
Edition June 2018

©
 S

ie
m

e
ns

 N
ix

d
or

f I
nf

or
m

at
io

n
ss

ys
te

m
e

 A
G

 1
99

5

P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
or

English

CRTE
C Library Functions for POSIX Applications

FUJITSU Software BS2000

Reference Manual

Valid for:
CRTE V10.0B00/V11.0B00

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Documentation creation
according to DIN EN ISO 9001:2015
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2015.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2018 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

U23711-J-Z125-5-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

är
z

20
18

 S
ta

nd
 1

5:
03

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\C
o

m
pi

le
r\

C
+

+
\V

3.
2

\M
a

nu
a

le
\v

lib
\v

lib
_

en
\v

lib
.iv

z

Contents

1 Preface . 23

1.1 Objectives and target groups of this manual . 25

1.2 Summary of contents . 25

1.3 Organization of the POSIX documentation . 26

1.4 Changes since the last edition of the manual . 28

1.5 Notational conventions . 29

2 The C programming interface . 31

2.1 System requirements . 31

2.2 Components of the C library . 32
2.2.1 Header files . 32
2.2.2 Functions and macros . 33
2.2.3 Support for DMS and UFS files > 2 GB . 34
2.2.4 POSIX thread support in the C runtime library . 36
2.2.5 IEEE floating-point arithmetic . 37
2.2.5.1 Generating IEEE floating-point numbers by means of a compiler option 38
2.2.5.2 C library functions that support IEEE floating-point numbers 39
2.2.5.3 Controlling the mapping of original functions to the associated IEEE variants . . . 40
2.2.5.4 Explicit conversion of floating-point numbers 41
2.2.6 ASCII encoding . 42
2.2.6.1 Generating ASCII characters and strings by means of a compiler option 42
2.2.6.2 C library functions that support ASCII encoding 43
2.2.6.3 Controlling the mapping of original functions to the associated ASCII variants . . 45
2.2.6.4 Explicitly switching between EBCDIC and ASCII encoding 46
2.2.7 Functions that support IEEE and ASCII encoding 47
2.2.8 Wide characters and multi-byte characters . 47
2.2.9 Time functions . 48
2.2.10 Setting the time zone for POSIX time functions . 49
2.2.11 Scope of the supported C library . 49

Contents

 U23711-J-Z125-5-76

2.3 Selecting functionality . 73
2.3.1 Range of functions extended by the POSIX functionality 73
2.3.2 BS2000 functionality . 75
2.3.3 Selecting the file system and the system environment 75
2.3.3.1 Associating the I/O streams . 75
2.3.3.2 Setting the PROGRAM_ENVIRONMENT variable 76
2.3.3.3 Syntax in the source program . 77

2.4 Portability . 78

2.5 Name space . 79

2.6 Character sets . 80
2.6.1 Portable character set . 80
2.6.2 Character classes . 85

2.7 Locale . 86
2.7.1 Predefined locales . 88
2.7.1.1 Locale files . 88
2.7.1.2 POSIX or C locale . 89
2.7.1.3 V1CTYPE . 91
2.7.1.4 V2CTYPE . 92
2.7.1.5 GERMANY . 92
2.7.1.6 De.EDF04F and De.EDF04F@euro . 93
2.7.2 User-specific locales . 103

2.8 Environment variables . 104

2.9 File processing . 107
2.9.1 Streams . 110
2.9.1.1 Buffering streams . 110
2.9.1.2 Disassociating a file from a stream . 110
2.9.1.3 Standard I/O streams . 111
2.9.2 Interaction of file descriptors and streams . 112
2.9.3 Support for file systems in ASCII . 114
2.9.4 BS2000 file processing . 114
2.9.4.1 BS2000 system files . 115
2.9.4.2 White-space characters . 117
2.9.4.3 Cataloged disk files (SAM, ISAM, PAM) . 118
2.9.4.4 Default values and possible modifications for file attributes 119
2.9.4.5 K and NK block formats . 122
2.9.4.6 K and NK-ISAM files . 123
2.9.4.7 Support for the DIV access method . 124
2.9.4.8 Notes on stream-oriented I/O . 124
2.9.4.9 Notes on record-oriented I/O . 125
2.9.5 Last Byte Pointer (LBP) . 127
2.9.6 Temporary PAM files in virtual memory (INCORE files) 129

Contents

U23711-J-Z125-5-76

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.iv
z

2.10 General terminal interface . 129
2.10.1 Opening a terminal device file . 129
2.10.2 Process groups . 129
2.10.2.1 The controlling terminal . 130
2.10.2.2 Terminal access control . 130
2.10.2.3 Input processing and reading data . 131
2.10.2.4 Canonical mode input processing . 132
2.10.2.5 Non-canonical mode input processing . 133
2.10.2.6 Writing data and output processing . 134
2.10.2.7 Special characters . 134
2.10.2.8 Modem disconnect . 136
2.10.2.9 Closing a terminal device file . 136
2.10.3 Settable parameters . 137
2.10.3.1 The termios structure . 137
2.10.3.2 Input modes . 137
2.10.3.3 Output modes . 139
2.10.3.4 Control modes . 141
2.10.3.5 Local modes . 143
2.10.3.6 Special control characters . 144
2.10.4 Block terminal support . 145
2.10.5 Support for BS2000 consoles . 145

2.11 Process control . 146
2.11.1 Signals . 146
2.11.2 Interprocess communication . 147
2.11.2.1 General description . 147
2.11.2.2 Shared memory . 151
2.11.3 Contingency and STXIT routines . 152
2.11.3.1 The C library functions alarm(), raise(), and signal() 153
2.11.3.2 STXIT contingency routines . 153
2.11.3.3 Event-driven routines . 153
2.11.3.4 Free use of contingency routines . 154
2.11.3.5 Free use of STXIT contingency routines . 156

2.12 Thread-safe C runtime library by supporting POSIX threads 157

2.13 Programming notes . 159
2.13.1 Return values and result parameters . 159
2.13.2 Error handling . 161
2.13.3 Debugging options . 162

Contents

 U23711-J-Z125-5-76

3 Functions and variables arranged by theme 163

3.1 File processing . 163

3.2 I/O on terminal . 167

3.3 Processes . 169

3.4 Functions to support POSIX threads . 174

3.5 Memory management and memory operations 179

3.6 System environment . 180

3.7 Characters and strings . 181

3.8 Conversion of entities . 185

3.9 Regular expressions . 186

3.10 Time functions . 186

3.11 Math functions . 188

3.12 Search and sort procedures . 190

3.13 Terminal interface and data transmissions . 191

3.14 Database functions . 191

3.15 List processing . 192

3.16 POSIX-IO macros . 192

4 Functions and variables in alphabetical order 193

a64l, l64a - convert string to 32-bit integer . 195
abort - abort process . 197
abs - return integer absolute value . 198
access, faccessat - check access permissions for file 199
acos - arc cosine function . 201
acosh, asinh, atanh - inverse hyperbolic functions 202
advance - pattern match given compiled regular expression 203
alarm - schedule alarm signal . 204
altzone - variable for time zone (extension) . 205
ascii_to_ebcdic - convert ASCII string to EBCDIC string (extension) 205
asctime - convert date and time to string . 206
asctime_r - convert date and time to string (thread-safe) 208
asin - arc sine function . 209
asinh - inverse hyperbolic sine function . 209

Contents

U23711-J-Z125-5-76

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.iv
z

assert - output diagnostic messages . 210
atan - arc tangent function . 210
atan2 - arc tangent of x/y . 211
atanh - inverse hyperbolic tangent function . 211
atexit - register function to run at process termination 212
atof - convert string to double-precision number . 213
atoi - convert string to integer . 214
atol - convert string to long integer . 215
atoll - convert string to long long integer (long long int) 216
basename - return last element of pathname . 217
bcmp - compare memory areas . 218
bcopy - copy memory area . 218
brk, sbrk - modify size of data segment . 219
bs2cmd - execute BS2000 commands by means of the CMD macro 221
bs2exit - program termination with MONJV (BS2000) 225
bs2fstat - get BS2000 file names from catalog (BS2000) 226
bs2system - execute BS2000 command (extension) 227
bsd_signal - simplified signal handling . 228
bsearch - conduct binary search of sorted array . 229
btowc - (one byte) convert multi-byte character to wide character 230
bzero - initialize memory with X‘00‘ . 231
cabs - calculate absolute value of complex number (BS2000) 231
calloc - allocate memory . 232
catclose - close message catalog . 233
catgets - read message . 234
catopen - open message catalog . 235
cbrt - cube root . 237
cdisco - disconnect contingency routine (BS2000) 238
ceil, ceilf, ceill - round up floating-point number . 239
cenaco - define contingency routine (BS2000) . 240
cfgetispeed - get input baud rate . 242
cfgetospeed - get output baud rate . 242
cfsetispeed - set input baud rate . 243
cfsetospeed - set output baud rate . 244
chdir - change working directory . 245
chmod, fchmodat - change mode of file . 246
chown, fchownat - change owner and group of file 248
chroot - change root directory . 251
clearerr - clear end-of-file and error indicators . 252
clock - report CPU time used by a process . 253
clock_gettime, clock_gettime64 - get time of a specified clock 254
close - close file . 255
closedir - close directory . 257
closelog, openlog, setlogmask, syslog - control system log 258

Contents

 U23711-J-Z125-5-76

compile - produce compiled regular expression 261
confstr - get string value of system variable . 262
cos - cosine function . 263
cosh - hyperbolic cosine function . 263
cputime - calculate CPU time used by current task (BS2000) 264
creat - create new file or overwrite existing one 265
crypt - encode strings using algorithms . 270
cstxit - define STXIT routine (BS2000) . 271
ctermid - generate pathname for controlling terminal 275
ctime, ctime64 - convert date and time to string 276
ctime_r - thread-safe conversion of date and time to string 277
cuserid - get login name . 278
_ _DATE_ _ - macro for compilation date . 279
daylight - daylight savings time variable . 279
dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_firstkey,

dbm_nextkey, dbm_open, dbm_store - functions for managing dbm databases . 280
difftime, difftime64 - compute difference between two calendar time values 283
dirfd - extract file descriptor . 283
dirname - parent directory of pathname . 284
div - divide with integers . 285
drand48 - generate pseudo-random numbers between 0.0 and 1.0 286
dup, dup2 - duplicate file descriptor . 288
ebcdic_to_ascii - convert EBCDIC string to ASCII string (extension) 290
ecvt, fcvt, gcvt - convert floating-point number to string 291
_edt - call EDT (BS2000) . 293
encrypt - encode strings blockwise . 293
endgrent, getgrent, setgrent - group management 294
endpwent, getpwent, setpwent - manage user catalog 296
endutxent, getutxent, getutxid, getutxline, pututxline, setutxent -

manage utmpx entries . 298
environ - external variable for environment . 301
epoll_create - create an epoll instance . 302
epoll_ctl - control epoll instance . 303
epoll_wait - wait for events (epoll instance) . 306
erand48 -

generate pseudo-random numbers between 0.0 and 1.0 with initialization value 308
erf, erfc - error and complementary error functions 309
errno - variable for error return values . 310
exec: execl, execv, execle, execve, execlp, execvp - execute file 311
exit, _exit - terminate process . 316
exp - use exponential function . 319
expm1 - compute exponential function . 319
faccessat - check access permissions for file . 320
fabs - compute absolute value of floating-point number 320

Contents

U23711-J-Z125-5-76

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.iv
z

fattach -
assign file descriptor under STREAMS to object in name space of file system . . 321

fchdir - change current directory . 323
fchmod - change mode of file . 324
fchmodat - change mode of file . 326
fchown - change owner or group of file . 327
fchownat - change owner and group of file . 328
fclose - close stream . 329
fcntl - control open file . 331
fcvt - convert floating-point number to string . 337
FD_CLR, FD_ISSET, FD_SET, FD_ZERO - macros for synchronous

I/O multiplexing . 337
fdelrec - delete record in ISAM file (BS2000) . 338
fdetach - cancel assignment to STREAMS file . 339
fdopen - associate stream with file descriptor . 341
fdopendir - open directory . 343
feof - test end-of-file indicator on stream . 343
ferror - test error indicator on stream . 344
fflush - flush stream . 345
ffs - seek first set bit . 347
fgetc - get byte from stream . 348
fgetpos - get current value of file position indicator in stream 350
fgets - get string from stream . 351
fgetwc - get wide character string from stream . 352
fgetws - get wide character string from stream . 354
_ _FILE_ _ - macro for source file names . 355
fileno - get file descriptor . 355
flocate - set file position indicator in ISAM file (BS2000) 356
flockfile, ftrylockfile, funlockfile - functions for locking standard input/output 358
floor, floorf, floorl- round off floating point number 360
fmod - compute floating-point remainder value function 361
fmtmsg - output message to stderr and/or system console 362
fopen - open stream . 367
fork - create new process . 375
fpathconf - get value of pathname variable . 377
fprintf, printf, sprintf - write formatted output on output stream 378
fputc - put byte on stream . 392
fputs - put string on stream . 394
fputwc - put wide-character code on stream . 395
fputws - put wide character string on stream . 397
fread - read binary data . 398
free - free allocated memory . 400
freopen - flush and reopen stream . 401
frexp - extract mantissa and exponent from double precision number 403

Contents

 U23711-J-Z125-5-76

fscanf, scanf, sscanf - read formatted input . 404
fseek - reposition file position indicator in stream 416
fsetpos - set file position indicator for stream to current value 421
fstat, fstatat - get file status of open file . 423
fstatvfs, statvfs - read file system information . 427
fsync - synchronize changes to file . 430
ftell - get current value of file position indicator for stream 431
ftime, ftime64 - get date and time . 433
ftok - interprocess communication . 435
ftruncate, truncate - set file to specified length . 436
ftrylockfile - lock standard input/output . 438
ftw - traverse (walk) file tree . 439
futimesat - setting file access and update times 441
funlockfile - unlock standard input/output . 443
fwide - specify file orientation . 443
fwprintf, swprintf, vfwprintf, vswprintf, vwprintf, wprintf -

output formatted wide characters . 444
fwrite - output binary data . 451
fwscanf, swscanf, wscanf - formatted read . 453
gamma - compute logarithm of gamma function 459
garbcoll - release memory space to system (BS2000) 460
gcvt - convert floating-point number to string . 460
getc - get byte from stream . 461
getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked -

standard I/O with explicit lock by the client . 463
getchar - get byte from standard input stream . 464
getchar_unlocked - standard input with explicit lock by the client 465
getcontext, setcontext - display or modify user context 466
getcwd - get pathname of current working directory 468
getdate - convert time and date to user format . 470
getdents - convert directory entries . 475
getdtablesize - get size of descriptor table . 477
getegid - get effective group ID of process . 477
getenv - get value of environment variable . 478
geteuid - get effective user ID of process . 479
getgid - get real group ID of process . 479
getgrent - get group file entry . 479
getgrgid - get group file entry for group ID . 480
getgrgid_r - get group file entry for group ID (thread-safe) 481
getgrnam - get group file entry for group name . 482
getgrnam_r - get group file entry for group name (thread-safe) 483
getgroups - get supplementary group IDs . 484
gethostid - get ID of current host . 485
gethostname - get name of current host . 485

Contents

U23711-J-Z125-5-76

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.iv
z

getitimer, setitimer - read or set . 486
getlogin - get login name . 488
getlogin_r - get login name (thread-safe) . 489
getmsg - get message from STREAMS file . 490
getopt, optarg, optind, opterr, optopt - command option parsing 493
getpagesize - get current page size . 496
getpass - read string of characters without echo . 497
getpgid - get process group ID . 498
getpgmname - get program name (BS2000) . 498
getpgrp - get process group ID . 499
getpid - get process ID . 499
getpmsg - get message from STREAMS file . 499
getppid - get parent process ID . 500
getpriority, setpriority - get or set process priority 501
getpwent - read user data from user catalog . 503
getpwnam - get user name . 504
getpwnam_r - get user name (thread-safe) . 505
getpwuid - get user ID . 506
getpwuid_r - get user ID (thread-safe) . 507
getrlimit, setrlimit - get or set limit for resource . 508
getrusage - get information on usage of resources 512
gets - get string from standard input stream . 513
getsid - get process group ID . 515
getsubopt - get suboptions from string . 516
gettimeofday, gettimeofday64 - read current time of day 517
gettsn - get TSN (task sequence number) (BS2000) 518
getuid - get real user ID . 518
getutxent, getutxid, getutxline - get utmpx entry . 519
getw - read word from stream . 520
getwc - get wide character from stream . 522
getwchar - get wide character from standard input stream 523
getwd - get pathname of current working directory 524
gmatch - global pattern matching (extension) . 524
gmtime, gmtime64 - convert date and time to UTC 525
gmtime_r - convert date and time to UTC (thread-safe) 527
grantpt - grant access to the slave pseudoterminal 528
hsearch, hcreate, hdestroy - manage hash tables 529
hypot - Euclidean distance function . 531
iconv - code conversion function . 532
iconv_close - deallocate code conversion descriptor 534
iconv_open - allocate code conversion descriptor 535
ilogb - get exponent part of floating-point number 536
index - get first occurrence of character in string . 536
initgroups - initialize group access lists . 537

Contents

 U23711-J-Z125-5-76

initstate, random, setstate, srandom - generate pseudo-random numbers 538
insque, remque - Insert element in queue or remove element from queue 540
ioctl - control devices and STREAMS . 541
isalnum - test for alphanumeric character . 556
isalpha - test for alphabetic character . 557
isascii - test for 7-bit ASCII character . 558
isastream - test file descriptor . 559
isatty - test for terminal device . 560
iscntrl - test for control character . 561
isdigit - test for decimal digit . 562
isebcdic - test for EBCDIC character (BS2000) . 563
isgraph - test for visible character . 564
islower - test for lowercase letter . 565
isnan - test for NaN (not a number) . 566
isprint - test for printing character . 567
ispunct - test for punctuation character . 568
isspace - test for white-space character . 569
isupper - test for uppercase letter . 570
iswalnum - test for alphanumeric wide character 571
iswalpha - test for alphabetic wide character . 572
iswcntrl - test for control wide character . 573
iswctype - test wide character for class . 574
iswdigit - test for decimal digit wide character . 575
iswgraph - test for visible wide character . 576
iswlower - test for lowercase wide character . 577
iswprint - test for printing wide character . 578
iswpunct - test for punctuation wide character . 579
iswspace - test for white-space wide character . 580
iswupper - test for uppercase wide character . 581
iswxdigit - test for hexadecimal digit wide character 582
isxdigit - test for hexadecimal digit . 583
j0, j1, jn - Bessel functions of first kind . 584
jrand48 -

generate pseudo-random numbers between -231 and 231 with initialization value 584
kill - send signal to process or process group . 585
killpg - send signal to process group . 587
l64a - convert 32-bit integer number to string . 588
labs - return long integer absolute value . 588
lchown - change owner/group of file . 589
lcong48 - pseudo-random number (signed long int) generator 591
ldexp - load exponent of floating-point number . 591
ldiv - long division of integers . 592
lfind - find entry in linear search table . 592
lgamma - compute logarithm of gamma function 593

Contents

U23711-J-Z125-5-76

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.iv
z

_ _LINE_ _ - macro for current source program line number 593
link, linkat - create link to file . 594
llabs - return absolute value of an integer (long long int) 597
lldiv - division of integers (long long int) . 598
llrint, llrintf, llrintl - round to nearest integer value (long long int) 599
llround, llroundf, llroundl - round up to next integer value (long long int) 600
loc1, loc2 - pointers to characters matched by regular expressions 601
localeconv - change components of locale . 602
localtime, localtime64 - convert date and time to local time 606
localtime_r - convert date and time to string (thread-safe) 608
lockf - lock file section . 609
locs - stop regular expression matching in string . 612
log - natural logarithm function . 612
log10 - base 10 logarithm function . 613
log1p - compute natural log . 613
logb - get exponent part of floating-point number 614
_longjmp, _setjmp - non-local jump (without signal mask) 615
longjmp - execute non-local jump . 616
lrand48 - generate pseudo-random numbers between 0 and 231 618
lrint, lrintf, lrintl - round to nearest integer value (long int) 619
lround, lroundf, lroundl - round up to next integer value (long int) 620
lsearch, lfind - linear search and update . 621
lseek - move read/write file offset . 622
lstat - query file status . 626
major - get major component of device number (extension) 628
makecontext, swapcontext - set up user context 629
makedev - get formatted device number (extension) 630
malloc - memory allocator . 631
mblen - get number of bytes in multi-byte character 632
mbrlen - get number of bytes in multi-byte character 632
mbrtowc - complete and convert multi-byte string to wide-character string 633
mbsinit - test for “initial conversion” state . 634
mbsrtowcs - convert multi-byte string to wide-character string 635
mbstowcs - convert multi-byte string to wide-character string 636
mbtowc - convert multi-byte character to wide character 637
memalloc - memory allocator (BS2000) . 638
memccpy - copy bytes in memory . 639
memchr - find byte in memory . 640
memcmp - compare bytes in memory . 641
memcpy - copy bytes in memory . 642
memfree - free memory area (BS2000) . 643
memmove - copy bytes in memory with overlapping areas 644
memset - initialize memory area . 645
minor - get minor component of device number (extension) 646

Contents

 U23711-J-Z125-5-76

mkdir, mkdirat - make directory . 647
mkfifo, mkfifoat - create FIFO file . 649
mknod, mknodat - make directory, special file, or text file 651
mkstemp - make unique temporary file name . 654
mktemp - make unique temporary file name (extension) 655
mktime, mktime64 - convert local time into time since the Epoch 657
mmap - map memory pages . 660
modf - split floating-point number into integral and fractional parts 664
mount - mount file system (extension) . 665
mprotect - modify access protection for memory mapping 667
mrand48 - generate pseudo-random numbers between -231 and 231 668
msgctl - message control operations . 669
msgget - get message queue . 671
msgrcv - receive message from queue . 673
msgsnd - send message to queue . 675
msync - synchronize memory . 677
munmap - unmap memory pages . 679
nanosleep - suspend current thread . 681
nextafter - next displayable floating-point number 682
nftw - traverse file tree . 683
nice - change priority of process . 686
nl_langinfo - get locale values . 687
nrand48 -

generate pseudo-random numbers between 0 and 231 with initialization value . 687
offsetof - get offset of structure component from start of structure (BS2000) 688
open, openat - open file . 689
opendir, fdopendir - open directory . 699
openlog - system logging . 701
optarg, opterr, optind, optopt - variables for command options 701
pathconf, fpathconf - get value of pathname variable 702
pause - suspend process until signal is received 705
pclose - close pipe stream . 706
perror - write error messages to standard error . 707
pipe - create pipe . 708
poll - multiplex STREAMs I/O . 709
popen - initiate pipe stream to or from process . 712
pow - power function . 713
printf - write formatted output on standard output stream 714
ptsname - name of pseudoterminal . 714
putc, putc_unlocked - put byte on stream . 715
putchar - put byte on standard output stream (thread-safe) 716
putchar_unlocked - put byte on standard output stream (thread-safe) 716
putenv - change or add environment variables . 717
putmsg, putpmsg - send message to STREAMS file 718

Contents

U23711-J-Z125-5-76

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.iv
z

putpwent - enter user into user catalog (extension) 721
puts - put string on standard output . 722
pututxline - write utmpx entry . 723
putw - put word on stream . 724
putwc - put wide character on stream . 725
putwchar - put wide character on standard output stream 725
qsort - sort table of data . 726
raise - send signal to calling process . 727
rand - pseudo-random number generator (int) . 729
rand_r - pseudo-random number generator (int, thread-safe) 729
random - create pseudo-random numbers . 730
read - read bytes from file . 731
readdir - read directory . 734
readdir_r - read directory (thread-safe) . 736
readlink, readlinkat - read contents of symbolic link 737
readv - read array from file . 739
realloc - memory reallocator . 741
realpath - output real file name/pathname . 742
re_comp, re_exec - compile and execute regular expressions 743
regcmp, regex - compile and execute regular expression 746
regcomp, regexec, regerror, regfree - interpret regular expression 749
regexp: advance, compile, step, loc1, loc2, locs -

compile and match regular expressions . 755
remainder - remainder from division . 762
remove - remove files . 763
remque - remove element from queue . 764
rename, renameat - rename file . 765
rewind - reset file position indicator to start of stream 769
rewinddir - reset file position indicator to start of directory stream 770
rindex - get last occurrence of character in string 771
rint, rintf, rintl - round to nearest integer value . 772
rmdir - remove directory . 773
round, roundf, roundl - round up to next integer value 775
sbrk - modify size of data segment . 776
scalb - load exponent of base-independent floating-point number 776
scanf - read formatted input from standard input stream 777
seed48 - set seed (int) for pseudo-random numbers 777
seekdir - set position of directory stream . 778
select - synchronous I/O multiplexing . 779
semctl - semaphore control operations . 781
semget - get semaphore ID . 784
semop - semaphore operations . 786
setbuf - assign buffering to stream . 790
setcontext - modify user context . 791

Contents

 U23711-J-Z125-5-76

setenv - add or change environment variable . 792
setgid - set group ID of process . 793
setgrent - reset file position indicator to beginning of group file 794
setgroups - write group numbers . 794
setitimer - set interval timer . 795
_setjmp - set label for non-local jump (without signal mask) 795
setjmp - set label for non-local jump . 796
setkey - set encoding key . 798
setlocale - set or query locale . 799
setlogmask - set log priority mask . 802
setpgid - set process group ID for job control . 803
setpgrp - set process group ID . 804
setpriority - set process priority . 804
setpwent - delete pointer to search user catalog 804
setregid - set real and effective group IDs . 805
setreuid - set real and effective user IDs . 806
setrlimit - set resource limit . 807
setsid - create session and set process group ID 808
setstate - pseudo-random numbers . 809
setuid - set user ID . 809
setutxent - reset pointer to utmpx file . 810
setvbuf - assign buffering to stream . 811
shmat - shared memory attach operation . 813
shmctl - shared memory control operations . 815
shmdt - shared memory detach operation . 817
shmget - create shared memory segment . 818
sigaction - examine and change signal handling 820
sigaddset - add signal to signal set . 828
sigaltstack - set/read alternative stack of signal . 829
sigdelset - delete signal from signal set . 831
sigemptyset - initialize and empty signal set . 832
sigfillset - initialize and fill signal set . 833
sighold, sigignore -

add signal to signal mask / register SIG_IGN for signal 833
siginterrupt -

change behavior of system calls in response to interrupts 834
sigismember - test for member of signal set . 835
siglongjmp - execute non-local jump using signal 836
signal - examine or change signal handling . 837
signgam - variable for sign of lgamma . 840
sigpause - remove signal from signal mask and deactivate process 840
sigpending - examine pending signals . 840
sigprocmask - examine or change blocked signals 841
sigrelse - remove signal from signal mask . 843

Contents

U23711-J-Z125-5-76

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.iv
z

sigset - modify signal handling . 843
sigsetjmp - set label for non-local jump using signal 844
sigstack - set or query alternative stack for signal 846
sigsuspend - wait for signal . 847
sin - sine function . 848
sinh - hyperbolic sine function . 848
sleep - suspend process for fixed interval of time 849
snprintf - formatted output to a string . 851
sprintf - write formatted output to string . 852
sqrt - square root function . 852
srand - generate pseudo-random numbers with seed 852
srandom - pseudo-random numbers . 853
srand48 - seed (double-precision) pseudo-random number generator 853
sscanf - read formatted input from string . 853
stat - get file status . 854
statvfs - read file system information . 858
_ _STDC_ _ - macro for ANSI conformance . 858
_ _STDC_VERSION_ _ - Amendment 1 conformity? 858
stderr, stdin, stdout - variables for standard I/O streams 859
step - compare regular expressions . 860
strcasecmp, strncasecmp - non-case-sensitive string comparison 860
strcat - concatenate two strings . 861
strchr - scan string for characters . 861
strcmp - compare two strings . 862
strcoll - compare strings using collating sequence 863
strcpy - copy string . 864
strcspn - get length of complementary substring . 864
strdup - duplicate string . 865
strerror - get message string . 866
strfill - copy substring (BS2000) . 867
strfmon - convert monetary value to string . 868
strftime - convert date and time to string . 872
strlen - get length of string . 875
strlower - convert a string to lowercase letters (BS2000) 875
strncasecmp - non-case-sensitive string comparisons 876
strncat - concatenate two substrings . 876
strncmp - compare two substrings . 877
strncpy - copy substring . 878
strnlen - determine length of a string up to a maximum length 879
strpbrk - get first occurrence of character in string 879
strptime - convert string to date and time . 880
strrchr - get last occurrence of character in string 884
strspn - get length of substring . 885
strstr - find substring in string . 885

Contents

 U23711-J-Z125-5-76

strtod - convert string to double-precision number 886
strtok - split string into tokens . 888
strtok_r - split string into tokens (thread-safe) . 889
strtol - convert string to long integer . 890
strtoll - convert string to long long integer . 892
strtoul - convert string to unsigned long integer . 894
strtoull - convert string to unsigned long long . 896
strupper - convert string to uppercase letters (BS2000) 898
strxfrm - string transformation based on LC_COLLATE 899
swab - swap bytes . 900
swapcontext - swap user context . 900
swprintf - output formatted wide characters . 900
swscanf - formatted read . 900
symlink, symlinkat - make symbolic link to file . 901
sync - update superblock . 904
sysconf - get numeric value of configurable system variable 905
sysfs - get information on file system type (extension) 909
syslog - log message . 910
system - execute system command . 911
tan - compute tangent . 914
tanh - compute hyperbolic tangent . 914
tcdrain - wait for transmission of output . 915
tcflow - suspend or restart data transmission . 916
tcflush - discard non-transmitted data . 917
tcgetattr - get parameters associated with terminal 918
tcgetpgrp - get foreground process group ID . 919
tcgetsid - get session ID of specified terminal . 920
tcsendbreak - interrupt serial data transmission 921
tcsetattr - set parameters associated with terminal 922
tcsetpgrp - set foreground process group ID . 924
tdelete - delete node from binary search tree . 924
tell - get current value of file position indicator (BS2000) 925
telldir - get current location of named directory stream 926
tempnam - create pathname for temporary file . 927
tfind - find node in binary search tree . 929
_ _TIME_ _ - macro for compilation time . 929
time, time64 - get time since the Epoch . 930
times - get process times . 931
timezone - variable for difference between local time and UTC 932
tmpfile - create temporary file . 933
tmpnam - create base name for temporary file . 934
toascii - convert integer to legal value . 935
toebcdic - convert integer to legal value (BS2000) 936
_tolower - convert uppercase letters to lowercase 936

Contents

U23711-J-Z125-5-76

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.iv
z

tolower - convert characters to lowercase . 937
_toupper - convert lowercase letters to uppercase 937
toupper - convert characters to uppercase . 937
towctrans - map wide characters . 938
towlower - convert wide characters to lowercase 938
towupper - convert wide characters to uppercase 939
truncate - set file to specified length . 939
tsearch, tfind, tdelete, twalk - process binary search trees 940
ttyname - find pathname of terminal . 942
ttyname_r - find pathname of terminal (thread-safe) 943
ttyslot - find entry of current user in utmp file . 944
twalk - traverse binary search tree . 945
tzname - array variable for timezone strings . 945
tzset - set timezone conversion information . 946
ualarm - set interval timer . 947
ulimit - get and set process limits . 948
umask - get and set file mode creation mask . 949
umount - unmount file system (extension) . 950
uname - get basic data on current operating system 951
ungetc - push byte back onto input stream . 952
ungetwc - push wide character back onto input stream 954
unlink, unlinkat - remove link . 955
unlockpt - remove lock from master/slave pseudoterminal pair 958
unsetenv - remove an environment variable . 959
usleep - suspend process for defined interval . 960
utime - set file access and modification times . 961
utimes - set file access time and file modification time 963
utimensat - Setting file access and update times 965
va_arg - process variable argument list . 967
va_end - end variable argument list . 968
va_start - initialize variable argument list . 969
valloc - request memory aligned with page boundary 970
vfork - generate new process in virtual memory . 971
vfprintf, vprintf, vsprintf - formatted output of variable argument list 972
vfwprintf - formatted output of wide characters . 973
vprintf - formatted output to standard out . 974
vsnprintf - formatted output to a string . 975
vsprintf - formatted output to a string . 976
vswprintf - formatted output of wide characters . 977
vwprintf - formatted output of wide characters . 977
wait, waitpid - wait for child process to stop or terminate 978
wait3 - wait for status change of child processes 982
waitid - wait for status change of child processes 983
wcrtomb - convert wide characters to multi-byte characters 985

Contents

 U23711-J-Z125-5-76

wcscat - concatenate two wide character strings 986
wcschr - scan wide character string for wide characters 987
wcscmp - compare two wide character strings . 988
wcscoll - compare two wide character strings according to LC_COLLATE 989
wcscpy - copy wide character string . 990
wcscspn - get length of complementary wide character substring 991
wcsftime - convert date and time to wide character string 992
wcslen - get length of wide character string . 993
wcsncat - concatenate two wide character strings 994
wcsncmp - compare two wide character substrings 995
wcsncpy - copy wide character substring . 996
wcspbrk - get first occurrence of wide character in wide character string 997
wcsrchr - get last occurrence of wide character in wide character string 998
wcsrtombs - convert wide character string to multi-byte string 999
wcsspn - get length of wide character substring 1000
wcsstr - search for first occurrence of a wide character string 1001
wcstod - convert wide character string to double-precision number 1002
wcstok - split wide character string into tokens . 1004
wcstol - convert wide character string to long integer 1005
wcstoll - convert wide character string to long long integer 1007
wcstombs - convert wide character string to character string 1009
wcstoul - convert wide character string to unsigned long 1010
wcstoull - convert wide character string to unsigned long long 1012
wcswcs - find wide character substring in wide character string 1014
wcswidth - get number of column positions of wide character string 1015
wcsxfrm - transform wide character string . 1016
wctob - convert wide character to 1-byte multi-byte character 1017
wctomb - convert wide character code to character 1017
wctrans - define wide character mappings . 1018
wctype - define wide character class . 1019
wcwidth - get number of column positions of wide character code 1020
wmemchr - search for wide character in a wide character string 1021
wmemcmp - compare two wide character strings 1022
wmemcpy - copy wide character string . 1022
wmemmove - copy wide character string in overlapping area 1023
wmemset - set first n wide characters in wide character string 1023
wprintf - formatted output of wide characters . 1024
write - write bytes to file . 1025
writev - write to file . 1031
wscanf - formatted read . 1032
y0, y1, yn - Bessel functions of the second kind 1033

Contents

U23711-J-Z125-5-76

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.iv
z

5 Appendix: KR or ANSI functionality . 1035

Glossary . 1039

Related publications . 1071

Index . 1075

Contents

 U23711-J-Z125-5-76

U23711-J-Z125-5-76 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
15

. J
un

e
20

18

S
ta

nd
 1

3:
04

.5
6

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
a

nu
a

le
\v

lib
\v

lib
_

en
\v

lib
.k

0
1

1 Preface

The C programming interface described in this manual consists of over 500 functions,
macros and external variables. This includes all functions defined in the ANSI Standard and
required by the X/Open Portability Guide Issue 4, Version 2, called XPG4 Version 2 for
short. The optional "Encryption" function group of XPG4 and numerous other extensions
are also supported.

