the record is defined with COMPRESSION ALL (see the “Design
and Definition” manual, Compression).

IMPLICITLY-DEFINED-DATA-NAMES

In the Schema DDL, item names are declared for items which are designed to transfer data
to the DBH outside the records. These include the database key item of the clause
LOCATION MODE DIRECT/DIRECT-LONG and the AREA-ID item of the WITHIN clause
(see the “Design and Definition” manual).
CALL DML does not refer to these declared names; a special parameter is available for the
transfer of the corresponding data (special parameter 2: implicitly defined data area in
FIND/FETCH and STORE).

Sets with SET SELECTION THROUGH LOCATION MODE OF OWNER

Sets defined using the SET OCCURRENCE SELECTION clause THRU LOCATION MODE
OF OWNER are handled like sets defined using the CURRENT OF SET clause.

User information area

Communication with the DBH is via the user-information parameter area, which must be
generated in a fixed format and must be specified in each CALL. Examples of its contents
are items for the special registers, the database status, transfer items for a database key
value and the counter for the TALLYING function of FIND7A/FTCH7A.

Using DML Special features of CALL DML

U930-J-Z125-14-76 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

Variable items

CALL DML allows variable items to be processed without problems as long as a suitable
programming language is used, i.e. it allows variable length records to be stored. A binary
value must be supplied by the user for the length item associated with the variable item.

Subschema information

The maximum permitted length for the record area (RECA) defined by the subschema in
CALL DML is 65 535 bytes. The actual length of the record area is essentially determined
by the length of the record types contained in the underlying subschema. The record area
holds one record of each record type in the subschema and also includes the IMPLICITLY-
DEFINED-DATA-NAMES, i.e. the area for implicitly-defined items of the database (e.g. the
AREA-ID items of WITHIN clauses of the schema).
If the statement SUBSCHEMA FORM IS OLD was specified when compiling the
subschema, the maximum permitted length for the corresponding record area is 61 328
bytes.

The description of the subschema used must be made available to CALL DML in the form
of special modules; these have a different basic structure from the subschema modules
used for COBOL DML. These modules are designated SSITAB modules (Subschema Infor-
mation Table) modules. They are generated by utility routine BCALLSI (see the “Creation
and Restructuring” manual).

A CALL DML application program can call various subschemas. Subschema names must
be unique in the first 6 bytes to guarantee that the SSITAB modules cannot be confused.

Only elementary items can be accessed via an item name. Indexed items cannot be named
in CALL DML. This is a programming consideration but does not involve any restriction on
the range of functions when compared with COBOL DML.

Special features of CALL DML Using DML

94 U930-J-Z125-14-76

Testing the structure of the subschema (LOOKC)

If the user wishes to change the parameter list in CALL DML calls, precise information about
the subschema is required.

The following information can be obtained by using:

 CALL DML, LOOKC...

a name – one or more elements
– the owner/member of a set

a realm – realms in which records of a specific record type can be stored

a record type – one or more record types
– the owner/member record type of a specific set

a set – one or more sets
– one or more sets in which a specific record type is an owner or member

record type

an item – one or more items of a specific record type

a key – one or more keys of a specific set
– one or more keys of a set in which a specific item is contained
– one or more keys in which a specific item is contained

the items of a key – one or more items of a specific key

Table 11: Structure information obtained by LOOKC

Using DML UDS/SQL-TIAM application

U930-J-Z125-14-76 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

6.4 Linking, loading and starting a UDS/SQL-TIAM application
program

6.4.1 Basic aspects

The principle of dynamic loading

Only one “version-independent” connection module (UDSLNKI, UDSLNKL or UDSLNKA)
is permanently linked into the UDS/SQL application program for connection to the
independent or linked-in DBH (see also section “Linking UDS/SQL-TIAM applications” on
page 100). All other connection modules of the product which are required for the execution
of a UDS/SQL application as well as application-specific data modules (SSITAB, PLITAB)
are dynamically loaded by the DBL (dynamic binder loader) at the time of execution. This
concept has the advantage that UDS/SQL applications do not have to be relinked when the
UDS/SQL version is changed. If longer-term relinking becomes necessary, this can be done
later and successively for individual applications.

Before the start of the application program, the libraries containing the product and data
modules to be dynamically loaded must be available or assigned. The various dynamic-
loading strategies (and thus assignment techniques) are described below, arranged
according to the product and data modules.

Loading the UDS/SQL product modules dynamically

In the standard case, UDS/SQL is installed with IMON and managed centrally in the
Software Configuration Inventory (SCI). Several product versions can be installed concur-
rently and several UDS/SQL subsystem versions can be preloaded. The BS2000 command
SELECT-PRODUCT-VERSION is available for assigning the product library from which the
modules are to be dynamically loaded and for selecting the appropriate subsystem version:

/SELECT-PRODUCT-VERSION PRODUCT-NAME=product,VERSION=version,SCOPE=*TASK

product
Name of the delivery unit (e.g. UDS-SQL or UDS-D)

UDS/SQL-TIAM application Using DML

96 U930-J-Z125-14-76

version
The version number specified should always include the release status and correction
status (e.g. 02.8A00). The version number specified with SELECT-PRODUCT-
VERSION does not need to be permanently assigned in each user procedure, but can
be set to a centrally maintained value by means of a job variable or S variable.
In the “Database Operation” manual, section “Using multiple UDS/SQL versions
concurrently”, you will find examples of start procedures which include the variable
structuring of the version number specified via SELECT-PRODUCT-VERSION with the
aid of job variables.

When calling the application program into which the version-independent connection
module for the independent DBH is linked, you select the version of UDSBCCON, the
version-dependent connection module to be dynamically loaded, with SELECT-PRODUCT-
VERSION.
When calling the application program into which the version-independent connection
module for the linked-in DBH is linked, you select the version of LCCONCT, the version-
dependent connection module to be dynamically loaded, with SELECT-PRODUCT-
VERSION.
The actual UDS/SQL coding in the version appropriate for the connection module is used
as a preloaded subsystem or is dynamically loaded from the corresponding SYSLNK library
of the product UDS/SQL.
The abbreviation “SCI” is used for this dynamic-loading procedure in the error messages of
the product.

The SELECT-PRODUCT-VERSION command is also recommended when for long periods
only one UDS/SQL version is used on the system.

If SELECT-PRODUCT-VERSION is not specified, with the first dynamic-loading operation
in the version-independent module an attempt is made to load from any existing private
installation (see page 97). If no private installation is found, the standard version is loaded
from the SCI.

Using UDS-D:

When using UDS-D (only possible with the independent DBH), you should use an additional
SELECT-PRODUCT-VERSION command to specify the UDS-D version that corresponds
to the UDS/SQL version if UDS-D is used as a subsystem (see the Release Notice if appli-
cable). Here too it is recommended that you also use SELECT-PRODUCT-VERSION when
for long periods only one UDS-D version is used on the system.

Using DML UDS/SQL-TIAM application

U930-J-Z125-14-76 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

Private installation

If the product UDS/SQL is not managed in the SCI throughout the system, the modules can
be dynamically loaded from libraries of a private installation.

The libraries from which the modules of the product UDS/SQL and, if applicable, the
products UDS-D and UDSKDBS are to be dynamically loaded in the desired version, are
explicitly assigned with the ADD-FILE-LINK command. The following link names are
available for the assignments:

$UDSLIB Modules of the product UDS/SQL (independent and linked-in DBH)

$UDSDLIB Modules of the product UDS-D (only with independent DBH)

$UDSKLIB Modules of the product KDBS (only with linked-in DBH)

The abbreviation “$UL” is used for this procedure in the error messages of the product.

For reasons of compatibility, the use of a UDS.MODLIB, possibly with TASKLIB
assignment, continues to be supported for dynamically loading the modules if the products
are not provided via SCI or via the link names $UDSLIB, $UDSDLIB and $UDSKLIB. The
abbreviation “TSK” is used for this procedure in the error messages of the product.

The SELECT-PRODUCT-VERSION commands for the products UDS/SQL and, if appli-
cable, UDS-D might also be required for a private installation for the following reasons:

In parallel with a privately installed product version, UDS/SQL and UDS-D subsystems
might also be preloaded. The SELECT-PRODUCT-VERSION command ensures that the
modules loaded dynamically from the private installation establish a connection to the
correct subsystem version.

UDS/SQL-TIAM application Using DML

98 U930-J-Z125-14-76

Loading the application-specific data modules SSITAB and PLITAB
dynamically

In the case of CALL DML application programs, the library from which the SSITAB modules
are to be dynamically loaded at execution time must be known. With UDSKDBS applica-
tions, the library from which the PLITAB modules are to be dynamically loaded must also
be known.

The data modules do not need to be stored in a single library (as in previous UDS/SQL
versions), but can be kept in various libraries, e.g. in a separate one for each database.

The library(ies) are assigned via link name assignments with the ADD-FILE-LINK
command.

SSITAB module:

1. Firstly, the library that was assigned with the link name $UDSSSI is searched.

2. If the SSITAB modules are kept in more than one library, e.g. in a separate one for each
database, the other libraries with the link names BLSLIB00 through BLSLIB99 can be
assigned.

Assignment with the link name $UDSSSI and if appropriate also with BLSLIBnn is the
standard procedure that we recommend. The abbreviation “$UL” is used for this procedure
in the error messages of the product.

3. If the link name $UDSSSI is not used or the dynamic-loading operation was unsuc-
cessful, for compatibility reasons a UDS.MODLIB library in the runtime ID or a library
assigned with the SET-TASKLIB command is searched. The abbreviation “TSK” is used
for this procedure in the error messages of the product.

PLITAB module:

The library that was assigned with the link name $UDSPLEX is searched firstly. The rest of
the search in the libraries assigned with the link name BLSLIBnn or in a UDS.MODLIB
library is performed in the same way as for the SSITAB modules.

Using DML UDS/SQL-TIAM application

U930-J-Z125-14-76 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

Loading the configuration-specific table module UDSTRTAB
dynamically

If a translation table (UDSTRTAB) is to be used by the DBH for user-specific sorting of
character items, the library from which the UDSTRTAB module is to be dynamically loaded
must be known. Firstly, a library in the configuration user ID that was assigned with the link
name $UDSKONF is searched. Because this table is used by the DBH, a library need only
be assigned when linked-in applications are started.

For further details, see section “Translation table for application-specific sorting” on
page 126.

UDS/SQL-TIAM application Using DML

100 U930-J-Z125-14-76

6.4.2 Linking UDS/SQL-TIAM applications

This section describes how to link a UDS/SQL-TIAM application program.
For details of how to link a UDS/SQL-openUTM application, see page 109.

For a UDS/SQL-TIAM application to be executed, the connection to the UDS/SQL DBH
must be established. For this purpose, UDS/SQL provides connection modules which are
linked into the UDS/SQL application.

Linking version-independent connection modules into the UDS/SQL application

UDS/SQL provides the version-independent connection modules UDSLNKI, UDSLNKL
and UDSLNKA which are linked into the UDS/SQL-TIAM application. These version-
independent connection modules contain the branch points for the processing of the DML
statements and dynamically load the required version-dependent connection modules
(UDSBCCON or LCCONCT).

table 12 shows which version-independent connection modules are linked in and which
version-dependent connection modules are dynamically loaded from them, depending on
the DBH used. If the UDSLNKA module is linked in, you must specify which DBH variant is
to be used with the MODIFY-JOB-SWITCHES command before calling the application
program.

If only the version-independent connection modules are linked into the UDS/SQL appli-
cation, the UDS/SQL application can be used unchanged with a new UDS/SQL version or
with a UDS/SQL correction version, if the system environment is otherwise the same. You
can thus use the functional extensions of a new UDS/SQL version without having to relink
the application program immediately.

Technically, the version-dependent connection modules can be statically linked into the
program instead of the version-independent ones (see table 12, under “Dynamically loaded
module”). However, this is not the method we recommend, as it requires relinking whenever
you change the UDS/SQL version.

DBH used Linked-in module Dynamically loaded
module

Independent DBH UDSLNKI UDSBCCON

UDSLNKA
Job switch 28 = ON

Linked-in DBH UDSLNKL LCCONCT

UDSLNKA
Job switch 28 = OFF

Table 12: Version-independent and version-dependent connection modules

Using DML UDS/SQL-TIAM application

U930-J-Z125-14-76 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

For special cases, the connection modules contain ’weak externs’. If these address refer-
ences are not resolved, this does not prevent the application from starting:

– The resolving of DSCEXT is required for the error handling of CALL DML calls (see
section “CALL DML error handling routine DSCEXT” on page 124).

– You can ignore any message indicating that UDS@UNR# is not resolved.

Example

The following example shows the linking of a UDS/SQL application (COBOL DML) with
the independent DBH.

/START-BINDER
//START-LLM-CREATION INTERNAL-NAME=module
//INCLUDE-MODULES MODULE-CONTAINER=*LIB(LIBRARY=library-1
 ,ELEMENT=element)
//INCLUDE-MODULES MODULE-CONTAINER=*LIB(LIBRARY=$.udssyslnklib
,ELEMENT=UDSLNKI)
//RESOLVE-BY-AUTOLINK LIBRARY=crtesyslnk
//SAVE-LLM MODULE-CONTAINER=*LIB(LIBRARY=library-2,ELEMENT=module)
//END

UDS/SQL-TIAM application Using DML

102 U930-J-Z125-14-76

Handling name conflicts

If, during linking of applications which use a version-independent UDSLNKx connection
module, the entries of the UDSLNKx module remain visible, name conflicts may occur
during further dynamic loading of the version-dependent UDS/SQL modules.
To resolve these name conflicts it is generally sufficient to use the START-EXECUTABLE-
PROGRAM command with the specification DBL-PAR=(ERROR-PROC(NAME-
COLLISION=*STD)) at the start of the application (see also the START-EXECUTABLE-
PROGRAM command in section “Starting a COBOL program” on page 103ff). If a specific
application does not allow this “general” specification at application startup, the UDS-
specific name conflicts can be handled selectively during linking with the linkage editor
BINDER:

1. The entries of the version-independent module UDSLNKx ($UNIASE, $UNIBASE,
DML, DMLTRACE, KDBSFITA, KKDS, KLDS, LINDA, SQLUDS) are masked during
linking with the BINDER. This variant is suitable for applications in which all UDS/SQL
calls are made from one load unit.

Example

/START-BINDER
...
//MODIFY-SYMBOL-VISIBILITY SYMBOL-NAME=($UNIASE,$UNIBASE,DML -
//,DMLTRACE,KDBSFITA,KKDS,KLDS,LINDA,SQLUDS),VISIBLE=*NO()
...
//END

2. The entries of the version-independent module UDSLNKx ($UNIASE, $UNIBASE,
DML, DMLTRACE, KDBSFITA, KKDS, KLDS, LINDA, SQLUDS) are renamed specifi-
cally for each application during linking with the BINDER. This variant is suitable for
applications in which the UDS/SQL calls are made from several load units.
In each load unit, only the respective entries provided or referenced there are renamed;
the remaining entries are masked as in point 1.

Example

/START-BINDER
...
//RENAME-SYMBOLS SYMBOL-NAME=SQLUDS,NEW-NAME=UDSSQL -
//,SYMBOL-OCCURRENCE=*PAR(OCCURRENCE-NUMBER=*ALL)
...
//END

Using DML UDS/SQL-TIAM application

U930-J-Z125-14-76 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

6.4.3 Starting a COBOL program

You can use the following DBH variants:

1. Starting an application program with the independent DBH

[/MODIFY-JOB-SWITCHES ON=28] —————————————————————————————————————— (1)

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version ————— (2)
[/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-D,VERSION=version]

ldbname ⎫
/SET-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=m } — (3)

 nconfiguration-name~

[/ADD-FILE-LINK LINK-NAME=$UDSSSI,FILE-NAME=SSITAB-library-1] ————— (4)
[/ADD-FILE-LINK LINK-NAME=BLSLIBnn,FILE-NAME=SSITAB-library-nn]

[/ADD-FILE-LINK LINK-NAME=$UDSPLEX,FILE-NAME=PLITAB-library-1] ———— (5)
[/ADD-FILE-LINK LINK-NAME=BLSLIBnn,FILE-NAME=PLITAB-library-nn]

/START-EXECUTABLE-PROGRAM FROM-FILE=(LIBRARY=library-2, ——————————— (6)
ELEMENT=modul),DBL-PAR=(ERROR-PROC(NAME-COLLISION=*STD))

[Application program parameters]

(1) If the connection module UDSLNKA was linked into the application program, job
switch 28 must be set to ON so that the independent DBH is used (the version-
dependent module UDSBCCON is dynamically loaded).

With independent DBH linked-in DBH

Mono-DB X X

Multi-DB X X

openUTM X -

Table 13: DBH variants

UDS/SQL-TIAM application Using DML

104 U930-J-Z125-14-76

(2) It is recommended that you generally specify which UDS/SQL version is to be
used with the SELECT-PRODUCT-VERSION command, as a number of
UDS/SQL versions could be installed concurrently and a number of versions of
the UDS/SQL subsystem could be preloaded with IMON in the Software Config-
uration Inventory (SCI).
When using UDS-D, you should use an additional SELECT-PRODUCT-
VERSION command to specify the UDS-D version that corresponds to the
UDS/SQL version if UDS-D is used as a subsystem.

For further details, see “Loading the UDS/SQL product modules dynamically”
on page 95.

(3) For the execution of a UDS/SQL application program you must make the
UDS/SQL configuration known to the relevant application: With the SET-FILE-
LINK command you assign the configuration file (FILE-NAME=configuration-
name) via the link name DATABASE. In mono-DB operation the configuration
name can also match the name of the database used (FILE-NAME=dbname).
If FILE-NAME=dbname, the usage mode SHARED-RETRIEVAL for the
database is only possible if you specify the load parameter DBNAME (see the
“Database Operation” manual).

(4), (5)
 In the case of CALL DML application programs, the library from which the

SSITAB modules are to be dynamically loaded at execution time must be
assigned with the ADD-FILE-LINK command. With KDBS applications the
library from which the PLITAB modules are to be dynamically loaded must also
be assigned.
For further details, see “Loading the application-specific data modules SSITAB
and PLITAB dynamically” on page 98.

(6) The application program is started with the START-EXECUTABLE-PROGRAM
command.

The preset value NAME-COLLISION=*STD in RUN-MODE=*ADVANCED
should not be changed, as this may lead to name conflicts in dynamically
loadable entries in applications which were linked with the BINDER (see also
“Handling name conflicts” on page 102).

Using DML UDS/SQL-TIAM application

U930-J-Z125-14-76 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

2. Starting an application program with the linked-in DBH

Commands which affect the control of the DBH itself are not described below or only
very briefly. A detailed description of these commands can be found in the “Database
Operation” manual, section “Commands for starting DBH”.

[/MODIFY-JOB-SWITCHES OFF=28] ————————————————————————————————————— (1)

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version ————— (2)

ldbname ⎫
/SET-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=m } — (3)

 nconfiguration-name~

[/ADD-FILE-LINK LINK-NAME=$UDSSSI,FILE-NAME=SSITAB-library-1] ————— (4)
[/ADD-FILE-LINK LINK-NAME=BLSLIBnn,FILE-NAME=SSITAB-library-nn]

[/ADD-FILE-LINK LINK-NAME=$UDSPLEX,FILE-NAME=PLITAB-library-1] ———— (5)
[/ADD-FILE-LINK LINK-NAME=BLSLIBnn,FILE-NAME=PLITAB-library-nn]

[/ADD-FILE-LINK LINK-NAME=$UDSKONF,FILE-NAME=UDSTRTAB-library] ———— (6)

/CREATE-FILE FILE-NAME=confname.DBSTAT,SUPPRESS-ERR=*FILE-EXISTING (7)
/CREATE-FILE FILE-NAME=confname.DBSTAT.SAVE,SUPPRESS-ERR=*FILE-EXISTING

[/ADD-FILE-LINK LINK-NAME=PPFILE,FILE-NAME=DBH-parameter-file] ————— (8)

[Further DBH-specific commands] ——————————————————————————————————— (9)

/START-EXECUTABLE-PROGRAM FROM-FILE=(LIBRARY=library-2, ——————————— (10)
ELEMENT=modul),DBL-PAR=(ERROR-PROC(NAME-COLLISION=*STD))
[Application program parameters]

(1) If the connection module UDSLNKA was linked into the application program, job
switch 28 must be set to OFF so that the linked-in DBH is used (the version-
dependent module LCCONCT is loaded dynamically).

(2) It is recommended that you generally specify which UDS/SQL version is to be
used with the SELECT-PRODUCT-VERSION command, as a number of
UDS/SQL versions could be installed concurrently and a number of versions of
the UDS/SQL subsystem could be preloaded with IMON in the Software Config-
uration Inventory (SCI).

For further details, see “Loading the UDS/SQL product modules dynamically”
on page 95.

UDS/SQL-TIAM application Using DML

106 U930-J-Z125-14-76

(3) As when starting an application with the independent DBH, the UDS/SQL
configuration must be made known. See under (3) on page 104.

(4), (5)
 In the case of CALL DML application programs, the library from which the

SSITAB modules are to be dynamically loaded at execution time must be
assigned with the ADD-FILE-LINK command. With KDBS applications the
library from which the PLITAB modules are to be dynamically loaded must also
be assigned.
For further details, see “Loading the application-specific data modules SSITAB
and PLITAB dynamically” on page 98.

(6) If a translation table (UDSTRTAB) is to be used for user-specific sorting of
character items, the library from which the UDSTRTAB module is to be dynam-
ically loaded must be known. Firstjy, a library in the configuration user ID that
was assigned with the link name $UDSKONF is searched. For further details,
see section “Translation table for application-specific sorting” on page 126.

(7) The DB status files must be created if they do not already exist. These files are
created with a 4-Kbyte page format and may be placed on different volumes.

If the DB status files are to reside on private disk, they must be created using
the following command:

/CREATE-FILE FILE-NAME=confname.DBSTAT[.SAVE]
 ,SUPPORT=*PRIVATE-DISK(VOLUME=priv-vsn
 ,DEVICE-TYPE=device[,SPACE=...])
,SUPPRESS-ERRORS=*FILE-EXISTING

(8) The link name PPFILE is used to assign a file from which the linked-in DBH is
to read in the load parameters. The load parameters can also be in a PLAM
library element or in a procedure file. The assignment commands required for
this can be found in the “Database Operation” manual, section “Commands for
starting DBH”.

(9) Further optional commands for controlling the linked-in DBH are described in
detail in the “Database Operation” manual, section “Commands for starting
DBH”.

(10) The application program is started with the START-EXECUTABLE-PROGRAM
command.

The preset value NAME-COLLISION=*STD should not be changed as this may
lead to name conflicts in dynamically loadable entries in applications which
were linked with the BINDER (see also “Handling name conflicts” on page 102).

Using DML UDS/SQL-UTM application

U930-J-Z125-14-76 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

6.5 Interoperation in a UDS/SQL-openUTM application

Generating a UDS/SQL-openUTM application

Generating a UDS/SQL-openUTM application involves the same steps as generating a
openUTM application.

Information on generating a UDS/SQL-openUTM application is provided in the openUTM
manual “Generating Applications”.

The individual steps are:

– Defining the application configuration and generating the KDCROOT module with the
KDCDEF utility routine

– Compiling the KDCROOT main routine

– Compiling the application program units

– Linking the modules to the application program

KDCDEF statement DATABASE

To enable the interoperation of openUTM and UDS/SQL, it is also essential that the
database connection be generated in the KDCROOT main routine with the DATABASE
statement:

DATABASE [ENTRY=entry][,LIB=LOGICAL-ID(SYSLNK)][,TYPE=type]

ENTRY=entry
indicates the ENTRY name of the database;
The user enters the ENTRY name for the UDS/SQL interface used:

– $UNIBASE for COBOL DML (default value)
– DML for CALL DML
– KKDS for KDBS
– SQLUDS for SQL

LIB=LOGICAL-ID(SYSLNK)
The connection module is loaded dynamically from the library entered as the IMON
installation path for SYSLNK. A UDS/SQL version assigned via SELECT-
PRODUCT-VERSION or, by default, the highest UDS/SQL version is used here.
Further options for assigning a value to the LIB parameter are described in the
openUTM manual “Generating Applications”.

UDS/SQL-UTM application Using DML

108 U930-J-Z125-14-76

TYPE=type
identifies the type of the database system.
Here you enter UDS. If, in a openUTM transaction, you are using both the SQL and
a CODASYL interface, you may also enter DB (see “Two UDS/SQL configurations
in one UDS/SQL openUTM application” on page 113).

Compiling the KDCROOT main routine

When compiling KDCROOT, you must assign UDS/SQL and openUTM macro libraries.

Example of compilation with ASSEMBH

/START-ASSEMBH
//COMPILE SOURCE=rootname,MACRO-LIB=(utmmacrolib -
// ,udssyslib),MODULE-LIB=rootlibrary)
//END

Using DML UDS/SQL-UTM application

U930-J-Z125-14-76 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

Linking UDS/SQL-openUTM applications

You can choose from three different variants when linking a UDS/SQL-openUTM appli-
cation:

● The UDSCON connection module is loaded dynamically by openUTM

● The UDSCON connection module is loaded dynamically by UDS/SQL

● The UDSCON connection module is permanently linked in

These three variations will be explained in the following:

The UDSCON connection module is loaded dynamically by openUTM

The UNRESOLVED EXTRNS: UDSCON message of the BINDER can be ignored in this case.
openUTM loads the UDS/SQL connection module UDSCON dynamically. The UDSCON
connection module contained in the UDS/SQL subsystem can be used together by all appli-
cations. When a new correction version is used, the UDS/SQL-openUTM application does
not have to be relinked.

Example

/START-BINDER
//START-LLM-CREATION INTERNAL-NAME=module
//INCLUDE-MODULES MODULE-CONTAINER=*LIB(LIBRARY=root-library
 ,ELEMENT=KDCROOT-module)
//INCLUDE-MODULES MODULE-CONTAINER=*LIB(LIBRARY=library
 ,ELEMENT=(prog-unit-1,prog-unit-2,...prog-unit-n))
//RESOLVE-BY-AUTOLINK LIBRARY=library
//RESOLVE-BY-AUTOLINK LIBRARY=(utmsyslnklib,crtesyslnklib[.PARTIAL-BIND] -
// ,utmsyslnksplrtslib)
//SAVE-LLM MODULE-CONTAINER=*LIB(LIBRARY=library -
// .ELEMENT=element,OVERWRITE=YES)
//END

UDS/SQL-UTM application Using DML

110 U930-J-Z125-14-76

The UDSCON connection module is loaded dynamically by UDS/SQL

The version-independent module UDSCNUV is linked into the UDS/SQL openUTM appli-
cation. The reference to UDSCON contained in the KDCROOT module must be renamed
to UDSCNUV. UDSCNUV then loads the UDS/SQL connection module dynamically (see
also section “Loading the UDS/SQL product modules dynamically” on page 95). The
UDSCON connection module contained in the UDS/SQL subsystem can be used together
by all applications. When a new correction version is used, the UDS/SQL-openUTM appli-
cation does not have to be relinked. The module in which UDSCNUV was loaded cannot
be shared.

Example

/START-BINDER
//START-LLM-CREATION INTERNAL-NAME=modul
//INCLUDE-MODULES MODULE-CONTAINER=*LIB(LIBRARY=root-library -
// ,ELEMENT=KDCROOT-module)
//RENAME-SYMBOLS SYM-NAM=UDSCON,SYM-TYP=ALL,NEW-NAME=UDSCNUV
//INCLUDE-MODULES MODULE-CONTAINER=*LIB(LIBRARY=library -
// ,ELEMENT=(prog-unit-1,prog-unit-2,...prog-unit-n))
//INCLUDE-MODULES MODULE-CONTAINER=*LIB(LIBRARY=udssyslnklib -
// ,ELEMENT=UDSCNUV)
//RESOLVE-BY-AUTOLINK LIBRARY=library
//RESOLVE-BY-AUTOLINK LIBRARY=(utmsyslnklib,crtesyslnklib[.PARTIAL-BIND] -
// ,utmsyslnksplrtslib)
//SAVE-LLM MODULE-CONTAINER=*LIB(LIBRARY=library -
// ,ELEMENT=element,OVERWRITE=YES)
//END

Using DML UDS/SQL-UTM application

U930-J-Z125-14-76 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

The UDSCON connection module is permanently linked in

 Every time you change UDS/SQL versions, even correction versions, the program
must be relinked. You do not need to load the UDSCON connection module when
starting the UDS/SQL openUTM application. The UDSCON connection module
contained in the UDS/SQL subsystem cannot be used.

Example

/START-BINDER
//START-LLM-CREATION INTERNAL-NAME=module
//INCLUDE-MODULES MODULE-CONTAINER=*LIB(LIBRARY=root-library -
// ,ELEMENT=KDCROOT-module)
//INCLUDE-MODULES MODULE-CONTAINER=*LIB(LIBRARY=library -
// ,ELEMENT=(prog-unit-1,prog-unit-2,...prog-unit-n))
//INCLUDE-MODULES MODULE-CONTAINER=*LIB(LIBRARY=udssyslnklib -
// ,ELEMENT=UDSCON)
//RESOLVE-BY-AUTOLINK LIBRARY=library
//RESOLVE-BY-AUTOLINK LIBRARY=(utmsyslnklib,crtesyslnklib[.PARTIAL-BIND] -
// ,utmsyslnksplrtslib)
//SAVE-LLM MODULE-CONTAINER=*LIB(LIBRARY=library -
// ,ELEMENT=element,OVERWRITE=YES)
//END

You will find additional information on linking an UDS/SQL openUTM application in the “
Generating Applications“ openUTM manual and on linking the CRTE in the “CRTE
(BS2000)” manual.

i

UDS/SQL-UTM application Using DML

112 U930-J-Z125-14-76

Starting a UDS/SQL-openUTM application

.

.
[01 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version]
[02 /SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-D,VERSION=version]

.

.
[03 /ADD-FILE-LINK LINK-NAME=$UDSLIB,FILE-NAME=udslib]
[04 /ADD-FILE-LINK LINK-NAME=$UDSDLIB,FILE-NAME=udsdlib]
[05 /ADD-FILE-LINK LINK-NAME=$UDSKLIB,FILE-NAME=udskdbslib]

.

.
06 .UDS DATABASE=confname1

[07 .DBËËDATABASE=confname2]

01), 02)
 Because different versions of the subsystems UDS-SQL and/or UDS-D can be

preloaded concurrently, you should always specify the product version you want
with SELECT-PRODUCT-VERSION. Here it is possible to load the respective
subsystem versions you require on DBH startup using job variables (see the
“Database Operation” manual, section “Using multiple UDS/SQL versions concur-
rently”). If you do not specify SELECT-PRODUCT-VERSION, the subsystem with
the highest version will be used. If, in the case of UDS/SQL, no corresponding
subsystem version is preloaded and neither UDSCON nor UDSCNUV is perma-
nently linked, the connection module UDSCON is loaded dynamically from the
UDS/SQL library specified in the KDCDEF statement DATABASE
(LIB=LOGICAL-ID(SYSLNK)).

03), 04), 05)
 These assignments of libraries of a private installation need only be entered if the

UDS/SQL version used is not available in the SCI and CALL-DML
($UDSLIB) is used with UDS-D ($UDSDLIB) or UDSKDBS ($UDSKLIB).

06), 07)
 Start parameters that are passed from UTM to UDS/SQL.

In the start parameters you may only specify configuration names (confname1,
confname2) without an ID.

You need only specify the start parameter .DB when you have generated a
database statement using TYPE=DB. The two blanks after .DB are mandatory.

For further information on starting a UDS/SQL-openUTM application, see the „Generating
Applications” manual.

Using DML UDS/SQL-UTM application

U930-J-Z125-14-76 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

Example

/SET-LOGON-PARAMETERS
/ADD-FILE-LINK LINK-NAME=SYSLOG,FILE-NAME=SYSLOG
/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=02.8A00
/ASSIGN-SYSDTA TO=*SYSCMD
/START-EXE-PROG FROM-FILE=*LIB(LIBRARY=LIB.TEST, ELEMENT=AUFABW) -
/ ,DBL-PAR=(LOADING=(LOAD-INFORMATION=REFERENCES)-
/ ,ERROR-PROC=UNRESOLVED-EXTRNS=DELAY))
.UTM START FILEBASE = KDCFILE.AUFABW
.UTM START STARTNAME=MANUAL.STARTEN
.UTM END
.UDS DATABASE=DBHSQL
.FHS MAPLIB=LIB.TEST
END
/EXIT-JOB

Two UDS/SQL configurations in one UDS/SQL openUTM application

It is possible in a single UDS/SQL openUTM application to process SQL queries as well as
CODASYL-/CALL-DML queries with UDS/SQL in a single openUTM transaction. When this
is done, UDS/SQL is generated as type UDS and as type DB (TYPE = DB) in the openUTM
application.

Requirements

– When assembling the main routine KDCROOT, the UDS/SQL macro library
(SYSLIB.UDS-SQL.nnn) must be assigned. It contains the KDCDBU macro as well as
the KDCDBD macro.

– SQL queries and CODASYL-/CALL-DML queries may only be mixed in a transaction
when they are passed in their entirety to different UDS/SQL configurations.

The ENTRY name SQLUDS may only be specified in the definition with type UDS.

Error codes

In a UDS/SQL-openUTM application, runtime information for diagnostics purposes is
stored in a special area (DB-DIAGAREA or DB record; see the “Messages, Debugging and
Diagnostics in BS2000” manual). This diagnostic information is version-specific. The codes
involved are output by openUTM.

See also section “UDS/SQL-openUTM return codes” on page 390 and section “Additional
diagnostic information in openUTM” on page 394.

Error handling Using DML

114 U930-J-Z125-14-76

6.6 Error handling

6.6.1 Interrupt handling for UDS/SQL-TIAM applications

The interrupt handling discussed in this section is only applicable to UDS/SQL-TIAM
applications; error handling for UDS/SQL-openUTM applications is dealt with on page 113.
The interrupt handling facilities provided by UDS/SQL through the routine SCSXUSER
prevent the operating system from aborting the program in the case of defined STXIT event
classes. In addition, users can define their own interrupt routines.

UDS/SQL interrupt handling with SCSXUSER (UDS-STXIT)

The UDS-STXIT routine SCSXUSER handles the following causes of interrupts (see also
the “Executive Macros” manual):

– program error (program check)
– interrupt via interval timer
– end of program runtime
– unrecoverable program error
– message for the program (INFORM-PROGRAM)
– BREAK/ESCAPE
– abnormal end (ABEND)
– program termination

If certain STXIT interrupt events occur, vital measures for the entire database system are
carried out, e.g. rollback of the affected transaction.

The UDS STXIT routine SCSXUSER is automatically included in the STXIT parallelism
concept.

You can also define your own STXIT routine for additional interrupt handling. This STXIT
routine should make use of the STXIT parallelism concept and should end with EXIT
CONTINU=YES to ensure that the execution of the SCSXUSER routine is not prevented.
If the STXIT event class “message for the program” occurs with the INFORM-PROGRAM
command, SCSXUSER (UDS STXIT) checks to see if the message is intended for
UDS/SQL. If this is the case, SCSXUSER is terminated with EXIT CONTINU=NO. The
following STXIT routines for this event are not executed.
In the case of the BREAK/ESCAPE interrupt, the program runs to a defined interrupt point.
The registers then show the status at the time of the interrupt. The program can be
continued with TRACE or RESUME.

Using DML Error handling

U930-J-Z125-14-76 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

The use of UDS-STXIT via SCSXUSER has the following advantages:

● From the viewpoint of the system as a whole:
Open transactions that are not terminated due to an illegal exit or error in the application
program or the omission of a concluding FINISH statement are rolled back. The trans-
action channels occupied as a result of the interrupt (see the “Database Operation”
manual, DBH load parameter TRANSACTION) thus become available (each incom-
plete transaction reduces the number of transactions that can be conducted concur-
rently by 1).

● From the viewpoint of view of the application program involved:
The rollback with SCSXUSER enables the application program to easily skip a trans-
action with the aid of an independent STXIT routine (in the event of data errors, for
example); if it is no longer possible to work on the database, the application program
can continue to perform operations that are independent of the database.

If SCSXUSER cannot be loaded dynamically, the connection module outputs a corre-
sponding warning but continues with the processing. In private installations (cf. page 97) it
is possible to operate UDS/SQL-TIAM applications without the UDS/SQL interrupt
handling. Applications which are linked via openUTM with UDS/SQL do not work with
SCSXUSER. For these applications, openUTM takes over the interrupt handling.

Error handling Using DML

116 U930-J-Z125-14-76

User-programmed interrupt handling

Apart from the interrupt handling by UDS/SQL with SCSXUSER, you can also define your
own STXIT routines for any desired event classes by using the STXIT macro and the
STXDNEW operand.

These STXIT routines are terminated with the EXIT macro and the operands
CONTINU=YES, TERM=NO.

Exceptions

– STXIT routines for the event classes “program error” and “program check” should be
terminated with the EXIT macro, CONTINU=YES, TERM=(STEP) under STXIT paral-
lelism.

– A STXIT routine for the event class “message for the program” should be terminated
with the EXIT macro and the operands CONTINU=YES, TERM=NO if a message
intended for that routine has been processed.

 CAUTION!

DML statements cannot be sent to the DB in STXIT routines, since the UDS STXIT
SCSXUSER always attempts to terminate the transaction. If STXIT routines from
application programs and other systems which have not been adapted to STXIT
concurrency are run, there is no guarantee that all STXIT routines for each event
will start. Transaction channels may also remain locked and thus not be available
for the rest of the session section.
Messages and dumps may be initiated from other systems, since all the STXIT
routines for a given interrupt event are normally activated when the event occurs.

!

Using DML Error handling

U930-J-Z125-14-76 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

6.6.2 Database exception conditions

Using special registers (COBOL DML) or the user information area
(CALL DML)

● DATABASE-REALM-NAME
This gives the name of the realm associated with the database exception condition
when a DML statement cannot be terminated successfully.

● DATABASE-SET-NAME
This gives the name of the set associated with the database exception condition when
a DML statement cannot be terminated successfully.

● DATABASE-RECORD-NAME
This gives the name of the record associated with the database exception condition
when a DML statement cannot be terminated successfully.

● DATABASE-STATUS
This register holds the database status indicator, which is given a new value whenever
a new DML statement is executed. The two left-most characters contain the statement
code, and the three right-most characters the status code.
A list of which status codes belong to which database exception conditions can be
found in section “Status codes” on page 365.
If the execution of any DML statement ends with a database exception condition, the
statement code shows which DML statement has caused the exception condition, and
the status code shows which exception condition has occurred. If a DML statement was
executed successfully, both the statement code and the status code are set to the value
zero.
This rule does not apply to exception conditions detected by the UDS/SQL connection
module. In this case, the statement code always contains the value zero (“00”).

The special registers DATABASE-REALM-NAME and DATABASE-RECORD-NAME are
also used for FIND and STORE statements if no database exception condition has
occurred. They contain the name of the realm involved and the record involved;
DATABASE-STATUS then has the value zero.

The contents of special registers DATABASE-REALM-NAME, DATABASE-SET-NAME and
DATABASE-RECORD-NAME cannot be interpreted if the DBH cannot recognize any
realm, record or set names because the DML statement has not provided information on
these.

Error handling Using DML

118 U930-J-Z125-14-76

Statement codes

When COBOL DML is used, the statement code can be obtained from special register
DATABASE-STATUS. In the case of CALL DML the statement code is stored in the first two
positions of the result item in the user-information parameter.

The UDS online utility (see the “Recovery, Information and Reorganization” manual) uses
statement code 13 for its specific DMLs.

 Statements of

Statement code COBOL DML CALL DML

01 CONNECT CONNEC

02 DISCONNECT DISCON

03 ERASE ERASEC

04 FIND/FETCH

lFIND1/FTCH1, FIND1L/FTCH1L
oFIND2/FTCH2
oFIND3/FTCH3
mFIND4/FTCH4
oFIND5/FTCH5
oFIND6/FTCH6
nFIND7A/FTCH7A

05 FINISH FINISC

06 FREE FREEC

07 GET GETC

08 IF IFC

09 KEEP KEEPC

10 MODIFY
lMODIF1
m
nMODIF2

14 STORE
lSTORE1, STOR1L
m
nSTORE2, STOR2L

15 ACCEPT ACCPTC, ACCPTL

16 SET -

25 - LOOKC

00 For all exception conditions entered by the connection module

Table 14: Statement codes and associated functions

Using DML Error handling

U930-J-Z125-14-76 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

Status codes

Table 15 shows the correlation between UDS/SQL behavior and status codes:

The complete list of status codes can be found on pages 365 (COBOL DML) and 378 (CALL
DML).

 Status codes

000 001
018, 113,
122, 218

≠ 000
READY 200

any
other

DML statement
successfully
completed

yes yes no no so far no

Transaction
aborted by
UDS/SQL

no1)

1 Unless FINISH WITH CANCEL is executed.

no1) yes yes no no1)

Contents of
record area
UWA ...

corre-
sponding to
statement

the next
record

undefined because
transaction has been
aborted

un-
changed

un-
changed

Table 15: Meaning of the status codes

Error handling Using DML

120 U930-J-Z125-14-76

Combinations of statement codes and status codes

Statement code

Status code 00 01 02 03 04 05 06 07 08 09 10 12 13 14 15 16 25

001
010

see
table 17

on
page 122

X

011
012
013
018
020

X X X X X X X X X

X
X
X
X
X

X X X

021
022
023
024
027
028
029

X

X

X

X

X X
X

X
X

031
032
033

X
X
X

X
X

X
X

X
X

X
X

X
X
X

X

042
043
044

X
X

X X

X

X
X

X X X
X

X

051 X X X

071
072 X

081
082
083

X
X
X

X

X

091
092
093
099

X
X

X
 X

X
 X

X X
X X

X
X

X
X
X
X

X
X

X

101
102
103 X X X

X

X X X X X X
X X

113 X X X X X X X X X X X X X

Table 16: Combinations of statement codes and status codes (part 1 of 3)

Using DML Error handling

U930-J-Z125-14-76 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

122
123
124
131
132

X

X

X X X

see
table 17

on
page 122

X X X X X X X
X
X

X

X
X
X
X
X

X X X

134
136
137

X
X
X

X
X

X
X

X
X

X X
X

X
X

X
X

X
X

X
X

X
X
X

X
X

X
X

X
X

141
142
144
145
146

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X
X

X
X
X
X
X

X

X

X

X

151
152
154
155

X
X
X
X

X
X
X
X

161
162
163
164
165
166
167

X
X
X
X
X
X
X

183
184
191
192
193
194
195
197
198

200
201
218

X
X
X X X X

X
X

X X X X X X X X X

Statement code

Status code 00 01 02 03 04 05 06 07 08 09 10 12 13 14 15 16 25

Table 16: Combinations of statement codes and status codes (part 2 of 3)

Error handling Using DML

122 U930-J-Z125-14-76

FIND/FETCH status codes

781
782
783
784
785
786
789

see
table 17

on
page 122

X
X
X
X
X
X
X

X
X
X
X
X
X
X

802
804
805

X

X X X X

X

X X X

X
X
X

888
898
899 X

X
X
X

X
X
X

901
950
954

X X X X X X X
X
X

X
X
X

X

Status code Formats of the FIND/FETCH record selection expression

04... 1 2 3 4 5 6 7

001 X

018
020

X
X

X
X

X
X

X
X

X
X

X
X

X
X

021
023
024
027
028
029

X

X

X

X

X

X

X

X

X X

X
X
X

031
032
033

X X X X
X
X

X X

042
043

X
X

X X X
X

071 X X X X

Table 17: Combinations of statement code 04 and status codes (part 1 of 2)

Statement code

Status code 00 01 02 03 04 05 06 07 08 09 10 12 13 14 15 16 25

Table 16: Combinations of statement codes and status codes (part 3 of 3)

Using DML Error handling

U930-J-Z125-14-76 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

091 X X X X X X X

101
102
103

X
X X X

X

X X

X

X

X

X

113 X X X X X X X

122 X X X X X X X

134
136

X
X

X
X

X
X

X
X

X
X

X
X

X
X

144
146

X
X

X
X

X
X

X
X

X
X

X
X

X
X

183
184
191
192
193
194
195
197
198

X

X

X
X

X

X
X
X
X
X
X
X

218 X X X X X X X

805 X

901 X X X X X X X

Status code Formats of the FIND/FETCH record selection expression

04... 1 2 3 4 5 6 7

Table 17: Combinations of statement code 04 and status codes (part 2 of 2)

Error handling routine DSCEXT Using DML

124 U930-J-Z125-14-76

6.6.3 CALL DML error handling routine DSCEXT

The CALL DML error handling routine DSCEXT is only applicable to UDS/SQL-TIAM
applications.
If the user information parameter has no identifier, i.e. if USINF* or UINF1* is omitted or is
not in the correct position in the user information area, the program is not able to commu-
nicate with UDS/SQL, and no database status can be transferred. To specifically deal with
this eventuality, the user must define an error routine with ENTRY name DSCEXT in the
program.

If the DSCEXT error exit has not been defined, status code C91 is output. The program is
not able to execute DML functions.

If the user information parameter is not detected during program runtime, the following
message appears at the operator console:

UDS0283 UDS USER ERROR: USERINF PARAM WRONG OR MISSING

and a branch is made to error exit DSCEXT.

If the user has neither provided the user information area nor this error exit, the additional
message:

UDS0284 UDS USER ERROR: NO DSCEXT-ROUTINE DEFINED

is output, and the program is aborted.

Thus, CALL DML does not use the return address in register 14 in either case (see chapter
“CALL DML reference section” on page 197). The CALL DML call is not executed.

The DSCEXT routine is not required in openUTM application programs and is not
supported.

In the case of a branch to the DSCEXT error exit, it is rarely of any use to continue
processing, since a programming error exists. This may be typically due to:

– an invalid user information area definition

– invalid input of parameter or transfer addresses in register 1

– inadvertent overwriting of the user information area during the program run

It is not necessary to output a message and to enter a FINISC in case of an open trans-
action. UDS/SQL outputs an appropriate message and generates a FINISH WITH CANCEL
if the program is terminated while a transaction is open.

Using DML Error handling routine DSCEXT

U930-J-Z125-14-76 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

The DSCEXT routine can be defined in its own module if it is to be used in several CALL
DML programs. In that case it must be linked into the programs.

Example

DSCEXT error in a COBOL program:

 DSCEXT.
 ENTRY "DSCEXT".
 DISPLAY "DSCEXT=ERROR EXIT" UPON T.
 STOP RUN.

Application-specific sorting Using DML

126 U930-J-Z125-14-76

6.7 Translation table for application-specific sorting

If you want a different sorting of character items than the one preset in UDS/SQL (in accor-
dance with the EBCDI code), you can create a translation table. This table is valid for all
databases in the UDS session.

This sort sequence only applies to sorting the result set from a search and not to data
storage or when determining data contents.

National items (Unicode: UTF-16, PICTURE N, USAGE NATIONAL) and numeric items are
not affected by any existing translation table.

Creating the translation table

You create an Assembler module with the name UDSTRTAB and enter it in any library of
the configuration user ID. This library must be assigned before the start of the independent
or linked-in DBH (see “Assigning a translation table” on page 128).

To ensure that the alphabetical order is unambiguous, the user must check that no printable
characters are duplicated. UDS/SQL does not check for this. Duplicated characters lead to
an ambiguous sort sequence.
An ambiguous sort sequence may, however, be desired. For example, in the case of
German vowels with umlauts (see example below).

There are several ways of creating a translation table:

1. Character conversion

This is based on the same translation table (X’000102 ... FF’). The programming
overhead is not very great if there are only a few conversions.

Example

The table only recognizes the 26 letters (X’C1’ through X’E9’) and Ö as X’8C’.
Ö appears in the table between O and P.

UDSTRTAB START
TITLE ' UDS-TRANSLATION-TABLE'

TAB DC 256AL1 (*-TAB) Create identical translation
* table

ORG TAB+X'8C'
DC X'D7' 'Ö' -> 'P'

*
ORG TAB+X'D7' 'P' -> 'Q' 'Q' -> 'R'
DC X'D8D9DA8C' 'R' -> X'DA' X'DA' -> 'Ö'
END

Using DML Application-specific sorting

U930-J-Z125-14-76 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

8.
50

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
6

2. Entering the desired alphabetical order

Example

No distinction is made between uppercase and lowercase letters during the sort
operation. German umlauts following the corresponding letter without umlauts, e.g.
Ä after A, ß after s.

UDSTRTAB START
TITLE ' UDS-TRANSLATION-TABLE'

TAB DC x'00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F'
x'10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F'
x'20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F'
x'30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F'
x'40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F'
x'50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F'
x'60 61 62 63 64 65 66 E3 68 69 6A 6B 6C 6D 6E 6F'
x'70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F'
x'80 C1 C3 C4 C5 C6 C7 C8 C9 CA CA C2 D7 E6 CE CF'
x'90 D1 D2 D3 D4 D5 D6 D8 D9 DA DA DB DC DD DE DF'
x'A0 A1 E2 E4 E5 E7 E8 E9 EA EB AA C2 D7 E6 AE AF'
x'B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF'
x'C0 C1 C3 C4 C5 C6 C7 C8 C9 CA CA CB CC CD CE CF'
x'D0 D1 D2 D3 D4 D5 D6 D8 D9 DA DA DB DC DD DE DF'
x'E0 E1 E2 E4 E5 E7 E8 E9 EA EB EA EB EC ED EE EF'
x'F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF'

END

The blanks in the table above have only been included to make the example easier
to read. They should not be included in the original translation table.

Application-specific sorting Using DML

128 U930-J-Z125-14-76

Assigning the translation table

Before the independent DBH or the linked-in application program is called, the library from
which the self-generated UDSTRTAB module is to be dynamically loaded must be
assigned.

1. The UDSTRTAB module can be stored in the configuration user ID in a PLAM library of
any name. The link name $UDSKONF is available for assigning this library with the
ADD-FILE-LINK command.

/ADD-FILE-LINK LINK-NAME=$UDSKONF,FILE-NAME=UDSTRTAB-library

This is the standard method that we recommend.

2. If the link name $UDSKONF is not used or the dynamic loading according to method 1
was not successful, for compatibility reasons the system checks whether a library called
UDS.MODLIB exists in the configuration user ID. It then loads dynamically from this
library or from one assigned with SET-TASKLIB.

3. If the UDSTRTAB module could not be dynamically loaded by methods 1 and 2, the
UDSTRAB module from the SYSLNK library of the UDS/SQL product managed in the
SCI (EBCDIC sort sequence) is used.

If the UDSTRTAB module cannot be dynamically loaded, the DBH uses the EBCDIC sort
sequence internally.

U930-J-Z125-14-76 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

7 COBOL DML reference section

This section describes the COBOL DML statements and the relevant syntax rules.

The user specifies COBOL DML statements in COBOL programs. These statements are
compiled by the COBOL compiler COBOL85 or COBOL2000. The same rules and the
same reserved words that apply to COBOL statements also apply to COBOL DML state-
ments (see the „COBOL Compiler, Reference Manual“).

For processing databases with a page length of 4KB or 8KB you require COBOL2000 or
COBOL85 as of version 2.2C21 if the application program needs to be recompiled. This
also applies to databases with a page length of 2048 bytes if the application program
contains subschemata that were not compiled with the DDL compiler option “SUBSCHEMA
FORM IS OLD” (see the “Creation and Restructuring“ manual).

General rules COBOL DML

130 U930-J-Z125-14-76

7.1 General rules

When a format is used, you must replace the following variables by a current value. Three
categories of variables can be distinguished:

You can write the COBOL program in any COBOL reference format using the COBOL-DML
statements. In the free form reference format the previous column conventions no longer
apply.

Variable Current value

schema-name
subschema-name
realm-name
set-name
record-name

record-element-
name
item-name

All names must originate from the subschema.

The context of the DML statement shows whether the name has to
originate from the SUB-SCHEMA SECTION or whether it can
belong to another section.
The names cannot be indexed.

literal The literal must be enclosed in quotation marks (or in apostrophes
in the case of COBRUN QUOTE1) (see the “COBOL Compiler,
User’s Guide”). These are not part of the value of the literal.

integer Is composed of a maximum of 15 digits

Table 18: Metavariables of COBOL-DML

COBOL DML PRIVACY/SUB-SCHEMA SECTION

U930-J-Z125-14-76 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

7.2 ID DIVISION

If the subschema is protected by a PRIVACY LOCK FOR COMPILE clause, the appropriate
PRIVACY KEY must be specified in the COBOL DML program.

 [PRIVACY. PRIVACY KEY FOR COMPILE IS literal.]

This entry must follow the PROGRAM-ID ENTRY:

literal must be one of the keywords assigned within the IDENTIFICATION DIVISION of the
subschema.

7.3 DATA DIVISION

SUB-SCHEMA SECTION

The Data Division of a COBOL program which uses COBOL DML must contain a section
entitled SUB-SCHEMA SECTION.

 SUB-SCHEMA SECTION.

This section must be the last section of the Data Division. It contains the DB clause.

The DB clause names a subschema and ensures that all areas which are necessary for
communication with the DBH are reserved within the UWA (User Work Area).

The UWA consists of the following areas:

● SYSTEM-COMMUNICATION-LOCATIONS with the COBOL special registers

● the record area with
– a separate area for each record type in the subschema
– the IMPLICITLY-DEFINED-DATA-NAMES (area for items not belonging to record

types)

● PRIVACY-RECORD with BPRIVACY locks

DB Entry COBOL DML

132 U930-J-Z125-14-76

DB entry

 DB subschema-name WITHIN schema-name.

subschema-name
must be the name of a subschema of the specified schema and must be known to
the database system

schema-name
must be the name of a schema known to the database system.

The DB clause must occur once in each module which contains DML statements.

COBOL DML programs which are composed of various modules linked together can
specify in their DB clauses either one subschema or different subschemas belonging to
either one schema or different schemas.

As soon as the first COBOL module with DB clause is processed, communication with the
DBH is opened even if no DML statement is called.

COBOL DML Overview of COBOL DML statements

U930-J-Z125-14-76 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

7.4 PROCEDURE DIVISION

The examples for DML statements refer to a sample database. The schema for this
database is illustrated in the Appendix on page 383.

7.4.1 Overview of COBOL DML statements

Statement Function

Format 1:

lrecord-name ⎫
 ACCEPT item-name-1 FROM[mset-name }] CURRENCY
 nrealm-name ~

Format 2:

lrecord-name ⎫
 ACCEPT item-name-2 FROM[mset-name }] REALM-NAME
 nitem-name-3 ~

the database key value of the
CRR, CRS, CRA or CRU into
item item-name-1

Transfers

the name of the realm in which
the CRR, CRS, CRU or record
belonging to a specified database
key value is stored

 lset-name-1,...⎫
 CONNECT[record-name] TO m }

nALL ~

 lset-name-2,... ⎫
[RETAINING CURRENCY FOR m }]

 nSETS ~

Inserts the CRU into the set
occurrence

Format 1:

lset-name,...⎫
 DISCONNECT[record-name] FROM m }
 nALL ~

Format 2:

 DISCONNECT ALL FROM set-name,...

Removes the CRU from set
occurrences

Removes all records from
dynamic sets

 lPERMANENT⎫
 ERASE record-name [mSELECTIVE} MEMBERS]
 nALL ~

Deletes the CRU from the
database, where necessary with
associated member records

Table 19: COBOL DML statements (overview) (part 1 of 6)

Overview of COBOL DML statements COBOL DML

134 U930-J-Z125-14-76

lFIND ⎫
m }record-selection-expression[RETAINING CURRENCY FOR
nFETCH~

 lMULTIPLE ⎫
 o o
 m lSETS ⎫ }]
 o[REALM][m }][RECORD]o
 n nset-name,...~ ~

Selects one or more records from
the database depending on the
format of the record selection
expression, makes the selected
record into the CRU and, if on
corresponding RETAINING entry
was made, into the

– CRR,
– CRS in all sets in which it is

owner or member,
– CRA in the realm in which it is

stored

FETCH: additionally transfers the
selected record into the UWA of
the application program

Formats of the record selection expression

Format 1:

lPRIOR⎫
[record-name] DATABASE-KEY IS item-name [OR m }]

nNEXT ~

Access via the database key

Format 2:

 lANY ⎫
 m } record-name
 nDUPLICATE~

Access via CALC key (hash
procedure)

Format 3:

 lrecord-name⎫
 DUPLICATE WITHIN m }
 nset-name ~

 [USING record-element-name,...]

Access to a record which
matches the CRR or CRS in
specific item contents or access
to a record which satisfies the
conditions of a previous search
expression (FIND/FETCH-7)

Statement Function

Table 19: COBOL DML statements (overview) (part 2 of 6)

COBOL DML Overview of COBOL DML statements

U930-J-Z125-14-76 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

Format 4:

 lLAST ⎫
 oFIRST o
 oNEXT o lrecord-name⎫ lset-name ⎫
 m } m }[WITHIN m }]
 oPRIOR o nRECORD ~ nrealm-name~
 ointeger o
 nitem-name~

Access to the first or last record,
to the prior or next record to the
CRR, CRS or CRA, or to a record
whose position within a collection
of records corresponds to a
numeric value to be specified The
collection or records can be a
record type, a set occurrence, a
realm or an intersection of sets of
a record type within a realm.

Format 5:

 lset-name ⎫
 CURRENT[record-name][WITHIN m }]
 nrealm-name~

Access to the CRR, CRS, CRA or
CRU

Format 6:

 OWNER WITHIN set-name Access to the owner record of a
CRS

Statement Function

Table 19: COBOL DML statements (overview) (part 3 of 6)

Overview of COBOL DML statements COBOL DML

136 U930-J-Z125-14-76

Format 7:

 record-name[WITHIN set-name-1[CURRENT]]

 search-expression ::=

 complex-1 ::= [NOT] condition-1

 [[NOT] condition-1]...

 complex-2 ::= condition-2[AND condition-2]...

 condition-1 ::= record-element-name-6[WITH MASK mask]

 lEQUAL ⎫
 o= o
 oGREATER THANo litem-name-2⎫
 IS[NOT] m } m }
 o> o nliteral-1 ~
 oLESS THAN o
 n< ~

 condition-2 ::= record-element-name-7 IS NEXT

 lGREATER THAN⎫
 o> o litem-name-3⎫
 [NOT] m } m }
 oLESS THAN o nliteral-2 ~
 n< ~

Access to records via freely
selected items or counting and
buffering of records found and
searches using masks

Statement Function

Table 19: COBOL DML statements (overview) (part 4 of 6)

USING record-element-name-1,...[OR PRIOR/NEXT]
[USING search-expression]
 [RESULT IN set-name-2]
 [LIMITED BY set-name-3]
 [TALLYING item-name-1]

 [SORTED[][]

record-element-name-2[[,]record-element-name-3]...

 [[,][][]

 record-element-name-4[[,]
 record-element-name-5]...]...]

ASCENDING

DESCENDING

BY

ON

ASCENDING

DESCENDING

BY

ON

complex-1[AND complex-2]

complex-2

AND

OR

COBOL DML Overview of COBOL DML statements

U930-J-Z125-14-76 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

FINISH[WITH CANCEL] Terminates a transaction and
releases locked realms and
blocks

FREE[ALL] Terminates the effect of the KEEP
status

 lrecord-name ⎫
GET[m }]
 nrecord-element-name,... ~

Makes available the CRU or
individual items of the CRU in the
record area of the UWA

Format 1:

 lOWNER ⎫
 IF[NOT][set-name] mMEMBER}
 nTENANT~

 lstatement-1 ⎫ lstatement-2 ⎫
 m }[ELSE m }].
 nNEXT SENTENCE~ nNEXT SENTENCE~

Format 2:

 IF set-name IS[NOT] EMPTY

 lstatement-1 ⎫ lstatement-2 ⎫
 m }[ELSEm }].
 nNEXT SENTENCE~ nNEXT SENTENCE~

Tests set memberships in the
program

KEEP Protects the CRU from access by
other transactions until a FREE
statement or the end of the trans-
action

 lrecord-name ⎫
 MODIFY m }
 nrecord-element-name,...~

 [MEMBERSHIP]

 lALL ⎫
 [RETAINING CURRENCY FOR m }]
 nset-name-2,...~

Modifies item contents of the
CRU and/or inserts it into another
set occurrence within a set.