The C programming interface presented here is a component of the C runtime library
(BS2000) which, in turn, is a component of the Common Runtime Environment CRTE. The
POSIX subsystem must be loaded in order to obtain the full functionality of the C library
functions described in this manual.

The interfaces described in this manual are available in CRTE V10.0B or CRTE V11.0B and
higher and in BS2000/OSD-BC V10.0 and higher.

The C library functions provide a convenient method of programming many tasks for which
no higher-level language facilities are included in C itself. Typical examples of such
programming tasks include:

– processing of files (open, close, seek, read, write, etc.)

– processing of individual characters or strings (search, change, copy, delete etc.)

– dynamic memory management (allocation and deallocation of storage areas, etc.)

– access to the operating system

– use of mathematical functions

All functions in the reference section "Functions and variables in alphabetical order" which
are not identified as "extensions" in the title behave in conformance with the above
standards (see following section). Extensions to the functionality of individual functions and
provisional restrictions until branding are indicated explicitly in each description.

Preface

24 U23711-J-Z125-5-76

Extensions

Besides the international standards mentioned above, the C library supports functions of
the C runtime library (BS2000) (see also the "manual "C Library Functions" [6]) as well as
numerous other extensions which are supported on many UNIX systems. The extensions
in the previous C library (BS2000) are identified in the titles of the reference section by the
keyword BS2000. The newly added extensions are identified by the keyword extension. This
explicit identification of extensions is intended to facilitate the development of portable
programs.

The functions for input/output, signal handling and the locale support extensions that are
compatible with earlier versions of the C runtime library. In particular, both the data
management system of BS2000 (DMS) as well as the XPG4 Version 2 conformant POSIX
file system can be accessed (see the manual "POSIX Basics" [1]).

The following are also available as additional extensions:

– 64 bit function to support NFS V3.0
– Functions to support POSIX threads in the C runtime library

Restrictions

This version of the C runtime library is subject to the following restrictions as opposed to
XPG4 Version 2:

When the environment (external variable environ) is reinitialized using putenv(), the file
system defaults to DMS, so the user must explicitly set PROGRAM-ENVIRONMENT to SHELL
(see the section “Scope of the supported C library” on page 49 and the manuals "C
Compiler" [3] and "C/C++ Compiler" [4]).

Specific restrictions are indicated where relevant under the actual function descriptions.

Preface Objectives and target groups of this manual

U23711-J-Z125-5-76 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
15

. J
un

e
20

18

S
ta

nd
 1

3:
04

.5
6

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
a

nu
a

le
\v

lib
\v

lib
_

en
\v

lib
.k

0
1

1.1 Objectives and target groups of this manual

This manual is intended for C programmers who wish to accomplish the following tasks:

– port C programs from UNIX platforms to the POSIX subsystem

– write C programs for XPG4 Version 2 conformant environments (POSIX subsystem)
under BS2000

– create C programs that can access both an XPG4 Version 2 conformant file system and
DMS.

Knowledge of the C programming language and of the POSIX subsystem and BS2000
operating systems are prerequisite to working with this manual.

1.2 Summary of contents

This manual is organized into three parts: a conceptual part, a reference part, and cross-
referencing aids.

The conceptual part, which follows this preface, includes the following chapters:

– a general description of the most important features of the C library and the basic
characteristics of interactions between operating systems

– lists of all functions, macros and external variables described in the reference part,
arranged by subject matter into themes.

The reference part contains detailed descriptions of each individual function, macro, and
variable in alphabetical order.

The cross-referencing aids include a glossary of terms and a list of references to related
literature in addition to a detailed index.

Documentation of CRTE and the C development system

The C and C++ User Guides (manuals „C Compiler“ [3] und „C/C++ Compiler“ [4]) explain
in detail how the CRTE library can be accessed when compiling, linking and executing a
C/C++ program.

General notes and linkage examples for the common runtime environment of C, C++ and
COBOL85/COBOL2000 can be found in the "CRTE" User Guide [7].

Organization of the POSIX documentation Preface

26 U23711-J-Z125-5-76

Readme files

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

1.3 Organization of the POSIX documentation

The following documentation is available to familiarize the user and to facilitate working with
the POSIX subsystem in BS2000:

● An introduction to working with the POSIX subsystem is presented in the manual
"POSIX - Basics for Users and System Administrators" [1]. Furthermore, the adminis-
tration tasks that arise in conjunction with the POSIX subsystem are described. You
also learn with which BS2000/OSD software products you can use the POSIX
subsystem.

● A comprehensive description of the POSIX commands that can be used when working
in the POSIX shell can be found in the manual "POSIX - Commands".

● The "POSIX Commands of the C and C++ Compilers" manual [5] provides an intro-
duction to the C-/C++ programming environment in the POSIX shell environment,
describes how to compile and link C and C++ programs with the POSIX commands cc,
c89 and CC and shows you how to control the global C and C++ list generator with the
POSIX command ccxref.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Preface Organization of the POSIX documentation

U23711-J-Z125-5-76 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
15

. J
un

e
20

18

S
ta

nd
 1

3:
04

.5
6

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
a

nu
a

le
\v

lib
\v

lib
_

en
\v

lib
.k

0
1

● The "POSIX V1.1A Sockets/XTI for POSIX" manual is intended for C and C++
programmers that develop communication applications with SOCKETS or XTI functions
based on the POSIX interface.

● "NFS V3.0 / NFS V1.2C Network File System"

POSIX documentation in the BS2000/OSD environment

Many software products in BS2000 have been functionally extended to include the POSIX
functionality.

A number of utility routines provide access to the POSIX file system. The file editor EDT, for
example, can also process files of the POSIX file system.

Due to the CRTE (Common Runtime Environment) extensions based on the XPG4
standard, it is possible to write portable C programs using the C library functions indepen-
dently of the executing operating system.

Familiarity with the manual "POSIX - Basics for Users and System Administrators" is
essential as a foundation for accessing POSIX functionality from other software products.

Changes since the last edition of the manual Preface

28 U23711-J-Z125-5-76

1.4 Changes since the last edition of the manual

Descriptions of the following groups of functions have been added to the manual:

● New functions of the so-called epoll group. These are a scalable I/O event notification
mechanism and thus an alternative to the present POSIX functions select() and
poll().

epoll_create
Create an epoll instance

epoll_ctl
Create an epoll instance

epoll_wait
Wait for events (epoll instance)

● Further new functions

dirfd
Extract a file descriptor from a DIR object.

clock_gettime, clock_gettime64
Functions to determine the time of a specfied clock. Only the system-wide real time
clock CLOCK_REALTIME is supported.

● Changed functions

strptime
The restriction, that requires that there must be a white-space character or a non-
alphanumeric character between two conversion specifications, is omitted.

Preface Notational conventions

U23711-J-Z125-5-76 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
15

. J
un

e
20

18

S
ta

nd
 1

3:
04

.5
6

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
a

nu
a

le
\v

lib
\v

lib
_

en
\v

lib
.k

0
1

1.5 Notational conventions

The following conventions are used in this manual to represent statement formats and user
input:

monospace Used to represent names that are part of the C language scope
and the C library and to indicate cross-references to other terms
described in the Glossary. Also used for sample inputs and outputs
in examples.

UPPERCASE Used to indicate symbolic constants (e.g. HUGE_VAL), symbolic
names of signals (e.g. SIGABRT) and error codes (e.g. EDOM) that
are not implementation-dependent.

{UPPERCASE} Indicates implementation-dependent symbolic constants that are
defined in the header file limits.h (e.g. {INT_MAX}).

italics Indicate sample names for parameters in user input.

[] Used to indicate optional syntax elements, i.e. elements that can,
but need not be used. The square brackets themselves must not be
specified.

... Ellipses are used in syntax representations to indicate that the
preceding syntactic unit may be repeated.

Used in examples to indicate an omission of program code.

This character is used to explicitly indicate a mandatory blank in
order to avoid misunderstandings. In general, any white space is
considered a blank character.

| This character is used as a separator for alternative specifications.
One of the adjacent entries must be selected. The vertical bar itself
must not be specified.

[Key] Used to represent keys.

[Key1] + [Key2] Indicates keys that must be pressed simultaneously.

[Key1] [Key2] Indicates keys that must be pressed in succession.

Descriptions of the entry formats that are used in the reference section to organize the
function descriptions can be found at the beginning of chapter "Functions and variables in
alphabetical order" on page 193.

Notational conventions Preface

30 U23711-J-Z125-5-76

U23711-J-Z125-5-76 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2 The C programming interface

This chapter describes the system requirements and components of the C programming
interface and specific aspects related to its use.

2.1 System requirements

The table below lists the software products which are necessary to support the complete
functionality of the C library as they are provided with CRTE V10.0B00/V11.0B00 and de-
scribed in this manual.

The commands of the POSIX subsystem, which includes two products, POSIX-BC and
POSIX-SH, are described in the manual "POSIX Commands" [2]. POSIX-SH commands
increase the user´s level of comfort when working in the POSIX shell but are not a system
requirement for compiling, linking and starting C programs.

Product Relevant components

BS2000/OSD-BC as of
V10.0 or V11.0

– Operating system
– Header files for POSIX functions

C/C++ as of V3.2 C and C++ compiler for POSIX subsystem and BS2000

CRTE V10.0B00/
V11.0B00

– Header files for BS2000 functions
– Runtime modules of the C library functions

POSIX-BC as of V10.0 or
V11.0

– POSIX file system
– Basic shell
POSIX-HEADER V10.0B00/ V11.0B00

SDF-P Variable structure SYSPOSIX for initializing the runtime environment

Components of the C library The C programming interface

32 U23711-J-Z125-5-76

2.2 Components of the C library

The programming interface of the C runtime library supports more than 500 predefined
functions (see also the table on page 51 ff). These functions are available either as source
program fragments (macros) or in the form of precompiled program segments (modules).
The function declarations, definitions of constants, data types and macros, and the function
macros themselves are incorporated in "header files" (also called "include files" or simply
"headers").

2.2.1 Header files

The header files for the C programming interface are supplied with two separate products:

The headers for POSIX functions are supplied as POSIX HEADER components with the
POSIX-BC product, and the headers for BS2000 functions are supplied with CRTE (see
table on page 31).

Headers may be included, i.e. copied into a program at compilation by means of an
#include preprocessor directive. A detailed description on how this is accomplished can
be found in the C and C++ User Guides.

Headers contain declarations or definitions for the following:

– functions or corresponding macros

– external variables

– symbolic constants and data types

Header files contain external "C" declarations for all functions and data. This allows C
library functions to be called from C++ sources.

In the POSIX subsystem, header files are located in the standard directories
/usr/include and /usr/include/sys.

In BS2000, header files are stored as PLAM library members (of type S) in the libraries
$.SYSLIB.CRTE (for BS2000 functions) and $.SYSLIB.POSIX-HEADER (for POSIX
functions).

The compiler will accept include statements in which the names of header elements
contain slashes (/) for directories even if PLAM library elements are involved. Each slash in
the name of a user-defined or standard header is internally converted to a period (.) for the
purpose of searching PLAM libraries.

Consequently, when porting source programs from POSIX or UNIX to BS2000, for
example, the slashes need not be converted to periods.

The C programming interface Components of the C library

U23711-J-Z125-5-76 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

Similarly, periods need not be converted to slashes in source programs which are copied
from the BS2000 environment to the POSIX subsystem. This applies only to the standard
header elements, however, not to the user-defined headers.

Header file iso646.h

The header file iso646.h contains the following 11 macros that are expanded to the
symbols to the right of the macro and that therefore represent alternative ways of writing
the operators:

2.2.2 Functions and macros

Most of the library functions are implemented as C functions, a few as macros. Some library
functions are implemented both as a function and as a macro.

If a library function exists in both variants, the macro variant is generated for the call by
default. A function call is generated if the name is enclosed within parentheses () or is
undefined by means of the #undef statement. The selection of an appropriate variant in
each case will depend on whether and which specific aspects (performance, program size,
restrictions) are relevant to a particular program.

A function is a compiled program segment (module) which is available only once and is
treated as an external subroutine at runtime. An organizational overhead is required for
each function call during program execution, e.g. to manage the local, dynamic data of a
function in the runtime stack, to save register contents, for return addresses, etc.

Some library functions can be generated inline under the control of the OPTIMIZATION
compiler option. In such cases, the function code is inserted directly at the calling point, and
the above-mentioned administrative activities are not required.

The following functions can be generated inline in the present version: strcpy(),
strcmp(), strlen(), strcat(), memcpy(), memcmp(), memset(), abs(), fabs(),
labs() (see also the manuals "C Compiler" [3] and "C/C++ Compiler" [4]).

A macro is a source program segment that is defined by means of a #define statement.
During compilation, the macro name in the source program is replaced by the contents of
the called macro whenever the macro is called.

and && compl ~ or_eq |=

and_eq &= not ! xor ^

bitand & not_eq != xor_eq ^=

bitor | or | |

Components of the C library The C programming interface

34 U23711-J-Z125-5-76

Using macros can improve performance during program execution, since the runtime
system is not required to perform administrative activities (see "function"); however, the size
of the compiled program is increased due to the macro expansions.

The following should also be taken into account when using macros:

– Macro names cannot be passed as arguments to any function that requires a pointer to
a function as an argument.

– The use of increment/decrement or compound assignment operators for macro
arguments may produce undesirable side effects.

– The header file containing the macro definition must always be included in the program.

2.2.3 Support for DMS and UFS files > 2 GB

For processing file systems that contain files > 2 gigabytes (GB) a 64-bit variant exists for
each of the following 32-bit C Library functions. The 64-bit functions differ from the corre-
sponding 32-bit functions in that they have the suffix “64” in their names.

32-bit and 64-bit C/C++ library functions

There is no difference in terms of functionality between the 32-bit variant of a function and
the associated 64-bit variant. The only differences concern the data types for parameters
and return values if these specify an offset or a file position, since offset and return values
> 2 GB must possible in order to process files > 2 GB. Thus, in addition to the 32-bit data
type off_t, for example, there is also a 64-bit data type called off64_t.

creat: creat64

fgetpos: fgetpos64

fopen: fopen64

freopen: freopen64

fseek: fseek64

fseeko: fseeko64

fsetpos: fsetpos64

ftell: ftell64

ftello: ftello64

lseek: lseek64

open: open64

tmpfile: tmpfile64

The C programming interface Components of the C library

U23711-J-Z125-5-76 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

The compilation environment makes available all the explicit 64-bit functions and types in
addition to the 32-bit functions and types. A program can thus use either interface, as
required.

 ● The 64-bit functions are only available with ANSI functionality.

● Since most of the names of the 64-bit functions are no longer unique CRTE-
wide when truncated to 8 characters, sources that want to use 64-bit functions
have to be generated as LLMs.

Using the 64-bit interface

The _FILE_OFFSET_BITS define allows you to choose between two alternatives for using
the 64-bit interface:

– using 64-bit functions transparently (_FILE_OFFSET_BITS 64)
– calling 64-bit functions explicitly (_FILE_OFFSET_BITS 32)

 ● The _FILE_OFFSET_BITS define must be set on an include file before the first
include.

● You can replace 32-bit functions with 64-bit functions automatically by means of
name defines or macro defines.

Using 64-bit functions transparently (_FILE_OFFSET_BITS 64)

The _FILE_OFFSET_BITS 64 define allows the 64-bit interface to be used transparently,
since the 32-bit functions contained in the source code are automatically replaced with the
associated 64-bit variants during compilation (with the exception of fseek and ftell, see
below). In addition, the compilation environment makes data types available in the appro-
priate size. The data type off_t, for example, is declared as long long.

You can use the _MAP_NAME preprocessor define to specify whether the 32-bit functions are
to be mapped to 64-bit functions by means of the name define method or the macro define
method.

A program can process both files > 2 GB and files Î 2 GB. Transparent use of the 64-bit
functions permits programs that were previously designed only for files Î 2 GB to process
files > 2GB without the need for any changes to the source code.

 The functions fseek and ftell cannot be automatically replaced with fseek64
and ftell64. Please use the functions fseeko and ftello if you want automatic
replacement to be carried out.

i

i

i

Components of the C library The C programming interface

36 U23711-J-Z125-5-76

Calling 64-bit functions explicitly

If the _FILE_OFFSET_BITS 32 define is set or if _FILE_OFFSET_BITS is not defined, you
have to use the 64-bit variants of the file processing functions described above in order to
process files > 2 GB:

– If you try to process a file > 2 GB using a 32-bit variant, this leads to abortion.

– If you use the 64-bit variants, however, you can also process files Î 2 GB.

 You can only use the 64-bit functions explicitly if the _LARGEFILE64_SOURCE 1
define is set beforehand (prototype generation and further defines).

2.2.4 POSIX thread support in the C runtime library

CRTE supports POSIX threads through new header files and functions. This manual
contains descriptions of the new functionality resulting from the POSIX thread support.

i

The C programming interface Components of the C library

U23711-J-Z125-5-76 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.2.5 IEEE floating-point arithmetic

The IEEE floating-point arithmetic is supported as follows:

– The C/C++ compiler offers a compiler option with which floating-point numbers can be
generated in IEEE format (see page 38).

– For every library function in the C runtime system that works with or returns floating-
point numbers, there is a variant for processing IEEE floating-point numbers and a
macro define that maps the standard variant (/390 variant) of the function to the
associated IEEE variant (see page 39).

For each compiler option you can activate all the IEEE functionality: the C/C++ compiler
then generates floating-point numbers in IEEE format in all modules and automatically
provides the appropriate IEEE functions for processing the IEEE floating-point numbers.

In addition, you can use the IEEE functionality provided in a modified form:

– You can use the _IEEE_SOURCE preprocessor define to specify whether the library
functions for /390 floating-point arithmetic are mapped to the associated IEEE variants
(see page 40).

– You can use conversion functions to convert floating-point numbers explicitly from /390
format to IEEE format (see page 41).

Notes on the use of IEEE floating point arithmetic

The following points must be noted when using IEEE floating point arithmetic:

– IEEE floating point operations differ semantically from the corresponding /390 floating
point operations, e.g. in rounding. In IEEE format, "Round to nearest" is used by default
whereas "Round to zero" is used in /390 format.

– In error and exception cases (e.g. argument outside permitted value range) the
reactions of IEEE functions differ from those of /390 functions, e.g. some functions
return the value NaN.

– You must include the relevant include file for each C library function in your program
that uses floating point numbers. Otherwise, these functions cannot process the floating
point numbers correctly. You must, in particular, include the <stdio.h> include file with
#include <stdio.h> for the printf function.

Components of the C library The C programming interface

38 U23711-J-Z125-5-76

2.2.5.1 Generating IEEE floating-point numbers by means of a compiler option

For floating-point numbers the C/C++ compiler generates code in /390 format or IEEE
format, as required. You specify the format you want by means of the FP-ARITHMETICS
clause of the MODIFY-MODULE-PROPERTIES compiler option.

MODIFY-MODULE-PROPERTIES -

...

FP-ARITHMETICS= , -

LOWER-CASE-NAMES=*YES, -
SPECIAL-CHARACTERS=*KEEP, -

...

FP-ARITHMETICS=*390-FORMAT
The compiler generates code for constants and arithmetic operations in /390 format.
*390-FORMAT is the default.

FP-ARITHMETICS=*IEEE-FORMAT
The compiler generates code for constants and arithmetic operations in IEEE format. In
addition, the _IEEE preprocessor define is set to 1. Unless the _IEEE_SOURCE prepro-
cessor define is set to 0 (see page 40), the original /390 library functions are automati-
cally mapped to the associated IEEE functions.

LOWER-CASE-NAMES=*YES
SPECIAL-CHARACTERS=*KEEP

By specifying these, you prevent:

– the names of the IEEE functions (see page 39) from being truncated to eight
characters

– lowercase letters from being converted to uppercase and the character “_” from
being replaced by “$” in the function names

In POSIX you specify the IEEE format by means of the following option:

-K ieee_floats

To ensure the IEEE function names are processed correctly, you specify:

-K llm_keep
-K llm_case_lower

*390-FORMAT
*IEEE-

The C programming interface Components of the C library

U23711-J-Z125-5-76 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.2.5.2 C library functions that support IEEE floating-point numbers

For every function that works with floating-point numbers or returns a floating-point number,
the C runtime system offers:

– an implementation of the function with /390 arithmetic

– an implementation of the function with IEEE arithmetic

– a macro define that maps the original function (/390 function) to the associated IEEE
function

The prototype of an IEEE function and the associated define are stored in the include file
in which the corresponding original function is declared. This has the advantage that no
additional include files are required in order to use the IEEE floating-point arithmetic, with
the possible exception of <ieee_390.h> (see page 41).

Names of the IEEE functions

The syntax of the names of the IEEE functions is as follows:

__originalfunction_ieee()

The name of the original function should be specified for originalfunction.

The IEEE variant of sin(), for example, is __sin_ieee().

C library functions for which there is an IEEE function

acos() asin() atan() atan2() atof()

ceil() cos() cosh() difftime() difftime64()

ecvt() ecvt_r() erf() erfc() exp()

fabs() fcvt() fcvt_r() floor() fprintf()

frexp() fscanf() gamma() gcvt() hypot()

j0() j1() jn() ldexp() llrint()

llrintf() llrintl() llround() llroundf() llroundl()

log() log10() lrint() lrintf() lrintl()

lround() lroundf() lroundl() modf() pow()

printf() rint() rintf() rintl() round()

roundf() roundl() scanf() sin() sinh()

snprintf() sprintf() sqrt() sscanf() strtod()

tan() tanh() vfprintf() vprintf() vsnprintf()

vsprintf() y0() y1() yn()

Components of the C library The C programming interface

40 U23711-J-Z125-5-76

2.2.5.3 Controlling the mapping of original functions to the associated IEEE variants

You can use the _IEEE_SOURCE preprocessor define to specify whether the original library
functions (/390 functions) for floating-point arithmetic are mapped to the associated IEEE
variants. The prototypes of the IEEE functions are always generated.

_IEEE_SOURCE can take on the following values:

_IEEE_SOURCE == 0
 The /390 functions are not mapped to the corresponding IEEE variants. /390 and

IEEE functions can thus be used in parallel. This setting applies regardless of the
settings of the compiler (see the _IEEE define on page 38).

_IEEE_SOURCE == 1
 The /390 functions are mapped to the corresponding IEEE variants. It is thus not

possible to use /390 and IEEE functions in parallel. This setting applies regardless
of the settings of the compiler (see the _IEEE define on page 38).

The _MAP_NAME preprocessor define allows you to specify whether the /390
functions are to be mapped to the IEEE functions by means of the name define
method or the macro define method.

 If you want to control the mapping of the original functions to the associated
IEEE functions by means of the preprocessor define, you have to use the
function declarations of the standard include files (i.e. you have to include
the standard include files).

_IEEE_SOURCE is not defined
 In this case, the following takes place, depending on the compiler option (see the

_IEEE define on page 38):

_IEEE == 0 or _IEEE not defined
The /390 functions are not mapped to the corresponding IEEE variants.

_IEEE == 1
The /390 functions are mapped to the corresponding IEEE variants.

i

The C programming interface Components of the C library

U23711-J-Z125-5-76 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

 To control the mapping of the original functions to the associated IEEE variants, you
have to specify the MODIFY-MODULE-PROPERTIES compiler option as follows:

MODIFY-MODULE-PROPERTIES -
...
LOWER-CASE-NAMES=*YES, -
SPECIAL-CHARACTERS=*KEEP, -
...

This prevents:

– the names of the IEEE functions (see page 39) from being truncated to eight
characters

– lowercase letters from being converted to uppercase and the character “_” from
being replaced with “$” in the function names

In POSIX, you specify the following to achieve this:

-K llm_keep
-K llm_case_lower

2.2.5.4 Explicit conversion of floating-point numbers

In addition to the compiler and runtime system extensions for IEEE support described in the
above sections, there are also functions for explicitly converting floating-point numbers
between the /390 and IEEE formats.

The following conversion functions are declared in the include file <ieee_390.h>:

extern float float2ieee(float num);
extern float ieee2float(float num);

extern double double2ieee(double num);
extern double ieee2double(double num);

Conversion functions are described in detail in the chapter “Functions and variables in
alphabetical order” on page 193.

i

Components of the C library The C programming interface

42 U23711-J-Z125-5-76

2.2.6 ASCII encoding

In addition to the standard EBCDIC encoding of characters and strings, ASCII encoding of
characters and strings is also supported:

– The C/C++ compiler offers an option by means of which characters and strings can be
generated in ASCII format (see page 42).

– For every library function in the C runtime system that works with characters or strings
or that returns a character or a string, there is a variant for processing ASCII characters
and strings and a macro define that maps the EBCDIC variant of the function to the
associated ASCII variant (see page 45).

For each compiler option you can activate all the ASCII functionality: the C/C++ compiler
then generates characters and strings in ASCII format in all modules and automatically
provides the appropriate ASCII functions for processing the ASCII characters and strings.

In addition, you can use the ASCII functionality provided in a modified form:

– You can use the _ASCII_SOURCE preprocessor define to specify whether the library
functions for EBCDIC representation are mapped to the associated ASCII variants (see
page 45).

– You can use conversion functions to convert ASCII characters and strings explicitly
from EBCDIC format to ASCII format (see page 46).

2.2.6.1 Generating ASCII characters and strings by means of a compiler option

The C/C++ compiler generates code for characters and strings in EBCDIC format (default)
or ASCII format, as required. You specify the format you want by means of the
LITERAL-ENCODING option of the MODIFY-SOURCE-PROPERTIES .statement.

MODIFY-SOURCE-PROPERTIES ..., LITERAL-ENCODING=*NATIVE|*ASCII-FULL

LITERAL-ENCODING=*NATIVE
The compiler generates code for characters and strings in EBCDIC format.
*NATIVE is the default.

LITERAL-ENCODING=*ASCII-FULL
The compiler generates code for characters and strings in ASCII format. In addition, the
_LITERAL_ENCODING_ASCII preprocessor define is set to 1. Unless the
_ASCII_SOURCE preprocessor define is set to 0 (see page 45), the EBCDIC library
functions are automatically mapped to the associated ASCII functions.

The C programming interface Components of the C library

U23711-J-Z125-5-76 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

In POSIX you specify ASCII encoding by means of the following option:

-K literal_encoding_ascii_full

 If you want to use ASCII support, you have to specify the MODIFY-MODULE-
PROPERTIES statement as follows:

MODIFY-MODULE-PROPERTIES -
...
LOWER-CASE-NAMES=*YES, -
SPECIAL-CHARACTERS=*KEEP, -
...

This prevents:

– the names of the ASCII functions (see page 44) from being truncated to eight
characters

– lowercase letters from being converted to uppercase and the character “_” from
being replaced by “$” in the function names

In POSIX, you specify the following to achieve this:

-K llm_keep
-K llm_case_lower

Parameter transfer, environment variables and global variable tzname

The LITERAL-ENCODING option also defines the format in which these strings are trans-
ferred to the main function. When LITERAL-ENCODING= *ASCII-FULL, the strings
specified are consequently by default transferred to the main function in ASCII format. You
can thus produce applications which have been ported to BS2000 or were originally
generated as EBCDIC applications as ASCII applications without any need for intervention
in the source code.

2.2.6.2 C library functions that support ASCII encoding

For every library function in the C runtime system that works with characters and/or strings
or returns a character or string (e.g. printf), there is:

– an implementation of the function for processing characters and/or strings in EBCDIC
format

– an implementation of the function for processing characters and/or strings in ASCII
format

– a macro define that maps the original function (EBCDIC format) to the associated ASCII
function

i

Components of the C library The C programming interface

44 U23711-J-Z125-5-76

The prototype of an ASCII function and the associated define are stored in the include file
in which the corresponding original file is declared. This has the advantage that no
additional include files are required to use ASCII-encoded characters and strings, with the
possible exception of <ascii_ebcdic.h> (see page 46).