READY[realm-name,...]

 lEXCLUSIVE⎫ lRETRIEVAL⎫
 [USAGE-MODE IS [m }]m }]
 nPROTECTED~ nUPDATE ~

Opens a transaction or a
processing chain

Statement Function

Table 19: COBOL DML statements (overview) (part 5 of 6)

INCLUDING

ONLY

SETS

set-name-1,...

Overview of COBOL DML statements COBOL DML

138 U930-J-Z125-14-76

SET item-name-1,...TO item-name-2 Transfers the contents of a
database key item into one or
more database key items

STORE record-name[RETAINING CURRENCY FOR

 lMULTIPLE ⎫
 o lSETS ⎫ o
 m[REALM][m }][RECORD]}]
 n nset-name,...~ ~

Transfers a record from the UWA
into the database as a new record

Inserts the new record into all sets
for which its record type is defined
in the schema as AUTOMATIC
member

Sets up a new set occurrence for
each set for which the record type
is defined in the schema as owner
record type

 lOTHER ⎫
 USE FOR DATABASE-EXCEPTION[ON m }]
 nliteral,...~

Defines sequences of instruc-
tions to be executed if a DML
statement is terminated with a
database exception condition

Statement Function

Table 19: COBOL DML statements (overview) (part 6 of 6)

COBOL DML ACCEPT

U930-J-Z125-14-76 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

7.4.2 COBOL DML statements

ACCEPT

The ACCEPT statement returns the contents of the specified currency information or the
realm name belonging to a current record. There are two formats:

Format 1:

In Format 1, ACCEPT determines the database key value of the CRR, CRS, CRA or CRU
and returns it in a COBOL item of type USAGE IS DATABASE-KEY or USAGE IS
DATABASE-KEY-LONG.

 lrecord-name⎫
 ACCEPT item-name-1 FROM[mset-name }] CURRENCY
 nrealm-name ~

item-name-1
must have been defined with a USAGE IS DATABASE-KEY or USAGE IS
DATABASE-KEY-LONG clause.

If the CRR, CRS, CRA or CRU contains a database key value with a
REC-REF > 254 and/or an RSQ > 224-1, item-name-1 must be defined with USAGE
IS DATABASE-KEY-LONG. Otherwise, UDS/SQL transfers the value 0 to
item-name-1 and outputs the DATABASE-STATUS 15102.

record-name, set-name, realm-name
If one of these names is specified, the database key value of the relevant current
record is supplied to item-name-1.

If none of the names is specified, the database key value of the CRU is supplied to
item-name-1. This variant of the statement requires no DBH contact; it is thus
especially fast.

If the specified current record is not known, the value zero is supplied to
item-name-1.

ACCEPT COBOL DML

140 U930-J-Z125-14-76

Example 1

 WORKING-STORAGE SECTION.
 01 DB-KEY USAGE IS DATABASE-KEY.
 01 DB-KEY-RED REDEFINES DB-KEY.
 02 REC-REF PIC X.
 02 RSQ PIC XXX.
 01 REC-REF-NO.
 02 FILLER PIC X.
 02 REC-REF PIC X.
 01 REC-REF-NO-RED REDEFINES REC-REF-NO.
 PIC S9(4) COMP.
 01 REC-SEQ-NO.
 02 FILLER PIC X.
 02 RSQ PIC XXX.
 01 REC-SEQ-NO-RED REDEFINES REC-SEQ-NO.
 PIC S9(9) COMP.
 01 DB-KEY-OUTPUT.
 02 REC-REF PIC 9(3).
 02 RSQ PIC 9(8).
 *
 FIND 4 ARTICLE.
 ACCEPT DB-KEY FROM CURRENCY.
 MOVE REC-REF OF DB-KEY-RED TO REC-REF OF REC-REF-NO.
 MOVE RSQ OF DB-KEY-RED TO RSQ OF REC-SEQ-NO.
 MOVE REC-REF-NO-RED TO REC-REF OF DB-KEY-OUTPUT.
 MOVE REC-SEQ-NO-RED TO RSQ OF DB-KEY-OUTPUT.
 DISPLAY "DB-KEY = " DB-KEY-OUTPUT UPON TERMINAL.

 (OUT) DB-KEY = 00900000004

A DATABASE-KEY item is a 4-byte binary item that is used for storing database key
values with a REC-REF Î 254 and an RSQ Î 224-1. In the case of ACCEPT, UDS/SQL
fills the DATABASE-KEY item as follows: on executing ACCEPT, the first byte of the
item contains the record reference number (REC-REF), and the other 3 bytes contain
the record sequence number (RSQ). The DATABASE-KEY item must thus be split into
a REC-REF part and an RSQ part. Since COBOL does not recognize binary items of 1
or 3 bytes, the record reference number must first be stored in a binary item of half-word
length, and the record sequence number in a binary item of word length. The two values
are then converted into binary representation. The record type ARTICLE has the record
reference number 9. The fourth record of this record type has the record sequence
number 4.

COBOL DML ACCEPT

U930-J-Z125-14-76 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

Example 2

 WORKING-STORAGE SECTION.
 01 DB-KEY USAGE IS DATABASE-KEY-LONG.
 01 DB-KEY-RED REDEFINES DB-KEY.
 02 REC-REF PIC S9(4) COMP.
 02 FILLER PIC S9(4) COMP.
 02 RSQ PIC S9(9) COMP.
 01 DB-KEY-OUTPUT.
 02 REC-REF PIC 9(5).
 02 RSQ PIC 9(10).
 *
 FIND 4 ARTICLE.
 ACCEPT DB-KEY FROM CURRENCY.
 MOVE REC-REF OF DB-KEY-RED TO REC-REF OF DB-KEY-OUTPUT.
 MOVE RSQ OF DB-KEY-RED TO RSQ OF DB-KEY-OUTPUT.
 DISPLAY "DB-KEY = " DB-KEY-OUTPUT UPON TERMINAL.

 (OUT) DB-KEY = 000090000000004

A DATABASE-KEY-LONG item is an 8-byte binary item that is used to store database
key values.
In the case of ACCEPT, the DATABASE-KEY-LONG item is filled by UDS/SQL with a
database key value as follows:

– Bytes 1-2: record reference number REC-REF)

– Bytes 3-4: not used

– Bytes 5-8: record sequence number (RSQ)

It is therefore necessary to split the DATABASE-KEY-LONG item into a REC-REF part
and an RSQ part.

ACCEPT COBOL DML

142 U930-J-Z125-14-76

Format 2:

Format 2 of ACCEPT determines the realm to which the record specified in the FROM
clause belongs.

 lrecord-name⎫
 ACCEPT item-name-2 FROM[mset-name }]REALM-NAME
 nitem-name-3~

item-name-2
must be an alphanumeric item.

item-name-3
must have been defined with USAGE IS DATABASE-KEY or USAGE IS
DATABASE-KEY-LONG.
If you want to define the associated realm for a record containing a database key
value with a REC-REF > 254 and/or an RSQ > 224-1, item-name-3 must be defined
with USAGE IS DATABASE-KEY-LONG.

record-name, set-name, item-name-3
If record-name is specified, the name of the realm to which the CRR of record type
record-name belongs is returned in item-name-2.

If set-name is specified, the name of the realm to which the CRS of the set set-name
belongs is returned in item-name-2.

If item-name-3 is specified, the name of the realm to which the record with the
database key value given in item-name-3 belongs is returned in item-name-2.

If none of the names are specified, the name of the realm to which the CRU belongs
is returned in item-name-2.

If the specified record does not exist or if the record has been deleted, blanks are
returned in item-name-2.

COBOL DML CONNECT

U930-J-Z125-14-76 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

CONNECT

The CONNECT statement ensures that the CRU is made a member of one or more sets in
which its record type is an optional member (i.e. MANDATORY MANUAL, OPTIONAL
AUTOMATIC or OPTIONAL MANUAL member).

 lset-name-1,...⎫
 CONNECT [record-name] TO m }
 nALL ~

 lset-name-2,...⎫
 [RETAINING CURRENCY FOR m }]
 nSETS ~

record-name
If record-name is specified, the record type record-name must be declared as an
optional member of the specified set(s). The CRU must belong to this record type.
If record-name is not specified, the member record type is determined from the
description of the first set. The same checks are undertaken for this record type as
for a specified record name (this rule does not apply if ALL is specified).

set-name-1,...
If this parameter is specified, the CRU is inserted into the corresponding set occur-
rence of each set name specified. The set occurrence is determined by the CRS.
If the set is a dynamic set, the CRU must have the same record type as the current
member records of this set. It should not represent the result set of a FIND-7
statement.

ALL If ALL is specified, the record type record-name must be declared as the member
record type of at least one set which belongs to the subschema. The specified
record is inserted into a set occurrence of all sets in which its record type is an
optional member record type and of which it is not a member at the time. Dynamic
sets cannot be used with ALL.

RETAINING
This specification suppresses the modification of the currency information for
set-name-2,.... If SETS is specified, the currency information for all sets involved
remains unmodified.
RETAINING automatically applies to all sets not involved in the CONNECT
statement.

READY USAGE-MODE UPDATE is always required for CONNECT statements, unless
only dynamic sets have been specified. In the latter case, READY USAGE-MODE
RETRIEVAL is also allowed.

DISCONNECT COBOL DML

144 U930-J-Z125-14-76

DISCONNECT

The DISCONNECT statement removes the CRU from one or more set occurrences,
provided that its record type is declared as optional member of the specified set (Format 1).

Format 2 of DISCONNECT allows all records to be removed from dynamic sets.

Format 1:

 lset-name,...⎫
 DISCONNECT[record-name] FROM m }
 nALL ~

record-name
If record-name is specified, the record type record-name must be declared as an
optional member of the specified set(s) and must match the CRU.
If record-name is not specified, the member record type is determined from the
description of the first set. The same tests are performed for this record type as for
a specified record name (this rule does not apply if ALL is specified).

set-name,...
If this option is specified, the CRU is removed from the corresponding set occur-
rence of each specified set name if it is an OPTIONAL member.
if the set involved is a dynamic set, the CRU must have the same record type as the
current member records of this set. The set must not be a result set of a FIND7
statement.

ALL
If this option is specified, record-name is removed from all sets of the subschema in
which it is currently a member if it is an OPTIONAL member record.

READY USAGE-MODE UPDATE is always required for this format.

The CRS is retained, as is the sequential search option (FIND/FETCH-4).

COBOL DML DISCONNECT

U930-J-Z125-14-76 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

Format 2:

 DISCONNECT ALL FROM set-name,...

set-name,...
the sets specified must be dynamic sets; it is permitted to specify the result sets of
a FIND-7 statement.

This format can also be used if the subschema employed is opened with READY USAGE-
MODE RETRIEVAL.

ERASE COBOL DML

146 U930-J-Z125-14-76

ERASE

The ERASE statement erases the CRU from the database and removes it from all set
occurrences in which it was a member. In addition, the ERASE statement can

– erase all MANDATORY member records of the CRU or

– all records which are OPTIONAL members in set occurrences in which the record
involved is the owner can be removed from these set occurrences and erased if
required.

 lPERMANENT⎫
 ERASE record-name[mSELECTIVE} MEMBERS]
 nALL ~

record-name
The subschema to which this record belongs must contain:

– all record types of which records are erased or removed from set occurrences
as a result of the ERASE statement;

– all sets in which any record to be erased is either the owner or a MANDATORY
member;

– all sets from which a record has to be removed;

– the realm to which the record to be erased belongs;

– all realms named in the WITHIN clauses of any record type which is a member
record type of the record to be erased.

If record-name only is specified, the CRU is erased only if it does not possess any
current member records.

PERMANENT
Specifying this parameter

– erases the CRU,

– erases the MANDATORY member records of the CRU and

– removes the OPTIONAL member records of the CRU from the set occurrence.

If MANDATORY member records are also owner records of other set occurrences
which are not empty, the ERASE statement operates under the same conditions on
the member records of these set occurrences.

COBOL DML ERASE

U930-J-Z125-14-76 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

SELECTIVE
Specifying this parameter erases the following records:

– the CRU,

– the MANDATORY member records of the CRU and

– the OPTIONAL member records of the CRU if they do not have a different
owner in another set. Otherwise, the OPTIONAL member records are removed
from the set occurrence only.

If member records are also owner records of other set occurrences which are not
empty, the ERASE statement operates under the same conditions on the member
records of these set occurrences.

ALL Specifying this parameter erases the CRU and all its member records.

If member records are also owner records of other set occurrences which are not
empty, the ERASE statement operates under the same conditions on the member
records of these set occurrences.

If PERMANENT, SELECTIVE or ALL is specified, all realms of the subschema must be
opened with READY USAGE-MODE EXCLUSIVE UPDATE without realm names being
specified.

The entries in the currency table are marked as deleted. The sequential search option
(FIND/FETCH-4) is retained.

Depending on the BMODTT setting the database key value of a deleted record can always
be reused ("REUSE") after the end of the deleting transaction, or it remains locked
("KEEP").

FIND/FETCH COBOL DML

148 U930-J-Z125-14-76

FIND/FETCH

The FIND statement selects a record from the database and makes it current record in all
relevant columns of the currency table in which updating has not been suppressed. The
columns involved are the columns of the associated record type, of all sets in which the
record is owner or member and of the realm in which the record is stored. If the record found
is a member of a dynamic set, the CRS involved is not updated unless the dynamic set is
specified explicitly as a WITHIN set.

In one case the FIND statement selects a collection of records and makes its first record
current record in all relevant columns of the currency table.

The FETCH statement implements all the functions of the FIND statement. In addition it
transfers the new CRU into the UWA.

This additional function of FETCH is taken as read in the following text and will not be
referred to explicitly henceforth.

 lFIND ⎫
 m } record-selection-expression[RETAINING CURRENCY FOR
 nFETCH~

 l MULTIPLE ⎫
 o o
 m lSETS ⎫ }]
 o[REALM] [RECORD] [m }]o
 n nset-name,...~ ~

record-selection-expression
Specifies the way in which the user wishes to access records. There are 7 formats
of the record selection expression and these are explained on the following pages.

RETAINING
Must be used either with MULTIPLE or with at least one of the options REALM,
RECORD, SETS or set-name,.... This enables the user to explicitly suppress the
updating of the currency table in those columns where it is wished to preserve the
database key value of the previous record.

If RETAINING... is not specified, the record found becomes

– the CRA of the realm in which it is stored,
– the CRR of its record type and
– the CRS of all sets in which it is the owner or a member.

The currency tables of the dynamic sets are not updated unless the set is specified
explicitly as a WITHIN set.

COBOL DML FIND/FETCH

U930-J-Z125-14-76 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

MULTIPLE
Suppresses the updating of the entire currency table except for the CRU.

REALM
Suppresses the updating of the CRA.

RECORD
Suppresses the updating of the CRR.

SETS
Suppresses the updating of all CRSs.

set-name,...
Suppresses the updating of the CRSs of the specified sets.

FIND/FETCH-1 COBOL DML

150 U930-J-Z125-14-76

Formats of the record selection expression:

Format 1:

lPRIOR⎫
 [record-name]DATABASE-KEY IS item-name [OR m }]

nNEXT ~

record-name
The statement is only executed if the database key value specified in item item-name
belongs to this record type record-name. UDS/SQL then selects the record belonging
to the database key value from the database.

item-name
Must be defined with USAGE IS DATABASE-KEY or USAGE IS DATABASE-KEY-
LONG. The user must transfer the database key value of the desired record into this
item beforehand.
If you want to search for a record containing a database key value with a
REC-REF > 254 and/or an RSQ > 224-1, item-name must be defined with USAGE IS
DATABASE-KEY-LONG.

OR PRIOR
When OR PRIOR is specified, the record with the next lowest database key is
supplied if no record with the specified database key exists.
The DATABASE-STATUS 04001 then shows that the record which was actually
selected was not found.
In this case the DATABASE-STATUS 04024 shows that neither a record with the
specified database key nor one with a lower database key exists.

OR PRIOR/NEXT can be used in COBOL2000 V1.5 or higher.

OR NEXT
When OR NEXT is specified, the record with the next highest database key is
supplied if no record with the specified database key exists.
The DATABASE-STATUS 04001 then shows that the record which was actually
selected was not found.
In this case the DATABASE-STATUS 04024 shows that neither a record with the
specified database key nor one with a higher database key exists.

OR PRIOR/NEXT can be used in COBOL2000 V1.5 or higher.

COBOL DML FIND/FETCH-1

U930-J-Z125-14-76 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

Example 1

 WORKING-STORAGE SECTION.
 01 DB-KEY USAGE IS DATABASE-KEY.
 01 DB-KEY-RED REDEFINES DB-KEY.
 02 REC-REF PIC X.
 02 RSQ PIC XXX.
 01 RECORD-REF-NO.
 02 FILLER PIC X.
 02 REC-REF PIC X.
 01 REC-REF-NO-RED REDEFINES REC-REF-NO.
 PIC S9(4) COMP.
 01 REC-SEQ-NO.
 02 FILLER PIC X.
 02 RSQ PIC XXX.
 01 REC-SEQ-NO-RED REDEFINES REC-SEQ-NO.
 PIC S9(9) COMP.
 *
 FETCH-1.
 MOVE 9 TO REC-REF-NO-RED.
 MOVE 15 TO REC-SEQ-NO-RED.
 MOVE REC-REF OF RECORD-REF-NO TO REC-REF OF DB-KEY-RED.
 MOVE RSQ OF REC-SEQ-NO TO RSQ OF DB-KEY-RED.
 FETCH DATABASE-KEY IS DB-KEY; DISPLAY "DESIGNATION = "
 DESIGNATION OF ARTICLE UPON TERMINAL.

(OUT) DESIGNATION = BITTER

A DATABASE-KEY item is a 4-byte binary item that is used for storing database key
values with a REC-REF Î 254 and an RSQ Î 224-1. A database key value must be
stored in this item in such a way that the first byte of the item contains the record
reference number (REC-REF) and the remaining 3 bytes the record sequence number
(RSQ). This makes it necessary to divide the DATABASE-KEY item into a REC-REF
and an RSQ. Since COBOL does not recognize binary items of 1 or 3 bytes, the record
reference number must first be stored in a binary item of half-word length, and the
record sequence number in a binary item of word length. Both values are converted to
binary representation in the process.
The output shows the 15th record of the 9th record type. This is the record designated
BITTER and the record type ARTICLE.

FIND/FETCH-1 COBOL DML

152 U930-J-Z125-14-76

Example 2

 WORKING-STORAGE SECTION.
 01 DB-KEY USAGE IS DATABASE-KEY-LONG.
 01 DB-KEY-RED REDEFINES DB-KEY.
 02 REC-REF PIC S9(4) COMP.
 02 FILLER PIC S9(4) COMP.
 02 RSQ PIC S9(9) COMP.
 *
 FETCH-1.
 MOVE 9 TO REC-REF OF DB-KEY-RED.
 MOVE 0 TO FILLER OF DB-KEY-RED.
 MOVE 15 TO RSQ OF DB-KEY-RED.
 FETCH DATABASE-KEY IS DB-KEY; DISPLAY "DESIGNATION = "
 DESIGNATION OF ARTICLE UPON TERMINAL.
 **
 (OUT) DESIGNATION = BITTER

A DATABASE-KEY-LONG item is a 8-byte binary item for storing database key values.
Each such value must be stored in the DATABASE-KEY-LONG item as follows:

– Bytes 1-2: record reference number (REC-REF)

– Bytes 3-4: must contain the value 0

– Bytes 5-8: record sequence number (RSQ)

It is therefore necessary to split the DATABASE-KEY-LONG item into three parts: a
REC-REF, a filler and an RSQ.

COBOL DML FIND/FETCH-2

U930-J-Z125-14-76 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

Format 2:

 lANY ⎫
 m } record-name
 nDUPLICATE~

ANY
Selects a record of record type record-name associated with a pre-specified CALC
key value, where this value is converted via a hash procedure into a relative page
number. The user must first supply the items defined as CALC key in the schema
(see the “Design and Definition” manual, LOCATION MODE clause) with the CALC
key value of the desired record.

DUPLICATE
Is only allowed when the CALC key for record type record-name is defined in the
schema as DUPLICATES ARE ALLOWED. UDS/SQL then searches in this record
type for a record which is different from the CRR, but possesses the same CALC
key value as the CRR and is located within the realm of the CRR. UDS/SQL uses
the appropriate hash procedure for the search.

record-name
Must designate a record type which is defined in the schema as LOCATION MODE
IS CALC (see the “Design and Definition” manual, LOCATION MODE clause).

When the record type record-name is distributed over more than one realm, the user must
also previously have supplied the AREA-ID item (see the “Design and Definition” manual,
WITHIN clause) with the name of the realm containing the required record if the record type
is not the member record type of a distributable list.

If DUPLICATES ARE ALLOWED is declared in the schema, a CALC key value can belong
to more than one record of the record type. All records belonging to a CALC key value of
the record type within a realm will be obtained if the first record is searched for using ANY
and all subsequent records with DUPLICATE.

FIND/FETCH-2 COBOL DML

154 U930-J-Z125-14-76

Example

 FETCH-2
 FETCH 9 ARTICLE-DESCR; DISPLAY "ART-NO. = " ART-NO OF
 ARTICLE-DESCR UPON TERMINAL.
 MOVE "CLOTHING" TO RLM-SELECTION-3.
 PERFORM READ-DUPLICATES UNTIL DATABASE-STATUS = 04021.
 DISPLAY "NO FURTHER DUPLICATE PRESENT" UPON TERMINAL.
 FETCH ANY ARTICLE-DESCR; DISPLAY "ART-NO. = " ART-NO OF
 ARTICLE-DESCR UPON TERMINAL.
 PERFORM READ-DUPLICATES UNTIL DATABASE-STATUS = 04021.
 DISPLAY "NO FURTHER DUPLICATE PRESENT" UPON TERMINAL.
 GO TO FETCH-3.
 READ-DUPLICATES
 FETCH DUPLICATE ARTICLE-DESCR; IF DATABASE-STATUS IS NOT
 = 04021 DISPLAY "ART-NO. = " ART-NO OF ARTICLE-DESCR
 UPON TERMINAL.

(OUT) ART-NO. = 000005
(OUT) NO FURTHER DUPLICATE PRESENT
(OUT) ART-NO. = 000001
(OUT) ART-NO. = 000002
(OUT) ART-NO. = 000003
(OUT) ART-NO. = 000004
(OUT) ART-NO. = 000005
(OUT) NO FURTHER DUPLICATE PRESENT

In this case all article descriptions whose CALC key value matches the 9th article
description are to be selected from the database. The example shows that all duplicates
will be found only if the search is started with FETCH ANY.

COBOL DML FIND/FETCH-3

U930-J-Z125-14-76 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

Format 3:

 lrecord-name⎫
 DUPLICATE WITHIN m }[USING record-element-name,...]
 nset-name ~

record-name
If USING is not specified, the collection of records in which the search is made is
the result of the most recent search expression in the program.
record-name may then only by specified if the search expression has been
programmed at record type level, i.e. in the form:

lFIND ⎫
m } record-name[USING search-expression]
nFETCH~

(see FIND/FETCH-7 on page 163,).
record-name must then be the record name used there and UDS/SQL delivers a
record from the result of the selection. A new check is made on the search
expression so that only the currently valid record selected will be output even if
changes have been made in the meantime by transactions running in parallel.
If USING is specified, the collection of records in which the search is made is the
named record type. UDS/SQL selects from the record type a record which matches
the CRR in the items which have been defined by record-element-name,....

set-name
If USING is not specified, the collection of records in which the search is made is
the result set of the most recent search expression in the program.
set-name may then only be specified if the search expression has been programmed
at set level, i.e. in the form:

lFIND ⎫
m } record-name WITHIN set-name[USING search-expression]
nFETCH~

(see FIND/FETCH-7 on page 163).
set-name must then be the set name used there and UDS/SQL delivers a record
from the result of the selection. The search expression is also checked again.
If USING is specified, the collection of records in which the search is made is the
set occurrence which contains the CRS of the named set. From this set occurrence
UDS/SQL selects a set which matches the CRS in the items defined by
record-element-name,....

FIND/FETCH-3 COBOL DML

156 U930-J-Z125-14-76

record-element-name,...
Must be specified whenever no reference is made to a preceding statement in the
form:

lFIND ⎫
m } [USING search-expression]
nFETCH~

The record elements in which the record searched for is to match the CRR of record
type record-name or the CRS of set set-name must be listed. The CRS must be a
member record.
The record elements must belong to record type record-name or to the member
record type of set set-name.

If a record element or a combination of record elements is specified which is defined as a
key in the schema, UDS/SQL uses any available direct access paths. These direct access
paths can be as follows:

– at record type level:
Record SEARCH key table or hash procedure for SEARCH key

– for the primary key at set level:
Pointer array, list or sort key table

– for a secondary key at set level:
Set SEARCH key table or hash procedure

A prerequisite is that the key is defined in the schema as DUPLICATES ARE ALLOWED.
If other record elements are specified, UDS/SQL searches sequentially through the record
type.
If the user wishes to read only those records which are selected as the result of a search
expression, then a sequence of FIND-3 statements is required.

COBOL DML FIND/FETCH-3

U930-J-Z125-14-76 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

Example

 FETCH-3.
 FETCH 2 PURCHASE-ORDER; DISPLAY "ORDER NO. = " P-ORD-NO
 " DATE = " P-ORD-DAY P-ORD-MTH P-ORD-YEAR UPON
 TERMINAL.
 FETCH DUPLICATE WITHIN P-ORD-PLACED USING P-ORD-MTH,
 P-ORD-YEAR; DISPLAY "P-ORD-NO = " P-ORD-NO
 " DATE = " P-ORD-DAY P-ORD-MTH P-ORD-YEAR UPON
 TERMINAL.
**
(OUT) ORDER-NO. = 7995 DATE = 100182
(OUT) ORDER-NO. = 8540 DATE = 030182

The second record of record type ORDER is dated 10.1.82.
An order from the same month is then output.

FIND/FETCH-4 COBOL DML

158 U930-J-Z125-14-76

Format 4:

 lLAST ⎫
 o o
 oFIRST o
 o o
 oNEXT o lrecord-name⎫ lset-name ⎫
 m } m }[WITHIN m }]
 oPRIOR o nRECORD ~ nrealm-name~
 o o
 ointeger o
 o o
 nitem-name~

LAST Delivers the last record in the collection. The collection is defined by record-name,
RECORD, set-name and realm-name.

FIRST Delivers the first record.

NEXT Delivers the next record

– of the CRS when set-name is specified
– of the CRA when realm-name is specified
– of the CRR when WITHIN is omitted.

PRIOR
Delivers the prior record

– of the CRS when set-name is specified
– of the CRA when realm-name is specified
– of the CRR when WITHIN is omitted.

integer
Must be a positive (=standard) or negative signed integer. 0 is not allowed.
UDS/SQL delivers the record whose position corresponds to the specified numeric
value. UDS counts the position:

– forward beginning at the first member record in the case of positive integers,
– backward beginning at the last member record in the case of negative integers.

An entry of 1 therefore corresponds to FIRST, whereas -1 corresponds to LAST.
Negative values are not allowed if the set is defined in the SSL as MODE IS CHAIN
without LINKED TO PRIOR.

item-name
Must be a numeric item which contains a signed decimal integer. The rules given
above for integer also apply here.

COBOL DML FIND/FETCH-4

U930-J-Z125-14-76 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

record-name
Defines the named record type as the collection of records in which the search is to
be made when WITHIN is not specified. The order is determined by ascending
order of database key value.

RECORD
Must not be used without WITHIN.

set-name
Defines the set occurrence which contains the CRS of the named set as the
collection of records. The order is determined by the ORDER clause defined for this
set in the schema. The owner record in this sequence is prior to the first member
record.

If record-name is specified, it must designate the member record type of this set.

As FIND7 is not permitted with RESULT IN and SORTED, the set cannot be a
sorted result set.

realm-name
If record-name is specified, the realm name must come from the DDL WITHIN clause
of this record type. The record collection then consists of the records which belong
to record type record-name and are located in realm realm-name. Otherwise the realm
name must come from a DDL WITHIN clause of any record type belonging to the
subschema, and the collection then consists of the records of the realm.

In both cases the sequence of the records is defined by ascending order of
database key value.

Example

 FETCH-4.
 FETCH FIRST SUPPLIER; DISPLAY SUPPL-NAME UPON TERMINAL.
 FETCH 2 PURCHASE-ORDER WITHIN P-ORD-PLACED; DISPLAY
 "P-ORD-NO = " ORDER-NO. " DATE = " P-ORD-DAY
 P-ORD-MTH P-ORD-YEAR UPON TERMINAL.
**
(OUT) MONA FASHIONS
(OUT) ORDER-NO. = 7995 DATE = 100182

The first record of record type SUPPLIER is output firstly. The second record is then
selected from the set occurrence of this supplier in the set P-ORD-PLACED.

FIND/FETCH-5 COBOL DML

160 U930-J-Z125-14-76

Format 5:

 lset-name ⎫
 CURRENT[record-name] [WITHIN m }]
 nrealm-name~

record-name
Initiates access to the CRR of this record type and thereby resets the currency infor-
mation to the status of the CRR if it is not followed by a WITHIN specification: the
CRR again becomes the current record in all relevant columns of the currency table
or in those columns where updating has not been suppressed with RETAINING.

set-name
Initiates access to the CRS of this set and thereby resets the currency information
to the status of the CRS: the CRS again becomes the current record in all the
relevant columns of the currency table or in those columns where updating has not
been suppressed using RETAINING.

If record-name is specified, it must designate the member record type of the set.
UDS/SQL then executes the statement only if the CRS belongs to this record type,
i.e. if the CRS is not the owner record.

realm-name
Initiates access to the CRA of this realm and thereby resets the currency infor-
mation to the status of the CRA: the CRA again becomes the current record in all
relevant columns of the currency table or in those columns where updating has not
been suppressed using RETAINING.

If record-name is specified, the realm name must come from the DDL WITHIN clause
of this record type. UDS/SQL then executes the statement only if the CRA belongs
to this record type. Otherwise the realm name must originate from the DDL WITHIN
clause of any other record type belonging to the subschema.

If FIND CURRENT is used in the program without other specifications, the currency infor-
mation is updated to the status of the CRU. It only makes sense to use this statement if
RETAINING has been used previously.

COBOL DML FIND/FETCH-5

U930-J-Z125-14-76 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

Example

 FETCH-5.
 FIND FIRST SUPPLIER.
 FIND NEXT SUPPLIER RETAINING CURRENCY FOR SUPPLIERS.
 FETCH CURRENT SUPPLIER RETAINING CURRENCY FOR SUPPLIERS;
 DISPLAY SUPPL-NAME UPON TERMINAL.
 FETCH CURRENT SUPPLIER WITHIN SUPPLIERS; DISPLAY
 SUPPL-NAME UPON TERMINAL.
**

(OUT) BRAKSPEARS BREWERY
(OUT) MONA FASHIONS

The example shows the effect of the currency information and the RETAINING specifi-
cation.
The first record output is the CRR of record type SUPPLIER. The second record output
originates from the same record type, but is the CRS in set SUPPLIERS, in which
SUPPLIER is member record type.

FIND/FETCH-6 COBOL DML

162 U930-J-Z125-14-76

Format 6:

 OWNER WITHIN set-name

set-name
Must not designate a SYSTEM set, since this cannot have an owner record.
UDS/SQL accesses the owner of the CRS. If the CRS itself is the owner record, this
means that the CRS is accessed.

Example

 FETCH-6.
 FETCH CURRENT PURCHASE-ORDER WITHIN P-ORD-PLACED; DISPLAY
 "P-ORD-NO = " ORDER-NO. " DATE = " P-ORD-DAY
 P-ORD-MTH P-ORD-YEAR UPON TERMINAL.
 FETCH OWNER WITHIN P-ORD-PLACED; DISPLAY "SUPPLIER-NAME = "
 SUPPL-NAME UPON TERMINAL.

(OUT) ORDER-NO. = 7995 DATE = 100182
(OUT) SUPPLIER-NAME = MONA FASHIONS

Here the owner of order 7995 in set P-ORD-PLACED is output.

COBOL DML FIND/FETCH-7

U930-J-Z125-14-76 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

Format 7:

record-name[WITHIN set-name-1[CURRENT]]

 l lPRIOR⎫ ⎫
 oUSING record-element-name-1,...[OR m }] o
 o nNEXT ~ o
 o o
 o[USING search-expression][RESULT IN set-name-2] o
 o o
 o [LIMITED BY set-name-3][TALLYING item-name-1] o
 o o
 m lASCENDING ⎫ lBY⎫ }
 o [SORTED[m }][m }] o
 o nDESCENDING~ nON~ o
 o o
 o record-element-name-2[[,]record-element-name-3]... o
 o o
 o lASCENDING ⎫ lBY⎫ o
 o [[,][m }][m }] o
 o nDESCENDING~ nON~ o
 o o
 n record-element-name-4[[,]record-element-name-5]...]...]~

 lcomplex-1[AND complex-2]⎫
search-expression ::= m }
 ncomplex-2 ~

 lAND⎫
complex-1 ::= [NOT]condition-1[m }[NOT] condition-1]...
 nOR ~

condition-1 ::= record-element-name-6[WITH MASK mask] IS

 lEQUAL ⎫
 o = o
 oGREATER THANo litem-name-2⎫
 [NOT]m } m }
 o > o nliteral-1 ~
 oLESS THAN o
 n < ~

complex-2 ::= condition-2[AND condition-2]...

condition-2 ::= record-element-name-7 IS NEXT

 lGREATER THAN⎫
 o > o litem-name-3⎫
 [NOT]m } m }
 oLESS THAN o nliteral-2 ~
 n < ~

FIND/FETCH-7 COBOL DML

164 U930-J-Z125-14-76

record-name
Defines the named record type as the collection in which the search is to be made
when WITHIN is not specified.

set-name-1
Defines a set occurrence of the named set as the record collection. The required
set occurrence is selected by specifying CURRENT.
record-name must designate the member record type of this set. In a dynamic set it
is the record type whose records are located within the dynamic set.

CURRENT
See “Selecting a set occurrence” on page 169.

record-element-name-1
Must designate record elements of record type record-name. Here the user lists
those elements of the record being searched which must match the preset values
given in the UWA. The record elements must therefore be supplied with the desired
values beforehand in the UWA. record-element-name-1 can also be a group item
name.

OR PRIOR
Delivers the record with the preset key value given in the UWA. If no such record
exists, the OR PRIOR clause returns the immediately preceding record of the set
occurrence in accordance with the sort sequence. This sort sequence is defined by
record-element-name-1,..., where record-element-name-1,... must be the ASCENDING
KEY or DESCENDING key of the set set-name-1. Any violation of these conditions
will be acknowledged by UDS/SQL at runtime with the DATABASE-STATUS 04101.

If there are duplicate records for a key value, UDS/SQL returns the one with the
highest record sequence number (RSQ). Consequently, a FIND-7 OR PRIOR
statement and a sequence of FIND-4 PRIOR statements could be used to
determine all duplicates.

If the preset key value given in the UWA is lower than the smallest existing key
value in the set occurrence, UDS/SQL will return the DATABASE-STATUS 04024.

COBOL DML FIND/FETCH-7

U930-J-Z125-14-76 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

OR NEXT
Delivers the record with the preset key value given in the UWA.
If no such record exists, the OR NEXT clause returns the immediately following
record of the set occurrence in accordance with the sort sequence. This sort
sequence is defined by record-element-name-1,..., where one of the following condi-
tions must be satisfied:

– record-element-name-1,... is the ASCENDING KEY, DESCENDING KEY or a
SEARCH KEY USING INDEX of the set set-name-1.

– record-element-name-1,... is a SEARCH KEY USING INDEX of the record type
record-name.

Otherwise, UDS/SQL will return the DATABASE-STATUS 04101 at runtime.

If there are duplicate records for a key value, UDS/SQL returns the one with the
lowest record sequence number (RSQ). In other words, you can find all duplicates
by using

– a FIND-7 OR NEXT statement and a sequence of FIND-4 NEXT statements or

– a FIND-7 OR NEXT statement and a sequence of FIND-3 statements.

If the preset key value given in the UWA is greater than the highest existing key
value in the set occurrence, UDS/SQL will return the DATABASE-STATUS 04024.

search-expression
Specifies comparison conditions to be satisfied by the item contents in the records
being searched.
The following special features can be utilized here:

– Storage of the entire set of records selected:
UDS/SQL searches not just for one record, but transfers into a dynamic set all
records which satisfy the conditions of the search expression. The first record
found becomes the current record in the currency table.

– Not-equal as comparison condition:
UDS/SQL can select all records which satisfy a not-equal condition
(condition-1) or just the record which most closely matches the not-equal
condition (condition-2).

– Logical operators AND, OR, NOT as comparison conditions
– Masks
– The option of presetting a value either in the UWA (item-name-2/-3) or in the

statement itself (literal-1/-2)
– Storing selected records in a set (RESULT)
– Limiting the search to an intersection of two sets of records (LIMITED)
– Counting selected records (TALLYING)
– Sorting selected records (SORTED BY).

The subschema used must contain a temporary realm.

FIND/FETCH-7 COBOL DML

166 U930-J-Z125-14-76

USING
If USING is not specified, UDS/SQL interprets this as a search expression which is
satisfied by all records of the record collection.

condition-1
Delivers all records which satisfy the comparison condition. Negative item contents
and und negative comparison contents are allowed only when the relational
operator is "EQUAL".
A sequence of more than one condition-1 is evaluated by UDS/SQL in accordance
with the following rules: NOT has a higher priority than AND and AND has a higher
priority than OR.
This sequence of priorities can be changed if logical operations which UDS/SQL is
to evaluate as a single expression are placed in parentheses.

record-element-name-6
Designates a record element of record type record-name which is to contain a preset
value. It must not contain a variable item. Group items may also be used.

If UDS/SQL is not to check the entire contents of the record element, parts of the
record can be suppressed using a mask.
The preset value is specified in item-name-2 or literal-1.

mask Masks out part of record-element-name-6. mask must be defined in exactly the same
way as record-element-name-6; otherwise it is automatically converted into the form
of record-element-name-2.
Each byte of the mask must possess the value LOW VALUE or HIGH VALUE. The
positions of record-element-name-6 which are defined as LOW VALUE in the mask
are not evaluated by UDS/SQL during comparison. The same positions in
item-name-2 must also be occupied by LOW-VALUE.

item-name-2
Designates a record element or an item in the WORKING-STORAGE SECTION
which contains the preset value for record-element-name-6. It must be defined in
exactly the same way as record-element-name-6 if WITH MASK is not used. If WITH
MASK is used, only the length must correspond to record-element-name-6.
item-name-2 must be provided with the desired value beforehand.

literal-1
Is the value which is preset for record-element-name-6 in the statement.
literal-1 must have exactly the same length as record-element-name-6.

COBOL DML FIND/FETCH-7

U930-J-Z125-14-76 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

condition-2
Delivers all records that satisfy the comparison condition. Not-equal conditions,
negative item contents and negative comparison contents are not allowed.

After condition-1 in complex-1 has been evaluated firstly, all condition-2 conditions in
complex-2 are evaluated in order, starting with the left-most condition.

Adding NEXT restricts the selected set of condition-2 in complex-2 to those records
of the record type record-name that contain the value W with the following two
characteristics as record-element-6:

– W matches the comparison in condition-2.

– From all values in the database for record-element-6 that match the comparison
in condition-2, W lies closest to the comparison value specified by literal-2 or
item-name-3.

record-element-name-7
Designates a record element of record type record-name which is to contain a
preset non-negative value. It must not contain a variable-length item. Group items
may also be used. The value is preset in item-name-3 or literal-2.

item-name-3
Designates a record element or an item in the WORKING-STORAGE SECTION
which contains the preset value for record-element-name-7. It must be defined in
exactly the same way as record-element-name-7.
The desired non-negative value for item-name-3 must be provided beforehand in the
UWA.

literal-2
Is the value which is preset for record-element-name-7 in the statement. literal-2 must
be exactly the same length as record-element-name-6 and must not be negative.

RESULT
Is required if UDS/SQL is to store the selected records in an explicit dynamic set
which can be accessed using other FIND/FETCH-4 statements. In this way the
search for records can be programmed so that several hierarchy levels of the data
structure are processed in all, i.e. the items used for the complete search can
belong to different record types (complex query).

set-name-2
Must designate a dynamic set.

FIND/FETCH-7 COBOL DML

168 U930-J-Z125-14-76

LIMITED
May only be specified if set-name-1 does not designate a dynamic set.
LIMITED limits the collection of records to those records which

– belong to the record type record-name or to the selected set occurrence of the
set set-name-1

– and are also contained in set set-name-3.

set-name-3 must not be a sorted dynamic set, since it is not possible to create the
intersection of a selected set (hit list) and a sorted dynamic set.
If set-name-3 is an unsorted dynamic set, the SORTED clause (see below) is
not allowed, since the intersection of a selected set and a dynamic set cannot be
sorted.

set-name-3
Must designate a dynamic set.

TALLYING
Counts the records which satisfy the conditions of the search expression and stores
the number in item item-name-1.

item-name-1
Must designate a numeric item.

SORTED...
May not be specified if set-name-3 (see LIMITED clause) is a dynamic set.
The SORTED clause sorts the records that satisfy the search expression. If a user-
specific translation table has been added to the UDS.MODLIB, the sort sequence
defined therein will be used.

ASCENDING causes the records to be sorted in ascending order.

DESCENDING causes the records to be sorted in descending order.

record-element-name-2 through record-element-name-5
Must identify records of the record type record-name.
This is a list of the record elements by which the records are to be sorted. The user
can determine the priority of the sort items by means of the order of the record
elements.

record-element-name-2...5 may also be the name of a group item. The records are
sorted according to type providing a subschema of UDS/SQL V2.0 or later exists
which was not compiled using “SUBSCHEMA FORM IS OLD”. Group items are
handled in the same way as a character item. If nothing is entered, ascending is the
default.
The default value for the first entry is ASCENDING, for repeated entries, the
currently valid sort direction. All the sort items must, however, be sorted in the same
direction.

COBOL DML FIND/FETCH-7

U930-J-Z125-14-76 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

Selecting a set occurrence

A set which is not a SYSTEM set generally possesses more than one set occurrence so
that it is necessary first to specify the occurrence which is to be searched.

If CURRENT is specified, the set occurrence is determined by the CRS. The same applies
if the selection method given in the schema for the set occurrences of this set is
SELECTION THRU CURRENT OF SET.

If CURRENT is not specified and the selection method defined in the schema is
SELECTION THRU LOCATION MODE OF OWNER, then only the key value which belongs
to the owner record of the desired set occurrence must be transferred into the UWA.

The key is:

– a database key if the owner record type in the schema is defined with LOCATION
MODE IS DIRECT or LOCATION MODE IS DIRECT-LONG.

– a CALC key if the owner record type is defined in the schema with LOCATION MODE
IS CAL.

UDS/SQL selects the set occurrence by accessing the relevant user record by means of
the database key or via the hash procedure and automatically making it CRS.

Table 20 gives an overview of how set occurrences must be selected.

 SET OCCURRENCE SELECTION IS THRU

CURRENT

OF SET

 LOCATION MODE OF OWNER

LOCATION MODE IS

LOCATION MODE IS

CALC USING item-name...

without CURRENT CRS
Database key value in the
item item-name or identifier-1
in UWA or items named in
the ALIAS clause

CALC key value in items item-
name,... or identifier-2 in UWA
or items named in the ALIAS
clause

with CURRENT CRS CRS CRS

Table 20: Selection of set occurrences

Schema
definition

FIND
statement

DIRECT
DIRECT-LONG

item-name
identifier

FIND/FETCH-7 COBOL DML

170 U930-J-Z125-14-76

Utilizing direct access paths

Direct access paths can be used to considerably accelerate the execution of a search order.
Such direct access paths are:

– primary keys at record type level (LOCATION MODE IS CALC)

– primary keys at set level (ASCENDING/DESCENDING KEY); excluding the case
ORDER IS SORTED without the addition INDEXED (only possible with MODE IS
CHAIN)

– secondary keys at record type and set levels (SEARCH KEY USING INDEX/ CALC).

In order to ensure that a key in record-element-name-1,... is evaluated, the following must be
observed with FIND/FETCH-7:

– If WITHIN set-name-1 is not specified:
The key is defined at record type level.

– If WITHIN set-name-1 is specified:
The key is defined in the set set-name-1.

In order to ensure that a key in search-expression is evaluated, the following must be
observed with FIND/FETCH-7:

– Without WITHIN set-name-1 or with WITHIN set-name-1, where set-name-1 is a SYSTEM
set of the MANDATORY AUTOMATIC member type:
The key is defined at the record type level or in any SYSTEM set of the MANDATORY
AUTOMATIC member type whose member record type is the underlying record type

– With WITHIN set-name-1, where set-name-1 is not a SYSTEM set of the MANDATORY
AUTOMATIC member type:
The key is defined in set-name-1.

● Direct access with FIND-7 USING record-element-name-1,...

If the key consists of several items, then record-element-name-1,... must exactly match
the items and their sequence in the compound key.
If a compound key is identical to a group item in the subschema, then the group item
name can be specified instead of record-element-name-1. The group item is then treated
as an item with TYPE=CHARACTER. If record-element-name-1 is the primary key at
record type level, the table search is not supported. In this case, it is better to use
FIND-2.

COBOL DML FIND/FETCH-7

U930-J-Z125-14-76 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

● Direct access with FIND-7 USING search-expression

With UDS/SQL V2.0 and below, a condition within a search expression could only be
evaluated by means of an existing direct access path (“index”) if the relevant record
element name is the elementary item of a single key or if it is a data group whose
elementary items comprise exactly the items of a compound key.
In the case of the data group you had the option of declaring elementary items of the
data group as irrelevant with regard to the condition by entering mask characters in the
items, but the problems of data replication and data independence remained (for
example, items must appear several times in the record if they occur in several data-
group keys).

In UDS/SQL V2.2 and higher, only the relevant items are named in the search
expression. A condition is evaluated while retaining direct access even if, as a data
group or an elementary item, it only comprises part of the items of the underlying
compound key.

Mask conditions combined with “AND” and “OR” which refer to one and the same index
table are fully evaluated via direct access paths in UDS/SQL V2.2 and higher.
In UDS/SQL V2.0 and below, with "AND" only one of the conditions was evaluated via
index table and the ensuing superset was processed further sequentially; with "OR" the
the table search was carried out without restriction of the search area.

Application scenarios for the use of compound keys

The formulation of search queries by means of compound keys offers the following
advantages:

– Data replication becomes superfluous because items need only appear once in the
record

– Additional search keys can be avoided through clever selection of the items in
compound keys

– Compound keys allow different item types, while data groups prohibit certain item
types (data groups are handled like items of type PIC(X) and cannot therefore
contain any non-printable numeric data types)

– Masks are not needed because irrelevant data can be omitted from the search
condition

Evaluation by means of compound keys, therefore, generally leads to shorter records
and ensures data independence on the part of the application programs. This means
that less maintenance and modification is required, especially since, when there are
changes in the data structure, data groups require more maintenance even without
replication items.

FIND/FETCH-7 COBOL DML

172 U930-J-Z125-14-76

For applications in the SQL environment which work with an ODBC server, compound
keys offer ideal support because the ODBC interface does not support data groups, and
the use of compound keys represents a considerable improvement here.

The following examples illustrate the use of the compound key in UDS/SQL V2.2 and
higher. All are based on the record type CUST. C-INDUST denotes the industry, C-ZIP
the zip code and C-VOLUME the total order volume of the customer:

RECORD NAME IS CUST

UDS/SQL V2.0 02 C-INDUST-ZIP
 03 C-INDUST PIC X(20)
 03 C-ZIP
 04 C-REGION PIC 9
 04 C-ZIPREST PIC 9999
 02 C-REGION-INDUST
 03 C-REGION-1 PIC 9
 03 C-INDUST-1 PIC X(20)
 02 C-VOLUME-REGION
 03 C-VOLUME PIC 9(9)
 03 C-REGION-2 PIC 9

UDS/SQL V2.2 02 C-INDUST PIC X(20)
and higher 02 C-REGION PIC 9
 02 C-ZIPREST PIC 9999
 02 C-VOLUME TYPE DECIMAL 9

C-REGION-1 and C-REGION-2 are replications of C-REGION. C-INDUST-1 is a repli-
cation of C-INDUST.

C-VOLUME was declared in UDS/SQL V2.0 as a printable numeric value because
C-VOLUME is to be processed as part of a data group with mask characters. In
UDS/SQL V2.2 and higher, data groups and mask characters can be dropped if
compound keys are used, and the item type can thus be freely selected.

COBOL DML FIND/FETCH-7

U930-J-Z125-14-76 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

Example 1

The task is to evaluate the customers on the one hand by industry and on the other by
region. To ensure an efficient evaluation run, two search keys are defined each time.
Data replication can be omitted in UDS/SQL V2.2 and higher.

UDS/SQL V2.0:

SEARCH KEY IS C-INDUST, C-REGION, C-ZIPREST USING INDEX
SEARCH KEY IS C-REGION-1, C-INDUST-1 USING INDEX

FETCH CUST USING C-INDUST-ZIP =’ELECTRCL*’ *search for customers of an
industry*
FETCH CUST USING C-REGION-INDUST =’7*’

The ’*’ character stands for mask characters at the end of an identifier. With respect to
COBOL DML the statement is syntactically incorrect.

UDS/SQL V2.2 and higher:

SEARCH KEY IS C-INDUST, C-REGION, C-ZIPREST USING INDEX
SEARCH KEY IS C-REGION, C-INDUST USING INDEX *no replications*

FETCH CUST USING C-INDUST =’ELECTRCL’
FETCH CUST USING C-REGION = 7

Example 2

The task is to determine the ’major customers’ of a region. UDS/SQL V2.0 offered
different options for this, which either required data replication or could only be partly
processed via the index table. For the comparison, only the two variants without data
replication are considered:

UDS/SQL V2.0:

SEARCH KEY IS C-VOLUME USING INDEX

FETCH CUST USING C-VOLUME >=10000 AND C-REGION = 8

 or with search keys

SEARCH KEY IS C-VOLUME USING INDEX
SEARCH KEY IS C-REGION USING INDEX

FETCH CUST USING C-VOLUME >=10000 AND C-REGION = 8

In the first case, only C-VOLUME can be evaluated via the index table; the superset
thus formed is searched sequentially for C-REGION = 8.
In the second case, interim sets of hits are created and cut with respect to C-VOLUME
and C-REGION. This solution is disadvantageous for update functions because an
additional search key table has to be maintained.

FIND/FETCH-7 COBOL DML

174 U930-J-Z125-14-76

UDS/SQL V2.2 and higher:

SEARCH KEY IS C-VOLUME, C-REGION USING INDEX

FETCH CUST USING C-VOLUME >=10000 AND C-REGION = 8

Use of compound keys in search expressions with the Boolean operators AND and OR

Compound keys only show their full effect within search expressions which contain
either only the Boolean operator AND or only OR.
If both operators are mixed in a search expression, the AND components (’AND group’)
and the OR components (OR group) are evaluated separately.

All the following examples are based on the search keys defined here:

SEARCH KEY IS C-INDUST, C-REGION, C-ZIPREST USING INDEX
SEARCH KEY IS C-REGION, C-INDUST USING INDEX
SEARCH KEY IS C-VOLUME, C-REGION USING INDEX

FETCH CUST USING C-INDUST = ’ELECTRCL’
 AND (C-REGION = 2 OR C-REGION = 8)

C-INDUST and C-REGION cannot be evaluated in the same run.

The assignment of the search criteria to index tables is carried out according to the rules
described below if the search criterion can be selected from more than one index table
as a key item.
For this purpose we distinguish between “main key items” and “secondary key items”.
Main key items form the first key item within a compound key, Secondary key items
occur as the second to the nth key item. It may happen that a search criterion is the
main key item in one index table and the secondary key item in the other; e.g.
C-INDUST and C-REGION in the first two search keys in the example refer alternately
to the main key item and the secondary key item. The case where a key item is the main
key item in multiple index tables is not dealt with; the selection of the index table is then
uncertain.

AND groups

The search conditions are processed in the stipulated sequence.
Once the first main key item is found, the system first checks whether the search
expression contains secondary key items which match it (i.e. key items which belong to
the same index table) before searching for further main key items.

COBOL DML FIND/FETCH-7

U930-J-Z125-14-76 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

Examples:

FETCH CUST USING C-INDUST = 'ELECTRCL' AND C-REGION = 2

C-INDUST is the first main key item to be found. Although C-REGION is also a main
key item (in a different index table), C-INDUST is assigned as the secondary key item.

FETCH CUST USING C-REGION > 7 AND C-INDUST = 'ELECTRCL'
 AND C-VOLUME > 100000

C-REGION is the first main key item to be found. Although C-INDUST is also a main
key item (in a different index table), C-REGION is assigned as the secondary key item.
C-VOLUME is selected as the second main key item.

FETCH CUST USING C-INDUST NOT= 'ELECTRCL' AND C-REGION = 2

C-INDUST is actually the first main key item to be found. However, because "NOT=" is
a very unselective condition, it is not acknowledged as a main key item; instead, C-
REGION is selected in the other search key and C-INDUST is assigned to it as the
secondary key item.

A compound CALC key can only be evaluated within an AND group, and even then only
if the main and all secondary key items (in any order) are listed with the "=" operator
without a mask.

Once the search conditions have been assigned to index or CALC tables, the order in
which the tables are evaluated is determined:

1. Search condition as single key or data-group key with "=" operator

2. Search condition as single key or data-group key with "<" or ">" operator, or as main
key item in a compound key in conjunction with an "=", "<" or ">" operator together
with the associated secondary key items

3. All other search conditions

FIND/FETCH-7 COBOL DML

176 U930-J-Z125-14-76

OR groups

If an OR group exists, the search conditions are processed in the order in which they
occur. Only the main key items are selected for selective table access. Secondary key
items are also evaluated via table access, but without restriction of the search area.
Example:

FETCH CUST USING C-INDUST = 'ELECTRCL' OR C-REGION = 2

Both items are main key items of two different index tables and are selected as such.

Restrictions

In the following cases, UDS/SQL cannot utilize or can only partially utilize the direct
access facility even if a table exists:

– A key condition is logically ORed with a non-key condition.

– The key refers to a CALC key and one of the following conditions is fulfilled:

– record-element-name-6 is masked
– the key is record-element-name-7 (NEXT)
– condition-1 or the relational operator is negated (NOT)
– the relational operator is not “EQUAL”.

– The key is a masked list sort key and the mask does not begin with HIGH VALUE
(LOW VALUE mask).

– The key is a DESCENDING KEY.

– The key is part of complex-2 (NEXT) and one of the following conditions is fulfilled:

– complex-2 consists of more than one condition
– the search expression consists of complex-1 and complex-2.

● Sequential search using single sweep

DIRECT-CALC records are read in the order of their physical position, i.e. using single
sweep.

Single sweep is only used with FIND3/7 at record type level, while the search with FIND
FIRST and FIND NEXT is carried out using the DBTT.

COBOL DML FIND/FETCH-7

U930-J-Z125-14-76 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

Handling of dynamic sets if status code ≠ 000

If a FIND/FETCH-7 USING search-expression does not find any records (status code = 024),
the implicit dynamic set and any dynamic sets specified explicitly are subsequently empty.
If a FIND/FETCH-7 USING search-expression (status code ≠ 000 and ≠ 024) is not
successful, the implicit dynamic set and any dynamic sets specified explicitly are reset to
their status prior to FIND/FETCH-7.

Example 1

 FETCH-7-RECORD-ELEMENT-NAME.
 MOVE 1 TO P-ORD-MTH.
 MOVE 82 TO P-ORD-YEAR.
 FETCH PURCHASE-ORDER USING P-ORD-MTH, P-ORD-YEAR;
 DISPLAY "ORDER-NO. = " P-ORD-NO " O-DATE = " P-ORD-DAY
 P-ORD-MTH P-ORD-YEAR UPON TERMINAL.
 PERFORM READ-DUPLICATE-ORDER UNTIL DATABASE-STATUS = 04021.
 DISPLAY "NO FURTHER DUPLICATES" UPON TERMINAL.
 GO TO FETCH-7-SEARCH-EXPRESSION.
 READ-DUPLICATE-ORDER.
 FETCH DUPLICATE WITHIN PURCHASE-ORDER USING P-ORD-MTH, ORDER-

YEAR;
 IF DATABASE-STATUS IS NOT = 04021 DISPLAY "ORDER NO. = "
 P-ORD-NO" O-DATE = " P-ORD-DAY P-ORD-MTH P-ORD-YEAR
 UPON TERMINAL.

(OUT) ORDER-NO. = 0003 O-DATE = 150182
(OUT) ORDER-NO. = 7995 O-DATE = 100182
(OUT) ORDER-NO. = 8540 O-DATE = 030182
(OUT) ORDER-NO. = 7854 O-DATE = 030182
(OUT) NO FURTHER DUPLICATES PRESENT

The first FETCH statement selects a record which has the month and year corre-
sponding to the date given in the UWA.
A subsequent sequence of FETCH DUPLICATE outputs all other orders which are
dated with the same month and year.

A FETCH DUPLICATE statement requires a USING specification.

FIND/FETCH-7 COBOL DML

178 U930-J-Z125-14-76

Example 2

 WORKING-STORAGE SECTION.
 01 END-CONDITION PIC XX.
 88 END VALUE IS "YES".
 *
 FETCH-7-SEARCH-EXPRESSION.
 FIND ARTICLE-DESCR USING DESIGNATION OF ARTICLE-DESCR IS
 = "SUMMER DRESS WITH JACKET" RESULT IN RESULTSET.
 FETCH ARTICLE WITHIN ORDER-SPECS USING PRICE IS < 300
 AND SIZE IS = 36 AND CURR-STOCK IS > MIN-STOCK;
 PERFORM READ-DUPLICATE-ARTICLE UNTIL DATABASE-STATUS = 04021.
 PERFORM READ-DUPLICATE-ARTICLE-DESCR UNTIL END.
 GO TO MODIFY-REC-ELEMENT.
 READ-DUPLICATE-ARTICLE-DESCR
 FIND NEXT RECORD WITHIN RESULTSET; IF DATABASE-STATUS
 = 04021 MOVE "YES" TO END-CONDITION ELSE PERFORM
 READ-DUPLICATE-ARTICLE UNTIL DATABASE-STATUS = 04021.
 READ-DUPLICATE-ARTICLE
 FETCH DUPLICATE WITHIN ORDER-SPECS; IF DATABASE-STATUS
 IS NOT = 04021 DISPLAY ARTICLE UPON TERMINAL.

This is an example of a complex search query: the search for article records first uses
items of record type ARTICLE-DESCR and buffers the selected records in a dynamic
set. Then each set occurrence of a selected record is searched for item contents of
member record type ARTICLE.

COBOL DML FINISH/FREE

U930-J-Z125-14-76 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

FINISH

The FINISH statement terminates a transaction and releases reserved realms and pages.

 FINISH[WITH CANCEL]

WITH CANCEL
If this option is specified, the DBH performs a rollback to cancel all changes made
by this transaction.

In openUTM programs a FINISH(without CANCEL) is delayed until PEND.

FREE

The FREE statement terminates the extended record protection provided by KEEP for one
or more records:

 FREE[ALL]

ALL If ALL is specified, all records which were given additional protection by KEEP are
released for use by other transactions and the normal CRU lock is maintained.
If ALL is not specified, only the additional record protection for the CRU is released.

GET COBOL DML

180 U930-J-Z125-14-76

GET

The GET statement transports the entire CRU or part of the CRU into the UWA.

 lrecord-name ⎫
 GET[m }]
 nrecord-element-name,...~

record-name
must designate the record type of the CRU. UDS/SQL then transports the entire
CRU into the UWA.

record-element-name,...
must originate from the record type of the CRU. This entry is used to select specific
record elements of the CRU whose contents UDS/SQL is to transport into the UWA.

If neither record-name nor record-element-name,... is specified, UDS/SQL transports the entire
CRU into the UWA.

COBOL DML IF

U930-J-Z125-14-76 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

IF

The IF statement tests set membership in the program. There are two formats:

Format 1:

 lOWNER ⎫ lstatement-1 ⎫ lstatement-2 ⎫
 IF[NOT][set-name] mMEMBER} m } [ELSE m }].
 nTENANT~ nNEXT SENTENCE~ nNEXT SENTENCE~

set-name
must not be a dynamic set; limits the test to the specified set.
If set-name is not specified, all sets of the subschema in which the record type of the
CRU is an owner or member record type are tested.

OWNER
Tests whether the CRU is the owner record of a non-empty set occurrence.

MEMBER
Tests whether the CRU is a member record in a set occurrence.

TENANT
Tests whether the CRU is the owner record of a non-empty set occurrence or a
member record in a set occurrence.

Format 2:

 lstatement-1 ⎫ lstatement-2 ⎫
 IF set-name IS[NOT] EMPTY m } [ELSE m }].
 nNEXT SENTENCE~ nNEXT SENTENCE~

set-name
Uses the CRS to select the set occurrence and checks it if it is empty. set-name must
not be a dynamic set.
If the CRS is a member record that has been deleted or disconnected, status code
031 is issued.

statement-1 through statement-2
May be any COBOL or DML statements.

If a database exception condition arises, “FALSE” is detected, and a branch is
made to statement-2 or NEXT SENTENCE.

KEEP COBOL DML

182 U930-J-Z125-14-76

KEEP

The KEEP statement protects the CRU from updating accesses by other processing chains
and transactions even though another record has become the CRU.

 KEEP

The KEEP statement in a transaction means that the CRU is locked to other transactions
until a FREE or FINISH statement is given.
The KEEP statement always locks the page in which the CRU is located. In a RETRIEVAL
transaction, this page is locked to updating, in an UPDATE transaction to any type of
access.

COBOL DML MODIFY

U930-J-Z125-14-76 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

MODIFY

The MODIFY statement can:

– replace all item contents or a selection of item contents of the CRU by values from the
UWA.

– connect the CRU to another set occurrence within a set and

– make the CRU into the CRS of all sets in which its position is changed by the user. The
CRA and CRR are not changed.

 lrecord-name ⎫ lINCLUDING⎫ lALL ⎫
 MODIFY m } [m } m } MEMBERSHIP]
 nrecord-element-name,...~ nONLY ~ nset-name-1,...~

 lSETS ⎫
 [RETAINING CURRENCY FOR m }]
 nset-name-2,... ~

record-name
Must designate the record type of the CRU. If ONLY is not specified, UDS/SQL
transfers all item contents of the items belonging to the record type from the UWA
to the CRU. The desired values for the items must be specified by the user
beforehand in the UWA.

record-element-name,...
Must designate record elements from the record type of the CRU. This record type
must not contain variable-length items. The contents of the record elements are to
be transported from the UWA into the CRU. The desired values for the record
elements must be provided beforehand by the user. If key values are changed,
UDS/SQL automatically updates all the associated tables. This means particularly
that the sequence of records within a set occurrence can change. The database key
value of a record cannot be modified.

INCLUDING
Is only allowed if the CRU is contained within at least one set occurrence.
INCLUDING modifies the item contents of the CRU and connects the CRU into
other set occurrences. The sets involved are specified by ALL or set-name,.... The
user must first select from these sets the set occurrences and, if required, the
positions within the set occurrences into which the CRU is to be connected. The
selection can also be defined using SET-OCCURRENCE SELECTION THRU
LOCATION MODE OF OWNER (see also FIND-7 on page 163, STORE (Selecting
a set occurrence) on page 191, and STORE (Specifying the insertion point within
the set occurrence) on page 192).

MODIFY COBOL DML

184 U930-J-Z125-14-76

ONLY May not be used in combination with record-element-name,... and is only allowed if
the CRU is contained in at least one set occurrence.
ONLY leaves the item contents of the CRU unchanged and connects the CRU into
other set occurrences of the set involved. For selection of the set occurrence refer
to INCLUDING above.

ALL Changes the CRU in all sets in which it belongs to a set occurrence. This does not
apply to dynamic sets.

set-name-1,...
Must designate a set to which the CRU of a set occurrence belongs. This entry is
used to list the sets in which the CRU is to be assigned to a new owner record.
Specification of a dynamic set is ignored.

RETAINING
Can be used to suppress updating of the CURRENCY table in those cases where
the database key value of the previous record is to be retained.

RETAINING automatically applies to all sets not involved in the MODIFY statement.
Therefore specification of a dynamic set has no effect.

SETS Suppresses the updating of all CRSs.

set-name-2,...
Suppresses the updating of the CRSs of the specified sets.

COBOL DML MODIFY

U930-J-Z125-14-76 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

Example 1

 MODIFY-RECORD-ELEMENT.
 FETCH FIRST SUPPLIER; DISPLAY "SUPPLIER-NAME =
 "SUPPL-NAME
 "STREET-NO. = " SUPP-STREET-NO
 UPON TERMINAL.
 MOVE 83 TO SUPP-STREET-NO.
 MODIFY SUPP-STREET-NO.
**
(OUT) SUPPLIER-NAME = MONA FASHIONS STREET NO. = 1

The output shows a supplier and the street number to be modified. In this example
MODIFY modifies street number 1 to 83.

Example 2

 MODIFY-OWNER-ASSIGNMENT.
 FETCH OWNER WITHIN P-ORD-PLACED;
 DISPLAY "SUPPLIER-NAME = "
 SUPPL-NAME "ADDRESS = " SUPPL-STREET " "
 SUPP-STREET-NO" SUPPL-TOWN UPON TERMINAL.
 MOVE 2 TO SUPPL-NO.
 MOVE "BRAKSPEARS BREWERY" TO SUPPL-NAME.
 FIND ANY SUPPLIER.
 FIND CURRENT PURCHASE-ORDER RETAINING CURRENCY
 FOR MULTIPLE.
 MODIFY PURCHASE-ORDER ONLY P-ORD-PLACED MEMBERSHIP.
 FETCH OWNER WITHIN P-ORD-PLACED;
 DISPLAY "SUPPLIER-NAME = "
 SUPPL-NAME "ADDRESS = " SUPPL-STREET " "
 SUPP-STREET-NO " "SUPPL-TOWN UPON TERMINAL.

(OUT) SUPPLIER-NAME = MONA FASHIONS ADDRESS = 83 GUILDFORD STREET
 CHERTSEY
(OUT) SUPPLIER-NAME = BRAKSPEARS ADDRESS = 3 KING STREET
 BREWERY HENLEY-UPON-THAMES

An order which was assigned by mistake to supplier MONA FASHIONS is transferred
to the set occurrence of supplier BRAKSPEARS BREWERY.

READY COBOL DML

186 U930-J-Z125-14-76

READY

The READY statement opens a transaction or a processing chain and readies one or more
realms for processing.

 lEXCLUSIVE⎫ lRETRIEVAL⎫
 READY[realm-name,...][USAGE-MODE IS [m }]m }]
 nPROTECTED~ nUPDATE ~

realm-name,...
The specified realms of the subschema are opened.
If realm-name,... is not specified, all realms belonging to the subschema are opened
including the temporary realm.

USAGE-MODE
This defines the usage mode for the realms involved and thereby specifies the type
of access allowed.

EXCLUSIVE
No other processing chains may use the realms concurrently.

PROTECTED
Concurrent updates by other processing chains are not permitted.

RETRIEVAL
Retrieve data

UPDATE
Retrieve and update data

If you do not specify USAGE-MODE, USAGE-MODE RETRIEVAL is assumed.

COBOL DML SET

U930-J-Z125-14-76 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

SET

The SET statement transfers the contents of a database key item to one or more database
key items.

 SET item-name-1,... TO item-name-2

item-name-1,...
must be defined with USAGE IS DATABASE-KEY or USAGE IS DATABASE-KEY-
LONG.

item-name-2
must be defined with USAGE IS DATABASE-KEY or USAGE IS DATABASE-KEY-
LONG.

In order to transfer database key values with a REC-REF > 254 and/or an RSQ > 224-1
correctly, item-name-2 and all items listed under item-name-1,... must be defined with USAGE
IS DATABASE-KEY-LONG.

The following cases must be distinguished when transferring database key values:

● item-name-2 and all items listed under item-name-1,... are of type USAGE IS DATABASE-
KEY:
In this case, the SET statement transfers the value of item-name-2 to all items listed
under item-name-1,.. on a one-to-one basis.
There is no change in the DATABASE-STATUS if the transfer is completed correctly.

● item-name-2 is of type USAGE IS DATABASE-KEY, and at least one of the items listed
under item-name-1,... is of type USAGE IS DATABASE-KEY-LONG:
The SET statement transfers DATABASE-KEY values to DATABASE-KEY-LONG
values as follows:

– The record reference number (REC-REF) of 1-byte length is copied right-aligned
into the corresponding 2-byte area of the receiving item.

– The record sequence number (RSQ) of 3-byte length is copied right-aligned into the
corresponding 4-byte area of the receiving item.

A DATABASE-STATUS of 00000 is output if the transfer is completed correctly.

● item-name-2 and all items listed under item-name-1,... are of type USAGE IS DATABASE-
KEY-LONG:
In this case, the SET statement transfers the value of item-name-2 to all items listed
under item-name-1,.. on a one-to-one basis.
A DATABASE-STATUS of 00000 is output if the transfer is completed correctly.

SET COBOL DML

188 U930-J-Z125-14-76

● item-name-2 is of type USAGE IS DATABASE-KEY-LONG; and at least one of the items
listed under item-name-1,... is of type USAGE IS DATABASE-KEY:
The SET statement transfers DATABASE-KEY-LONG values to DATABASE-KEY
values as follows:

– The record reference number (REC-REF; originally of 2-byte length) is copied into
the corresponding 1-byte area of the receiving item.

– The record sequence number (RSQ, originally of 4-byte length) is copied into the
corresponding 3-byte area of the receiving item.

If a data loss is detected at runtime due to the truncation of leading positions in the
record reference number and/or record sequence number (in cases where they are too
large), the SET statement transfers the database key value 0 to the corresponding
receiving item, and UDS/SQL reports DATABASE-STATUS 00102.
Note that the SET statement is not aborted, i.e. all other transfers are completed.
A DATABASE-STATUS of 00000 is output if the database key value is transferred to all
receiving items correctly.

COBOL DML STORE

U930-J-Z125-14-76 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

STORE

The STORE statement:

– transfers a record from the UWA into the database as a new record,

– inserts the new record into all sets for which its record type is defined in the schema as
AUTOMATIC member.

– sets up a new set occurrence with the associated tables for each set for which the
record type of the new record is defined in the schema as owner record type and for
which the set occurrence population is defined in the SSL as greater than O and

– makes the new record into the current record in all the relevant columns of the currency
table in which updating has not been suppressed using RETAINING. The columns
involved are all those of the associated record type, of all sets in which the new record
is member or owner and of the realm in which the record is stored.

A prerequisite is that the subschema includes the following as a minimum:

– all items named in the LOCATION MODE clause of the associated record type,

– all sets for which the record type is declared AUTOMATIC member in the schema and

– all items which are needed for correct selection of the owner records of these sets if the
selection method is defined as SELECTION THRU LOCATION MODE OF OWNER.

 STORE record-name
 l MULTIPLE ⎫
 o o
 [RETAINING CURRENCY FOR m lSETS ⎫ }]
 o[REALM][RECORD][m }]o
 n nset-name,...~ ~

record-name
Designates the record to be stored. The items in this record must be supplied with
the desired values beforehand in the UWA. Items of the record type which are not
contained in the subschema are automatically filled with binary zeros when they are
stored by UDS/SQL.

RETAINING
Must be used either with MULTIPLE or with at least one of the parameters REALM,
RECORD, SETS or set-name,....

RETAINING automatically applies to all sets not involved in the STORE statement.
Therefore specification of a dynamic set has no effect.

STORE COBOL DML

190 U930-J-Z125-14-76

Selecting a realm

If more than one realm is provided in the schema in order to accept records of this record
type, a specific realm must be defined:

1. The realm is uniquely defined if the record type is member in a set and the schema
defines PLACEMENT OPTIMIZATION for the record type or MODE IS LIST for the set.
In this case UDS/SQL stores the record
– in the realm of the associated owner record or
– in the realm of the DETACHED WITHIN clause in the set entry of SSL or
– in the first realm of the DDL WITHIN clause of the member record type,
even if the user selects another realm in accordance with the following procedure.
When a record which is a member of a distributable list is stored, a free page is
searched for in the DBH in the preferred realm if needed. In this case any realm speci-
fication in the AREA-ID item is ignored.

2. In other cases the user must define the realm by transferring the desired realm name
into the item defined in the WITHIN clause of the schema as AREA-ID item for this
record type (see the “Design and Definition” manual, WITHIN clause).
UDS/SQL ignores this specification if the realm has been defined as in 1).

Assigning database key values

Each record which is to be stored is assigned a database key value by the DBH. After a
storing transaction has been canceled, the database key values which have been assigned
are generally released again, but are initially not assigned again when records are stored.
Only when the end of the DBTT has been reached are the values assigned again from the
start of the DBTT in accordance with an activated online DBTT extension.

If there is provision in the schema DDL for the assignment of database key values by the
user, there will be an item defined there to accept database key values (see the “Design
and Definition” manual, LOCATION MODE clause). This item must be supplied with the
desired value before a record is stored. The database key value of each record could thus
be used as an information carrier (of the customer number, for example) that provides quick
and direct access to a record using FIND-1.

Database key values that are assigned by the user are handled by UDS/SQL as follows:

● UDS/SQL independently determines the record reference number (REC-REF)
associated with the record type record-name; the record reference assigned by the user
is ignored. In other words, UDS/SQL always assigns the desired database key value
correctly, even if an invalid record reference number is specified.

COBOL DML STORE

U930-J-Z125-14-76 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

● UDS/SQL will ignore the record sequence number (RSQ) specified by the user and
independently assign an available RSQ in the following cases:

– If the user assigns a record sequence number with a value of 0.

– If the record sequence number given by the user is greater than the current number
of lines in the database key translation table (DBTT) for the record type record-name
(see the “Design and Definition” manual). Assigning a higher record sequence
number therefore does not result in online DBTT extension.

– If there is already a record for the record type record-name with the record sequence
number assigned by the user.

If the record type record-name is not defined in the schema with LOCATION MODE IS
DIRECT or LOCATION MODE IS DIRECT-LONG, the database key values for records of
the record type record-name are assigned by UDS/SQL.

ACCEPT can be used to check whether the actual database key value matches the speci-
fication given (see the examples for FETCH-1 and ACCEPT, starting on page 151 and
page 139, respectively).

Selecting a set occurrence

In each set in which the record type record-name is AUTOMATIC member, the stored record
is automatically inserted into a set occurrence. The owner records of the record to be stored
must therefore be selected beforehand. This must be done by using the selection methods
defined for these sets in the schema (see the “Design and Definition” manual, SET
OCCURRENCE SELECTION clause). Depending on the schema definition, either the set
occurrence is defined by the CRS or the database key or CALC key value of the associated
owner record must be transferred into the UWA. UDS/SQL then automatically selects the
set occurrence by accessing the owner record via the database key or the hash procedure.
table 21 summarizes how a set occurrence is selected.

STORE COBOL DML

192 U930-J-Z125-14-76

Specifying the insertion point within the set occurrence

In the selected set occurrence the stored record is given the location which corresponds to
the order defined for the set in the schema (see the “Design and Definition” manual,
ORDER clause). The cases in which the insertion location depends on user specifications
are shown in table 22 below.

In the case SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER,
the CRS has no meaning; the insertion point for ORDER IS NEXT or PRIOR is, just as for
ORDER IS FIRST or LAST, at the beginning or end, respectively, of the set occurrence.

Schema
definition

 SET OCCURRENCE SELECTION IS THRU

CURRENT
OF SET

LOCATION MODE OF OWNER[ALIAS FOR

IS identifier-2]...

 LOCATION MODE IS

CALC USING item-name,...

Set occurrence is
determined by the
user via:

 CRS
Database key value in the item
item-name or identifier in UWA
or items named in the ALIAS
clause

CALC key value in items item-
name,... or identifier-2 in UWA
or items named in the ALIAS
clause

Table 21: Selection of a set occurrence

Schema definition ORDER IS

NEXT/PRIOR SORTED[INDEXED] BY DEFINED KEYS

SET OCCURRENCE
SELECTION IS THRU
CURRENT OF SET

KEY IS item-name,...

Insertion point is
determined by the
user via:

 CRS
Key value in items item-name,...
in the record to be stored

Table 22: Determining the insertion point within a set occurrence

item-name
identifier-1

DIRECT
DIRECT-LONG

item-name
identifier-1

ASCENDING
DESCENDING

COBOL DML STORE

U930-J-Z125-14-76 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

Example

STORE-ARTICLE.
MOVE "CLOTHING" TO RLM-SELECTION-4.
MOVE 4 TO ART-NO OF ARTICLE-DESCR.
FIND ARTICLE-DESCR USING ART-NO OF ARTICLE-DESCR.
MOVE "MONA FASHIONS" TO SUPPL-NAME.
FIND SUPPLIER USING SUPPL-NAME.
MOVE 8 TO COL-NO OF ARTICLE.
MOVE 36 TO SIZE.
MOVE 3721 TO ART-NO-AVAIL.
MOVE 5 TO COL-NO-AVAIL.
MOVE 285 TO PRICE..
STORE ARTICLE.

The item designated by color number 8, size 36 etc. is stored in the CLOTHING realm
and at the same time inserted into the set occurrences of article description 4 and
supplier MONA FASHIONS.

USE COBOL DML

194 U930-J-Z125-14-76

USE

The USE statement defines command sequences to be executed if a DML statement is
terminated with a database exception condition.

 lOTHER ⎫
 USE FOR DATABASE-EXCEPTION[ON m }].
 nliteral-1,...~

ON This specification enables the user to use several USE statements in a program.
The specified literals must be unique for each USE statement.

If a USE statement is specified without ON, it must be the only one within a program.

If ON is omitted or ON OTHER is specified, the command sequence associated with
the USE statement is executed on all database exception conditions.

OTHER
may only be used once within a program.
must be specified if not all database exception conditions were specified by
literal-1,....

literal,...
Each literal must represent a database exception condition. However, no literal may
be ’00000’.

The USE statement may only be specified in the DECLARATIVES of a COBOL program.

It must be the first statement immediately following the section header. The associated
section must contain the command sequences to be executed due to the USE statement.

The command sequences must remain within the DECLARATIVES and must not be refer-
enced by other sections of the COBOL program. Within the command sequence the
command sequence of another USE statement may only be addressed by means of
PERFORM.

If a database exception condition occurs, the current values are stored in the special
registers. If one DML statement causes several exception conditions, the contents of the
special registers refer to that which was last recognized.

COBOL DML USE

U930-J-Z125-14-76 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

7

Example

**
 .
 .
 .
 PROCEDURE DIVISION.
 *
 DECLARATIVES.
 *
 PROTECT SECTION.
 USE FOR DATABASE-EXCEPTION ON "12901",
 "12950",
 "12951",
 "12952",
 "12953",
 "12954",
 "12955".
 M1. DISPLAY "*** INVALID PRIVACY-INPUT! ***" UPON T.
 DISPLAY "*** DATABASE-STATUS = " DATABASE-STATUS " ***"
 UPON T.
 STOP RUN.
 *
 NOT-FOUND SECTION.
 USE FOR DATABASE-EXCEPTION ON "04024".
 M2. MOVE HIGH-VALUE TO NOTE.
 *
 REST SECTION.
 USE FOR DATABASE-EXCEPTION ON OTHER.
 M3. DISPLAY "****** ERROR OCCURRED! ******" UPON T.
 DISPLAY "DATABASE-STATUS = " DATABASE-STATUS UPON T.
 DISPLAY "RECORD TYPE = " DATABASE-RECORD-NAME UPON T.
 DISPLAY "SET = " DATABASE-SET-NAME UPON T.
 DISPLAY "REALM = " DATABASE-REALM-NAME UPON T.
 FINISH WITH CANCEL.
 STOP RUN.
 *
 END DECLARATIVES.
 *
 *
 *
 PROGRAM SECTION.
 *
 LEAD.
 .
 .
 .
**

USE COBOL DML

196 U930-J-Z125-14-76

U930-J-Z125-14-76 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

8 CALL DML reference section

This chapter describes the DML CALL interface and the CALL DML calls with the
associated parameter definitions and formats.

8.1 CALL interface

There are two CALL interface variants:

– The first 8 characters of the names of database objects must be unique. This applies to
realm, set and record names within a subschema and the names of items within a
record. This restriction must be taken into account when the database is designed. This
variant is referred to below as (CALL8).

– No such tight restriction with regard to the uniqueness of names must be observed by
the second CALL interface variant. This variant can be used for any database and is
referred to below as (CALL30).

The CALL interface can be used in all programming languages which observe the following
register conventions when calling a subroutine:

Register 15: Branch destination

Register 14: Return address

Register 1: Address of the parameter area

This is the case for FORTRAN and COBOL.

The branch destination is the same for each DML call. The address is >DML<.

The addresses in the parameter list (Register 1) are listed contiguously. They point to
locations in the programs containing the appropriate parameter information. In COBOL or
FORTRAN programs the compiler generates the parameter list when the standard CALL is
used.

For examples in different programming languages refer to page 289.

Parameter definitions CALL DML

198 U930-J-Z125-14-76

8.2 Parameter definitions

CALL DML recognizes the following parameters:

1. Function code (FCOD)

2. Function option (FOPT)

3. Secondary option (SOPT)

4. User information (UINF)

5. Record name (RECN)

6. Set name (SETN)

7. Realm name (RLMN)

8. Item name (ITMN)

9. Record area (RECA)

10. Special parameter 1 (SPP1)

11. Special parameter 2 (SPP2)

12. Special parameter 3 (SPP3)

The function code and user information parameters are used in each CALL DML call.
Which of the remaining parameters are used depends on the function in combination with
the function option and secondary option. The contents of the first three parameters thus
determine which parameter items are read or written by the CALL DML converter. These
parameters have to be taken from the descriptions of the individual calls or from the
respective overview.

Only the addresses of the parameter items have to be transferred; their length is deter-
mined by the CALL DML rules, by the subschema or by the syntax of the item contents (lists
of names, search expression).

Each parameter has a fixed location in the parameter list of the call and in the corre-
sponding address list. It is therefore necessary, to specify the names of items for unused
parameters too, even though the contents of these items are not significant for the
execution of the DML call. The CALL DML converter only interprets the addresses of the
parameter items that are used.

This rule allows the same CALL to call all possible DML statements. Only the contents of
the parameter items used have to be modified accordingly before execution of the CALL
instruction.

CALL DML Rules

U930-J-Z125-14-76 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

The information contained in parameter items must be stored in a precisely defined format
so that it can be correctly interpreted by both the CALL DML converter and the application
program.

The formats of the individual parameter items have been made as uniform as possible for
ease of use. Deviations from the standard formats are explained in detail in the description
of the CALL calls and in the format table.

For a description of the secondary option, user information, and the special parameters
1and 2, refer to pages 203 to 209.
The syntax and format of search expressions are described under FIND7A/FTCH7A.

8.2.1 Rules

The user may omit parameters which would normally be specified at the end of the
parameter list provided these parameters are not used by the CALL.

● The first parameter is always the function code (FCOD).

● The order specified above must be adhered to.

● Up to the last parameter used no parameter item may be left out.

● Optional parameters ([]) count as used parameters. If no other value is specified for
these parameters, the associated items must be filled by the requisite number of blanks.

● Parameters identified in the overview by a hyphen or for which there is no entry are
among the parameters not used.

● The contents of unused parameter items are not relevant.

● Each parameter is subject to formatting rules with regard to the contents of the
parameter item; these rules may depend on the function and must be adhered to.

● Any name can be chosen for the parameter items.

● Indexed items cannot be name, i.e. individually selected, in CALL DML . Processing of
indexed items requires the complete subschema format of the record.

● The names of realms, sets, records and items can occur at various positions in the
CALL DML parameters.
In the (CALL8) variant, the names specified must be 8 characters long, in the (CALL30)
variant, they must be 30 characters long. If necessary the names must be padded with
blanks.
The user selects the variant he or she wishes to use via the UINF parameter item end
of user information (see page 205):

– (CALL8) variant: “USINF*”
– (CALL30) variant: “UINF1*”

Rules CALL DML

200 U930-J-Z125-14-76

● CALL DML recognizes two formats for the transfer of names: the single name format
for specifying a single name and the name list format for specifying several names.

– Single name format

Example for (CALL8) variant:

OF-SET ---> OF-SETËË

– Name list format

The names are separated by commas and enclosed in parentheses.

Example for (CALL8) variant:

(INCREDIB)
(EXAMPLE1,EXAMPLEË,EXAMPË,EXËËËËËË)

CALL DML Format table

U930-J-Z125-14-76 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

8.2.2 Format table

Parameter Contents Length for variant Format

(CALL8) (CALL30)

1. FCOD - 6 Keyword

2. FOPT - 6 Keyword

3. SOPT RET, VAR 6/Ï2 Fixed format/ free format, see
page 203RET, RES, LMS, TAL

SOA/SOD, NOW
12/Ï2

4. UINF DBH communication 126 see page 205

5 .RECN Record-name 8 30 Single name format

Record-name or ËËËËËËËË 8 30 Single name format or blanks

RECORD 8 30 RECORDËË/RECORDËËË...

6. SETN set name 8 30 Single name format

1-25 set names 10-226 32-776 Name list format

7. RLMN Realm name 8 30 Single name format

Item name in the secondary
option SOA or SOD

8 30 Single name format

1-25 realm-names 10-226 32-776 Name list format

1-25 item names in the
secondary option SOA or
SOD

10-226 32-776 Name list format

8. ITMN Item name 8 30 Single name format

1-25 item names 10-226 32-776 Name list format

Search expression - see page 245

9. RECA1) Complete record - Subschema format

Selection of items without
VAR option

- Item positions in record area as
subschema format

Selection of items using
VAR option

- Record format corresponds to
item name list, length = sum of
item lengths

Table 23: CALL DML formats (part 1 of 2)

Format table CALL DML

202 U930-J-Z125-14-76

10. SPP1 RETAINING without set
names

9
see page 209

RETAINING with set names 17-235 39-785

Subschema (READYC) 30 Full subschema name, padded
with blanks

11. SPP2 Integer (FIND4/FTCH4) 4 Binary integer ≠ 0

Result set name
(FIND7A/FTCH7A)

8 30 Single name format

Implicitly defined data:
DB key of LOCATION
MODE clause and/or realm
name of WITHIN clause
(STORE/STOR1L,
STORE2/STOR2L,
FIND2/FTCH2)

42 see page 210

12. SPP3 Limited set name
(FIND7A/FTCH7A)

8 30 Single name format

1 When the record area is used to return data, it is normally overwritten also if the DML statement FTCH or GET
has been aborted due to an error (status ≠ 000). However, if the database status begins with C, P or S, the record
area remains unchanged.

Parameter Contents Length for variant Format

(CALL8) (CALL30)

Table 23: CALL DML formats (part 2 of 2)

CALL DML Secondary option

U930-J-Z125-14-76 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

8.2.3 Format of secondary option (SOPT)

The following secondary functions can be selected with this parameter:

RET Retaining
VAR Abbreviated record format

RES Result set ⎫
LMS Limited by dynamic set o
TAL Tallying } FIND7A/FTCH7A
SOA/SOD Sorted ascending/descen- o

ding ~

NOW No Wait READYC, FIND/FTCH

This parameter is always optional. If more than one secondary function is available for
selection, then it is possible to select any combination of these functions. If none of the
available functions are to be used, the parameter item must be blank-filled (6-12) or be
given blanks enclosed in parentheses.

The functions ’retaining’, ’result set’ and ’limited-by-dynamic-set’ are linked to the use of
additional parameters, namely special parameters 1 (RET), 2 (RES) and 3 (LMS).
These parameters must only be specified if the corresponding secondary option has been
specified. Otherwise it is not necessary to enter these parameters in the parameter list of
the CALL DML statement provided they come at the end of the list.

Two methods of representation are available for the transfer of the secondary option
symbols in the parameter item “secondary option”. Both methods of representation are
equally suitable for generating or modifying the parameter item “secondary option” at
program runtime.

Future extensions to the secondary options will only be accepted in the free-format method
in order to ensure the upward compatibility of “secondary option” parameter items in appli-
cation programs.

Secondary option CALL DML

204 U930-J-Z125-14-76

Fixed-format secondary option

The “secondary option” parameter has a fixed length (6 or 12 characters). Each symbol has
a fixed position within the parameter. If a function is not required, blanks must be entered
at the corresponding point.

Syntax:

 - all formats except FIND7A/FTCH7A lRET⎫lVAR⎫
 LËËËMLËËËM

 - FIND7A/FTCH7A lRET⎫lRES⎫lLMS⎫lTAL⎫
 LËËËMLËËËMLËËËMLËËËM

Examples

1. ËËËËËË or RETËËË or ËËËVAR or RETVAR

2. 12 blanks or RETRESLMSTAL or ËËËRESLMSËËË etc.

Free-format secondary option

The “secondary option” parameter does not have a fixed length. It begins in the first byte of
the parameter item with an open parenthesis and ends with a close parenthesis. The
function symbols can be in any sequence and at any location but may not be repeated.
They can follow in immediate succession or be separated by any number of blanks and
commas.

Syntax:

 lsym⎫ lË⎫
 param ::= ({[m }][m }]}...)
 nËËË~ n,~
 lSOA⎫
 sym ::= RET/VAR/RES/LMS/TAL/m }/NOW
 nSOD~

Examples

1. () or (ËËË,ËËË)

2. (RET) or (RET,ËËË)

3. (RETRESLMSËËË) or (ËËË,RES,RET,LMS)

The examples in any one line above are identical in meaning; they were deliberately
chosen to illustrate the format options.

CALL DML User information

U930-J-Z125-14-76 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

8.2.4 Format of user information (UINF)

The parameter user-information is used by all CALL DML calls. It identifies a transaction to
the DBH. In multi-DB applications it also selects the database which is to be accessed by
the DML call.

Details of which user-information data must be saved can be found in the following section.

No changes may be made by the user anywhere in the entire parameter area during the
execution of a CALL DML call. Only one DML call can of course be processed at a time for
a single transaction. This constraint also applies to program routines which are outside the
normal execution sequence of a transaction (error routine, STXIT).

It is recommended that the parameter item for user information should be aligned on a word
boundary, but this is not a requirement. The length of the item is 126 bytes.

User information area

Contents Input Output Length Displ. Type

System Communication
Locations
- realm name
- record name
- set name

X
X
X

30
30
30

 0
30
60

character
character
character

Result items
- statement code
- status code

X
X

2
3

90
92

character
character

Empty item 1 95 binary

DATABASE-KEY X X 4 96 binary

Counter X 4 100 binary

Empty item 7 104 binary

DB identifier X X 1 111 binary

DATABASE-KEY-LONG X X 8 112 binary

End of user information X 6 120 character:
USINF*/
UINF1*

Table 24: User information area

User information CALL DML

206 U930-J-Z125-14-76

Rules

Input

DATABASE-KEY must be prefilled with a database key value of type DATABASE-KEY
for the following statements:

– FIND1/FTCH1
– ACCPTC with secondary option RLMDBK.

In all other cases, the contents of the item are not significant as
input.

The database key value must be entered into the item as follows:

– Byte 1: record reference number (REC-REF)
– Bytes 2-4: record sequence number (RSQ)

Database key values with a REC-REF > 254 and/or an RSQ > 224-1
cannot be passed in this item.

Empty items must be deleted with binary zeros or blanks before each READYC
call.

DB identifier must be deleted with binary zeros before each READYC call.
Following the READYC call, the item will contain the correct DB
identifier. This identifier must be supplied again with every CALL
DML call (except for: FINISC) in order to identify its associated
processing chain and thus the database.

DATABASE-KEY-LONG
must be prefilled with a database key value of type DATABASE-
KEY-LONG for the following statements:

– FIND1L/FTCH1L
– ACCPTL with secondary option RLMDBK

In all other cases, the contents of the item are not significant as
input.

The database key value must be entered into the item as follows:

– Bytes 1-2: record reference number (REC-REF)
– Bytes 3-4: binary 0
– Bytes 5-8: record sequence number (RSQ)

CALL DML User information

U930-J-Z125-14-76 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

End of user information
This must be occupied by the character string USINF* if the
(CALL8) variant is being used or UINF1* if (CALL30) is being used.
This identifier identifies the user-information parameter item to
ensure that the database status can be returned to the application
program.
If the CALL DML converter does not detect the keyword USINF* or
UINF1*, it attempts to branch to the error exit DSCEXT, which must
be defined as an entry address (ENTRY) in each CALL DML appli-
cation program (see page 124). The DML call is not executed in this
case.

The DSCEXT routine is not serviced in openUTM application
programs.

Output

System Communication Locations
The functions of the items correspond to those in COBOL DML.

Realm name Result item for ACCPTC or ACCPTL; with function options RLM...
the CALL DML converter stores the found realm name in this item.

Status code In addition to the status codes which are common to COBOL DML,
CALL DML also recognizes other status codes (see page 378).

In a CALL DML status code the “System Communication Locations“
items contain no significant entries.

DATABASE-KEY The database key value is returned when ACCPTC is specified with
function option DB-KEY and DBK...

The database key value is returned as follows:

– Byte 1: record reference number (REC-REF)
– Bytes 2-4: record sequence number (RSQ)

UDS/SQL cannot return database key values with a
REC-REF > 254 and/or an RSQ > 224-1 in this item and therefore
reports the DATABASE-STATUS 15102 in such cases.

Counter Following the execution of a FIND7A/FTCH7A with function option
...FST or ...SEX (search expression) and secondary option TAL
(tallying function), the counter contains the total number of records
in the retrieved collection which satisfy the search conditions.

User information CALL DML

208 U930-J-Z125-14-76

DATABASE-KEY-LONG
The database key value is returned when ACCPTL is specified with
function option DB-KEY and DBK...

The database key value is returned as follows:

– Bytes 1-2: record reference number (REC-REF)
– Bytes 3-4: binary 0
– Bytes 5-8: record sequence number (RSQ)

CALL DML Special parameter 1

U930-J-Z125-14-76 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

8.2.5 Format of special parameter 1 (SPP1)

If you want to use RETAINING, you must specify the desired functions in special
parameter 1. The following entries are possible (similar to COBOL DML):

MULTIPLEË RETAINING CURRENCY FOR MULTIPLE
RLM RETAINING CURRENCY FOR REALM
REC RETAINING CURRENCY FOR RECORD
SET RETAINING CURRENCY FOR SETS
STNsetname RETAINING CURRENCY FOR set-name-1,...
STEsetname RETAINING CURRENCY FOR ALL SETS EXCEPT set-name-1,...

Format

These symbols are transferred in a fixed format (at least 9 bytes):

Set names can only be specified for the key STN or STE. A maximum of 25 set names may
be specified. If STN or STE is not contained in bytes 7 to 9, bytes 10 to 235 or bytes 10 to
785, as appropriate, are not interpreted. The function STE is only available in CALL DML.

Bytes 1...9 Bytes 10...235 for (CALL8) variant
Bytes 10...785 for (CALL30) variant

M U L T I P L E Ë
R L M R E C S E T
R L M R E C Ë Ë Ë
Ë Ë Ë R E C S E T
R L M Ë Ë Ë S E T
R L M Ë Ë Ë Ë Ë Ë
Ë Ë Ë R E C Ë Ë Ë
Ë Ë Ë Ë Ë Ë S E T

R L M R E C S T N
R L M Ë Ë Ë S T N
Ë Ë Ë R E C S T N
Ë Ë Ë Ë Ë Ë S T N

R L M R E C S T E
R L M Ë Ë Ë S T E
Ë Ë Ë R E C S T E
Ë Ë Ë Ë Ë Ë S T E

Table 25: Transfer format of special parameter 1

set-name
set-name-1,...

set-name
set-name-1,...

Special parameter 2 CALL DML

210 U930-J-Z125-14-76

8.2.6 Format of special parameter 2 (SPP2)

If you want to use the STORE1/STOR1L or STORE2/STOR2L functions with the function
option IMPDAT, you must specify the following in special parameter 2:

– database key value (if LOCATION MODE DIRECT or LOCATION MODE DIRECT
LONG has been defined for the record type involved) and/or

– realm name (if more than one realm name has been specified in the WITHIN clause of
the record type involved and if the record type is not the member record type of a distrib-
utable list)

If you want to use the FIND2/FTCH2 functions with the function option ANYIMP, you must
specify the name of the realm in which the record is to be found in special parameter 2.

Format

Bytes 1...4 Bytes 5...34 Bytes 35...42

Database key value of type
DATABASE-KEY (relevant for
STORE1, STORE2);

if not used: binary 0

Realm name in full length,
padded with blanks (relevant for
FIND2/FTCH2 as well as
STORE1/STOR1L and
STORE2/STOR2L);

if not used: blanks

Database key value of type
DATABASE-KEY-LONG
(relevant for STOR1L,
STOR2L);

if not used: binary 0

Table 26: Transfer format of special parameter 2

CALL DML Call parameters

U930-J-Z125-14-76 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

8.3 CALL DML calls

8.3.1 Overview of the CALL DML functions

Information in response to invoked CALL DML functions can be found in the shaded
columns.

ACCPTC-FREEC CALL DML

212 U930-J-Z125-14-76

1. FCOD 2. FOPT 3. SOPT 4. UINF 5. RECN 6. SETN 7. RLMN 8. ITMN

ACCPTC DB-KEY
DBKREC
DBKRLM
DBKSET
RLMNAM
RLMREC
RLMSET
RLMDBK

DB key
DB key
DB key
DB key
realm name
realm name
realm name
DB key,
realm name

-
record name
-
-
-
record name
-
-

-
-
-
set name
-
-
set name
-

-
-
realm name
-
-
-
-
-

ACCPTL DB-KEY
DBKREC
DBKRLM
DBKSET
RLMNAM
RLMREC
RLMSET
RLMDBK

DB key
DB key
DB key
DB key
realm name
realm name
realm name
DB key,
realm name

-
record name
-
-
-
record name
-
-

-
-
-
set name
-
-
set name
-

-
-
realm name
-
-
-
-
-

CONNEC TO-ALL

TO-SET

⎫
} [RET]
~

[record name]

[record name]

-

set name...

DISCON FRMALL
FRMSET
ALLFRM

[record name]
[record name]
-

-
set name...
set name...

ERASEC CORUNT
PERMAN

SELTIV
ALLMEM

⎫
o
} record name
o
~

FINISC ALLRLM

ALLCAN

FREEC ALLREC
CORUNT

CALL DML ACCPTC-FREEC

U930-J-Z125-14-76 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

9. RECA 10. SPP1 11. SPP2 12. SPP3 Function

Transfers
– The database key value of the CRR,

CRS, CRA or CRU to the user infor-
mation area (see page 205).

– The name of the realm in which the
CRR, CRS, CRU or the record
belonging to the specified database
key value is stored.

Transfers
– The DATABASE-KEY-LONG value of

the CRR, CRS, CRA or CRU to the
user information area (see
page 205).

– The name of the realm in which the
CRR, CRS, CRU or the record
belonging to the specified database
key value is stored.

⎫for RET:
o
}
o
~

Inserts the CRU in set occurrences

– Removes the CRU from set occur-
rences

– Removes all records from dynamic
sets

Erases the CRU with its member records,
if any, from the database.

Terminates a transaction and releases
locked realms and pages.

Cancels the effect of the KEEP status

SET
STNset-name..
STEset-name..

FIND1-FIND6 CALL DML

214 U930-J-Z125-14-76

1. FCOD 2. FOPT 3. SOPT 4. UINF 5. RECN 6. SETN 7. RLMN 8. ITMN

FIND1 [DBKPRI]
[DBKNXT]

[RET]
[NOW]

DB key [record name]

FIND1L [DBKPRI]
[DBKNXT]

[RET]
[NOW]

DB key [record name]

FIND2 ANYREC

ANYIMP

DUPLIC

⎫
o
} [RET]
o [NOW]
~

⎫
o
} record name
o
~

FIND3 SETNAM

SETITM

RECNAM

RECITM

⎫
o
o
} [RET]
o [NOW]
o
~

-

⎫
o
} record name
o
~

set name

set name

-

-

-

item name...

-

item name...

FIND4 SETNXT
SETPRI
SETFST
SETLST
SETSPC

⎫
o
} [RET]
o [NOW]
~

⎫
o lrecord name⎫
}[m }]
o nRECORD ~
~

⎫
o
} set name
o
~

RLMNXT
RLMPRI
RLMFST
RLMLST
RLMSPC

⎫
o
} [RET]
o [NOW]
~

⎫
o lrecord name⎫
}[m }]
o nRECORD ~
~

⎫
o
} realm
o name
~

RECNXT
RECPRI
RECFST
RECLST
RECSPC

⎫
o
} [RET]
o [NOW]
~

⎫
o
} record name
o
~

FIND5 CORUNT
RECNAM
RECSET
SETNAM
RECRLM
RLMNAM

⎫
o
} [RET]
o [NOW]
o
~

-
record name
record name
-
record name
-

-
-
set name
set name
-
-

-
-
-
-
realm name
realm name

FIND6 [RET]
[NOW]

set name

CALL DML FIND1-FIND6

U930-J-Z125-14-76 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

9. RECA 10. SPP1 11. SPP2 12. SPP3 Function

⎫ for RET:
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
}
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
~

Access via a database key value of type
DATABASE-KEY

Access via a database key value of type
DATABASE-KEY-LONG

item contents

item contents

-

-

impl. def.
data area
-

Access via CALC key (hashing)

Access to a record which corresponds to
the CRR or CRS in certain item contents,
or to a record which satisfies a previously
processed search expression
(FIND7A/FTCH7A).

-
-
-
-
pos. integer

Access to the last or first record, to the
record prior or next to the CRR, CRS or
CRA to a record whose position corre-
sponds to a specified numeric value
(integer) within the collection of records to
be searched. The collection of records
can be a record type, a set occurrence, a
realm or an intersection of a record type
and a realm.

-
-
-
-
pos. integer

-
-
-
-
pos. integer

Access to the CRR, CRS, CRA or CRU

Access to the owner record of a CRS

MULTIPLE
[RLM][REC]

[]

SET
STNset-
 name...
STEset-
 name...

FIND7A CALL DML

216 U930-J-Z125-14-76

1. FCOD 2. FOPT 3. SOPT 4. UINF 5. RECN 6. SETN 7. RLMN 8. ITMN

FIND7A RECFST

SELFST

CURFST

⎫ [RET]
o [NOW]
o [RES]
o [LMS]
} [TAL]
o
o[]
~

⎫ for TAL:
o
o
o
o
o
o
o
o number of
} records
o
o
o
o
o
o
o
o
~

⎫
o
o
o record name
}
o
o
o
~

-

set name

set name

item name...

item name...

item name...

RECSEX

CURSEX

⎫ [RET]
o [NOW]
o [RES]
o [LMS]
} [TAL]
o
o[]
o
~

⎫
o
o
o record name
}
o
o
o
~

-

set name

set name

item name...

item name...

item name...

⎫
o
o
o
}search
oexpression
o
o
~

RECITM
RECITN
SELITM
SELITN
SELITP
CURITM
CURITN
CURITP

⎫
o
o
} [RET]
o [NOW]
o
o
~

⎫
o
o
} record name
o
o
o
~

-

set-name

set-name

⎫
o
o
} item-
o name...
o
o
~

SOA

SOD

SOA

SOD

CALL DML FIND7A

U930-J-Z125-14-76 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

9. RECA 10. SPP1 11. SPP2 12. SPP3 Function

⎫
o
o
o
o
o
o
o
o
o
o
o
o
}
o
o
o
o
o
o
o
o
o
o
o
o
~

⎫ for RES:
o
o
o
o
o
o
o
o result
} set name
o
o
o
o
o
o
o
o
~

⎫ for LMS:
o
o
o
o
o
o
o
o
} limited
o set name
o
o
o
o
o
o
o
~

Access to records via any items; counting
and storing found records intermediately
if required; search using mask

⎫
o
o
} item
o contents
o
~

MULTIPLE
[RLM][REC]

[]

SET
STNset-
 name...
STEset-
 name...

FTCH1-FTCH6 CALL DML

218 U930-J-Z125-14-76

1. FCOD 2. FOPT 3. SOPT 4. UINF 5. RECN 6. SETN 7. RLMN 8. ITMN

FTCH1 [DBKPRI]
[DBKNXT]

[RET]
[NOW]

DB key [record name]

FTCH1L [DBKPRI]
[DBKNXT]

[RET]
[NOW]

DB key [record name]

FTCH2 ANYREC

ANYIMP

DUPLIC

⎫
o
} [RET]
o [NOW]
~

⎫
o
} record name
o
~

FTCH3 SETNAM

SETITM

RECNAM

RECITM

⎫
o
o
} [RET]
o [NOW]
o
~

⎫
o
} record name
o
~

set name

set name

-

-

-

item name...

item name...

FTCH4 SETNXT
SETPRI
SETFST
SETLST
SETSPC

⎫
o
} [RET]
o [NOW]
~

⎫
o lrecord name⎫
}[m }]
o nRECORD ~
~

⎫
o
} set name
o
~

RLMNXT
RLMPRI
RLMFST
RLMLST
RLMSPC

⎫
o
} [RET]
o [NOW]
~

⎫
o lrecord name⎫
}[m }]
o nRECORD ~
~

⎫
o
} realm
o name
~

RECNXT
RECPRI
RECFST
RECLST
RECSPC

⎫
o
} [RET]
o [NOW]
~

⎫
o
} record name
o
~

FTCH5 CORUNT
RECNAM
RECSET
SETNAM
RECRLM
RLMNAM

⎫
o
} [RET]
o [NOW]
o
~

-
record name
record name
-
record name
-

-
-
set name
set name
-
-

-
-
-
-
realm name
realm name

FTCH6 [RET]
[NOW]

set name

CALL DML FTCH1-FTCH6

U930-J-Z125-14-76 219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

9. RECA 10. SPP1 11. SPP2 12. SPP3 Function

rec. cont´s ⎫
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
}
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
~

Access via a database key value of type
DATABASE-KEY

rec. cont´s Access via a database key value of type
DATABASE-KEY-LONG

item cont´s
rec. cont´s
item cont´s
rec. cont´s
rec. cont´s

-

impl. def.
data area
-

Access via CALC key (hashing)

⎫
o
o
o
o
o
o
o
o
o
o
o
o
o record
} contents
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
~

Access to a record which corresponds to
the CRR or CRS in certain item contents,
or to a record which satisfies a previously
processed search expression
(FIND7A/FTCH7A)

-
-
-
-
pos. integer

Access to the last or first record, to the
record next or prior to the CRR, CRS or
CRA, or to the record whose position
corresponds to a specified numeric value
(integer) within the collection of records to
be searched.
The collection of records can be a record
type, a set occurrence, a realm or the
intersection of a record type and a realm.

-
-
-
-
pos. integer

-
-
-
-
pos. integer

Access to the CRR, CRS, CRA or CRU

Access to the owner record of a CRS

MULTIPLE
[RLM][REC]

[]

SET
STNset-
 name...
STEset-
 name...

FTCH7A CALL DML

220 U930-J-Z125-14-76

1. FCOD 2. FOPT 3. SOPT 4. UINF 5. RECN 6. SETN 7. RLMN 8. ITMN

FTCH7A RECFST

SELFST

CURFST

⎫ [RET]
o [NOW]
o [RES]
o [LMS]
} [TAL]
o
o[]
o
~

⎫ for TAL:
o
o
o
o
o
o
o
o number of
} records
o
o
o
o
o
o
o
o
~

⎫
o
o
o record name
}
o
o
o
~

-

set name

set name

item name...

item name...

item name...

RECSEX

CURSEX

⎫ [RET]
o [NOW]
o [RES]
o [LMS]
} [TAL]
o
o[]
o
~

⎫
o
o
o record name
}
o
o
o
~

-

set name

set name

item name...

item name...

item name...

⎫
o
o
o
}search
oexpression
o
o
~

RECITM
RECITN
SELITM
SELITN
SELITP
CURITM
CURITN
CURITP

⎫
o
o
} [RET]
o [NOW]
o
o
~

⎫
o
o
} record name
o
o
o
~

-

set name

set name

⎫
o
o
} item
o name-1...
o
~

SOA

SOD

SOA

SOD

CALL DML FTCH7A

U930-J-Z125-14-76 221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

9. RECA 10. SPP1 11. SPP2 12. SPP3 Function

⎫
o
o
o
o
o
o
o
o record
} contents
o
o
o
o
o
o
o
o
~

⎫
o
o
o
o
o
o
o
o
o
o
o
}
o
o
o
o
o
o
o
o
o
o
o
o
~

⎫ for RES:
o
o
o
o
o
o
o
o result
} set name
o
o
o
o
o
o
o
o
~

⎫ for LMS:
o
o
o
o
o
o
o
o
} limited
o set name
o
o
o
o
o
o
o
~

Access to records via any items;
counting and storing records found inter-
mediately if required; search with mask

⎫
o
o contents/
}
o record
o contents
~

MULTIPLE
[RLM][REC]

[]

SET
STNset-
 name...
STEset-
 name...

GETC-READYC CALL DML

222 U930-J-Z125-14-76

1. FCOD 2. FOPT 3. SOPT 4. UINF 5. RECN 6. SETN 7. RLMN 8. ITMN

GETC CORUNT

ITMNAM

-

[VAR]

[record name]

record name

-

item name-1...

IFC OWNALL
OWNSET
MEMALL
MEMSET
TENALL
TENSET
EMPTYS

-
set name
-
set name
-
set name
set name

KEEPC

MODIF1 CORUNT
INCALL
ONLALL

INCSET
ONLSET

⎫
o
o [RET]
}
o
~

⎫
o
o
} record name
o
~

-
-
-

set name...
set name...

MODIF2 CORUNT
INCALL
INCSET

⎫ [RET]
}
~ [VAR]~

⎫
} record name
~

-
-
set name

⎫ item
} name...
~

READYC ALLRTR
ALLUPD
ALLPRT
ALLPUP
ALLERT
ALLEUP
RLMRTR
RLMUPD
RLMPRT
RLMPUP
RLMERT
RLMEUP

⎫
o
o
o
o
} [NOW]
o
o
o
o
o
~

-
-
-
-
-
-
⎫
o
o realm
} name...
o
~

CALL DML GETC-READYC

U930-J-Z125-14-76 223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

9. RECA 10. SPP1 11. SPP2 12. SPP3 Function

rec cont´s

item cont´s

Makes the CRU or individual items of the
CRU available

Checks set memberships

Protects the CRU from access by other
transactions until a FREE statement is
entered or until the end of a transaction

rec. cont´s
rec. cont´s
-

rec. cont´s
-

⎫ for RET:
o
o
o
}
o
o
o
o
~

Modifies record contents or item contents
of the CRU and/or transfers them to
another set occurrence within the set

⎫
} item
~ contents

⎫
o
o
o
o
} subschema
o name
o
o
o
o
~

⎫
o
o
o
o privacy
} iforma-
o tion
o
o
o
o
~

Opens a transaction or a processing
chain

STORE1/STOR1L/STORE2/STOR2L CALL DML

224 U930-J-Z125-14-76

1. FCOD 2. FOPT 3. SOPT 4. UINF 5. RECN 6. SETN 7. RLMN 8. ITMN 9. RECA

STORE1 RECNAM

IMPDAT

⎫ [RET]
}
~

⎫
} rec-name
~

⎫ record
} contents
~

STOR1L RECNAM

IMPDAT

⎫ [RET]
}
~

⎫
} rec-name
~

⎫ record
} contents
~

STORE2 ITMNAM

IMPDAT

⎫ [RET]
}
~ [VAR]

⎫
} rec-name
~

⎫ item
} name...
~

⎫ item
} contents
~

STOR2L ITMNAM

IMPDAT

⎫ [RET]
}
~ [VAR]

⎫
} rec-name
~

⎫ item
} name...
~

⎫ item
} contents
~

CALL DML STORE1/STOR1L/STORE2/STOR2L

U930-J-Z125-14-76 225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

10. SPP1 11. SPP2 12. SPP3 Function

⎫ for RET:
o
o
o
o
o
o
o
}
o
o
o
o
o
o
o
~

-

impl. def.
data area

– Transfers a record or individual items
or compressed records from the
UWA to the database as a new record

– Inserts the new record into all sets for
which its record type has been
defined as an AUTOMATIC member
in the schema

– Sets up a new set occurrence for
each set for which the record type is
defined as owner record type in the
schema

If you want to specify a database with a
REC-REF > 254 and/or an RSQ > 224-1
with an IMPDAT function option, you must
use STOR1L or STOR2L

-

impl. def.
data area

-

MULTIPLE
[RLM][REC]

[]

SET
STNset-
 name...
STEset-
 name...

Call parameters CALL DML

226 U930-J-Z125-14-76

8.3.2 Functions of CALL DML

The function of a call is determined by the function code and function option parameters.

The rules for execution of a CALL DML call correspond to those applicable in COBOL DML
(see section “COBOL DML statements” on page 139). They will therefore not be explained
again here.
So that the relevant COBOL DML rules can be easily referenced, the keywords of
parameter “function-option” are listed alongside the corresponding COBOL DML state-
ments. Where there are variations from COBOL DML, an exact description will be given in
each case.

Normally the selected function option governs whether and how a parameter is used. The
descriptions of the parameters therefore give the function option keywords to which each
description is relevant.

Example

Function code: ACCPTC
 .
 .
 .
 Set name: DBKSET/RLMSET Input of a set name

The set name parameter is used only for the two function options specified, not for
others.

If no function option keyword is given, the description applies to all possible entries.

A detailed description of the formats of CALL DML calls is given in the following text.

CALL DML ACCPTC/ACCPTL

U930-J-Z125-14-76 227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Saving currency information (ACCPTC, ACCPTL)

The ACCPTC and ACCPTL functions determine

– the contents of the specified currency information (database key value),
– the realm name belonging to a specific database key value.

ACCPTC and ACCPTL differ with respect to the return or input of the database key value.

ACCPTL can only be executed in combination with an SSITAB module of UDS/SQL Version
2.0 or higher (see the “Creation and Restructuring“ manual). Otherwise, UDS/SQL reports
status code C98.

Function code: ACCPTC

Function code: ACCPTL

Function option: CALL DML Corresponding COBOL DML statement

DB-KEY ACCEPT item-name FROM CURRENCY

DBKREC ACCEPT item-name FROM record-name CURRENCY

DBKRLM ACCEPT item-name FROM realm-name CURRENCY

DBKSET ACCEPT item-name FROM set-name CURRENCY

RLMNAM ACCEPT item-name FROM REALM-NAME

RLMREC ACCEPT item-name FROM record-name REALM-NAME

RLMSET ACCEPT item-name FROM set-name REALM-NAME

RLMDBK ACCEPT item-name FROM item-name REALM-NAME

ACCPTC/ACCPTL CALL DML

228 U930-J-Z125-14-76

User information: DB-KEY/DBK...
Database key value returned.
For ACCPTC, UDS/SQL can only return database key values with
a REC-REF Î 254 and an RSQ Î 224-1. See page 205-207 for
details.

RLM...
Realm name returned in the realm name item of the System
Communication Locations

RLMDBK
Input of a database key.
For ACCPTC, you can only specify database key values with a
REC-REF Î 254 and an RSQ Î 224-1. See page 205-207 for details.

DATABASE-STATUS returned

Record name: DBKREC/RLMREC
Input of a record name

Set name: DBKSET/RLMSET
Input of a set name

Realm name: DBKRLM
Input of a realm name

CALL DML CONNEC

U930-J-Z125-14-76 229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Establishing set connections (CONNEC)

The CONNEC function ensures that the Current Record of Run-unit (CRU) becomes a
member in one or more sets in which its record type is an optional member
(i.e. MANDATORY MANUAL, OPTIONAL AUTOMATIC or OPTIONAL MANUAL).

The RETAINING option may be used to prevent the record from becoming the Current
Record of Set (CRS) for all sets or for the specified sets into which it is inserted.

Function code: CONNEC

Secondary option: Input of RET (optional)

User information: DATABASE-STATUS returned

Record name: Input of record name (optional)

Set name: TO-SET
Input of one or more set names

Special parameter 1: Input of retaining parameters associated with secondary option
RET; in the case of CONNEC, the retaining parameter is possible
only for sets.

Function option: CALL DML Corresponding COBOL DML statement

TO-ALL CONNECT[record-name] TO ALL

TO-SET CONNECT[record-name] TO set-name-1,...

DISCON CALL DML

230 U930-J-Z125-14-76

Releasing existing set connections (DISCON)

The DISCON function terminates the membership of the Current Record of Run-unit (CRU)
in one or more sets in which it is currently a member, provided that its record type is
declared as OPTIONAL member. The membership of all records of the current set occur-
rence (dynamic sets only) can be terminated with ALLFRM.

Function code: DISCON

User information: DATABASE-STATUS returned

Record name: FRMALL/FRMSET
Input of a record name (optional)

Set name: FRMSET/ALLFRM
Input of one or more set names

Function option: CALL DML Corresponding COBOL DML statement

FRMALL DISCONNECT[record-name] FROM ALL

FRMSET DISCONNECT[record-name] FROM set-name-1,...

ALLFRM DISCONNECT ALL FROM set-name-2,...

CALL DML ERASEC

U930-J-Z125-14-76 231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Deleting records and their set connections (ERASEC)

The ERASEC function erases the Current Record of Run-unit (CRU) in the database and
removes it from all set occurrences in which it was a member. The ERASEC function also:

● erases all MANDATORY member records of the CRU or

● removes all OPTIONAL member records from set occurrences in which the deleted
record was the owner, erasing them if required.

Function code: ERASEC

User information: DATABASE-STATUS returned

Record name: Input of a record name

Function option: CALL DML Corresponding COBOL DML statement

CORUNT ERASE record-name

PERMAN ERASE record-name PERMANENT MEMBERS

SELTIV ERASE record-name SELECTIVE MEMBERS

ALLMEM ERASE record-name ALL MEMBERS

FIND/FTCH CALL DML

232 U930-J-Z125-14-76

Retrieval of data (FIND/FTCH)

The FIND/FTCH functions make a record found by a record selection expression into the

– Current Record of Run-unit (CRU),

– Current Record of Area (CRA) of the realm in which it is stored,

– Current Record of Record (CRR) of its record type and

– Current Record of Set (CRS) for all sets in which it is the owner or a member.

The FTCH functions additionally transfer the contents of the found record as defined in the
subschema into the record area.

You can optionally ensure that no changes are made to the currency table information
affected by the FIND/FTCH function by specifying RET in the “secondary option” parameter.

You may also specify NOW in the “secondary option” parameter to ensure that if a page
locked by a transaction is accessed, control is immediately returned to the application
program (DATABASE-STATUS 04020) instead of waiting for the page to be freed.

The FIND/FETCH functions can be accessed via 7 different function codes. Each function
code corresponds to one of the 7 formats of COBOL DML.

Input to parameters 2 to 12 is identical for FIND and FTCH.

CALL DML FIND1/FTCH1 and FIND1L/FTCH1L

U930-J-Z125-14-76 233

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

The FIND1/FTCH1 or FIND1L/FTCH1L functions gain access to a record via the database
key value. FIND1/FTCH1 and FIND1L/FTCH1L differ with respect to the input of the
database key value.