Names of the ASCII functions

The syntax of the names of the ASCII functions is as follows:

__originalfunction_ascii()

The name of the original function should be specified for originalfunction.

The ASCII variant of printf(), for example, is __printf_ascii().

C library functions for which there is an ASCII function

asctime_r() asctime() assert() atof()

atoi() atol() atoll() basename()

bs2exit() bs2fstat() creat() creat64()

ctime_r() ctime() ctime64() ecvt_r()

ecvt() faccessat() fchownat() fcvt_r()

fdopen() fgetc() fgets() fopen()

fopen64() fprintf() fputc() fputs()

fread() freopen() freopen64() fscanf()

fstatat() fstatat64() futimesat() fwrite()

gcvt() getc_unlocked() getenv() getpgmname()

gets() gettsn() isalnum() isalpha()

isascii() iscntrl() isdigit() isgraph()

islower() isprint() ispunct() isspace()

isupper() linkat() localeconv() mkfifoat()

mknod() mknodat() mktemp() open()

open64() openat() openat64() perror()

printf() remove () rename() renameat()

scanf() setenv() setlocale() snprintf()

sprintf() sscanf() strerror() strlower()

strptime() strtod() strtol() strtoll()

strtoul() strtoull() strupper() symlinkat()

The C programming interface Components of the C library

U23711-J-Z125-5-76 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.2.6.3 Controlling the mapping of original functions to the associated ASCII variants

You can use the _ASCII_SOURCE preprocessor define to specify whether the original library
functions (EBCDIC functions) for character/string processing are mapped to the associated
ASCII variants. The prototypes of the ASCII functions are always generated.

_ASCII_SOURCE can take on the following values:

_ASCII_SOURCE == 0
 The EBCDIC functions are not mapped to the corresponding ASCII variants.

EBCDIC and ASCII functions can thus be used in parallel. This setting applies
regardless of the settings of the compiler (see the _ASCII define on page 42).

_ASCII_SOURCE == 1
 The EBCDIC functions are mapped to the corresponding ASCII variants. EBCDIC

and ASCII functions thus cannot be used in parallel. This setting applies regardless
of the settings of the compiler (see the _LITERAL_ENCODING_ASCII define on
page 42).

You can use the _MAP_NAME preprocessor define to specify whether the EBCDIC
functions are to be mapped to the ASCII functions by means of the name define
method or the macro define method.

 If you want to use the ASCII functions by means of the preprocessor define,
you have to use the function declarations of the standard include files (i.e.
you have to include the standard include files).

_ASCII_SOURCE is not defined
 In this case, the following takes place, depending on the settings of the compiler

(see the _LITERAL_ENCODING_ASCII define on page 42):

LITERAL_ENCODING_ASCII == 0 or
LITERAL_ENCODING_ASCII not defined

The original functions are not mapped to the corresponding ASCII variants.

LITERAL_ENCODING_ASCII == 1
The original functions are mapped to the corresponding ASCII variants.

tmpnam() tolower() toupper() ungetc()

unlinkat() unsetenv() utimensat() vfprintf()

vsnprintf() vsprintf()

i

Components of the C library The C programming interface

46 U23711-J-Z125-5-76

 To control the mapping of the EBCDIC functions to the associated ASCII
functions, you have to specify the MODIFY-MODULE-PROPERTIES compiler
option as follows:

MODIFY-MODULE-PROPERTIES -
...
LOWER-CASE-NAMES=*YES, -
SPECIAL-CHARACTERS=*KEEP, -
...

This prevents:

– the names of the ASCII functions (see page 44) from being truncated to eight
characters

– lowercase letters from being converted to uppercase and the character “_” from
being replaced with “$” in the function names

In POSIX, you specify the following to achieve this:

-K llm_keep
-K llm_case_lower

2.2.6.4 Explicitly switching between EBCDIC and ASCII encoding

In addition to the compiler and runtime system extensions for ASCII support described in
the above sections, there are also functions for explicitly converting characters and strings
between EBCDIC and ASCII representation. This permits EBCDIC and ASCII represen-
tation to be mixed within a single module. The conversion functions are declared in the
include file <ascii_ebcdic.h>.

The following conversion functions and data are available:

char *_a2e(char *str);
char *_e2a(char *str);

char *_a2e_n(char *str, size_t n);
char *_e2a_n(char *str, size_t n);

char *_a2e_max(char *str, size_t n);
char *_e2a_max(char *str, size_t n);

char *_a2e_dup(const char *str);
char *_e2a_dup(const char *str);

char *_a2e_dup_n(const char *str, size_t n);
char *_e2a_dup_n(const char *str, size_t n);

Conversion functions are described in detail in the chapter “Functions and variables in
alphabetical order” on page 193.

i

The C programming interface Components of the C library

U23711-J-Z125-5-76 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.2.7 Functions that support IEEE and ASCII encoding

The include files <stdio.h> and <stdlib.h> of the C runtime system contain some functions
that support both IEEE floating-point arithmetic and ASCII encoding.

The original functions (/390, EBCDIC) are mapped to the corresponding ASCII/IEEE
functions when the preprocessor defines _IEEE_SOURCE (see page 40) and _ASCII_-
SOURCE (see page 45) are both set to 1.

Names of the ASCII/IEEE functions

The syntax of the names of these ASCII/IEEE functions is as follows:

__originalfunction_ascii_ieee()

The name of the original function should be used for originalfunction.

The ASCII/IEEE variant of printf(), for example, is __printf_ascii_ieee().

C library functions for which there is an ASCII/IEEE function

2.2.8 Wide characters and multi-byte characters

Wide characters and multi-byte characters were defined to extend the "character" concept
of computer languages in which one character was allocated one byte of storage space.
This allocation is insufficient for languages such as Japanese, for example, since the repre-
sentation of a character in these languages requires more than one byte of storage. For this
reason multi-byte characters and wide characters were added to the character concept.
Multi-byte characters represent the characters in the extended character set using two,
three or more bytes.
Multi-byte strings can contain "shift sequences" that change the meaning of the following
multi-byte codes. Shift sequences can switch between different interpretation modes, for
example: The one byte shift sequence 0200 can specify that the following two bytes are to
be interpreted as Japanese characters, and the shift sequence 0201 can specify that the
following two bytes are to be interpreted as characters in the ISO-Latin-1 character set.

atof() ecvt() ecvt_r() fcvt() fcvt_r()

fprintf() fscanf() gcvt() fprintf() fscanf()

gcvt() printf() scanf() snprintf() sprintf()

sscanf() srtod() vfprintf() vsnprintf() vsprintf()

Components of the C library The C programming interface

48 U23711-J-Z125-5-76

Programming model

Programs that work with multi-byte characters can be just as easily realized with the help
of Amendment 1 functions as programs that use the traditional character concept.

When they are used, the multi-byte characters or strings that are read in from an external
file are read into a wchar_t object or a field of type wchar_t internally. The multi-byte
characters are converted to the corresponding wide characters during the read operation
in this case.
The wchar_t objects can then be edited using iswxxx functions or wcstod, wmemcmp, etc.
The resulting wchar_t objects are then output using output functions such as putwchar,
fputws, etc.
The wide characters are converted to the corresponding multi-byte characters when output.

Notes on wide characters

A wide character is defined as the code value of an object of type wchar_t (binary encoded
integer value) that corresponds to an element of the extended character set.
The null character has the code value null.

The end-of-file criterion in wide character files is WEOF.

Wide character constants are written in the form L"wide character string".

Notes on this implementation

Only 1 byte characters are supported as wide characters in this version of the C runtime
library. They are of type wchar_t, which are mapped to the long type internally.
Multi-byte characters correspondingly are always 1 byte long.

2.2.9 Time functions

The time functions that are used without POSIX when the C library functions are used, i.e.
when the POSIX link option was not used, differ in two ways from the time functions used
in POSIX/UNIX environments:

– Time specifications are strongly locale-dependent, and when the clock switches to
daylight savings time and back, the time specifications "jump". Negative numbers and
differences in time can arise, especially when daylight savings time is over, that yield
unexpected results later on during processing.

– The gmtime function is implemented like localtime.

For these reasons we recommend users to convert their programs to the POSIX time
functions.

The C programming interface Components of the C library

U23711-J-Z125-5-76 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

The POSIX time functions are used automatically when the POSIX link option is used, and
no POSIX subsystem needs to be present to use it.
However, if the POSIX subsystem is already loaded, then linking with the POSIX link option
will cause the program to connect to the POSIX subsystem.
If you use the POSIX link option, then the POSIX functions described in the "C Library
Functions for POSIX" manual" are also used, for example for I/O functions, and in particular
file names that are not explicitly designated as BS2000 file names are interpreted as
POSIX-UFS file names.

If you want your program to use only the POSIX time functions, then you need to use the
TIME link option.

The libraries

– SYSLNK.CRTE.TIME

are available for inclusion in your program.

If you do not use the TIME link option, then all existing programs and procedures will
respond as before.

2.2.10 Setting the time zone for POSIX time functions

The POSIX time functions evaluate the TZ variable to determine the time zone.

You can set the time zone before starting the program via the SYSPOSIX variable.
If the variable is not set when the program is started, then the C runtime library initializes
the variable to the time zone in which Germany is located by setting TZ to the value
MET-1DST,M3.5.0/02:00:00,M10.5.0/03:00:00.

The procedure ICXTZ in the SINPRC.CRTE.023 library is available for setting the time zone
to a value other than the one valid for Germany when you want to set a different time zone
for the installation.

ICXTZ,(TZ=’time zone specification’)

2.2.11 Scope of the supported C library

The following table provides an overview of the supported C library functions.

Key

x in „Other Standards“ column mean:
Function required by a standard newer than XPG5.

The following characters have the following meanings in the "XPG5" column:

Components of the C library The C programming interface

50 U23711-J-Z125-5-76

x Function required by XPG5. These functions can only be executed with POSIX-BC
and are portable with respect to XPG5-conformant systems.

xx Functions that were available with the same functionality in the
previous BS2000 library.

d Functions that can process BS2000 files in addition to POSIX files.

a Functions that have been extended to include the functionality of the previous
C (BS2000) library function.

y Function which is required by XPG5 and is portable with respect to XPG5-
conformant systems. This function is also executable without
POSIX-BC.

The following characters have the following meanings in the "XPG4 Version 2" column:

x Function required by XPG4 Version 2. These functions can only be executed with
POSIX-BC and are portable with respect to XPG4 Version 2-
conformant systems.

xx Functions that were available with the same functionality in the
previous BS2000 library.

d Functions that can process BS2000 files in addition to POSIX files.

a Functions that have been extended to include the functionality of the previous
C (BS2000) library function.

y Function which is required by XPG4 Version 2 and is portable with respect to XPG4
Version 2-conformant systems. This function is also executable
without POSIX-BC.

x in "Extension" or "BS2000" column mean:

Extension that is only executable with POSIX-BC (Extension) or that was already
present in the previous C library (BS2000).

The C programming interface Components of the C library

U23711-J-Z125-5-76 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

x in "ANSI" column means:
Functions that are not in XPG4 Version 2 and also do not represent a BS2000
extension, but were implemented instead in accordance with the ANSI C standard
(__STDC_VERSION 199901L)
.

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

a641() y y

abort() xa xa

abs() xx xx

access() x x

acos() xx xx

acosh() x x

advance() x x

alarm() xa xa

altzone x

ascii_to_ebcdic() y

asctime_r() y

asctime() xx xx

asin() xx xx

asinh() x x

assert() xx xx

atan() xx xx

atan2() xx xx

atanh() x x

atexit() xx xx

atof() xx xx

atoi() xx xx

atol() xx xx

atoll() x

basename() x x

bcmp() x x

bcopy() x x

brk() x x

bs2cmd() x x

Components of the C library The C programming interface

52 U23711-J-Z125-5-76

bs2exit() x

bs2fstat() x

bs2system() x (system())

bsd_signal() x x

bsearch() xx xx

btowc() y

bzero() x x

cabs() x

calloc() xx xx

catclose() x x

catgets() x x

catopen() x x

cbrt() x x

cdisco() x

ceil() xx xx

ceilf() x

ceill() x

cenaco() x

cfgetispeed() x x

cfgetospeed() x x

cfsetispeed() x x

cfsetospeed() x x

chdir() x x

chmod() x x

chown() x x

chroot() x x

clearerr() xxd xxd

clock() xa xa

clock_gettime() y

close() xxd xxd

closedir() x x

closelog() x x

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

The C programming interface Components of the C library

U23711-J-Z125-5-76 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

compile() x x

confstr() x x

cos() x xx

cosh() xx xx

cputime() x

creat() xxd xxd

crypt() x x

cstxit() x

ctermid() x x

ctime_r() y

ctime() xa xa

cuserid() x x

__DATE__ xx

daylight x x

dbm_clearerr() x x

dbm_close() x x

dbm_delete() x x

dbm_error() x x

dbm_fetch() x x

dbm_firstkey() x x

dbm_nextkey() x x

dbm_open() x x

dbm_store() x x

difftime() xx xx

dirfd() x

dirname() x x

div() xx xx

drand48() x x

dup() x x

dup2() x x

ebcdic_to_ascii() y

ecvt() xx xx

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

Components of the C library The C programming interface

54 U23711-J-Z125-5-76

_edt() x

encrypt() x x

endgrent() x x

endpwent() x x

endutxent() x x

environ x x

epoll_create() x

epoll_ctl() x

epoll_wait() x

erand48() x x

erf() xx xx

erfc() xx xx

errno xx xx

execl() x x

execle() x x

execlp() x x

execv() x x

execve() x x

execvp() x x

exit() xx xx

_exit() xx xx

exp() xx xx

expm1() y y

fabs() xx xx

faccessat() x

fattach() x x

fchdir() x x

fchmod() x x

fchmodat() x

fchown() x x

fchownat() x

fclose() xxd xxd

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

The C programming interface Components of the C library

U23711-J-Z125-5-76 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

fcntl() x x

fcvt() xx xx

FD_CLR() x

FD_ISSET() x

FD_SET() x

FD_ZERO() x

fdelrec() x

fdetach() x x

fdopen() xxd xxd

fdopendir() x

feof() xxd xxd

ferror() xxd xxd

fflush() xxd xxd

ffs() x x

fgetc() xxd xxd

fgetpos() xxd xxd

fgets() xxd xxd

fgetwc() yd yd

fgetws() yd yd

__FILE__ xx

fileno() xxd xxd

flocate() x

flockfile() y

floor() xx xx

floorf() x

floorl() x

fmod() xx xx

fmtmsg() x x

fopen() xxd xxd

fork() x x

fpathconf() x x

fprintf() xxd xxd

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

Components of the C library The C programming interface

56 U23711-J-Z125-5-76

fputc() xxd xxd

fputs() xxd xxd

fputwc() yd yd

fputws() yd yd

fread() xxd xxd

free() xx xx

freopen() xxd xxd

frexp() xx xx

fscanf() xxd xxd

fseek() xxd xxd

fsetpos() xxd xxd

fstat() xd xd

fstatat() x

fstatvfs() x x

fsync() x x

ftell() xxd xxd

ftello() yd yd

ftime() xa xa

ftok() x x

ftruncate() x x

ftrylockfile() y

ftw() x x

funlockfile() y

futimesat() x

fwide() y x

fwprintf() y x

fwrite() xxd xxd x

fwscanf() y

gamma() xx xx

garbcoll() x

gcvt() xx xx

getc_unlocked() yd

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

The C programming interface Components of the C library

U23711-J-Z125-5-76 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

getc() xxd xxd

getchar_unlocked() yd

getchar() xxd xxd

getcontext() x x

getcwd() x x

getdate() x x

getdents() x

getdtablesize() x x

getegid() x x

getenv() xx xx

geteuid() x x

getgid() x x

getgrent() x x

getgrgid_r() x

getgrgid() x x

getgrnam_r() x

getgrnam() x x

getgroups() x x

gethostid() y y

getitimer() x x

getlogin_r() y

getlogin() xx xx

getmsg() x x

getopt() x x

getpagesize() x x

getpass() x x

getpgit() x x

getpgmname() x

getpgrp() x x

getpid() x x

getpmsg() x x

getppid() x x

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

Components of the C library The C programming interface

58 U23711-J-Z125-5-76

getpriority() x x

getpwent() x x

getpwnam_r() x

getpwnam() x x

getpwuid_r() x

getpwuid() x x

getrlimit() x x

getrusage() x x

gets() xxd xxd

getsid() x x

getsubopt() x x

gettimeofday() x x

gettsn() x

getuid() x x

getutxent() x x

getutxid() x x

getutxline() x x

getw() xxd xxd

getwc yd yd

getwchar() yd yd

getwd() x x

gmatch() x

gmtime_r() xa

gmtime() xa xa

grantpt() x x

hcreate() x x

hdestroy() x x

hsearch() x x

hypot() xx xx

iconv_close() x x

iconv_open() x x

iconv() x x

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

The C programming interface Components of the C library

U23711-J-Z125-5-76 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

ilogb() y y

index() xx xx

initgroups() x

initstate() x x

insque() x x

ioctl() x x

isalnum() xx xx

isalpha() xx xx

isascii() xx xx

isastream() x x

isatty() x x

iscntrl() xx xx

isdigit() xx xx

isebcdic() x

isgraph() xx xx

islower() xx xx

isnan() x x

isprint() xx xx

ispunct() xx xx

isspace() xx xx

isupper() xx xx

iswalnum() x x

iswalpha() x x

iswcntrl() x x

iswctype() x x

iswdigit() x x

iswgraph() x x

iswlower() x x

iswprint() x x

iswpunct() x x

iswspace() x x

iswupper() x x

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

Components of the C library The C programming interface

60 U23711-J-Z125-5-76

iswxdigit() x x

isxdigit() xx xx

j0() xx xx

j1() xx xx

jn() xx xx

jrand48() x x

kill() xa xa

killpg() x x

l64a() y y

labs() xx xx

lchown() x x

lcong48() x x

ldexp() xx xx

ldiv() xx xx

lfind() x x

lgamma() x x

__LINE__ xx

link() x x

linkat() x

llabs() x

lldiv() x

llrint() x

llrintf() x

llrintl() x

llround() x

llroundf() x

llroundl() x

loc1 x x

loc2 x x

localeconv() xx xx

localtime_r() xa

localtime() xa xa

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

The C programming interface Components of the C library

U23711-J-Z125-5-76 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

lockf() x x

locs x x

log() xx xx

log10() xx xx

log1p() y y

logb() y y

longjmp() xx xx

_longjmp() y y

lrand48() x x

lrint() x

lrintf() x

lrintl() x

lround() x

lroundf() x

lroundl() x

lsearch() x x

lseek() xxd xxd

lstat() x x

major() x

makecontext() x x

makedev() x

malloc() xx xx

mblen() xx xx

mbrlen() y x

mbrtowc() y x

mbsinit() y x

mbsrtowcs() y x

mbstowcs() xx xx

mbtowc() xx xx

memalloc() x

memccpy() x x

memchr() xx xx

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

Components of the C library The C programming interface

62 U23711-J-Z125-5-76

memcmp() xx xx

memcpy() xx xx

memfree() x

memmove() xx xx

memset() xx xx

minor() x

mkdir() x x

mkdirat() x

mkfifo() x x

mkfifoat() x

mknod() x x

mknodat() x

mkstemp() x x

mktemp() xa xa

mktime() xa xa

mmap() x x

modf() xx xx

mount() x

mprotect() x x

mrand48() x x

msgctl() x x

msgget() x x

msgrcv() x x

msgsnd() x x

msync() x x

munmap() x x

nanosleep() y

nextafter() y y

nftw() x x

nice() x x

nl_langinfo() x x

nrand48() x x

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

The C programming interface Components of the C library

U23711-J-Z125-5-76 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

offsetof() x

open() xxd xxd

openat() x

opendir() x x

openlog() x x

optarg x x

opterr x x

optint x x

optopt x x

pathconf() x x

pause() x x

pclose() x x

perror() xxd xxd

pipe() x x

poll() x x

popen() x x

pow() xx xx

printf() xxd xxd

ptsname() x x

putc_unlocked() yd

putc() xxd xxd

putchar_unlocked() yd

putchar() xxd xxd

putenv() x x

putmsg() x x

putpmsg() x x

putpwent() x

puts() xxd xxd

pututxline() x x

putw() xxd xxd

putwc() yd yd

putwchar() yd yd

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

Components of the C library The C programming interface

64 U23711-J-Z125-5-76

qsort() xx xx

raise() xa xa

rand_r() y

rand() xx xx

random() x x

re_cmp() x x

re_exec() x x

read() xxd xxd

readdir_r() x

readdir() x x

readlink() x x

readlinkat() x

readv() x x

realloc() xx xx

realpath() x x

regcmp() x x

regcomp() x

regerror() x

regex() x x

regexec() x

regfree() x

remainder() y y

remove() xxd xxd

remque() x x

rename() xxd xxd

renameat() x

rewind() xxd xxd

rewinddir() x x

rindex() xx xx

rint() y y

rintf() x

rintl() x

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

The C programming interface Components of the C library

U23711-J-Z125-5-76 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

rmdir() x x

round() x

roundf() x

roundl() x

sbrk() x x

scalb() y y

scanf() xxd xxd

seed48() x x

seekdir() x x

select() x x

semctl() x x

semget() x x

semop() x x

setbuf() xxd xxd

setcontext() x x

setenv() x

setgid() x x

setgrent() x x

setgroups() x

setitimer() x x

setjmp() xx xx

_setjmp y y

setkey() x x

setlocale() xa xa

setlogmask() x x

setpgid() x x

setpgrp() x x

setpriority() x x

setpwent() x x

setregid() x x

setreuid() x x

setrlimit() x x

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

Components of the C library The C programming interface

66 U23711-J-Z125-5-76

setsid() x x

setstate() x x

setuid() x x

setutxent() x x

setvbuf() xxd xxd

shmat() x x

shmctl() x x

shmdt() x x

shmget() x x

sigaction() x x

sigaddset() x x

sigdelset() x x

sigemptyset() x x

sigfillset() x x

sighold() x x

sigignore() x x

siginterrupt() x x

sigismember() x x

siglongjmp() x x

signal() xa xa

signalstack() x x

signgam x x

sigpause() x x

sigpending() x x

sigprocmask() x x

sigrelse() x x

sigset() x x

sigsetjmp() x x

sigstack() x x

sigsuspend() x x

sin() xx xx

sinh() xx xx

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

The C programming interface Components of the C library

U23711-J-Z125-5-76 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

sleep() xa xa

snprintf() x

sprintf() xx xx

sqrt() xx xx

srand() xx xx

srand48() x x

srandom() x x

sscanf() xx xx

stat() xd xd

statvfs() x x

__STDC__ xx

__STDC_VERSION__ x

stderr xx xx

stdin xx xx

stdout xx xx

step() x x

strcasecmp() x x

strcat() xx xx

strchr() xx xx

strcmp() xx xx

strcoll() xa xa

strcpy() xx xx

strcspn() xx xx

strdup() x x

strerror() xx xx

strfill() x

strftime() xa xa

strlen() xx xx

strlower() x

strncasecmp() x x

strncat() xx xx

strncmp() xx xx

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

Components of the C library The C programming interface

68 U23711-J-Z125-5-76

strncpy() xx xx

strnlen() x

strpbrk() xx xx

strrchr() xx xx

strspn() xx xx

strstr() xx xx

strtod() xa xa

strtok_r() y

strtok() xx xx

strtol() xx xx

strtoll() x

strtoul() xx xx

strtoull() x

strupper() x

strxfrm() xa xa

swab() x x

swapcontext() x x

swprintf() y x

swscanf() y x

symlink() x x

symlinkat() x

sync() x x

sysconf() x x

sysfs() x

syslog() x x

system() xa xa

tan() xx xx

tanh() xx xx

tcdrain() x x

tcflow() x x

tcflush() x x

tcgetattr() x x

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

The C programming interface Components of the C library

U23711-J-Z125-5-76 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

tcgetpgrp() x x

tcgetsid() x x

tcsendbreak() x x

tcsetattr() x x

tcsetpgrp() x x

tdelete() x x

tell() x

telldir() x x

tempnam() x x

tfind() x x

__TIME__ xx

time() xa xa

times() x x

timezone x x

tmpfile() xxd xxd

tmpnam() xxd xxd

toascii() xx xx

toebcdic() x

tolower() xa xa

_tolower() x x

toupper() xa xa

_toupper() x x

towctrans() x x

towlower() x x

towupper() x x

truncate() x x

tsearch() x x

ttyname_r() x

ttyname() x x

ttyslot() x x

twalk() x x

tzname x x

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

Components of the C library The C programming interface

70 U23711-J-Z125-5-76

tzset() x x

ualarm() x x

ulimit() x x

umask() x x

umount() x

uname() x x

ungetc() xxd xxd

ungetwc() x x

unlink() xxd xxd

unlinkat() x

unlockpt() x x

unsetenv() x

usleep() x x

utime() x x

utimensat() x

utimes() x x

va_arg() xx xx

va_end() xx xx

va_start() xx xx

valloc() y y

vfork() x x

vfprintf() xxd xxd

vfwprintf y x

vprintf() xxd xxd

vsnprintf() y x

vsprintf() xx xx

vswprintf() y x

vwprintf() y x

wait() x x

wait3() x x

waitid() x x

waitpid() x x

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

The C programming interface Components of the C library

U23711-J-Z125-5-76 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

wcrtomb() y

wcscat() x

wcschr() x

wcscmp() x

wcscoll x x

wcscpy() x x

wcscspn() x x

wcsftime x x

wcslen() x x

wcsncat() x x

wcsncmp() x x

wcsncpy() x x

wcspbrk() x x x

wcsrchr() x x x

wcsrtombs() x x

wcsspn() x x

wcsstr() x

wcstod() x x x

wcstok() x x

wcstol() x x

wcstoll() x

wcstombs() xx xx

wcstoul() x x

wcstoull() x

wcswcs() x x

wcswidth() x x

wcsxfrm x x

wctob() y x

wctomb() xx xx

wctrans() y x

wctype() x x

wcwidth() x x

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

Components of the C library The C programming interface

72 U23711-J-Z125-5-76

wmemchr() y x

wmemcmp() y x

wmemcpy() y x

wmemmove() y x

wmemset() y x

wprintf() y x

write() xxd xxd

writev() x x

wscanf() y x

y0() xx xx

y1() xx xx

yn() xx xx

Function Other
Standards

XPG5 XPG4
Version 2

Extensions ANSI

Extension BS2000

The C programming interface Selecting functionality

U23711-J-Z125-5-76 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.3 Selecting functionality

It is possible to choose between the different functionalities. In the following, a distinction is
made between the range of functions that have been extended by the POSIX functionality
and the range of functions available in BS2000 (without POSIX), which represents the
BS2000 functionality.

The C library functions which provide the BS2000 functionality form the basis of the library.
In addition, the extra functions of the C library provide the POSIX functionality. Therefore,
in choosing the extended functionality, you can use all functions of the library, i.e. both the
BS2000 functions and the additional XPG4 Version 2-conformant functions.

A small number of functions have different variants in BS2000 and in POSIX. These are, on
the one hand, the functions for input/output and file accesses (for a list of these functions,
see page 108) and, on the other, time functions, signal processing and interrupt functions,
plus the clock() and system() functions.
Below is described for both types of functionality which variant of the respective functions
is used.

2.3.1 Range of functions extended by the POSIX functionality

When a program is compiled, linked and started in the POSIX shell (see also the manual
"C/C++ POSIX Commands of the C and C++ Compilers", "C Compiler" or "C++ Compiler"),
the available functionality of the C library is as listed in the following. This functionality is
called the POSIX functionality in the following:

● All XPG4 Version 2-conformant functions (marked with x, y or xx in the "XPG4 Version
2" column in the table on page 51ff) are supported.

● All functions identified as extensions (marked with an x in the "Extension" and "BS2000"
columns in the table on page 51ff) are supported.

● XPG4 Version 2-conformant functionality is supported for all functions marked with xa.
This includes the following function groups:

– the time functions clock(), ctime(), ctime_r(), ftime(), gmtime(),
localtime(), mktime(), time()

– the functions for process control, i.e. abort(), alarm(), _exit(), kill(),
raise(), and signal().

● In the case of functions that are marked with xd in the table, it is possible to access
BS2000 or POSIX files on an individual basis. This can be controlled as described
under section “Selecting the file system and the system environment” on page 75. This
function group also includes the system() function, since it can be controlled on the
source program level as in the case of the file access functions.

Selecting functionality The C programming interface

74 U23711-J-Z125-5-76

Programs that are run in the POSIX shell are started internally with fork() and an exec
function and thus have a parent process.

The range of functions extended by POSIX functionality can also be selected when a
program is compiled, linked and started on the BS2000 command level, provided the
following is taken into account:

1. Steps to be observed at compilation:

a) In addition to the $.SYSLNK.CRTE library, the
$.SYSLIB.POSIX-HEADER library must be specified so that the correct header files
are found (option STD-INCLUDE-LIBRARY).

b) _OSD_POSIX must be defined. This can be done by choosing one of the methods
given below:

– by specifying the following before the first #include statement in the source
code:

#define _OSD_POSIX

– by setting the SOURCE-PROPERTIES option for the compilation run as follows:

SOURCE-PROPERTIES=PAR(DEFINE=_OSD_POSIX)

2. When linking the link option $.SYSLNK.CRTE.POSIX must be specified before
$.SYSLNK.CRTE or $.SYSLNK.CRTE.PARTIAL-BIND.

Programs that are compiled, linked and started on the BS2000 command level as indicated
above are executed in a task and thus have no parent process.

The C programming interface Selecting functionality

U23711-J-Z125-5-76 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.3.2 BS2000 functionality

Users who wish to use only BS2000 functionality in a program must compile and link such
programs with only the library $.SYSLNK.CRTE.
The environment variable PROGRAM-ENVIRONMENT='SHELL' must not be set.
If you are using only BS2000 functionality, it is best to work with the manual "C Library
Functions" [6].

Only a part of the library is supported when BS2000 functionality is selected. The following
restrictions apply:

– All XPG4 Version 2-conformant functions that were supported by the previous
(BS2000) C library (marked with xx in the "XPG4" column in the table on page 51ff.) are
fully supported.

– All functions that are identified as an extension with BS2000 (marked with an x in the
"BS2000" column in the table on page 51 ff.) are also supported.

– Functions marked with xa are supported with BS2000 functionality only.

– Functions that are marked in the table with xd can only access BS2000 files.

2.3.3 Selecting the file system and the system environment

In the case of I/O functions and file access functions which can process both POSIX as well
as BS2000 files, and which require a pathname to be specified as an argument, the file type
to be processed in each case can be specified individually in the source code. Selecting the
file type automatically determines the functionality with which the corresponding function is
called. This is achieved via the environment variable PROGRAM_ENVIRONMENT on one hand,
and by conforming to a specific syntax at the source program level on the other.

2.3.3.1 Associating the I/O streams

If, when linking the program, you specified the POSIX linkage option and POSIX is active,
the standard I/O streams stdin, stdout and stderr are opened via POSIX.
In batch jobs, procedures or if the PROGRAM_ENVIRONMENT environment variable is not set
to SHELL, the standard I/O streams are associated via POSIX with the BS2000 system files
(SYSDTA, SYSOUT), otherwise with the terminal.