FIND1L and FTCH1L can only be executed in combination with an SSITAB module of
UDS/SQL Version 2.0 or higher (see the “Creation and Restructuring“ manual). Otherwise,
UDS/SQL reports status code C98.

Function code: FIND1/FTCH1

Function code: FIND1L/FTCH1L

Function option: Is omitted; the corresponding COBOL format is as follows:

FIND[record-name] DATABASE-KEY IS item-name

Secondary option: Input of RET (optional), NOW (optional)

User information: Input of the database key value of the record to be found.
For Find1/FTCH1, you can only specify database key values with a
REC-REF Î 254 and an RSQ Î 224-1. See page 205-207 for details.

DATABASE-STATUS returned

Record name: Input of a record name (optional)

Record area: DBKPRI/DBKNXT
When DBKPRI or DBKNXT is specified, the record with the next
lowest or next highest database key is supplied if no record with the
specified database key exists. If anything else is specified, the OR
PRIOR/NEXT functionality is not employed.

FTCH1: Record searched for returned;

Special parameter 1: Input of retaining parameters for secondary option RET

Function option: CALL DML Corresponding COBOL DML statement

FIND record-name DATABASE-KEY IS item-name

DBKPRI FIND record-name DATABASE-KEY IS item-name
OR PRIOR

DBKNXT FIND record-name DATABASE-KEY IS item-name OR
NEXT

FIND2/FTCH2 CALL DML

234 U930-J-Z125-14-76

The FIND2/FTCH2 function provides direct access via the CALC key.

ANYIMP must be used whenever the record type is distributed over several realms.

Function code: FIND2/FTCH2

Secondary option: Input of RET (optional), NOW (optional)

User information: DATABASE-STATUS returned

Record name: Input of a record name; the record type must be defined with
LOCATION MODE CALC.

Record area: ANYREC/ANYIMP
Input of the CALC key of the LOCATION MODE clause at that point
in the record area which corresponds to the subschema format of
the record.

DUPLIC
Input of CALC key required; DBH searches for a record in the realm
of the CRR which has the same CALC key value as the CRR.

FTCH2
Record returned

Special parameter 1: Input of retaining parameters for secondary option RET

Special parameter 2: ANYIMP
Input of the realm name of the realm to be searched for the record:

Bytes 1-4: not used

Bytes 5-34: full length of realm name, padded with blanks if
required.

The contents of bytes 5-34 are only evaluated if the record type
record-name is distributed over several realms (due to a corre-
sponding WITHIN clause of the schema DDL definition for the
record type record-name).

Function option: CALL DML Corresponding COBOL DML statement

ANYREC FIND ANY record-name

ANYIMP FIND ANY record-name

DUPLIC FIND DUPLICATE record-name

CALL DML FIND3/FTCH3

U930-J-Z125-14-76 235

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

The FIND3/FTCH3 function accesses a record which matches the CRR or CRS in specific
item contents or which satisfies the conditions of a previously processed search
expression.

Function code: FIND3/FTCH3

Secondary option: Input of RET (optional), NOW (optional)

User information: DATABASE-STATUS returned

Record name: SETITM/RECNAM/RECITM
Input of a record name; with SETITM this is necessary to identify the
items.

Set name: SET...
Input of a set name

Item name: ...ITM
Input of one or more item names

Record area: FTCH3
Record returned

Special parameter 1: Input of retaining parameters for secondary option RET

Function option: CALL DML Corresponding COBOL DML statement

SETNAM FIND DUPLICATE WITHIN set-name

SETITM FIND DUPLICATE WITHIN set-name
 USING item-name-1,...

RECNAM FIND DUPLICATE WITHIN record-name

RECITM FIND DUPLICATE WITHIN record-name
 USING item-name-1,....

FIND4/FTCH4 CALL DML

236 U930-J-Z125-14-76

The FIND4/FTCH4 function accesses the first or last record, the next or prior record to the
CRR, CRS or CRA, or a record whose position within the collection of records in which the
search is made corresponds to a numeric value to be specified.

Function code: FIND4/FTCH4

All 15 possible combinations are allowed and correspond to the full
range of combinations in COBOL DML.

Secondary option: Input of RET (optional), NOW (optional)

User information: DATABASE-STATUS returned

Function option: CALL DML Corresponding COBOL DML statement

SET... FIND WITHIN set-name

RLM... FIND WITHIN realm-name

REC... FIND record-name

...NXT

...PRI

...FST

...LST

...SPC

FIND NEXT
FIND PRIOR
FIND FIRST
FIND LAST

FIND

record-name

RECORD

record-name

RECORD

integer

item-name

CALL DML FIND4/FTCH4

U930-J-Z125-14-76 237

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Record name: Input of a record name;

SET.../RLM...
The input of a record name is optional; input of blank characters has
the same effect as input of RECORDËË..

SET...
If a record name is input, the DBH also checks whether the record
type specified is the member record type in the named set.

RLM...
The input of a record name restricts the collection of records in
which the search is made to this record type; otherwise the DBH
takes into consideration all record types of the subschema which
are stored in the realm.

Set name: SET...
Input of a set name

Realm name: RLM...
Input of a realm name

Record area: FTCH4
Record returned

Special parameter 1: Input of retaining parameters for secondary option RET

Special parameter 2: ...SPC
Input of an integer. The value must be coded as a 4-byte binary
number; negative values are allowed, but not 0.

FIND5/FTCH5 CALL DML

238 U930-J-Z125-14-76

The FIND5/FTCH5 function accesses the CRR, CRS, CRA or CRU.

Function code: FIND5/FTCH5

Secondary option: Input of RET (optional), NOW (optional)

User information: DATABASE-STATUS returned

Record name: REC...
Input of a record name; the collection of records in which the search
is made is limited to the specified record type, i.e. the DBH checks
whether the CRS or CRA is of the specified record type.

Set name: RECSET/SETNAM
Input of a set name

Realm name: RECRLM/RLMNAM
Input of a realm name

Record area: FTCH5
Record returned

Special parameter 1: Input of retaining parameters for secondary option RET (only for
sets concerned)

Function option: CALL DML Corresponding COBOL DML statement

CORUNT FIND CURRENT

RECNAM FIND CURRENT record-name

RECSET FIND CURRENT record-name WITHIN set-name

SETNAM FIND CURRENT WITHIN set-name

RECRLM FIND CURRENT record-name WITHIN realm-name

RLMNAM FIND CURRENT WITHIN realm-name

CALL DML FIND6/FTCH6

U930-J-Z125-14-76 239

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

The FIND6/FTCH6 function accesses the owner record of a CRS.

Function code: FIND6/FTCH6

Function option: Is omitted; the corresponding COBOL DML format is:

FIND OWNER WITHIN set-name

Secondary option: Input of RET (optional), NOW (optional)

User information: DATABASE-STATUS returned

Set name: Input of a set name

Record area: FTCH6
Owner record returned

Special parameter 1: Input of retaining parameters for secondary option RET (only for
relevant sets).

FIND7A/FTCH7A CALL DML

240 U930-J-Z125-14-76

The FIND7A/FTCH7A accesses records via user-defined items; if required, selected
records are counted and buffered and searched for using a mask.

Function code: FIND7A/FTCH7A

Function option: CALL DML Corresponding COBOL DML statement

RECFST FIND record-name

CURFST FIND record-name WITHIN set-name CURRENT

SELFST FIND record-name WITHIN set-name

RECSEX FIND record-name USING search-expression

CURSEX FIND record-name WITHIN set-name CURRENT
 USING search-expression

SELSEX FIND record-name WITHIN set-name CURRENT
 USING search-expression

RECITM FIND record-name item-name-1

CURITM FIND record-name WITHIN set-name CURRENT
 USING item-name-1,...

SELITM FIND record-name WHITHIN set-name
 USING item-name-1,...

RECITN FIND record-name USING item-name-1,...
 OR NEXT

CURITN FIND record-name WITHIN set-name CURRENT
 USING item-name-1,...
 OR NEXT

SELITN FIND record-name WITHIN set-name
 USING item-name-1,...
 OR NEXT

CURITP FIND record-name WITHIN set-name CURRENT
 USING item-name-1,...
 OR PRIOR

SELITP FIND record-name WITHIN set-name
 USING item-name-1,...
 OR PRIOR

CALL DML FIND7A/FTCH7A

U930-J-Z125-14-76 241

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Secondary option: Optional input of

RET
for retaining functions

RES
if the user wishes to specify a dynamic result set
(special parameter 2)

LMS
if the user wishes to specify limited by dynamic set
(special parameter 3)

TAL
if the user wishes to use the tallying function

SOA
if the user wishes to use the sort function in ascending order

SOD
if the user wishes to use the sort function in descending order

NOW
if you don’t want to wait when there is a lock

The entries RES, LMS, TAL, SOA and SOD are allowed only with
...FST and ...SEX.
Input of RES or TAL leads to the whole collection of selected
records being determined. For the input format, see page 203.

User information: TAL
Result of the TALLYING function returned in the counter item as a
4-byte binary number

DATABASE-STATUS returned

Record name: Input of a record name

FIND7A/FTCH7A CALL DML

242 U930-J-Z125-14-76

Set name: CUR.../SEL...
Input of a set name

– With CUR... the current set occurrence of the specified set is
defined as the collection of records in which the search is made.

– With SEL... the set occurrence in which the search is to be made
is defined with the aid of SET OCCURRENCE SELECTION.
Sets with the SET OCCURRENCE SELECTION clause THRU
LOCATION MODE OF OWNER are handled in the same way
as sets with the SET OCCURRENCE SELECTION clause
THRU CURRENT OF SET. The effect of SEL... therefore corre-
sponds to that of CUR....

– CUR... can be used for SYSTEM sets even when a CRS does
not exist.

Realm name: ...SOA/...SOD
Input of one or more item names; the records satisfying a search
expression are sorted by these items. The items must be elements
of the record type addressed in the search expression. The records
are sorted according to type.

– ...SOA causes sorting in ascending order.

– ...SOD causes sorting in descending order.

All items specified must be sorted in the same direction.

Item name: ...ITM/...ITN/...ITP
Input of one or more item names; a search is made for a record
containing the same values given in the record area.

If ...ITN is specified and no record with the values specified in the
record area are found, the next record of the set occurrence is
selected in accordance with the sort sequence. This sort sequence
is determined by the specified combination of item names, which in
turn must designate the ASCENDING KEY, DESCENDING KEY or
a SEARCH KEY USING INDEX of the specified set. Any violation of
these conditions will be acknowledged by UDS/SQL with a
DATABASE-STATUS of 04101 at runtime.

CALL DML FIND7A/FTCH7A

U930-J-Z125-14-76 243

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

If there are duplicate records for a key value, UDS/SQL outputs the
record with the smallest record sequence number (RSQ). In other
words, you can find all duplicates

– with a FIND7A/FTCH7A ...ITN call and a sequence of
FIND4/FTCH4 ... NXT calls or

– with a FIND7A/FTCH7A ...ITN call and a sequence of
FIND/FTCH3 calls.

If the key value specified in the record area is greater than the
largest key value present in the set occurrence, UDS/SQL reports
DATABASE-STATUS 04024.

– If ...ITP is specified and no record with the values specified in
the record area are found, the immediately preceding record of
the set occurrence is selected in accordance with the sort
sequence. This sort sequence is determined by the specified
combination of item names, which in turn must designate the
ASCENDING KEY or DESCENDING KEY of the specified set.
Any violation of these conditions will be acknowledged by
UDS/SQL with a DATABASE-STATUS of 04101 at runtime.
If there are duplicate records for a key value, UDS/SQL outputs
the record with the highest record sequence number (RSQ),
which means that you can find all duplicates a FIND7A/FTCH7A
...ITP call and a sequence of FIND4/FTCH4 ... PRI calls.
If the key value specified in the record area is less than the
smallest key value present in the set occurrence, UDS/SQL
reports DATABASE-STATUS 04024.

...SEX
Input of a search expression; a search is made for one or more
records which satisfy the condition(s) of the search expression. The
search expression is described after special-parameter-3 below.

Record area: Input of the item contents of the specified items for function option
...ITM/...ITN/...ITP; their position in the record area must correspond
to that in the subschema format of the record.

FTCH7A
Return of (first) record found

FIND7A/FTCH7A CALL DML

244 U930-J-Z125-14-76

Special parameter 1: Input of the retaining parameters for secondary option RET

Special parameter 2: RES
Input of a name for a result set.
If you specify RES, UDS/SQL will save the selected records in an
explicit dynamic set, which you can then address with additional
FIND4/FTCH4 calls. This allows you to program the search for
records so that a total of several hierarchy levels of the data
structure are checked, i.e. to use items of different record types via
set relationships for the search (complex search query).
If the specified set is an unsorted dynamic set, you cannot specify
...SOA or ...SOD in the “realm name“ parameter (see above), since
the intersection of a selected set (hit list) and a dynamic set cannot
be sorted.
RES cannot be used if ...ITM was specified in the “item name”
parameter.

Special parameter 3: LMS
Input of the name for the set to be intersected with the selected set
(hit list).
You may specify LMS only if the set specified in the “set name”
parameter is not a dynamic set.
LMS limits the collection of records to records which

– belong to the record type specified in the “record name”
parameter or to the selected set occurrence of the set given in
the “set name” parameter

– and which are also contained in the set specified in
“special parameter 3“.

The set specified in “special parameter 3“ must not be a sorted
dynamic set, since it is not possible to create the intersection of a
selected set (hit list) and a sorted dynamic set.
LMS cannot be used if ...ITM was specified in the “item name”
parameter.

CALL DML FIND7A/FTCH7A

U930-J-Z125-14-76 245

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Search lcomplex-1[AN complex-2]⎫
expression :: = m } END
 ncomplex-2 ~

 lAN⎫
 complex-1 ::= condition-1[m } condition-1]...
 nOR~

 complex-2 ::= condition-2[AN condition-2]...

 condition-1 ::= n item-name [MSK mask]rel value m

 lNXT rel value⎫
 condition-2 ::= 0 item-name mMAX } 0
 nMIN ~

A search expression may not contain more than 31 conditions in all.

The rules for the logical processing of the search expression and
the evaluation of the multi-level tables of ASC keys and SEARCH
keys are the same as in COBOL DML.

n
Number of left (opening) parentheses n = 0 ... 9

The sum of opening parentheses and the sum of closing paren-
theses in complex-1 must be the same.
No parentheses are allowed in complex-2; <0> must be specified on
grounds of format compatibility.

m
Number of right (closing) parentheses m = 0 ...9

rel (Relation):

EQU: equal
GTH: greater than
LTH: lower than
GEQ: greater than or equal
LEQ: lower than or equal
NEQ: not equal
NGR: not greater than
NLW: not lower than

EQU and NEQ are forbidden in a condition-2. The boolean operator
NOT is not provided, but the same effect can be achieved by speci-
fying opposing relational operators.

item-name
Item-name with a length of 8 bytes or 30 bytes corresponding to the
(CALL8) and (CALL30) variants.

FIND7A/FTCH7A CALL DML

246 U930-J-Z125-14-76

mask
Literal of the same length as item item-name
significant bytes: X’F1’
non-significant bytes: X’F0’

value
Literal of the same length and same type as item item-name; it
contains the comparison value.

To avoid alignment problems with the comparison value (depending
on the conventions of the programming language used), the literal
value may begin with up to 7 characters which do not belong to the
comparison value. The last (right-justified) bytes of value, equal in
length to item item-name, are then taken for the comparison.

Comparisons can only be made with literals inserted in the search
expression, not with the contents of other items.

MAX/MIN
Are used to find the greatest and smallest value (not present in
COBOL DML).

END
Terminates the search expression.

Example for (CALL8) variant

A search is to be made for the farmer with the biggest potatoes; members of parliament
with an interest in agriculture are included with farmers in the selection of records in
which the search is made.

Subschema record:
01 CITIZEN.

02 PROFESSION PIC X(12).
02 SECTOR PIC X(15).
02 POTATO PIC S999.

COBOL DML search expression:
(PROFESSION=“FARMER“ OR (PROFESSION=“MP“ AND SECTOR="AGRICULTURE"))
AND POTATO
NEXT NOT GREATER HIGH VALUE

CALL DML search expression:
1ËPROFESSIËEQUËFARMERËËËËËËËOËORË
1ËPROFESSIËEQUËMPËËËËËËËËËËËOËANË
OËSECTORËËËEQUËAGRICULTUREËËËËË2ËANË
OËPOTATOËËËMAXËOËEND

The conditions are normally specified contiguously; they have been entered on
separate lines here simply for the sake of clarity.

CALL DML FINISC/FREEC

U930-J-Z125-14-76 247

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Concluding processing (FINISC)

The FINISC function terminates a transaction. Updates made by the transaction are
confirmed (fixed) or may be optionally cancelled. Locked realms and pages are released.

Function code: FINISC

User information: DATABASE-STATUS returned

Deactivating extended record protection (FREEC)

The FREEC function terminates the KEEP status for one or more records.

Function code: FREEC

User information: DATABASE-STATUS returned

Function option: CALL DML Corresponding COBOL DML statement

ALLRLM FINISH

ALLCAN FINISH WITH CANCEL

Function option: CALL DML Corresponding COBOL DML statement

CORUNT FREE

ALLREC FREE ALL

GETC CALL DML

248 U930-J-Z125-14-76

Transporting a record to the record area (GETC)

The GETC function places the Current Record of Run-unit (CRU) or individual CRU items
in the record area of the UWA.

Function code: GETC

ITMNAM is not allowed for records with variable-length items.

Secondary option: ITMNAM
If VAR (optional) is specified, the specified items are stored in the
record area in the specified order, irrespective of the format of the
subschema record and without spaces.

User information: DATABASE-STATUS returned

Record name: Input of a record name

CORUNT
The input of a record name is optional; however, the DBH always
transfers the complete CRU into the record area.

If a record name is specified, the DBH first checks whether the
Current Record of Run-unit (CRU) is of this record type before
transferring it to the record area.

ITMNAM
The DBH only transfers the specified items to the record area;
a record name must be specified.

Item name: ITMNAM
Input of one or more item names

Function option: CALL DML Corresponding COBOL DML statement

CORUNT GET[record-name]

ITMNAM GET item-name-1,...

CALL DML GETC

U930-J-Z125-14-76 249

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Record area: CORUNT
Current Record of Run-unit (CRU) returned

ITMNAM
Individual items of the CRU returned

If the VAR secondary option is not specified, these items are trans-
ferred to positions in the record area which correspond to their
location in the subschema format of the record.

If VAR is specified, the contents of the specified items are trans-
ferred contiguously (abbreviated record format).

IFC CALL DML

250 U930-J-Z125-14-76

Testing database conditions (IFC)

The IFC function can be used to interrogate the database, i.e.:

– to check whether the Current Record of Run-unit (CRU) is owner or member in one or
more specified sets or

– to check whether the current set occurrence contains member records.

Function code: IFC

No provision is made for COBOL NOT; however, this does not entail
any actual limitation of the function.

User information: Results returned in database status item

000: The condition is met

C11: The condition is not met

Regardless of the result, the program always continues at the
specified return address (with the statement following the CALL or
register 14).

DATABASE-STATUS returned

Set name: ...SET/EMPTYS
Input of a set name; only the specified set is checked.

Function option: CALL DML Corresponding COBOL DML statement

OWNALL IF OWNER

OWNSET IF set-name OWNER

MEMALL IF MEMBER

MEMSET IF set-name MEMBER

TENALL IF TENANT

TENSET IF set-name TENANT

EMPTYS IF set-name EMPTY

CALL DML KEEPC/MODIF1/2

U930-J-Z125-14-76 251

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Activating extended record protection (KEEPC)

The KEEPC function protects the Current Record of Run-unit (CRU) from access by other
transactions until record protection is cancelled with FREEC or the transaction is terminated
with FINISC.

Function code: KEEPC

Function option: Not applicable

User information: DATABASE-STATUS returned

Modifying records already stored (MODIF1/2)

The MODIF1/2 functions

– replace the values of all items or specified items of the CRU by values from the record
area

– modify the position of the CRU within the set occurrence to match the set order if a sort
key is modified

– may be used to disconnect the CRU from its current set occurrence and connect it into
a new one determined using set selection mechanisms.

The user has the option of suppressing the updating of all or parts of the relevant currency
information.

The MODIF1/2 functions can be accessed via 2 different function codes.

MODIF1 CALL DML

252 U930-J-Z125-14-76

Modifying the entire record

Function code: MODIF1

Secondary option: Input of RET (optional), NOW (optional;

Retaining is only possible for sets

User information: DATABASE-STATUS returned

Record name: Input of the record name of the Current Record of Run-unit (CRU)

Set name: ...SET
Input of one or more set names; the membership of the CRU in the
specified sets is checked and, if necessary, modified if this is
possible solely via currency information.

If the membership of the CRU is modified in a set defined with the
SET OCCURRENCE SELECTION clause THRU LOCATION
MODE OF OWNER, MODIF1 reacts in the same way as for the SET
OCCURRENCE SELECTION clause THRU CURRENT OF SET.

Record area: CORUNT/INCALL/INCSE
The record must be transferred in its complete subschema format
to the record area. All items of the subschema are overwritten with
contents from the record area.

ONLALL/ONLSET
The record area is not used; item contents remain unchanged.

Special parameter 1: Input of retaining parameters for secondary option RET; retaining is
only possible for sets since the CRSs are changed.

Function option: CALL DML Corresponding COBOL DML statement

CORUNT MODIFY record-name

INCALL MODIFY record-name INCLUDING ALL MEMBERSHIP

ONLALL MODIFY record-name ONLY ALL MEMBERSHIP

INCSET MODIFY record-name INCLUDING set-name-1,...
MEMBERSHIP

ONLSET MODIFY record-name ONLY set-name-1,...
MEMBERSHIP

CALL DML MODIF2

U930-J-Z125-14-76 253

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Modifying individual items

Function code: MODIF2

Not allowed for records with variable items.

Secondary option: Input of:
RET (optional); retaining for sets only
VAR (optional); abbreviated format

User information: DATABASE-STATUS returned

Record name: Input of the record name of the Current Record of Run-unit (CRU)

Set name: INCSET
Input of one or more set names; the remarks concerning MODIF1
also apply here.

Item name: Input of one or more item names; only the contents of the specified
items of the record are modified; the contents of the remaining items
are unchanged.

Record area: Input of the item contents to be modified

If the secondary option VAR is not specified, the contents must be
placed in positions within the record area which correspond to the
positions of the items in the subschema format of the record.
If VAR is specified, the item contents must be written left-justified
(starting at the beginning of parameter item <record-area>) and
contiguously in order of item name.

Special parameter 1: See page 252, MODIF1

Function option: CALL DML Corresponding COBOL DML statement

CORUNT MODIFY item-name,...

INCALL MODIFY item-name,...
INCLUDING ALL MEMBERSHIP

INCSET MODIFY item-name,...
INCLUDING set-name-1,... MEMBERSHIP

READYC CALL DML

254 U930-J-Z125-14-76

Preparing for processing (READYC)

The READYC function opens a transaction/processing chain and readies one or more
realms for processing.

If the realm you want to access is locked when opening a transaction, you can return control
to the application program (DATABASE-STATUS 12099) rather than waiting.

Function code: READYC

All 12 possible combinations are allowed.

Secondary option: Input of: NOW (optional)

User information: DATABASE-STATUS returned
DB identifier returned

The database identifier must be specified again in all subsequent
DML calls of the processing chain.

Realm name: ...RLM
Input of one or more realm names;

Special parameter 1: Input of the subschema name in its full length (30 bytes); if the name
is shorter than this, it must padded with blanks. CALL DML allows
different subschemas to be called from the same module; the
subschema name must therefore be transferred with the READYC
call. The associated SSITAB modules must be available to the
CALL DML converter.

Function option: CALL DML Corresponding COBOL DML statement

ALL... Open all realms of the subschema

RLM...

...RTR

...UPD

...PRT

...PUP

...ERT

...EUP

Open specified realms only

USAGE MODE IS RETRIEVAL
USAGE MODE IS UPDATE
USAGE MODE IS PROTECTED RETRIEVAL
USAGE MODE IS PROTECTED UPDATE
USAGE MODE IS EXCLUSIVE RETRIEVAL
USAGE MODE IS EXCLUSIVE UPDATE

CALL DML READYC

U930-J-Z125-14-76 255

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Special parameter 2: Is no longer used; existing specifications, if any, are ignored by
UDS/SQL.
PRIVACY data is passed to UDS/SQL outside the program by
openUTM or BS2000.

STORE1/2 and STOR1L/STOR2L CALL DML

256 U930-J-Z125-14-76

Storing records (STORE1/2, STOR1L/2L)

The STORE1/2 and STOR1L/2L functions store a record in the database and connect it into
all sets in which its record type is defined as AUTOMATIC member. The new record thus
becomes

– Current of Run-unit,

– Current of Realm of the realm in which it is stored,

– Current of Record of its record type, and

– Current of Set of all sets in which its record type is defined as owner record type or
AUTOMATIC member record type.

The user has the option of retaining all or some of the currency information affected by a
STORE1/2 or STOR1L/2L call, except for the currency information for the CRU.

The STORE1/2 and STOR1L/2L functions treat sets defined with the SET OCCURRENCE
SELECTION clause THRU LOCATION MODE OF OWNER in the same way as sets
defined with the SET OCCURRENCE SELECTION clause THRU CURRENT OF SET.

STORE1/2 and STOR1L/2L differ with respect to the database key value to be specified.

STOR1L and STOR2L can only be executed in combination with an SSITAB module of
UDS/SQL Version 2.0 or higher (see the “Creation and Restructuring“ manual). Otherwise,
UDS/SQL reports status code C98.

CALL DML STORE1 and STOR1L

U930-J-Z125-14-76 257

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Storing complete records

Function code: STORE1

Function code STOR1L

IMPDAT must be used if LOCATION MODE DIRECT or LOCATION
MODE DIRECT-LONG is defined or several realms are specified in
the WITHIN clause, where the record type is not the member record
type of a distributable list. This implicitly defined data (database key
value or realm name) must be transferred in special parameter 2.

Secondary option: Input of RET (optional)

User information: DATABASE-STATUS returned

Record name: Input of a record name

Record area: Input of the record to be stored in its subschema format. For records
with variable-length items, the associated length item must be
supplied with a binary value. Only the specified length of the record
is stored.

Special parameter 1: Input of retaining parameters for secondary option RET

Special parameter 2: IMPDAT
Input of a database key value (for LOCATION MODE DIRECT or
LOCATION MODE DIRECT-LONG) and/or a realm name if more
than one realm name is specified in the WITHIN clause (see
page 210 for details).
If you want to specify a database key value with a REC-REF > 254
and/or an RSQ > 224-1 in combination with LOCATION MODE
DIRECT-LONG, you must use STOR1L.

Function option: CALL DML Corresponding COBOL DML statement

RECNAM STORE record-name

IMPDAT STORE record-name

STORE2 and STOR2L CALL DML

258 U930-J-Z125-14-76

Storing individual items or compressed records

Function code: STORE2

Function code: STOR2L

This format extends the functionality offered by COBOL DML. It
allows abbreviated record formats to be used. This format is not
allowed for records with variable-length items.

Secondary option: Input of:
RET (optional) for retaining
VAR (optional) for abbreviated record format

User information: DATABASE-STATUS returned

Record name: Input of a record name

Item name: Input of one or more item names.
Items for which no names are specified are filled by UDS/SQL with
binary zero. If the clause “COMPRESSION FOR ALL ITEMS” is
contained in the SSL definition for the record type specified under
“record name“, items filled with binary zeros will not be stored in the
database by UDS/SQL.

Record area: Input of the item contents of the specified items.
If VAR is not specified, the item contents must be placed at points in
the record area which correspond to their positions in the format of
the subschema record.
If VAR is specified, the item contents must be stored left-justified
and contiguously in the specified order. This parameter, together
with an SSL definition COMPRESSION FOR ALL ITEMS for the
record type involved, leads to compressed storage of the record.

Special parameter 1: Input of retaining parameters for secondary option RET.

Special parameter 2: As for STORE1, STOR1L

Function option: CALL DML Corresponding COBOL DML statement

ITMNAM Storage of the specified items

IMPDAT Storage of the specified items and transfer of
implicitly defined data

CALL DML Assembler macros

U930-J-Z125-14-76 259

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

8.4 CALL DML Assembler macros

The following macros are available for the (CALL8) variant to support UDS/SQL users
working with CALL DML from within Assembler programs:

Macro
Function

Applicationstatically at assembly
time

dynamically at runtime

DSCAL Generate and initialize
implicit parameter list (in
instruction code)

– where necessary
complete implicit
parameter list

– execute CALL DML call
with the implicit
parameter list

CALL DML call with implicit
parameter list and convenient
parameter mechanism

Alternative:
DSCAP + DSCDF

DSCAP

-

– accept explicitly
defined parameter list

– where necessary fill out
explicitly defined
parameter list

– execute CALL DM call
with explicit parameter
list

CALL DML call with explicit
parameter list

and

convenient parameter
mechanism (optional)

DSCDF Generate and enter values
for the (explicit) parameter
list in the current CSECT or
DSECT

-
Generate (explicit) CALL DML
parameter list

DSCPA Generate user information
area and/or predefined
CALL DML parameter
constants

-
Support for ASSEMBLER
programming at the CALL
DML data interface

Table 27: CALL DML Assembler macros

Assembler macros CALL DML

260 U930-J-Z125-14-76

Parameter mechanism

The CALL DML parameters are referenced in the DSCAL, DSCAP and DSCDF macros by
means of the first twelve positional parameters of these macros and given the symbolic
designations FCOD, FOPT, SOPT, UINF, RECN, SETN, RLMN, ITMN, RECA, SPP1,
SPP2, SPP3 (see section “Parameter definitions” on page 198).

For parameters which specify the address of a data area, the following three methods of
representation are possible:

1. symbol
The address of the data area is defined by the symbolic expression <symbol>. It must
be possible to represent it as an A-type constant, i.e. the data area may not lie within a
DSECT but does not have to be within the current base addresses.

Example of “symbol”

RECORD + L'ITEM-2

2. *symbol
The address of the data area is defined by the symbolic expression <*symbol>. It must
be possible to represent it as an S-type constant, i.e. the data area must lie either within
an (addressed) DSECT or within the current base addresses.

Example of “*symbol”

*BUFFER + 16

3. (r)
The address of the data area is stored in register (r).

Example of “(r)”

(3) or (R12) or (WORKREG) where
R12 is EQU 12
WORKREG is EQU 7

Which of these three methods of representation is allowed in individual cases will be
indicated in the description of the macro parameters.

CALL DML DSCAL

U930-J-Z125-14-76 261

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

DSCAL

Macro DSCAL generates a CALL DML call with an implicit parameter list, i.e. the user does
not have to worry about defining and supplying values for the parameter list.

[name] DSCAL fcod,fopt,...,spp3

name gives the macro call a symbolic name (optional)

fcod,fopt,...spp3
correspond to the 12 CALL DML parameters (see section “Parameter definitions”
on page 198); the symbol, *symbol and (r) methods of representation are allowed for
each of these parameters. The rules for the definition of parameters (see page 199)
must be strictly adhered to. Only parameters which are not used and come at the
end of the list may be omitted.

Example

CONN1 DSCAL CONNEC,TOALL,RTSHORT,(RUSINF),*LEER8,NIL,NIL,NIL,NIL, -
 RETSET

DSCAP CALL DML

262 U930-J-Z125-14-76

DSCAP

The DSCAP macro generates a CALL DML call with an explicit parameter list, i.e. the user
is free to define and supply values for the parameter list.

DSCAP must be used instead of DSCAL in the following cases:

– There should be only one parameter list for each transaction.

– The parameter list should not to be contained in the instruction code (but in temporary
storage areas, for example)

– The application program itself should supply all the values for the parameter list.

[name] DSCAP [fcod,fopt,...,spp3][,PARAM=param]

name Assigns a symbolic name to the macro call (optional)

fcod,fopt,...spp3
Specification as for DSCAL (optional)

If you have not entered any fcod,fopt,... parameters, you must define the parameter
list (see the DSCDF macro on page 263) and fill in the addresses of the data areas
required.

param
 Allows the address of a parameter list to be specified using the symbol, *symbol or

(r) method of representation. If this parameter is omitted, the address of the
parameter list is expected in register 1.

Examples

a) DSCAP PARAM=*DMLP0001
b) DSCAP PARAM=(R7)
c) L 1,PARADDR
 DSCAP
d) DSCAP CONNEC,TOALL,RTSHORT,(RUSINF),*LEER8,NIL,NIL,NIL,NIL, -
 RETSET,PARAM=PARLEIST

CALL DML DSCDF

U930-J-Z125-14-76 263

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

DSCDF

The DSCDF macro generates a parameter list for CALL DML calls with the DSCAP macro
and supplies it with initial values (statically).

[name] DSCDF fcod,fopt,...,spp3[,SUFFIX=x]

name Assigns a symbolic name to the generated parameter list (optional)

fcod,fopt,...,spp3
Correspond to the 12 CALL DML parameters (see page 197). Only the symbol
method of representation is allowed for each of these parameters. Individual param-
eters or all parameters can be left out; the corresponding values in the parameter
list are then initialized with binary zero.

x This is used to avoid conflicts of names between different parameter lists (optional).

A DSCDF call generates the following code at its location in the current CSECT or DSECT:

 DS OF
DMLPx DS OCL48
[Name EQU DMLPx]
FCODx DC A(symbol or 0) Function code
FOPTx DC A(") Function option
SOPTx DC A(") Secondary option
UINFx DC A(") User information
RECNx DC A(") Record name
SETNx DC A(") Set name
RLMNx DC A(") Realm name
ITMNx DC A(") Item name
RECAx DC A(") Record area
SPE1x DC A(") Special parameter 1
SPE2x DC A(") Special parameter 2
SPE3x DC A(") Special parameter 3

The first four characters of the parameter SUFFIX are entered for x.

DSCDF CALL DML

264 U930-J-Z125-14-76

Example

Macro call:

CONNPAR DSCDF CONNEC,TOALL,RTSHORT,USINFO,BLANK8,NIL,NIL,NIL,NIL, -
 RETSET,SUFFIX=CONN

Generated parameter list:

 DS OF
DMLPCONN DS OCL48
CONNPAR EQU DMLPCONN
FCODCONN DC A(CONNEC)
FOPTCONN DC A(TOALL)
SOPTCONN DC A(RTSHORT)
UINFCONN DC A(USINFO)
RECNCONN DC A(BLANK8)
SETNCONN DC A(NIL)
RLMNCONN DC A(NIL)
ITMNCONN DC A(NIL)
RECACONN DC A(NIL)
SPE1CONN DC A(RETSET)
SPE2CONN DC A(O)
SPE3CONN DC A(O)

CALL DML DSCPA

U930-J-Z125-14-76 265

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

DSCPA

The DSCPA macro supports the user at the CALL DML data interface.

[name] DSCPA [option]

name Assigns a symbolic name to the macro call (optional); this is equated with the start
of the generated constants when DMLPAR is specified for OPTION.

option The following can be specified here (optional):

USERINF
The definition of the user-information area is generated in the current CSECT or
DSECT. This area definition should be aligned on a word boundary.

USERINFDS
The definition of the user-information area is generated as DSECT USERINF.

DMLPAR
The following are generated as symbolically addressable constants in the current
DSECT or CSECT:

– all CALL DML function codes
– all function option parameters of all function codes (except LOOKC)
– the most important secondary option parameters

DMLPARDS
Generates a DSECT DMLPAR with the symbolically addressable constants named
in DMLPAR so that symbolic access to these constants is also possible from other
modules.

A missing OPTION parameter has the same effect as a combination of DSCPA
USERINFDS and DSCPA DMLPAR.

The generated symbolic names and values can be taken from a DSCPA macro
listing or from relevant test calls.

Example

 DSCPA USERINFDS
CDMLCON DSCPA DMLPAR

LOOKC function CALL DML

266 U930-J-Z125-14-76

8.5 LOOKC function

The LOOKC function enables structure information to be interrogated at subschema level.
The following structural information can be obtained:

A classification of the LOOKC functions according to search argument and information
contained in the answer produces the following two function groups:

1. LOOKC for a name (function option: ’...NAM’)

The search argument consists of the full name (length: 30 bytes) and the type (realm,
record etc.) of element. The answer comprises a short reference which identifies the
element internally, the type itself and additional information.

2. LOOKC for a type (function option: ’...RLM’,’...REC’,’...SET’, ’...ITM’,’...KEY’)

The type involved can be a realm, record, set, item or key type. The search argument
is the internal reference (in some cases two or more) and a special description (see
page 268).

Example

The objective is to obtain the key of a set:
Required is the set reference, possibly the record reference and the position within
the record of the item associated with the key.

Information specified Structural information provided on

SET
RECORD
RECORD
ITEM STRUCTURE
RECORD
SET
KEY
ITEM
SET AND ITEM

Owner and member records of the set
Sets in which the record is owner or member
Items in the record
Items in the structure
Areas in which RECORD KEYS of the record can be located
Keys of the set
Items in the key
Keys in which the item is contained
Keys of the sets in which the item is contained

Table 28: Structural information

CALL DML LOOKC function

U930-J-Z125-14-76 267

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

A further distinction between LOOKC functions can be made, depending on whether a
LOOKC call will return a single answer (a LOOKC block) or a result vector whose compo-
nents are individual LOOKC blocks. In the second case, the user specifies a LOOKC
number (2 byte in length, binary coded, between 1 and 255, inclusive) in
special parameter 1 (10th. SPP1) to indicate the maximum number of successive LOOKC
blocks to be located in the record area. The length of a LOOKC block is 56 bytes. Note that
the following condition must be observed:

Length of record area Ï LOOKC number * 56

Simple LOOKC functions

● Function option ’SPC...’ and ’FST...’ (SPECIFIED, FIRST)

The user must initialize the LOOKC block with search arguments according to the rules
of the interface table (for example, the search arguments for optional entry ’SPCNAM’
are name and type, and for optional entry ’FSTNAM’ just type).

● Function option ’NXT...’ (NEXT)

The result of a LOOKC call can serve as input for a further call if the optional entry NEXT
is used. However, the LOOKC block must be protected from being overwritten between
the two calls (where necessary by saving it).

Compound LOOKC functions

● Function option ’ALL...’

A LOOKC block at the start of the record area must be initialized. The answer consists
of the number of LOOKC blocks which can be filled by the system (corresponding to the
subschema data contained in the database). The user can limit the number of LOOKC
blocks for each call by specifying the LOOKC number.

● Function option ’FRT...’ (FROM-TO)

In this case the user has the option of determining the limits of the answer set by initial-
izing two LOOKC blocks. The answer includes all elements of which the value (e.g.
name) is not less than the search argument specified in the first LOOKC block and not
greater than the search argument specified in the second LOOKC block. The LOOKC
blocks which contain the search arguments are overwritten by the answer.

● Function option ’LIS...’ (LIST)

This optional entry corresponds to the ’SPC...’ option except for the fact that the number
of LOOKC blocks specified by the LOOKC number are to be initialized here. The
answers are written back into precisely those blocks in which the search arguments
were previously entered.

LOOKC block CALL DML

268 U930-J-Z125-14-76

● Function option ’OM-NAM’ (OWNER-MEMBER) and secondary option ’SET...’

In the case of this special LOOKC call, a LOOKC block with the desired set reference
is initialized as the search argument. The answer consists of one LOOKC block for the
owner and one for the member of the specified set, i.e. the LOOKC number must have
been initialized with the value 2. In the case of SYSTEM sets or dynamic sets, only the
external name ’SYSTEMËËË(30)’ or ’DYNAMICËËË(30)’ is entered into the LOOKC
block of the owner.

● Secondary option NXA.../...NXA: NEXT PART OF ANSWER

If the result vector of a compound LOOKC function contains more components than are
catered for by the LOOKC number, it is possible to reissue the preceding LOOKC call
with the secondary option NXA... or ...NXA (according to function option) in order to call
the next part of the result vector. This step can be repeated as often as is necessary to
output the whole result vector. Note in this case that no other CALL DML calls may be
executed within this sequence of calls.

8.5.1 The LOOKC block

The interface for the exchange of input/output data during a LOOKC call is known as the
LOOKC block and is an overlay on the record area (RECA). The length of a LOOKC block
is 56 bytes. The LOOKC block contains:

– a general description for all LOOKC calls (length: 38 bytes)
– a special description for individual LOOKC calls (length: 18 bytes)

The values in the “Contents” column of the tables describing the LOOKC block below are
to be interpreted as follows:

– If “(Byte)” is specified, the entire bit pattern (i.e. the value) of the byte in question in the
LOOKC block must be tested for the value specified in the “Contents” column.

– If “(Bit)” is specified, only the bit at the indicated position is relevant within the corre-
sponding byte of the LOOKC block and needs to be tested to check whether or not “it
is set”. For example, if 01 is given in the “Contents” column, the last bit of the corre-
sponding byte must be evaluated; if 08 is given, the 5th. bit (from the left), and so on.

The input data required for the various LOOKC calls and the output data returned are
shown in the overview contained in the section “LOOKC tables” on page 278.

CALL DML LOOKC block

U930-J-Z125-14-76 269

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

General description of all LOOKC calls

Meaning Contents Length Displ. Type

Name of the element 301

1 also applies to (CALL8) variant

0 character

Reference 1 2 30 binary

Reference 2 2 32 binary

Data type
– no type specified
– realm
– record type
– set
– item
– key

(Byte)
00
01
02
03
04
05

1 34 binary

Name ambiguity
– name unique
– name not unique

(Bit)
00
40

1 35 binary

Result
– o.k.
– not found
– no further element found

(Bit)
 00

01/02/08
 04

1 36 binary

Spare 1 37

Table 29: General description in the LOOKC block

LOOKC block CALL DML

270 U930-J-Z125-14-76

Special description

The 18 bytes in the special description are formatted differently, depending on whether
information is entered for a realm, a record, a set, an item or a key.

Due to compatibility reasons, a separate short and long variant of the following areas are
present in the special description of the LOOKC block:

● The areas “short/long entry for position in record area (displacement within the
COBOL-BIB)” in the special description of a record type (see page 271).

UDS/SQL stores the “displacement within the COBOL-BIB“ information as follows:

– If the displacement Î 216-1, UDS/SQL stores the displacement in both the short and
the long areas.

– If the displacement Ï 216, UDS/SQL stores the displacement in the long area and
enters the value X‘FFFF‘ (an invalid value for displacement) in the short area.

● The (short/long) areas for record references and (short/long) areas for set references
in the special descriptions of a set (see page 272), item (see page 273) and key (see
page 274).

The following is generally applicable in the context of filling areas for record or set
references:

– For input:
A record reference number or set number Î 254 may be optionally specified in the
relevant short or long area. If you specify the number in the short area, the content
of the long area is not significant. If you specify a binary 0 in the short area,
UDS/SQL will expect the number in the long area.
A record reference number or set number > 254 must be specified in the relevant
long area, and the corresponding short area must be assigned the (invalid) value
X‘00‘.

– For output:
A record reference number or set number Î 254 is stored by UDS/SQL in both the
short and the long areas.
A record reference number or set number > 254 is stored by UDS/SQL in the
relevant long area, and the value X‘00‘ (for an invalid record reference/set number)
is entered in the corresponding short area.

CALL DML LOOKC block

U930-J-Z125-14-76 271

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Special description of a realm in the LOOKC block

Special description of a record type in the LOOKC block

Meaning Contents Length Displ. Type

Filler 4 0 binary

Realm status
– not temporary

– temporary

(Bit)
not equal

80
80

1 4 binary

Spare 13 5

Table 30: Special description of a realm in the LOOKC block

Meaning Contents Length Displ. Type

Long entry for position in record area
(displacement within the COBOL BIB)

4 0 binary

Length of a record type 2 4 binary

LOCATION MODE
– DIRECT
– CALC DUPLICATES
– CALC NO DUPLICATES
– no LOCATION MODE

(Byte)
00
01
02
03

1 6 binary

Details1

– rec. type, compressed
– record type with SEARCH key
– record type in different realms

1 Combinations are possible

(Bit)
80
20
10

1 7 binary

Short entry for position in record area
(displacement within the COBOL BIB)

2 8 binary

Spare 8 10

Table 31: Special description of a record type in the LOOKC block

LOOKC block CALL DML

272 U930-J-Z125-14-76

Special description of a set in the LOOKC block

Meaning Contents Length Displ. Type

Owner record reference (long) 2 0 binary

Member record reference (long) 2 2 binary

Owner record reference (short) 1 4 binary

Member record reference (short) 1 5 binary

Set order
– SORTED
– FIRST
– LAST
– NEXT
– PRIOR
– SORTED INDEXED

(Byte)
00
11
22
44
78
80

1 6 binary

CONNECT type
– AUTOMATIC
– MANUAL

(Byte)
00
01

1 7 binary

DISCONNECT type
– MANDATORY
– OPTIONAL

(Byte)
00
01

1 8 binary

SET SELECTION
– THRU OWNER
– THRU CURRENT

(Byte)
00
01

1 9 binary

Special types1

– singular set
– DYNAMIC SET
– implicit set

1 Combinations are possible.
If the corresponding bits are not specified: no singular set / DYNAMIC SET / implicit set

(Bit)
80
40
20

1 10 binary

Spare 7 11

Table 32: Special description of a set in the LOOKC block

CALL DML LOOKC block

U930-J-Z125-14-76 273

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Special description of an item in the LOOKC block

Meaning Contents Length Displ. Type

Filler 2 0 binary

Connection to key item set:
set reference (long) to the set belonging to the key
referenced with displacement 14

2 2 binary

Level number 1 4 binary

Next level number 1 5 binary

Item type
– database key
– packed decimal
– binary
– character
– signed unpacked decimal
– unsigned unpacked decimal
– group item
– national
– national data group

(Byte)
00
01
02
04
05
06
0F
14
1F

1 6 binary

Scale modifier
Bit 0 = sign
Bit 1-7 = value

1 7 binary

Item length 2 8 binary

Number of occurrences 2 10 binary

LOCATION MODE IS CALC indicator
– simple key
– compound key
– no key

(Bit)
40
20
00

1 12 binary

SEARCH KEY...USING CALC /SEARCH KEY...USING
INDEX- / sort key indicator1
– no key
– simple key
– compound key
– item used in more than one key
– repeating group item
– item is a group item that forms a compound key

(Bit)

80
40
20
10

01
08

1 13 binary

Table 33: Special description of an item in the LOOKC block (part 1 of 2)

LOOKC block CALL DML

274 U930-J-Z125-14-76

Special description of a key in the LOOKC block

Connection to key item set:
– reference to the first key in which the item is a key

item
– set reference (short) to the set belonging to this

key

2

1

14

16

binary

binary

Additional information
– number of digits is even

(only relevant for item type = packed decimal)

(Bit)
80

1 17 binary

1 Combinations are possible

Meaning Contents Length Displ. Type

Record reference (long) 2 0 binary

Filler 2 2 binary

Key length 1 4 binary

Details of key1

– DUPLICATES NOT ALLOWED
– DUPLICATES ALLOWED
– DESCENDING
– ASCENDING
– Index table for key
– implicit set
– explicit se

1 Combinations are possible

(Bit)
80
00
40
00
20
10
00

1 5 binary

Number of items which make up the key 1 6 binary

Record reference (short) 1 7 binary

Position of 1st. key item in record 2 8 binary

Item length 2 10 binary

Item type (cf. item description) 1 12 binary

Spare 5 13 binary

Table 34: Special description of a key in the LOOKC block

Meaning Contents Length Displ. Type

Table 33: Special description of an item in the LOOKC block (part 2 of 2)

CALL DML Description of LOOKC parameters

U930-J-Z125-14-76 275

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

8.5.2 Description of LOOKC parameters

All LOOKC functions use the following CALL DML parameters:

Function code: LOOKC

as well as the CALL DML parameters

– Function option
– Secondary option
– Record area
– Special parameter 1
– Special parameter 2

The individual parameters are explained in detail in the overview (LOOKC tables) starting
on page 278.

Function option for LOOKC calls

The function option is always 6 characters in length and consists of a combination of the
following symbols:

ALL All elements are to be processed

FRT From-to: sequence of elements

FST First element

ITM Item

KEY Key

LIS List of elements

MEM Member records

NAM Element name is specified or requested

NXT Next element

OM- Owner/Member record type

OWN Owner record type

REC Record type

RLM Realm

SET Set

SPC Specified element

Description of LOOKC parameters CALL DML

276 U930-J-Z125-14-76

Secondary options for LOOKC calls

● Fixed-format secondary options

The fixed-format representation of the secondary option is always 6 characters in length
for the LOOKC function and consists of a combination of the symbols:

AGG Vector or group item (aggregate)
FST First
ITM Item
KEY Key
MEM Member
NXA Next part of answer
OWN Owner
REC Record type
SET Set
SPC Specified
ËËË Blanks

● Free-format secondary options

The LOOKC function also allows a free-format representation of the secondary option.
For the rules, refer to page 203; the symbols are the same as for the fixed-format
secondary option for LOOKC.

Examples

() or (ËËË) is the same as ËËËËËË

(SET,ITM) is the same as ITMSET

The permitted combinations of function options and secondary options and their meanings
can be found in the overview on page 278.

CALL DML Description of LOOKC parameters

U930-J-Z125-14-76 277

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Special parameter 2 (SPP2) for LOOKC calls

The LOOKC function option ALLRLM shows all realms in which the records of a particular
record type can be stored. The record reference number (REC-REF) of the desired record
type is passed in special parameter 2 (SPP2), which has the following format for LOOKC
calls:

The record reference number must be entered in SPP2 as follows:

– A record reference number > 255 must always be entered in bytes 3...4 of SPP2, and
the invalid value X‘00‘ must be entered in byte 1 of SPP2 in this case.

– A record reference number Î 255 may be optionally entered in byte 1 or in bytes 3...4
of SPP2.
If you enter a record reference number Î 255 in byte 1, the contents of bytes 3...4 are
not relevant.
If you enter a record reference number Î 255 in bytes 3...4, you must enter the invalid
value X‘00‘ as the record reference number in byte 1.

Byte 1 Byte 2 Bytes 3...4

Record reference no. (REC-REF) Î 255 Filler Record reference no. (REC-REF) Î 215-1

Table 35: Transfer format for special parameter 2

LOOKC tables CALL DML

278 U930-J-Z125-14-76

8.5.3 LOOKC tables

The following abbreviations are used in the overview:

I Input

O Output

I,O Output different from input

AR Realm reference (binary; length: 1 byte)

RR Record reference (binary; the length of a short reference is 1 byte, the length of a
long reference is 2 bytes)

SR Set reference (binary; the length of a short reference is 1 byte, the length of a long
reference is 2 bytes)

IR Position of item within record (binary; length: 2 bytes)

K Key reference (binary; length: 2 bytes)

The individual LOOKC tables are illustrated in the following on facing pages.

CALL DML LOOKC name/realm

U930-J-Z125-14-76 279

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Meaning of the function Function
option

Secondary
option

Record area (LOOKC block)

General description (38 bytes)

external
name

reference 1 reference 2

character format-free character binary binary

6 30 2 2

LOOKC for a name

specified name (of the specified type) SPCNAM () I I,O 1) 3) O 2)

first name FSTNAM () O O 1) O 2)

next name NXTNAM () I,O O 1) O 2)

all names, starting with the one specified ALLNAM (SPC) I,O I,O 1) 3) O 2)

all names, starting with the first one ALLNAM (FST) O O 1) O 2)

all names; next part of answer ALLNAM (NXA) O O 1) O 2)

owner/member record names of a set OM-NAM (SET) O I(SR)O(RR) O (Null)

FROM-TO names FRTNAM () I,O I,O 1) 3) O 2)

FROM-TO names; next part of answer FRTNAM (NXA) O O 1) O 2)

list of specified names LISNAM () I I,O 1) 3) O 2)

LOOKC for a realm

list of all realms with the specified record type ALLRLM (REC) O O (AR)

list of all realms with the specified record type,
next part of answer

ALLRLM (RECNXA) O O (AR)

1) AR in data type = realm
RR in data type = record type
SR in data type = set
RR in data type = item
RR in data type = key

2
)

zero in data type = realm
zero in data type = record type
zero in data type = set
IR in data type = item
IR in data type = key

3) input only for
data type = item

LOOKC name/realm CALL DML

280 U930-J-Z125-14-76

Special
parameter 1

Special
parameter 2Special description

(18 bytes)

data type duplicate
names

result spare number of
LOOKC blocks

record
reference

binary binary binary binary binary binary

1 1 1 1 2 4

I,O O

Only for data type = item or
key;
special item description is
transferred

I,O O

I,O O

I,O O I

I,O O I

O O I

I (=2)

I,O O I

O O I

I,O O I

O O O I I (RR)

O O O I

CALL DML LOOKC record/set

U930-J-Z125-14-76 281

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Meaning of the function Function
option

Second.
option

Record area (LOOKC block)

General description (38 bytes)

external
name

reference 1 reference 2

character format-free character binary binary

6 30 2 2

LOOKC for a record type

specified record types SPCREC () O I (RR)

first record type FSTREC () O O (RR)

next record type NXTREC () O I,O (RR)

owner record type of specified set OWNREC (SET) O O (RR) I (SR)

member record type of specified set MEMREC (SET) O O (RR) I (SR)

list of specified record types LISREC () O I (RR)

LOOKC for a set

specified set SPCSET () O I (SR)

first set FSTSET () O O (SR)

next set NXTSET () O I,O (SR)

first set of owner record type FSTSET (OWNREC) O O (SR) I (RR)

next set of owner record type NXTSET (OWNREC) O I,O (SR) I (RR)

first set of member record type FSTSET (MEMREC) O O (SR) I (RR)

next set of member record type NXTSET (MEMREC) O I,O (SR) I (RR)

all sets in which the specified record type is an
owner

ALLOWN (REC) O O (SR) I (RR)

all sets in which the specified record type is an
owner, next part of answer

ALLOWN (RECNXA) O O (SR)

all sets in which the specified record type is a
member

ALLMEM (REC) O O (SR) I (RR)

all sets in which the specified record type is a
member, next part of answer

ALLMEM (RECNXA) O O (SR)

list of specified sets LISSET () O I (SR)

LOOKC record/set CALL DML

282 U930-J-Z125-14-76

Special
parameter 1

Special
parameter 2Special description

(18 bytes)

data type duplicate
names

result spare number of
LOOKC blocks

record
reference

binary binary binary binary binary binary

1 1 1 1 2 4

O O O

O O O

O O O

O O O

O O O

O O O I

O O

O O

O O

O O

O O

O O

O O

O O I

O O I

O O I

O O I

O O I

CALL DML LOOKC item

U930-J-Z125-14-76 283

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Meaning of the function Function
option

Second.
option

Record area (LOOKC block)

General description (38 bytes)

external
name

reference 1 reference 2

character format-free character binary binary

6 30 2 2

LOOKC for an item

specified item of specified record type SPCITM (REC) O I (RR) I (IR)

first item of specified record type FSTITM (REC) O I (RR) O (IR)

next item of specified record type NXTITM (REC) O I (RR) I,O (IR)

all items of specified record type ALLITM (REC) O I (RR) O (IR)

all items of specified record type in next part of
answer

ALLITM (RECNXA) O O (RR) O (IR)

all items of specified combination ALLITM (AGG) O I (RR) I,O (IR)

all items of specified combination, next part of
answer

ALLITM (AGGNXA) O O (RR) O (IR)

FROM-TO items FRTITM () O I (RR) I,O (IR)

FROM-TO items, next part of answer FRTITM (NXA) O O (RR) O (IR)

list of specified items LISITM () O I (RR) I (IR)

LOOKC item CALL DML

284 U930-J-Z125-14-76

Special
parameter 1

Special
parameter 2Special description (18 bytes)

data
types

duplicate
names

result spare filler level
number

remaining
description

number of
LOOKC
blocks

record
reference

binary binary binary binary binary binary binary binary

1 1 1 1 4 1 13 2 4

O O O O I,O1

1 If the specified level number (input) is not present, UDS/SQL returns the next level number found as the output.

O

O O O O O O

O O O O I,O O

O O O O O O I

O O O O O O I

O O O O I,O O I

O O O O O O I

O O O O I,O O I

O O O O O O I

O O O O I,O O I

CALL DML LOOKC key

U930-J-Z125-14-76 285

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Meaning of the function Function
option

Secondary
option

Record area (LOOKC block)

General description (38 bytes)

external
name

reference 1 reference 2

character format-free character binary binary

6 30 2 2

LOOKC for a key

first key of specified set FSTKEY (SET) I (SR) O (K)

next key of specified set NXTKEY (SET) I (SR) I,O (K)

first key of specified set which contains specified
item

FSTKEY (ITMSET) I (SR) O (K)

next key of item in specified set NXTKEY (ITMSET) I (SR) I,O (K)

first key of item FSTKEY (ITM) O (SR) O (K)

next key of item NXTKEY (ITM) I,O (SR) I,O (K)

all keys of specified set ALLKEY (SET) I (SR) O (K)

all keys of specified set; next part of answer ALLKEY (SETNXA) O (SR) O (K)

all keys of specified item ALLKEY (ITM) O (K)

all keys of specified item in specified set ALLKEY (ITMSET) I (SR) O (K)

all keys of specified item (in specified set); next
part of answer

ALLKEY (ITMNXA) O (SR) O (K)

LOOKC key CALL DML

286 U930-J-Z125-14-76

Special
para-
meter 1

Special
para-
meter 2

Special description (18 bytes)

data
type

dupli-
cate
names

result spare record
reference
(long)

cf. key
descrip-
tion

record
refe-
rence
(short)

item refe-
rence

cf. key
descrip-
tion

number
of
LOOKC
blocks

record
referenc
e

binary binary binary binary binary binary binary binary binary

1 1 1 1 2 5 1 2 8 2 4

O O O (RR) O O (RR) O (IR) O

O O O (RR) O O (RR) O (IR) O

O O I (RR) O I (RR) I (IR) O

O O I (RR) O I (RR) I (IR) O

O O I (RR) O I (RR) I (IR) O

O O I (RR) O I (RR) I (IR) O

O O O (RR) O O (RR) O (IR) O I

O O O (RR) O O (RR) O (IR) O I

O O I (RR) O I (RR) I (IR) O I

O O I (RR) O I (RR) I (IR) O I

O O O (RR) O O (RR) O (IR) O I

CALL DML LOOKC item of key

U930-J-Z125-14-76 287

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Meaning of the function Function
option

Second.
option

Record area (LOOKC block)

General description (38 bytes)

external
name

reference 1 reference 2

character format-free character binary binary

6 30 2 2

LOOKC for items of a key

first item of specified key FSTITM (KEY) O I (SR), O (RR) I (K), O (IR)

next item of key NXTITM (KEY) O I (SR) I (K), O (IR)

all items of key ALLITM (KEY) O I (SR) I (K), O (IR)

all items of specified key; next part of answer ALLITM (KEYNXA) O O (SR) O (IR)

LOOKC item of key CALL DML

288 U930-J-Z125-14-76

Special
para-
meter 1

Special
para-
meter 2

Special description (18 bytes) in the

Input Output

data
type

dupli-
cate
names

result spare long
rec-
ref

cf. key
descrip-
tion

short
rec-
ref

item
refe-
rence

cf. key
descrip-
tion

cf. item
descrip-
tion

number
of
LOOKC
blocks

record
refe-
rence

binary binary binary binary binary binary binary binary binary

1 1 1 1 2 5 1 2 8 18 2 4

O O O

O O I (RR) I (RR) I (IR) O

O O O I

O O O I

CALL DML Programming examples

U930-J-Z125-14-76 289

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

8.6 Examples using different programming languages

DMLTEST:

The following examples have been generated with the DMLTEST program (see
page 301).

 (IN): * *******LOOKC FOR NAMES ****************
 ***(IN): SET LOOKC,ALLNAM,FST
 ***(IN): DEF RECORD,DATTYP,D=34,L=1
 (IN): * ****14 LOOKC-BLOCKS************
 ***(IN): SET SPP1=X'0010'
 (IN): * ***** NO ENTRY FOR DATA TYPE **********
 ***(IN): M DATTYP,X'00'
 ***(IN): SH PARAM
 (OUT): DB-PARAMS (FIRST 8B)
 (OUT): FCOD :LOOKC .. FOPT :ALLNAM.. SOPT :FST UINF : RECN :
 (OUT): SETN : RLMN : ITMN : RECA : SPP1 :..
 (OUT): SPP2 :SALES SPP3 : SUBS :ADMIN
 ***(IN): EX
 (OUT): RECORD - AREA :
 (OUT): CST-ORD-PLACED CURR-STOCK
 ***(IN): SH RECORD,L=840
 (OUT): RECORD - AREA :
 (OUT): CST-ORD-PLACED CURR-STOCK
 (OUT): STATISTICS ...+........
 (OUT): NOT-AVAILABLE-CODE QUANTITY
 (OUT): COL-NO
 (OUT): .. COL-NAME MAT-CODE
 (OUT): MAT-NAME ..
 (OUT): SUPPL-NO
 (OUT): SUPPL-NAME SUPPL-PCODE
 (OUT): SUPPL-TOWN
 (OUT): SUPPL-STREET SUPPL-STREET-NO
 (OUT):
 ***(IN): SH RECORD,L=840,FORM=X
 (OUT): RECORD - AREA :
 (OUT): C1C2C7C5C7C5C2C5D5C560C2C5E2E3404040404040404040404040404040000F0000030000404040
 (OUT): 40404040404040404040404040404040C1D2E360C2C5E2E3C1D5C440404040404040404040404040
 (OUT): DMLTEST: SCREEN OVERFLOW. STATUS IS BREAK.
 ***(IN): C
 (OUT): 4040404040400009004804000040404040400202010000060000008000000040E2E3C1E3C9E2E3C9
 (OUT): D2400009004E0200000000000000404040404040
 (OUT): 4040404040404040D2C5D5D5E960D5C9C3C8E360D3C9C5C6C5D9C2C1D94040404040404040400009
 (OUT): 0056020000000A0C00004040404040404040404040404040D4C5D5C7C54040404040404040404040
 (OUT): 4040404040404040404040404040000A000002000000000000004040404040404040404040404040
 (OUT): C6C1D9C260D5D940000B0000020000001120
 (OUT): 00004040404040404040404040404040C6C1D9C260C2C5E940404040404040404040404040404040
 (OUT): 404040404040000B000202000000102000004040404040404040404040404040D4C1E360C1C2D240
 (OUT): 40000C00000200000012210000404040404040
 (OUT): 4040404040404040D4C1E360C2C5E940000C
 (OUT): 000102000000132100004040404040404040404040404040D3C9C5C6C5D960D5D940404040404040
 (OUT): 4040404040404040404040404040000D000002000000080B00004040404040404040404040404040
 (OUT): D3C9C5C6C5D960D5C1D4C540404040404040404040404040404040404040000D000502000000080B
 (OUT): 00004040404040404040404040404040D3C9C5C6C5D960D7D3E94040404040404040404040404040
 (OUT): 404040404040000D002302000000000000004040404040404040404040404040D3C9C5C6C5D960E2
 (OUT): E3C1C4E3404040404040404040404040404040404040000D00270200000000000000404040404040
 (OUT): 4040404040404040D3C9C5C6C5D960E2E3D9C1E2E2C540404040404040404040404040404040000D
 (OUT): 004502000000000000004040404040404040404040404040D3C9C5C6C5D960C8C1E4E2D5D9404040
 (OUT): 4040404040404040404040404040000D006302000000000000004040404040404040404040404040

Programming examples CALL DML

290 U930-J-Z125-14-76

 ***(IN): S RECA=C' '
 (IN): * ****** ALL REALMS **************
 ***(IN): M DATTYP,X'01'
 ***(IN): SH PARAM
 (OUT): DB-PARAMS (FIRST 8B)
 (OUT): FCOD :LOOKC .. FOPT :ALLNAM.. SOPT :FST UINF : RECN :
 (OUT): DMLTEST: SCREEN OVERFLOW. STATUS IS BREAK.
 ***(IN): C
 (OUT): SETN : RLMN : ITMN : RECA : SPP1 :..
 (OUT): SPP2 :SALES SPP3 : SUBS :ADMIN
 ***(IN): EX
 (OUT): RECORD - AREA :
 (OUT): ARTICLE-RLM CUSTOMER-ORDER-RLM
 ***(IN): SH RECORD,L=840
 (OUT): RECORD - AREA :
 (OUT): ARTICLE-RLM CUSTOMER-ORDER-RLM
 (OUT): PURCHASE-ORDER-RLM
 (OUT): HOUSEHOLD GOODS CLOTHING
 (OUT): FOOD
 (OUT): STATIONERY LEISURE
 (OUT): SPORTS-ARTICLES ..
 (OUT): SEARCH-RLM
 (OUT):
 (OUT):
 (OUT):
 (OUT):
 ***(IN): SH RECORD,L=840,FORM=X
 (OUT): RECORD - AREA :
 (OUT): C1D9E3C9D2C5D3D9D3D440000B0000010000404040
 (OUT): 40404040404040404040404040404040C1E4C6E3D9C1C7E2D9D3D440404040404040404040404040
 (OUT): 4040404040400003000001000040404040404040404040404040404040404040C2C5E2E3C5D3D3D9
 (OUT): D3D440000400000100004040404040404040404040
 (OUT): DMLTEST: SCREEN OVERFLOW. STATUS IS BREAK.
 ***(IN): C
 (OUT): 4040404040404040C8C1E4E2C8C1D3E3400006
 (OUT): 000001000040404040404040404040404040404040404040D2D3C5C9C4E4D5C74040404040404040
 (OUT): 40404040404040404040404040400005000001000040404040404040404040404040404040404040
 (OUT): D3C5C2C5D5E2D4C9E3E3C5D340404040404040404040404040404040404000080000010000404040
 (OUT): 40404040404040404040404040404040E2C3C8D9C5C9C2E6C1D9C5D5404040404040404040404040
 (OUT): 404040404040000A000001000040404040404040404040404040404040404040E2D7C9C5D3C560C8
 (OUT): D6C2C2E8404040404040404040404040404040404040000900000100004040404040404040404040
 (OUT): 4040404040404040E2D7D6D9E3400007
 (OUT): 000001000040404040404040404040404040404040404040E2E4C3C8D9D3D4404040404040404040
 (OUT): 4040404040404040404040404040000C000001000040404040404040404040404040404040404040
 (OUT): 40
 (OUT): 40
 (OUT): 40
 (OUT): 40
 (OUT): 40
 (OUT): 40
 (OUT): 40

CALL DML COBOL example

U930-J-Z125-14-76 291

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

The following programming examples have been generated using COBOL, FORTRAN, and
Assembler.

COBOL:

The COBOL program is based on the CALL-DML variant (CALL30). In a loop, the program
executes a FTCH7A statement with search condition. Record name, item name and value
of the item are queried on the terminal. The length of the value is set at 10 characters. The
first 80 bytes of the record found are displayed on the screen.

IDENTIFICATION DIVISION.
 PROGRAM-ID. CALLDML.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 TERMINAL IS T.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 FCOD PIC X(6).
 01 FOPT PIC X(6).
 01 SOPT PIC X(12).
 01 UINF.
 02 SYSTEM-COMMUNICATION-LOCATIONS.
 03 DATABASE-REALM-NAME PIC X(30).
 03 DATABASE-RECORD-NAME PIC X(30).
 03 DATABASE-SET-NAME PIC X(30).
 03 DATABASE-STATUS PIC X(5).
 *
 02 FILLER PIC X.
 02 UINF-DBKEY PIC X(4).
 02 UINF-TALLY PIC 9(8) COMP.
 02 FILLER PIC X(7).
 02 UINF-DBKZ PIC X.
 02 FILLER PIC X(8).
 02 UINF-END PIC X(6).
 *
 01 RECN PIC X(30).
 01 SETN PIC X(30).
 01 RLMN PIC X(30).
 01 ITMN PIC X(53).
 01 RECA.
 02 RECA1 PIC X(80).
 02 RECA2 PIC X(2000).
 01 SPP1 PIC X(30).
 *
 01 SEARCH EXPRESSION.
 02 SX-BEGIN PIC X(2) VALUE "0 ".

COBOL example CALL DML

292 U930-J-Z125-14-76

 02 SX-NAME PIC X(30).
 02 SX-REL PIC X(5) VALUE " EQU ".
 02 SX-VALUE PIC X(10).
 02 SX-END PIC X(6) VALUE " 0 END".
 *
 PROCEDURE DIVISION.
 * INITIALIZE UINF.
 MOVE "UINF1*" TO UINF-END.
 *

 * OPEN TRANSACTION:
 MOVE "READYC" TO FCOD.
 MOVE "ALLRTR" TO FOPT.
 MOVE "SUBSCH" TO SPP1.
 PERFORM DMLCALL.
 *
 FETCH-LOOP.
 *
 * FTCH7A STATEMENT:
 MOVE "FTCH7A" TO FCOD.
 MOVE "RECSEX" TO FOPT.
 MOVE SPACES TO SOPT.
 DISPLAY "PLEASE ENTER RECORD NAME OR STOP" UPON T.
 ACCEPT RECN FROM T.
 IF RECN = "STOP" THEN GO TO FINISH.
 *
 DISPLAY "PLEASE ENTER ITEM NAME" UPON T.
 ACCEPT SX-NAME FROM T.
 DISPLAY "PLEASE ENTER ITEM VALUE" UPON T.
 ACCEPT SX-VALUE FROM T.
 MOVE SEARCH EXPRESSION TO ITMN.
 PERFORM DMLCALL.
 DISPLAY RECA1 UPON T.
 GO TO FETCH-LOOP.
 *
 FINISH.
 * CLOSE TRANSACTION:
 MOVE "FINISC" TO FCOD.
 MOVE "ALLRLM" TO FOPT.
 PERFORM DMLCALL.
 STOP RUN.
 *
 DMLCALL.
 * EXECUTE CALL DML STATEMENT:
 CALL "DML" USING FCOD FOPT SOPT UINF RECN SETN RLMN
 ITMN RECA SPP1.
 IF DATABASE-STATUS NOT EQUAL "00000" THEN
 DISPLAY "DATABASE-STATUS: " DATABASE-STATUS

CALL DML COBOL example

U930-J-Z125-14-76 293

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

 UPON T.
 *
 DSCEXT.
 * CALL DML ERROR EXIT DSCEXT:
 ENTRY "DSCEXT".
 DISPLAY "BRANCH TO DSCEXT IN COBOL WAS EFFECTED"
 UPON T.
 STOP RUN.
 *

The following programming examples are based on the (CALL8) variant. They are identical
in function; the 12 CALL DML parameters can be entered interactively and thus it is possible
to call most of the DML functions.
Input is unformatted and may be up to 80 characters in length. Each parameter is repre-
sented by a two-character symbol, e.g. FC for FCOD, which is followed by a character string
enclosed in apostrophes.

Example

FC'FTCH4'FO'RECFST'RN'REC1'

Parameters FCOD, FOPT and RECN are either filled with the desired strings or with the
appropriate number of blanks.

Input of EX or EË causes a CALL DML statement to be called.

When DP (Display Parameters) is specified, the first 8 bytes of each parameter are
displayed on the screen; DR (Display Record) causes the first 40 bytes of the record area
to be displayed. Programs are terminated by inputting ST or STOP.

In FORTRAN and Assembler the parameter codes are:

1. FC (FCOD) 6. SN (SETN)
2. FO (FOPT) 7. RL (RLMN)
3. SO (SOPT) 8. IT (ITMN)
4. not applicable 9. RA (RECA)
5. RN (RECN) 10. S1 (SPP1)

Furthermore the following code exists:

SU Subschema

The DSCEXT entry is not covered by these examples; DSCEXT requires a special module
to be linked into the programs (see the section “CALL DML error handling routine DSCEXT”
on page 124).

FORTRAN example CALL DML

294 U930-J-Z125-14-76

FORTRAN:

 PROGRAM FORDML
 CHARACTER * 80 LINE
 CHARACTER * 80 STRING
 CHARACTER * 2 CMD
 INTEGER * 2 POS,POSS
C
 CHARACTER * 6 FCOD /'READYC'/
 CHARACTER * 6 FOPT /'ALLUPD'/
 CHARACTER * 12 SOPT /' '/
 CHARACTER * 8 RECN
 CHARACTER * 80 SETN,RLMN
 CHARACTER *800 ITMN,RECA
 CHARACTER * 30 SPP1 /'SUBTI1'/
C
 CHARACTER *126 UINF
 CHARACTER * 30 REALMNAME,RECNAME,SETNAME
 CHARACTER * 5 DBSTATUS /'00000'/,
 F FIL1 *1,
 F DBKEY *4,
 F TALLY *4,
 F RUNID *2,
 F RUNREF *2,
 F FIL2 *3,
 F DBREF *1,
 F SSITABADR *4,
 F FIL3 *4,
 F USINF *6 /'USINF*'/
 INTEGER * 4 ZAEHLER (ZAEHLER=counter)
 COMMON /UINF/ REALMNAME,RECNAME,SETNAME,DBSTATUS,
 F FIL1,DBKEY,TALLY,RUNID,RUNREF,FIL2,
 F DBREF,SSITABADR,FIL3,USINF
 EQUIVALENCE (UINF,REALMNAME),
 F (TALLY,ZAEHLER)

20 FORMAT(A80)
22 FORMAT(' ',A80)

C ---------- READ INPUT ----------------------------
30 READ (1,20) LINE
 POS = 1
C
C ---------- GET NEW COMMAND -----------------------
80 DO 100, POS = POS,80,1
 IF (LINE(POS:POS).NE.' ') GOTO 104
100 CONTINUE
 IF (POS.GE.80) GO TO 30

CALL DML FORTRAN example

U930-J-Z125-14-76 295

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

104 CONTINUE
 CMD = LINE(POS:POS+1)
 DO 108, POS = POS+2,80,1
 IF (LINE(POS:POS).NE.' ') GOTO 112
108 CONTINUE
112 IF (LINE(POS:POS).NE.'''') GOTO 160
C ---------- GET NEW STRING -------------------------
 DO 116, POSS = 1,80,1
 STRING(POSS:POSS) = ' '
116 CONTINUE
 POSS = 0
 DO 120, POS=POS+1,80,1
 IF (LINE(POS:POS).EQ.'''') GOTO 124
 POSS = POSS+1
 STRING(POSS:POSS) = LINE(POS:POS)
120 CONTINUE

124 POS = POS+1
C
160 CONTINUE
C ---------- CHECK AND EXECUTE COMMAND -------------
 IF(CMD.EQ.'FC') GOTO 200
 IF(CMD.EQ.'FO') GOTO 204
 IF(CMD.EQ.'SO') GOTO 208
 IF(CMD.EQ.'RN') GOTO 212
 IF(CMD.EQ.'SN') GOTO 216
 IF(CMD.EQ.'RL') GOTO 220
 IF(CMD.EQ.'IT') GOTO 224
 IF(CMD.EQ.'RA') GOTO 228
 IF(CMD.EQ.'S1') GOTO 232
 IF(CMD.EQ.'SU') GOTO 232
 IF(CMD.EQ.'E ') GOTO 260
 IF(CMD.EQ.'EX') GOTO 260
 IF(CMD.EQ.'DP') GOTO 280
 IF(CMD.EQ.'DR') GOTO 288
 IF(CMD.EQ.'ST') GOTO 304
 IF(CMD.EQ.'FF') GOTO 312
C
180 FORMAT(' STATEMENT UNKNOWN: ',A2)
 WRITE(2,180) CMD
 GOTO 300
C
200 FCOD = STRING(1: 6)
 GOTO 300
204 FOPT = STRING(1: 6)
 GOTO 300
208 SOPT = STRING(1:12)
 GOTO 300

FORTRAN example CALL DML

296 U930-J-Z125-14-76

212 RECN = STRING(1: 8)
 GOTO 300
216 SETN = STRING(1:80)
 GOTO 300
220 RLMN = STRING(1:80)
 GOTO 300
224 ITMN = STRING(1:80)
 GOTO 300
228 RECA = STRING(1:80)
 GOTO 300
232 SPP1 = STRING(1:30)
 GOTO 300
260 CONTINUE
C ---------- CALL A DML-STATEMENT ------------------
 CALL DML (FCOD,FOPT,SOPT,UINF,RECN,SETN,
 F RLMN,ITMN,RECA,SPP1)

264 FORMAT(' DBSTATUS: ',A5)
 IF (DBSTATUS.NE.'00000') WRITE(2,264) DBSTATUS
 GOTO 300
278 FORMAT (' FCOD:',A6,' FOPT:',A6,' SOPT:',A8,
 F ' RECN:',A8,' SETN:',A8,' RLMN:',A8,
 F ' ITMN:',A8,' RECA:',A8,' SPP1:',A8,
280 WRITE(2,278) FCOD,FOPT,SOPT(1:8),RECN,SETN(1:8),RLMN(1:8),
 F ITMN(1:8),RECA(1:8),SPP1(1:8),SPP2(1:8),
 GOTO 300

288 WRITE(2,22) RECA
C
300 IF (POS.GE.80) GO TO 30
 GOTO 80
304 CONTINUE
 STOP
C
C ---------- PRODUCE A P-ERROR ---------------------
312 POS = POS/(POS-POS)
 GOTO 30
 END

CALL DML Assembler example

U930-J-Z125-14-76 297

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

Assembler:

If users use the Assembler programming language, they must program the CALL DML
parameter list themselves, using A-type constants. The DSCAL, DSCAP, DSCDF and
DSCPA macros can be used for this purpose (see section “CALL DML Assembler macros”
on page 259).

ASSDML START
 BALR 12,0
 USING *,12
 PRINT NOGEN
 SPACE
 MVC UINF+120(6),='USINF*'
 SPACE
READ RDATA LINEL,ERROR,84
 XR 4,4
 LH 4,LINEL
 SH 4,=H'4'
 LA 3,LINE
 LA 4,0(3,4) R4 AT END OF INPUT
 MVI 0(4),' '
NEXT DS 0H
BLANKS DS 0H IGNORE BLANKS
 CR 3,4
 BNL READ
 CLI 0(3),' '
 BNE MOVCMD
 LA 3,1(3)
 B BLANKS
 SPACE
MOVCMD MVC CMD,0(3) GET COMMAND
 LA 3,1(3)
BLANK2 LA 3,1(3) IGNORE BLANKS
 CR 3,4
 BH EXECMD
 CLI 0(3),' '
 BE BLANK2
 CLI 0(3),''''
 BNE EXECMD
MSTRING DS 0H READ A STRING
 MVC STRING,STRING-1
 LA 5,STRING
 LA 3,1(3)
MSTR1 CR 3,4
 BNL EXECMD
 CLI 0(3),''''
 BE MSTREND

Assembler example CALL DML

298 U930-J-Z125-14-76

 MVC 0(1,5),0(3)
 LA 3,1(3)
 LA 5,1(5)
 B MSTR1
MSTREND LA 3,1(3)
 SPACE
EXECMD DS 0H CHECK AND EXECUTE COMMAND
 CLC CMD,='FC'
 BE PAR1
 CLC CMD,='FO'
 BE PAR2
 CLC CMD,='SO'
 BE PAR3
 CLC CMD,='RN'
 BE PAR5
 CLC CMD,='SN'
 BE PAR6
 CLC CMD,='RL'
 BE PAR7
 CLC CMD,='IT'
 BE PAR8
 CLC CMD,='RA'
 BE PAR9
 CLC CMD,='S1'
 BE PAR10
 CLC CMD,='SU'
 BE PAR11
 CLC CMD,='E '
 BE EXDML
 CLC CMD,='EX'
 BE EXDML
 CLC CMD,='DP'
 BE DISPAR
 CLC CMD,='DR'
 BE DISREC
 CLC CMD,='ST'
 BE STOP
 WROUT UNKNOWN,ERROR MESSAGE IF COMMAND IS WRONG
 B NEXT
 SPACE
PAR1 MVC FCOD,STRING
 B NEXT
PAR2 MVC FOPT,STRING
 B NEXT
PAR3 MVC SOPT,STRING
 B NEXT
PAR5 MVC RECN,STRING
 B NEXT

CALL DML Assembler example

U930-J-Z125-14-76 299

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.k

0
8

PAR6 MVC SETN,STRING
 B NEXT
PAR7 MVC RLMN,STRING
 B NEXT
PAR8 MVC ITMN,STRING
 B NEXT
PAR9 MVC RECA(80),STRING
 B NEXT
PAR10 MVC SPP1,STRING
 B NEXT
EXDML DS 0H CALL A DML-STATEMENT
 DSCAP PARAM=PARADR
 SPACE
 CLC DBSTATUS(5),='00000'
 BE NEXT
 WROUT MESSTAL,ERROR
 SPACE
 B NEXT
DISPAR DS 0H
 MVC POUT1,FCOD
 MVC POUT2,FOPT
 MVC POUT3,SOPT
 MVC POUT5,RECN
 MVC POUT6,SETN
 MVC POUT7,RLMN
 MVC POUT8,ITMN
 MVC POUT9,RECA
 MVC POUT10,SPP1
 WROUT PAROUT,ERROR
 B NEXT
DISREC WROUT RECAOUT,ERROR
 B NEXT
 SPACE
STOP DS 0H
ERROR DS 0H
 TERM
 SPACE
MESSTAL DC X'0018404040'
 DC C'DBSTATUS: '
MESSTA DS CL5
 DC C' '
 DS 0H
LINEL DC C' '
LINE DS CL80
UNKNOWN DC X'0050404040'
 DC C'ANWEISUNG UNBEKANNT : '
CMD DS CL2

Assembler example CALL DML

300 U930-J-Z125-14-76

 DC C' '
STRING DS CL80
 SPACE
PARADR DSCDF FCOD,FOPT,SOPT,UINF,RECN,SETN,RLMN,ITMN,RECA,SPP1, C
 SUFFIX=ADR DEFINITION OF OPERAND LIST
 SPACE
FCOD DC CL6'READYC'
FOPT DC CL6'ALLUPD'
SOPT DC CL20' '
RECN DS CL8
SETN DS CL80
RLMN DS CL80
ITMN DS CL160
RECAOUT DC X'002D404040' WROUT FIRST 40 BYTES OF RECA
RECA DS CL800
SPP1 DS CL30
 SPACE
UINF DS 0F UDS USER INFORMATION AREA
 DSCPA USERINF
DBSTATUS EQU USREDMCO DEFINED IN MACRO DSCPA
 SPACE
PAROUT DC Y(PAROUTEN-PAROUT)
 DC X'404040'
 DC C' FCOD:'
POUT1 DC C' '
 DC C' FOPT:'
POUT2 DC C' '
 DC C' SOPT:'
POUT3 DS CL8
 DC C' RECN:'
POUT5 DS CL8
 DC C' SETN:'
POUT6 DS CL8
 DC C' RLMN:'
POUT7 DS CL8
 DC C' ITMN:'
POUT8 DS CL8
 DC C' RECA:'
POUT9 DS CL8
 DC C' SPP1:'
POUT10 DS CL8
PAROUTEN EQU *
 LTORG
 DS 0F
 DC C'**** END OF ASSDML ****'
 END

U930-J-Z125-14-76 301

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

9 Testing DML functions using DMLTEST

The DMLTEST program enables the user to

– test individual DML functions interactively

– run test procedures

– access any database configuration

– interoperate with KDBS.

The following chapter comprises

– an introduction

– the commands of the DMLTEST program

– DML statements under DMLTEST

– DMLTEST execution

– error messages

Introduction DMLTEST

302 U930-J-Z125-14-76

9.1 Introduction

The DMLTEST program offers the following options:

– behavior in compliance with environment

– mostly unformatted input

– for CALL interfaces, the possibility to explicitly address each byte of the CALL
parameter list individually

– independence from the processed databases

– independence from UDS variants. All UDS-specific components are dynamically
loaded. Link-editing is not required.

– storing of items with symbolic names

– a number of convenient commands for the output of results and for execution control

– processing of predefined command sequences (either defined temporarily or stored in
system files)

– any number of user connections

– the SYSTEM command (interrupt program and switch to system mode)

– the TRACE command (TRACE of DMLTEST commands)

– DMLTEST supports the CALL8 as well as the CALL30 interface of CALL DML

– connection to EDT

– DMLTEST is XS-compatible

Standard functions

Unless specified otherwise by the user, the program runs with the linked-in DBH and
COBOL DML with the CALL8 interface.

Internally, DMLTEST uses the CALL DML interface. The scope of DML functions corre-
sponds to that of CALL DML (see the section “Special features of CALL DML” on page 92).

DMLTEST Introduction

U930-J-Z125-14-76 303

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

SYSDTA assignment

If SYSDTA has been assigned to a terminal, DML assumes that the user wishes to work
interactively. He or she then has the option of responding to interrupts directly.

If SYSDTA has been assigned to a file, DMLTEST assumes that the user does not want to
work interactively, i.e. would prefer automatic operation (procedure or batch job). No direct
user responses to interrupts are possible in this case. Automatic processing is continued
until one of the following events is detected:

– a HALT command

– EOF

– an error occurs

– SYSDTA is assigned to the terminal.

If an error occurs, DMLTEST will issue a message and, if a call to the UDS/SQL DBH has
already occurred, will generate the language-specific statement FINISH WITH CANCEL
and then terminate.

Introduction DMLTEST

304 U930-J-Z125-14-76

Command sequence for starting DMLTEST

The DMLTEST program is a CALL DML application that works together with either the
linked-in DBH (default) or the independent DBH (see the DMLTEST command DBH on
page 316). DMLTEST is started with the START-UDS-DMLTEST command (alias name:
DMLTEST). Which commands are required before the actual DMLTEST start depends on
the DBH variant. Their sequence is then the same as the command sequence required
before CALL DML application programs are called.

1. Linked-in DBH

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
/SET-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=configuration-name
/ADD-FILE-LINK LINK-NAME=$UDSSSI,FILE-NAME=SSITAB-dynamic-loading-library

[/ADD-FILE-LINK LINK-NAME=PPFILE,FILE-NAME=filename] ——————————————— (1)
/CREATE-FILE FILE-NAME=confname.DBSTAT,SUPPRESS-ERR=*FILE-EXISTING
/CREATE-FILE FILE-NAME=confname.DBSTAT.SAVE,SUPPRESS-ERR=*FILE-EXISTING
/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
/START-UDS-DMLTEST

The command sequence is the same as when starting linked-in CALL DML application
programs (see the "Database Operation" manual, section "Commands for starting
DBH").

(1) The link name PPFILE is used to assign a file from which the DBH is to read in
the load parameters. The load parameters can also be in a PLAM library
element or in a procedure file. The assignment commands required for this can
be found in the “Database Operation” manual, section “Commands for starting
DBH”.

2. Independent DBH

/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL,VERSION=version,SCOPE=*TASK
/SET-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=configuration-name
/ADD-FILE-LINK LINK-NAME=$UDSSSI,FILE-NAME=SSITAB-dynamic-loading-library
/START-UDS-DMLTEST

The command sequence is the same as when starting CALL DML application programs
which use the independent DBH (see section “Starting a COBOL program” on
page 103ff).

DMLTEST Commands

U930-J-Z125-14-76 305

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

9.2 DMLTEST commands

Overview of the DMLTEST commands and general rules

Command Function

ADD name,value[,condition] Add

CONTINUE Resume processing after
interrupt

 lINDEPENDENT⎫
DBH m }
 nINLINKED ~

Select DBH variant
Default value: INLINKED

DECLARE⎫
 } name[,length]
DCL ~

Define an item in the work
area

 lRCODE ⎫
DEFINE mRECORD },name[,distance][,length]
 nparameter~

Define an item in the specified
area

DELETE name[,condition] Delete a procedure or an item

 lRECA ⎫
 oRECORDo
DISPLAY m }[,distance][,length][,form]
 oRCODE o [,condition]
 nTIME ~

Output the specified area or
value to SYSOUT after each
DML statement

 lRECA ⎫
DISPOFF⎫ oRECORDo
 }[m }][,condition]
DOFF ~ oRCODE o
 nTIME ~

Deactivate DISPLAY function

DO name[,repetition][,condition] Start a procedure

EDT Call EDT

END Terminate procedure
definition

ESCAPE[condition] Terminate interrupt, or abort
procedure

EXECUTE[repetition][,condition] Execute DML statement

lHALT⎫
m }[condition]
nSTOP~

Terminate the DMLTEST
program

Table 36: Overview of DMLTEST commands (part 1 of 3)

Overview of the DMLTEST commands DMLTEST

306 U930-J-Z125-14-76

HELP[condition] Request information on
preceding command, or
request preceding DML
statement

 lCDML ⎫
 oCDML30 o
 oCOBOL o
LANGUAGE mCOBOL30}
 oKDBS o
 oKKDS o
 nKLDS ~

Select data manipulation
language

Default value: COBOL

LEAVE[condition] Abort a procedure call

 llCMD ⎫ ⎫
 ooDCL o o
 om }[,name]o
LIST⎫ ooDEF o o
 } mnPROC~ }
LS ~ ocommand-name o
 odeclaration o
 odefinition o
 nprocname ~

Output specified information
to SYSOUT

 lRECORD ⎫
 oRCODE o
MOVE mparameter },value[,distance][,condition]
 odefinition o
 ndeclaration~

Enter values in the specified
areas

NEXT Respond to interrupts, or
abort current command

PERFORM name[,filename][,condition] Call a module

 lRECORD⎫
 oRCODE o
PRINTm }[,distance][,length][,form][,condition]
 oTALLY o
 nTIME ~

Output specified area or value
to SYSLST after each DML
statement

PROC procname Open a procedure definition

PROFF⎫ lRECORD⎫
 }[mRCODE }][,condition]
POFF ~ nTIME ~

Deactivate PRINT function

 lON ⎫
PROT[mOFF}][,condition]
 nOUT~

Activate or deactivate logging
function
Default value: PROT ON

lREMARK⎫
m } literal
n* ~

Insert comment lines

Command Function

Table 36: Overview of DMLTEST commands (part 2 of 3)

DMLTEST Overview of the DMLTEST commands

U930-J-Z125-14-76 307

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

The DMLTEST commands can be

– entered interactively
– stored in temporary DMLTEST procedures
– stored in BS2000 procedure files
– stored in BS2000 Enter files
– stored in BS2000 ISAM system files

The user may enter any number of commands at a time, provided the following input length
is not exceeded:

The contents of 1 screen and 256 bytes in the case of an interrupt

RUN filename[,repetition][,condition] Start a sequence of
commands or statements
stored in an ISAM file.

 ln ⎫
SET[parameter[(m })]=]value,...
 nX'n'~

Enter values in the CALL DML
parameter list

 lRCODE ⎫
 oTALLY o
 olRECORD ⎫ o
 ooPARAM[,name]o o
 oolDCL ⎫ o o
SHOW momDEF },name o[,distance] }[,condition]
 omnPROC~ }[,length] o
 ooparameter o[,form] o
 oodeclaration o o
 oodefinition o o
 nnprocname ~ ~

Output the specified area to
SYSOUT in the specified
format

SUBSCHEMA IS subschema Select subschema

SYSTEM[condition] Go to system mode

 lON ⎫
TRACE[m }][,repetition][,condition]
 nOFF~

Log commands and state-
ments on the screen during
processing
Default value: TRACE ON

WAIT[condition] Effect an interrupt

Command Function

Table 36: Overview of DMLTEST commands (part 3 of 3)

Overview of the DMLTEST commands DMLTEST

308 U930-J-Z125-14-76

Example

l/SET-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=SHIPPING
 o/ADD-FILE-LINK LINK-NAME=$UDSSSI,FILE-NAME=LMS.SSITAB
 o/ADD-FILE-LINK LINK-NAME=PPFILE,FILE-NAME=UDSDBB.PP.FILE
 1) U/CREATE-FILE FILE-NAME=SHIPPING.DBSTAT,SUPPRESS-ERRORS=*FILE-EXISTING
 o/CREATE-FILE FILE-NAME=SHIPPING.DBSTAT.SAVE,SUPPRESS-ERRORS=*FILE-EXISTING
 o/ASSIGN-SYSDTA TO-FILE=*SYSCM7
 o/SELECT-PRODUCT-VERSION PRODUCT-NAME=UDS-SQL, VERSION=02.8A00

n/START-UDS-DMLTEST

2) LANG COB
 3) DISPLAY RCODE,COND=RCODE NE C'00000'
 4) PROT ON
 5) DISPLAY RECA,L=80
 6) SUBSCHEMA IS ADMIN
 7) READY
 8) E

% UDS0215 UDS STARTING UDS/SQL V2.8 (LINKED-IN), DATE=2015-06-28
(ILL2038,11:41:01/0YBG)
% UDS0746 UDS PUBSET DECLARATION (CURRENT) FOLLOWS
(ILL1746,11:41:01/0YBG)
0YBG: UDS-PUBSET-JV: :SQL2:$XXXXXXXX.PUBSDECL.ALL
0YBG: PUBSETS: *
0YBG: DEFAULT PUBSET: SQL2
0YBG: --
% UDS0722 UDS ORDER ADD RLOG 150628094100 IN EXECUTION
(ILL1283,11:41:01/0YBG)

 % UDS0354 UDS ALOG CHECKPOINT FOR SHIPPING
(ILL1307,11:41:01/0YBG)
0YBG: ALOG-CKPT OMITTED: DB WITHOUT ALOG-LOGGING.
0YBG: MAXDB = 1
0YBG: TRANSACTION = 1
0YBG: SUBSCHEMA = 1
0YBG: 2KB-BUFFER-SIZE= 1
0YBG: 4KB-BUFFER-SIZE= 1
0YBG: 8KB-BUFFER-SIZE= 0
0YBG: LOG = PUBLIC
0YBG: LOG-2 = NO
0YBG: LOG-SIZE = (192, 192)
0YBG: RESERVE = NONE
0YBG: WARMSTART = STD
0YBG: CONSOLE = NO
0YBG: STDCKPT = YES
0YBG: LOCK = STD
0YBG: PRIVACY-CHECK = OFF
0YBG: CONFNAME = $XXXXXXXX.SHIPPING
0YBG: DATABASES OF CONFIGURATION:

DMLTEST Overview of the DMLTEST commands

U930-J-Z125-14-76 309

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

0YBG: $XXXXXXXX.SHIPPING ,EXCLUSIVE-UPD
,*SYSTEM
% UDS0356 UDS EXECUTION OF ORDERS FOR SHIPPING TERMINATED
(ILL1309,11:41:01/0YBG)
RECORD - AREA :
...

 9) SYS
 % IDA0199 PROGRAM BREAK AT ADDRESS X'02B052', AMODE=24
 /MODIFY-TERMINAL-OPTIONS OVERFLOW-CONTROL=*TIME(TIMEOUT=*STD)
 10) /RESUME-PROGRAM
 11) EDT
 12) @RET
 EDT ENDED. DMLTEST CONTINUES
13) RUN DMLTEST.EXAMPLE1

.

.

.
DB-PARAMS (FIRST 8B)
FCOD :ACCPTC.. FOPT :DB-KEY.. SOPT : UINF : RECN :ARTICLE
SETN : RLMN : ITMN : RECA :........ SPP1 :ADMIN
SPP2 :.... SPP3 : SUBS :ADMIN
.
.
.
DB-PARAMS (FIRST 8B)
FCOD :CONNEC.. FOPT :TO-SET.. SOPT : UINF :CLOTHING RECN :ARTICLE
DMLTEST: SCREEN OVERFLOW. STATUS IS BREAK.

14) ESC
15) FINISH;E

16) HALT
DMLTEST NORMAL TERMINATION
% UDS0354 UDS ALOG CHECKPOINT FOR SHIPPING (ILL1307,11:40:57/0YBG)
0YBG: ALOG-CKPT 20150628094106: FIXED (ALOG-NR:000000005, START-CKPT:
20150628094105).
% UDS0758 NUMBER OF DML-STATEMENTS AND I/O COUNTERS PER DATABASE
(ILL1758,11:40:57/0YBG)
 0YBG: DATABASE NAME DMLS LOG READ PHYS READ LOG WRITE
PHYS WRITE
 0YBG: --

 0YBG: SHIPPING 76 338 103 91
63
% UDS0213 UDS NORMAL SYSTEM TERMINATION WITH **************76 DML-
STATEMENTS
2015-06-28 (ILLY033,11:40:57/0YBG)

Variables and keyword parameters DMLTEST

310 U930-J-Z125-14-76

1) See "Command sequence for starting DMLTEST" (page 304)
2) Define application language
3) Define in which case the DATABASE-STATUS is to be output
4) Activate logging
5) Define that RECA is to be output after each DML statement
6) Assign subschema
7) Set up READY statement
8) Execute READY statement
9) Transfer control to operating system

10) Transfer control to DMLTEST
11) Call EDT as subroutine
12) Transfer control to DMLTEST
13) Call DMLTEST procedure
14) Abort DMLTEST procedure
15) Terminate transaction
16) Terminate DMLTEST program

General rules

variable must be replaced by a currently valid value when a format is used. The following
categories of variables can be distinguished:

definition
declaration
command-name
procname

These names must be defined in the corresponding DMLTEST
commands.

literal May be composed of any characters. If the literal is not alphanu-
meric or is alphanumeric, but contains blanks, it must be enclosed
within single quotes.

Table 37: DMLTEST variables

DMLTEST Variables and keyword parameters

U930-J-Z125-14-76 311

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

The following keyword parameters are used in the formats of the DMLTEST commands:

definition must be enclosed in single quotes.

C alphanumeric representation
X hexadecimal representation
D dump format
P packed representation
n integer
n1 multiplication factor
n2 length of literal

Keyword parameter Default value

lliteral ⎫
o lC⎫ o

value: [VAL=]m[n1]mX}[Ln2]‘literal‘}
o nP~ o
n‘literal‘ ~

-

 ln ⎫
distance: [DIST=]m }]
 nX‘n‘~

D=0

 ln ⎫
length: [LNG=]m }]
 nX‘n‘~

L=8

name: [NAME=]literal
maximum length: 20
allowed characters: 1st position A-Z
 from 2nd position A-Z,-,0-9

-

 lOML= ⎫
filename: [m }]literal
 nFILE=~

OML=
DMLTEST.MODLIB for PERFORM

 lREP= ⎫ ln ⎫
repetition: [m }]m }
 nSTEP=~ nX‘n‘~

4 for TRACE
1 in all other cases

 lC⎫
form: [FORM=] mX}
 nD~

F=C

l l(n) ⎫⎫lEQ⎫
oRECORDm }ooNEo

lCASE=⎫ o n(X‘n‘)~ooLTo
condition: [m }]m }m }value

nCOND=~ oTIME ooGTo
oRCODE ooLEo
ndefinition ~nGE~

-

Table 38: Keyword parameters with default values

Keywords DMLTEST

312 U930-J-Z125-14-76

The parameter variable in the DMLTEST commands can be replaced by the following values
(see also table 23 on page 201).

Any number of commands may be written in a sequence. The separator is “;“.

for CDML for KDBS

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

FCOD
FOPT
SOPT
UINF
RECN
SETN
RLMN
ITMN
RECA
SPP1
SPP2
SPP3
SEX1

SUBS

1 Redefine ITMN: This parameter must be used if the user requires a search expression in DMLTEST syntax to
be edited into CALL DML syntax (see the SET command on page 334).

OP
RE
DB
AR
FS
SI
KB
KE
RT
ST
FSI2

-
-
-

2 Redefine SI: This parameter must be used if the user requires a search expression in DMLTEST syntax to be
edited into KDBS syntax (see the SET command on page 334).

Table 39: Values for CDML and KDBS

DMLTEST Predefined items

U930-J-Z125-14-76 313

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

Predefined items

The items described below are predefined and can be addressed with the DMLTEST
commands LIST, SHOW, MOVE and ADD.

The following items are always defined:

RCODE contains statement code and status code

TALLY contains the counter for TALLYING

RECORD contains the RECORD AREA

TIME contains the processing time of the statement (in milli-seconds)

The following items are defined when COBOL DML is used:

AREA-ID contains the realm name for ACCEPT-2.
The AREA-ID item is a redefinition of the area for the realm name in
the “System Communication Locations” section of the user infor-
mation area (see table 24 on page 205).

DB-KEY contains the DATABASE-KEY value for ACCEPT-1, ACCEPT-2,
FIND/FETCH-1.
The DB-KEY item is a redefinition of the DATABASE-KEY item of
the user information area (see table 24 on page 205).

DB-KEY-LONG contains the DATABASE-KEY-LONG value for ACCEPT-1,
ACCEPT-2, FIND/FETCH-1.
The DB-KEY-LONG item is a redefinition of the DATABASE-KEY-
LONG item of the user information area (see table 24 on page 205).

IMP-AREA-ID contains the realm name for FIND/FETCH-2 and STORE...IMP or
STORE...IMP-LONG.
The IMP-AREA-ID item is a redefinition of the area comprising
bytes 5...34 of special parameter 2 (SPP2; see page 210).

IMP-DB-KEY contains the DATABASE-KEY value for STORE...IMP.
The DB-KEY item is a redefinition of the area comprising bytes 1...4
of special parameter 2 (SPP2; see page 210).

IMP-DB-KEY-LONG contains the DATABASE-KEY-LONG value for
STORE...IMP-LONG.
The DB-KEY-LONG item is a redefinition of the area comprising
bytes 35...42 of special parameter 2 (SPP2; see page 210).

Predefined items DMLTEST

314 U930-J-Z125-14-76

When KDBS is used, the following items are defined:

SC contains the protection code

VA contains the processing type

The SC and VA items are redefinitions of the RE communication area.

DMLTEST ADD

U930-J-Z125-14-76 315

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

ADD

The ADD command is used to add in the specified area.

 ADD name,value[,condition]

name Must have been defined using the DEFINE or DECLARE command.

Using DECLARE:
The type is defined by a previous MOVE command.

Using DEFINE:
The type is defined by the description of the redefined area.

name contains the result of the addition after execution.

The kind of addition performed is determined by the type of value specified, which
must match the type specified for name:

– P: packed
– C: unpacked
– X: hexadecimal

The maximum length for name is:

– for unpacked representation: 16
– for packed representation: 10
– for hexadecimal representation: 4

value Must be of the same type as the content of name.

Examples

(IN): REMARK ***ADD
***(IN): DEF RECORD,ITEM2,L=4
***(IN): SH ITEM2,F=X
 (OUT): ITEM2 :00000000
***(IN): ADD ITEM2,X'F5'
***(IN): SH ITEM2,F=X
 (OUT): ITEM2 :000000F5

***(IN): DEC ITEM3,L=8
***(IN): MOVE ITEM3,8
***(IN): SH ITEM3
 (OUT): ITEM3 :8
***(IN): ADD ITEM3,9
***(IN): SH ITEM3
 (OUT): ITEM3 :17

CONTINUE/DBH/DECLARE DMLTEST

316 U930-J-Z125-14-76

CONTINUE

The CONTINUE command is used to resume processing after an interrupt. If no interrupt
has occurred, the command has no effect.

 CONTINUE

DBH

The DBH command is used to select the DBH variant.

 lINDEPENDENT⎫
 DBH m }
 nINLINKED ~

This command must be entered prior to the first SET or DML command. The default value
is INLINKED.

DECLARE

The DECLARE command is used to define an item in the work area.

 DECLARE⎫
 } name[,length]
 DCL ~

name Must be unique and may only occur once in each program run.

The item type is not qualified. It is defined by a MOVE command. Each further
MOVE command can change it again.

Example

(IN): REMARK ***DECLARE
***(IN): DEC ITEM3,L=8
***(IN): MOVE ITEM3,8
***(IN): SH ITEM3
 (OUT): ITEM3 :8

DMLTEST DEFINE/DELETE

U930-J-Z125-14-76 317

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

DEFINE

The DEFINE command is used to define an item in the specified area.

 lRCODE ⎫
 DEFINE mRECORD },name[,distance][,length]
 nparameter ~

name Must be unique and may only occur once in each program run.

DEFINE can be used to redefine areas that are frequently referenced in order to avoid
having to respecify the displacement and length repeatedly.

An area can be redefined more than once.

Example

(IN): REMARK ***DEFINE
***(IN): DEFINE RECORD,FIRSTNAME,L=10
***(IN): DEFINE RECORD,LASTNAME,D=10,L=15
***(IN): DEFINE RECORD,DATEOFBIRTH,D=25,L=10
***(IN): DEFINE RECORD,NAMES,L=25
***(IN): MOVE FIRSTNAME,ANTON
***(IN): MOVE LASTNAME,MAIER
***(IN): MOVE DATEOFBIRTH,'12.12.50'
***(IN): SH RECORD,L=35
 (OUT): RECORD - AREA :ANTON.....MAIER..........12.12.50.......
***(IN): MOVE NAMES,ALBERT
***(IN): SH RECORD,L=35
 (OUT): RECORD - AREA :ALBERT....MAIER..........12.12.50.......
***(IN): SH FIRSTNAME
 (OUT): FIRSTNAME :ALBERT..
***(IN): SH LASTNAME
 (OUT): LASTNAME :MAIER...
***(IN): SH DATEOFBIRTH
 (OUT): DATEOFBIRTH :12.12.50
***(IN): SH NAMES,L=25
 (OUT): NAMES :ALBERT....MAIER..........

DELETE

The DELETE command is used to delete a procedure, definition or declaration.

 DELETE name[,condition]

DISPLAY/DISPOFF DMLTEST

318 U930-J-Z125-14-76

DISPLAY

The DISPLAY command is used to output the specified area or value on the screen
following each DML statement if the specified condition is satisfied.

 lRECA ⎫
 oRECORDo
 DISPLAY m }[,distance][,length][,form][,condition]
 oRCODE o
 nTIME ~

The following formats are available for output:

FORM=C alphanumeric characters (default)
FORM=X hexadecimal
FORM=D both C and X (dump format)

If RCODE and TIME are specified, distance, length and form specifications are ignored.

The contents of non-alphanumeric items can only be interpreted in hexadecimal format.
This also applies for the contents of national items (Unicode: UTF-16, PICTURE N, USAGE
NATIONAL).

DISPOFF

The DISPOFF command deactivates the specified or all previously valid DISPLAY
functions. If a condition is specified, this condition must be met.

 lRECA ⎫
 DISPOFF⎫ oRECORDo
 }[m }][,condition]
 DOFF ~ oRCODE o
 nTIME ~

DMLTEST DO

U930-J-Z125-14-76 319

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

DO

The DO command is used to start a DMLTEST procedure.

 DO name[,repetition][,condition]

name Must have been defined in the same program run.

repetition
Specifies how many times the procedure is to be run (repetition factor).

condition
Specifies the condition under which the procedure is to be run. This condition is only
evaluated once before the first procedure run even if a repetition factor was
specified.

The DO command can also be entered in an interrupt state, but will not be executed so long
as the interrupt state prevails.

Up to 20 procedures can be processed within the same DMLTEST run. The maximum
nesting level is 20 procedures.

It is possible to program DO-WHILE loops.

01) PROC proc1;
02) LEAVE condition;
 .
03) .
 .
04) END

01) Open definition of proc1

02) The first command stored in proc1 is a LEAVE command with a condition.

03) Enter further procedure commands and statements

04) Terminate definition of proc1

DO DMLTEST

320 U930-J-Z125-14-76

The command

DO proc1,W=50000

initiates processing of proc1.

The procedure is run until one of the following events occur:

– The condition in the stored LEAVE command is satisfied.

– The procedure has been run 50 000 times.

Example

DO STORE-A,R=20,COND=RCODE EQ C'00000';

DMLTEST first checks if the DB status is equal to C’00000’. If this is the case, procedure
STORE-A is run 20 times (provided it was defined).

Sequence:

I = 20 (repetition factor)

DB status equal to C´00000´ ?

 Y N

As long as I > 0

Run procedure STORE-A

I = I - 1

Execute next command

DMLTEST EDT/END/ESCAPE

U930-J-Z125-14-76 321

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

EDT

The EDT command is used to call the EDT file editor as subroutine.

 The call takes place in L mode, which is not Unicode-capable.

 EDT

@RETURN is used to return to the DMLTEST dialog.

END

The END command is used to conclude procedure definition.

 END

ESCAPE

The ESCAPE command is used to terminate all active procedures, command sequences
and interactive entries; it also terminates an interrupt. After an ESCAPE command, the next
command is expected from SYSDTA.

 ESCAPE[condition]

condition
Specifies the condition which has to be satisfied for the procedure(s) and command
sequence(s) to be terminated.

i

EXECUTE DMLTEST

322 U930-J-Z125-14-76

Example

(IN): REMARK ***ESCAPE
***(IN): RUN DMLTEST.EXAMPLES1
 .
 .
 .
***(IN): SH PARAM
 (OUT): DB-PARAMS (FIRST 8B)
 (OUT): FCOD :CONNEC.. FOPT :TO-SET.. SOPT : UINF :CLOTHING RECN :ARTICLE
 (OUT): DMLTEST: SCREEN OVERFLOW. STATUS IS BREAK.
***(IN): ESCAPE
***(IN): HELP
 (OUT): LAST INPUT :ESCAPE
 (OUT): DURING BREAK-STATUS STATUS IS NORMAL

EXECUTE

The EXECUTE command is used to initiate execution of a DML statement. The same DML
statement can be repeated any number of times.

 EXECUTE[repetition][,condition]

repetition
Specifies the number of times the command is to be executed (repetition factor).

condition
Specifies the condition under which the DML statement is to be executed.

Sequence:

If an EXECUTE command is entered during an interrupt, repetition and condition are
ignored.

I = Repetition factor

As long as I > 0

condition satisfied?

 Y N

Issue DB call I = 0

I = I - 1

Execute next command

DMLTEST HALT/HELP

U930-J-Z125-14-76 323

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

HALT

The HALT command is used to terminate the DMLTEST run. Currently open transactions
are “rolled back”.

 lHALT⎫
 m }[condition]
 nSTOP~

condition
Specifies the condition under which the DMLTEST run is to be terminated.

HELP

The HELP command is used to have the following information output on the screen:

– the command preceding the HELP command

– the name of the input medium from which the command was entered

– the status (NORMAL or BREAK)

– an error description if applicable

 HELP[condition]

condition
Specifies the condition under which information to be output.

Example

(IN): REMARK ***HELP
***(IN): DEF RECORD,LASTNAME,D=10,L=15
 (OUT): DMLTEST: USED NAME. STATUS IS NORMAL.
***(IN): HELP
 (OUT): LAST INPUT :DEF RECORD,LASTNAME,D=10,L=15
 (OUT): FROM SYSDTA STATUS IS NORMAL
 (OUT): ERROR DESCRIPTION :NAME IST SCHON FUER EINE DEFINITION VERGEBEN!
 (= name already assigned to definition)

LANGUAGE DMLTEST

324 U930-J-Z125-14-76

LANGUAGE

The LANGUAGE command is used to select the data manipulation language.

 lCDML ⎫
oCDML30 o

 oCOBOL o
 LANGUAGE mCOBOL30}
 oKDBS o
 oKKDS o
 nKLDS ~

CDML CALL DML; the CALL8 interface is used.

CDML30 CALL DML; the CALL30 interface is used.

KDBS KDBS (compatible database interface)

KKDS KDBS (compatible interface for the processing of complex data structures).

KLDS KDBS (compatible interface for the processing of linear data structures).

COBOL COBOL DML; the CALL8 interface is used internally.

COBOL30 COBOL DML; the CALL30 interface is used internally.

The default value is COBOL.

The LANGUAGE command causes parameter areas to be created and initialized as
required. It can only be entered before the first SET command or the first DML statement.
It is therefore not possible to switch between the CALL8 (CDML, COBOL) and CALL30
(CDML30, COBOL30) interfaces within the same DMLTEST run.

If LANGUAGE COBOL or LANGUAGE COBOL30 has been specified, DML statements
may be entered in COBOL DML format, subject to certain restrictions. These COBOL DML
statements are then translated into CALL DML by DMLTEST. Consequently, only the CALL
DML functionality is available to the user. If LANGUAGE COBOL30 is set, full-length names
(30 bytes) are passed.
The SET command can also be used with LANGUAGE COBOL or LANGUAGE COBOL30.

Example

LANGUAGE
***(IN): LAN CDML
***(IN): DISP RCODE,COND=RCODE NE C'0000'
***(IN): DISP RECA,L=80
***(IN): SET FCOD=C'READYC',FOPT=C'ALLEUP',SUBS=C'ADMIN'
 ...

DMLTEST LEAVE

U930-J-Z125-14-76 325

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

LEAVE

The LEAVE command is used to terminate processing of a procedure or command
sequence. Subsequently it passes control to the next higher level of procedure, command
sequence etc., or to the terminal. It does not terminate an interrupt.

 LEAVE[condition]

condition
Specifies the condition which has to be satisfied for a procedure or command
sequence to be terminated.

If processing of a DO or RUN command is aborted by means of LEAVE, the associated
procedure or command sequence is considered completed, regardless of any repetition
factor.

Example

(IN): REMARK ***LEAVE
***(IN): PROC TEST
***(IN): SH RECORD,L=40
***(IN): LEAVE
***(IN): SH RECORD,L=40
***(IN): END
***(IN): DO TEST
***(IN): SH RECORD,L=40
 (OUT): RECORD - AREA :ANTON.....MAIER..........12.12.50.......
***(IN): LEAVE
***(IN): HELP
 (OUT): LAST INPUT :LEAVE
 (OUT): FROM : TEST STATUS IS NORMAL
***(IN): CONTINUE
***(IN): HELP
***(OUT): LAST INPUT :CONTINUE
***(OUT): FROM SYSDTA STATUS IS NORMAL

LIST DMLTEST

326 U930-J-Z125-14-76

LIST

The LIST command is used to output the specified information on the screen.

 llCMD ⎫ ⎫
 ooDCL o o
 om }[,name]o
 LIST⎫ ooDEF o o
 } mnPROC~ }
 LS ~ ocommand-name o
 odeclaration o
 odefinition o
 nprocname ~

CMD, DEF, DCL, PROC
Can be combined with the desired name.

CMD If no name is specified, all command names with their abbreviations are output.

DEF If no name is specified, all definition names are output.

DCL If no name is specified, all declaration names are output.

PROC
If no name is specified, all procedure names are output.

Examples

(IN): REMARK ***LIST
***(IN): LIST DCL
 (OUT): LIST OF DECLARATIONS
 (OUT): NAME : ITEM1
 (OUT): NAME : ITEM3
***(IN): LIST DEF
 (OUT): LIST OF DEFINITIONS
 (OUT): NAME : USERGROUP
 (OUT): NAME : USERNAME
 (OUT): NAME : PASSWORD
 (OUT): NAME : DB-KEY
 (OUT): NAME : AREA-ID
 (OUT): NAME : IMP-DB-KEY
 (OUT): NAME : IMP-AREA-ID
 (OUT): NAME : ITEM2
 (OUT): NAME : FIRSTNAME
 (OUT): NAME : DATEOFBIRTH
 (OUT): NAME : LASTNAME
***(IN): LIST DEC
 (OUT): NAME : DECLARE (DEC)
 (OUT): OTHER-NAME: DCL (DC)
 (OUT): 1. OPERAND: <NAME>
 (OUT): 2. OPERAND: <LENGTH>

DMLTEST MOVE

U930-J-Z125-14-76 327

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

MOVE

The MOVE command is used to enter values in the record area, the CALL parameter list or
items.

 lRECORD ⎫
 oRCODE o
 MOVE mparameter },value[,distance][,condition]
 odefinition o
 ndeclaration~

parameter
Specifies the desired CALL parameter.

declaration
distance must not be specified.

The type assumed for declaration is dependent on the type of value. It is unaffected
by the type which was valid in any previous declaration.

The type of value determines the type of transfer:

definition
Is transferred left-justified; if distance is specified, starting at the corresponding
displacement. If value is shorter than definition, it is not padded.

value The following types are available:

C'-123' alphanumeric
ABC1 alphanumeric
P'23' packed numeric
-12.3 unpacked numeric
X'12' hexadecimal

The MOVE command does not support national literals (Unicode: UTF-16).

RECORD, RCODE, parameter
Is transferred in the same way as definition.

Type: Transfer:

alphanumeric left-justified, padded with blanks, truncated to the right

packed numeric right-justified, truncated to the left, padded with X‘ 00‘

unpacked numeric right-justified, truncated to the left, padded with 0

hexadecimal left-justified, truncated to the right

MOVE DMLTEST

328 U930-J-Z125-14-76

Examples

(IN): REMARK ***MOVE
***(IN): MOVE ITEM3,8
***(IN): SH ITEM3
 (OUT): ITEM3 :8

***(IN): MOVE LASTNAME,MAIER
***(IN): SH LASTNAME
 (OUT): LASTNAME :MAIER...

***(IN): MOVE DATEOFBIRTH,'12.12.50'
***(IN): SH DATEOFBIRTH
 (OUT): DATEOFBIRTH :12.12.50

DMLTEST NEXT

U930-J-Z125-14-76 329

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

NEXT

The NEXT command is used to abort processing of a command and start the next one.
An interrupt is terminated.

 NEXT

In the case of an interrupt due to screen overflow, no further output is generated.

If a command with a repetition factor is interrupted, it is considered completed.

Example

(IN): REMARK ***NEXT
***(IN): PROC TEST
***(IN): SH RECORD,L=45
***(IN): LIST CMD
***(IN): SH RECORD,L=45,F=X
***(IN): END
***(IN): DO TEST
***(IN): SH RECORD,L=45
 (OUT): RECORD - AREA :ANTON.....MAIER..........12.12.50............
***(IN): LIST CMD
 (OUT): LIST OF COMMANDS
 (OUT): NAME : ADD (A)
 (OUT): NAME : CONTINUE (C)
 (OUT): NAME : DBH (DB)
 (OUT): NAME : DECLARE (DEC)
 (OUT): OTHER-NAME: DCL (DC)
 (OUT): NAME : DEFINE (DEF)
 (OUT): NAME : DELETE (DEL)
 (OUT): NAME : DISPLAY (DIS)
 (OUT): NAME : DISPOFF (DISPO)
 (OUT): OTHER-NAME: DOFF (DOF)
 (OUT): NAME : DO (DO)
 (OUT): NAME : EDT (ED)
 (OUT): NAME : END (EN)
 (OUT): NAME : ESCAPE (ES)
 (OUT): NAME : EXECUTE (E)
 (OUT): NAME : HALT (HALT)
 (OUT): OTHER-NAME: STOP (STOP)
 (OUT): NAME : HELP (H)
 (OUT): NAME : LANGUAGE (LA)
 (OUT): DMLTEST: SCREEN OVERFLOW. STATUS IS BREAK.
***(IN): NEXT
***(IN): SH RECORD,L=45,F=X
 (OUT): RECORD - AREA :
 (OUT): C1D5E3D6D50000000000D4C1C9C5D900000000000000000000F1F24BF1F24BF1F200000000000000
 (OUT): 0000000000

PERFORM DMLTEST

330 U930-J-Z125-14-76

PERFORM

The PERFORM command is used to call a user-specific module.

 PERFORM name[,filename][,condition]

name Must be the name of a module.

The module must observe the following conventions:

– R1 contains the address of the CALL parameter list.
The 21st word of the address list contains, in binary format, the time required
for the DML call for which the time was last taken (in 1/10000 secs.).

– R13 contains the adress of the save area (18 words).

– R14 contains the return address.

file-name
If file-name is not specified, the module must exist in DMLTEST.MODLIB or in your
own TASKLIB.

condition
Specifies the condition under which the module is to be called.

DMLTEST PRINT/PROC

U930-J-Z125-14-76 331

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

PRINT

The PRINT command is used to output the specified area or value to SYSLST after each
DML statement.

 lRECORD⎫
 oRCODE o
 PRINT m }[,distance][,length][,form][,condition]
 oTIME o
 nTALLY ~

The following output formats are available:

– FORM=C: alphanumeric characters (standard)

– FORM=X: hexadecimal

– FORM=D: both C and X (dump format)

If RCODE and TIME are specified, distance, length and form specifications are ignored.