Without POSIX, the standard I/O streams stdin, stdout and stderr are directly
associated with the BS2000 system files (SYSDTA, SYSOUT).

Selecting functionality The C programming interface

76 U23711-J-Z125-5-76

2.3.3.2 Setting the PROGRAM_ENVIRONMENT variable

The PROGRAM_ENVIRONMENT environment variable is used in BS2000 to set whether file
names or commands specified in the system() function call which have no BS2000 or
POSIX prefix, are interpreted as BS2000 or POSIX files or commands.

At the BS2000 command level, PROGRAM_ENVIRONMENT is not set. For how to set
environment variables, see section “Environment variables” on page 104.

When the POSIX shell is started, the PROGRAM_ENVIRONMENT variable is automatically set
to the value SHELL, i.e. file names and commands which do not begin with "/BS2/" are
interpreted as POSIX file names or commands.

File names or commands which do not comply with the syntax rules of the relevant
environment are acknowledged with an error message.
If the specified file or command does not exist in the chosen environment, this is also
reported with a message.

Explicit identification of file names as POSIX or BS2000

If the file name begins with a slash (/), it is interpreted as an absolute pathname of a POSIX
file.

If the file name is specified in the format *POSIX(name), it is likewise interpreted as a
POSIX file name.

If the file name begins with /BS2/, the file name which follows the /BS2/ is interpreted as
a BS2000 file name.

Explicit identification of commands

If the command specified in the system() function call begins with /BS2/, the command
which follows the /BS2/ is interpreted as a BS2000 command.

If the command is specified in the format *POSIX(command), it is interpreted as a POSIX
command.

The C programming interface Selecting functionality

U23711-J-Z125-5-76 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.3.3.3 Syntax in the source program

If a POSIX file is to be processed, the absolute pathname of the file must be specified (see
the manual "POSIX Basics" [1]) or the name must be qualified with *POSIX(filename).

If a BS2000 file is to be processed, the file name must be qualified with
/BS2/. As soon as a BS2000 file is accessed, the BS2000 functionality of the corresponding
function applies. Deviations from the XPG4 functionality, if any, are indicated by the marker
BS2000 in the left margin of all relevant descriptions.

Figure 1: Control options at source code level

The system() function can be controlled analogously. The only difference is that a
command for the desired system environment is specified instead of a file name.

POSIX file

BS2000 file

decided at linkage or
at runtime

fopen("/home/appl/file1")
fopen("*POSIX(file1)")

fopen("/BS2/FILE1")

fopen("file1")

Portability The C programming interface

78 U23711-J-Z125-5-76

2.4 Portability

Users that want to write programs that are portable according to the XPG4 Version 2
standard must set the _XOPEN_SOURCE macro as well as the
_XOPEN_SOURCE_EXTENDED macro to the value 1. The identifiers required and
expressly permitted by the XPG4 Version 2 standard are made visible in this manner. These
macros must be set before the first header file is included. This can be done either during
compilation by specifying the corresponding compiler option or in the source code using
#define statements.

XPG4 Version 2 defined identifiers are undefined only if the #undef statement has been
specified (see also section “Functions and macros” on page 33). These #undef state-
ments must be called before the #include statements.

When the _XOPEN_SOURCE macro is set to 500, only the identifiers required or explicitly
allowed by the XPG4 Version 2 standard are made visible. The
_XOPEN_SOURCE_EXTENDED macro is ignored in this case. When the _XOPEN_SOURCE
macro is not set to 500 but the _XOPEN_SOURCE_EXTENDED is set to 1, then only the identi-
fiers contained in the XPG4 Version 2 standard are visible.

_XOPEN_SOURCE_EXTENDED can be defined for the compilation run. Therefore, to support
maximum portability, it is advisable to ensure that _XOPEN_SOURCE_EXTENDED is set to 1 in
applications by using a compiler option or by entering a #define statement before the first
#include statement in the source code.

Applications which use functionality that is marked in this manual as an extension (indicated
by BS2000 or Extension) are not strictly XPG4 Version 2-conformant or ISO C-conformant.

To write programs that are portable according to the XPG5 standard, the _XOPEN_SOURCE
macro must be set to 500. The _XOPEN_SOURCE_EXTENDED macro is ignored in this case.
Not all function groups and header files contained in the XPG5 standard are realized in this
implementation (for example, there is no asynchronous I/O and no real time functions). The
corresponding function test macros are set to -1 in the header file <unistd.h>.

The C programming interface Name space

U23711-J-Z125-5-76 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.5 Name space

All identifiers mentioned in this manual, except environ, are defined in at least one header
file (see also chapter “Functions and variables in alphabetical order” on page 193). If
_XOPEN_SOURCE is defined, every header file may potentially define or declare identifiers
that conflict with those of the application. The set of identifiers visible to an application
consists of the identifiers included by means of the #include statement and the additional
identifiers reserved by the implementation (see also the manuals "C Compiler" [3] and
"C/C++ Compiler" [4]).

Character sets The C programming interface

80 U23711-J-Z125-5-76

2.6 Character sets

In this version, the C runtime library supports the portable character set of XPG4 Version 2
and only EBCDIC as a coded character set.

2.6.1 Portable character set

Every supported locale refers to the portable character set, which consists of 128
characters (7-bit code). The following table shows the symbolic name, the corresponding
glyph, the class name of the POSIX locale, and the ASCII and EBCDIC codes for every
character in the portable character set.

Symbolic name Glyphs Class of
POSIX locale

ASCII EBCDIC

decimal hex hex

<NUL> control 0 00 00

<SOH> control 1 01 01

<STX> control 2 02 02

<ETX> control 3 03 03

<EOT> control 4 04 37

<ENQ> control 5 05 2D

<ACK> control 6 06 2E

<alert> control 7 07 2F

<backspace> control 8 08 16

<tab> control space blank 9 09 05

<newline> control space 10 0A 15

<vertical--tab> control space 11 0B 0B

<form-feed> control space 12 0C 0C

<carriage-return> control space 13 0D 0D

<SO> control 14 0E 0E

<SI> control 15 0F 0F

<DLE> control 16 10 10

<DC1> control 17 11 11

<DC2> control 18 12 12

<DC3> control 19 13 13

<DC4> control 20 14 3C

<NAK> control 21 15 3D

The C programming interface Character sets

U23711-J-Z125-5-76 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

<SYN> control 22 16 32

<ETB> control 23 17 26

<CAN> control 24 18 18

 control 25 19 19

<SUB> control 26 1A 3F

<ESC> control 27 1B 27

<IS4> control 28 1C 1C

<IS3> control 29 1D 1D

<IS2> control 30 1E 1E

<IS1> control 31 1F 1F

<space> space blank 32 20 40

<exclamation-mark> ! punct 33 21 5A

<quotation-mark> " punct 34 22 7F

<number-sign> # punct 35 23 7B

<dollar-sign> $ punct 36 24 5B

<percent-sign> % punct 37 25 6C

<ampersand> & punct 38 26 50

<apostrophe> ' punct 39 27 7D

<left-parenthesis> (punct 40 28 4D

<right-parenthesis>) punct 41 29 5D

<asterisk> * punct 42 2A 5C

<plus-sign> + punct 43 2B 4E

<comma> , punct 44 2C 6B

<hyphen> - punct 45 2D 60

<period> . punct 46 2E 4B

<slash> / punct 47 2F 61

<zero> 0 digit xdigit 48 30 F0

<one> 1 digit xdigit 49 31 F1

<two> 2 digit xdigit 50 32 F2

<three> 3 digit xdigit 51 33 F3

<four> 4 digit xdigit 52 34 F4

<five> 5 digit xdigit 53 35 F5

Symbolic name Glyphs Class of
POSIX locale

ASCII EBCDIC

decimal hex hex

Character sets The C programming interface

82 U23711-J-Z125-5-76

<six> 6 digit xdigit 54 36 F6

<seven> 7 digit xdigit 55 37 F7

<eigth> 8 digit xdigit 56 38 F8

<nine> 9 digit xdigit 57 39 F9

<colon> : punct 58 3A 7A

<semicolon> ; punct 59 3B 5E

<less-than-sign> < punct 60 3C 4C

<equals-sign> = punct 61 3D 7E

<greater-than-sign> > punct 62 3E 6E

<question-mark> ? punct 63 3F 6F

<commercial-at> @ punct 64 40 7C

<A> A upper xdigit 65 41 C1

 B upper xdigit 66 42 C2

<C> C upper xdigit 67 43 C3

<D> D upper xdigit 68 44 C4

<E> E upper xdigit 69 45 C5

<F> F upper xdigit 70 46 C6

<G> G upper 71 47 C7

<H> H upper 72 48 C8

<I> I upper 73 49 C9

<J> J upper 74 4A D1

<K> K upper 75 4B D2

<L> L upper 76 4C D3

<M> M upper 77 4D D4

<N> N upper 78 4E D5

<O> O upper 79 4F D6

<P> P upper 80 50 D7

<Q> Q upper 81 51 D8

<R> R upper 82 52 D9

<S> S upper 83 53 E2

<T> T upper 84 54 E3

<U> U upper 85 55 E4

Symbolic name Glyphs Class of
POSIX locale

ASCII EBCDIC

decimal hex hex

The C programming interface Character sets

U23711-J-Z125-5-76 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

<V> V upper 86 56 E5

<W> W upper 87 57 E6

<X> X upper 88 58 E7

<Y> Y upper 89 59 E8

<Z> Z upper 90 5A E9

<left-square-bracket> [punct 91 5B BB

<backslash> \ punct 92 5C BC

<right-square-bracket>] punct 93 5D BD

<circumflex> ^ punct 94 5E 6A

<underscore>] punct 95 5F 6D

<grave-accent> _ punct 96 60 4A

<a> a lower xdigit 97 61 81

 b lower xdigit 98 62 82

<c> c lower xdigit 99 63 83

<d> d lower xdigit 100 64 84

<e> e lower xdigit 101 65 85

<f> f lower xdigit 102 66 86

<g> g lower 103 67 87

<h> h lower 104 68 88

<i> i lower 105 69 89

<j> j lower 106 6A 91

<k> k lower 107 6B 92

<l> l lower 108 6C 93

<m> m lower 109 6D 94

<n> n lower 110 6E 95

<o> o lower 111 6F 96

<p> p lower 112 70 97

<q> q lower 113 71 98

<r> r lower 114 72 99

<s> s lower 115 73 A2

<t> t lower 116 74 A3

<u> u lower 117 75 A4

Symbolic name Glyphs Class of
POSIX locale

ASCII EBCDIC

decimal hex hex

Character sets The C programming interface

84 U23711-J-Z125-5-76

The EBCDIC character set is an 8-bit codeset and includes a total of 256 characters. The
different variants of the EBCDIC character set can be found in the "XHCS" manual [13] .

The symbolic names of the portable character set are used for the assignment of the coded
character set in a codeset table.

Wide character codes

All wide character codes in a process consist of characters with the same number of bits.
Wide characters must not be confused with multi-byte characters, which may consist of
a variable number of bytes.

Although the C runtime library supports functions that process multi-byte characters, the
actual length of a multi-byte character in this version is only 1 byte (= 8 bits), since only
EBCDIC is available for the wide character codeset.

<v> v lower 118 76 A5

<w> w lower 119 77 A6

<x> x lower 120 78 A7

<y> y lower 121 79 A8

<z> z lower 122 7A A9

<left-curly-bracket> { punct 123 7B FB

<vertical-line> | punct 124 7C 4F

<right-curly-bracket> } punct 125 7D FD

<tilde> ~ punct 126 7E FF

 DEL control 127 7F 07

Symbolic name Glyphs Class of
POSIX locale

ASCII EBCDIC

decimal hex hex

The C programming interface Character sets

U23711-J-Z125-5-76 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.6.2 Character classes

The preceding table shows the assignment of characters from the portable character set to
character classes as defined by the LC_CTYPE category in the POSIX locale. The following
additional character classes which represent supersets or subsets of those classes are also
defined:

Character class Scope

alpha upper + lower

blank subset of space: <blank> and <tab>

cntrl control characters

digit decimal characters

graph alpha + digit + punct + space

lower lowercase letters

print alpha + digit + punct

punct punctuation characters

space white-space characters

tolower mapping of uppercase letters to lowercase

toupper mapping of lowercase letters to uppercase

upper uppercase letters

xdigit set of characters for hexadecimal representation:
digit + A-F + a-f

Locale The C programming interface

86 U23711-J-Z125-5-76

2.7 Locale

The locale is a subset of the settings for the runtime environment. It affects the behavior of
C programs with respect to country-specific conventions, norms and languages. The locale
consists of one or more categories. The following categories are supported in XPG4
Version 2-conformant environments:

LC_ALL Determines all values of the current locale.

LC_COLLATE Determines the collating sequence of characters. Each character is defined
in relation to another by means of a weight. This affects the behavior of the
strcoll() and strxfrm().

The name of the corresponding definition file in the POSIX subsystem is
/usr/lib/locale/locale/LC_COLLATE.

The corresponding table in BS2000 is named COLL/uscol.

LC_CTYPE Determines character classification (i.e. the assignment of characters to
character classes), case conversion (i.e. the association between
uppercase and lowercase letters) and other character attributes.

The name of the corresponding definition file in the POSIX subsystem is
/usr/lib/locale/locale/LC_CTYPE.

There are 3 tables in BS2000 for all EBCDIC characters:

The classification table TYPE/ustyp assigns each EBCDIC character to a
particular character class. The classes are represented by the following
values:

The C values are defined in the header file ctype.h.

The tables for converting uppercase letters to lowercase (LOWER/uslow)
and lowercase letters to uppercase (UPPER/usupp) indicate the character
obtained from the conversion of each character from X’00’ to X’FF’.

Character class Assembler code C code

Uppercase letter (upper) X'01' _U

Lowercase letter (lower) X'02' _L

Decimal digit (digit) X'04' _N

White space (space) X'08' _S

Punctuation character
(punct)

X'10' _P

Control character (cntrl) X'20' _C

Hexadecimal character
(xdigit)

X'40' _X

The C programming interface Locale

U23711-J-Z125-5-76 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

These tables are used by the macros toupper() and tolower() for
converting to uppercase and lowercase letters, respectively. The table
needs to be filled only for characters which are classified as uppercase or
lowercase letters in the classification table.

LC_MESSAGES Determines the format of messages.

The name of the corresponding definition file in the POSIX subsystem is
/usr/lib/locale/locale/LC_MESSAGES.

This category is not supported by the BS2000 functionality.

LC_MONETARY Determines the formats of monetary values.

The name of the corresponding definition file in the POSIX subsystem is
/usr/lib/locale/locale/LC_MONETARY.

LC_NUMERIC Determines the representation of non-monetary numeric values for
formatted I/O (fprintf(), fscanf()), the conversion of strings (atof(),
strtod()), and the values returned by localeconv().

The name of the corresponding definition file in the POSIX subsystem is
/usr/lib/locale/locale/LC_NUMERIC.

LC_TIME Determines the date and time representation for calls to strfmon().

The name of the corresponding definition file in the POSIX subsystem is
/usr/lib/locale/locale/LC_TIME.

These locale categories are also defined as environment variables.

The behavior of XPG4 Version 2-conformant commands (e.g. the POSIX commands) is
affected by the current locale (see section “Environment variables” on page 104 and the
manual "POSIX Commands" [2]). The C library functions setlocale() and
localeconv() may be used to change the current locale of a C program at runtime.
The following C library functions are directly affected by the current locale:

The C runtime library provides some predefined locales (see the section “Predefined
locales” on page 88). However, users may also define their own locales (see section “User-
specific locales” on page 103).

atof() isalnum() isalpha() isascii() iscntrl()

isdigit() isgraph() islower() isprint() ispunct()

isspace() isupper() isxdigit() localeconv() setlocale()

strcoll() strftime() strtod() strxfrm() tolower()

toupper() wctomb() wcstombs()

Locale The C programming interface

88 U23711-J-Z125-5-76

CRTE provides the predefined locales De.EDF04F and De.EDF04F@euro to support the
Euro. These two locales differ only by the category LC_MONETARY that represents the
German mark (DM) for the locale De.EDF04F and the Euro for the locale De.EDF04F@euro.

When the value of a locale environment variable begins with a slash (/), it is interpreted as
the pathname of the locale definition.

Applications can change the current locale, i.e. set some other predefined locale by
invoking setlocale() with the appropriate value. If the function is called with an empty
string for locale, then the value of the environment variable that was specified using the
category argument is evaluated:

setlocale(LC_ALL, "");

In this case all categories are determined by the corresponding environment variables. If
the environment variable is unset or is set to an empty string, the environment is evaluated
(see also section “Environment variables” on page 104).

2.7.1 Predefined locales

The following locales are predefined in the C runtime library:

The predefined locales are added to a program module at link time. A call to setlocale()
sets an access pointer to the specified locale and thus makes it the current locale for the
process.

2.7.1.1 Locale files

The predefined locales for XPG4 Version 2 functionality are stored in the POSIX file system
in the directory /usr/lib/locale in compliance with the following convention:

/usr/lib/locale/locale/category.

Locale for BS2000 functionality for XPG4 Version 2 functionality

POSIX x x

C x x

GERMANY x -

V1CTYPE x -

De.EDF04F x

De.EDF04F@euro x

V2CTYPE x -

The C programming interface Locale

U23711-J-Z125-5-76 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.7.1.2 POSIX or C locale

All XPG4 Version 2-conformant systems support the POSIX locale, which is also known as
the
C locale. The POSIX locale is the default locale for C programs at startup if setlocale()
is not called.

The POSIX locales C, De, De.EDF04F, De_DE.EDF04, De.EDF04@euro, De_DE.EDF04@EU,
En_US.EDF04 and POSIX exist. The categories are defined as follows for the POSIX
locales:

LC_COLLATE The collation sequence for the characters specified in the table on page 80
corresponds to the order given in the table. This affects only the functions
strcoll() and strxfrm().

LC_CTYPE The classification corresponds to the EBCDIC definition of the individual
characters (EBCDIC.DF.03-IRV, international version).

LC_NUMERIC The components defined in localeconv() have the following values:

LC_MESSAGES The constants defined in langinfo.h have the following values:

LC_MONETARY The components defined in localeconv() have the following values:

localeconv component Value of the POSIX locale

decimal_point "<period>"

thousands_sep ""

grouping ""

langinfo constant Value

YESEXPR "^[yY]"

NOEXPR "^[nN]"

YESSTR
Will no longer be supported by the
X/Open-Standard in future.

"yes"

NOSTR
Will no longer be supported by the
X/Open-Standard in future.

"no"

localeconv component Value

int_curr_symbol ""

currency_symbol ""

mon_decimal_point ""

mon_thousands_sep ""

mon_grouping ""

Locale The C programming interface

90 U23711-J-Z125-5-76

LC_TIME The constants defined in langinfo.h have the following values:

positive_sign ""

negative_sign ""

int_frac_digits {CHAR_MAX}

frac_digits {CHAR_MAX}

p_cs_precedes {CHAR_MAX}

n_cs_precedes {CHAR_MAX}

p_sep_by_space {CHAR_MAX}

n_sep_by_space {CHAR_MAX}

p_sign_pos {CHAR_MAX}

n_sign_pos {CHAR_MAX}

langinfo constant Value

D_T_FMT "%a %b %e %H:%M:%S %Y"

D_FMT "%m/%d/%y"

T_FMT "%H:%M:%S"

AM_STR "AM"

PM_STR "PM"

T_FMT_AMPM "%I:%M:%S %p"

DAY_1 "Sunday"

DAY_2 "Monday"

DAY_3 "Tuesday"

DAY_4 "Wednesday"

DAY_5 "Thursday"

DAY_6 "Friday"

DAY_7 "Saturday"

ABDAY_1 "Sun"

ABDAY_2 "Mon"

ABDAY_3 "Tue"

ABDAY_4 "Wed"

ABDAY_5 "Thu"

ABDAY_6 "Fri"

ABDAY_7 "Sat"

MON_1 "January"

localeconv component Value

The C programming interface Locale

U23711-J-Z125-5-76 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.7.1.3 V1CTYPE

This locale is identified as "V1CTYPE or LC_C_V1CTYPE. It matches for the most part the
"C" locale. Only the following differences arise in the classification of characters (category
LC_CTYPE):

In the "V1CTYPE" locale, the characters X’8B‘, X’8C‘ and X’8D‘ are in the character class
lower; X’AB‘, X’AC‘ and X’AD‘ are in the character class upper and X’C0‘ and X‘D0‘
are in the character class punct. In the "C" locale, all of these characters belong to the
character class cntrl (i.e. control characters).

MON_2 "February"

MON_3 "March"

MON_4 "April"

MON_5 "May"

MON_6 "June"

MON_7 "July"

MON_8 "August"

MON_9 "September"

MON_10 "October"

MON_11 "November"

MON_12 "December"

ABMON_1 "Jan"

ABMON_2 "Feb"

ABMON_3 "Mar"

ABMON_4 "Apr"

ABMON_5 "May"

ABMON_6 "Jun"

ABMON_7 "Jul"

ABMON_8 "Aug"

ABMON_9 "Sep"

ABMON_10 "Oct"

ABMON_11 "Nov"

ABMON_12 "Dec"

langinfo constant Value

Locale The C programming interface

92 U23711-J-Z125-5-76

2.7.1.4 V2CTYPE

This locale is identified as "V2CTYPE" or LC_C_V2CTYPE. It matches for the most part the
"C" locale. However, there is the following difference in the collation sequence of
characters (category LC_COLLATE): the collating order corresponds to that of the EBCDIC
character set.

2.7.1.5 GERMANY

A country-specific locale is available for German-speaking regions. This locale is identified
as "GERMANY" or LC_C_GERMANY. The following values, which deviate from those of the
POSIX locale, apply:

LC_CTYPE The characters ä (X’FB’), ö (X’4F’), ü (X’FD’), and ß (X’FF’) belong
to the character class lower.
The characters Ä (X’BB’), Ö (X’BC’) and Ü (X’BD’) belong to the
character class upper.

When lowercase characters are converted to uppercase (toupper(),
strupper()), the character ß (X’FF’) remains unchanged.

LC_MONETARY International currency symbol (int_curr_symbol): "EUR"

Local currency symbol (currency_symbol): "€"

Radix character (mon_decimal_point): ","

LC_TIME German is used for the days of the week and the months of the year.

The format for the date corresponds to the usual conventions for
German-speaking countries:

weekday name, day of month. name of month year

Example:

Donnerstag, 25. Juli 1991

The C programming interface Locale

U23711-J-Z125-5-76 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.7.1.6 De.EDF04F and De.EDF04F@euro

These two locales support the processing of files and text that contain the Euro symbol.

The underlying conversion tables were extended to be compatible with 8 bit code in both
locales. The conversion tables are based on the ISO 8859-15 ASCII code and the EDF04F
EBCDIC code.
The two locales differ only by the category LC_MONETARY.

LC_CTYPE
The base class that each character belongs to can be determined from the following
table:

Symbolic names Glyphs Class(es) ASCII EBCDIC

<NUL> control 00 00

<SOH> control 01 01

<STX> control 02 02

<ETX> control 03 03

<EOT> control 04 37

<ENQ> control 05 2D

<ACK> control 06 2E

<alert> control 07 2F

<backspace> control 08 16

<tab> control space blank 09 05

<newline> control space 0A 15

<vertical-tab> control space 0B 0B

<form-feed> control space 0C 0C

<carriage-return> control space 0D 0D

<SO> control 0E 0E

<SI> control 0F 0F

<DLE> control 10 10

<DC1> control 11 11

<DC2> control 12 12

<DC3> control 13 13

<DC4> control 14 3C

<NAK> control 15 3D

<SYN> control 16 32

<ETB> control 17 26

<CAN> control 18 18

Locale The C programming interface

94 U23711-J-Z125-5-76

 control 19 19

<SUB> control 1A 3F

<ESC> control 1B 27

<IS4> control 1C 1C

<IS3> control 1D 1D

<IS2> control 1E 1E

<IS1> control 1F 1F

<space> space blank 20 40

<exclamation-mark> ! punct 21 5A

<quotation-mark> “ punct 22 7F

<number-sign> # punct 23 7B

<dollar-sign> $ punct 24 5B

<percent-sign> % punct 25 6C

<ampersand> & punct 26 50

<apostrophe> ’ punct 27 7D

<left-parenthesis> (punct 28 4D

<right-parenthesis>) punct 29 5D

<asterisk> * punct 2A 5C

<plus-sign> + punct 2B 4E

<comma> , punct 2C 6B

<hyphen> - punct 2D 60

<period> . punct 2E 4B

<slash> / punct 2F 61

<zero> 0 digit xdigit 30 F0

<one> 1 digit xdigit 31 F1

<two> 2 digit xdigit 32 F2

<three> 3 digit xdigit 33 F3

<four> 4 digit xdigit 34 F4

<five> 5 digit xdigit 35 F5

<six> 6 digit xdigit 36 F6

<seven> 7 digit xdigit 37 F7

<eight> 8 digit xdigit 38 F8

<nine> 9 digit xdigit 39 F9

Symbolic names Glyphs Class(es) ASCII EBCDIC

The C programming interface Locale

U23711-J-Z125-5-76 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

colon : punct 3A 7A

<semicolon> ; punct 3B 5E

<less-than-sign> < punct 3C 4C

<equals-sign> = punct 3D 7E

<greater-than-sign> > punct 3E 6E

<question-mark> ? punct 3F 6F

<commercial-at> @ punct 40 7C

<A> A upper xdigit 41 C1

 B upper xdigit 42 C2

<C> C upper xdigit 43 C3

<D> D upper xdigit 44 C4

<E> E upper xdigit 45 C5

<F> F upper xdigit 46 C6

<G> G upper 47 C7

<H> H upper 48 C8

<I> I upper 49 C9

<J> J upper 4A D1

<K> K upper 4B D2

<L> L upper 4C D3

<M> M upper 4D D4

<N> N upper 4E D5

<O> O upper 4F D6

<P> P upper 50 D7

<Q> Q upper 51 D8

<R> R upper 52 D9

<S> S upper 53 E2

<T> T upper 54 E3

<U> U upper 55 E4

<V> V upper 56 E5

<W> W upper 57 E6

<X> X upper 58 E7

<Y> Y upper 59 E8

<Z> Z upper 5A E9

Symbolic names Glyphs Class(es) ASCII EBCDIC

Locale The C programming interface

96 U23711-J-Z125-5-76

<left-sqare-bracket> [punct 5B BB

<backslash> \ punct 5C BC

<right-sqare-bracket>] punct 5D BD

<circumflex> ^ punct 5E 6A

<underscore> _ punct 5F 6D

<grave-accent> ` punct 60 4A

<a> a lower xdigit 61 81

 b lower xdigit 62 82

<c> c lower xdigit 63 83

<d> d lower xdigit 64 84

<e> e lower xdigit 65 85

<f> f lower xdigit 66 86

<g> g lower 67 87

<h> h lower 68 88

<i> i lower 69 89

<j> j lower 6A 91

<k> k lower 6B 92

<l> l lower 6C 93

<m> m lower 6D 94

<n> n lower 6E 95

<o> o lower 6F 96

<p> p lower 70 97

<q> q lower 71 98

<r> r lower 72 99

<s> s lower 73 A2

<t> t lower 74 A3

<u> u lower 75 A4

<v> v lower 76 A5

<w> w lower 77 A6

<x> x lower 78 A7

<y> y lower 79 A8

<z> z lower 7A A9

<left-curly-bracket> { punct 7B FB

Symbolic names Glyphs Class(es) ASCII EBCDIC

The C programming interface Locale

U23711-J-Z125-5-76 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

<vertical-line> | punct 7C 4F

<right-curly-bracket> } punct 7D FD

<tilde> ~ punct 7E FF

 DEL control 7F 07

<sc00> 80 20

<sc01> 81 21

<sc02> 82 22

<sc03> 83 23

<sc04> 84 24

<sc05> control 85 25

<sc06> 86 06

<sc07> 87 17

<sc08> 88 28

<sc09> 89 29

<sc0a> 8A 2A

<sc0b> 8B 2B

<sc0c> 8C 2C

<sc0d> 8D 09

<sc0e> 8E 0A

<sc0f> 8F 1B

<sc10> 90 30

<sc11> 91 31

<sc12> 92 1A

<sc13> 93 33

<sc14> 94 34

<sc15> 95 35

<sc16> 96 36

<sc17> 97 08

<sc18> 98 38

<sc19> 99 39

<sc1a> 9A 3A

<sc1b> 9B 3B

<sc1c> 9C 04

Symbolic names Glyphs Class(es) ASCII EBCDIC

Locale The C programming interface

98 U23711-J-Z125-5-76

<sc1d> 9D 14

<sc1e> 9E 3E

<sc1f> 9F 5F

<nbsp> NBSP A0 41

<revexcl> ¡ punct A1 AA

<cent> ¢ punct A2 B0

<pound> £ punct A3 B1

<euro> € punct A4 9F

<yen> ¥ punct A5 B2

<CARON-S> Š upper A6 D0

<section> § punct A7 B5

<caron-s> š lower A8 79

<copyright> © punct A9 B4

<fem-ord> ª punct AA 9A

<ang_q_l> « punct AB 8A

<not> ¬ punct AC BA

<shy> SHY punct AD CA

<register> ® punct AE AF

<macron> ¯ punct AF A1

<degree> ° punct B0 90

<plu-min> ± punct B1 8F

<sup-two> ² punct B2 EA

<sup-three> ³ punct B3 FA

<CARON-Z> upper B4 BE

<micro> µ punct B5 A0

<pilcrow> ¶ punct B6 B6

<mid-dot> · punct B7 B3

<caron-z> lower B8 9D

<sup-one> ¹ punct B9 DA

<mas-ord> º punct BA 9B

<ang-q-r> » punct BB 8B

<OE> Œ upper BC B7

<oe> œ lower BD B8

Symbolic names Glyphs Class(es) ASCII EBCDIC

Z

z

The C programming interface Locale

U23711-J-Z125-5-76 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

<DIA-Y> Ÿ upper BE B9

<revquest> ¿ punct BF AB

<GRAVE-A> À upper C0 64

<ACUTE-A> Á upper C1 65

<CIRC-A> Â upper C2 62

<TILDE-A> Ã upper C3 66

<DIA-A> Ä upper C4 63

<RING-A> Å upper C5 67

<AE> Æ upper C6 9E

<CEDIL-C> Ç upper C7 68

<GRAVE-E> È upper C8 74

<ACUTE-E> É upper C9 71

<CIRC-E> Ê upper CA 72

<DIA-E> Ë upper CB 73

<GRAVE-I> Ì upper CC 78

<ACUTE-I> Í upper CD 75

<CIRC-I> Î upper CE 76

<DIA-I> Ï upper CF 77

<ETH> Ð upper D0 AC

<TILDE_N> Ñ upper D1 69

<GRAVE-O> Ò upper D2 ED

<ACUTE-O> Ó upper D3 EE

<CIRC-O> Ô upper D4 EB

<TILDE_O> Õ upper D5 EF

<DIA-O> Ö upper D6 EC

<multiply> × punct D7 BF

<SLASH-O> Ø upper D8 80

<GRAVE-U> Ù upper D9 E0

<ACUTE-U> Ú upper DA FE

<CIRC-U> Û upper DB DD

<DIA-U> Ü upper DC FC

<ACUTE-Y> Ý upper DD AD

<THORN> Þ upper DE 8E

Symbolic names Glyphs Class(es) ASCII EBCDIC

Locale The C programming interface

100 U23711-J-Z125-5-76

<sharp-s> ß lower DF 59

<grave-a> à lower E0 44

<acute-a> á lower E1 45

<circ-a> â lower E2 42

<tilde-a> ã lower E3 46

<dia-a> ä lower E4 43

<ring-a> å lower E5 47

<ae> æ lower E6 9C

<cedil-c> ç lower E7 48

<grave-e> è lower E8 54

<acute-e> é lower E9 51

<circ-e> ê lower EA 52

<dia-e> ë lower EB 53

<grave-i> ì lower EC 58

<acute-i> í lower ED 55

<circ-i> î lower EE 56

<dia-i> ï lower EF 57

<eth> ð lower F0 8C

<tilde-n> ñ lower F1 49

<grave-o> ò lower F2 CD

<acute-o> ó lower F3 CE

<circ-o> ô lower F4 CB

<tilde-o> õ lower F5 CF

<dia-o> ö lower F6 CC

<divide> ÷ punct F7 E1

<slash-o> ø lower F8 70

<grave-u> ù lower F9 C0

<acute-u> ú lower FA DE

<circ-u> û lower FB DB

<dia-u> ü lower FC DC

<acute-y> ý lower FD 8D

<thorn> þ lower FE AE

<dia-y> ÿ lower FF DF

Symbolic names Glyphs Class(es) ASCII EBCDIC

The C programming interface Locale

U23711-J-Z125-5-76 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

The other classes are defined as follows:

alpha The character belongs to the upper or lower class.

alnum The character belongs to the alpha or digit class.

print The character belongs to the alnum or punct class or the character
is the <space> character.

graph The character belongs to the alnum or punct class.