The contents of non-alphanumeric items can only be interpreted in hexadecimal format.
This also applies for the contents of national items (Unicode: UTF-16, PICTURE N, USAGE
NATIONAL).

PROC

The PROC command is used to open a procedure definition.

 PROC procname

procname
May be of any length. The first 8 characters only are used as the procedure
identification.

The input following the PROC command is not submitted to a syntax check.

If the user enters a second PROC command without having entered an END command first,
the first procedure is deleted.

A maximum of 20 procedures can be processed in each program run.

PROFF/PROT/REMARK DMLTEST

332 U930-J-Z125-14-76

PROFF

The PROFF command is used to deactivate the specified or all PRINT functions.

 lPROFF⎫ lRECORD⎫
o o oRCODE o

 m }[m }][,condition]
 o o oTALLY o
 nPOFF ~ nTIME ~

PROT

The PROT command is used to control the DMLTEST logging functions on SYSLST.

 lON ⎫
 PROT[mOFF}]
 nOUT~

ON Logs all input and output

OFF Deactivates the log function

OUT Logs SHOW output only

The default value is PROT ON.

REMARK

The REMARK command is used to insert comment lines.

 lREMARK⎫
 m } literal
 n* ~

literal Any characters may be specified. The command separator “;” may only be used
within single quotes. The number of single quotes must be even.

DMLTEST RUN

U930-J-Z125-14-76 333

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

RUN

The RUN command is used to start a command sequence stored in an ISAM file.

 RUN filename[,repetition][,condition]

file-name
The file filename must be created according to EDTISAM format with the following
characteristics:
RECFORM = V
KEYLEN = 8
KEYPOS = 5

The text may be up to 256 bytes in length and may consist of several commands.

repetition
Specifies the number of times the command sequence is to be run. (repetition
factor).

condition
Specifies the condition which has to be satisfied for the command sequence to be
run.

Processing of a command sequence takes place in the same way as with a DO procedure.

Up to 20 different RUN commands can be processed in one DMLTEST run (nesting
level = 20).

SET DMLTEST

334 U930-J-Z125-14-76

SET

The SET command is used to enter values in the CALL DML or KDBS parameters.

 ln ⎫
 SET[parameter[(m })]=]value,...
 nX'n'~

parameter
The individual parameters can be identified both by their position and their name.

n Is the displacement from the beginning of the item. If n is specified, only the
specified value is transferred, and it is not padded with blanks.

If n is not specified, value is transferred left-justified and is padded with blanks.

The last keyword parameter always determines the position of the subsequent positional
parameter. If no keyword parameter is specified, the first value specified is entered in the
FCOD.

In positional parameters no displacement can be specified. value is transferred left-justified,
padded with blanks.

If value including n exceeds the item in the parameter list, it is truncated without warning.

The SET command does not support national literals (Unicode: UTF-16).

The SET command processes different parameter records for CDML or CDML30 and
KDBS.

DMLTEST SET

U930-J-Z125-14-76 335

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

Search expressions with the SET command

DMLTEST can be used to edit search expressions which are formulated in CALL DML
syntax (parameter SEX) or in the KDBS syntax (parameter FSI).

The following rules apply:

– The search expression must be entered in Assembler syntax as alphanumeric item.

– Syntactical units must be separated from one another by at least one blank.

– Item names are lengthened to 8 bytes.

– Comparison values must be entered in Assembler syntax; they are edited as required.

– Single quotes can be specified as part of the comparison value. Their number must be
even.

– Item names are extended to 8 bytes for CDML (CALL8 interface)
and to 30 bytes for CDML30 (CALL30 interface).

If you are using the CALL DML syntax, you must specify the parameter ITMN.

If a search expression is to be edited by DMLTEST, you must specify the parameter SEX.

Example

***(IN): SET ITMN=C'0 SIZE GTH 40 0 END'
***(IN): SH ITMN,L=30
 (OUT): ITMN CONTAINS :0 SIZE GTH 40 0 END

***(IN): SET SEX=C'SIZE GTH CL2''40'' END'
***(IN): SH SEX,L=30
 (OUT): SEX CONTAINS :0 SIZE GTH 40 0 END

If you are using the KDBS syntax, you must specify the parameter SI.
If a search expression is to be edited by DMLTEST, you must specify the parameter FSI.

Example

***(IN): SET SI=C'(ITEM1 EQ VALUE1)'
***(IN): SH SI,L=40
 (OUT): SI CONTAINS :(ITEM1 EQ VALUE1)

***(IN): SET FSI=C'(ITEM1 EQ CL10'' VALUE1'')'
***(IN): SH FSI,L=40
 (OUT): FSI CONTAINS :(ITEM1 EQ VALUE1)

SHOW DMLTEST

336 U930-J-Z125-14-76

SHOW

The SHOW command is used to output the specified area on the screen.

 lRCODE ⎫
 oTALLY o
 olRECORD ⎫ o
 ooPARAM[,name]o o
 oolDCL ⎫ o o
 SHOW momDEF },name o }[,condition]
 omnPROC~ }[,distance][,length][,form]o
 ooparameter o o
 oodeclaration o o
 oodefinition o o
 nnprocname ~ ~

parameter, declaration, definition, procname
If a name is specified, DMLTEST checks in the following order if the specified name
is
– a CALL parameter
– a definition
– a procedure name
– a declaration
Then the corresponding contents are output on the screen.

PARAM
The contents of all CALL DML parameters are output..
If the specified length is greater than the actual length, it is truncated to the actual
length. Depending on the parameter involved, the actual length at the CALL30
interface is greater than at the CALL8 interface.

PROC The specified procedure is output in alphanumeric representation; form is ignored.

DCL distance and length are ignored.

The contents of non-alphanumeric items can only be interpreted in hexadecimal format.
This also applies for the content of national items (Unicode).

DMLTEST SUBSCHEMA/SYSTEM

U930-J-Z125-14-76 337

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

Example

(IN): REMARK ***SHOW
***(IN): SH RECORD,L=40
 (OUT): RECORD - AREA :ALBERT....MAIER..........12.12.50.......
***(IN): SH RECORD,D=10,L=15,FORM=X
 (OUT): RECORD - AREA :D4C1C9C5D900000000000000000000
***(IN): SH RECORD,D=10,L=15,FORM=C
 (OUT): RECORD - AREA :MAIER..........
***(IN): SH RECORD,D=10,L=15,FORM=D
 (OUT): RECORD - AREA :
 (OUT): D4C1C9C5 D9000000 00000000 00000000 MAIER..........

SUBSCHEMA

The SUBSCHEMA command selects the subschema that you want to edit with DMLTEST.

 SUBSCHEMA IS subschema

subschema
Name of the subschema to be edited with DMLTEST

More information on SUBSCHEMA can be found on pages 341 and 362, respectively.

SYSTEM

The SYSTEM command is used to interrupt the program run and pass control to the
system. It enables the user to enter system commands.

 SYSTEM[condition]

condition
Specifies the condition under which control is to be passed to system.

The /RESUME command is used to return control to DMLTEST.

TRACE DMLTEST

338 U930-J-Z125-14-76

TRACE

The TRACE command is used to log all processed commands and DML statements on the
screen, or to deactivate this function.

 lON ⎫
 TRACE[m }][,repetition][,condition]
 nOFF~

ON, OFF
If no entry is made, the default value is ON.

repetition
Specifies the number of commands to be logged before processing is interrupted.
repetition is ignored if OFF is specified.

The default value is 4

condition
Specifies the condition which has to be satisfied for the TRACE function to be
executed.

Example

(IN): REMARK ***TRACE
***(IN): TRACE ON,R=6
***(IN): RUN DMLTEST.EXAMPLES1
 (OUT): **CURRENT COMMAND**:RUN DMLTEST.EXAMPLES1
(IN): * ******* DMLTEST.EXAMPLES1 *****************
 (OUT): **CURRENT COMMAND**:
 (OUT): * ********** DMLTEST.EXAMPLES1 *****************
***(IN): *
 (OUT): **CURRENT COMMAND**:
 (OUT): *
***(IN): DISPOFF RECORD
 (OUT): **CURRENT COMMAND**:DISPOFF RECORD
***(IN): REMARK *** EXAMPLE ACCEPT FORMAT 1 ***
 (OUT): **CURRENT COMMAND**:REMARK *** EXAMPLE ACCEPT FORMAT 1 ***
***(IN): FIND 4 ARTICLE
 (OUT): **CURRENT COMMAND**:FIND 4 ARTICLE
 (OUT): DMLTEST: TRACE-LIMIT. STATUS IS BREAK.
***(IN): C
***(IN): EX
 (OUT): **CURRENT COMMAND**:EX
***(IN): ACCEPT DB-KEY FROM CURRENCY
 (OUT): **CURRENT COMMAND**:ACCEPT DB-KEY FROM CURRENCY
***(IN): EX
 (OUT): **CURRENT COMMAND**:EX
***(IN): SH PARAM
 (OUT): **CURRENT COMMAND**:SH PARAM
 (OUT): DB-PARAMS (FIRST 8B)
 (OUT): FCOD :ACCPTC.. FOPT :DB-KEY.. SOPT : UINF : RECN :ARTICLE
 (OUT): SETN :(MIN-STOCK-LEVEL RLMN : ITMN : RECA :ANTON... SPP1 :ADMIN
 (OUT): SPP2 :....4 SPP3 : SUBS :ADMIN

DMLTEST WAIT

U930-J-Z125-14-76 339

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

***(IN): SH DB-KEY,FORM=X
 (OUT): **CURRENT COMMAND**:SH DB-KEY,FORM=X
 (OUT): DB-KEY :09000004
***(IN): REMARK *** EXAMPLE ACCEPT FORMAT 2 ***
 (OUT): **CURRENT COMMAND**:REMARK *** EXAMPLE ACCEPT FORMAT 2 ***
 (OUT): DMLTEST: TRACE-LIMIT. STATUS IS BREAK.
***(IN): TRACE OFF

WAIT

The WAIT command is used to generate an interrupt.

 WAIT[condition]

condition
Specifies the condition under which the interrupt to be generated.

If SYSDTA is assigned to a file, the interrupt is terminated with CONTINUE. This cannot be
influenced by the user.

DML statements DMLTEST

340 U930-J-Z125-14-76

9.3 The DML statements of DMLTEST

You may enter DML statements in COBOL DML format (see section “COBOL DML state-
ments” on page 139); DMLTEST will convert them to the CALL DML format. Depending on
whether you have specified the keyword COBOL or COBOL30 in the LANGUAGE
command (see page 324), DMLTEST will supply the CALL8 or CALL30 interface.

9.3.1 Overview of differences between DMLTEST DML and COBOL DML
statements

ACCEPT format 1:

 format 2:

item-name-1 DB-KEY, DB-KEY-LONG

item-name-2
item-name-3

AREA-ID
DB-KEY, DB-KEY-LONG

FIND/FETCH format 1:

format 2:

 format 3:

 format 4:

 format 7:

item-name
OR PRIOR/NEXT

DB-KEY, DB-KEY-LONG
These clauses may be used in DMLTEST in the form
SET FOPT,DBKPRI/DBKNXT after entering the
FIND1/FTCH1 or FIND1L/FTCH1L statement in COBOL-
DML syntax (without EXECUTE).

If the record type can be stored in several
realms, IMP must be used:
 ...record-name[IMP]

USING can be extended by

 ...[record-name]

item-name -

item-name-1
OR PRIOR/NEXT

TALLY
These clauses may be used in DMLTEST in the form
SET FOPT,...ITP/...ITN after entering the
FIND7A/FTCH7A statement in COBOL-DML syntax
(without EXECUTE).

GET This statement can be extended by

 ...[record-name]

IF format 1:
 format 2:

 NEXT SENTENCE, ELSE and NOT must not be
 used.

MODIFY This statement is extended by

 ... record-name

STORE If the record type can be stored in multiple
realms or if the database key is assigned by the
user (DDL clause LOC MODE), you must use the IMP
or IMP-LONG option:
...record-name[IMP]...or
...record-name[IMP-LONG]...

Table 40: Differences between COBOL DML and DMLTEST DML statements

IN

OF

IN

OF

IN

OF

DMLTEST DML statements

U930-J-Z125-14-76 341

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

If LANGUAGE COBOL or LANGUAGE COBOL30 has been specified, the following format
can be used for subschema assignment:

 SUBSCHEMA[IS] subschema-name

This statement must be entered prior to the READY statement.

The SUBSCHEMA statement can also be used to assign DML statements to transaction
chains or to individual databases if multi-DB transactions are to be opened.

DML statements DMLTEST

342 U930-J-Z125-14-76

9.3.2 The DML statements

ACCEPT

ACCEPT (format1):

 lDB-KEY ⎫ lrecord-name⎫
ACCEPT m } FROM[mset-name }] CURRENCY
 nDB-KEY-LONG~ nrealm-name ~

DMLTEST stores the database key value in the predefined item DB-KEY or DB-KEY-LONG.

Example

***(IN): REMARK *** EXAMPLE ACCEPT FORMAT 1 ***
***(IN): FIND 4 ARTICLE
***(IN): EX
***(IN): ACCEPT DB-KEY FROM CURRENCY
***(IN): EX
***(IN): SH PARAM

(OUT): DB-PARAMS (FIRST 8B)
(OUT): FCOD :ACCPTC.. FOPT :DB-KEY.. SOPT : UINF : RECN :ARTICLE
(OUT): SETN : RLMN : ITMN : RECA :........ SPP1 :ADMIN
(OUT): SPP2 :.... SPP3 : SUBS :ADMIN

***(IN): SH DB-KEY,FORM=X
(OUT): DB-KEY :09000004

ACCEPT (format 2):

 lrecord-name⎫
oset-name o

ACCEPT AREA-ID FROM[m }] REALM-NAME
 oDB-KEY o
 nDB-KEY-LONG~

The database key value must be entered in the predefined DB-KEY or DB-KEY-LONG item
in binary format. DMLTEST stores the result (realm name) in the predefined item AREA-ID.

Example

***(IN): REMARK *** EXAMPLE ACCEPT FORMAT 2 ***
***(IN): ACCEPT AREA-ID FROM DB-KEY REALM-NAME
***(IN): EX
***(IN): SH PARAM
 (OUT): DB-PARAMS (FIRST 8B)
 (OUT): FCOD :ACCPTC.. FOPT :RLMDBK.. SOPT : UINF :CLOTHING RECN :ARTICLE
 (OUT): SETN : RLMN : ITMN : RECA :........ SPP1 :ADMIN
 (OUT): SPP2 :.... SPP3 : SUBS :ADMIN
***(IN): SH AREA-ID
 (OUT): AREA-ID :CLOTHING

DMLTEST DML statements

U930-J-Z125-14-76 343

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

CONNECT

 lset-name-1,...⎫
CONNECT[record-name] TO m }
 nALL ~

 lset-name-2,...⎫
 [RETAINING CURRENCY FOR m }]
 nSETS ~

Example

***(IN): REMARK ***EXAMPLE CONNECT ***
***(IN): FIND 1 ARTICLE
***(IN): EX
***(IN): CONNECT ARTICLE TO MIN-STOCK-LEVEL
***(IN): EX
***(IN): SH PARAM
 (OUT): DB-PARAMS (FIRST 8B)
 (OUT): FCOD :CONNEC.. FOPT :TO-SET.. SOPT : UINF : RECN :ARTICLE
 (OUT): SETN :(MIN-STOCK-LEVEL RLMN : ITMN : RECA :........ SPP1 :ADMIN
 (OUT): SPP2 :.... SPP3 : SUBS :ADMIN
***(IN): FETCH 1 ARTICLE WITHIN MIN-STOCK-LEVEL
***(IN): EX
***(IN): SH RECORD,LNG=48
 (OUT): RECORD - AREA :00000110SUMMER DRESS WITH JACKET

DML statements DMLTEST

344 U930-J-Z125-14-76

DISCONNECT

DISCONNECT (format 1):

 lset-name,...⎫
DISCONNECT[record-name] FROM m }
 nALL ~

Example

***(IN): REMARK *** EXAMPLE DISCONNECT FORMAT 1 ***
***(IN): FETCH 1 ARTICLE WITHIN MIN-STOCK-LEVEL
***(IN): EX
***(IN): DISCONNECT ARTICLE FROM MIN-STOCK-LEVEL
***(IN): EX
***(IN): SH PARAM
 (OUT): DB-PARAMS (FIRST 8B)
 (OUT): FCOD :DISCON.. FOPT :FRMSET.. SOPT : UINF : RECN :ARTICLE
 (OUT): SETN :(MIN-STOCK-LEVEL RLMN : ITMN : RECA :00000110 SPP1 :ADMIN
 (OUT): SPP2 :.... SPP3 : SUBS :ADMIN
***(IN): FINISH
***(IN): EX

DISCONNECT (format 2):

DISCONNECT ALL FROM set-name,...

ERASE

 lPERMANENT⎫
ERASE record-name[mSELECTIVE} MEMBERS]
 nALL ~

Example

***(IN): REMARK *** EXAMPLE ERASE ***
***(IN): FETCH LAST ARTICLE
***(IN): E
***(IN): ERASE ARTICLE ALL
***(IN): E
***(IN): SH PARAM
 (OUT): DB-PARAMS (FIRST 8B)
 (OUT): FCOD :ERASEC.. FOPT :ALLMEM.. SOPT : UINF : RECN :ARTICLE
 (OUT): SETN :(MIN-STOCK-LEVEL RLMN : ITMN :(SUPPL- RECA :901145 0 SPP1 :
 (OUT): SPP2 :...r SPP3 : SUBS :ADMIN

DMLTEST DML statements

U930-J-Z125-14-76 345

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

FIND/FETCH

lFIND ⎫
m } record-selection-expression [RETAINING CURRENCY FOR
nFETCH~

 lMULTIPLE ⎫
 o o
 m lSETS ⎫ }
 o[REALM][m }][RECORD]o
 n nset-name,...~ ~

Formats of the record selection expression:

FIND/FETCH (format 1):

 lDB-KEY ⎫
[record-name] DATABASE-KEY IS m }
 nDB-KEY-LONG~

The database key value must have been specified in the predefined item DB-KEY or
DB-KEY-LONG in binary format.

Example

***(IN): REMARK *** EXAMPLE FETCH 1 ***
***(IN): M DB-KEY,X'09000004'
***(IN): FETCH DATABASE-KEY IS DB-KEY
***(IN): E
***(IN): SH PARAM
 (OUT): DB-PARAMS (FIRST 8B)
 (OUT): FCOD :FTCH1 .. FOPT :DB-KEY.. SOPT : UINF :CLOTHING RECN :
 (OUT): SETN :(MIN-STOCK-LEVEL RLMN : ITMN : RECA :00000110 SPP1 :ADMIN
 (OUT): SPP2 :.... SPP3 : SUBS :ADMIN
***(IN): SH RECORD,L=80
 (OUT): RECORD - AREA :
 (OUT): 00000110SUMMER DRESS WITH JACKET 23010742...................rn...

You can implement access to the previous or next record for the database key (COBOL
parameter OR PRIOR/NEXT) for which no record exists in the database by first entering the
FIND/FETCH statement and then supplying the FOPT parameter with DBKPRI or DBKNXT
before executing the statement (e.g. FETCH DATABASE-KEY IS DB-KEY; MOVE
FOPT,DBKNXT;E).

DML statements DMLTEST

346 U930-J-Z125-14-76

FIND/FETCH (format 2):

lANY ⎫
m } record-name[IMP]
nDUPLICATE~

When the record type record-name can be stored in more than one realm, the IMP option
must be specified and the IMP-AREA-ID item must be supplied with the realm name of the
realm in which the record is to be searched for if the record type is not the member record
type of a distributable list.

Example

***(IN): REMARK *** EXAMPLE FETCH 2 ***
***(IN): FETCH 9 ARTICLE-DESCR
***(IN): E
***(IN): SH RECORD

(OUT): RECORD - AREA :000005SO
***(IN): S SPP2=C' '
***(IN): M IMP-AREA-ID,'CLOTHING'
***(IN): FETCH ANY ARTICLE-DESCR IMP
***(IN): E
***(IN): SH PARAM

(OUT): DB-PARAMS (FIRST 8B)
(OUT): FCOD :FTCH2 .. FOPT :ANYIMP.. SOPT : UINF :CLOTHING RECN :ARTICLE
(OUT): SETN :(MIN-STOCK-LEVEL RLMN : ITMN : RECA :000001SO SPP1 :ADMIN
(OUT): SPP2 : CLOT SPP3 : SUBS :ADMIN

***(IN): SH RECORD,L=6
(OUT): RECORD - AREA :000001

***(IN): PROC ULI
***(IN): FETCH DUPLICATE ARTICLE-DESCR
***(IN): E
***(IN): SH RECORD,LNG=6
***(IN): END
***(IN): DO ULI,R=4
***(IN): FETCH DUPLICATE ARTICLE-DESCR
***(IN): E
***(IN): SH RECORD,LNG=6

(OUT): RECORD - AREA :000002
***(IN): FETCH DUPLICATE ARTICLE-DESCR
***(IN): E
***(IN): SH RECORD,LNG=6

(OUT): RECORD - AREA :000003
***(IN): FETCH DUPLICATE ARTICLE-DESCR
***(IN): E
***(IN): SH RECORD,LNG=6

(OUT): RECORD - AREA :000004
***(IN): FETCH DUPLICATE ARTICLE-DESCR
***(IN): E
***(IN): SH RECORD,LNG=6

(OUT): RECORD - AREA :000005
***(IN): DELETE ULI
***(IN): SH PARAM

(OUT): DB-PARAMS (FIRST 8B)
(OUT): FCOD :FTCH2 .. FOPT :DUPLIC.. SOPT : UINF :CLOTHING RECN :ARTICLE
(OUT): SETN :(MIN-STOCK-LEVEL RLMN : ITMN : RECA :000005SO SPP1 :ADMIN
(OUT): SPP2 : CLOT SPP3 : SUBS :ADMIN

DMLTEST DML statements

U930-J-Z125-14-76 347

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

FIND/FETCH (format3):

lrec-name⎫ lIN⎫
DUPLICATE WITHIN m }[USING record-element-name,...][m }rec-name]
 nset-name~ nOF~

In order to enable CALL DML to correctly identify the items, you must specify
“IN rec-name“ with “DUPLICATE WITHIN set-name USING record-element-name,...”.

Example

***(IN): REMARK *** EXAMPLE FETCH 3 ***
***(IN): FETCH 2 PURCHASE-ORDER
***(IN): E
***(IN): SH RECORD

(OUT): RECORD - AREA :799E8201
***(IN): FETCH DUPLICATE WITHIN PURCH-ORD-PLACED USING P-ORDER-MTH
***(IN): E
***(IN): SH PARAM

(OUT): DB-PARAMS (FIRST 8B)
(OUT): FCOD :FTCH3 .. FOPT :SETITM.. SOPT : UINF :PURCHASE RECN :PURCHASE
(OUT): SETN :PURCH-OR RLMN : ITMN :(P-O-ORD RECA :854.8201 SPP1 :ADMIN
(OUT): SPP2 :....CLOT SPP3 : SUBS :ADMIN

***(IN): SH RECORD
(OUT): RECORD - AREA :854.8201

DML statements DMLTEST

348 U930-J-Z125-14-76

FIND/FETCH (format 4):

lFIRST ⎫
oNEXT o lrecord-name⎫ lset-name ⎫
mPRIOR } m }[WITHIN m }]
oLAST o nRECORD ~ nrealm-name~
ninteger~

Example

***(IN): REMARK *** EXAMPLE FETCH 4 ***
***(IN): FETCH FIRST SUPPLIER
***(IN): E
***(IN): SH RECORD

(OUT): RECORD - AREA :00001MON
***(IN): SH PARAM

(OUT): DB-PARAMS (FIRST 8B)
(OUT): FCOD :FTCH4 .. FOPT :RECFST.. SOPT : UINF :PURCHASE RECN :SUPPLIER
(OUT): SETN :PURCH-OR RLMN : ITMN :(P-ORD RECA :00001MON SPP1 :ADMIN
(OUT): SPP2 :....CLOT SPP3 : SUBS :ADMIN

***(IN): FETCH 2 PURCHASE-ORDER WITHIN PURCH-ORD-PLACED
***(IN): E
***(IN): SH RECORD

(OUT): RECORD - AREA :854.8201
***(IN): SH PARAM

(OUT): DB-PARAMS (FIRST 8B)
(OUT): FCOD :FTCH4 .. FOPT :SETSPC.. SOPT : UINF :PURCHASR RECN :PURCHASE
(OUT): SETN :PURCH-OR RLMN : ITMN :(P-ORD RECA :854.8201 SPP1 :ADMIN
(OUT): SPP2 :....CLOT SPP3 : SUBS :ADMIN

DMLTEST DML statements

U930-J-Z125-14-76 349

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

FIND/FETCH (format 5):

lset-name ⎫
CURRENT[record-name][WITHIN m }]
 nrealm-name~

Example

***(IN): REMARK *** EXAMPLE FETCH 5 ***
***(IN): FIND FIRST ARTICLE
***(IN): E
***(IN): FIND NEXT ARTICLE RETAINING CURRENCY FOR ARTICLES-AVAILABLE
***(IN): E
***(IN): FETCH CURRENT ARTICLE RETAINING CURRENCY FOR ARTICLES-AVAILABLE
***(IN): E
***(IN): SH RECORD,L=80

(OUT): RECORD - AREA :
(OUT): 00000110SUMMER DRESS WITH JACKET 23010738...................rn...

***(IN): SH PARAM
(OUT): DB-PARAMS (FIRST 8B)
(OUT): FCOD :FTCH5 .. FOPT :RECNAM.. SOPT :RET UINF :CLOTHING RECN :ARTICLE
(OUT): SETN :P-ORD-PL RLMN : ITMN :(P-ORD-M RECA :00000110 SPP1 : ST
(OUT): SPP2 :....CLOT SPP3 : SUBS :ADMIN

***(IN): FETCH CURRENT ARTICLE WITHIN ARTICLES-AVAILABLE
***(IN): E
***(IN): SH RECORD,L=80

(OUT): RECORD - AREA :
(OUT): 00000110SUMMER DRESS WITH JACKET 23010736...................rn...

DML statements DMLTEST

350 U930-J-Z125-14-76

FIND/FETCH (format 6):

OWNER WITHIN set-name

Example

***(IN): REMARK *** EXAMPLE FETCH 6 ***
***(IN): FIND 1 PURCHASE-ORDER
***(IN): E
***(IN): FETCH CURRENT PURCHASE-ORDER WITHIN P-ORD-PLACED
***(IN): E
***(IN): SH RECORD

(OUT): RECORD - AREA :000C8201
***(IN): SH PARAM

(OUT): DB-PARAMS (FIRST 8B)
(OUT): FCOD :FTCH5 .. FOPT :RECSET.. SOPT : UINF :PURCHASE RECN :PURCHASE
(OUT): SETN :PURCH-OR RLMN : ITMN :(P-ORD RECA :000C8201 SPP1 :ST
(OUT): SPP2 :....CLOT SPP3 : SUBS :ADMIN

***(IN): FETCH OWNER WITHIN PURCH-ORD-PLACED
***(IN): E
***(IN): SH RECORD

(OUT): RECORD - AREA :00001MON
***(IN): SH PARAM

(OUT): DB-PARAMS (FIRST 8B)
(OUT): FCOD :FTCH6 .. FOPT :RECSET.. SOPT : UINF :PURCHASE RECN :PURCHASE
(OUT): SETN :PURCH-OR RLMN : ITMN :(P-ORD RECA :00001MON SPP1 :ST
(OUT): SPP2 :....CLOT SPP3 : SUBS :ADMIN

DMLTEST DML statements

U930-J-Z125-14-76 351

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

FIND/FETCH (format 7):

record-name[WITHIN set-name-1[CURRENT]]
 lUSING record-element-name-1,... ⎫
 o[USING search-expression] o
 o [RESULT IN set-name-2] o
 o [LIMITED BY set-name-3] o
 o [TALLYING TALLY] o
 o lASCENDING ⎫ lBY⎫ o
 m [SORTED[m }][m }] }
 o nDESCENDING~ nON~ o
 orecord-element-name-2[[,]record-element-name-3]... o
 o lASCENDING ⎫ lBY⎫ o
 o [[,][m }][m }] o
 o nDESCENDING~ nON~ o
 nrecord-element-name-4[[,]record-element-name-5]...]...]~

 lcomplex-1[AND complex-2]⎫
search-expression m }
 ncomplex-2 ~

complex-1 [NOT] condition-1
 lAND⎫
 [m }[NOT] condition-1]...
 nOR ~

complex-2 condition-2[AND condition-2]...

condition-1 record-element-name-6[WITH MASK mask]
 lEQUAL ⎫
 o= o
 oGREATER THANo ldeclaration⎫
 IS[NOT] m } m }
 o> o nliteral ~
 oLESS THAN o
 n< ~

condition-2 record-element-name-7 IS NEXT
 lGREATER THAN⎫
 o> o ldeclaration⎫
 [NOT] m } m }
 oLESS THAN o nliteral-2 ~
 n< ~

record-element-name-2...5
corresponds to a record element in the database

declaration
corresponds to a DECLARE item

When using DECLARE items as compare items, you should note how the contents of the
items have been entered by the MOVE command (see page 327).

DML statements DMLTEST

352 U930-J-Z125-14-76

When DECLARE items are used as mask items, they must be of the same length as the
corresponding items in the database.
Each byte must be identified as either significant (X’F1’) or non-significant (X’F0’).

Examples

***(IN): REMARK *** EXAMPLE FETCH 7 ***
***(IN): REMARK **FETCH-7 RECORD ELEMENT NAMES**

***(IN): S RECA=C' '
***(IN): M RECA,C' 8201'
***(IN): FETCH PURCHASE-ORDER USING P-ORD-MTH,P-ORD-YEAR
***(IN): E
***(IN): SH PARAM
 (OUT): DB-PARAMS (FIRST 8B)
 (OUT): FCOD :FTCH7A.. FOPT :RECITM.. SOPT : UINF :PURCHASE RECN :PURCHASE
 (OUT): SETN :PURCH-OR RLMN : ITMN :(P-ORD RECA :000C8201 SPP1 :ST
 (OUT): SPP2 :....CLOT SPP3 : SUBS :ADMIN
***(IN): SH RECORD,L=10
 (OUT): RECORD - AREA :000C82011E
***(IN): PROC ULI
***(IN): FETCH DUPLICATE WITHIN PURCHASE-ORDER USING P-ORD-MTH,P-ORD-YEAR
***(IN): E
***(IN): SH RECORD,L=10
***(IN): END
***(IN): DO ULI,R=3
***(IN): FETCH DUPLICATE WITHIN PURCHASE-ORDER USING P-ORD-MTH,P-ORD-YEAR
***(IN): E
***(IN): SH RECORD,L=10
 (OUT): RECORD - AREA :799E82011.
***(IN): FETCH DUPLICATE WITHIN PURCHASE-ORDER USING P-ORD-MTH,P-ORD-YEAR
***(IN): E
***(IN): SH RECORD,L=10
 (OUT): RECORD - AREA :854.82010C
***(IN): FETCH DUPLICATE WITHIN PURCHASE-ORDER USING P-ORD-MTH,P-ORD-YEAR
***(IN): E
***(IN): SH RECORD,L=10
 (OUT): RECORD - AREA :785D82010C
***(IN): DEL ULI

***(IN): REMARK **FETCH-7 SEARCH EXPRESSION**

***(IN): RUN P0
***(IN): DCL PARAMS,L=41
***(IN): M PARAMS,*FOPT*SOPT*RECN*ITMN*RECA*SPP1*SPP2*RLMN*
***(IN): SH PARAMS,L=41
 (OUT): PARAMS :*FOPT*SOPT*RECN*ITMN*RECA*SPP1*SPP2*RLMN*
***(IN): DEL PARAMS
***(IN): SET FOPT=C' '
***(IN): SET SOPT=C' '
***(IN): SET RECN=C' '
***(IN): SET ITMN=C' '
***(IN): SET RECA=C' '
***(IN): S SPP1=C' '
***(IN): S SPP2=C' '
***(IN): S RLMN=C' '
***(IN): FIND 1 ARTICLE-DESCR
***(IN): E
***(IN): FETCH ARTICLE WITHIN P-ORD-SPEC USING SIZE IS > 40
***(IN): E
***(IN): SH PARAM
 (OUT): DB-PARAMS (FIRST 8B)
 (OUT): FCOD :FTCH7A.. FOPT :SELSEX.. SOPT : UINF :CLOTHING RECN :ARTICLE

DMLTEST DML statements

U930-J-Z125-14-76 353

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

 (OUT): SETN :PURCHASE-ORDER RLMN : ITMN :0 SIZE RECA :00000110 SPP1 :
 (OUT): SPP2 :.... SPP3 : SUBS :ADMIN
***(IN): SH RECA,L=80
 (OUT): RECA CONTAINS :
 (OUT): 00000110SUMMER DRESS WITH JACKET 23010742...................rn...
***(IN): PROC ULI
***(IN): FETCH DUPLICATE WITHIN P-ORD-SPEC
***(IN): E
***(IN): SH RECA,L=80
***(IN): END
***(IN): DO ULI,R=3,COND=RCODE EQ C'00000'
***(IN): FETCH DUPLICATE WITHIN P-ORD-SPEC
***(IN): E
***(IN): SH RECA,L=80
 (OUT): RECA CONTAINS :
 (OUT): 00000110SUMMER DRESS WITH JACKET 23010744...................rn...
***(IN): FETCH DUPLICATE WITHIN P-ORD-SPEC
***(IN): E
***(IN): SH RECA,L=80
 (OUT): RECA CONTAINS :
 (OUT): 00000110SUMMER DRESS WITH JACKET 23010746....................q...
***(IN): FETCH DUPLICATE WITHIN P-ORD-SPEC
***(IN): E
***(IN): SH RECA,L=80
 (OUT): RECA CONTAINS :
 (OUT): 00000110SUMMER DRESS WITH JACKET 23010748....................q...

If no record exists in the database for the specified values, you can implement access to
the previous or next record (COBOL parameter OR PRIOR/NEXT) by first entering the
FIND/FETCH statement and then supplying the FOPT parameter with RECITP/SECITN or
...ITN before executing the statement (e.g. FETCH PURCHASE-ORDER USING
P-ORD-MTH,P-ORD-YEAR; MOVE FOPT,RECITN;E).

DML statements DMLTEST

354 U930-J-Z125-14-76

FINISH

FINISH[WITH CANCEL]

FREE

FREE[ALL]

GET

 lrecord-name ⎫ lIN⎫
GET [m }][m } record-name]]
 nitem-name,...~ nOF~

IF

IF (format 1):

 lOWNER ⎫
IF[set-name-1] mMEMBER}
 nTENANT~

IF (format 2):

IF set-name-2 IS EMPTY

KEEP

KEEP

MODIFY

 lrecord-name ⎫
 o o
MODIFY m lIN⎫ }
 orecord-element-name,... m }record-name o
 n nOF~ ~

 lINCLUDING⎫ lALL ⎫
 [m } m } MEMBERSHIP]
 nONLY ~ nset-name-1,...~

 lSETS ⎫
 [RETAINING CURRENCY FOR m }]
 nset-name-1,...~

In order to enable CALL DML to correctly identify the items, “IN record-name” must be
specified.

DMLTEST DML statements

U930-J-Z125-14-76 355

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

Examples

(IN): * ************MODIFY RECORD ELEMENT***********
 ***(IN): FETCH 1 SUPPLIER
 ***(IN): E
 ***(IN): SH PARAM
 (OUT): DB-PARAMS (FIRST 8B)
 (OUT): FCOD :FTCH4 .. FOPT :RECSPC.. SOPT : UINF :PURCHASE RECN :SUPPLIER
 (OUT): SETN :P-ORD-PL RLMN : ITMN :(P-ORD-M RECA :00001MON SPP1 :ADMIN
 (OUT): SPP2 :....CLOT SPP3 : SUBS :ADMIN
 ***(IN): SH RECA,L=104
 (OUT): RECA CONTAINS :
 (OUT): 00001MONA FASHIONS 7500KARLSRUHE 1 AUGUSTENSTR
 (OUT): ASSE 1 00
 ***(IN): M RECA,999,D=99
 ***(IN): MODIFY SUPP-STREET-NO
 ***(IN): E
 ***(IN): SH PARAM
 (OUT): DB-PARAMS (FIRST 8B)
 (OUT): FCOD :MODIF2.. FOPT :CORUNT.. SOPT : UINF : RECN :SUPPLIER
 (OUT): SETN :P-ORD-PL RLMN : ITMN :(SUPP-ST RECA :00001MON SPP1 :ADMIN
 (OUT): SPP2 :....CLOT SPP3 : SUBS :ADMIN
 ***(IN): SH RECA,L=104
 (OUT): RECA CONTAINS :
 (OUT): 00001MONA FASHIONS 7500KARLSRUHE 1 AUGUSTENSTR
 (OUT): ASSE 99900
 ***(IN): M RECA,001,D=99
 ***(IN): MODIFY SUPP-STREET-NO
 ***(IN): E
***(IN): SH PARAM
 (OUT): DB-PARAMS (FIRST 8B)
 (OUT): FCOD :MODIF2.. FOPT :CORUNT.. SOPT : UINF : RECN :SUPPLIER
 (OUT): SETN :P-ORD-PL RLMN : ITMN :(SUPP-ST RECA :00001MON SPP1 :ADMIN
 (OUT): SPP2 :....CLOT SPP3 : SUBS :ADMIN

***(IN): REMARK *** EXAMPLE MODIFY OWNER-ASSIGNMENT ***

***(IN): RUN P0
***(IN): DCL PARAMS,L=41
***(IN): M PARAMS,*FOPT*SOPT*RECN*ITMN*RECA*SPP1*SPP2*RLMN*
***(IN): SH PARAMS,L=41
 (OUT): PARAMS :*FOPT*SOPT*RECN*ITMN*RECA*SPP1*SPP2*RLMN*
***(IN): DEL PARAMS
***(IN): SET FOPT=C' '
***(IN): SET SOPT=C' '
***(IN): SET RECN=C' '
***(IN): SET ITMN=C' '
***(IN): SET RECA=C' '
***(IN): S SPP1=C' '
***(IN): S SPP2=C' '
***(IN): S RLMN=C' '
***(IN): FIND 1 PURCHASE-ORDER
***(IN): E
***(IN): FETCH OWNER WITHIN PURCH-ORD-PLACED
***(IN): E
***(IN): SH RECA,L=130
 (OUT): RECA CONTAINS :
 (OUT): 00001MONA FASHIONS 7500KARLSRUHE 1 AUGUSTENSTR
 (OUT): ASSE 001000721609422................
 (OUT):
***(IN): M RECA,00002BRAKSPEARS BREWERY

DML statements DMLTEST

356 U930-J-Z125-14-76

***(IN): E
***(IN): FIND 1 PURCHASE-ORDER RETAINING CURRENCY FOR MULTIPLE
***(IN): E
***(IN): MODIFY PURCHASE-ORDER ONLY PURCH-ORD-PLACED MEMBERSHIP
***(IN): E
***(IN): SH PARAM
 (OUT): DB-PARAMS (FIRST 8B)
 (OUT): FCOD :MODIF1.. FOPT :ONLSET.. SOPT : UINF : RECN :PURCHASE
 (OUT): SETN :(PURCH-O RLMN : ITMN : RECA :0000283 SPP1 :MULTIPLE
 (OUT): SPP2 :.... SPP3 : SUBS :ADMIN
***(IN): FETCH OWNER WITHIN PURCH-ORD-PLACED
***(IN): E
***(IN): SH RECA,L=130
 (OUT): RECA CONTAINS :
 (OUT): 00002BRAKSPEARS BREWERY 8000MUENCHEN 2 MARSSTRASSE
 (OUT): 77 000899128741................
***(IN): FIND 1 SUPPLIER
***(IN): E
***(IN): FIND 1 PURCHASE-ORDER RETAINING MULTIPLE
***(IN): E
***(IN): E

READY

READY[realm-name,...]
 lEXCLUSIVE⎫ lRETRIEVAL⎫
 [USAGE-MODE IS[m }]m }]
 nPROTECTED~ nUPDATE ~

Example

***(IN): SUBS IS ADMIN
***(IN): M USERGROUP,CL8'SALES'
***(IN): M USERNAME,CL24'MAYER'
***(IN): M PASSWORD,CL48'HUGO'
***(IN): READY USAGE-MODE IS EXCLUSIVE UPDATE
***(IN): EX
***(IN): SH PARAM
 (OUT): DB-PARAMS (FIRST 8B)
 (OUT): FCOD :READYC.. FOPT :ALLEUP.. SOPT : UINF : RECN :ARTICLE
 (OUT): SETN : RLMN : ITMN : RECA :........ SPP1 :ADMIN
 (OUT): SPP2 :SALES SPP3 : SUBS :ADMIN

DMLTEST DML statements

U930-J-Z125-14-76 357

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

STORE

lIMP ⎫
STORE rec-name[m }][RETAINING CURRENCY FOR
 nIMP-LONG~

 lMULTIPLE ⎫
 o lSETS ⎫ o

m[REALM][m }][RECORD]}]
 n nset-name,...~ ~

The IMP or IMP-LONG option must be specified in the following cases:

– The record type rec-name can be stored in several realms.

If the record type rec-name was not defined with the DDL clause LOCATION MODE (see
the “Design and Definition“ manual), you may optionally specify IMP or IMP-LONG.
In addition, the predefined item IMP-AREA-ID must be supplied with the name of the
realm to be searched for the record.

Distributable lists are an exception to the aforementioned rule:
When a record which is a member of a distributable list is stored, a free page is
searched for in the DBH in the preferred realm if needed. In this case any realm speci-
fication in the IMP-AREA-ID item is ignored.

– The record type record-name was defined with LOCATION DIRECT or LOCATION
DIRECT-LONG (see the “Design and Definition“ manual).

IMP must be specified for LOCATION DIRECT, and IMP-LONG must be specified for
LOCATION DIRECT-LONG.
In addition, the appropriate database key or binary zero must be entered in the
predefined item IMP-DB-KEY or IMP-DB-KEY-LONG prior to storing.

Examples

***(IN): REMARK *** EXAMPLE STORE DB-KEY ***

***(IN): RUN P0
***(IN): DCL PARAMS,L=41
***(IN): M PARAMS,*FOPT*SOPT*RECN*ITMN*RECA*SPP1*SPP2*RLMN*
***(IN): SH PARAMS,L=41
 (OUT): PARAMS :*FOPT*SOPT*RECN*ITMN*RECA*SPP1*SPP2*RLMN*
***(IN): DEL PARAMS
***(IN): SET FOPT=C' '
***(IN): SET SOPT=C' '
***(IN): SET RECN=C' '
***(IN): SET ITMN=C' '
***(IN): SET RECA=C' '
***(IN): S SPP1=C' '
***(IN): S SPP2=C' '
***(IN): S RLMN=C' '
***(IN): FETCH LAST ARTICLE
***(IN): E
***(IN): S RECA=C' '
***(IN): M UINF,FOOD

DML statements DMLTEST

358 U930-J-Z125-14-76

***(IN): M IMP-DB-KEY,X'09000099'
***(IN): M RECA,C'001144 0DR.MAYERORANGEJUICE'
***(IN): STORE ARTICLE IMP
***(IN): E
***(IN): SH PARAM

(OUT): DB-PARAMS (FIRST 8B)
(OUT): FCOD :STORE1.. FOPT :IMPDAT.. SOPT : UINF :FOOD RECN :ARTICLE
(OUT): SETN :(P-ORD-P RLMN : ITMN :(SUPP-ST RECA :001144 0 SPP1 :MULTIPLE
(OUT): SPP2 :...rCLOT SPP3 : SUBS :ADMIN

***(IN): FETCH LAST ARTICLE
***(IN): E
***(IN): SH RECA,L=80
 (OUT): RECA CONTAINS :
 (OUT): 001144 0DR.MAYERORANGEJUICE
***(IN): ERASE ARTICLE
***(IN): E

***(IN): REMARK *** EXAMPLE STORE SET OCCURRENCE ***

***(IN): S RECA=C' '
***(IN): M RECA,000003
***(IN): FETCH ART-DESCR USING ART-NO
***(IN): E
***(IN): S RECA=C' '
***(IN): M RECA,00002BRAKSPEAR
***(IN): FETCH SUPPLIER USING SUPPL-NO
***(IN): E
***(IN): S RECA=C' '
***(IN): M RECA,C'901145 0MILLER DIET MEALS'
***(IN): STORE ARTICLE
***(IN): E
***(IN): SH PARAM
 (OUT): DB-PARAMS (FIRST 8B)

(OUT): FCOD :STORE1.. FOPT :RECNAM.. SOPT : UINF :FOOD RECN :ARTICLE
(OUT): SETN :(P-ORD-P RLMN : ITMN :(SUPPL-N RECA :901145 0 SPP1 :MULTIPLE
(OUT): SPP2 :...rCLOT SPP3 : SUBS :ADMIN

***(IN): FETCH LAST ARTICLE
***(IN): E
***(IN): SH RECA,L=80
 (OUT): RECA CONTAINS :
 (OUT): 901145 0MILLER DIET MEALS

DMLTEST Program execution

U930-J-Z125-14-76 359

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

9.4 DMLTEST program execution

This section contains information on the following topics:

– interrupts that can occur during a program run

– communication between DMLTEST and one or more databases.

Before executing DMLTEST, you should first prepare the subschema that you want to work
with by means of the BCALLSI utility routine (see the “Creation and Restructuring” manual).

9.4.1 Interrupts

An interrupt occurs in the following cases:

– Logical and syntactical errors in commands
– Reaching the TRACE limit
– Entering the WAIT command
– Screen overflow

If interactive mode is to be used, input is expected from the terminal.

An interrupt status is indicated by the message:

STATUS IS BREAK

Program execution DMLTEST

360 U930-J-Z125-14-76

The following DMLTEST commands can be used to respond to an interrupt:

NEXT to abort processing of a command. The next command in the current
command sequence is started.

CONTINUE to simply continue processing.

Figure 11: Response to interrupts using CONTINUE

ESCAPE to abort processing of all started procedures or command sequences. The
next command is expected from SYSDTA.

Figure 12: Response to interrupts using ESCAPE

SYSDTA
1st. procedure level ...

DO PROC1

Interrupt

e.g. SCREEN OVERFLOW
CONTINUE

SYSDTA
1st. procedure level 2nd. procedure level ...

DO PROC1

DO PROC2

Interrupt

e.g. SCREEN OVERFLOW
next ESCAPE
command

DMLTEST Program execution

U930-J-Z125-14-76 361

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

LEAVE to abort processing of the current procedure or command sequence and
pass control to the next-higher level of procedure or command sequence or
to the terminal.

Figure 13: Response to interrupts using LEAVE

When a CONTINUE, ESCAPE or NEXT command is entered, the interrupt is automatically
terminated. A LEAVE command, by contrast, must be followed by one of the other three
commands if you want the interrupt to be terminated.

SYSDTA 1st. procedure level 2nd procedure level ...

DO PROC1

DO PROC2

Interrupt
e.g. SCREEN OVERFLOW
LEAVE

Program execution DMLTEST

362 U930-J-Z125-14-76

9.4.2 Communication with one or more databases

In order to work with one database, you must first enter the following specifications:

– the desired DBH variant (DBH command)

– the desired language (LANGUAGE command)

– the desired subschema
(SET SUBS=subschema-name or SUBSCHEMA IS subschema-name)

You can then execute the READY statement.

The following applies for each DML statement:
If you have supplied values in the parameter list, the items of the parameter list will remain
unchanged until you overwrite them with new values. The record area and the user infor-
mation area can also be overwritten by DML statements.
The EXECUTE command can be repeated with the same parameter values any number of
times.

The record area and user information area refer to the task last executed.
The SHOW, PRINT or DISPLAY command can be used to view the results.

Multi DB

If you are running DMLTEST on several databases, you must ensure that each database
remains symbolically addressable.

A database is identified via the subschema name. The corresponding information can be
passed to DMLTEST by specifying SET SUBS=subschema-name or
SUBS IS subschema-name. The first 6 characters of the specified name are used as the
symbolic name of the database; however, you must specify its full length (30 characters).
Different subschema names must be unique in the first 6 characters.

When KDBS is used, the converter ensures the selection of the appropriate database.

DMLTEST Error messages

U930-J-Z125-14-76 363

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ar
ch

 2
01

6
 S

ta
nd

 1
0

:1
8.

51
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
17

0
1_

U
D

S
_A

nw
\e

n\
ud

sa
nw

.k
0

9

9.5 Error messages

If an error is the cause of an interrupt, an appropriate message is output. To obtain further
explanations, the user can enter the HELP command.

Example

***(IN): DEF RECORD,LASTNAME,D=10,L=15
 (OUT): DMLTEST: USED NAME. STATUS IS NORMAL.
***(IN): HELP
 (OUT): LAST INPUT :DEF RECORD,LASTNAME,D=10,L=15
 (OUT): FROM SYSDTA STATUS IS NORMAL
 (OUT): ERROR DESCRIPTION :NAME IST SCHON FUER EINE DEFINITION VERGEBEN!
 (= name is already assigned to definition)

The designations used in the general error texts have the following significance:

PARAM-NAME Parameter or item

DB-NAME Item in subschema

ELEMENT Non-identifiable item

Overview of general error texts

COMMAND NOT FOUND
MISSING NECESSARY OPERAND
SYNTAX ERROR
OPERAND ERROR
OPERAND-NAME NOT FOUND
TOO MANY OPERANDS
INTERNAL BUFFER OVERFLOW
TOO LARGE DISTANCE
PARAM-NAME NOT FOUND
COMMAND ILLEGAL IN CONTEXT
EDT NOT AVAILABLE
DSCEXT WAS CALLED BY UDS1

ERROR ON RUN-FILE
NOT READY EXECUTED
DB-NAME UNKNOWN
DB-ERROR STATUS
ELEMENT NOT ALLOWED
NUMERICAL ERROR
USED NAME
WARNING

1 If the user information area has been destroyed, it must be reconstructed by the user (see page 124).

Error messages DMLTEST

364 U930-J-Z125-14-76

U930-J-Z125-14-76 365

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

10 Appendix

10.1 Status codes

DML status codes

Status code giving information

001 FIND/FETCH format 1 or 7 with OR PRIOR/OR NEXT specification: No record has
been found which matches the values given. The next record in the sort sequence
was made available.

Status codes with progress information of the online utility

010 RELOCATE DML: Source and target levels are identical. Relocation has been
completed.

REORGPPP DML: End of realms reached. Reorganization has been completed.

011 RELOCATE DML: Source and target levels are 0 when INITIALIZE=*NO.

REORGPPP DML: Current page number is 0 when INITIALIZE=*NO.

When an attempt is made to continue the relocations with INITIALIZE=*NO, it is
determined that no further information is available, e.g. because the database has
been detached in the meantime or a new session section has been started.

012 RELOCATE DML: A locking conflict occurred with a parallel transaction when a
source page was read.

REORGPPP DML: A locking conflict occurred with a parallel transaction when a
page was read.

013 A locking conflict occurred with a parallel transaction when a target page was read.

DML status codes Appendix

366 U930-J-Z125-14-76

Status codes relating to data consistency:

018 Deadlock status (mutual locking of several transactions involving UDS/SQL
resources);
FINISH WITH CANCEL is executed. It is advisable to repeat the transaction (a
limited number of times). For UDS-D:
In UDS/SQL applications without openUTM, global deadlock recognition is carried
out by means of timeout monitoring (PP DEADTIME) of wait situations. Once the
time limit has been exceeded, the status code 018 is indicated, even if there is no
actual deadlock.

020 FIND/FETCH (only CALL DML)
A page to be accessed is locked by another transaction.

Status codes relating to retrieval of records:

021 The end of a record type, set or realm has been reached.

FIND/FETCH formats 2 (DUPLICATE) and 3 (USING):
No record with the same values as the corresponding CRR or CRS can be found.

FIND/FETCH format 3 (without USING):
The end of the selected records has been reached.

FIND/FETCH format 4:
No NEXT or PRIOR record can be found or
integer or name contains a value that addresses no record within the realm/record
type/set occurrence.

022 The transaction attempts to open a database or realm which is locked for UPDATE
and RETRIEVAL. Possible reasons for the lock are:

Database level:

– The database administrator has locked the database with the DAL command
ACCESS.

– The DBDIR of the database is locked (see “realm level”).

Realm level:

– The realm has been excluded from the database during restructuring.

– The realm has been disconnected by the database administrator or by
UDS/SQL error handling.

– The realm has been locked by the database administrator, using the DAL
command ACCESS.

Appendix DML status codes

U930-J-Z125-14-76 367

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

023 In SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER
only: no set occurrence which satisfies the set selection criteria can be found.

024 No record satisfying the record selection expression can be found.

FIND/FETCH format 1:
The database key does not return any records for one of the following reasons:
– Its record type number does not match the record type specified.
– Its value lies within the limits of its DBTT, but no associated record exists in the

database.

FIND/FETCH formats 2 (ANY) and 7:
No record matching the initialized data elements or search expression can be
found.

FIND/FETCH format 4:
No record can be found within the specified record type, realm or set occurrence.

027 The subscript of the specified item name does not lie within the range defined by
the OCCURS clause in the subschema.

028 The specified database key contains an invalid record reference number or a record
sequence number that lies outside the range of its DBTT.

029 FIND/FETCH formats 4 and 5:
The Current of Realm or the Current of Set does not have the record type specified
in the statement.

Status codes relating to currency indicators:

031 The Current of Realm, the Current of Set or the Current of Record type is not known.

FIND/FETCH format 3:
The Current of Set is owner and not a member of the specified set or the specified
set name differs from the set name specified in the preceding FIND7.

FIND/FETCH format 6 and format 7:
The owner has been erased.

IF format 2:
The CRS has been erased or disconnected from the specified set.

032 The Current of Run Unit is not known or has been erased.

033 The Current of Run Unit does not have the record type specified in the statement.

DML status codes Appendix

368 U930-J-Z125-14-76

Status codes relating to naming conventions:

042 Record type, set or realm is not defined in the called subschema; or

an item which is part of an ASC, DESC or CALC key is not defined in the
subschema; or

following a subschema modification, the application program was not recompiled
(COBOL DML) or the BCALLSI run was omitted (CALL DML); or

error on the BIB interface (see status code 103); or

in the case of an online utility a realm was specified in which no activities are
permitted.

043 STORE and FIND/FETCH format 2:
The AREA-ID data element contains the name of a realm which is not specified in
the DDL WITHIN clause or does not belong to the called subschema or
in SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER and
owner record type = LOCATION MODE IS CALC: the AREA-ID item of the owner
record contains the name of a realm which is not specified in the DDL WITHIN
clause or does not belong to the called subschema.

044 IF:
Specification of a dynamic set is not permitted.

Status codes relating to data elements:

051 Duplicate occurrences of key values in the database. This means that the execution
of a DML statement would contradict a DUPLICATES ARE NOT ALLOWED speci-
fication in an ORDER IS SORTED BY DEFINED KEYS clause or SEARCH KEY
clause of a set in which the record involved is a member, or the LOCATION MODE
IS CALC or SEARCH KEY clause of the record involved.

Status codes relating to records:

071 FIND/FETCH format 2 (DUPLICATE), 3 and 5:
The entry point of the DML statement (CRR, CRA or CRS) has been deleted or
disconnected from the current set occurrence. If the records found are processed
(FIND3 without USING), update operations of the user’s own transaction do not
result in the entry point being lost; only updates performed by foreign transactions
cause this to happen.

072 ERASE:
The record involved is owner of a non-empty set occurrence and therefore cannot
be erased by the selected ERASE variant.

Appendix DML status codes

U930-J-Z125-14-76 369

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

Status codes relating to set membership:

081 CONNECT (set-name):
The CRU is already a member in one of the specified sets or one of the specified
sets is not a member of the CRU.
CONNECT (ALL):
The CRU is already a member of all its member sets.
MODIFY (set-name):
One of the specified sets is not a member set of the CRU.
MODIFY (ALL):
The CRU is a member of none of its member sets.

082 DISCONNECT (set-name):
The CRU is a MANDATORY member of one of the specified sets or one of the
specified sets is not a member of the CRU
DISCONNECT (FROM ALL):
No member set of the CRU is OPTIONAL.

083 DISCONNECT (set-name) and MODIFY (set-name):
The CRU is not a member in one of the specified sets
DISCONNECT (FROM ALL):
At least one member set of the CRU is OPTIONAL but the CRU is not a member of
any of these OPTIONAL sets

Status codes relating to a READY status:

091 A realm is not in the READY status (i.e. a realm was not explicitly specified at
READY or is not part of the current subschema), or

realm names were explicitly specified at READY in an ERASE
PERMANENT/SELECTIVE/ALL statemen, or

the DBTT of a record type to be relocated by the online utility is in an unopened
realm.

092 No DML statement containing an update function is permitted in a RETRIEVAL
processing chain,
or the processing chain for an ERASE/PERMANENT/SELECTIVE/ALL was not
opened with EXCLUSIVE UPDATE,
or, if the P parameter is set to PP TA-ACCESS=SHARED, an attempt is made to
open a processing chain in the usage mode PROTECTED or EXCLUSIVE.

093 The Database Handler (DBH) does not allow the processing chain, since the
database involved is already open within the transaction (“second READY” within a
processing chain).

DML status codes Appendix

370 U930-J-Z125-14-76

099 (only CALL DML or online utility)
When opening a transaction, a realm is locked by another transaction.

Status codes relating to erroneous DML statements:

101 FIND/FETCH format 4:
The value zero has been specified for integer or item-name or
a negative value was used in a search in a CHAIN that is not chained backward

FIND/FETCH format 6:
set-name must not identify a singular set.

FIND/FETCH format 7:

– OR PRIOR or OR NEXT could not be executed, since no sorted and indexed
key was found.

– “WITHIN set-name-1 USING record-element-name-1,...“ was specified. The speci-
fication of a dynamic set in set-name-1 is not permitted.

– LIMITED BY dynamic-set ... SORTED BY ... was specified.
It is not possible to sort the intersection of a selected set (hit list) and a dynamic
set.

– LIMITED BY sorted-dynamic-set ... was specified.
It is not possible to create the intersection of a selected set and a sorted
dynamic set.

FINISH
Type of FINISH (with or without CANCEL) cannot be identified.

102 SET, ACCEPT (format 1):
A large database key value (database key value with a REC-REF > 254 and/or an
RSQ > 224-1) cannot be copied to an item of type USAGE IS DATABASE-KEY.
A subschema must be used in which SUBSCHEMA FORM IS OLD is not specified
and which was created in UDS/SQL V2.0 or higher. The field specified must also be
of the type USAGE IS DATABASE-KEY-LONG.

103 Error in the BIB interface.
Possible cause: incorrect COBOL compiler or incorrect COBOL runtime system,
error in the CALL-DML converter, in IQS, in the online utility, or in a utility routine
which generates BIBs, or error in the Database Handler.

Status codes relating to system errors:

113 A serious error was detected in the Database Handler or in the database on
accessing a database page.

Appendix DML status codes

U930-J-Z125-14-76 371

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

Status codes relating to UDS/SQL resources:

122 The transaction has been prematurely terminated with CANCEL by the DBH;
possible causes for this are:

– RLOG file too small or split too often

– UDS/SQL buffer too small, increase PP BUFFERSIZE=n.

– Transaction rolled back due to a deadlock resolution that has been executed in
the meantime.

– Intervention by the database administrator with DAL (commands ABORT,
PERFORM, CLOSE).

– New update transactions during writing of a checkpoint.

– Occurrence of a file or programming error which can be bypassed (temporarily)
by executing CANCEL for the transaction.

– An error in a DML statement which cannot be rolled back on its own, and thus
requires a CANCEL of the complete transaction. The database administrator
was notified (via a UDS/SQL message).