The toupper and tolower mappings behave as usual:
<XYZ> becomes <xyz> and <xyz> becomes <XYZ>.

LC_COLLATE
Only the characters in the 7-bit code as well as the German umlaut characters (ä,ö, etc.)
are taken into account for the sort order. This is the same as under UNIX. The umlauts
are considered to be equal to their base vowel; The umlauts follow their corresponding
base vowels in their secondary weighting.
The ’ß’ character has the ASCII value X’DF’ (EBCDIC: X’59’).
Otherwise the order is the same as the order in the ASCII character set.

LC_NUMERIC
decimal_point: ","
thousend_sep: "."
grouping: 0;0

LC_TIME
German is used for the days of the week and the months of the year.
The abbreviations for the days of the week are: So, Mo, Di, Mi, Do, Fr, Sa.
The abbreviations for the months of the year are: Jan, Feb, Mär, Apr, Mai, Jun, Jul, Aug,
Sep, Okt, Nov, Dez.

am_pm: "AM", "PM"

Time and date representation (%c) d_t_fmt: "%a %d.%h.%Y, %T, %Z"

Date representation (%x) d_fmt: "%d.%m.%y"

Time representation (%X) t_fmt: "%T %Z"

12 hour clock time representation (%X) t_fmt_ampm: "%T: %M:%S %p”

time_fmt: "%H.%M:%S"

day_fmt: "&d.%m"

full_day: "%a %e.%b"

ar_date: "%b %d %H:%M %Y"

last_date: "%a %e.%b %H:%M"

Locale The C programming interface

102 U23711-J-Z125-5-76

ls_date: "%h %e %H:%M"

ls_date2: "%h %e %Y"

ps_date: "%d.%b"

su_date: "%d.%m %H:%M"

tar_date: "%e.%b %H:%M %Y"

diff_date: "%a %e.%b.%Y, %T"

LC_MESSAGES
yesstring "ja"
nostr "nein"
quitstr "abbrechen"
noexpr "^[nN]"
yesexpr "^[jJ]"
quitexpr "^[aA]"

LC_MONETARY

Element De.EDF04F De.EDF04F@euro

int_curr_symbol "DEM" "EUR"

currency_symbol "DM" "€"

mon_decimal_point "," ","

mon_thousands_sep "." "."

mon_grouping 3;3 3;3

positive_sign "" ""

negativ_sign "-" "-"

int_frac_digits 2 2

frac_digits 2 2

p_cs_precedes 0 0

p_sep_by_space 1 1

n_cs_precedes 0 0

n_sep_by_space 1 1

p_sign_posn 1 1

n_sign_posn 1 1

The C programming interface Locale

U23711-J-Z125-5-76 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.7.2 User-specific locales

Users can also define their own locales.

The CRTE library $.SYSLNK.CRTE provides two source program elements (type S) with the
names USLOCC and USLOCA for this purpose. USLOCC is a C source program; USLOCA is an
Assembler source program. The two source programs are equally effective at generating
user-specific locales.

The source programs define the data for the individual locale categories and are preset with
the data of the C locale (see section “POSIX or C locale” on page 89). This data can be
changed to the desired values.

The following changes must also be made in the source programs:

– An address table with the name USERLOC is defined in the source programs. This name
must be changed to one selected by the user. The name must be a valid entry name.

– This can be done in the C source program by simply changing the name USERLOC with
a #define statement. In the Assembler source program, the name USERLOC must be
modified in the definition line of the table and in the ENTRY statement.

– The name modified by the user can then be used in a call to setlocale() as the locale
argument to identify the user-specific locale.

The modified source programs can be compiled or assembled with the C/C++ compiler or
with the Assembler (also ASSGEN). If the module is stored in a PLAM library other than
$.SYSLNK.CRTE, this library must be assigned with the following ADD-FILE-LINK
command before the C program is started:

/ADD-FILE-LINK LINK-NAME=IC@LOCAL,FILE-NAME=library

Environment variables The C programming interface

104 U23711-J-Z125-5-76

2.8 Environment variables

The environment variables (also called shell variables) described in this section affect the
operation of commands, functions and applications. There are other environment variables
that are of interest only to specific commands (refer to the keyword "shell variables" in the
manual "POSIX Commands" [2]). When a process begins execution, an array of strings
called the environment is made available by the exec functions (see exec). The following
external variable points to this vector:

extern char **environ;

In accordance with the XPG4 Version 2 standard, these strings have the form "name=value",
e.g. "PATH=/sbin:/usr/sbin".

Applications may also define their own environment variables, provided the naming
conventions are complied with (see manual "POSIX Commands" [2]).

Supplying the environment variables with default values from BS2000

You can supply environment variables with default values from within BS2000 by defining
an SDF-P variable with the name SYSPOSIX as a structure (see the manual "SDF-P" [9]).
When the value of the variable SYSPOSIX.name is value, the string "name=value" is written to
the global data area of the program; however, only variables of the type ’string’ are taken
into account.

The SDF-P variable structure can be declared via the Scope parameter as a procedure or
a task. Task variables are always found; procedural variables may potentially overwrite the
task variables.

Only uppercase letters may be used for variable names at the BS2000 command level.
Hyphens in the names of SDF-P variables are converted to underscores, e.g.
SYSPOSIX.LC-NAME would be converted to the string "LC_NAME=...".

Environment variables for internationalization

An internationalized program makes no fixed assumptions about its runtime environment.
It determines its specific runtime environment from environment variables.

For example, the environment for displaying outputs is determined from the environment
variables LANG and LC_xxx, while the functions for processing message catalogs interpret
the NLSPATH environment variable.

The C programming interface Environment variables

U23711-J-Z125-5-76 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

The following environment variables are supported for internationalization:

LANG Determines the locale category for native language, local customs and
coded character set in the absence of LC_ALL and other environment
variables. LANG can be used by applications to determine the language and
format for error messages, collating sequences, date formats, and so forth.
The value of this environment variable has the form:

LANG=language[_territory[.codeset]]

For example, a user from Austria who speaks German and is using a
terminal with the ISO 8859/1 character set would set the LANG variable to
the following value:

LANG=De_A.88591

This enables a user to find the appropriate message catalogs, assuming
that they exist.

Specific language operations are initialized at runtime by calling the
setlocale() function. Normally, the user's language requirements, as
specified by the setting of LANG, are bound to a program's locale in a subse-
quent invocation of setlocale() as follows:

setlocale (LC_ALL, "");

LC_ALL On X/Open systems, this form of a setlocale() call is defined to initialize
the program locale from the associated environment variables. LC_ALL
addresses the program's entire locale, and LANG provides the necessary
defaults if any of the category-specific variables are not set or are set to the
empty string.

LC_COLLATE This category specifies the collation sequence to be used. The related infor-
mation is stored in a database that is created by the colltbl() command.
This environment variable affects strcoll() and strxfrm().

LC_CTYPE This category determines character classification, case conversion, and the
size of multi-byte characters. The related information is stored in a database
that is created by the chrtbl() command. The default definition for C corre-
sponds to the 7-bit codeset. This environment variable is used by ctype(),
mbchar() and several commands, e.g. cat, ed, ls and vi.

LC_MESSAGES This category determines the language of the message catalog used. For
example, an application may have one message catalog with French
messages and another containing messages in German.

LC_MONETARY Specifies the currency symbols and separators for a specific environment.
This environment variable is used by localeconv().

Environment variables The C programming interface

106 U23711-J-Z125-5-76

LC_NUMERIC This category defines the separators for decimal places and thousands.
The environment variable is used by localeconv(), printf() and
strtod().

LC_TIME This category specifies the date and time formats.

NLSPATH The environment variable NLSPATH returns the location of message
catalogs in the form of a search path as well as the naming conventions
associated with the message catalogs. For example:

NLSPATH=/nlslib/%L/%N.cat:/nlslib/%N/%L

The metacharacter % indicates a substitution field, where %L is replaced by
the current setting of the environment variable LANG (see below) and %N is
replaced by the value of the name parameter passed to catopen(). In the
example above, catopen() looks first in /nlslib/$LANG/name.cat and
then in /nlslib/name/$LANG for the specified message catalog .

NLSPATH is usually set system-wide (e.g. in /etc/profile) and therefore
makes the location and naming conventions for message catalogs trans-
parent to programs as well as the user.

The complete set of metacharacters include the following symbols:

The behavior of the language information function nl_langinfo() is likewise affected by
the values set for these environment variables (see also langinfo.h).

LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC and LC_TIME are defined to accept
an additional field @modifier, which allows the user to select a specific instance of local-
ization data within a single category (for example, for selecting the dictionary as opposed
to the character ordering of data). The syntax for these environment variables is thus
defined as:

[language[_territory[.codeset]][@modifier]]

Meta-
character

Meaning

%N Value of the name parameter passed to catopen()

%L Value of LANG

%l Value of the language element from LANG

%t Value of the territory element from LANG

%c Value of the codeset element from LANG

%% A single % character

The C programming interface File processing

U23711-J-Z125-5-76 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

For example, if a user wants to interact with the system in French, but needs to sort German
text files, LANG and LC_COLLATE could be defined as:

LANG=Fr_FR
LC_COLLATE=De_DE

This could be extended to select dictionary collation (for example) by use of the @modifier
field:

LC_COLLATE=De_DE@dict

These values are linked to a program´s locale at runtime by calling setlocale().

2.9 File processing

When the C library functions are used with POSIX functionality, it is basically possible to
access both POSIX or UFS files and BS2000 files. The compiler environment also provides
explicit 64-bit functions and types in addition to the 32-bit functions and types. The 64-bit
interface needs to be used to be able to process files > 2 GB. See also the section “Scope
of the supported C library” on page 49.

In the following section, the file processing functions are classified into different groups,
depending on whether they can process both POSIX and BS2000 files or only POSIX files.
Functions that process only POSIX files set errno explicitly if a BS2000 file was specified
instead of a POSIX file.

The initial classification into function groups is followed by a description of POSIX file
processing and some special features of BS2000 file processing, which are discussed
further below.

File processing The C programming interface

108 U23711-J-Z125-5-76

Functions for POSIX and BS2000 files

The C library functions listed in the following table can process both POSIX as well as
BS2000 files.

btowc() creat() clearerr() close() creat()

fclose() fcntl() fdopen() feof() ferror()

fflush() fgetc() fgetwc() fgetws() fgetpos()

fgets() fgetwc() fgetws() fileno() fopen()

freopen() fprintf() fputc() fputs() fputwc()

fputws() fread() freopen() fscanf() fseek()

fsetpos() fstat() fstatvfs() ftell() ftruncate()

fwide() fwprinft() fwscanf() fwrite() getc()

getchar() getdents() getrlimit() gets() getw()

getwc() getwchar() iswalnum() iswalpha() iswcntrl()

iswctype() iswdigit() iswgraph() iswlower() iswprint()

iswpunct() iswspace() iswupper() iswxdigit() lockf()

lseek() lstat() mktemp() mmap() open()

perror() printf() putc() putchar() puts()

putw() putwc() putwchar() read() readdir()

remove() rename() rewind() scanf() setbuf()

setrlimit() setvbuf() swscanf() swprintf () stat()

statvfs() tmpfile() tmpnam() towctrans() towlower()

towupper() truncate() ungetc() ungetwc() unlink()

vfprintf() vprintf() vswprintf() vwfprintf() wcrtomb()

wcscat() wcschr() wcscmp() wcscoll() wcscpy()

wcscspn() wcsftime() wcscat() wcslen() wcsncat()

wcsncmp() wcsncpy() wcspbrk() wcsrchr() wcsrtombs()

wcsspn() wcsstr() wctob() wcstod() wcstok()

wcstol() wcstoul() wcsxfrm() wctrans() wctype()

write()

The C programming interface File processing

U23711-J-Z125-5-76 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

Functions that reject BS2000 files

The following functions process only POSIX files (see also the manual "POSIX Basics" [1]).
All of these functions - except sync() - set errno to EINVAL if an attempt is made to access
BS2000 files.

*) sync() has no effect on BS2000 files.
tempnam() sets errno to EINVAL if PROGRAM-ENVIRONMENT is not set.

When standard I/O streams are used, these functions are subject to restrictions if the
streams were associated with the BS2000 SYSFILE management files by the POSIX
subsystem (see section “Streams” on page 110).

Functions that access only POSIX files

The functions in the following list will always access POSIX files, regardless of which
functionality was selected (POSIX or BS2000), since they do not exist as BS2000 functions.

access() chmod() chown() dup()

dup2() faccessat() fchmod() fchmodat()

fchown() fchownat() fcntl() fdopendir()

fpathconf() fstatat() fsync() futimesat()

isatty() link() linkat() mkdirat()

mkfifo() mkfifoat() mknod() mknodat()

openat() pathconf() readlink() readlinkat()

renameat() symlink() symlinkat() sync() *)

sysfs() tcdrain() tcflow() tcflush()

tcgetattr() tcgetpgrp() tcsendbreak() tcsetattr()

tcsetpgrp() tempnam() *) unlinkat() utime()

utimensat()

chdir() chroot() closedir() ftw()

getcwd() getpass() mkdir() opendir()

pclose() pipe() popen() readdir()

rewinddir() rmdir() seekdir() telldir()

ttyname() umount() umask()

File processing The C programming interface

110 U23711-J-Z125-5-76

2.9.1 Streams

A stream is associated with an external file (which may be a physical device)
by opening a file. This is also the case when a new file is created. Creating an existing file
causes its former contents to be discarded if necessary. If a file can support positioning
requests (such as a disk file, as opposed to a terminal), then a file position indicator
associated with the stream is positioned at the start (byte number 0) of the file, unless the
file is opened with append mode, in which case the file position indicator may be initially
positioned at the beginning or end of the file. The file position indicator facilitates subse-
quent reads, writes and positioning requests on the file. All input takes place as if bytes
were read by successive calls to fgetc; all output takes place as if bytes were written by
successive calls to fputc().

2.9.1.1 Buffering streams

When a stream is unbuffered, bytes are passed through to the system immediately.
Otherwise, bytes may be accumulated and transmitted as a block. When a stream is fully
buffered, bytes are transmitted as a block when the buffer is filled. When a stream is line
buffered, bytes are transmitted as a block when a newline byte is encountered.
Furthermore, bytes transmitted as a block when a buffer is filled, when input is requested
on an unbuffered stream, or when input is requested on a line-buffered stream that requires
the transmission of bytes. Support for these characteristics can be initiated and affected via
setbuf() and setvbuf().

2.9.1.2 Disassociating a file from a stream

A file may be disassociated from a controlling stream by closing the file. Output streams
are flushed (i.e. the unwritten buffer contents are transmitted) before the stream is disas-
sociated from the file. The value of a pointer to a FILE object is indeterminate after the
associated file is closed (including the standard streams).

A file may be subsequently reopened by the same or another program, and its contents may
be reclaimed or modified (if the file can be repositioned at its start). If the main function
returns to its original caller, or if the exit function is called, all output streams are flushed
and all open files are closed before program termination. Other methods of program termi-
nation, such as calling abort, may not close all files properly.

The address of the FILE object used to control a stream may be significant; a copy of a
FILE object may not necessarily serve in place of the original.

The C programming interface File processing

U23711-J-Z125-5-76 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.9.1.3 Standard I/O streams

At program startup, three streams are predefined and need not be opened explicitly:

– standard input, for reading conventional input

– standard output, for writing conventional output

– standard error, for writing diagnostic output

When opened, the standard error stream is not fully buffered; the standard input and
standard output streams are fully buffered if and only if the stream can be determined not
to refer to an interactive device. Otherwise, the streams are line buffered.

Depending on which functionality is selected (see section “Selecting the file system and the
system environment” on page 75), standard I/O streams may be associated with POSIX or
BS2000 files.

The following association is created when accessing the DMS:

stdin SYSDTA

stdout, stderr SYSOUT

In this case, behavior is compatible with the earlier versions of the C runtime system (see
also section “BS2000 system files” on page 115).

Functions that only use POSIX functionality cannot be applied on stdin, stdout or
stderr in this case.

When the POSIX file system is accessed, the standard I/O streams are associated with
/dev/tty (see also section “Associating the I/O streams” on page 75)

In batch mode, the association is always with SYSFILE, since no terminal is present.
In child processes, I/O streams that are associated with SYSFILE can no longer be
accessed, even if the association was made via POSIX.

If the association of standard I/O streams is controlled by selecting POSIX functionality with
environment variables, the association can be affected by changing the variables with
putenv(): when a program is initiated with one of the exec functions, the environment
variables are reevaluated at C runtime initialization, and the corresponding associations are
made for the program started with the exec function.

File processing The C programming interface

112 U23711-J-Z125-5-76

2.9.2 Interaction of file descriptors and streams

An open file description may be accessed through a file descriptor that is created by
open() or pipe() or through a stream created by the fopen() or popen() functions. A
file descriptor or a stream is called a handle on (or a link to) the open file description to
which it refers; an open file description may have several handles.

Handles can be created or destroyed by explicit user action, without affecting the underlying
open file description. Some of the functions to create them include fcntl(), dup(),
fdopen(), fileno() and fork(). The handles can be destroyed by at least fclose(),
close() and the exec functions.

A file descriptor that is never used in an operation that could affect the file offset (for
example, read(), write() or lseek()) is not considered a handle, but could become one
(as a consequence of fdopen(), dup() or fork() for example). This exception does not
include the file descriptor underlying a stream, whether created with fopen() or fdopen(),
so long as it is not used directly by the application to affect the file offset. The read() and
write() functions implicitly affect the file offset; lseek() affects it explicitly.

The result of function calls involving only one handle (the active handle) are described in
the reference section. If two or more handles are used, however, and one of them is a
stream, their actions must be coordinated as described in the section “Actions” on
page 113.

A handle which is a stream is considered to be closed when either an fclose() or
freopen() is executed on it (the result of freopen() is a new stream, which cannot be a
handle on the same open file description as its previous value), or when the process owning
that stream terminates with exit() or abort(). A file descriptor is closed by close(),
_exit() or one of the exec functions when FD_CLOEXEC is set on that file descriptor.

For a handle to become the active handle, the actions below must be performed between
the last use of the handle (the current active handle) and the first use of the second handle
(the future active handle). The second handle then becomes the active handle. All activity
by the application affecting the file offset on the first handle must be suspended until it again
becomes the active file handle. If a stream function calls an underlying function that affects
the file offset, the calling stream function will be considered to affect the file offset. The
underlying functions involved are described below.

The handles need not be in the same process for these rules to apply.

The C programming interface File processing

U23711-J-Z125-5-76 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

Actions

If a handle is still open after the actions required below are taken, the application can close
it.

– No action is required for the first handle if one of the following conditions apply:

– The handle is a file descriptor or an unbuffered stream.

– The only further action to be performed on any handle is to close it.

– The handle is a stream which is line buffered, and the last action has the same
effect on the associated file as fputs().

– The handle is a stream open for reading and feof() is TRUE.

– If none of the conditions listed above apply, either an fflush() must occur or the
stream must be closed in the following cases:

– If it is a stream which is open for writing or appending, but not also open for reading.

– If the stream is open with a mode that allows reading, and the underlying open file
description refers to a device that is capable of seeking.

– In all other cases, the result is undefined.

The following applies to the second handle:

If any previous active handle has been used by a function that explicitly changed the file
offset, except as required above for the first handle, the application must perform an
lseek() or fseek() (as appropriate to the type of handle) to an appropriate location.

If the active handle ceases to be accessible before the requirements on the first handle
have been met, the state of the open file description becomes undefined. This could occur
during the execution of functions such as a fork() or _exit().

The exec functions ensure that all streams which are open at the time they are called are
made inaccessible, independent of which streams or file descriptors are available to the
new process image.

If the above rules are followed, regardless of the sequence of handles used, the C runtime
library will ensure that an application, even one consisting of several processes, will always
yield correct results, i.e. that no data will be lost or duplicated when writing, that all data will
written in order (except when the order is changed as requested by seeks), and that all data
will be found when reading sequentially. It does not matter which order the handles are
used. If the rules above are not followed, the result is undefined.

See also the manual "POSIX Basics" [1].

File processing The C programming interface

114 U23711-J-Z125-5-76

2.9.3 Support for file systems in ASCII

File systems located on machines that normally use the ASCII character set instead of
EBCDIC can also be mounted in the POSIX file system. To facilitate this interaction, an
automatic conversion is performed for text files in the C library.

The following conditions must be satisfied for the automatic conversion to occur:

– The file has been opened with fopen(), fdopen() or freopen() and is thus
associated with a stream.

– Mode "b" for binary must not be specified.

– fstat() does not return the BS2000 file system bit.

– The environment variable IO_CONVERSION has the value "YES".

The functions ascii_to_ebcdic() and ebcdic_to_ascii() are provided for cases in
which no automatic conversion occurs.

2.9.4 BS2000 file processing

Besides POSIX files, the following types of files can be processed with the I/O functions of
the Common Runtime Environment CRTE:

– the BS2000 system files SYSDTA, SYSOUT and SYSLST

– cataloged disk files with access methods SAM, ISAM and PAM

– temporary PAM files (INCORE).

In C-BS2000, a distinction is made between binary files and text files on one hand, and
between stream-oriented and record-oriented I/O on the other.

The following table shows the possible combinations in which the various file types can be
processed:

A maximum of 256 files (including stdin, stdout and stderr) may be open at one time.

Text file
Stream I/O

Binary file
Stream I/O

Binary file
Record I/O

System files X

INCORE X

SAM X X X

ISAM X X

PAM X X

The C programming interface File processing

U23711-J-Z125-5-76 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.9.4.1 BS2000 system files

The system files in BS2000 correspond to streams. The functionality of these files is
therefore relevant for any function that is called with BS2000 functionality.

SYSDTA

A C program can use SYSDTA as follows:

– An open function (fopen(), freopen(), open()) is used to open a file with the name
"(SYSDTA)" or "(SYSTERM)" for reading. The file pointer returned by the open
function then serves as an argument for a subsequent input function.

Example

FILE *fp;
fp = fopen("(SYSDTA)", "r");
fgetc(fp);

– For input functions, the file pointer stdin or the file descriptor 0 is specified as the file
argument.

Examples

fgetc(stdin);
read(0, buf, n);

– Input functions that read from stdin by default (e.g. scanf(), getchar(), gets())
are used.

If the input is to be obtained from a cataloged file instead of the terminal, this can be done
by two methods:

1. If a parameter line was requested with PARAMETER-PROMPTING=YES (specified in the
RUNTIME-OPTIONS compiler option), this parameter line can be used to redirect the
standard input (file pointer stdin or file descriptor 0) to a catalog file (see also the C
and C++ User Guides).

The redirection does not affect files that were opened with the name "(SYSDTA)" or
"(SYSTERM)". Input from any file with either of these names will still be expected from
the terminal.

2. By using the command ASSIGN-SYSDTA filename before program startup.

This causes input data to be expected from the assigned file for all input functions.
The following must be observed when using the ASSIGN-SYSDTA command:

– After the program is executed, the internal record pointer will be positioned after the
last record that was read or at the end of the file. If the file is to be read again from
the beginning in a subsequent program run, a new ASSIGN-SYSDTA command must
be issued before the program is started.

File processing The C programming interface

116 U23711-J-Z125-5-76

– If PARAMETER-PROMPTING=YES was selected (in the RUNTIME-OPTIONS option),
the first record of the assigned file is interpreted as a parameter line for the main
function.

Note

If no other end criterion for reading was declared in the C program, the EOF condition
for inputs at the terminal can be forced by pressing the K2 key and entering the EOF and
RESUME-PROGRAM commands.

SYSOUT

A C program can use SYSOUT as follows:

– An open function (fopen(), freopen(), open()) is used to open a file with the name
"(SYSOUT)" or "(SYSTERM)" for writing. The file pointer returned by the open function
then serves as an argument for a subsequent output function.

Example

FILE *fp;
fp = fopen("(SYSTERM)", "w");
fputc(fp);

– For output functions, the file pointer stdout or the file descriptor 1 is specified as the
file argument.

Examples

fputc(stdout);
write(1, buf, n);

– The file pointer stderr or the file descriptor 2 may also be specified as the file
argument for output functions.

– Output functions that write to stdout/stderr by default (e.g. printf(), puts(),
putchar() or perror()) are used.

If a parameter line was requested with PARAMETER-PROMPTING=YES (specified in the
RUNTIME-OPTIONS compiler option), this parameter line can be used to redirect the
standard output (file pointer stdout or file descriptor 1) and the standard error output (file
pointer stderr or file descriptor 2) to a catalog file (see also
C and C++ User Guides).

The redirection does not affect files that were opened with the name "(SYSOUT)" or
"(SYSTERM)".

The C programming interface File processing

U23711-J-Z125-5-76 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

SYSLST

A C program can use SYSLST as follows:

– An open function (fopen(), freopen(), open()) is used to open a file with the name
"(SYSLST)" for writing. The file pointer returned by the open function then serves as
an argument for a subsequent output function.

Example

FILE *fp;
fp = fopen("(SYSLST)", "w");
fprintf(fp, "\t TEXT \n");

– If a parameter line was requested with PARAMETER-PROMPTING=YES (specified in the
RUNTIME-OPTIONS compiler option), this parameter line can be used to redirect the
standard output or standard error to SYSLST (see also the C and C++ User Guides).

The redirection does not affect files that were opened with the name "(SYSOUT)".

By default, SYSLST files are printed out automatically at the end of a task (LOGOFF).

If the data is to be output to a catalog file instead of being automatically printed, SYSLST
must be redirected before the program is executed. This can be done with the command
ASSIGN-SYSLST filename.

2.9.4.2 White-space characters

The control characters for white space and the backspace control character ’\b’ (see table
below) are interpreted by all output functions which write to text files and which receive such
control characters, either as character constants (starting with \) or as numerical EBCDIC
values, as arguments. The decimal and hexadecimal values of the control characters can
be found in the C and C++ User Guides (EBCDIC table).

Key to the following table:

X The control character is converted to its appropriate effect.

blank The control character is written to the file as a text character (EBCDIC value).

Output medium \ n \ t \ f \ v \ r \ b

SAM/ISAM
SYSOUT/SYSTERM
SYSLST

X
X
X

X
X
X

X
X X X X

File processing The C programming interface

118 U23711-J-Z125-5-76

Tab character (\t)
The tab character is converted to the appropriate number of spaces. Tab stops are
set 8 columns apart (1, 9, 17, ...). Spaces are also substituted for the tab character
on input.

In the case of SAM and ISAM files, the tab character is expanded to spaces by
default only in the KERNIGHAN-RITCHIE compilation mode, not in the ANSI mode
(see also fopen() and freopen()).

Line feed (\n)
The newline character is converted to a change of line (change of record). Subse-
quent read functions will then return a newline character for a change of record.

Page feed (\f)
SYSLST: A page feed is executed, and subsequent data is output on a new page.
SYSOUT, SYSTERM for writing: The message
please acknowledge is output on the terminal.

Vertical tab (\v)
An appropriate number of blank lines is output to reach the next line tab position.
These tab positions are 8 lines apart (1, 9, 17, ...).

Carriage return (\r)
The cursor is returned to the start of the current line without a line feed, i.e. subse-
quent data is written to the same line. This enables characters to be underlined, for
example.

Backspace (\b)
The next character is written to the position of the previous character. This allows a
letter to be provided with an accent, for example. Strictly speaking, \b is not a
white-space character (see isspace()) but a control character (see iscntrl()).

The use of \r and \b is only meaningful for printers with overwrite capabilities.

2.9.4.3 Cataloged disk files (SAM, ISAM, PAM)

C programs process cataloged disk files by means of the SAM, ISAM and PAM access
methods.

When an existing file is opened, the access method and other file attributes are taken from
the catalog entry.

When a new file is created, default values of the C runtime library are assigned in accor-
dance with the type of C file (binary file, text file, stream-oriented or record-oriented I/O).
These values can be changed with an ADD-FILE-LINK command before the program is
called. To do this, a link name ("link=linkname") must be specified with the open functions
(open(), creat(), fopen(), freopen()), and this link name must be associated with the
name of the cataloged file in the ADD-FILE-LINK command.

The C programming interface File processing

U23711-J-Z125-5-76 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

Not all possible file attributes can be combined. Combinations that are not required for
performance reasons are not supported by the I/O functions of the C runtime library.

The following sections provide information on

– the default values and possible modifications of the file attributes

– the K and NK block formats

– stream-oriented and record-oriented processing of disk files,

– Last Byte Pointer (LBP).

2.9.4.4 Default values and possible modifications for file attributes

The I/O functions of the C runtime library can process disk files with the file attributes listed
in the following tables. The default attributes inserted by the runtime system when the user
does not specify any options in the ADD-FILE-LINK command or in the open functions are
underlined.

Notes on the following tables

– The maximum number of data bytes in the tables indicates the number of characters
that can be stored by the C program in a record or block (fixed record length) or the
maximum number of characters that can be stored (variable record length).

– The size of the logical block (BLKSIZE) varies according to the type and format of the
volume:
K and NK2 disks: a standard block (2048 bytes) or the integral multiple of a standard
block (max. of 16 standard blocks);
NK4 disks: a minimum of two standard blocks (4096 bytes) or an integral multiple
thereof (2, 4, 6, 8 standard blocks).

– For more information on the block format (BLKCTRL) and the maximum number of data
bytes, see also section “K and NK block formats” on page 122. It explains, in particular,
how overflow blocks can be avoided with NK-ISAM files. Overflow blocks occur if the
full length of a transfer unit is utilized when writing records (RECSIZE = BLKSIZE).

– In C, the 4-byte record length field in files with variable record length (RECFORM=V) is
not counted as part of the record data. The maximum number of data bytes is therefore
reduced by 4 bytes.

File processing The C programming interface

120 U23711-J-Z125-5-76

– For files with RECFORM=U, the register in which the length of a record is passed is
defined by RECSIZE (RECORD-SIZE parameter in the ADD-FILE-LINK command).
This register is predefined (R4) and must not be changed.

1) SAM files are only created in the KR mode (see also the SOURCE-PROPERTIES option
in the manuals "C Compiler" [3] and "C/C++ Compiler" [4]) by default. In ANSI mode,
ISAM files are created by default.

2) The default value for the key position is 5, and the default key length is 8. These values
cannot be modified. The user cannot access the keys; they are generated and man-
aged by the C runtime library: when a new ISAM file is created, the first record is
assigned the key "00010000", and the key is then incremented in steps of 100 for each
further record.

FCB-TYPE REC-
FORM

BLKCTRL BLKSIZE
(STD,n)

RECSIZE (r byte) Maximum number
of data bytes

SAM 1) V PAMKEY 1Î n Î16 4Î r În*2048-4 RECSIZE - 4

DATA(2K) 1Î n Î16 4Î r În*2048-16 RECSIZE - 4

DATA(4K) 2Î n Î16

U PAMKEY 1Î n Î16 BLKSIZE

DATA(2K) 1Î n Î16 BLKSIZE - 16

DATA(4K) 2Î n Î16

ISAM 2) V PAMKEY 1Î n Î16 12Î r În*2048 RECSIZE - 12

DATA(2K) 1Î n Î16 12Î r În*2048 RECSIZE - 12

DATA(4K) 2Î n Î16

FCB-
TYPE

REC-
FORM

BLKCTRL BLKSIZE
(STD,n)

RECSIZE
(r byte)

Maximum number
of data bytes

SAM F PAMKEY 1Î n Î16 1Î r În*2048 RECSIZE

DATA(2K) 1Î n Î16 1Î r În*2048-16 RECSIZE

DATA(4K) 2Î n Î16

V PAMKEY 1Î n Î16 4Î r În*2048-4 RECSIZE - 4

DATA(2K) 1Î n Î16 4Î r În*2048-16 RECSIZE - 4

DATA(4K) 2Î n Î16

U PAMKEY 1Î n Î16 BLKSIZE

DATA(2K) 1Î n Î16 BLKSIZE - 16

DATA(4K) 2Î n Î16

The C programming interface File processing

U23711-J-Z125-5-76 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

1) The default attributes for the key position (for record format V = 5 and for F = 1) and key
length (8) can be modified to a maximum of 32767 and 255, respectively.

Multiple keys can also be defined (DUP-KEY=Y). The default value is DUP-KEY=N.

In contrast to stream-oriented I/O, the ISAM keys are a part to the record data that is
written or read by the C program.

PAM PAMKEY 1Î n Î16 BLKSIZE

DATA(2K) 1Î n Î16 BLKSIZE - 12

DATA(4K) 2Î n Î16

NO(2K) 1Î n Î16 BLKSIZE

NO(4K) 2Î n Î16

SAM V PAMKEY 1Î n Î16 4Î r În*2048-4 RECSIZE - 4

DATA(2K) 1Î n Î16 4Î r În*2048-16 RECSIZE - 4

DATA(4K) 2Î n Î16

F PAMKEY 1Î n Î16 1Î r În*2048 RECSIZE

DATA(2K) 1Î n Î16 1Î r În*2048-16 RECSIZE

DATA(4K) 2Î n Î16

U PAMKEY 1Î n Î16 BLKSIZE

DATA(2K) 1Î n Î16 BLKSIZE - 16

DATA(4K) 2Î n Î16

PAM PAMKEY 1Î n Î16 BLKSIZE

DATA(2K) 1Î n Î16 BLKSIZE - 12

DATA(4K) 2Î n Î16

NO(2K) 1Î n Î16 BLKSIZE

NO(4K) 2Î n Î16

ISAM 1) V PAMKEY 1Î n Î16 5Î r În*2048 RECSIZE - 4

DATA(2K) 1Î n Î16 5Î r În*2048 RECSIZE - 4

DATA(4K) 2Î n Î16

F PAMKEY 1Î n Î16 1Î r În*2048-4 RECSIZE

DATA(2K) 1Î n Î16 1Î r În*2048-4 RECSIZE

DATA(4K) 2Î n Î16

FCB-
TYPE

REC-
FORM

BLKCTRL BLKSIZE
(STD,n)

RECSIZE
(r byte)

Maximum number
of data bytes

File processing The C programming interface

122 U23711-J-Z125-5-76

2.9.4.5 K and NK block formats

BS2000 supports volumes with different formats:

– Key volumes for storing files in which the block control information is maintained in a
separate field ("Pamkey") per 2 Kbyte data block. These files have the block format
PAMKEY.

– Non-Key volumes for files without separate Pamkey fields. The block control infor-
mation is either omitted (block format NO) or stored in the respective data blocks (block
format DATA).

Additionally, NK volumes are distinguished by the minimum size of the transfer unit. NK2
volumes have the old transfer unit (2 Kbytes). NK4 volumes have a transfer unit of 4 Kbytes.

The block format is controlled by the BLOCK-CONTROL-INFO operand in the
ADD-FILE-LINK command.

Please refer to the "DMS Introductory Guide" manual for a detailed description of the
BLOCK-CONTROL-INFO operand, various file and data volume structures and the
conversion from K file format to NK file format.

Please refer to the "DMS Introductory Guide" manual [11] for a detailed description of the
BLOCK-CONTROL-INFO operand, various file and data volume structures and the conversion
from K file format to NK file format.

If the ADD-FILE-LINK command is not used when creating a new file or BLOCK-CONTROL-
INFO=BY-PROGRAM is specified, the default values of the C runtime library are used. These
values depend on the disk type, on the class 2 option that may be specified by the system
administrator, and on the access method:

CLASS2-OPTION BLKCTRL=NONKEY

File organization not specified specified

K disk NK disk K disk NK disk

SAM PAMKEY DATA DATA DATA

ISAM PAMKEY DATA DATA DATA

PAM PAMKEY NO NO NO

The C programming interface File processing

U23711-J-Z125-5-76 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.9.4.6 K and NK-ISAM files

ISAM files in K format that use of the maximum record length become longer in NK format
than the usable area of the data block. They can be processed in NK format because the
DMS creates extensions to the data blocks known as overflow blocks.

The creation of overflow blocks presents the following problems:

– The overflow blocks increase space requirements on the disk and hence the number of
I/O operations during file processing.

– The ISAM key must not be in an overflow block under any circumstances.

Overflow blocks can be avoided by ensuring that the longest record in the file is no longer
than the area of a logical block that may be used for NK-ISAM files.

Usable area for records (NK-ISAM files)

The following table can be used to calculate the amount of space available per logical block
for records in ISAM files..

Explanation of the formulas

For NK-ISAM files, each PAM page of a logical block contains 16 bytes of administrative
information. The logical block also contains a further 12 bytes of administrative information
and a record pointer with a length of 2 bytes for each record.
For RECORD-FORMAT=FIXED there is a 4-byte record length field for each record, but this is
not included when calculating the record length. Consequently, 4 bytes must be deducted
per record in such cases.

File format RECORD-FORMAT Maximum usable area

K-ISAM VARIABLE BUF-LEN

FIXED BUF-LEN - (s*4)
where s = number of records per logical block

NK-ISAM VARIABLE BUF-LEN - (n*16) - 12 - (s*2)
(rounded down to the next number divisible by 4)

where n = blocking factor
s = number of records per logical block

FIXED BUF-LEN - (n*16) - 12 - (s*2) - (s*4)
(rounded down to the next number divisible by 4)

where n = blocking factor
s = number of records per logical block

File processing The C programming interface

124 U23711-J-Z125-5-76

Example: Maximum record length of an NK-ISAM file (fixed record length)

File definition:

/ADD-FILE-LINK ...,RECORD-FORMAT=FIXED,BUFFER-LENGTH=STD(SIZE=2),
BLOCK-CONTROL-INFO=WITHIN-DATA-BLOCK

maximum record length (according to the formula):

4096 - (2*16) - 12 - 1*2 - 1*4 = 4046, rounded down to the next
number divisible by 4: 4044 (bytes).

2.9.4.7 Support for the DIV access method

The access method DIV (DATA IN VIRTUAL) is specially suitable for processing the
unstructured streams that are frequently encountered in C programs (possibly ported from
UNIX).

DIV can be used to process NK-PAM files which are located on public disks and contain no
administrative information (BLOCK-CONTROL-INFO=NO).

Repeated access to data that has already been read into a "window" by a preceding access
operation can lead to a substantial improvement in performance.

Detailed background information on the DIV access method can be found in the manual
"DMS Assembler Interface".

The C runtime library always uses the DIV access method to perform stream-oriented I/O
on NK-PAM files without administrative information. The DIV access method cannot be
used with NK-PAM files that were opened for record-oriented I/O.

2.9.4.8 Notes on stream-oriented I/O

Binary files (SAM)

Fixed record length (F) is the default. When a file is closed, the last record is padded with
binary zeros (if necessary). If the same file is opened again and data is written at the end
of the file, a new record is always started. In other words, the new data is written after the
binary zeros.

If a variable record length is used (V or U), new data can be written on a byte-specific basis.
The variable record length does, however, result in a loss of performance during seek
operations (with fseek() and ftell() for example).

The C programming interface File processing

U23711-J-Z125-5-76 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

Binary files (PAM)

In order to permit byte-specific updating of PAM files (after a close and reopen), the C
runtime system writes administrative data at the end of the file. This data is maintained in a
consistent state at the time the file is opened and closed. Consequently, it is not possible
for different tasks to process a PAM file concurrently if the file is extended by one of the
tasks involved.
The C runtime system does not set any locks. If data is modified by several users, incon-
sistent states might result.

Text files (SAM, ISAM)

When SAM or ISAM files are processed in update mode, the original record length must not
be changed when modifying existing records. This means that a newline character (\n)
must not be changed to another character, or vice versa.

2.9.4.9 Notes on record-oriented I/O

Record-oriented I/O is possible for SAM, ISAM and PAM files.

When the fopen() and freopen() functions are called, the file must always be opened in
binary mode and with the option type=record.

With the creat() or freopen() functions, the file must always be opened in binary mode
and the specification of O_RECORD.

I/O functions that read or write characters or strings (up to \n) cannot be used for record-
oriented input/output.

Available I/O functions

The following functions are available for processing files with stream I/O:

creat(), fopen(),
freopen(), open()

Open

close(), fclose() Close

fread(), read() Read

fwrite(), write() Write

fsetpos(), fgetpos() Set file position to determined location

fseek(), lseek() Set file position to start/end of file

rewind() Set file position to start of file

flocate() Explicitly positioning in an ISAM file

fdelrec() Delete a record in an ISAM file

File processing The C programming interface

126 U23711-J-Z125-5-76

In addition, the following functions for file processing and error handling can be used
unchanged:

feof(), ferror(), clearerr(), unlink(), remove(), rename()

All I/O functions not listed here are unavailable for record-oriented input/output and will be
rejected with an error return value.
It should be noted, however, that no checks are performed for the two macros getc() and
putc() for performance reasons. If these macros are used on files with record-oriented
I/O, the behavior is undefined.

Processing a file with record-oriented and stream-oriented I/O

Files created for record-oriented I/O can be opened for stream-oriented I/O and vice versa.
However, stream-oriented I/O does not support all the file attributes that are possible for
record-oriented I/O.

FCBTYPE of a new file to be created

The FCBTYPE of a new file to be created can be defined as follows:

– Specification in an ADD-FILE-LINK command and use of the LINK name in the
fopen() or freopen() function

– Specification of the forg parameter in the fopen() or freopen() function:
forg=seq: a SAM file is created.
forg=key: an ISAM file is created.

The following restrictions apply to the FCBTYPE of a file and the entries for fopen() and
freopen():

– If type=record is specified, the FCBTYPE of the file must be SAM, PAM or ISAM.

– If forg=seq is specified, the FCBTYPE of the file must be SAM or PAM.

– If forg=key is specified, the FCBTYPE of the file must be ISAM.

– The append mode "a" is not allowed for ISAM files. The position is determined by the
key in the record.

The following restrictions apply to the FCBTYPE of a file and the entries for creat() and
open():

– If O_RECORD is specified the file must have FCBTYPE SAM, PAM or ISAM.

Multiple keys for ISAM files

By default, multiple keys are not permitted for ISAM files. They may, however, be used if
DUP-KEY=Y is specified in an ADD-FILE-LINK command.

The C programming interface File processing

U23711-J-Z125-5-76 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.9.5 Last Byte Pointer (LBP)

In BS2000 the length of a PAM file is always an integral multiple of a PAM block, regardless
of its content. In BS2000 OSD/BC V10.0 and higher, the catalog entry for PAM files contains
the entry Last Byte Pointer (LBP), in which the real length of the file in bytes can be stored.
As a result, especially files which are stored on a network server (NAS) can also be read
and written by all systems which access them (also UNIX) in a manner which is precise to
the byte.

This functionality may also be available in BS2000/OSD as of V8.0.

Previously the length of a PAM file was determined with the help of an auxiliary construction
by identifying the actual end of the file with a marker. This auxiliary construction can be
dispensed if LBP is used.

All C runtime functions which open PAM files are affected by this interface.

The fopen(), freopen(), open() and creat() functions have consequently been extended
with the lbp switch. Details can be found in the descriptions of the relevant functions.

When existing files are opened or read, these functions behave as follows independently of
the lbp switch:

– If the file's LBP is not equal to 0, it is evaluated. Any marker which is present is ignored.

– When LBP = 0, a marker is searched for, and the file length is determined from this. If
no marker is found, the end of the last complete block is regarded as the end of file.

When files are closed which have been modified or newly created, the behavior depends
on the lbp switch when the file is opened or on the environment variable
LAST_BYTE_POINTER.

File processing The C programming interface

128 U23711-J-Z125-5-76

Environment variable LAST_BYTE_POINTER

The purpose of the environment variable LAST_BYTE_POINTER is to enable existing
programs to use the LBP without any need to intervene in them. Permanently linked
programs then only need to be relinked with the current CRTE. For programs linked with
PARTIAL-BIND or CRTE-BASYS, it is sufficient if the current CRTE or CRTE-BASYS is
installed.

If one of the functions affected is called without the lbp switch, its behavior depends on the
environment variable LAST_BYTE_POINTER:

LAST_BYTE_POINTER=YES

The fopen() and freopen() functions behave as if lbp=yes were specified in the mode
parameter.

The open() and creat() functions behave as if O_LBP were specified in the mode
parameter.

When a file is opened, a check is made to see whether LBP support is possible. If this
is not the case, the function concerned will fail and errno is set to ENOSYS.

When a file which has been modified or newly created is closed, no marker is written
(even if one was present), and a valid LBP is set. In this way files with a marker can be
converted to LBP without a marker.
In the case of NK files the last logical block is padded with binary zeros, in the case of
K files the file is padded to the physical end of file.

LAST_BYTE_POINTER=NO

The fopen, fopen64 and freopen, freopen64 functions behave as if lbp=no were
specified in the mode parameter.

The open() and creat() functions behave as if O_NOLBP were specified in the mode
parameter.

When a file which has been newly created is closed, the LBP is set to zero (=invalid).
A marker is written. In the case of NK files the last logical block is padded with binary
zeros, in the case of K files the file is padded to the physical end of file.

When a file which has been modified is closed, the LBP is set to zero (=invalid). A
marker is written only if a marker existed before. If the file had a valid LBP when it was
opened, no marker is written as in this case it is assumed that no marker exists.

In the case of NK files the last logical block is padded with binary zeros, in the case of
K files the file is padded to the physical end of file.

If the environment variable is not set, the functions behave as if it had the value NO.

Details on using environment variables can be found in section “Environment variables” on
page 104).

The C programming interface General terminal interface

U23711-J-Z125-5-76 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.9.6 Temporary PAM files in virtual memory (INCORE files)

If the file name "(INCORE)" is specified with the functions fopen(), freopen(), or
open(), a temporary PAM file is created in virtual memory. This file "exists" only for the
duration of a program run.

INCORE files must be opened for writing before they can be accessed for reading (see also
fopen(), freopen(), open()).

INCORE files are processed as binary files.

2.10 General terminal interface

This section describes a general terminal interface that is provided to control serial commu-
nications ports. These are locally connected asynchronous lines.

On BS2000 block terminals, support for this interface is subject to certain restrictions.

2.10.1 Opening a terminal device file

When a terminal device file is opened, it normally causes the process to wait until a
connection is established. In practice, application programs seldom open these files; they
are opened by special programs and then become the standard input, standard output, and
standard error of applications.

As described in open(), opening a terminal device file with the O_NONBLOCK flag clear
causes the process to block until the terminal device is ready and available. If the CLOCAL
mode is not set, this implies waiting until a connection is established. If CLOCAL mode is set
in the terminal, or the O_NONBLOCK flag is specified when calling open(), the open()
function returns a file descriptor without waiting for a connection to be established.

2.10.2 Process groups

A terminal may have a foreground process group associated with it. This foreground
process group plays a special role in handling signal-generating input characters,
as described in section “Special characters” on page 134.

A terminal's foreground process group may be set or examined by a process, assuming the
permission requirements in this section are met; see tcgetpgrp() and tcsetpgrp(). The
terminal interface aids in this allocation by restricting access to the terminal by processes
that are not in the current process group. For further details, see section “Terminal access
control” on page 130.

General terminal interface The C programming interface

130 U23711-J-Z125-5-76

2.10.2.1 The controlling terminal

A terminal may belong to a process as its controlling terminal. Every process of a session
that has a controlling terminal has the same controlling terminal. A terminal may be the
controlling terminal for at most one session. The first open terminal device file is reserved
as the controlling terminal for a session by the session leader. If a session leader has no
controlling terminal and opens a terminal device file (without the O_NOCTTY bit set) that is
not already associated with a session (see open()), the terminal can become the
controlling terminal of the session leader. If a process which is not a session leader opens
a terminal file, or if the O_NOCTTY option is used when calling open(), then that terminal
does not become the controlling terminal of the process. When a controlling terminal
becomes associated with a session, its foreground process group is set to the process
group of the session leader.

The controlling terminal is inherited by a child process by means of a fork call. A process
relinquishes its controlling terminal when it creates a new session with the setsid()
function, or when all file descriptors associated with the controlling terminal have been
closed..

When a controlling process terminates, the controlling terminal is disassociated from the
current session, allowing it to be acquired by a new session leader. Subsequent access to
the terminal by other processes in the earlier session may be denied, with attempts to
access the terminal treated as if a modem disconnect had been sensed.

2.10.2.2 Terminal access control

If a process is in the foreground process group of its controlling terminal, it will be allowed
to read from this terminal, as described in the section “Input processing and reading data”
on page 131 . For those implementations that support job control, any attempt by a process
in a background process group to read from its controlling terminal will cause its process
group to be sent a SIGTTIN signal unless one of the following special cases applies:

– The reading process is ignoring or blocking the SIGTTIN signal.

– The process group of the reading process is orphaned.

In the above cases, the read() function returns -1, with errno set to EIO, and no signal is
sent. The default action of the SIGTTIN signal is to stop the process to which it is sent (see
also signal.h).

The C programming interface General terminal interface

U23711-J-Z125-5-76 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

If a process is in the foreground process group of its controlling terminal, then write opera-
tions are allowed as described in the section “Writing data and output processing” on
page 134. Attempts by a process in a background process group to write to its controlling
terminal will cause the process group to be sent a SIGTTOU signal unless one of the
following special cases apply:

– If TOSTOP is not set, or if TOSTOP is set and the process is ignoring or blocking the
SIGTTOU signal, then the process is allowed to write to the terminal and the SIGTTOU
signal is not sent.

– If TOSTOP is set and the process group of the writing process is orphaned, and the
writing process is not blocking SIGTTOU, the write() function returns -1, with errno
set to EIO, and no signal is sent.

Certain function calls that set terminal parameters are treated in the same way as the
write() function, except that TOSTOP is ignored; that is, the effect is identical to that of an
attempt to write to the terminal when TOSTOP is set (see also section “Local modes” on
page 143, tcdrain(), tcflow(), tcflush(), tcsendbreak() and tcsetattr()).

2.10.2.3 Input processing and reading data

A terminal associated with a special file may operate in full-duplex mode, so that input
characters may be entered at any time, even while output is occurring. In the POSIX
subsystem, full-duplex mode for terminals is simulated by TIAM.

Each special file of a terminal is associated with an input queue in which incoming data is
stored by the system before being read by a process. The input is lost if the input queues
of the system are full or if any input line exceeds the maximum number of bytes permitted
for input (as defined by {MAX_INPUT}; see limits.h). {MAX_INPUT} must be greater than
or equal to {_POSIX_MAX_CANON}. This value can be queried with pathconf().

Two general types of input processing are available, depending on whether the special file
associated with the terminal device is in canonical mode or non-canonical mode. These
modes are described in the next two sections on "Canonical mode input processing" and
"Non-canonical mode input processing", respectively. Additionally, input characters are
processed according to the settings of the c_iflag (see section “Input modes” on
page 137) and c_lflag (see section “Local modes” on page 143) components. Such
processing can include local echoing, which in general means that input characters are
immediately transmitted back to the terminal when they are received from the terminal. This
is particularly useful for terminals that operate in full-duplex mode.

General terminal interface The C programming interface

132 U23711-J-Z125-5-76

If the O_NONBLOCK flag is clear, then read requests block until data is available or a signal
has been received. If the O_NONBLOCK flag is set, then the read request is completed,
without blocking, in one of three ways:

– If there is enough data available to satisfy the entire request, the read() function
completes successfully and returns the number of bytes read.

– If there is not enough data available to satisfy the entire request, the read() function
completes successfully, having read as much data as possible, and returns the number
of bytes actually read.

– If there is no data available, the read() function returns -1, with errno set to EAGAIN.

When data is available depends on whether the input processing mode is canonical or non-
canonical. The following sections, Canonical mode input processing" and "Non-canonical
mode input processing", describe each of these input processing modes.

2.10.2.4 Canonical mode input processing

In canonical mode input processing, terminal input is processed in units of lines. A line is
delimited by a newline character (LF), an end-of-file character (EOF), or an end-of-line
character (EOL). For more information on EOF and EOL, see the section “Special characters”
on page 134. This means that a reading program will be suspended until an entire line has
been typed. Also, no matter how many bytes are requested in the read() call, the input will
comprise at most one line. It is not, however, necessary to read a whole line at once; any
number of bytes, even one, may be requested in a read() without losing information.

{MAX_CANON}, the maximum number of bytes in a line (see limits.h), must be greater
than or equal to {_POSIX_MAX_CANON}. If this limit is exceeded, the behavior of the system
is undefined . If {MAX_CANON} is not defined, there is no such limit (see also pathconf()).
Both constants have no effect for BS2000 block terminals, since I/O is controlled there by
TIAM.

ERASE and KILL processing occur when either of the two special characters, the ERASE and
KILL characters (see section “Special characters” on page 134), is read. The processing of
this character affects the input buffer that has not been delimited yet by a newline character
(LF), an end-of-file character or an end-of-line character. This undelimited data constitutes
the current line. The ERASE character deletes the last character entered in the current line,
provided such a character follows the start of the line. The KILL character kills (deletes) the
entire current line, if there is one, and may optionally output a new newline character. The
ERASE and KILL characters have no effect if there is no data in the current line. The ERASE
and KILL characters themselves are not placed in the input queue. Both characters take
effect immediately after the corresponding key is pressed, independent of any backspace
or tab characters that may have been entered. It is also possible to enter them directly as
constants by preceding them with the escape character \. The escape character itself is not
read in this case. The deleted characters can be changed.

The C programming interface General terminal interface

U23711-J-Z125-5-76 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.10.2.5 Non-canonical mode input processing

This type of input processing is only supported by character-oriented terminals, not by block
terminals.

In non-canonical mode input processing, input bytes are not assembled into lines, and
erase and kill processing does not occur. The values of the MIN and TIME elements of the
c_cc array are used to determine how the process is to receive the bytes. The O_NONBLOCK
flag (see also open() or fcntl()) has precedence over the specifications in the c_cc
array. Consequently, if O_NONBLOCK is set, read() will return immediately, regardless of the
MIN and TIME values. Furthermore, if no data is present, read() can return either 0 or -1
and set errno to EAGAIN in the latter case.

MIN represents the minimum number of bytes (maximum 255) that should be received (i.e.
returned to the user) when the read() function successfully returns. TIME is a timer of 0.1
second granularity that is used to time-out bursty and short term data transmissions. If MIN
is greater than {MAX_INPUT}, the response to the request is not defined. The four possible
combinations for MIN and TIME and their interactions are described below:

Case 1: MIN > 0, TIME > 0

In this case TIME serves as an inter-byte timer and is activated after the first byte is
received. Since it is an inter-byte timer, TIME is reset for each byte and started as soon as
one byte is received. If MIN bytes are received before the inter-byte timer expires, the read
operation is satisfied. If the timer expires before MIN bytes are received, the characters
received to that point are returned to the user. Note that if TIME expires, at least one byte
is returned, since the timer is not enabled unless a byte is received. In this case (MIN > 0,
TIME > 0) the read blocks until either the MIN and TIME mechanisms are activated by the
receipt of the first byte, or a signal is received.

Case 2: MIN > 0, TIME = 0

Since the value of TIME is zero, the timer plays no role, and only MIN is significant. In this
case, the read operation blocks until MIN bytes are received or a signal arrives. A program
that uses this case to read records from the terminal may block for any length of time in the
read operation (even indefinitely).

Case 3: MIN = 0, TIME > 0

Since MIN = 0, TIME no longer represents an inter-byte timer in this case but serves as a
read timer (for the entire read operation) that is activated as soon as the call to read() is
processed (default action). In this case, a read operation is satisfied as soon as a single
byte is received or the read timer TIME expires. If no byte is received within TIME * 0.1
seconds after read() is called, the read() function returns a value of zero, having read no
data.

General terminal interface The C programming interface

134 U23711-J-Z125-5-76

Case 4: MIN = 0, TIME = 0

In this case, either the number of bytes to be read or the number of bytes currently available
(if there are not enough bytes) is returned without waiting for more bytes to be input. If no
input characters are available, the read() function returns a value of zero, having read no
data.

2.10.2.6 Writing data and output processing

When a process writes one or more bytes to a special file associated with a terminal, these
bytes are processed according to the settings in c_oflag (see section “Output modes” on
page 139). The system may provide a buffering mechanism, with the result that when a call
to write() completes, all of the bytes written will have been scheduled for transmission to
the device, but the transmission will not necessarily have completed. See write() for the
effects of O_NONBLOCK on write().

2.10.2.7 Special characters

The special characters described below are assigned at task initialization to program keys
by a precursor task. They are associated with certain special functions on input and/or
output. Cases where the association between a character and function cannot be changed
are indicated by enclosing the relevant character in parentheses:

INTR Special character on input, which is recognized if the ISIG flag is set. It
generates a SIGINT signal (interrupt) which is sent to all processes in the
foreground process group associated with the terminal. If the ISIG flag is
set, the INTR character is discarded when processed. Under normal
circumstances, this results in the termination of all these processes;
however, arrangements may be made to ignore the signal or initiate a jump
to a previously defined address location (see sigaction() and
signal()).

QUIT Special character on input, which is recognized if the ISIG flag is set. It
generates a SIGQUIT signal (quit) which is sent to all processes in the
foreground process group associated with the terminal. If ISIG is set, the
QUIT character is discarded when processed. Its treatment is almost
identical to the interrupt signal SIGINT, except that, if a receiving process
has not made other arrangements, the process will not only be terminated,
but a core dump will be generated (see sigaction()).

ERASE Special character on input, which is recognized if the ICANON flag is set. It
erases the preceding character, but not beyond the start of a line, i.e. an NL,
EOF or EOL character (see also the section “Canonical mode input
processing” on page 132). If ICANON is set, the ERASE character is
discarded when processed.

The C programming interface General terminal interface

U23711-J-Z125-5-76 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

KILL Special character on input, which is recognized if the ICANON flag is set. It
deletes the entire line as of the last NL, EOF or EOL character. If ICANON is
set, the KILL character is discarded when processed.
This character is not supported on BS2000 block terminals.

EOF Special character on input, which is recognized if the ICANON flag is set.
When EOF is received, all the bytes waiting to be read are immediately
passed to the program without waiting for an NL character, and the EOF is
discarded. If no bytes are present, i.e. the EOF is at the beginning of a line,
read() returns a value of 0. A return value of 0 for a read operation is the
default end-of-file identifier. If ICANON is set, the EOF character is discarded
when processed.

NL Special character on input, which is recognized if the ICANON flag is set. NL
is the standard line delimiter \n and cannot be changed.

EOL Special character on input, which is recognized if the ICANON flag is set. EOL
is an additional line delimiter and serves the same function as NL. It is
normally not used.

SUSP If job control is supported (section “Special control characters” on page 144)
on an X/Open-compatible system, the SUSP special character is recognized
on input. If the ISIG flag is set, receipt of the SUSP character causes a
SIGTSTP signal to be sent to all processes in the foreground process group
associated with the terminal. After it is processed, the SUSP character is
discarded as well. This character has no effect in the POSIX subsystem,
since job control is not supported in its current implementation.

STOP Special character on both input and output, which is recognized if either the
IXON (for input) or IXOFF (for output) flag is set. STOP can be used to
suspend output temporarily. It is useful with CRT terminals to prevent output
from disappearing before it can be read. If IXON is set, the STOP character
is discarded when processed. So long as the output is suspended,
additional STOP characters are ignored and not read. The STOP character
can be neither changed nor escaped.
This character is not supported on BS2000 block terminals.

START Special character on both input and output, which is recognized if either the
IXON (for input) or IXOFF (for output) flag is set. The START character is
used to resume output that has been suspended by a STOP character. So
long as output continues, subsequent START characters are ignored and not
read. If IXON is set, the START character is discarded when processed. The
START character can be neither changed nor escaped.
This character is not supported on BS2000 block terminals.

General terminal interface The C programming interface

136 U23711-J-Z125-5-76

CR Special character on input, which is recognized if the ICANON flag is set.
This character corresponds to the character \r. If ICANON and ICRNL are
set, and IGNCR is not, this character is translated into an NL, and has the
same effect as an NL character. The character CR cannot be changed.

The values for INTR, QUIT, ERASE, KILL, EOF, EOL and SUSP (job control only) can be
changed by the user.

If two or more special characters have the same value, the function performed when that
character is received is undefined.

The ERASE, KILL and EOF characters can be escaped by a preceding \ (escape character),
in which case the function associated with it is not executed.

The user may overwrite key assignments at any time. In such cases, the default XPG4
Version 2-conformant key assignments on the BS2000 command level can be restored with
/RESTORE-CONTROL-KEYS.

2.10.2.8 Modem disconnect

If the carrier signal is lost, i.e. a modem disconnect is detected by the terminal interface for
a controlling terminal, and if CLOCAL is not set in c_cflag (see section “Control modes” on
page 141), the hangup signal SIGHUP is sent to the controlling process associated with the
terminal. Unless other arrangements have been made, this causes the controlling process
to terminate (see exit()). All subsequent read operations from this terminal device return
with an end-of-file indication. Thus, processes that read a terminal file and test for end-of-
file can terminate appropriately after a disconnect. Any subsequent write() to the terminal
device returns -1, with errno set to EIO, until the file is closed.