– For UDS-D:
Transaction rollback can also be due to errors or administrator intervention in a
remote configuration (e.g. ABORT, CLOSE CALLS, CLOSE RUN-UNITS,
%TERM) or to errors in the link to a remote configuration.

123 The transaction attempts to open a realm, which is locked against updates, with
READY USAGE-MODE UPDATE. The lock is due to one of the following reasons:

Configuration level:
The current session of the independent DBH was started without RLOG logging (PP
LOG=NO).

– Opening of the RLOG file was unsuccessful, which means that RLOG logging
is currently impossible.

Database level:

– The database is being activated as a SHARED RETRIEVAL database.

– The database is not an original database, but a backup database.

– Opening of a new ALOG file was unsuccessful, which means that AFIM logging
is currently impossible.

– The database administrator has locked the database against updates by means
of the DAL command ACCESS.

– The DBDIR of the database is locked for updates (see “realm level”).

DML status codes Appendix

372 U930-J-Z125-14-76

Realm level:

– The database administrator has locked the realm against updates by means of
the DAL command ACCESS.

– The transaction attempts to open a realm of a remote database although the
current session runs without RLOG logging (due to PP LOG=NO or unsuc-
cessful open of RLOG file); there is thus no basis for the two-phase commit
protocol of distributed transactions.

124 The transaction was rolled back prematurely by the DBH with CANCEL.

Cause:
New update transaction or update processing chain when writing a checkpoint or
switching the RLOG file.

This status code is set if the load parameter PP ORDER-DBSTATUS=SPECIAL
was specified for the current session. Otherwise, status code 122 is set under the
conditions indicated above.

131 The Database Handler does not allow the transaction since the maximum permitted
number of parallel transactions or user tasks, which was specified by the load
parameter TRANSACTION when the Database Handler was loaded, has been
reached.

132 The Database Handler does not allow the transaction since the maximum permitted
number of subschemas, which was specified by the load parameter SUBSCHEMA
when the Database Handler was loaded, has been reached.

Status codes relating to the sequence of DML statements:

134 The Database Handler does not allow the DML statement since no transaction is
open.

136 A DML statement, though belonging to an existing transaction, is rejected because
it refers to a database (supplies a DB reference) for which no processing chain of
the transaction currently exists.

137 It is not possible to mix SQL and non-SQL statements in a transaction (exception:
accessing different UDS/SQL configurations via openUTM). A mixture of COBOL
DML and CALL DML statements in a processing chain is not permitted.

Appendix DML status codes

U930-J-Z125-14-76 373

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

Status codes relating to subschemas:

141 The transaction has specified an invalid or unknown subschema name, or the first
6 characters of the subschema name are not unique in the current DB configuration,
or the database involved is not active.

For UDS-D:
The specified subschema is

– not in the local configuration and not in the distribution table.

– in the distribution table, but not in the corresponding UDS/SQL configuration.

– in the distribution table, but the corresponding UDS/SQL configuration is not
accessible, because

a) the computer is not accessible,

b) the configuration is not running or is running without distribution active.

– in the distribution table but locked, or the related database or configuration is
locked.

– not in the local configuration and UDS-D has not been started in the local config-
uration.

The number of remote databases addressed by this transaction exceeds the value
PP DISDB.

142 The subschema description in DBDIR (SSIA) has been destroyed. Repeat BGSSIA
run.

144 The DML statement specifies a different subschema from the one specified in the
current READY statement (subschema reference).

145 The subschema specified in the READY statement cannot be processed because
it does not match the current status of the schema (subschema DDL compilation
and/or BGSSIA run missing after database restructuring),
or the READY statement is rejected because the UDS/SQL version does not match
the database:

– The database was set for the year-2000-compatible processing of two-digit year
fields or this setting was not correctly removed. Therefore the statement can
only be processed with a UDS/SQL version as of V2.0B30.

– A subschema contains national Daten (Unicode: UTF-16, PICTURE N, USAGE
NATIONAL). Therefore it may only be processed with a version as of UDS/SQL
V2.5.

DML status codes Appendix

374 U930-J-Z125-14-76

146 COBOL DML: The subschema with which the module of the current DML statement
was compiled does not correspond with the current status of the database.
CALL DML: The SSITAB module used does not correspond with the current status
of the database.

Status codes relating to DBH availability:

151 The Database Handler is not yet available or is being terminated normally (termi-
nation in progress).

152 The Database Handler has been terminated abnormally.

154 An irrecoverable error has been detected in UDS/SQL; the program should be
terminated (STOP RUN for COBOL programs). The transaction was not completed.

155 While UDS/SQL was processing a DML statement, a further DML statement for the
same transaction was receive (deserialization).
Possible cause of error:
Asynchronous activities performed by the user program (e.g. DML statement in
STXIT routine) or UDS/SQL system error.

Further status codes of the UDS online utility

161 A transaction of an online utility is already active in the same realm.

162 A user transaction which is running in parallel has activated an online realm
extension and thus temporarily hindered the online utility.

163 The online utility is not permitted in a temporary realm.

164 USAGE-MODE EXCLUSIVE UPDATE is required for this RELOCATE type

165 The specified SET is not a distributable list

166 The specified realm is not permitted for this record type

167 Contending change of a parallel user TA. The utility TA is reset.

Appendix DML status codes

U930-J-Z125-14-76 375

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

Status codes relating to FIND/FETCH:

183 The search expression exceeds the maximum length.

184 The temporary realm is not available.

191 Both the object set and the LIMITED set are dynamic sets.

192 The LIMITED set is empty.

193 FIND/FETCH format 7: The LIMITED set contains a different record type from the
object set

FIND/FETCH formats 4 and 7:
The object set is dynamic and contains a record type different from the on specified.

FIND/FETCH format 3:
The specified record name differs from the record name specified in the preceding
FIND/FETCH format 7.

194 The comparison value or sort item has the length 0 or a length that is not permitted
for the item type.

195 The comparison value or sort item has an unknown item type or the comparison
value contains incompatible data.

197 No preceding FIND/FETCH format 7.

198 The CRS of the result set has been disconnected from the object set or connected
to another occurrence by a different transaction.

DML status codes Appendix

376 U930-J-Z125-14-76

Status codes relating to interoperation with openUTM:

200 FINISH:
The FINISH statement has been accepted, but the execution of FINISH will be
delayed until the openUTM end-of-transaction call to the DC controller (PEND). No
further DML statements are accepted.

201 A further DML statement was issued after the pended FINISH. The DML statement
is ignored.

218 Deadlock involving more than one system that can only be resolved by releasing
the openUTM application task (e.g. with PEND RS).

Examples:

– local UDS/SQL-openUTM operation:
Deadlock between UDS/SQL resources (data) and openUTM resources
(tasks).

– Distributed processing via UDS-D or openUTM-D:
Deadlock between UDS/SQL resources (data) and/or openUTM resources
(tasks).

This type of deadlock is recognized by means of timeout monitoring of wait situa-
tions (PP DEADTIME). When this time limit is exceeded, status code 218 is
indicated, even if no actual deadlock has occurred.

Status codes relating to LOOK:

781 Element not found or realm name unknown to the online utility.

782 No next element available.

783 One element in the list not found.

784 The item reference entered does not exist. The description with the next smallest
item reference was output.

785 The result vector of a compound LOOKC function must be retrieved by a contiguous
sequence of corresponding LOOKC statements.

786 The record type cannot be processed with this subschema because it contains data
of a type which is not known to the application program.

789 The specified subschema does not exist.

Appendix DML status codes

U930-J-Z125-14-76 377

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

Status codes relating to allocation of memory space or database key:

802 The memory space in the realm is exhausted or an activated online realm extension
has failed. The record involved cannot be stored or inserted in a set occurrence.

804 No further database key is available for storage of a new record or an activated
online realm extension has failed.

805 The system address space of the DBH is exhausted. The DBH tables can no longer
be extended dynamically. The database administrator was notified.

Status codes relating to variable-length items and compression:

888 The length of the variable item is greater than that defined in the subschema or is
negative.

898 STORE/MODIFY format 2 is not allowed for variable-length items.

899 STORE:
The number of items to be stored is so great that the size of the compressed record
is greater than a page.

GET:
One of the desired items is not present in the compressed record in the database.

MODIFY format 1:
This format is not allowed if the record accessed is present in compressed form.

MODIFY format 2:
One of the items to be modified is not present in the compressed record.

Status codes relating to access rights:

901 Access to a realm, record or set is not permitted within the user group or the utility
routine ONLINE-PRIVACY or ONLINE-UTILITY is trying to access a database
which is not contained in the utility routine’s execution USER-ID. It is not possible
to bypass this behavior of the utility routines by setting the P parameter PRIVACY-
CHECK to OFF.

950 User group unknown (see the “Creation and Restructuring“ manual, BPRIVACY).

954 No access authorization has been defined for the specified user group.

CALL DML status codes Appendix

378 U930-J-Z125-14-76

CALL DML status codes

DML optional entry error:

C00 The specified function code is not correct.

C01 The specified function option is not allowed with the specified function code.

C02 The specified secondary option is not allowed with the specified combination of
function code and function option, or it contains syntax errors.

Record name error:

C03 The specified record name is not present in the relevant subschema or is not
unique.

C04 A mandatory record name has not been specified.

Set name error:

C05 The specified set name is not present in the current subschema or is not unique.

C06 Syntax error in the set name list
(too many set names; incorrect separators or terminators for set names; set name
occurs more than once)

Realm name error:

C07 The specified realm name is not present in the current subschema or is not unique.

C08 Syntax error in the realm name list
(too many realm names; incorrect separators or terminators for realm names; realm
name occurs more than once)

Item name error:

C09 The specified item name is not present in the relevant record of the current
subschema or is not unique.

C10 Syntax error in the item name list
(too many item names; incorrect separators or terminators for item names)

Appendix CALL DML status codes

U930-J-Z125-14-76 379

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

Result of IF statement:

C11 The IF condition is not satisfied.
C11 should not be regarded as an error code but rather as the result of the DML
statement IF; the code is 000 if the condition is satisfied.

Search expression error:

C20 The search expression contains too many search conditions.

C21 A NXT search condition after an OR operator is not allowed.

C22 The separator before and after an item name or relational operator in a search
condition must always be a space.

C23 The number of parentheses in a NXT search condition must be equal to zero.

C24 The mask for a search condition may only consist of the characters 0 and 1 and
must be terminated with a space.

C25 A NXT search condition may not be enclosed in parentheses.

C26 The length of the mask for a search condition must be the same as the length of the
item.

C27 NXT search conditions may only be located at the end of a search expression.

C28 A search condition is not terminated with _OR_, _AN_ or _END.

C29 The length of a value in a search condition is incorrect.

C30 The number of right-hand parentheses in a search condition is not numeric.

C32 There are more left-hand than right-hand parentheses in a search expression.

C33 The NEQ relation is not allowed in a NXT search expression.

C34 The relational operator in a search condition is not correct.

C35 The number of left-hand parentheses in a search condition is not numeric.

C37 Too many right-hand parentheses have been specified in a search condition.

C38 The relational operator in a search condition is not followed by a space.

C39 The item name of a search condition is not present in the current subschema or is
not unique.

C40 The item type of a search condition is printable numeric but the associated
comparison value is not.

C41 The item type of a search condition is packed decimal but the associated
comparison value is not.

CALL DML status codes Appendix

380 U930-J-Z125-14-76

C42 Search conditions are not allowed for this item type.

Retaining entry error:

C61 The specified retaining option (special parameter 1) is not correct.

C62 A specified retaining set name (special parameter 1) is not present in the current
subschema or is not unique.

C63 Syntax error in the retaining set name list
(too many set names; incorrect separators or terminators for set names; set name
occurs more than once).

Other errors:

C66 The SSITAB module of the subschema cannot be identified, or the specified
subschema name matches the one in the SSITAB module only in the first 6
characters, but not in the full length.
Execute BCALLSI run.

C72 The integer indicating the record position in a FIND4/FTCH4 call must not be zero.

Specific FIND7A/FTCH7A errors:

C74 The specified name of the limited set is not present in the current subschema or is
not unique.

C75 The specified name of the result set is not present in the current subschema or is
not unique.

Specific LOOKC errors:

C80 The number of LOOKC blocks must be between 1 and 255 (inclusive).

User communication errors:

C90 A work buffer of the size needed by the UDSCDML converter module cannot be
made available. If necessary, the communication pool must be enlarged (see the
“Database Operation” manual).

C91 The error exit DSCEXT was not defined.

C94 The converter module UDSCDML is not present.

C95 The SSITAB module generated by BCALLSI is not present or could not be loaded
in the memory (e.g. due to a lack of memory space).

Appendix CALL DML status codes

U930-J-Z125-14-76 381

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

C98 An attempt is made to execute ACCPTL, FIND1L, FTCH1L, STORE1L or
STORE2L with an SSITAB module which was generated before UDS/SQL V2.0 or
with a "FORM IS OLD" subschema. An SSITAB module with UDS/SQL V2.0 or
higher is required to execute the specified functions.

C99 The SSITAB module is invalid or incompatible with the version of the CALL DML
translating routine.

Validity check on DML statements based on the subschema structure:

P01 A FIND2/FTCH2 statement with optional parameter ANY... is only allowed if
LOCATION MODE IS CALC is specified and all keys of the record type are present
in the subschema.

P02 A FIND2/FTCH2 statement with optional parameter DUPLIC is only allowed if
LOCATION MODE IS CALC and DUPLICATES ARE ALLOWED are specified and
all keys of the record type are present in the subschema.

P03 Duplicates are not allowed for the current FIND3/FTCH3 statement.

P04 A FIND7A/FTCH7A statement is only allowed if the referenced record type is a
member of the specified set.

P05 A FIND7A/FTCH7A statement for SET OCCURRENCE IS THRU LOCATION
MODE OF OWNER is:

– only allowed in connection with LOCATION MODE IS DIRECT if the item
involved is present in the subschema.

– only allowed in connection with LOCATION MODE IS CALC if all keys of the
record type are present in the subschema.

P06 A FIND4/FTCH4 or FIND5/FTCH5 statement is only allowed if the specified record
type is a member of the specified set.

P07 A FIND4/FTCH4 or FIND5/FTCH5 statement is only allowed if the specified record
type is permissible in the specified realm.

P08 A FIND6/FTCH6 statement is only allowed if the set involved is not a SYSTEM set.

P09 The form of storage specified for the set does not allow CONNEC or DISCON state-
ments, or, in the case of DISCON ALLFRM, the set specified is not a dynamic set.

P10 In the set name list of a CONNEC or DISCON statement, only sets which have the
same record type as member are allowed.

P11 For a CONNEC or DISCON statement, the Current of Run Unit must belong to the
member record type of the specified set.

CALL DML status codes Appendix

382 U930-J-Z125-14-76

P12 For a CONNEC TO-ALL statement, the subschema must contain at least one set
with the referenced record type which is not MANDATORY AUTOMATIC. For a
DISCON FRMALL statement, the referenced record type must be OPTIONAL
member in at least one set of the subschema.

P13 The specified MODIF1/2 statement is not allowed.

P14 The specified STORE1/2 statement is not allowed.

P15 The specified ERASEC statement is not allowed.

P16 The set specified in the RESULT and/or LIMITED clause is not a dynamic set.

Appendix Sample database SHIPPING

U930-J-Z125-14-76 383

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

10.2 Description of the "MAIL-ORDERS" schema for the sample
database SHIPPING

SCHEMA NAME IS MAIL-ORDERS
 PRIVACY LOCK FOR COPY IS "SHIP-KEY".
*
*
*
 AREA NAME IS CUSTOMER-ORDER-RLM.
 AREA NAME IS PURCHASE-ORDER-RLM.
 AREA NAME IS CLOTHING.
 AREA NAME IS HOUSEHOLD-GOODS.
 AREA NAME IS SPORTS-ARTICLES.
 AREA NAME IS FOOD.
 AREA NAME IS LEISURE.
 AREA NAME IS STATIONERY.
 AREA NAME IS ARTICLE-RLM.
 AREA NAME IS SEARCH-RLM
 AREA IS TEMPORARY.
*
*
*
 RECORD NAME IS CUSTOMER
 LOCATION MODE IS DIRECT-LONG CUST-NO OF CUSTOMER
 WITHIN CUSTOMER-ORDER-RLM.
*
 01 CUST-NAME TYPE IS CHARACTER 30.
 01 CUST-F-NAME TYPE IS CHARACTER 30.
 01 CUST-NO TYPE IS DATABASE-KEY-LONG.
*
*
 RECORD NAME IS CST-ORDERS
 WITHIN CUSTOMER-ORDER-RLM.
*
 01 ORD-NO PICTURE IS 9(4).
 01 ORD-YEAR PICTURE IS 99.
 01 ORD-MONTH PICTURE IS 99.
 01 ORD-DAY PICTURE IS 99.
 01 ORD-STATUS PICTURE IS X.
*
*
 RECORD NAME IS ORD-ITEM
 WITHIN CUSTOMER-ORDER-RLM.
*
 01 ORD-NO-ITEM PICTURE IS 99.
 01 ORD-QTY TYPE IS DECIMAL 6.
 01 PAY-INSTAL-CODE PICTURE IS X.
 01 ORD-STATUS-ITEM PICTURE IS X.
*
*
 RECORD NAME IS INSTALMENT
 WITHIN CUSTOMER-ORDER-RLM
 SEARCH KEY IS YEAR-NEXT-INSTAL, MONTH-NEXT-INSTAL,
 DAY-NEXT-INSTAL
 USING INDEX NAME IS SEARCH-TAB-INSTALMENT
 DUPLICATES ARE ALLOWED.

Sample database SHIPPING Appendix

384 U930-J-Z125-14-76

*
 01 ORD-NO PICTURE IS 9(4).
 01 ORD-NO-ITEM PICTURE IS 99.
 01 TOT-PRICE-INSTAL TYPE IS DECIMAL 9,2.
 01 SINGLE-INSTAL TYPE IS DECIMAL 7,2.
 01 BALANCE TYPE IS DECIMAL 9,2.
 01 YEAR-NEXT-INSTAL PICTURE IS 99.
 01 MONTH-NEXT-INSTAL PICTURE IS 99.
 01 DAY-NEXT-INSTAL PICTURE IS 99.
*
*
 RECORD NAME IS ART-TYPE
 WITHIN CLOTHING, HOUSEHOLD-GOODS, SPORTS-ARTICLES, FOOD,
 LEISURE, STATIONERY AREA-ID IS RLM-SELECTION-1
 SEARCH KEY IS ART-NAME USING CALC
 NAME IS SEARCH-TAB-ART-TYPE DUPLICATES ARE ALLOWED.
*
 01 ART-NAME TYPE IS CHARACTER 25.
*
*
 RECORD NAME IS ART-SELECTION
 WITHIN CLOTHING, HOUSEHOLD-GOODS, SPORTS-ARTICLES, FOOD,
 LEISURE, STATIONERY AREA-ID IS RLM-SELECTION-2
 SEARCH KEY IS SEL-CRIT USING INDEX
 NAME IS SEARCH-TAB-ARTICLE-SELECTION
 DUPLICATES ARE ALLOWED.
*
 01 SEL-CRIT TYPE IS CHARACTER 25.
*
*
 RECORD NAME IS ART-DESCR
 LOCATION MODE IS CALC USING ARTICLE-NAME
 DUPLICATES ARE ALLOWED
 WITHIN CLOTHING, HOUSEHOLD-GOODS, SPORTS-ARTICLES, FOOD,
 LEISURE, STATIONERY AREA-ID IS RLM-SELECTION-3.
*
 01 ART-NO PICTURE IS 9(6).
 01 ARTICLE-NAME TYPE IS CHARACTER 40.
 01 MATERIAL OCCURS 4 TIMES.
 02 PERZENT PICTURE IS 99.
 02 MAT-CODE PICTURE IS X.
 01 LENGTH-FIELD TYPE IS BINARY 15.
 01 ART-INFO PICTURE IS LX(500)
 DEPENDING ON LENGTH-FIELD.
*
*
 RECORD NAME IS ARTICLE
 LOCATION MODE IS CALC USING ART-NO, COL-NO, ART-SIZE
 DUPLICATES ARE NOT ALLOWED
 WITHIN CLOTHING, HOUSEHOLD-GOODS, SPORTS-ARTICLES, FOOD,
 LEISURE, STATIONERY AREA-ID IS RLM-SELECTION-4
 SEARCH KEY IS ART-NO-AVAIL, COL-NO-AVAIL, ART-SIZE
 USING CALC NAME IS SEARCH-TAB-ARTICLE-1
 DUPLICATES ARE NOT ALLOWED
 SEARCH KEY IS ARTICLE-NAME USING CALC
 NAME IS SEARCH-TAB-ARTICLE-2 DUPLICATES ARE ALLOWED.
*
 01 ART-NO PICTURE IS 9(6).

Appendix Sample database SHIPPING

U930-J-Z125-14-76 385

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

 01 COL-NO PICTURE IS 99.
 01 ARTICLE-NAME TYPE IS CHARACTER 40.
 01 ART-NO-AVAIL PICTURE IS 9(4).
 01 COL-NO-AVAIL PICTURE IS 99.
 01 ART-SIZE PICTURE IS 99.
 01 PRICE TYPE IS DECIMAL 7,2.
 01 INSTALMENT-PRICE TYPE IS DECIMAL 7,2.
 01 MAX-STOCK TYPE IS DECIMAL 10.
 01 MIN-STOCK TYPE IS DECIMAL 3.
 01 CURR-STOCK TYPE IS DECIMAL 10.
 01 STATISTICS TYPE IS DECIMAL 15.
 01 NOT-AVAIL-CODE PICTURE IS X.
*
*
 RECORD NAME IS SUBSET
 WITHIN HOUSEHOLD-GOODS, SPORTS-ARTICLES
 AREA-ID IS RLM-SELECTION-5.
*
 01 QUANTITY PICTURE IS 99.
*
*
 RECORD NAME IS COLORS
 WITHIN ARTICLE-RLM
 SEARCH KEY IS COL-NAME USING CALC DUPLICATES ARE NOT ALLOWED
 SEARCH KEY IS COL-NO USING CALC DUPLICATES ARE NOT ALLOWED.
*
 01 COL-NO PICTURE IS 99.
 01 COL-NAME TYPE IS CHARACTER 20.
*
*
 RECORD NAME IS MATERIALS
 WITHIN ARTICLE-RLM
 SEARCH KEY IS MAT-CODE USING INDEX
 NAME IS SEARCH-TAB-MATERIAL-1 DUPLICATES ARE NOT ALLOWED
 SEARCH KEY IS MAT-NAME USING INDEX
 NAME IS SEARCH-TAB-MATERIAL-2 DUPLICATES ARE NOT ALLOWED.
*
 01 MAT-CODE TYPE IS CHARACTER 1.
 01 MAT-NAME TYPE IS CHARACTER 20.
*
*
 RECORD NAME IS SUPPLIER
 LOCATION MODE IS CALC USING SUPPL-NO, SUPPL-NAME
 DUPLICATES ARE NOT ALLOWED
 WITHIN PURCHASE-ORDER-RLM.
*
 01 SUPPL-NO PICTURE IS 9(5).
 01 SUPPL-NAME TYPE IS CHARACTER 30.
 01 SUPPL-PCODE TYPE IS CHARACTER 4.
 01 SUPPL-TOWN TYPE IS CHARACTER 30.
 01 SUPPL-STREET TYPE IS CHARACTER 30.
 01 SUPP-STREET-NO TYPE IS CHARACTER 3.
 01 SUPPL-TEL PICTURE IS 9(12).
 01 SUPPL-POBOX PIC 9(4).
 01 SUPP-TELEX PIC 9(12).
*
*
 RECORD NAME IS PURCHASE-ORDER

Sample database SHIPPING Appendix

386 U930-J-Z125-14-76

 WITHIN PURCHASE-ORDER-RLM.
*
 01 P-ORD-NO PICTURE IS 9(4).
 01 P-ORD-YEAR PICTURE IS 99.
 01 P-ORD-MONTH PICTURE IS 99.
 01 P-ORD-DAY PICTURE IS 99.
*
*
 RECORD NAME IS P-ORD-ITEM
 WITHIN PURCHASE-ORDER-RLM.
*
 01 P-ORD-NO-ITEM PICTURE IS 99.
 01 P-ORD-QTY TYPE IS DECIMAL 10.
*
*
*
 SET NAME IS CST-ORD-PLACED
 ORDER IS SORTED INDEXED BY DEFINED KEYS
 DUPLICATES ARE NOT ALLOWED
 OWNER IS CUSTOMER.
 MEMBER IS CST-ORDERS OPTIONAL AUTOMATIC
 ASCENDING KEY IS ORD-NO
 SEARCH KEY IS ORD-YEAR, ORD-MONTH, ORD-DAY USING INDEX
 NAME IS SEARCH-TAB-C-O-PLCD DUPLICATES ARE ALLOWED
 SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER.
*
*
 SET NAME IS CST-ORD-CONTENTS
 ORDER IS SORTED INDEXED BY DEFINED KEYS
 DUPLICATES ARE NOT ALLOWED
 OWNER IS CST-ORDERS.
 MEMBER IS ORD-ITEM MANDATORY AUTOMATIC
 ASCENDING KEY IS ORD-NO-ITEM
 SET OCCURRENCE SELECTION IS THRU CURRENT OF SET.
*
*
 SET NAME IS OUTSTANDING
 ORDER IS LAST
 OWNER IS CUSTOMER.
 MEMBER IS ORD-ITEM OPTIONAL AUTOMATIC
 SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER.
*
*
 SET NAME IS HIRE-PURCHASE
 ORDER IS LAST
 OWNER IS CUSTOMER.
 MEMBER IS INSTALMENT MANDATORY AUTOMATIC
 SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER.
*
*
 SET NAME IS OFFER
 ORDER IS SORTED INDEXED BY DEFINED KEYS
 DUPLICATES ARE ALLOWED
 OWNER IS ART-TYPE.
 MEMBER IS ART-DESCR MANDATORY AUTOMATIC
 ASCENDING KEY IS ARTICLE-NAME
 SET OCCURRENCE SELECTION IS THRU CURRENT OF SET.
*

Appendix Sample database SHIPPING

U930-J-Z125-14-76 387

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

*
 SET NAME IS SHORT-LIST
 ORDER IS SORTED INDEXED BY DEFINED KEYS
 DUPLICATES ARE ALLOWED
 OWNER IS ART-SELECTION.
 MEMBER IS ART-DESCR MANDATORY AUTOMATIC
 ASCENDING KEY IS ARTICLE-NAME
 SET OCCURRENCE SELECTION IS THRU CURRENT OF SET.
*
*
 SET NAME IS P-ORD-SPEC
 ORDER IS SORTED INDEXED BY DEFINED KEYS
 DUPLICATES ARE NOT ALLOWED
 OWNER IS ART-DESCR.
 MEMBER IS ARTICLE MANDATORY AUTOMATIC
 ASCENDING KEY IS COL-NO, ART-SIZE
 SET OCCURRENCE SELECTION IS THRU CURRENT OF SET.
*
*
 SET NAME IS MIN-STOCK-LEVEL
 ORDER IS SORTED INDEXED BY DEFINED KEYS
 DUPLICATES ARE NOT ALLOWED
 OWNER IS SYSTEM.
 MEMBER IS ARTICLE OPTIONAL MANUAL
 ASCENDING KEY IS ART-NO, COL-NO, ART-SIZE.
*
*
 SET NAME IS CONTAINING
 ORDER IS NEXT
 OWNER IS ARTICLE.
 MEMBER IS SUBSET MANDATORY AUTOMATIC
 SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER.
*
*
 SET NAME IS CONTAINED-IN
 ORDER IS NEXT
 OWNER IS ARTICLE.
 MEMBER IS SUBSET MANDATORY AUTOMATIC
 SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER
 ALIAS FOR ART-NO IS SUBST-ART-NO
 ALIAS FOR COL-NO IS SUBST-COL-NO
 ALIAS FOR ART-SIZE IS SUBST-SIZE.
*
*
 SET NAME IS SUPPLIERS
 ORDER IS SORTED INDEXED BY DEFINED KEYS
 DUPLICATES ARE NOT ALLOWED
 OWNER IS SYSTEM.
 MEMBER IS SUPPLIER MANDATORY AUTOMATIC
 ASCENDING KEY IS SUPPL-NAME, SUPPL-NO.
*
*
 SET NAME IS ARTICLES-AVAILABLE
 ORDER IS SORTED INDEXED BY DEFINED KEYS
 DUPLICATES ARE ALLOWED
 OWNER IS SUPPLIER.
 MEMBER IS ARTICLE MANDATORY AUTOMATIC
 ASCENDING KEY IS ARTICLE-NAME

Sample database SHIPPING Appendix

388 U930-J-Z125-14-76

 SEARCH KEY IS NOT-AVAIL-CODE USING INDEX
 NAME IS SEARCH-TAB-ART-AVAIL DUPLICATES ARE ALLOWED
 SET OCCURRENCE SELECTION IS THRU CURRENT OF SET.
*
*
 SET NAME IS ORDERED-ARTICLES
 ORDER IS LAST
 OWNER IS ARTICLE.
 MEMBER IS ORD-ITEM MANDATORY AUTOMATIC
 SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER.
*
*
 SET NAME IS REORDERED-ARTICLES
 ORDER IS LAST
 OWNER IS ARTICLE.
 MEMBER IS P-ORD-ITEM MANDATORY AUTOMATIC
 SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER.
*
*
 SET NAME IS P-ORD-PLACED
 ORDER IS LAST
 OWNER IS SUPPLIER.
 MEMBER IS PURCHASE-ORDER MANDATORY AUTOMATIC
 SET OCCURRENCE SELECTION IS THRU CURRENT OF SET.
*
*
 SET NAME IS P-ORD-RECEIVED
 ORDER IS FIRST
 OWNER IS SUPPLIER.
 MEMBER IS PURCHASE-ORDER MANDATORY MANUAL
 SET OCCURRENCE SELECTION IS THRU CURRENT OF SET.
*
*
 SET NAME IS P-ORD-CONTENTS
 ORDER IS NEXT
 OWNER IS PURCHASE-ORDER.
 MEMBER IS P-ORD-ITEM MANDATORY AUTOMATIC
 SET OCCURRENCE SELECTION IS THRU CURRENT OF SET.
*
*
*
 SET NAME IS RESULT-SET
 SET IS DYNAMIC
 ORDER IS IMMATERIAL
 OWNER IS SYSTEM.
*
 SET NAME IS LIMITED-SET
 SET IS DYNAMIC
 ORDER IS IMMATERIAL
 OWNER IS SYSTEM.
*
*
 SET NAME IS IQL-DYN1
 SET IS DYNAMIC
 ORDER IS IMMATERIAL
 OWNER IS SYSTEM.
*
 SET NAME IS IQL-DYN2

Appendix Sample database SHIPPING

U930-J-Z125-14-76 389

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

 SET IS DYNAMIC
 ORDER IS IMMATERIAL
 OWNER IS SYSTEM.
*
 SET NAME IS IQL-DYN3
 SET IS DYNAMIC
 ORDER IS IMMATERIAL
 OWNER IS SYSTEM.
*
 SET NAME IS IQL-DYN4
 SET IS DYNAMIC
 ORDER IS IMMATERIAL
 OWNER IS SYSTEM.
*
 SET NAME IS IQL-DYN5
 SET IS DYNAMIC
 ORDER IS IMMATERIAL
 OWNER IS SYSTEM.
*
 SET NAME IS IQL-DYN6
 SET IS DYNAMIC
 ORDER IS IMMATERIAL
 OWNER IS SYSTEM.
*
 SET NAME IS IQL-DYN7
 SET IS DYNAMIC
 ORDER IS IMMATERIAL
 OWNER IS SYSTEM.
*
 SET NAME IS IQL-DYN8
 SET IS DYNAMIC
 ORDER IS IMMATERIAL
 OWNER IS SYSTEM.
*
*
*
************** VERSION 14.02.02 ***************************************

UDS/SQL-openUTM return codes Appendix

390 U930-J-Z125-14-76

10.3 UDS/SQL-openUTM return codes

Four bytes of the DB trace information contain task-specific DB return codes (see the
openUTM manual “Messages, Debugging and Diagnostics in BS2000”, DB-DIAGAREA).
These codes are version-dependent and only applicable to the specific version involved.

The return codes have the following structure: abcd

a contains:

X’04’ Error in eventing (ENABLE)

X’08’ Serialization error

X’0C’ Error in eventing

X’10’ Error in LINK

X’14’ Communication pool no longer contains enough free space

X’18’ Internal error in UDSCON

X’1C’ Memory error

X’20’ Unknown keyword

X’24’ START parameters not valid for UDS /SQL

X’28’ Length specification for START parameters is too small

X’2C’ DMS error returned to status query

X’30’ No application ENTRY available

X’34’ Addressed application ENTRY missing

X’38’ Communication pool closed normally

X’3C’ Communication pool closed abnormally

X’40’ Irrecoverable error in memory administration

X’44’ Error in status message

X’48’ Status of transaction ambiguous

X’4C’ Error in FORWARD eventing

X’50’ Violation of recovery requirements

X’54’ Error in program management

X’58’ Error in result transfer

X‘5C‘ Task deadlock in TIAM application

Appendix UDS/SQL-openUTM return codes

U930-J-Z125-14-76 391

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

X‘60‘ Error in transfer data

X‘64‘ Lifetime exceeded for job sent to master task

b contains:

Additional information for diagnostic purposes (for some errors)

c contains:

Additional information for diagnostic purposes (for some errors)

In some error situations which are already isolated sufficiently by d, additional information
is provided in abc for diagnostic purposes.

d contains:

X’00’ Function executed without error

X’04’ Invalid operation code

X’08’ Internal error (see meaning under a)

X’0C’ No connection to UDS subtasks

X’10’ UDS terminated

X’14’ Transaction does not exist (any more)

X’18’ Transaction terminated abnormally

X’1C’ Transaction could not be opened due to lack of tables

X’20’ Transaction termination fails

X’24’ Error in START parameter

X’28’ Errored termination of a PTC transaction

X’2C’ Processing error

X’30’ 2nd PTC from user

X’34’ User error in CDML

X’38’ Processing error during FINISH

X’3C’ Processing error during FINISH WITH CANCEL

X’40’ Error returned to status query

X’44’ Irrecoverable CDML error

X’48’ READY error in KDBS

UDS/SQL-openUTM return codes Appendix

392 U930-J-Z125-14-76

X’4C’ No connection possible - all channels occupied

X’50’ Invalid communication name

X’54’ Addressed communication pool does not exist

X’58’ Communication pool not fully created yet

X’5C’ Task does not exist for which an asynchronous CANCEL has been attempted

X’60’ Channel active

X’64’ Start BIB: User requests connection

X’68’ Stop BIB: User requests connection cleardown

X’6C’ User already connected with UDS

X’70’ Versions of the UDS modules mixed

X’74’ Error in distributed processing

X’78’ Illegal BS2000 version

X’7C’ Subschema change during a transaction

X’80’ Serialization error

X’84’ User’s own task cannot be aborted asynchronously

X’88’ No BREAK TA precedes for CONTINUE TA

X’8C’ User entered invalid parameters

X’90’ Deadlock

X’94’ READY for transaction missing

X’98’ Irrecoverable error in open PST

X’9C’ Error in master task message

X’A0’ Error in update recognition

X’A4’ PETA only possible for update transaction

X’A8’ SQL conversation could not be opened due to lack of tables

X’AC’ No SQL OUTPUT could be created

X’B0’ SQL not available in loaded DBH

X’B4’ Length in the conversation memory changed incorrectly

X’B8’ UDS not addressable in AMODE3

X’BC’ Application and AMODE not compatible

Appendix UDS/SQL-openUTM return codes

U930-J-Z125-14-76 393

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

X’C0’ Call not permitted in secured UDS/SQL configuration

X’C4’ Illegal module library

X’C8’ No connection to UDS/SQL configuration possible

X’CC’ Inconsistent DML request

Diagnostics information in openUTM Appendix

394 U930-J-Z125-14-76

10.4 Additional diagnostic information in openUTM

openUTM documents events that occur in task-specific trace areas which are written cycli-
cally. Requests sent to the database system are also documented. The ’Secondary DB
Trace Information’ field in particular is relevant for UDS/SQL. UDS/SQL stores data about
the individual request there which you can use to analyze runtime information and to
diagnose errors. However, sometimes this information can only be used in conjunction with
other diagnostic documents (e.g. a dump) since the data items from which the data was
obtained are only used within UDS/SQL. In this respect the fields can only be interpreted in
connection with the UDS/SQL version from which they originated.

The ’Secondary DB Trace Information’ field is 32 bytes long. It is a component part of a
trace record (DB record) of the DB-DIAGAREA. In openUTM V5.3, the DB record is
contained in the UTM-DIAGAREA (see the openUTM manual “Messages, Debugging and
Diagnostics in BS2000”, DB-DIAGAREA and UTM-DIAGAREA).

Appendix Diagnostics information in openUTM

U930-J-Z125-14-76 395

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

The secondary DB trace information from UDS/SQL is structured as follows:

The following table contains the meanings of bytes 9-32 of the secondary DB trace infor-
mation field for the various versions and types of requests.

Byte(s) Meaning

1-4 Version
The version string (’U01Ë’, ’U02Ë’, or ’U03Ë’) serves to identify the trace infor-
mation and to differentiate between pieces of information with the same contents
but in different formats.

5-6 Type of request
Two characters are used to record the type of request sent by openUTM to
UDS/SQL.

CB COBOL-DML

CD CALL-DML (including KDBS request)

CN Connection

DC Disconnection

FN End of transaction

PA Passing of start parameters

PB Special request from COBOL runtine system

RB Continuation of a task of an open TA

SB Interruption of a task of an open TA

SQ SQL request

ST Status request from openUTM

7 openUTM opcode 1

8 openUTM opcode 2

9-32 Different meanings depending on the version and type of request defined in
bytes 1-6 (see the following table.

Table 41: Structure of the secondary DB trace information field

Diagnostics information in openUTM Appendix

396 U930-J-Z125-14-76

Bytes 1-6: U01 CB

Bytes 1-6: U02 CB

Byte(s) Meaning

9-12 Dynamically assigned internal UDS/SQL transaction ID

13 DML request code 1 in the BIB

14 DML request code 2 in the BIB

15 Dynamically assigned internal UDS/SQL number of the set type accessed in the
DML for old style BIBs

16 Dynamically assigned internal UDS/SQL number of the set or realm used in the
DML for old style BIBs

17-19 Status code of the DML used

20 Code stating if the status code recorded in bytes 17-19 matches the status code
passed to the user in the BIB (’O’ when matched, ’B’ when no match)

21 Dynamically assigned internal UDS/SQL database ID

22 Dynamically assigned internal UDS/SQL database ID in the remote configu-
ration

23-26 Dynamically assigned internal UDS/SQL subschema reference

27-32 Subschema name

Byte(s) Meaning

9-12 Dynamically assigned internal UDS/SQL transaction ID

13 DML request code 1 in the BIB

14 DML request code 2 in the BIB

15-16 Dynamically assigned internal UDS/SQL number of the set type accessed in the
DML for new style BIBs

17-19 Status code of the DML used

20 Code stating if the status code recorded in bytes 17-19 matches the status code
passed to the user in the BIB (’O’ when matched, ’B’ when no match)

21 Dynamically assigned internal UDS/SQL database ID

22 Dynamically assigned internal UDS/SQL database ID in the remote configu-
ration

23-26 Dynamically assigned internal UDS/SQL subschema reference

27-32 Subschema name

Appendix Diagnostics information in openUTM

U930-J-Z125-14-76 397

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

Bytes 1-6: U01 CD

Bytes 1-6: U02 CD

Byte(s) Meaning

9-12 Dynamically assigned internal UDS/SQL transaction ID

13 DML request code 1 in the BIB created internally

14 DML request code 2 in the BIB created internally

15 Dynamically assigned internal UDS/SQL number of the set type accessed in the
DML for new style BIBs

16 Dynamically assigned internal UDS/SQL number of the set type or realm used
in the DML for new style BIBs

17-19 Status code of the DML used

20 Code stating if the status code recorded in bytes 17-19 matches the status code
passed to the user in the BIB (’O’ when matched, ’B’ when no match)

21 Code stating if there is a KDBS request available

22 Dynamically assigned internal UDS/SQL database ID

23-28 Subschema name

Byte(s) Meaning

9-12 Dynamically assigned internal UDS/SQL transaction ID

13 DML request code 1 in the BIB created internally

14 DML request code 2 in the BIB created internally

15-16 Dynamically assigned internal UDS/SQL number of the set type accessed in the
DML for new style BIBs

17-19 Status code of the DML used

20 Code stating if the status code recorded in bytes 17-19 matches the status code
passed to the user in the BIB (’O’ when matched, ’B’ when no match)

21 Code stating if there is a KDBS request available

22 Dynamically assigned internal UDS/SQL database ID

23-28 Subschema name

Diagnostics information in openUTM Appendix

398 U930-J-Z125-14-76

Bytes 1-6: U01 CN

Bytes 1-6: U01 DC

Bytes 1-6: U01 FN

Bytes 1-6: U01 PA

Bytes 1-6: U01 PB

Bytes 1-6: U01 RB

Bytes Meaning

13-20 Name of the UDS/SQL configuration

21-24 Return code of the ENAMP-SVC to connect to the CUP

Bytes Meaning

13-20 Name of the UDS/SQL configuration

Bytes Meaning

9-12 Dynamically assigned internal UDS/SQL transaction ID

Bytes Meaning

9-32 24 bytes of the start parameters passed by openUTM

Bytes Meaning

9-32 No additional information

Bytes Meaning

9-12 Dynamically assigned internal UDS/SQL transaction ID

19-20 Number of open processing chains and processing chains which are to be
restored

Appendix Diagnostics information in openUTM

U930-J-Z125-14-76 399

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
18

.5
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n
\u

ds
an

w
.a

n
h

Bytes 1-6: U03 RB

Bytes 1-6: U01 SB

Bytes 1-6: U01 SQ

Bytes Meaning

9-12 Dynamically assigned internal UDS/SQL transaction ID

13-15 Internal UDS/SQL status displays for the session, the last request in the trans-
action and the processing chain which is to be restored

17-18 Internal UDS/SQL number of the processing chain which is to be restored

19-20 Number of open processing chains

21-24 Location of the BIB which is to be restored in the communication pool

27-32 Subschema name

Bytes Meaning

9-12 Dynamically assigned internal UDS/SQL transaction ID

13-16 Number of open processing chains and therefore the number of BIBs to back up

Bytes Meaning

9-12 Dynamically assigned internal UDS/SQL transaction ID

13-16 Dynamically assigned internal UDS/SQL ID of the SQL procedure

17-20 SQL return code of the SQL request

21-24 SQL return code of the 2 level of the SQL request (operation)

25 Internal SQL request code

27-28 Internal SQL error code of the connection

29-30 Internal module code of the connection when an error occurs

31-32 Error number internal to the module

Diagnostics information in openUTM Appendix

400 U930-J-Z125-14-76

Bytes 1-6: U01 ST

Bytes Meaning

13-16 Internal UDS/SQL RLOG ID referring to the status request

17-20 Session section number referring to the status request

21-22 Error code internal to the module

U930-J-Z125-14-76 401

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

Glossary

This Glossary contains the definitions of some of the important terms and
concepts used in the UDS/SQL manuals.
Terms that appear in italics within a particular definition have also been defined
in this Glossary.
In cases where two or more terms are used synonymously, a “See” reference
points to the more commonly used term in these manuals.

A

access, contending
See contending access.

access, direct
See direct access.

access, sequential
See sequential access.

access authorization
The rights of a specified user group with regard to access to the database.
Access rights are defined during live database operation using ONLINE-
PRIVACY utility routine or, in offline mode, using the BPRIVACY utility routine.

access path
Means of finding a certain subset of all records qualified by a search query,
without having to carry out a sequential search of the whole database.

access rights
Right of access to a database as defined in the BPRIVACY utility routine.

access type
Type of access, e.g. read, update etc.

A Glossary

402 U930-J-Z125-14-76

act-key
(actual key) Actual address of a page, consisting of realm number and page
number.

act-key-0 page
First page of a realm; contains general information on the realm such as
– when the realm was created,
– when the realm was last updated,
– internal version number of the realm,
– system break information
– if applicable, warm start information.

act-key-N page
Characteristic page of a realm, with the highest page number.
Copy of the act-key-0 page.

address, physical
See act-key or probable position pointer (PPP).

administrator task
Task of the independent DBH; The database administrator can control execution of
the independent DBH via this task.

AFIM
See after-image.

after-image
Modified portion of a page after its content has been updated.
The DBH writes after-images to the RLOG file as well as the ALOG file.

after-image, ALOG file
The after-images are written to the ALOG file when the ALOG buffer is full. The
purpose of the after-images in the ALOG file is to secure the data contained in
the database and thus they must be maintained for a long period of time. They
are used to reconstruct an original database or update a shadow database.

after-image, RLOG file
After-images are logged in the RLOG file before the updates are applied to the
database. The after-images held in the RLOG file are required for warm start only.
They are thus periodically overwritten.

ALOG file
File for securing the data contained in the database in the long term; see after-
image.

Glossary A

U930-J-Z125-14-76 403

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

ALOG sequence number
See sequence number.

anchor record
Record automatically created by UDS/SQL as owner record for SYSTEM sets. It
cannot contain any items defined with the schema DDL and cannot be accessed.

application
Realization of a job in one or several user programs working with UDS/SQL
databases.

application program (AP)
E.g. COBOL DML program or IQS.

area
See realm.

ascending key (ASC key)
Primary key of a set. Defines the sequence of member records in the set occurrences
by ascending key values.

authorization
Identification used for user groups.

authorized users
Specified user groups who are authorized to access the database.

automatic DBTT extension
Some utility routines automatically extend the number of records possible for a
record type if too few are available; no separate administration is required to do
this.
See also online DBTT extension.

automatic realm extension
Some utility routines automatically extend realms when insufficient free space
is available; no separate administration is required to do this.
See also online realm extension.

B Glossary

404 U930-J-Z125-14-76

B

backup database
See shadow database.

base interface block (BIB)
(Base Interface Block) Standard interface between UDS/SQL and each
individual user; it contains, among other things, the RECORD AREA (user
records as defined in the subschema).

before-image
Copy of a page taken before its contents are updated.
The DBH writes before-images to the RLOG files during database operation
before the updates are applied to the database. A prerequisite is that the RLOG
files exist.

BFIM
See before-image.

BIB
See base interface block.

buffer pool
See system buffer pools and exclusive buffer pool.

C

CALC key
Key whose value is converted into a relative page number by means of a hash
routine.

CALC page
Page of a hash area.

CALC SEARCH key
Secondary key. Used as access path for direct access via hash routine.

Glossary C

U930-J-Z125-14-76 405

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

CALC table
Table in the direct/indirect CALC page whose entries point to the stored records.
Each line contains:
– the CALC key,
– the record sequence number
– the displacement to the related page index entry (direct CALC page) or the

probable position pointer (indirect CALC page).

CALL DML
DML that is called by various programming languages (Assembler, COBOL,
FORTRAN, PASCAL, PL/1) via the CALL interface.

catalog identifier
Name of the public volume set (PVS) under which the BS2000 UDS/SQL files
are stored. The catalog identifier is part of the database or file name and must
be enclosed in colons: “:catid:”.

chain
Storage mode for a set occurrence in which every record contains a pointer to the
subsequent record.

Character Separated Values (CSV)
Output format in which the values are separated by a predefined character.

checkpoint
Consistency point, at which the ALOG file was changed and to which it is possible
to return at any time using BMEND utility routine

check records
Elements which provide information for checking the database. They vary in
length from 20 to 271 bytes.

CHECK-TABLE
Check table produced by the DDL compiler during Subschema DDL compilation,
and used by the COBOL compiler and CALL DML to check whether the DML
statements specified in the application program are permitted. It is part of the
COSSD or SSITAB module.

C Glossary

406 U930-J-Z125-14-76

clone pair, clone pubset, clone session, clone unit
A clone unit is the copy of an (original) unit (logical disk in BS2000) at a
particular time (“Point-in-Time copy”). The TimeFinder/Clone component
creates this copy optionally as a complete copy or as a “snapshot”.
After they have been activated, the unit and clone unit are split; applications can
access both.
The unit and clone unit together form a clone pair. TimeFinder/Clone manages
this pair in what is known as a clone session.
If clone units exist for all units of a pubset, these clone units together form the
clone pubset.
Details of this are provided in the manual "Introduction to System Adminis-
tration".

COBOL DML
DML integrated in the COBOL language.

COBOL runtime system
Runtime system; sharable routines selected by the COBOL compiler
(COBOL2000 or COBOL85) for the execution of complex statements.

COBOL Subschema Directory (COSSD)
Provides the COBOL compiler with subschema information for compilation of
the DB application programs.

common memory
Shareable memory area used by several different tasks. In UDS/SQL, it always
consists of the common pool and the communication pool and, depending on the
application, the SSITAB pool (see SSITAB module) if CALL DML is used.
If UDS-D is used, it also consists of the distribution pool and the transfer pool.

common pool
Communication area of the independent DBH. Enables DBH modules to commu-
nicate with each other. Contains, among other things, an input/output buffer for
pages (buffer pools).

communication partners
Tasks or data display terminals.

communication pool
Communication area of the independent DBH for application programs. One of its
functions is to store base interface blocks (BIB).

compatible database interface (KDBS)
see KDBS

Glossary C

U930-J-Z125-14-76 407

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

compiler database
The realms and files of the database which are required by the UDS/SQL
compiler. They are
– DBDIR (Database Directory)
– DBCOM (Database Compiler Realm)
– COSSD (COBOL Subschema Directory).

COMPILER-SCHEMA
UDS/SQL-internal schema of the compiler database.

COMPILER-SUBSCHEMA
UDS/SQL-internal subschema of the compiler database.

compound key
Key consisting of several key items.

compression
Only the filled items of a record are stored (see SSL clause COMPRESSION).

configuration
See DB configuration.

configuration user ID
User ID in which the database administrator starts the DBH.

configuration name
Freely selectable name of the database configuration for a particular session. The
DBH uses it to form:
– the name of the Session Log File,
– the names of the DB status file and its backup copy,
– the names of the RLOG files,
– the names of the temporary realms,
– the names of session job variables,
– the event names of P1 eventing,
– the DCAM application name for the administration,
– the names of the common pools
– the names of the dump files.

connection module
Module that must be linked into every UDS/SQL application program and which
establishes the connection with the DBH.

consistency
State of the database without conflicts in the data stored in it.

C Glossary

408 U930-J-Z125-14-76

consistency, logical
State of the database in which the stored data has no internal conflicts and
reflects the real-world situation.

consistency, physical
State of the database in which the stored data is consistent with regard to
correct physical storage, access paths and description information.

consistency, storage
See physical consistency.

consistency error
A violation of the physical consistency of the stored data.

consistency point
Point (in time) at which the database is consistent, i.e. all modifying transaction
have been terminated and their modifications have been executed in the
database.

consistency record
Administration record with consistency time and date stamps in the DBDIR. For
an update in a realm the DBH enters the date and time in the consistency record
and in the updated realm. When realms or databases are attached for a session,
the DBH uses this time stamp to check the consistency of the realms within
each database.

contending access
Different transactions attempting to access a page simultaneously.

conversation
SQL-specific administration data is retained across transaction boundaries in an
SQL application. This kind of data administration unit is called a conversation.
In openUTM such an administrative unit is also called a service.

copy
See database copy.

COSSD
See COBOL Subschema Directory.

CRA
(Current Record of Area) Record which is marked in the currency table as the
current record of a particular realm (area).

Glossary D

U930-J-Z125-14-76 409

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

CRR
(Current Record of Record) Record which is marked in the currency table as the
current record of a particular record type (Record).

CRS
(Current Record of Set) Record which is marked in the currency table as the
current record of a particular set.

CRU
(Current Record of Rununit) Record which is marked in the currency table as the
current record of the processing chain.

CSV
see Character Separated Values

currency table
The currency table contains:
– CURRENT OF AREA table (table of CRAs),
– CURRENT OF RECORD table (table of CRRs) and
– CURRENT OF SET table (table of CRSs).

CURRENT OF AREA table
See currency table.

CURRENT OF RECORD table
See currency table.

CURRENT OF SET table
See currency table.

D

DAL
(Database Administrator Language) Comprises the commands which monitor
and control a session.

data backup
Protection against loss of data as a result of hardware or software failure.

data deadlock
See deadlock.

D Glossary

410 U930-J-Z125-14-76

data protection (privacy)
Protection against unauthorized access to data. Implemented in UDS/SQL by
means of the schema/subschema concept and access authorization. Access
rights are granted by means of the BPRIVACY utility routine.

database (DB)
Related data resources that are evaluated, processed and administered with
the help of a database system.
A database is identified by the database name.
An UDS/SQL database consists of the user database and the compiler database.
To prevent the loss of data, a shadow database may be operated together with
(i.e. parallel to) the original database.

database administrator
Person who manages and controls database operation. The DB administrator is
responsible for the utility routines and the Database Administrator Language
(DAL).

database copy
Copy of a consistent database; may be taken at a freely selectable point in time.

database compiler realm (DBCOM)
Stores information on the realms, records and sets defined by the user in the
Schema DDL and Subschema DDL.

database copy update
Updating of a database copy to the status of a checkpoint by applying the appro-
priate after-images.

database directory (DBDIR)
Contains, among other things, the SIA, all the SSIAs and information on access
rights.

database job variable
Job variable in which UDS/SQL stores information on the status of a database.

database key (DB key)
Key whose value represents a unique identifier of a record in the database. It
consists of the record reference number and the record sequence number. The
database key values are either defined by the database programmer or
automatically assigned by UDS/SQL.

Glossary D

U930-J-Z125-14-76 411

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

database key item
Item of type DATABASE-KEY or DATABASE-KEY-LONG that is used to accom-
modate database key values.
Items of type DATABASE-KEY and DATABASE-KEY-LONG differ in terms of
the item length (4 bytes / 8 bytes) and value range.

DATABASE-KEY item
See database key item.

DATABASE-KEY-LONG item
See database key item.

database page
See page.

DATABASE-STATUS
Five-byte item indicating the database status and consisting of the statement
code and the status code.

database system
Software system that supports all tasks in connection with managing and
controlling large data resources. The database system provides mechanisms
for stable and expandable data organization without redundancies. They allow
many users to access databases concurrently and guarantee a consistent data
repository.

DB status file
(database status file) Contains information on the most recently reset transac-
tions.
openUTM-S or, in the case of distributed processing, UDS-D/openUTM-D
needs this information for a session restart.

DB configuration
(database configuration) The databases attached to a DBH at any one point
during session runtime. As the result of DAL commands or DBH error handling,
the database configuration can change in the course of a session.
At the session start, the DB configuration may be empty. Databases can be
attached with DAL commands after the start of the session. They can also be
detached during the session with DAL commands.

DBCOM
See database compiler realm.

D Glossary

412 U930-J-Z125-14-76

DBDIR
See database directory.

DBH
Database Handler: program (or group of programs) which controls access to
the database(s) of a session and assumes all the attendant administrative
functions.

DBH end
End of the DBH program run. DBH end can be either a session end or a session
abort.

DBH, independent
See independent DBH.

DB key
See database key.

DBH, linked-in
See linked-in DBH.

DBH load parameters
See load parameters (DBH).

DBH start
Start of the DBH program run. DBH start can be either a session start or a session
restart.

DBTT
(Database Key Translation Table) Table from which UDS/SQL can obtain the
page address (act-key) of a record and associated tables by means of the
database key value.
The DBTT for the SSIA-RECORD consists only of the DBTT base. For all other
record types, the DBTT consists of a base table (DBTT base) and possibly of
one or more extension tables (DBTT extents) resulting from an online DBTT
extension or created by BREORG.

DBTT anchor page
Page lying within the realm of the associated DBTT in which the DBTT base and
DBTT extents are administered. Depending on the number of DBTT extents
multiple chained DBTT anchor pages may be required for their administration.

DBTT base
see DBTT

Glossary D

U930-J-Z125-14-76 413

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

DBTT extent
see DBTT

DBTT page
Page containing the DBTT or part of the DBTT for a particular record type.

DCAM
Component of the TRANSDATA data communication program.

DCAM application
Communication application using the DCAM communication method. A DCAM
application enables communication between
– a DCAM application and terminals.
– different DCAM applications within the same or different hosts, and with

remote configurations.
– a DCAM and a openUTM application.

DDL
(Data Description Language) Formalized language for defining the logical data
structure.

deadlock
Mutual blocking of transactions.
A deadlock can occur in the following situations:
– Data deadlock: This occurs when transactions block each other with

contending access.
– Task deadlock: This occurs when a transaction that is holding a lock cannot

release it, since no openUTM task is free. This deadlock situation can only
occur with UDS/SQL-openUTM interoperation.

descending key (DESC key)
Primary key of a set. Determines the sequence of member records in the set occur-
rences to reflect descending key values.

direct access
Access to a record via an item content. UDS/SQL supports direct access via the
database key, hash routines and multi-level tables.

direct hash area
See hash area.

distributed database
A logically connected set of data resources that is distributed over more than
one UDS/SQL configuration.

D Glossary

414 U930-J-Z125-14-76

distributed transaction
Transaction that addresses at least one remote configuration. A transaction can
be distributed over:
– UDS-D,
– openUTM-D,
– UDS-D and openUTM-D.

distribution pool
Area in the independent DBH used for communication between UDSCT, server
tasks, user tasks and the master task with regard to UDS-D-specific data. The
distribution pool contains the distribution table and the UDS-D-specific system
tables.

distribution table
Table created by UDS-D using the input file assigned in the distribution pool.
With the aid of the distribution table, the distribution component in the user task
decides whether a processing chain should be processed locally or remotely.
Assigned in the distribution table are:
subschema - database
database - configuration
configuration - host computer.

DML
Data Manipulation Language: language for accessing a UDS/SQL database.

dummy subtransaction
A primary subtransaction is created by UDS-D when the first READY statement
in a transaction addresses a remote database.
A dummy subtransaction is used to inform the local configuration of the trans-
action so that the database can be recovered following an error.

duplicates header
Contains general information on a duplicates table or a page of a duplicates table,
i.e.
– chaining reference to the next and previous overflow page
– the number of free bytes in the page of the duplicates table.

Glossary E

U930-J-Z125-14-76 415

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

duplicates table
Special SEARCH-KEY table in which a key value which occurs more than once
is stored only once.
For each key value, the duplicates table contains:
– a table index entry with the key value and a pointer to the associated table

entry
– a table entry (DB key list), which can extend over several pages, containing

the record sequence numbers of the records which contain this key value.

duplicates table, main level
Main level, Level 0. Contains a table index entry and the beginning of the
associated table entry (DB key list).

dynamic set
Set which exists only for the life of a transaction and which stores member records
retrieved as result of search queries.

E

ESTIMATE-REPORT
Report produced after BGSIA run. Used to estimate the size of the user realms.

event name
Identification used in eventing.

exclusive buffer pool
Buffer which, in addition to the system buffer pools, is used exclusively for
buffering pages of the specified database.

F

foreign key
Record element whose value matches the primary key values of another table
(UDS/SQL record type). Foreign keys in the sense of UDS/SQL are qualified as
"REFERENCES owner record type" in the member record type of a set
relationship in the BPSQLSIA protocol.

FPA
See free place administration.

G Glossary

416 U930-J-Z125-14-76

FPA base
See free place administration.

FPA extent
See free place administration.

FPA page
Free place administration page.

free place administration (FPA)
Free space is managed both at realm level (FPA pages) and at page and table
level. Free place administration of the pages is carried out in a base table (FPA
base) and possibly in one or more extension tables (FPA extents) created by
means of an online realm extension or BREORG.

function code
Coding of a DML statement; included in information output by means of the DAL
command DISPLAY or by UDSMON.

G

group item
Nameable grouping of record elements.