2.10.2.9 Closing a terminal device file

When the last process closes a terminal device file, any pending output is sent to the
device, and any input that is still to be read is discarded. If HUPCL is set in the control modes
and the communications port supports a disconnect function, the terminal interface
performs a disconnect.

The C programming interface General terminal interface

U23711-J-Z125-5-76 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.10.3 Settable parameters

2.10.3.1 The termios structure

Programs that need to control I/O flags for terminals can do this by means of the termios
structure defined in the header termios.h. The members of this structure include:

The types tcflag_t and cc_t are defined in the header termios.h as unsigned integral
types.

2.10.3.2 Input modes

The c_iflag field describes the basic terminal input control:

Member type Array size Member name Definition

tcflag_t c_iflag input modes

tcflag_t c_oflag output modes

tcflag_t c_cflag control modes

tcflag_t c_lflag local modes

cc_t NCCS c_cc[] control characters

Mask name Definition

BRKINT Send SIGINT signal on break

ICRNL Map CR to NL on input

IGNBRK Ignore break

IGNCR Ignore CR

IGNPAR Ignore characters with parity errors

INLCR Map NL to CR on input

INPCK Enable input parity check

ISTRIP Strip 8th bit of input character

IXOFF Enable START/STOP input control

IXON Enable START/STOP output control

PARMRK Mark parity errors

IUCLC
Will no longer be supported by
the X/Open-Standard in future.

Map uppercase to lowercase on input

IXANY Enable any input character to restart output

General terminal interface The C programming interface

138 U23711-J-Z125-5-76

In the context of asynchronous serial transmission via a serial interface, a break is defined
as a sequence of zero-valued bits that continues for more than the time required to send
one byte. The entire sequence of zero-valued bits is interpreted as a single break, even if
the sequence comprises more than one byte. In contexts other than asynchronous serial
data transmission, the meaning of a break condition is not defined.

If IGNBRK is set, any break that occurs on input will be ignored, i.e. not placed in the input
queue and therefore not read by any process. On the other hand, if BRKINT is set, the break
condition generates a single interrupt signal SIGINT and flushes both the input and output
queues. If neither IGNBRK nor BRKINT is set, a break condition is read as a single \0
character, or if PARMRK is set, as \377, \0, \0.

If IGNPAR is set, any byte with a character or parity error (other than break) is ignored.

If PARMRK is set, and IGNPAR is not set, any byte with a framing or parity error (other than
break) is passed to the application as the three-character sequence \377, \0 and X, where
\377 and \0 constitute a two-byte flag preceding each sequence and X corresponds to the
character received in error. To avoid ambiguity in this case, if ISTRIP is not set, a valid
character of \377 is passed to the application as \377, \377. If neither PARMRK nor IGNPAR
is set, a framing or parity error (other than break) is passed to the application as a single

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity checking is
disabled, allowing generation of the output parity bit without heeding any input parity errors
that may have occurred.

Note

The enabling or disabling of input parity checking is independent of whether parity
detection is enabled or disabled (see section “Control modes” on page 141). If parity
detection is enabled but input parity checking is disabled, the hardware to which the
terminal is connected will recognize the parity bit, but the terminal special file will not
check whether or not this bit is correctly set.

If INLCR is set, a received NL character (newline) is translated into a CR character (carriage
return). If IGNCR is set, a received CR character is ignored (not read). However, if IGNCR is
not set and ICRNL is set, a received CR character is converted into an NL character.

If IUCLC is set, a received uppercase letter is mapped to the corresponding lowercase letter
(Will no longer be supported by the X/Open-Standard in future.).

If IXON is set, START/STOP output control is enabled. A received STOP character suspends
output, and a received START character restarts output. The control characters for START
and STOP are not read during a read operation, however, they perform flow control functions
when IXON is set. When IXON is not set, the START and STOP characters are read. If IXANY
is set, the suspended output is resumed as soon as any character is entered.

The C programming interface General terminal interface

U23711-J-Z125-5-76 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

If IXOFF is set, START/STOP input flow control is enabled. The system transmits STOP
characters in order to cause the terminal device to stop transmitting data as needed to
prevent an overflow in the input queue (no more than {MAX_INPUT} bytes are permitted).
It transmits START characters to cause the terminal device to resume transmitting data, as
soon as the device can continue doing so without any risk of overflowing the input queue.

The initial value for all input modes after an open() is that no flag is set.

2.10.3.3 Output modes

The c_oflag field specifies how the terminal interface handles output. It is constructed
from the bitwise inclusive OR of zero or more of the following masks, which are bitwise
distinct. The mask names in the table below are defined in termios.h:

Mask name Definition

OPOST Post-process output

OLCUC Map lowercase letters to uppercase on output. Will no longer be supported by the
X/Open-Standard in future.

ONLCR Map NL to CR-NL on output

OCRNL Map CR to NL on output

ONOCR No CR output at column 0

ONLRET NL performs CR function

OFILL Use fill characters for delay

OFDEL The fill character is DEL (otherwise NUL)

NLDLY
NL0
NL1

Select newline (NL) delays
NL character type 0
NL character type 1

CRDLY
CR0
CR1
CR2
CR3

Select carriage return (CR) delays:
CR delay type 0
CR delay type 1
CR delay type 2
CR delay type 3

TABDLY
TAB0
TAB1
TAB2
TAB3

Select delays for horizontal tabs:
Horizontal-tab delay type 0
Horizontal-tab delay type 1
Horizontal-tab delay type 2
Expand tabs to spaces

BSDLY
BS0
BS1

Select delays for backspace:
Backspace-delay type 0
Backspace-delay type 1

General terminal interface The C programming interface

140 U23711-J-Z125-5-76

If OPOST is set, output data is post-processed on the basis of the remaining bits of c_oflag
so that lines of text are modified to appear appropriately on the terminal device; otherwise,
characters are transmitted without change.

If OLCUC is set, a lowercase letter is mapped to the corresponding uppercase letter before
being transmitted. This function is often used in conjunction with IUCLC for input modes.
Will no longer be supported by the X/Open-Standard in future.

When ONLCR is set, the NL character (newline) is transmitted as the character pair CR-NL
(carriage return - newline). If OCRNL is set, the CR character is transmitted as an NL
character. When ONOCR is set, a CR character in column 0 (first position in the line) is not
transmitted. If ONLRET is set, it is assumed that the NL character performs the carriage
return function; the column pointer is set to 0, and the applicable carriage return delay is
used. When ONLRET is not set, it is assumed that the NL character just performs the line-
feed function; the column pointer will remain unchanged in this case. The column pointer is
also set to 0 if the CR character is actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other
movement when certain characters are sent to the terminal. In all cases a value of 0
indicates no delay. If OFILL is set, fill characters will be transmitted for delay instead of a
timed delay. This is useful for high baud rate terminals which need only a minimal delay. If
OFDEL is set, the fill character is DEL, otherwise NUL.

If a form-feed or vertical-tab delay is specified, the delay will last for about 2 seconds.
A newline delay lasts for about 0.10 seconds. If ONLRET is specified, carriage-return delays
are used instead of newline delays. Two fill characters are transmitted if OFILL is set.

Carriage-return delay type 1 depends on the current column position, type 2 is about 0.10
seconds, and type 3 is about 0.15 seconds. If OFILL is set, two fill characters are trans-
mitted for type 1, four for type 2.

Horizontal-tab delay type 1 depends on the current column position. Type 2 lasts for about
0.10 seconds; type 3 specifies that tabs are to be expanded into spaces. If OFILL is set,
two fill characters are transmitted for any delay.
The backspace delay lasts for about 0.05 seconds. One fill character is transmitted if OFILL
is set. The actual delays will depend on the line speed and the load on the system.
The initial value for all output modes (value of c_oflag) after a call to open() is that no flag
is set.

VTDLY
VT0
VT1

Select delays for vertical tabs:
Vertical-tab delay type 0
Vertical-tab delay type 1

FFDLY
FF0
FF1

Select delays for form-feed:
Form-feed delay type 0
Form-feed delay type 1

Mask name Definition

The C programming interface General terminal interface

U23711-J-Z125-5-76 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.10.3.4 Control modes

The control modes described below have no significance for BS2000 computers.
The c_cflag field describes the hardware control of the terminal. The following elements
are supported for character-oriented terminals:

In addition, the input and output baud rates are stored in the termios structure. The
following values are supported:

Mask name Definition

CLOCAL Ignore modem status

CREAD Enable receiver

CSIZE
CS5
CS6
CS7
CS8

Character size (number of bits per byte):
5 bits
6 bits
7 bits
8 bits

CSTOPB Send 2 stop bits (else 1)

HUPCL Hang up on last close()

PARENB Enable parity detection

PARODD Enable odd parity

Name Definition

B0 Hang up

B50 50 baud

B75 75 baud

B110 110 baud

B134 134.5 baud

B150 150 baud

B200 200 baud

B300 300 baud

B600 600 baud

B1200 1200 baud

B1800 1800 baud

B2400 2400 baud

General terminal interface The C programming interface

142 U23711-J-Z125-5-76

The following interfaces are provided for getting and setting the values of the input and
output baud rates in the termios structure:
cfgetispeed(), cfgetospeed(), cfsetispeed() and cfsetospeed().

The CSIZE bits specify the character size in bits per byte for both transmission and
reception. This size does not include the parity bit, if any. If CSTOPB is set, two stop bits are
used, otherwise one stop bit. For example, at 110 baud, two stop bits are normally used.

If CREAD is set, the receiver is enabled. If CREAD is not set, no characters are received.

If PARENB is set, parity generation and detection is enabled, i.e. a parity bit is added to each
character. If parity is enabled, the PARODD bit specifies odd parity be used; otherwise, even
parity is used.

If HUPCL is set, the line will be disconnected when the last process to use the line closes it
or terminates. This means that the Data-Terminal-Ready (DTR) signal will be disabled, thus
breaking the modem connection.

If CLOCAL is set, the existing line is assumed to be a local, direct connection with no modem
control. The connection does not depend on line signals in this case. Otherwise, modem
control is assumed, and the modem status lines are monitored.

Under normal circumstances, a call to the open() function waits for the modem connection
to complete. However, if the O_NONBLOCK flag is set when calling open(), or if the CLOCAL
bit is set, the open() function returns immediately without waiting for the connection.

If the object for which the control modes are set is not an asynchronous serial connection,
some of the modes may be ignored; e.g., if an attempt is made to set the baud rate on a
network connection to a terminal on another host, the baud rate may or may not be set on
the connection between that terminal and the machine to which it is directly connected.

The initial value for the control modes (value of c_oflag) after a call to open() is that no
flag is set.

B4800 4800 baud

B9600 9600 baud

B19200 19200 baud

B38400 38400 baud

Name Definition

The C programming interface General terminal interface

U23711-J-Z125-5-76 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.10.3.5 Local modes

The c_lflag field of the structure is used to control various functions:

If ECHO is set, input characters are echoed back to the terminal as soon as they are
received. If ECHO is clear, input characters are not echoed.

If ICANON and ECHOE are set, the ERASE character is echoed as a backspace-space-
backspace sequence, which causes the terminal to clear the last character, if any, from the
display. If ECHOE is set and ECHO is not set, the ERASE character is echoed as SP BS.

If ECHOK and ICANON are set, the KILL character causes the terminal to erase the line from
the display or echoes the NL character after the KILL character to indicate that the line will
be deleted.

If ECHONL and ICANON are set, the NL character is echoed even if ECHO is not set. This is
useful for terminals set to the local echo (so-called half duplex) mode. The EOF character is
echoed only if it is escaped. Since EOT (End Of Transmission) is used as the default EOF
character, this prevents a connection cleardown from terminals that hang up when EOT is
received.

If ISIG is set, each input character is checked to determine whether it is one of the special
control characters INTR, QUIT or SUSP (job control only). If this is the case, the function
associated with that character is performed. If ISIG is not set, no checking is done. In other
words, these special input functions can only be performed if ISIG is set. They can,
however, be disabled individually by changing the value of the control character to an
unlikely or impossible value (e.g. 0377).

Mask name Definition

ECHO Enable echo function

ECHOE Echo ERASE character as BS-SP-BS (error correcting backspace)

ECHOK Echo NL after KILL character

ECHONL Echo NL character

ICANON Enable canonical input (line-oriented input with ERASE and KILL processing)

IEXTEN Enable extended functions

ISIG Enable signals

NOFLSH Disable flushing of input or output queues after INTERRUPT or QUIT from
keyboard

TOSTOP Send SIGTTOU signal with output for background process group

XCASE Canonical uppercase and lowercase representation. Will no longer be
supported by the X/Open-Standard in future.

General terminal interface The C programming interface

144 U23711-J-Z125-5-76

If ICANON is set, canonical processing is enabled. This enables the functions to process
ERASE and KILL characters. The input characters are assembled into lines delimited by NL,
EOF and EOL, as described in section “Canonical mode input processing” on page 132.

If ICANON is not set, read requests are satisfied directly from the input queue. This does not
take place until at least MIN bytes have been received or the timeout value TIME has
expired (see section “Non-canonical mode input processing” on page 133 for more details).
The TIME value is specified in tenths of a second. If NOFLSH is set, the normal flush of input
and output queues that follows reception of INTR, QUIT and SUSP (job control only)
characters is not performed.

The initial value for the local modes (value of c_local) after a call to open() is that no flag
is set.

2.10.3.6 Special control characters

The values of special control characters are defined by the array c_cc. The subscript name
and description for each array element in both canonical and non-canonical modes are
listed in the table below:

The subscript names are constants that represent the subscript of each respective element
(character) in the c_cc array. The character c_cc[VSTOP], for example, is thus the STOP
character in canonical as well as non-canonical mode.

The subscript names are unique, except that the VMIN and VTIME subscripts may have the
same values as VEOF and VEOL, respectively.

Index name in the ... Definition

Canonical mode Non-canonical mode

VEOF EOF character

VEOL EOL character

VERASE ERASE character

VINTR VINTR INTR character

VKILL KILL character

VMIN MIN value

VQUIT VQUIT QUIT character

VSUSP VSUSP SUSP character

VTIME TIME value

VSTART VSTART START character

VSTOP VSTOP STOP character

The C programming interface General terminal interface

U23711-J-Z125-5-76 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

Implementations (such as the POSIX subsystem) that do not support job control may ignore
the SUSP character value indexed by the VSUSP subscript in the c_cc array.

If {_POSIX_VDISABLE} is defined for the terminal device file (i.e. the special file associated
with the terminal) and the value of one of the modifiable special characters is the same as
{_POSIX_VDISABLE} (see section “Special characters” on page 134), then that function is
deactivated, i.e. no input character will be recognized as the disabled special character. If
ICANON is not set, the value of {_POSIX_VDISABLE} has no special meaning for entries
with the VMIN and VTIME subscripts in the c_cc array.

2.10.4 Block terminal support

The terminal is mapped to the special file /dev/tty, so all terminal I/O essentially involves
I/O on the special file /dev/tty. The size of the input and output buffers for /dev/tty is
12,264 bytes, respectively. Only the control characters \n (newline) and \t (8-character
tabulator) are converted.

The input of is interpreted as \n (newline). The tab key does not generate the tab
character \t. Input from the terminal is buffered. If the buffer contains residual data, the
maximum number of characters returned by a call to read() will be restricted to the number
of bytes contained in the buffer. It is only when the buffer is empty that the user is prompted
for input from the terminal.

Input cannot be aborted with the key. It is only after all input has been read in from the
terminal that the user can switch to system mode. In other words, users must press

 once before they enter system mode.

On output, \n generates a line feed, and \t produces a tab. All other control characters are
not converted; they are simply mapped as scribble characters. Output occurs at any of the
following events:

– a newline (\n) is encountered
– the buffer is full
– on input from the terminal (terminated by)
– the program terminates

2.10.5 Support for BS2000 consoles

The special file /dev/console can only be opened for writing. This must be done by
opening the file with open("/dev/console"). The size of the output buffer for
/dev/console is 230 bytes.

EM DÜ1

K2

EM

DÜ1

EM DÜ1

Process control The C programming interface

146 U23711-J-Z125-5-76

2.11 Process control

In the POSIX subsystem, a program is run in a process; in BS2000, by contrast, it is run in
a task. In other words, if a program is called in the POSIX shell, a child process is spawned,
but no process will be generated if it is called from the BS2000 command interface.

2.11.1 Signals

When a program is called in the POSIX subsystem, signal handling is performed by the C
runtime system via the XPG4 Version 2-conformant facilities of the POSIX subsystem.

For programs called in BS2000, by contrast, signal handling is implemented by using the
mechanisms in BS2000 (STXIT).

The cstxit() function can be used to bypass POSIX signal handling and to register STXIT
routines at the system; however, users are cautioned against using this option.
POSIX and STXIT signals cannot be otherwise handled in the same program.

Signal handling is based on the functions signal(), sigaction(), sigprocmask() and
kill(). There are three possible settings for each signal (see sigaction()).

When a process aborts, the number of the signal that triggered the abort, the address at
which the program was aborted, and a prompt to request a core dump if desired are output.

All signals supported in the POSIX subsystem are defined in the header file signal.h and
are described in the corresponding section of this manual. These signals are generated
when the specific event associated with them occurs.

There are some restrictions that apply to the user:

– A registered STXIT routine will always be called before any registered signal handling
by the system. If no signal was registered, then no registered STXIT routine will be
called.

– To ensure that the implicit TU contingency of the signal handling is not interrupted, no
contingency routines above level 125 should be registered in any case.

The C programming interface Process control

U23711-J-Z125-5-76 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

– A dialog key is defined for the following signals:

The [STOP] and [START] keys are not supported on block terminals (see also section
“Block terminal support” on page 145).

2.11.2 Interprocess communication

The use of inter-process communication (IPC) functions affects some other services. The
affected functions are shown in the table below:

2.11.2.1 General description

The IPC package provides three facilities for inter-process communication:

– Messages, which are formatted streams that can be sent by processes to any other
processes (the following system calls are used: msgget(), msgsnd(), msgrcv(),
msgctl()).

– Shared memory, which allows processes to share parts of their virtual address space
with other processes (the following system calls are used: shmget(), shmat(),
shmdt(), shmctl()).

– Semaphores, which make it possible to synchronize process execution (the following
system calls are used: semget(), semop(), semctl()).

Signals Dialog key

SIGINT [INTR]

SIGQUIT [QUIT]

SIGSTOP [STOP]

SIGTSTP [SUSP]

SIGCONT [START]

Interfaces affected by IPC

errno execve() execl()

execvp() execle() exit()

execlp() fork() execv()

Process control The C programming interface

148 U23711-J-Z125-5-76

The aspects common to the operation of all three facilities are described below under the
following sections: The description is divided up among the following sections:

– Creation of a communication element (message queue, shared memory, semaphore)

– Data structures

– Requesting/modifying status information

Note that xxx stands for msg, sem, or shm, respectively.

Each communication element (message queue, shared memory, semaphore) is identified
by means of a positive integer, which is assigned by the system on creation of the commu-
nication element xxxget(). The user may also specify a numerical key to name a commu-
nication element that he or she creates.

Associated with each facility is a table, with entries containing all communication elements
for the respective facility.
Each entry is named by means of a user-selected numerical key which serves as its ID.

Creation of a communication element

Each facility has a corresponding system call xxxget() with which a new element can be
created or an existing one made available to a process. The parameters of the xxxget()
system calls are a user-selected numerical key, key, designating the login name, and a flag
xxxflg.

key The operating system searches the appropriate table for an entry identified
by the key. Processes may call the xxxget() system call with the
IPC_PRIVATE key, thus ensuring that an unused entry is returned.

xxxflg This flag determines whether and how an entry can be accessed, and may
influence the access permissions. If the IPC_CREAT flag is set, a new entry
is created (if none exists). The required access permissions are OR-ed with
IPC_CREAT. The nine right-hand bits in the flag are then set as the access
permissions for the new entry. The bit ordering corresponds to that of oflag
in the open() system call, even if only read and write permissions are of
significance.

If an entry already exists with the specified key, the nine right-hand bits of
the flag must be a subset of the entry's access permissions; otherwise, the
xxxget() system calls will fail. Thus, any permissions that extend beyond
those available may not be requested. In order to modify access permis-
sions, the xxxctl() system call must be executed (see below). When the
IPC_CREAT flag is additionally OR-ed with the IPC_EXCL flag, xxxget()
returns an error if an entry already exists for the key.
If the IPC_CREAT flag is not set, an entry must already exist; otherwise, the
xxxget() system calls will fail.

The C programming interface Process control

U23711-J-Z125-5-76 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

The xxxget() system calls return a unique positive identifier (system identifier xxxid) which
is selected by the operating system and is used in the other system calls associated with
the facility. These identifiers operate in a similar way to the file descriptors, as returned by
open(), dup() and pipe(), except that they may be used by all processes that know their
value, i.e. inheritance is not required for them to be valid. Each shared memory segment,
message queue, and semaphore set is identified by a shared memory identifier (shmid), a
semaphore identifier (semid) and the message queue identifier (msqid), respectively.

Data structures

Associated with each identifier is a data structure which contains data related to the
operations which may be or have been performed. These data structures (msqid_ds,
semid_ds, shmid_ds) are defined in sys/shm.h, sys/sem.h and sys/msg.h. They
include the process ID of the last process executed by an operation (send or receive
message, access shared memory, etc.) and the time of the last access operation.

Each of the data structures contains both ownership information and an ipc_perm structure
(see sys/ipc.h), which are used in conjunction to determine whether or not read/write
(read/alter for semaphores) permissions should be granted (or denied) to processes using
the IPC facilities. The ipc_perm structure contains the effective user ID and group ID of the
process that created the entry (xxx_perm.cuid and xxx_perm.cgid), in addition to a user ID and
group ID (xxx_perm.uid and xxx_perm.gid) which may also be set by means of the xxxctl()
system call. There is also a bit field for permissions in the mode member of the ipc_perm
structure. The values of the bits are given below:

Bit Meaning

0400 Read (owner)

0200 Write (owner)

0040 Read (group)

0020 Write (group)

0004 Read (others)

0002 Write (others)

Process control The C programming interface

150 U23711-J-Z125-5-76

The name of the ipc_perm structure is shm_perm, sem_perm, or msg_perm, depending on
which facility is being used. In each case, read and write/alter permissions are granted to a
process if one or more of the following conditions are true:

– The effective user ID is that of a process with appropriate privileges.
– The effective user ID of the process matches xxx_perm.cuid or xxx_perm.uid in the data

structure associated with the IPC identifier, and the appropriate bit for the owner is set
in xxx_perm.mode.

– The effective user ID of the process does not match xxx_perm.cuid or xxx_perm.uid but
the effective group ID of the process matches xxx_perm.cgid or xxx_perm.gid in the data
structure associated with the IPC identifier, and the appropriate bit for group is set in
xxx_perm.mode.

– The effective user ID of the process does not match xxx_perm.cuid or xxx_perm.uid, and
the effective group ID of the process does not match xxx_perm.cgid or xxx_perm.gid in
the data structure associated with the IPC identifier, but the appropriate bit for others is
set in xxx_perm.mode.

In all other cases, the permission is denied.

Requesting/modifying status information

xxxctl()

Each facility has a corresponding system call xxxctl(), which allows the status of an entry
to be requested, status information to be set, or an entry to be removed from the system.

– If a process requests the status of an entry, the operating system checks whether the
process has read permission and then copies data from the table entry to the user-
specified structure.

– If a process wishes to reset the parameters of the entry, the operating system checks
whether the effective user ID of the process matches the user ID of the entry or the user
ID of the entry creator, or whether the effective user ID is that of a process with appro-
priate privileges. Write permission alone is not sufficient to reset parameters. The
operating system copies the user-specified data to the table entry, setting the user ID,
group ID, access permissions, and other fields that depend on the type of facility. Since
the fields with the user ID and group ID of the entry creator are not modified, the latter
always retains control permissions.

– If a process wishes to remove an entry, the operating system checks whether the
effective user ID of the process matches one of the user IDs in the ipc_perm structure.
It is not possible to access a removed entry with the old identifier.

The C programming interface Process control

U23711-J-Z125-5-76 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

Note

The IPC facilities must be used with great care, since unused or unneeded IPC
members are not always recognized by the operating system. There are no records in
the operating system as to which processes access an IPC member. Any process that
knows the correct identifier and has access permission can essentially access an IPC
member, even if the process has never executed a xxxget() system call. It is therefore
not possible for the operating system to implicitly flush IPC structures (e.g. on
completion of a process).

IPC facilities should only be used in the case of extreme performance requirements.

2.11.2.2 Shared memory

Shared memory is provided for the C library functions (see the manual "Executive Macros"
[10]).Shared memory segments are created by the shmget() function; it is allocated in units
of 1 Mbyte in the upper address space and is aligned on a 1-Mbyte boundary. The size
argument of the shmget() function is rounded accordingly.

shmget() returns an identifier for the shared memory called the shared memory ID;
shmat() attaches the shared memory segment.

Shared memory segments are detached upon successful completion of a call to shmdt or
at program termination. The associated shared memory ID is removed:

– by shmctl()

– when the last process using the shared memory has detached itself with shmdt()

– at program completion.

It is only then that the same shared memory ID may be reused.

A maximum of 150 IDs are available in BS2000 for shared memory. Up to 32 calls to the
shmat() function are allowed per program.

Note that in order to enable shared memory locking with the SHM_LOCK control option of the
shmctl() function, the RESIDENT-PAGES operand must be specified at /START-PROGRAM.

Process control The C programming interface

152 U23711-J-Z125-5-76

2.11.3 Contingency and STXIT routines

This section explains how contingency and STXIT routines can be implemented in C.

Familiarity with the concept of contingency and STXIT routines is essential to under-
standing the material presented here.These concepts and the related BS2000 system
macros are described in detail in the manual "Executive Macros" [10].

The library functions mentioned in this section (signal(), raise(), alarm(), cenaco(),
cdisco(), cstxit(), longjmp(),
setjmp()) are explained at length in the reference section of this manual.

Important

The use of some C library functions from within STXIT routines may result in undefined
behavior. Consistency in the library functions cannot always be guaranteed in the event
of asynchronous interrupts. Undefined behavior results if the same library function or a
library function belonging to the same group (see list below) as the one asynchronously
interrupted by the STXIT event is to be executed within the STXIT routine.

The "critical" C library functions in connection with asynchronous interrupts are as follows:

– file access functions for opening and closing files:
fopen(),freopen(), open(), creat(), fclose(), close()

– all file access, file management and input/output functions applied on the same file

– functions that generate random numbers: rand(), srand()

– time functions: localtime(), gmtime()

– functions for enabling and disabling contingency routines: cenaco(), cdisco()

– atexit()

– strtok()

– setlocale()

– input/output functions from the C++ standard library

The C programming interface Process control

U23711-J-Z125-5-76 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.11.3.1 The C library functions alarm(), raise(), and signal()

The mechanism of contingency routines or STXIT contingency routines is primarily imple-
mented by the following C library functions:

alarm() sends the SIGALRM signal (STXIT event RTIMER)

raise() sends signals (simulated STXIT events and user-defined events)

signal() assigns signal handling routines

2.11.3.2 STXIT contingency routines

The following STXIT event classes can be handled by using the alarm(), raise() and
signal() functions:

– PROCHK (program check)

– TIMER (CPU time interval timer)

– RUNOUT (end of program runtime)

– ERROR (unrecoverable program errors)

– INTR (communication to the program)

– in the dialog only: BREAK/ESCAPE (ESCPBRK)

– ABEND

– TERM (normal termination of program)

– RTIMER (real time interval timer)

The SVC interrupt event class is not supported at present.

2.11.3.3 Event-driven routines

signal() and raise() can be used to implement two event-driven routines via two
user-defined signals (SIGUSR1, SIGUSR2).

Eventing using C library functions with only work within a single task, i.e. no intercommuni-
cation between different tasks is possible.
The event-driven routines are therefore not implemented internally as contingency routines
but via a CALL interface.

Process control The C programming interface

154 U23711-J-Z125-5-76

2.11.3.4 Free use of contingency routines

For special requirements that are not covered by the signal() and raise() functions,
appropriate BS2000 functions for eventing can be freely programmed. Such requirements
include, for example, a greater number of events (only two events can be defined with
raise() and signal()) or inter-task communication (raise() and signal() permit
eventing only within a single task).

Functions for actual eventing, such as starting event-driven processing and sending and
receiving signals, must be implemented in Assembler program sections with the appro-
priate BS2000 macro calls (POSSIG, SOLSIG, ENAEI).

The macros for enabling, disabling and terminating contingency processes (ENACO, DISCO,
RETCO) must not be used in the Assembler program section. Instead of these macros, the
C library functions cenaco() and cdisco() must be called. cenaco() and cdisco() not
only enable and disable contingency routines, but also perform specific actions that are
required to ensure that the consistency of the C runtime stack is maintained.

The contingency routine itself can be written in C or in Assembler. Termination of this routine
must be effected by means of a "normal" return (with return() or longjmp() in C, and
with @EXIT in Assembler).

Contingency routine in C

When the routine is started, a structure parameter is passed to it. This parameter is
declared in the header file cont.h as follows:

struct contp
{
int comess; /* contingency message */
evcode indicat; /* information indicator */
char filler[2]; /* reserved for int. use */
evcode switchc; /* event switch */
int pcode; /* post code */
int reg4; /* register 4 */
int reg5; /* register 5 */
int reg6; /* register 6 */
int reg7; /* register 7 */
int reg8; /* register 8 */
};

#define evcode char
#define _normal 0 /* evceventnormal */
#define _abnormal 4 /* evceventabnormal */
#define _nmnpc 0 /* evcnocomessnopostcode */
#define _mnpc 4 /* evccomessnopostcode */
#define _nmpc 8 /* evcnocomesspostcode */
#define _mpc 12 /* evccomesspostcode */

The C programming interface Process control

U23711-J-Z125-5-76 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

#define _etnm 0 /* evcelapsedtimenocomess */
#define _etm 4 /* evcelapsedtimecomess */
#define _disnm 16 /* evceventdisablednocomess */
#define _dism 20 /* evceventdisabledcomess */

If the structure parameter described above is to be evaluated, the C routine must provide a
formal parameter for a structure of type contp and could be constructed as shown below:

#include <cont.h>

void controut (struct contp contpar)
{
...
 return ...;
}

The C routine can be terminated in one of the following two ways:

– with the return statement, which causes the program to be continued at the point of
interruption or

– by calling the lonjmp() function, in which case the program is resumed at the position
defined by a setjmp() call.

Contingency routine in Assembler

The contingency routine must be written in Assembler if, for example, further BS2000
macro calls are to be made in it (such as SOLSIG for renewal of the contingency routine).

A structured ILCS Assembler program for a contingency routine is structured something like
this:

PARLIST DSECT
COMESS DS F
IND DS C
FILLER DS CL2
EC DS C
...
CONTROUT @ENTR TYP=E,ILCS=YES
USING PARLIST,R1
...
SOLSIG
...
@EXIT

The RETCO macro must not be invoked in the contingency routine.
The return must be effected with the @EXIT macro.

Process control The C programming interface

156 U23711-J-Z125-5-76

2.11.3.5 Free use of STXIT contingency routines

STXIT contingency routines can be freely programmed in C for special requirements that
are not covered by the signal() function. Such requirements typically include the transfer
of large amounts of data or additional continuation and control options after the execution
of the STXIT contingency routine.