H

hash area
Storage area in which UDS/SQL stores data and from which it retrieves data on
the basis of key values which are converted into relative page numbers. A hash
area may contain the record addresses as well as the records themselves.
A direct hash area contains the records themselves; an indirect hash area, by
contrast, contains the addresses of records stored at some other location.

hash routine
Module which performs hashing.

hashing
Method of converting a key value into a page address.

Glossary I

U930-J-Z125-14-76 417

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

HASHLIB
Module library for the storage of hash routines for one database.

I

identifier
Name allocated by the database designer to an item that UDS/SQL creates
automatically. UDS/SQL adapts item type and length to the specified item
usage.

implicit set
SYSTEM set created by UDS/SQL when a SEARCH key is defined at record type
level.

inconsistency
State of the database in which the data values contained in it are inconsistent.

independent DBH
Independent program system enabling more than one user to access a single
database (mono-DB operation) or several databases (multi-DB operation) simulta-
neously. The independent DBH is designed as a task family, consisting of
– a master task (UDSSQL)
– one or more server tasks (UDSSUB)
– an administrator task (UDSADM)

index level
Hierarchy level of an index page.

index page
Page in which the highest (lowest) key values of the next-lower level of an
indexed table are stored.

INDEX search key
Secondary key. Used as access path for direct access via a multi-level table.

indirect hash area
See hash area.

K Glossary

418 U930-J-Z125-14-76

integrity
State of the database in which the data contained in it is complete and free of
errors.
– entity integrity
– referential integrity
– user integrity

interconfiguration
Concerning at least one remote configuration.

interconfiguration consistency
A distributed transaction that has caused updates in at least one remote configu-
ration is terminated in such a way that the updates are either executed on the
databases in each participating DB configuration or on none at all.
Interconfiguration consistency is assured by the two-phase commit protocol.

interconfiguration deadlock
Situation where distributed transactions are mutually locked due to contending
accesses.

interface
In software: memory area used by several different programs for the transfer of
data.

internal version number
Each realm of the database, including DBDIR and DBCOM, has an internal
version number which the utility routines (e.g. BREORG, BALTER) increment by
one whenever a realm is updated. This internal version number is kept in the
act-key-0 page of the realm itself and also in the PHYS VERSION RECORD in
the DBDIR.

item
Smallest nameable unit of data within a record type. It is defined by item type and
item length.

K

KDBS
Compatible database interface. Enables programs to be applied to applications
of DB systems by different manufacturers.

Glossary L

U930-J-Z125-14-76 419

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

key
Item used by the database programmer for direct access to records; an optimized
access path is provided for the key by UDS/SQL in accordance with the schema
definition.

key, compound
Key consisting of several key items.

key item
Item defined as a key in the schema.

key reference number
Keys are numbered consecutively in ascending order, beginning at 1.

L

linked-in control system
UDS/SQL component for linked-in DBH, responsible for control functions (corre-
sponds to the subcontrol system of the independent DBH).

linked-in DBH
Module linked in to or dynamically loaded for the current DB application program
and controlling access to a single database (mono-DB operation) or several
databases simultaneously (multi-DB operation).

list
Table containing the member records of a set occurrence. Used for sequential and
direct access to member records.
In a distributable list the data pages which contain the member records (level 0
pages) can be distributed over more than one realm. The pages containing the
higher-ranking table levels all reside in one realm (table realm of a distributable
list).

load parameters (DBH)
Parameters requested by the DBH at the beginning of the session. They define
the basic characteristics of a session.

local application program
An application program is local with regard to a configuration if it was linked to the
configuration using /SET-FILE-LINK LINK-NAME=DATABASE,FILE-
NAME=conf-name

M Glossary

420 U930-J-Z125-14-76

local configuration
The configuration assigned to an application program before it is called using
/SET-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=conf-name.
The application program communicates with the local configuration via the
communication pool. The local configuration is in the same host as the appli-
cation program.

local database
Database in a local configuration.

local distribution table
A distribution table is considered local to a DBH if it is held in the DBH’s
distribution pool.

local host
Host computer containing the application program.

local transaction
Transaction that only addresses the local configuration.

logging
Recording of all updates in the database.

logical connection
Assignment of two communication partners that enables them to exchange data.
DCAM applications communicate via logical connections.

M

main reference
In the DBH the main reference is used to manage the resources required for
processing a transaction’s requests, including those for transferring the
requests from the application program to the DBH and back.

mainref number
Number assigned to the transaction at READY. This number is unique only at a
given time; at the end of the transaction, it is assigned to another transaction.

master task
Task of the independent DBH in which the UDSQL module executes. Controls the
start and end of a session and communicates with the database administrator
directly or via the administrator task.

Glossary M

U930-J-Z125-14-76 421

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

member
See member record or member record type.

member, AUTOMATIC
Record is inserted at storage time.

member, MANDATORY
Record cannot be removed.

member, MANUAL
Record is not inserted automatically at storage time.

member, OPTIONAL
Record can be removed.

member record
Lower-ranking record in a set occurrence.

member record type
Lower-ranking record type in a set.

mono-DB configuration
Type of configuration where only one database takes part in a session.

mono-DB operation
Mode of database operation where the DBH uses only one database of a
configuration.

multi-DB configuration
Type of configuration where several databases take part in a session.

multi-DB operation
Mode of database operation where the DBH uses several databases of a
configuration.

multi-DB program
Application program that addresses more than one database. The databases may
be part of one or more mono-DB or multi-DB configurations.

multi-level table
SEARCH KEY table which contains a line for each record of the associated
record type or each member record of the set occurrence, as appropriate. Each line
comprises the key value of the record and the record pointer. It is also referred
to as an indexed table.

N Glossary

422 U930-J-Z125-14-76

multithreading
A mechanism that enables the DBH to fully exploit the CPU.
Multithreading means that the DBH processes several jobs concurrently by
using so-called threads. Each thread has information on the current status of a
particular job stored in it. When a job needs to wait for the completion of an I/O
operation, DBH uses the CPU to process some other job.

N

network
All computers linked via TRANSDATA.

O

OLTP
(Online Transaction Processing) In an OLTP application, a very large number
of users access the same programs and data. This usually occurs under the
control of a transaction monitor (TP monitor).

online backup
If AFIM logging is active, the database can be saved during a session. The ability
to save a database online is determined with the BMEND utility routine.

online DBTT extension
Extension during ongoing database operation of the number of possible records
of a record type. The DAL commands ACT DBTT-INCR, DEACT DBTT-INCR,
DISPLAY DBTT-INCR and EXTEND DBTT can be used to administer the online
extension of DBTTs.
See also automatic DBTT extension.

online realm extension
Extension of user realms and DBDIR in ongoing database operation. The DAL
commands ACT INCR, DEACT INCR, DISPLAY INCR, EXTEND REALM and
REACT INCR are provided for administering the online extensibility of realms.
See also automatic realm extension.

open transaction
Transaction which has not been closed with FINISH or FINISH WITH CANCEL,
or with COMMIT or ROLLBACK.

Glossary P

U930-J-Z125-14-76 423

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

openUTM
(universal transaction monitor) Facilitates the creation and operation of trans-
action-oriented applications.

operator task (OT)
See master task

original database
The term “original database” refers solely to the naming of the database files
(dbname.dbfile), not to the status of the database content (see also shadow
database).

overflow page
Page in hash areas and duplicates tables for storing data that does not fit in the
primary page. Their structure is the same as that of the pages of the hash area
or duplicates table in question.

owner
See owner record or owner record type.

owner record
Higher-ranking record in a set occurrence.

owner record type
Higher-ranking record type in a set.

P

page
Physical subunit of a realm. UDS/SQL identifies pages by means of unique keys
(act-key).
The length of a page may be optionally 2048, 4000 or 8096 bytes. All pages
within a database must have the same length. Pages with a length of 4000 or
8096 bytes are embedded in a page container.

page address
In a page address, a distinction is made between the current address of a page,
i.e. the act-key, and the probable address of a page, the probable position pointer
(PPP).

P Glossary

424 U930-J-Z125-14-76

page container
Pages with a length of 4000 or 8096 bytes are embedded in a so-called page
container, which consists of a 64-byte header that precedes the page and a
32-byte trailer at the end of the page.

page header (page info)
The first 20 bytes of a database page (except for the FPA and DBTT pages with a
length of 2048 bytes). They contain:
– the act-key of the page itself,
– the number of page index entries
– the length and displacement of the bytes which are still vacant in this page.
– the page type (ACT-Key-0 page, FPA page, DBTT page, DBTT anchor page,

normal data page or CALC page)

page index entry
Indicates the position of a record within a page.

page number
In each realm the pages are numbered consecutively in ascending order starting
starting from 0. The page number is part of the page address.
Page number = PAM page number -1 for databases with a page length of 2048
bytes
Page number = (PAM page number-1) / 2 for databases with a page length of
4000 bytes
Page number = (PAM page number-1) / 4 for databases with a page length of
8096 bytes.

password for UDS/SQL files
Password serving to protect the files created by UDS/SQL (default: C’UDSË’).
The DB administrator can define other passwords with PP CATPASS or
MODIFY-FILE-ATTRIBUTES.

pattern
Symbolic representation of all possible item contents, used at item definition.

pattern string
String defining a pattern.

Glossary P

U930-J-Z125-14-76 425

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

PETA
Preliminary end of transaction: UDS-D or openUTM-D statement that causes a
preliminary transaction end.
The PETA statement belongs to the first phase of the two-phase commit protocol
which terminates a distributed transaction.
The PETA statement stores the following information failproof in the RLOG file
of the local DBH:
– each updated page
– rollback and locking information
– the names of all participating configurations.
This information is required for any future warm start.

pointer array
Table of pointers to the member records of a set occurrence. Used for sequential
and direct access to member records.

PPP
See probable position pointer (PPP).

prepared to commit (PTC)
Part of the two-phase commit protocol:
State of a subtransaction after execution of a PETA statement and before receipt
of the message that the complete transaction is to be terminated with FINISH or
FINISH WITH CANCEL.

primary key
Distinguished from secondary keys for reasons of efficiency. Usually a unique
identifier for a record.

primary key (DDL)
The key of a record type which is defined by means of "LOCATION MODE IS
CALC" or the key of an order-determining key of a set occurrence which is
defined by means of "ORDER IS SORTED [INDEXED]". Also used for direct
access to a record or a set of records with the same key values or within a search
interval.

primary key (SQL)
In the broader sense (SQL), a record element uniquely identifying a record.
In UDS-SQL, the database key of an owner record output as the "PRIMARY
KEY" in the BPSQLSIA log (see also foreign key).
A record element which uniquely identifies a record is flagged as "UNIQUE" in the
BPSQLSIA log unless it is the aforementioned "PRIMARY KEY".

P Glossary

426 U930-J-Z125-14-76

primary subtransaction
Subtransaction that runs in the local configuration.
The primary subtransaction is opened by the first READY statement in a trans-
action on a local database.
If the first READY statement addresses a remote database, UDS-D generates a
dummy subtransaction as the primary subtransaction.

PRIVACY-AND-IQF SCHEMA
UDS/SQL-internal schema for protection against unauthorized access.

PRIVACY-AND-IQF SUBSCHEMA
UDS/SQL-internal subschema for protection against unauthorized access.

probable position pointer (PPP)
Probable address of a page, comprising realm number and page number.
UDS/SQL does not always update probable position pointers (PPP) when the
storage location of data is changed.

processing chain
Sequence of DML statements applied to a database within a transaction.

PTC state
See prepared to commit.

pubset declaration
Siee UDS/SQL pubset declaration

pubset declaration job variable
Job variable in which a UDS/SQL pubset declaration is specified.

P1 eventing
Manner in which tasks communicate with each other.

Glossary R

U930-J-Z125-14-76 427

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

R

READY
Start of a transaction or a processing chain in COBOL DML programs.

READYC
Start of a transaction or a processing chain in CALL DML programs.

realm
Nameable physical subunit of the database. Equivalent to a file. Apart from the
user realms for user data there are also the realms DBDIR and DBCOM, which
are required by UDS/SQL.

realm configuration
Comprises all the database realms taking part in a session.

realm copy
See database copy.

realm reference number
Realms are numbered consecutively in ascending order, starting with 1. The
realm reference number (area reference) is part of the page address.

reconfiguration
Regrouping of databases in a DB configuration after a session abort. A pre-
requisite for reconfiguration is that the SLF has been deleted or that its contents
have been marked as invalid.

record
Single occurrence of a record type; consists of one item content for each of the
items defined for the record type and is the smallest unit of data managed by
UDS/SQL via a unique identifier, the database key.
The reserved word RECORD is used in DDL and SSL syntax to declare a
record type.

record address
Address of the page containing the record. See page address.

R Glossary

428 U930-J-Z125-14-76

RECORD AREA
Area in the USER WORK AREA (UWA) which can be referenced by the user.
The record area contains the record types and the implicitly defined items
(IMPLICITLY-DEFINED-DATA-NAMES) of the database such as the AREA-ID
items of the WITHIN clauses of the schema. The length of the record area is
essentially defined by the record types contained in it.

record element
Item, vector or group item.

record hierarchy
Owner/member relationship between record types:
the owner record type is the higher-ranking part of the relationship;
the member record type is the lower-ranking part.

REC-REF
See record reference number.

record reference number
Record types are numbered consecutively in ascending order, starting at 1. The
record reference number is part of the database key.

record SEARCH KEY table
SEARCH KEY table for selection of a record from a record type.

record sequence number (RSQ)
The record sequence number can be assigned by the database programmer; if
not, UDS/SQL numbers the records of a record type contiguously in ascending
order, in the sequence in which they are stored; numbering starts at 1. The
record sequence number is part of the database key.

record type
Nameable grouping of record elements.

record type, linear
Record type that is neither the owner nor the member of a set (corresponds to
record types of a conventional file).

referential integrity
Integrity of the relationships between tables (UDS/SQL record types).

remote application program
Application program that is not local with regard to a particular configuration.

Glossary R

U930-J-Z125-14-76 429

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

remote configuration
DB-configurations that are not assigned to the application program via /SET-FILE-
LINK LINK-NAME=DATABASE,FILE-NAME=conf-name but via the distribution
table once the application program is running. The connection module of the appli-
cation program communicates with the remote configurations via DCAM appli-
cations.
Remote configurations can be situated on local or remote hosts.

remote database
Database in a remote configuration.

remote host
Host computer that is not local.

repeating group
Group item with repetition factor. The repetition factor, which must be greater
than 1, specifies the number of duplicates of the group item to be incorporated
in the repeating group.

request
The functions of the DAL commands ADD DB, ADD RN, DROP DB, DROP RN,
NEW RLOG and CHECKPOINT are held in the DBH as "requests" and are not
executed until the DAL command PERFORM is entered.

restart of BMEND
Resumption of an aborted BMEND run.

restart of a session
See session restart.

restructuring
Modification of the Schema DDL or SSL for databases already containing data.

return code
Internal code which the called program sends to the calling program;
Return code ≠ 0 means an error has occurred.

RLOG file
Backup file used by the DBH during a session to store before-images (BFIMs)
and after-images (AFIMs) of data which is updated. With the aid of the RLOG file,
the DBH can cancel updates effected by incomplete transactions. There is one
RLOG file per configuration. An RLOG file consists of two physical files.

S Glossary

430 U930-J-Z125-14-76

rollback
Canceling of all updates effected within a transaction.

RSQ
See record sequence number.

RUNUNIT-ID
See transaction identification.

S

schema
Formalized description of all data structures permitted in the database. A
UDS/SQL schema is defined by means of the Schema DDL.

Schema DDL
Formalized language for defining a schema.

Schema Information Area (SIA)
The SIA contains the complete database definition. The DBH loads the SIA into
main memory at the start of DB processing.

SEARCH KEY
Secondary key; access paths using secondary keys are created by UDS/SQL by
means of hash routines and multi-level tables.

SEARCH KEY table
Multi-level table used by UDS/SQL as an access path via a secondary key.

secondary key
Any key which is not a primary key. Used for direct access to a record or a set of
records with the same key values or within a search interval.

secondary subtransactions
Subtransactions that address remote configurations.

sequence number
Identifier in the name of the ALOG files (000000001 - 999999999). The first
ALOG file of a database is always numbered 000000001.

Glossary S

U930-J-Z125-14-76 431

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

sequential access
Accessing a record on the basis of its position within a predefined record
sequence.

server task
Task of the independent DBH in which the UDSSUB module executes; processes
the requests of the DB application programs.

session
Period between starting and normal termination of the DBH (independent/ linked-
in) in which it is possible to work with the databases of the configuration. Normally,
a session consists of a sequence of session sections and session interrupts.

session abort
Occurs when the DBH is terminated abnormally after a successful session start.
A session abort can be caused by: power failure, computer failure, BS2000
problems, DBH problems, %TERM.

session end
Is the result of:
– DAL when using independent DBH,
– TERM in the DML application program when using linked-in DBH,
– DBH error handling.
During a session interrupt, the user can also effect session end by invalidating
the SLF contents. Inconsistent databases can be made consistent again by a
warm start, even without an SLF.

session interrupt
The period between a session abort and the related session restart.

session job variable
Job variable in which UDS/SQL stores information about a session.

Session Log File (SLF)
File which is permanently assigned to a session and which is required by the
DBH in the event of a session restart. It contains information on the current DB
configuration, the number of current file identifiers and the current values of the
DBH load parameters.

S Glossary

432 U930-J-Z125-14-76

session restart
Starting of the DBH, under the same configuration name and configuration user ID,
after a session abort. With the aid of the SLF, the DBH load parameters and the
current file identifiers which existed when the session aborted are re-estab-
lished, and the databases of the previous configuration are reattached, if
necessary by means of a warm start.

session section
Period from the start of the DBH, either at the session start or a restart, to the
normal session end or to a session abort.

session section number
Number which identifies a session section unambiguously.

session start
State of a session in which the DBH is started under a configuration name for
which there is no Session Log File (SLF) with valid contents.

set
Nameable relationship between two record types.

set, dynamic
See dynamic set.

set, implicit
See implicit set.

set, singular
See SYSTEM set.

set, standard
See standard set.

Set Connection Data (SCD)
Linkage information for the records of a set occurrence.

set occurrence
Single instance of a set. Comprises exactly one owner record and any number of
subordinate member records.

set reference number
Sets are numbered contiguously in ascending order, beginning at 1.

Glossary S

U930-J-Z125-14-76 433

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

set SEARCH KEY table
SEARCH KEY table for selecting a member record from a set occurrence.

SF pubset
See single feature pubset

shadow database
Backup of all the files of a database, each saved under the name
”dbname.dbfile.copyname”.
A shadow database can be created at any time and processed parallel to the
original database in RETRIEVAL mode.
In addition BMEND can be used to apply ALOG files that have already been
closed to the database parallel to the UDS/SQL session.

Shared user buffer pool
Shared buffer of several databases which is used in addition to the System Buffer
Pool, solely for buffering pages of the databases that have been assigned to it.

SIA
See Schema Information Area.

SIB
See SQL Interface Block.

single feature pubset
A single feature pubset (SF pubset) consists of one or more homogeneous
disks which must have the same major properties (disk format, allocation unit).

SLF
See session log file.

SM pubset
See system managed pubset

S Glossary

434 U930-J-Z125-14-76

snap pair, snap pubset, snap session, snap unit
A snap unit is the copy of an (original) unit (logical disk in BS2000) at a particular
time (“Point-in-Time copy”). The TimeFinder/Snap component creates this copy
as a “snapshot” in accordance with the “Copy-On-First-Write strategy“: Only if
data is modified is the original data concerned written beforehand into a central
save pool of the Symmetrix system. The snap unit contains the references
(track pointers) to the original data. In the case of unmodified data the refer-
ences point to the unit, in the case of modified data to the save pool.
After they have been activated, the unit and snap unit are split; applications can
access both.
The unit and snap unit together form a snap pair. TimeFinder/Snap manages
this pair in what is known as a snap session.
If snap units exist for all units of a pubset, these snap units together form the
snap pubset.
Details of this are provided in the manual "Introduction to System Adminis-
tration".

sort key table
Table pointing to the member records of a set occurrence.

source program
Program written in a programming language and not yet translated into machine
language.

spanned record
Record exceeding the length of a page. Only UDS/SQL-internal records can
be spanned records;
User record types must not exceed
– 2020 bytes for a page length of 2048 bytes
– 3968 bytes for a page length of 4000 bytes
– 8064 bytes for a page length of 8096 bytes.

SQL
SQL is a relational database language which has been standardized by ISO
(International Organization for Standardization).

SQL conversation
See conversation.

SQL DML
SQL Data Manipulation Language for querying and updating data.

Glossary S

U930-J-Z125-14-76 435

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

SQL Interface Block (SIB)
Interface between UDS/SQL and SQL application program(s); contains the
SQL statement, any existing parameters and the statement results.

SQL transaction
Related sequence of SQL statements which is processed by UDS/SQL either as
a whole or not at all. This method ensures that the database(s) is/are always in
a consistent state.

SSIA
See Subschema Information Area.

SSIA-RECORD
UDS/SQL-internal record type, located in the DBDIR. Records belonging to this
type are, for example, the Schema Information Area (SIA) and the Subschema
Information Areas (SSIAs).

SSITAB module
Module generated by the BCALLSI utility routine; makes available the
subschema information required by CALL DML programs.

SSL
See Storage Structure Language.

standard set
A set other than a dynamic, implicit or SYSTEM set.

statement code
Number stored in the first part of the DATABASE-STATUS item. Its function is to
indicate which DML statement resulted in an exception condition.

status code
Number stored in the second part of the DATABASE-STATUS item. It indicates
which exception condition has occurred.

Storage Structure Language (SSL)
Formalized language for describing the storage structure.

string
A series of consecutive alphanumeric characters.

subcontrol system
Component for the independent DBH. Responsible for control functions.

S Glossary

436 U930-J-Z125-14-76

subschema
Section of a schema required for a particular application; it can be restructured,
within limits, for the intended application; a subschema is defined by means of
the Subschema DDL.

Subschema DDL
Formalized language for defining a subschema.

Subschema Information Area (SSIA)
The SSIA contains all subschema information required by the DBH to carry out,
on behalf of the user, the database accesses permitted within the specified
subschema. The DBH loads the SSIA into main memory when it is referenced in
a READY command.

subschema module
Module resulting from subschema compilation when a COBOL DML program is
compiled. It must be linked in to the application program and includes the USER
WORK AREA (UWA) as well as the RECORD AREA, which is also part of the
base interface block (BIB). The name of the subschema module is the first 8 bytes
of the subschema name.

subschema record
Record defined in the Subschema DDL.

SUB-SCHEMA SECTION
In COBOL programs with DML statements: section of the DATA DIVISION used
for specifying the schema name and the subschema name.

subtransaction
In a distributed transaction, all the processing chains that address the databases
in one configuration form a subtransaction.

system area
Realm required only by UDS/SQL. The system areas of a database include:
– the Database Directory (DBDIR),
– the Database Compiler Realm (DBCOM),
– the COBOL Subschema Directory (COSSD)

system break information
Indicates whether the database is consistent or inconsistent.

Glossary T

U930-J-Z125-14-76 437

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

system buffer pools
Input/output buffer for database pages (see page). The buffer is part of the
common pool (independent DBH) or the DBH work area (linked-in DBH). Its size is
determined by the DBH load parameters 2KB-BUFFER-SIZE, 4KB-BUFFER-
SIZE or 8KB-BUFFER-SIZE.

system managed pubset
A system managed pubset consists of one or more volume sets which, as with
an SF pubset, comprise a collection of multiple homogeneous disks; here, too,
homogeneity relates to particular physical properties such as disk format and
allocation unit.

SYSTEM record
See anchor record.

SYSTEM set
Set whose owner record type is the symbolic record type SYSTEM.

T

table, multi-level
See multi-level table.

table (SQL)
A table in the context of SQL corresponds to a UDS/SQL record type.

table header
Contains general information on a table or table page:
– the table type and the level number of the table page,
– the number of reserved and current entries in this table page,
– the chaining reference to other table pages on the same level,
– the pointer to the associated table page on the next higher level,
– the pointer to the page containing the last table on the main level (for the

highest-level table only).

table page
Page containing a table or part of a table. If a table which does not extend over
several pages or the highest level of a multi-level table is concerned, "table
page" only refers to the object involved, not the entire page.

T Glossary

438 U930-J-Z125-14-76

TANGRAM
(Task and Group Affinity Management) Subsystem of BS2000 that plans the
allocation of processors for task groups which access large quantities of shared
data in multi-task applications.

task attribute TP
There are 4 task attributes in BS2000: SYS, TP, DIALOG and BATCH.
Special runtime parameters that are significant for task scheduling are assigned
to each of these task attributes.
In contrast to the other task attributes, the TP attribute is characterized by
optimized main memory management that is specially tailored to transaction
processing requirements.

task communication
Communication between the DBH modules. See also common pool.

task deadlock
See deadlock.

task priority
In BS2000, it is possible to define a priority for a task. This priority is taken into
account when initiating and activating the task.
Priorities may be fixed or variable. Variable priorities are adapted dynamically;
fixed priorities do not change.
Note that UDS/SQL server tasks should be started with a fixed priority in order
to ensure consistent performance.

TCUA
See Transaction Currency Area.

time acknowledgment
Message sent by the UDS-D task to the remote application program to indicate
that there is still a DML statement being processed.

transaction (TA)
Related sequence of DML statements which is processed by UDS/SQL either
as a whole or not at all. This method ensures that the database(s) is/are always
in a consistent state.
For UDS-D:
The total set of subtransactions active at a given time.

transaction, committing a
Terminating a transaction with FINISH, i.e. all updates performed within the
transaction are committed to the database.

Glossary U

U930-J-Z125-14-76 439

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

transaction, rolling back a
Terminating a transaction with FINISH WITH CANCEL, i.e. all updates
performed on the database within the transaction are rolled back.

Transaction Currency Area (TCUA)
Contains currency information.

transaction identification (TA-ID)
Assigned by the DBH to identify a particular transaction. Can be requested with
the DAL command DISPLAY.

transfer pool
UDS-D-specific storage area in which the UDSCT receives the BIBs from remote
application programs.

two-phase commit protocol
Procedure by which a distributed transaction that has made changes in at least
one remote configuration is terminated in such a way as to safeguard inter-config-
uration consistency or UDS/SQL openUTM-D consistency. The two-phase
commit is controlled
– by the distribution component in the user task if the transaction is distributed

via UDS-D.
– by openUTM-D if the transaction is distributed via openUTM-D or via

openUTM-D and UDS-D.

U

UDSADM
Module of the independent DBH; executes in the administrator task.

UDSHASH
Module generated by the BGSIA utility routine. It contains the names of all the
hash routines defined in the Schema DDL.

UDSNET
Distribution component in the user task.

UDSSQL
Start module of the independent DBH; executes in the master task.

UDSSUB
Start module of the independent DBH; executes in the server task.

U Glossary

440 U930-J-Z125-14-76

UDS-D task UDSCT
Task started for each configuration by UDS/SQL so that it can participate in
distributed processing with UDS-D.

UDS/SQL / openUTM-D consistency
A transaction that has updated both openUTM data and UDS/SQL databases is
terminated in such a way that the openUTM data and the UDS/SQL databases
are either updated together or not at all.

UDS/SQL pubset declaration
Declaration in a pubset declaration job variable for restricting the UDS/SQL
pubset environment. This reduces or prevents the risk of file names being
ambiguous.

unique throughout the network
Unique in all the computers that are included in the network.

user database
The realms and files of the database required by the user in order to be able to
store data in, and to retrieve data from a database are:
– the Database Directory (DBDIR),
– the user realms
– the module library for hash routines (HASHLIB).

user realm
A realm defined in the realm entry of the Schema DDL. It contains, among other
things, the user records.

user task
Execution of an application program or openUTM program, including the parts
linked by the system.

USER-WORK-AREA (UWA)
Transfer area for communication between the application program and the DBH.

UTM
See openUTM.

UWA
See USER-WORK-AREA (UWA).

Glossary V

U930-J-Z125-14-76 441

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
.

M
ar

ch
 2

01
6

 S
ta

n
d

10
:1

8.
52

P
fa

d:
 P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

1
70

1_
U

D
S

_
A

nw
\e

n\
ud

sa
nw

.m
ix

V

vector
Item with repetition factor. The repetition factor must be greater than 1. It
specifies how many duplicates of the item are combined in the vector.

version number, internal
See internal version number.

W

warm start
A warm start is performed by UDS/SQL if an inconsistent database is attached
to a session. For UDS/SQL this involves applying all updates of completed trans-
actions to the database which have not yet been applied, rolling back all
database transactions that are open, and making the database consistent. The
related RLOG file and the DB status file are required for a warm start.

W Glossary

442 U930-J-Z125-14-76

U930-J-Z125-14-76 443

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.a

b
k

Abbreviations

ACS Alias Catalog Service

Act-Key ACTual KEY

AFIM AFter-IMage

AP Application Program

ASC ASCending

BIB Base Interface Block

BFIM BeFore-IMage

COBOL COmmon Business Oriented Language

CODASYL COnference on DAta SYstem Languages

CRA CuRrent of Area

CRR CuRrent of Record

CRS CuRrent of Set

CRU Current of RunUnit

COSSD COBOL SubSchema Directory

DAL Database Administration Language

DB DataBase

DBCOM DataBase COmpiler Realm

DBDIR DataBase DIRectory

DBH DataBase Handler

DB-Key DataBase Key

DBTT DataBase key Translation Table

DDL Data Description Language

DESC DESCending

DML Data Manipulation Language

DRV Dual Recording by Volume

DSA Database System Access

DSSM Dynamic SubSystem Management

Abbreviations

444 U930-J-Z125-14-76

FC Function Code

FPA Free Place Administration

GS Global Storage

HSMS Hierarchic Storage Management System

ID IDentification

IQL Interactive Query Language

IQS Interactive Query System

KDBS Kompatible Datenbank-Schnittstelle (= compatible database interface)

KDCS Kompatible Datenkommunikationsschnittstelle
(= compatible data communications interface)

LM Lock Manager

LMS Library Maintenance System

MPVS Multiple Public Volume Set

MR-NR MainRef NumbeR

MT Master task

OLTP OnLine transaction processing

openUTM Universal Transaction Monitor

OT Operator Task

PETA Preliminary End of TrAnsaction

PPP Probable Position Pointer

PTC Prepared To Commit

PTT Primäre Teiltransaktion (= primary subtransaction)

PVS Public Volume Set

REC-REF RECord REFerence number

RSQ Record Sequence Number

SC SubControl

SCD Set Connection Data

SCI Software Configuration Inventory

SECOLTP SECure OnLine Transaction Processing

SECOS SEcurity COntrol System

SET-REF SET-REFerence

SIA Schema Information Area

SIB SQL Interface Block

Abbreviations

U930-J-Z125-14-76 445

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

2
1.

 M
ä

rz
 2

01
6

 S
ta

nd
 1

0
:1

9.
16

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

1_
U

D
S

_A
nw

\e
n\

ud
sa

nw
.a

b
k

SLF Session Log File

SQL Structured Query Language

SSD Solid State Disk

SSIA SubSchema Information Area

SSITAB SubSchema Information TABle

SSL Storage Structure Language

ST ServerTask

STT Sekundäre Teiltransaktion (= secondary subtransaction)

TA TrAnsaction

TA-ID TrAnsaction IDentification

TANGRAM TAsk aNd GRoup Affinity Management

TCUA Transaction CUrrency Area

UDS/SQL Universal Database System/Structured Query Language

UWA User Work Area

Abbreviations

446 U930-J-Z125-14-76

U930-J-Z125-14-76 447

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ä
rz

 2
01

6
 S

ta
n

d
10

:1
9.

17
P

fa
d:

 P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
1

70
1_

U
D

S
_

A
nw

\e
n\

ud
sa

nw
.li

t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

UDS/SQL (BS2000)
Creation and Restructuring
User Guide

UDS/SQL (BS2000)
Database Operation
User Guide

UDS/SQL (BS2000)
Design and Definition
User Guide

UDS/SQL (BS2000)
Messages
User Guide

UDS/SQL (BS2000)
Recovery, Information and Reorganization
User Guide

UDS/SQL (BS2000)
Ready Reference

UDS (BS2000)
Interactive Query System IQS
User’s Guide

UDS-KDBS (BS2000)
Compatible Database Interface
User Guide

http://manuals.ts.fujitsu.com

Related publications

448 U930-J-Z125-14-76

SQL for UDS/SQL
Language Reference Manual

BS2000 OSD/BC
Commands
User Guide

BS2000 OSD/BC
Introduction to System Administration
User Guide

BS2000 OSD/BC
Executive Macros
User Guide

BS2000 OSD/BC
Introductory Guide to DMS
User Guide

SDF (BS2000)
SDF Dialog Interface
User Guide

SORT (BS2000)
User Guide

SPACEOPT (BS2000)
Disk Optimization and Reorganization
User Guide

LMS (BS2000)
SDF Format
User Guide

DSSM/SSCM
Subsystem Management in BS2000
User Guide

ARCHIVE (BS2000)
User Guide

DRV (BS2000)
Dual Recording by Volume
User Guide

Related publications

U930-J-Z125-14-76 449

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ä
rz

 2
01

6
 S

ta
n

d
10

:1
9.

17
P

fa
d:

 P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
1

70
1_

U
D

S
_

A
nw

\e
n\

ud
sa

nw
.li

t

HSMS / HSMS-SV (BS2000)
Hierarchical Storage Management System
Volume 1: Functions, Management and Installation
User Guide

SECOS (BS2000)
Security Control System
User Guide

openNet Server (BS2000)
BCAM
Reference Manual

DCAM (BS2000)
Program Interfaces
Reference Manual

DCAM (BS2000)
Macros
User Guide

OMNIS/OMNIS-MENU (BS2000)
Functions and Commands
User Guide

OMNIS/OMNIS-MENU (BS2000)
Administration and Programming
User Guide

openUTM
Concepts and Functions
User Guide

openUTM
Programming Applications with KDCS for COBOL, C and C++
User Guide

openUTM
Generating Applications
User Guide

openUTM
Administering Applications
User Guide

Related publications

450 U930-J-Z125-14-76

openUTM
Using openUTM Applications under BS2000
User Guide

openUTM
Messages, Debugging and Diagnostics in BS2000
User Guide

COBOL2000 (BS2000)
COBOL Compiler
Reference Manual

COBOL2000 (BS2000)
COBOL Compiler
User’s Guide

COBOL85 (BS2000)
COBOL Compiler
Reference Manual

COBOL85 (BS2000)
COBOL Compiler
User’s Guide

CRTE (BS2000)
Common Runtime Environment
User Guide

DRIVE/WINDOWS (BS2000)
Programming System
User Guide

DRIVE/WINDOWS (BS2000)
Programming Language
Reference Guide

DRIVE/WINDOWS (BS2000)
System Directory of DRIVE Statements
Reference Manual

DRIVE/WINDOWS (BS2000/SINIX)
Directory of DRIVE SQL Statements for UDS
Reference Manual

Related publications

U930-J-Z125-14-76 451

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

21
. M

ä
rz

 2
01

6
 S

ta
n

d
10

:1
9.

17
P

fa
d:

 P
:\F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
1

50
1

70
1_

U
D

S
_

A
nw

\e
n\

ud
sa

nw
.li

t

DAB (BS2000)
Disk Access Buffer
User Guide

Unicode in BS2000
Introduction

XHCS (BS2000)
8-Bit Code and Unicode Processing in BS2000
User Guide

BS2000 OSD/BC
Softbooks English
DVD

openSM2 (BS2000)
Software Monitor
User Guide

SNMP Management (BS2000)
User Guide

Related publications

452 U930-J-Z125-14-76

U930-J-Z125-14-76 453

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
19

.1
6

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n\
u

ds
an

w
.s

ix

Index

$UDSDLIB, link name 97
$UDSKLIB, link name 97
$UDSKONF, link name 99
$UDSLIB, link name 97
$UDSPLEX, link name 98
$UDSSSI, link name 98
$UL, dynamic-loading procedure

(abbreviation) 97, 98

A
ACCEPT 46, 63, 139, 227
access

contending 401
direct 401
sequential 401
to the CRR 55

access authorization 401
access CRA 61
access CRS 60
access owner of CRS 60
access path 401
access rights 401
access type 401
access, direct

at record level 48
at set level 56
via CALC key 49
via database key 48

access, sequential
at realm level 61
at record type level 55
at set level 59

act-key 402
act-key-0 page 402
act-key-N page 402
ADD 305, 315
address

physical 402
administrator task 402
AFIM 402
after-image 402

ALOG file 402
RLOG file 402

ALOG file 402
ALOG sequence number 403
alog-seq-no 23
anchor record 403
AND groups

in FIND/FETCH 174
appl 23
application 403
application program (AP) 403
area 403
ascending key (ASC key) 403
Assembler example 297
Assembler macros 259
authorization 403
authorized users 403
automatic DBTT extension 403
AUTOMATIC member 65
automatic realm extension 403

B
backup database 404
Base Interface Block (BIB) 404
BCALLSI 83
before-image 404

Index

454 U930-J-Z125-14-76

BFIM 404
BIB (Base Interface Block) 404
buffer pools

see exclusive buffer pool
see system buffer pools

C
CALC key 153, 169, 404

in FIND/FETCH 175
CALC key value 49
CALC page 404
CALC SEARCH key 404
CALC table 405
CALL DML 83, 92, 197, 335, 405

converter 83
parameter mechanism 260

CALL DML functions 211
CALL DML parameters

define 198
format table 201
formatting rules 199

CALL DML program 76
generate 83
link 100
structure 84

CALL DML status codes 378
CALL interface 29, 197
catalog identifier 405
catid 23
chain 405
Character Separated Values (CSV) 405
check records 405
checkpoint 405
CHECK-TABLE 405
clone 406
closing a transaction 45
COBOL DML 77, 86, 129, 406
COBOL DML program 76

link 100
preparation 77
structure 77

COBOL example 291
COBOL runtime system 406
COBOL Subschema Directory (COSSD) 406

collection of records 56, 164
common memory 406
common pool 406
communication area 29, 86
communication partners 406
communication pool 406
comparison condition 53
compatible database interface 406, 418
compiler database 407
COMPILER-SCHEMA 407
COMPILER-SUBSCHEMA 407
compound CALC key

in FIND/FETCH 175
compound key 407

use in FIND/FETCH 171
compression 407
configuration 407
configuration identification 407
configuration name 407
CONNECT 66, 143, 229
connect

into a set occurrence 66
into set occurrence 189, 256

connection module 407
version-dependent 100
version-independent 100

consistency 31, 407
logical 408
physical 408
storage 408

consistency error 408
consistency point 408
consistency record 408
contending access 408
CONTINUE 305, 316
conversation 408
copy 408
copyname 23
COSSD 408
COSSD file 90
CRA 37, 61, 63, 158, 160, 408
CRR 37, 49, 50, 55, 63, 64, 153, 155, 158, 160,

409

Index

U930-J-Z125-14-76 455

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
19

.1
6

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n\
u

ds
an

w
.s

ix

CRS 37, 56, 63, 64, 67, 74, 155, 158, 160, 162,
169, 181, 183

CRU 37, 62, 63, 64, 71, 73, 143, 144, 180, 181
c-string 24
CSV 409
csv-dateiname 24
currency information 37
currency table 37, 38, 45, 409

columns 37, 38, 46
currency table updating

explicit control of 47
suppress 46

CURRENT
OF AREA table 409
OF RECORD table 409
OF SET table 409

Current
Record of Rununit 409
Record of Set (CRS) 409

D
dal-cmd 24
data backup 409
data deadlock 409
data division 131
Data Manipulation Language (DML) 414
data modification 65
data protection (privacy) 410
data retrieval 46
data type

structured-name 25
data types 23
database (DB) 410
database administrator 410
Database Administrator Language (DAL) 409
database compiler realm (DBCOM) 410
database copy 410
database copy update 410
database directory (DBDIR) 410
database exception condition 73, 74, 89, 117,

194
database job variable 410
database key 410

item 411

database key value 37, 46, 55, 63, 68, 88, 150,
190

database page 411
database system 411
DATABASE-KEY item 411
DATABASE-KEY-LONG item 411
DATABASE-STATUS 411
date 24
DB configuration 411
DB entry 86
DB key 412
DB record 113, 394
DB status file 411
DB trace information, openUTM 390, 394
DBCOM 411
DB-DIAGAREA, openUTM 390, 394
DBDIR 412
DBH 305, 316, 412

end 412
independent 95, 412
linked-in 95, 412
start 412

DBH load parameters 412
DBH variants 103
dbname 24
DBTT 412

page 413
DBTT anchor page 412
DBTT base 412
DBTT extension

automatic 403
online 422

DBTT extent 413
DCAM 413
DCAM application 413
DCL 305
DDL 413
deadlock 33, 44, 413
DECLARE 305, 316
DEFINE 305, 317
DELETE 305, 317
delete records 69, 231
descending key (DESC key) 413
device 24

Index

456 U930-J-Z125-14-76

direct access 413
direct access path 170
direct hash area 413
DISCONNECT 67, 144, 230
DISPLAY 305, 318
DISPOFF 305, 318
distributable list 49, 65, 153, 190, 210, 257, 346,

357, 374, 419
preferred realm 66, 190, 357
table realm 419

distributed database 413
distributed transaction 414
distribution pool 414
distribution table 414
DML functions 41
DML program

execute 103
link 100
start 103

DML status codes 365
DMLTEST 301

commands 305
communication with databases 362
error messages 363
interrupts 359

DO 305, 319
DOFF 305
DSCAL 259, 261
DSCAP 259, 262
DSCDF 259, 263
DSCPA 259, 265
dummy subtransaction 414
duplicate 49, 50, 54, 56, 59, 153
duplicates header 414
duplicates table 415

main level 415
dynamic loading 95, 100
dynamic set 50, 53, 56, 58, 67, 143, 144, 164,

165, 415
dynamic-loading strategy 95

E
EDT 305, 321
EHPROT 332

END 305, 321
ERASE 69, 146, 231
error handling 114, 124
error handling routine 89
ESCAPE 305, 321
ESTIMATE-REPORT 415
event name 415
EXCLUSIVE 43
exclusive buffer pool 415
exclusive locking 34
EXECUTE 305, 322
execution, see program execution

F
FCOD 198, 201, 211
FETCH 46, 46, 122, 148, 232
FETCH-1 48, 150, 233
FETCH-2 49, 153, 234
FETCH-3 50, 56, 155, 235
FETCH-4 54, 59, 61, 158, 236
FETCH-5 47, 55, 60, 61, 160, 238
FETCH-6 60, 162, 239
FETCH-7 50, 56, 163, 240
FIND 46, 46, 117, 122, 148, 232
FIND-1 48, 150, 233
FIND-2 49, 153, 234
FIND-3 50, 56, 155, 235
FIND-4 54, 59, 61, 158, 236
FIND-5 47, 55, 60, 61, 160, 238
FIND-6 60, 162, 239
FIND-7 50, 56, 163, 240
FINISH 31, 45, 179, 247
FOPT 198, 201, 211
foreign key 415
FORTRAN example 294
FPA 415
FPA base 416
FPA extent 416
FPA page 416
FREE 72, 179, 247
free place administration 416
function code 198, 416
function option 198
functions of DML 30, 340

Index

U930-J-Z125-14-76 457

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
19

.1
6

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n\
u

ds
an

w
.s

ix

G
GET 46, 62, 180, 248
group item 416

H
HALT 305, 323
hash area 416
hash procedure 49, 153
hash routine 416
hashing 416
HASHLIB 417
HELP 306, 323
host 24

I
identification division 131
identifier 417
IF 73, 73, 181, 250
IMON 95
implicit set 417
inconsistency 417
independent DBH 103, 417
index level 417
index page 417
INDEX search key 417
indirect hash area 417
insert into set occurrence 143, 229
integer 24
integrity 418
interconfiguration 418

consistency 418
deadlock 418

interface 418
internal version number 418
interrupt handling 114

STXIT concurrency 116
item 418

modify 183
item name 198
items, national 126, 318, 331
ITMN 198, 201, 211

K
KDBS 314, 335, 362, 406, 418

KEEP 71, 182, 251
key 86, 419

compound 419
key item 419
key reference number 419
keyword 20, 21, 131, 312
keyword parameters 311
kset 24

L
LANGUAGE 306, 324
LCCONCT, connection module 100
LEAVE 306, 325
levels of locking 34
link

UDS/SQL openUTM application 109
UDS/SQL-TIAM application 100

linked-in control system 419
linked-in DBH 31, 105, 419
LIST 306, 326
list 419

distributable, see distributable list
literals, national 327, 334
load parameters DBH 419
local application program 419
local configuration 420
local database 420
local distribution table 420
local host 420
local transaction 420
lock

at page level 34
at realm level 34, 43, 179, 186, 254
at record level 71, 182, 251

logging 420
logical connection 420
LOOKC 94, 266

block 268
block, general description 269
block, special description 270
parameter description 275
tables 278

LS 306

Index

458 U930-J-Z125-14-76

M
main reference 420
mainref number 420
MANDATORY member 66
MANUAL member 66
mask 50, 53, 56, 165, 166, 176, 246
mask condition

in FIND/FETCH 171
masking symbols 102
master task 420
MEMBER 73
member 421

AUTOMATIC 65, 70, 189, 421
MANDATORY 66, 70, 146, 421
MANUAL 66, 70, 421
OPTIONAL 66, 70, 144, 146, 421

member record 58, 69, 73, 158, 421
member record type 421
metavariable 130
MODIFY 68, 183, 251
modifying

data 70
item contents 68

mono-DB configuration 421
mono-DB operation 33, 44, 78, 104, 421
MOVE 306, 327
multi-DB configuration 421
multi-DB operation 32, 80, 84, 421
multi-DB program 421
multi-level table 421
multithreading 422

N
name 24
name conflicts during dynamic loading 102
NATIONAL 126, 318, 327, 331, 373
national items 126, 318, 331
national literals 327, 334
nesting 319, 333
network 422
NEXT 306, 329
notational conventions 20, 21

SDF statements 22

O
OLTP 422
online backup 422
online DBTT extension 422
online realm extension 422
open transaction 186, 422
opening of transactions 43
openUTM 423

DB record 394
DB trace information 390, 394
DB-DIAGAREA 390, 394

operator task (OT) 423
OPTIONAL member 66
optional word 20, 21
OR groups

in FIND/FETCH 176
original database 423
overflow pages 423
OWNER 73
owner 423
owner record 60, 66, 69, 73, 159, 162, 190, 423
owner record type 423

P
P1 eventing 426
page 423
page address 423
page container 424
page header (page info) 424
page index entry 424
page length 129
page number 424

relative 49
page protection 34
parameters, CALL DML 198
password for UDS/SQL files 424
pattern 424
pattern string 424
PERFORM 306, 330
PETA 425
PLITAB module 98
POFF 306
pointer array 425
PPP (probable position pointer) 425, 426

Index

U930-J-Z125-14-76 459

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
19

.1
6

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n\
u

ds
an

w
.s

ix

preferred realm
distributable list 66, 190, 357

prepared to commit (PTC) 425
primary key 170, 425
primary key (DDL) 425
primary key (SQL) 425
primary subtransaction 426
PRINT 306, 331
PRIVACY 86, 131
PRIVACY-AND-IQF SCHEMA 426
PRIVACY-AND-IQF SUBSCHEMA 426
probable position pointer (PPP) 425, 426
PROC 306, 331
procedure division 133, 137
processing chain 32, 426
product version

specify 95, 112
PROFF 306, 332
program execution

DML program 103
programming languages 29, 197
PROT 306
PROTECTED 43
protection functions 31
PTC state 426
pubset declaration 426
pubset declaration job variable 426

R
Readme file 17
READY 31, 32, 43, 186, 254, 427
READYC 427
realm 427
realm configuration 427
realm copy 427
realm extension

automatic 403
online 422

realm level 61
realm name 64, 142, 198
realm reference number 427
realm-name 25
realmref 25
RECA 93, 198, 201, 211

RECN 198, 201, 211
reconfiguration 427
record 427

delete 69
find 46
modify 65
remove 146
store 65

record address 427
RECORD AREA 428
record area 86, 93, 198
RECORD AREA, see record area
record element 50, 57, 62, 68, 156, 166, 170,

180, 183, 428
record hierarchy 428
record level 71
record name 198
record protection

extended 45, 71, 179, 182, 247, 251
record reference number 428
record SEARCH KEY table 428
record selection expression 46, 150, 153
record sequence number 428
record type 428

linear 428
record type level 48, 55
record-name 25
recordref 25
recovery concept 30, 33
REC-REF 428
referential integrity 428
relational operators 50, 56
relationship

between records 29
of sets 181

REMARK 306, 332
remote application program 428
remote configuration 429
remote database 429
remote host 429
repeating group 429
request 429
reserved words 129

Index

460 U930-J-Z125-14-76

restart
of a session 429
of BMEND 429

restructuring 429
result set 145
RETAINING 39, 47, 67, 143, 148, 189
RETRIEVAL 43
retrieval of data 232
retrieve

database key values 63
realm 64

return code 429
RLMN 198, 201, 211
RLOG file 429
rollback 33, 430
RSQ 430
RUN 307, 333
RUNUNIT-ID 430

S
schema 430
schema DDL 430
Schema Information Area (SIA) 430
schema-name 25
SCI Software Configuration Inventory 95
SCSXUSER 114
SDF statements notational conventions 22
search expression 50, 58, 155, 165, 170, 245,

335
in FIND/FETCH 171

SEARCH KEY 430
SEARCH KEY table 430
secondary key 170, 430
secondary option 198, 203

fixed-format 204
free-format 204

secondary subtransaction 430
SELECT-PRODUCT-VERSION 95, 104, 105
sequence number 430
sequence of processing

in FIND/FETCH 174
sequential access 431
server task 431

session 431
abort 431
end 431
interrupt 431
start 432

session job variable 431
Session Log File (SLF) 431
session restart 432
session section 432
session section number 432
SET 88, 187, 307
set 432

dynamic 50, 53, 56, 58, 67, 143, 144, 164,
165, 432

implicit 432
singular 432
standard 432

SET command 334
Set Connection Data (SCD) 432
set connections, releasing 230
set level 56, 59
set membership 66, 70, 73
set name 198
set occurrence 56, 65, 68, 69, 73, 74, 143, 144,

155, 159, 164, 169, 183, 189, 191, 432
set reference number 432
set SEARCH KEY table 433
SETN 198, 201, 211
set-name 25
SF pubset 433
shadow database 433
Shared User buffer pool 433
SHOW 307, 336
SIA 433
SIB 433
single feature pubset 433
SLF 433
SM pubset 433
snap 434
SOPT 198, 201, 203, 211
sort dynamic set 50, 56
sort key table 434
sort sequence 51, 57
source program 434

Index

U930-J-Z125-14-76 461

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

2u
s

fü
r

F
ra

m
eM

a
ke

r
V

7.
x

vo
m

 2
8.

0
3.

20
0

7
©

 c
o

gn
ita

s
G

m
bH

 2
00

1-
20

0
7

21
. M

a
rc

h
20

16

S
ta

nd
 1

0:
19

.1
6

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

01
_

U
D

S
_A

nw
\e

n\
u

ds
an

w
.s

ix

spanned record 434
special parameter 1 198, 209
special parameter 2 198, 210
special parameter 3 198
special registers 88, 117
SPP1 198, 202, 209, 211
SPP2 198, 202, 210, 211
SPP3 198, 202, 211
SQL 434
SQL conversation 434
SQL DML 434
SQL Interface Block (SIB) 435
SQL transaction 435
SSIA 435
SSIA-RECORD 435
SSITAB module 76, 83, 435

load dynamically 98
SSL 435
standard set 435
start

UDS/SQL-TIAM application 103
statement code 117, 118, 435
status code 117, 119, 435
status codes

UDS online utility 365, 374
STOP 305, 323
Storage Structure Language (SSL) 435
STORE 65, 117, 189, 256
store record 189, 256
string 435
structure information 266
structured-name (data type) 25
STXIT 114

SCSXUSER 114
STXIT concurrency 116
subcontrol system 435
SUBSCHEMA 307
subschema 436
Subschema DDL 436
Subschema Information Area (SSIA) 436
subschema module 436
subschema record 436
SUB-SCHEMA SECTION 131, 436
subschema-name 25

subtransaction 436
syntax description 22
SYSTEM 307, 337, 337
system area 436
system break information 436
system buffer pools 437
system managed pubset 437
SYSTEM record 437
SYSTEM set 437

T
table

multi-level 437
table (SQL) 437
table header 437
table pages 437
table realm

distributable list 419
TANGRAM 438
task attribute TP 438
task communication 438
task deadlock 438
task priority 438
TCUA 438
TENANT 73
terminate transaction 179
testing DML functions 301
time 26
time acknowledgment 438
TRACE 307, 338
transaction 31, 71, 438

close 45
committing a 438
open 43, 186, 254
roll back 439
terminate 179, 247

Transaction Currency Area 439
transaction identification (TA-ID) 439
transfer pool 439
translation table

UDSTRTAB 126
TSK, dynamic-loading procedure

(abbreviation) 97, 98
two-phase commit protocol 439

Index

462 U930-J-Z125-14-76

U
UDS 439
UDS online utility

status codes 365, 374
UDS/SQL 440
UDS/SQL / openUTM-D consistency 440
UDS/SQL openUTM application

linking 109
UDS/SQL pubset declaration 440
UDS/SQL-TIAM application

link 100
start 103

UDSADM 439
UDSBCCON, connection module 100
UDS-D task UDSCT 440
UDSHASH 439
UDSLNKA, connection module 100
UDSLNKI, connection module 100
UDSLNKL, connection module 100
UDSNET 439
UDSSUB 439
UDSTRTAB 126
UINF 198, 201, 205, 211
Unicode 126, 318, 327, 331, 373
unique throughout the network 440
UPDATE 43
USAGE-MODE 31, 43, 186
USE 89, 194
user database 440
user information 198, 205

area 117
user information area 205
user realm 440
user task 440
userid 26
USER-WORK-AREA (UWA) 440
UTF-16 126, 318, 327, 331, 373
UTM-DB-DIAGAREA 113, 394
UWA 29, 440

V
variable 20, 21
vector 441

version number
internal 441

volume 26

W
WAIT 307, 339
warm start 441

X
x-string 26

	Title
	Contents
	Preface
	Structure of the UDS/SQL documentation
	Objectives and target groups of this manual
	Summary of contents
	Changes since the last edition of the manuals
	Notational conventions
	Warnings and notes
	Non-SDF notational conventions
	SDF syntax representation

	Sample database

	Overview
	The language concept of DML
	The range of functions for DML

	Transaction concept
	The transaction in multi-DB operation
	The transaction in mono-DB operation
	Rollback
	Page protection

	Currency table
	DML functions
	Opening and closing transactions
	Opening a transaction or processing chain (READY)
	Closing a transaction (FINISH)

	Retrieving data
	Direct access at record type level
	Direct access via the database key (FIND/FETCH-1)
	Direct access via the CALC key (FIND/FETCH-2)
	Direct access via any items (FIND/FETCH-3/7)

	Sequential access at record type level (FIND/FETCH-4)
	Access to the CRR (FIND/FETCH-5)
	Direct access at set level (FIND/FETCH-3/7)
	Sequential access at set level (FIND/FETCH-4)
	Access to the CRS (FIND/FETCH-5)
	Access to the owner of a CRS (FIND/FETCH-6)
	Sequential access at realm level (FIND/FETCH-4)
	Access to the CRA (FIND/FETCH-5)
	Transport the CRU completely or partially into the UWA (GET)
	Retrieve database key values (ACCEPT-1)
	Retrieve realm (ACCEPT-2)

	Modifying data
	Store a record in the database and connect it into set occurrences (STORE)
	Connect a record into a set occurrence (CONNECT)
	Disconnect existing set relationships (DISCONNECT)
	Modify the CRU or connect it into another set occurrence (MODIFY)
	Delete records and their set relationships (ERASE)
	Correlation between type of set membership and data-modifying statements

	Protecting records
	Activate extended record protection (KEEP)
	Deactivate extended record protection (FREE)

	Testing set memberships in the program (IF)
	Testing the set membership of the CRU
	Testing a set occurrence for member records

	Using DML
	Structure of the COBOL/CALL DML programs
	COBOL DML
	CALL DML

	Special features of COBOL DML
	Specifying a key for use of the subschema (PRIVACY)
	Assigning the subschema and setting up the communication area (DB entry)
	COBOL special registers
	Transferring a database key value (SET)
	Describing error handling routines (USE)
	Assigning the COSSD file for compiling a COBOL-DML program

	Special features of CALL DML
	Testing the structure of the subschema (LOOKC)

	Linking, loading and starting a UDS/SQL-TIAM application program
	Basic aspects
	The principle of dynamic loading
	Loading the UDS/SQL product modules dynamically
	Loading the application-specific data modules SSITAB and PLITAB dynamically
	Loading the configuration-specific table module UDSTRTAB dynamically

	Linking UDS/SQL-TIAM applications
	Starting a COBOL program

	Interoperation in a UDS/SQL-openUTM application
	Generating a UDS/SQL-openUTM application
	Linking UDS/SQL-openUTM applications
	Starting a UDS/SQL-openUTM application
	Error codes

	Error handling
	Interrupt handling for UDS/SQL-TIAM applications
	Database exception conditions
	Using special registers (COBOL DML) or the user information area (CALL DML)
	Statement codes
	Status codes
	Combinations of statement codes and status codes
	FIND/FETCH status codes

	CALL DML error handling routine DSCEXT

	Translation table for application-specific sorting

	COBOL DML reference section
	General rules
	ID DIVISION
	DATA DIVISION
	SUB-SCHEMA SECTION
	DB entry

	PROCEDURE DIVISION
	Overview of COBOL DML statements
	COBOL DML statements
	ACCEPT
	CONNECT
	DISCONNECT
	ERASE
	FIND/FETCH
	FINISH
	FREE
	GET
	IF
	KEEP
	MODIFY
	READY
	SET
	STORE
	USE

	CALL DML reference section
	CALL interface
	Parameter definitions
	Rules
	Format table
	Format of secondary option (SOPT)
	Format of user information (UINF)
	Format of special parameter 1 (SPP1)
	Format of special parameter 2 (SPP2)

	CALL DML calls
	Overview of the CALL DML functions
	Functions of CALL DML
	Saving currency information (ACCPTC, ACCPTL)
	Establishing set connections (CONNEC)
	Releasing existing set connections (DISCON)
	Deleting records and their set connections (ERASEC)
	Retrieval of data (FIND/FTCH)
	Concluding processing (FINISC)
	Deactivating extended record protection (FREEC)
	Transporting a record to the record area (GETC)
	Testing database conditions (IFC)
	Activating extended record protection (KEEPC)
	Modifying records already stored (MODIF1/2)
	Preparing for processing (READYC)
	Storing records (STORE1/2, STOR1L/2L)

	CALL DML Assembler macros
	DSCAL
	DSCAP
	DSCDF
	DSCPA

	LOOKC function
	The LOOKC block
	Description of LOOKC parameters
	LOOKC tables

	Examples using different programming languages

	Testing DML functions using DMLTEST
	Introduction
	DMLTEST commands
	Overview of the DMLTEST commands and general rules
	ADD
	CONTINUE
	DBH
	DECLARE
	DEFINE
	DELETE
	DISPLAY
	DISPOFF
	DO
	EDT
	END
	ESCAPE
	EXECUTE
	HALT
	HELP
	LANGUAGE
	LEAVE
	LIST
	MOVE
	NEXT
	PERFORM
	PRINT
	PROC
	PROFF
	PROT
	REMARK
	RUN
	SET
	SHOW
	SUBSCHEMA
	SYSTEM
	TRACE
	WAIT

	The DML statements of DMLTEST
	Overview of differences between DMLTEST DML and COBOL DML statements
	The DML statements

	DMLTEST program execution
	Interrupts
	Communication with one or more databases

	Error messages

	Appendix
	Status codes
	DML status codes
	CALL DML status codes

	Description of the "MAIL-ORDERS" schema for the sample database SHIPPING
	UDS/SQL-openUTM return codes
	Additional diagnostic information in openUTM

	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