The definition of a freely programmed STXIT contingency routine must be effected by
calling the C library function cstxit().

The SVC interrupt event class cannot be implemented even if the cstxit function is used.

When the STXIT contingency routine is started, it is supplied with a structure that is
declared in the header file stxit.h as follows:

struct stxcontp
{
int *intwghtp; /* pointer to interrupt weight */
jmp_buf *termlabp; /* pointer to termination label */
int *regsp; /* pointer to register save area */
};

Structure of the STXIT contingency routine

In order to use the structure parameter described above, the routine must provide a formal
parameter for a structure of type stxcontp and could be set up something like this:

#include <stxit.h>

void stxrout(stxcontpar)
struct stxcontp stxcontpar;
{
/* ... */
}

This routine can be terminated in three different ways:

– with the return statement, which causes the program to be continued at the point of
interruption or

– by calling the longjmp() function that is supplied by the setjmp call with a variable of
type jmp_buf, in which case the program is resumed at the position defined by a
setjmp() call or

– by calling the longjmp() function with the termination label passed in the stxcontp
structure.

In the case of event class TERM, it is not possible to return from the STXIT contingency
routine with a longjmp() call, since the entries for C functions, including the main function,
will have already been cleared from the runtime stack at the time this event (TERM-SVC)
occurs.

The C programming interface POSIX threads

U23711-J-Z125-5-76 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.12 Thread-safe C runtime library by supporting POSIX threads

Programs that work with the POSIX threads described in the XPG5 standard assume that
the functions of the runtime system are thread-safe.

To guarantee the thread-safety of the C runtime library, access to global resources (files,
global data from the C globals) must be forbidden or protected by a LOCK so that at most
one thread can access these resources at a time. The call interface of the functions does
not change when this is done. However, a calling thread-1 can be blocked by a thread-2
that has already allocated the resources requested. Only after thread-2 has released the
resources can thread-1 access them.

For this reason in CRTE a thread-safe variant is also supplied.

Thread safety in the runtime library is realized using the following mechanisms:

● exclusive access to objects of type (FILE *)

All functions that access objects of type (FILE *) behave as if they internally use the
flockfile() and funlockfile() functions to obtain exclusive access to these
(FILE *) objects.

● exclusive access to global data anchored in the globals

Functions that access global data are protected by a LOCK.

● errno is thread-specific

errno does not belong to the global data set any more, but is now thread-specific. This
means that for every thread of a process, the value of errno is not affected by function
calls or the assignment of a value to errno by a different thread.

● POSIX thread functions

POSIX thread functions implement exclusive access to objects of type (FILE *).

The following categories of POSIX thread functions exist:

– POSIX thread functions that are reentrant (containing an "_r" in the name of the
function)

– POSIX thread functions that are automatically protected by a LOCK

– POSIX THREAD functions for locking and unlocking objects of type (FILE*)

– POSIX thread functions for explicitly locking clients

– POSIX thread functions that affect a process or thread

The individual POSIX functions are described in detail in the chapter “Functions and
variables in alphabetical order” (see page 193).

POSIX threads The C programming interface

158 U23711-J-Z125-5-76

● Extended header files

The following header files contain additional function prototypes, data types and
constants to support POSIX threads:

– <dirent.h>
– <grp.h>
– <pthread.h>
– <pwd.h>
– <sched.h>
– <signal.h>
– <stdio.h>
– <stdlib.h>
– <string.h>
– <time.h>
– <unistd.h>

Some functions are not thread-safe yet and may not be used in programs that apply multi-
threading. This fact is pointed out in the description of this function in chapter “Functions
and variables in alphabetical order” (see page 193).

In addition, the functions of the _POSIX_THREAD_SAVE_FUNCTIONS group were
added. A list of these functions can be found on page 174. These functions are described
in detail in the chapter “Functions and variables in alphabetical order” (see page 193).

The C programming interface Programming notes

U23711-J-Z125-5-76 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.13 Programming notes

2.13.1 Return values and result parameters

Return value pointer

<type> *funct(...)

Many functions that return a pointer write their result to an internal C data area that is
overwritten whenever the function is called. Since this is a common source of errors, it is
mentioned explicitly for all functions of the data type pointer.

Return value void *

void * funct(...)

If the value of a void * function is assigned to a pointer variable, the type should be
converted explicitly using the cast operator. If the call is made from within a C++ source,
explicit type conversion is mandatory.

Example

long *long_ptr;
.
.
long_ptr (long *)calloc(20, sizeof(long));

Return value int

int funct();

Character-processing functions have a return value of type int, since EOF (=-1) is a
possible return value for such functions. If the function returns a value of type char, an error
occurs in a program.

Programming notes The C programming interface

160 U23711-J-Z125-5-76

Result parameter pointer

<type1> funct(<typ2> *variable)

Result parameters are variables whose contents are changed by the function, i.e. the
function stores a result in such variables. Result parameters are defined without the const
suffix.

The address, i.e. a pointer, must always be passed as the argument. Furthermore, the
memory for the result must be allocated explicitly before calling the function. Since this is
often overlooked, reminders are provided in the pertinent function descriptions.

Examples

struct timeb tp; /* structure */
ftime(&tp);

char erg; /* char variable */
scanf("%c", &erg);

char array[10]; /* string variable */
scanf("%s", array);

The C programming interface Programming notes

U23711-J-Z125-5-76 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

2

2.13.2 Error handling

In order to program effectively, it is worth checking most function calls to verify that the
function executed successfully. This can be done as follows:

if(fct(...) == error result){ /* Check error return value */
 perror("fct:"); /* Output error information */
 exit(error code); /* Respond to the error, e.g.*/
 } /* by terminating the program */
else...

Most functions return a value of -1 or the null pointer to indicate that an error occurred when
executing the function. See the chapter “Functions and variables in alphabetical order” on
page 193ff for specific details. To the extent that a function is designed for it, the external
variable errno may also be set in such cases. The value of the errno variable will be
defined only after a call to a function where it is explicitly stated that the function sets this
variable and will be preserved until it is modified by a subsequent function call. The errno
variable should be checked only if this is warranted by the value of the function result or is
explicitly recommended for a particular function in the "Notes" section. None of the library
functions in this manual set errno to 0 to indicate an error.

errno is not reset by function calls that execute successfully. In some cases, checking
errno is the only method of determining whether the function executed successfully.

Information specifying the error in more detail is prepared internally on the basis on the error
code set in errno. The corresponding error message, which contains a brief error text
explaining the error, can be written to the standard output by using the perror() function.

If more than one error occurs when processing a function call, any of the errors prescribed
for the function may be returned, since the order in which the errors are detected is
undefined.

All error codes to which errno can be set and the corresponding error information are
defined in the header file errno.h. A detailed listing of these error codes can be found
under the description of errno.h.

If various types of errors and thus different error codes are possible for a function, it may be
useful to query the errno variable for the error code so as to vary the response (if appro-
priate) to the errors that occur. Each error code is represented by a symbolic constant
defined in errno.h. For example, ERANGE indicates an overflow error.

Programming notes The C programming interface

162 U23711-J-Z125-5-76

A typical query could be written as shown in the following example for the signal()
function:

#include <errno.h>
...
errno = 0;
...
if(signal(sig, fct) == 1){ /* Check the error result */
 if (errno == EFAULT)
 ... /* Responses to EFAULT */
 else if(errno == EINVAL)
 ... /* Responses to EINVAL */
}
else...

The conditions under which an error may occur are presented under the "Errors" heading
of the individual function descriptions in the chapter “Functions and variables in alphabetical
order” on page 193ff.

2.13.3 Debugging options

If a program is compiled with the option TEST-SUPPORT=YES, all the facilities provided by
AID can be used for debugging the program (see the manual "AID - Debugging of C/C++
Programs"). Exception: No support for AID when accessing POSIX via rlogin or telnet (AID
only works in the block terminal mode).

U23711-J-Z125-5-76 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

3

3 Functions and variables arranged by theme

This section arranges the functions into groups from a thematic point of view.

3.1 File processing

File management

“basename - return last element of pathname” on page 217

“chdir - change working directory” on page 245

“chmod, fchmodat - change mode of file” on page 246

“chown, fchownat - change owner and group of file” on page 248

“chroot - change root directory” on page 251

“clearerr - clear end-of-file and error indicators” on page 252

“closedir - close directory” on page 257

“creat - create new file or overwrite existing one” on page 265

“dirfd - extract file descriptor” on page 283

“dirname - parent directory of pathname” on page 284

“fchdir - change current directory” on page 323

“fchmod - change mode of file” on page 324

“fchown - change owner or group of file” on page 327

“fcntl - control open file” on page 331

“FD_CLR, FD_ISSET, FD_SET, FD_ZERO - macros for synchronous I/O multiplexing” on
page 337

“fstat, fstatat - get file status of open file” on page 423

“fstatvfs, statvfs - read file system information” on page 427

“ftw - traverse (walk) file tree” on page 439

File processing Functions and variables arranged by theme

164 U23711-J-Z125-5-76

“fwide - specify file orientation” on page 443

“getcwd - get pathname of current working directory” on page 468

“getdtablesize - get size of descriptor table” on page 477

“getwd - get pathname of current working directory” on page 524

“lchown - change owner/group of file” on page 589

“lstat - query file status” on page 626

“link, linkat - create link to file” on page 594

“mkdir, mkdirat - make directory” on page 647

“mknod, mknodat - make directory, special file, or text file” on page 651

“mkstemp - make unique temporary file name” on page 654

“mktemp - make unique temporary file name (extension)” on page 655

“nftw - traverse file tree” on page 683

“opendir, fdopendir - open directory” on page 699

“readlink, readlinkat - read contents of symbolic link” on page 737

“remove - remove files” on page 763

“rename, renameat - rename file” on page 765

“rewinddir - reset file position indicator to start of directory stream” on page 770

“rmdir - remove directory” on page 773

“seekdir - set position of directory stream” on page 778

“stat - get file status” on page 854

“statvfs - read file system information” on page 858

“symlink, symlinkat - make symbolic link to file” on page 901

“sync - update superblock” on page 904

“telldir - get current location of named directory stream” on page 926

“tempnam - create pathname for temporary file” on page 927

“tmpfile - create temporary file” on page 933

“tmpnam - create base name for temporary file” on page 934

“umask - get and set file mode creation mask” on page 949

“unlink, unlinkat - remove link” on page 955

Functions and variables arranged by theme File processing

U23711-J-Z125-5-76 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

3

“utime - set file access and modification times” on page 961

File access

“access, faccessat - check access permissions for file” on page 199

“bs2fstat - get BS2000 file names from catalog (BS2000)” on page 226

“close - close file” on page 255

“dup, dup2 - duplicate file descriptor” on page 288

“faccessat - check access permissions for file” (see access on page 199)

“fattach - assign file descriptor under STREAMS to object in name space of file system” on
page 321

“fchmodat - change mode of file” (see chmod on page 246)

“fchownat - change owner and group of file” (see chown on page 248)

“fclose - close stream” on page 329

“fdelrec - delete record in ISAM file (BS2000)” on page 338

“fdetach - cancel assignment to STREAMS file” on page 339

“fdopen - associate stream with file descriptor” on page 341

“fdopendir - open directory” (see opendir on page 699)

“feof - test end-of-file indicator on stream” on page 343

“ferror - test error indicator on stream” on page 344

“fflush - flush stream” on page 345

“fgetpos - get current value of file position indicator in stream” on page 350

“fileno - get file descriptor” on page 355

“flocate - set file position indicator in ISAM file (BS2000)” on page 356

“fopen - open stream” on page 367

“freopen - flush and reopen stream” on page 401

“fseek - reposition file position indicator in stream” on page 416

“fsetpos - set file position indicator for stream to current value” on page 421

“fsync - synchronize changes to file” on page 430

“ftell - get current value of file position indicator for stream” on page 431

“ftruncate, truncate - set file to specified length” on page 436

File processing Functions and variables arranged by theme

166 U23711-J-Z125-5-76

“futimesat - setting file access and update times” on page 441

“ioctl - control devices and STREAMS” on page 541

“lockf - lock file section” on page 609

“lseek - move read/write file offset” on page 622

“isastream - test file descriptor” on page 559

“open, openat - open file” on page 689

“rewind - reset file position indicator to start of stream” on page 769

“truncate - set file to specified length” on page 939

“select - synchronous I/O multiplexing” on page 779

“tell - get current value of file position indicator (BS2000)” on page 925

“utimes - set file access time and file modification time” on page 963

“utimensat - Setting file access and update times” on page 965

64-bit functions to support NFS V3.0

"creat64 - create new file or overwrite existing file" on page 265

"fcntl64 - control open file" on page 331

"fgetpos64 - get current value of the read/write pointer in the stream" on page 350

"fopen64 - open stream" on page 367

"freopen64 - flush stream and open new stream" on page 401

"fseek64 - point read/write pointer in stream to current value" on page 416

"fsetpos64 - set position of read/write pointer in stream to current value" on page 421

"fstat64 - query status of an open file" to page 423 (also fstatat64)

"fstatvfs64, statvfs64 - read file system information" on page 427

"ftell64 - get current value of read/write pointer in stream" on page 431

"ftruncate64, truncate64 - set file length to specified value" on page 436

"getdents64 - convert directory entries" on page 475

"getrlimit64, setrlimit64 - get or set limit value for a resource" on page 508

"lockf64 - lock file section" on page 609

"lseek64 - point read/write pointer to current value" on page 622

"lstat64 - query file status" on page 626

Functions and variables arranged by theme I/O on terminal

U23711-J-Z125-5-76 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

3

"mmap64 - map memory pages" on page 660

"open64 - open file" on page 689

"readdir64 - read from directory" on page 734

"setrlimit64 - set limit value for a resource" on page 807

"stat64 - query file status" on page 854

"statvfs64 - read file system information" on page 858

3.2 I/O on terminal

“fgetc - get byte from stream” on page 348

“fgets - get string from stream” on page 351

“fgetwc - get wide character string from stream” on page 352

“fgetws - get wide character string from stream” on page 354

“fprintf, printf, sprintf - write formatted output on output stream” on page 378

“fputc - put byte on stream” on page 392

“fputs - put string on stream” on page 394

“fputwc - put wide-character code on stream” on page 395

“fputws - put wide character string on stream” on page 397

“fread - read binary data” on page 398

“fscanf, scanf, sscanf - read formatted input” on page 404

“fwprintf, swprintf, vfwprintf, vswprintf, vwprintf, wprintf - output formatted wide characters”
on page 444

“fwrite - output binary data” on page 451

“fwscanf, swscanf, wscanf - formatted read” on page 453

“getc - get byte from stream” on page 461

“getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked - standard I/O with
explicit lock by the client” on page 463

“getmsg - get message from STREAMS file” on page 490

“getopt, optarg, optind, opterr, optopt - command option parsing” on page 493

“getpass - read string of characters without echo” on page 497

I/O on terminal Functions and variables arranged by theme

168 U23711-J-Z125-5-76

“getpmsg - get message from STREAMS file” on page 499

“gets - get string from standard input stream” on page 513

“getw - read word from stream” on page 520

“getwc - get wide character from stream” on page 522

“getwchar - get wide character from standard input stream” on page 523

"optarg, opterr, optind, optopt - variables for command options" (see getopt on page 493)

“poll - multiplex STREAMs I/O” on page 709

„printf - write formatted output on standard output stream" (see fprintf on page 378)

“putc, putc_unlocked - put byte on stream” on page 715

“putchar - put byte on standard output stream (thread-safe)” on page 716

“putmsg, putpmsg - send message to STREAMS file” on page 718

“puts - put string on standard output” on page 722

“putw - put word on stream” on page 724

“putwc - put wide character on stream” on page 725

“putwchar - put wide character on standard output stream” on page 725

“read - read bytes from file” on page 731

“readv - read array from file” on page 739

“readdir - read directory” on page 734

“readdir_r - read directory (thread-safe)” on page 736

“readlink, readlinkat - read contents of symbolic link” on page 737

„scanf - read formatted input from standard input stream" (see fscanf)

“setbuf - assign buffering to stream” on page 790

“setvbuf - assign buffering to stream” on page 811

“snprintf - formatted output to a string” on page 851

“sprintf - write formatted output to string” on page 852

"sscanf - read formatted input from string" (see fscanf on page 404)

“stderr, stdin, stdout - variables for standard I/O streams” on page 859

“swprintf - output formatted wide characters” on page 900

“swscanf - formatted read” on page 900

Functions and variables arranged by theme Processes

U23711-J-Z125-5-76 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

3

“ungetc - push byte back onto input stream” on page 952

“ungetwc - push wide character back onto input stream” on page 954

“va_arg - process variable argument list” on page 967

“va_end - end variable argument list” on page 968

“va_start - initialize variable argument list” on page 969

“vfprintf, vprintf, vsprintf - formatted output of variable argument list” on page 972

“vfwprintf - formatted output of wide characters” on page 973

“vsnprintf - formatted output to a string” on page 975

“vprintf - formatted output to standard out” on page 974

“vsprintf - formatted output to a string” on page 976

“vswprintf - formatted output of wide characters” on page 977

“vwprintf - formatted output of wide characters” on page 977

“wprintf - formatted output of wide characters” on page 1024

“write - write bytes to file” on page 1025

“writev - write to file” on page 1031

“wscanf - formatted read” on page 1032

3.3 Processes

Process administration

“cdisco - disconnect contingency routine (BS2000)” on page 238

“cenaco - define contingency routine (BS2000)” on page 240

“cstxit - define STXIT routine (BS2000)” on page 271

“cuserid - get login name” on page 278

“endgrent, getgrent, setgrent - group management” on page 294

“endpwent, getpwent, setpwent - manage user catalog” on page 296

“endutxent, getutxent, getutxid, getutxline, pututxline, setutxent - manage utmpx entries” on
page 298

“_ _FILE_ _ - macro for source file names” on page 355

Processes Functions and variables arranged by theme

170 U23711-J-Z125-5-76

“getdtablesize - get size of descriptor table” on page 477

“getegid - get effective group ID of process” on page 477

“geteuid - get effective user ID of process” on page 479

“getgid - get real group ID of process” on page 479

“getgrgid - get group file entry for group ID” on page 480

“getgrgid_r - get group file entry for group ID (thread-safe)” on page 481

“getgrnam - get group file entry for group name” on page 482

“getgrnam_r - get group file entry for group name (thread-safe)” on page 483

“getgroups - get supplementary group IDs” on page 484

“gethostid - get ID of current host” on page 485

“gethostname - get name of current host” on page 485

“getlogin - get login name” on page 488

“getlogin_r - get login name (thread-safe)” on page 489

“getpgmname - get program name (BS2000)” on page 498

“getpgid - get process group ID” on page 498

“getpgrp - get process group ID” on page 499

“getpid - get process ID” on page 499

“getppid - get parent process ID” on page 500

“getpriority, setpriority - get or set process priority” on page 501

“getpwnam - get user name” on page 504

“getpwnam_r - get user name (thread-safe)” on page 505

“getpwuid - get user ID” on page 506

“getsid - get process group ID” on page 515

“gettsn - get TSN (task sequence number) (BS2000)” on page 518

“getuid - get real user ID” on page 518

“getutxent, getutxid, getutxline - get utmpx entry” on page 519

“_ _LINE_ _ - macro for current source program line number” on page 593

“setgid - set group ID of process” on page 793

“setpgid - set process group ID for job control” on page 803

Functions and variables arranged by theme Processes

U23711-J-Z125-5-76 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

3

“setpgrp - set process group ID” on page 804

“setregid - set real and effective group IDs” on page 805

“setreuid - set real and effective user IDs” on page 806

“setsid - create session and set process group ID” on page 808

“setuid - set user ID” on page 809

“_ _STDC_ _ - macro for ANSI conformance” on page 858

“_ _STDC_VERSION_ _ - Amendment 1 conformity?” on page 858

“ttyslot - find entry of current user in utmp file” on page 944

“ulimit - get and set process limits” on page 948

Process control and signals

“abort - abort process” on page 197

“alarm - schedule alarm signal” on page 204

“atexit - register function to run at process termination” on page 212

“bs2exit - program termination with MONJV (BS2000)” on page 225

“bsd_signal - simplified signal handling” on page 228

“exec: execl, execv, execle, execve, execlp, execvp - execute file” on page 311

“exit, _exit - terminate process” on page 316

“fork - create new process” on page 375

“kill - send signal to process or process group” on page 585

“killpg - send signal to process group” on page 587

“_longjmp, _setjmp - non-local jump (without signal mask)” on page 615

“longjmp - execute non-local jump” on page 616

“nice - change priority of process” on page 686

“pause - suspend process until signal is received” on page 705

“raise - send signal to calling process” on page 727

“_setjmp - set label for non-local jump (without signal mask)” on page 795

“setjmp - set label for non-local jump” on page 796

“sigaction - examine and change signal handling” on page 820

“sigaddset - add signal to signal set” on page 828

Processes Functions and variables arranged by theme

172 U23711-J-Z125-5-76

“sigaltstack - set/read alternative stack of signal” on page 829

“sigdelset - delete signal from signal set” on page 831

“sigemptyset - initialize and empty signal set” on page 832

“sigfillset - initialize and fill signal set” on page 833

“sighold, sigignore - add signal to signal mask / register SIG_IGN for signal” on page 833

“siginterrupt - change behavior of system calls in response to interrupts” on page 834

“sigismember - test for member of signal set” on page 835

“siglongjmp - execute non-local jump using signal” on page 836

“signal - examine or change signal handling” on page 837

“sigpause - remove signal from signal mask and deactivate process” on page 840

“sigpending - examine pending signals” on page 840

“sigprocmask - examine or change blocked signals” on page 841

“sigrelse - remove signal from signal mask” on page 843

“sigset - modify signal handling” on page 843

“sigsetjmp - set label for non-local jump using signal” on page 844

“sigstack - set or query alternative stack for signal” on page 846

“sigsuspend - wait for signal” on page 847

“sleep - suspend process for fixed interval of time” on page 849

“wait, waitpid - wait for child process to stop or terminate” on page 978

“vfork - generate new process in virtual memory” on page 971

“wait3 - wait for status change of child processes” on page 982

“waitid - wait for status change of child processes” on page 983

Interprocess communication

“ftok - interprocess communication” on page 435

“mkfifo, mkfifoat - create FIFO file” on page 649

“msgctl - message control operations” on page 669

“msgget - get message queue” on page 671

“msgrcv - receive message from queue” on page 673

“msgsnd - send message to queue” on page 675

Functions and variables arranged by theme Processes

U23711-J-Z125-5-76 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

3

“pclose - close pipe stream” on page 706

“pipe - create pipe” on page 708

“popen - initiate pipe stream to or from process” on page 712

“semctl - semaphore control operations” on page 781

“semget - get semaphore ID” on page 784

“semop - semaphore operations” on page 786

“shmat - shared memory attach operation” on page 813

“shmctl - shared memory control operations” on page 815

“shmdt - shared memory detach operation” on page 817

“shmget - create shared memory segment” on page 818

Diagnostics and messages

“assert - output diagnostic messages” on page 210

“catclose - close message catalog” on page 233

“catgets - read message” on page 234

“catopen - open message catalog” on page 235

“closelog, openlog, setlogmask, syslog - control system log” on page 258

“errno - variable for error return values” on page 310

“fmtmsg - output message to stderr and/or system console” on page 362

“perror - write error messages to standard error” on page 707

“strerror - get message string” on page 866

Functions to support POSIX threads Functions and variables arranged by theme

174 U23711-J-Z125-5-76

3.4 Functions to support POSIX threads

Reentrant POSIX thread functions
(_POSIX_THREAD_SAVE_FUNCTIONS group)

Functions with the "_r" suffix in the name are functions that are the reentrant version of the
corresponding function without the "_r" suffix. Since these functions are also useful when
working with threads, they are also supplied in the unthreaded version of CRTE
($.SYSLNK.CRTE).

“asctime_r - convert date and time to string (thread-safe)” on page 208

“ctime_r - thread-safe conversion of date and time to string” on page 277

“getgrgid_r - get group file entry for group ID (thread-safe)” on page 481

“getgrnam_r - get group file entry for group name (thread-safe)” on page 483

“getlogin_r - get login name (thread-safe)” on page 489

“getpwnam_r - get user name (thread-safe)” on page 505

“gmtime_r - convert date and time to UTC (thread-safe)” on page 527

“localtime_r - convert date and time to string (thread-safe)” on page 608

“rand_r - pseudo-random number generator (int, thread-safe)” on page 729

“readdir_r - read directory (thread-safe)” on page 736

“strtok_r - split string into tokens (thread-safe)” on page 889

“ttyname - find pathname of terminal” on page 942

These functions are to be used when working with threads instead of using the corre-
sponding function that does not have the suffix "_r". However, it is also advantageous to use
the functions listed in a unthreaded environment.

POSIX THREAD functions for locking and unlocking objects of type (FILE*)

“flockfile, ftrylockfile, funlockfile - functions for locking standard input/output” on page 358

Functions and variables arranged by theme Functions to support POSIX threads

U23711-J-Z125-5-76 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

3

POSIX thread functions for explicitly locking clients

The following functions are identical to the corresponding functions without "_unlocked" in
the name:

“getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked - standard I/O with
explicit lock by the client” on page 463

In this case the user must guarantee thread safety himself by locking the object of type
(FILE*) used by calling the flockfile or ftrylockfile function and by calling the funlockfile
function to unlock it.

POSIX thread functions that affect a process or thread

There are two kinds of POSIX thread functions

– Functions that affect the process (just like before) and therefore affect all threads
belonging to the process and

– Functions that only affect a special thread

You must also check when using signals if the signal is sent to the (entire) process or to a
certain thread.

The following functions are available in this context:

“abort - abort process” on page 197

“alarm - schedule alarm signal” on page 204

“atexit - register function to run at process termination” on page 212

“exit, _exit - terminate process” on page 316

“fcntl - control open file” on page 331

“fork - create new process” on page 375

“getcontext, setcontext - display or modify user context” on page 466

“getpid - get process ID” on page 499

"getrlimit - get limit value for a resource" on page 508

"getpriority - call process priority" on page 501

“kill - send signal to process or process group” on page 585

“lockf - lock file section” on page 609

“msgrcv - receive message from queue” on page 673

“msgsnd - send message to queue” on page 675

Functions to support POSIX threads Functions and variables arranged by theme

176 U23711-J-Z125-5-76

“nice - change priority of process” on page 686

“open, openat - open file” on page 689

“pause - suspend process until signal is received” on page 705

“raise - send signal to calling process” on page 727

“read - read bytes from file” on page 731

“semop - semaphore operations” on page 786

“setcontext - modify user context” on page 791

“setlocale - set or query locale” on page 799

“sigaction - examine and change signal handling” on page 820

“sigpause - remove signal from signal mask and deactivate process” on page 840

“sigpending - examine pending signals” on page 840

“sigsetjmp - set label for non-local jump using signal” on page 844

“sigsuspend - wait for signal” on page 847

“sleep - suspend process for fixed interval of time” on page 849

“usleep - suspend process for defined interval” on page 960

“wait, waitpid - wait for child process to stop or terminate” on page 978

“wait3 - wait for status change of child processes” on page 982

“waitid - wait for status change of child processes” on page 983

“write - write bytes to file” on page 1025

For the following functions the SIGPIPE signal is not sent to the process but is sent to the
calling thread instead when an EPIPE error occurs:

“fclose - close stream” on page 329

“fflush - flush stream” on page 345

“fputc - put byte on stream” on page 392

“fputwc - put wide-character code on stream” on page 395

“fseek - reposition file position indicator in stream” on page 416

“write - write bytes to file” on page 1025

Functions and variables arranged by theme Functions to support POSIX threads

U23711-J-Z125-5-76 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

3

Functions that are not safe for threads

All functions that are defined in the C runtime library are safe for threads as delivered. The
following functions are the only exceptions to this rule:

“asctime - convert date and time to string” on page 206 1

“basename - return last element of pathname” on page 217

“brk, sbrk - modify size of data segment” on page 219

“chroot - change root directory” on page 251

“ctime, ctime64 - convert date and time to string” on page 276 1

“cuserid - get login name” on page 278

"dbmclearerr - function for administering dbm databases" on page 280

“div - divide with integers” on page 285

“ecvt, fcvt, gcvt - convert floating-point number to string” on page 291

“endgrent, getgrent, setgrent - group management” on page 294

“endpwent, getpwent, setpwent - manage user catalog” on page 296

“endutxent, getutxent, getutxid, getutxline, pututxline, setutxent - manage utmpx entries” on
page 298

“fcvt - convert floating-point number to string” on page 337

“gamma - compute logarithm of gamma function” on page 459

“gcvt - convert floating-point number to string” on page 460

“getdtablesize - get size of descriptor table” on page 477

“getenv - get value of environment variable” on page 478

“getgrent - get group file entry” on page 479

“getpwent - read user data from user catalog” on page 503

“getutxent, getutxid, getutxline - get utmpx entry” on page 519

“getgrgid - get group file entry for group ID” on page 480 1

“getgrnam - get group file entry for group name” on page 482 1

“getlogin - get login name” on page 488 1

“getpagesize - get current page size” on page 496

“getpass - read string of characters without echo” on page 497

1 use reentrant function ("_r" extension)

Functions to support POSIX threads Functions and variables arranged by theme

178 U23711-J-Z125-5-76

“getpwnam - get user name” on page 504 1

“getw - read word from stream” on page 520

"initstate - generate pseudo-random number" on page 538 2

“localtime, localtime64 - convert date and time to local time” on page 606 1

“longjmp - execute non-local jump” on page 616 3

“ptsname - name of pseudoterminal” on page 714

“putenv - change or add environment variables” on page 717

“pututxline - write utmpx entry” on page 723

“putw - put word on stream” on page 724

“rand - pseudo-random number generator (int)” on page 729 2

“readdir - read directory” on page 734 3

“sbrk - modify size of data segment” on page 776

“setgrent - reset file position indicator to beginning of group file” on page 794

“setpwent - delete pointer to search user catalog” on page 804

“setutxent - reset pointer to utmpx file” on page 810

“siglongjmp - execute non-local jump using signal” on page 836 3

“signgam - variable for sign of lgamma” on page 840

“sigprocmask - examine or change blocked signals” on page 841 4

“sigset - modify signal handling” on page 843

“strtok - split string into tokens” on page 888 1

“ttyname - find pathname of terminal” on page 942 1

“ttyslot - find entry of current user in utmp file” on page 944

“wait3 - wait for status change of child processes” on page 982

1 use reentrant function ("_r" extension)
2 use rand_r() reentrant function
3 The result of calling this function is undefined when the jmp_buf structure was not initialized in the calling thread.
4 use pthread_sigmask function

Functions and variables arranged by theme Memory management and memory operations

U23711-J-Z125-5-76 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

3

Note

If you use one of the _POSIX_THREAD_SAFE_FUNCTIONS or _POSIX_THREADS interfaces,
you must call the ctermid() and tmpnam() functions with a parameter that is not equal to
the null pointer in order to be thread-safe. Otherwise the result will be written to an internal
static area, which can lead to an undefined response.

3.5 Memory management and memory operations

“bcmp - compare memory areas” on page 218

“bcopy - copy memory area” on page 218

“brk, sbrk - modify size of data segment” on page 219

“bzero - initialize memory with X‘00‘” on page 231

“calloc - allocate memory” on page 232

“free - free allocated memory” on page 400

“garbcoll - release memory space to system (BS2000)” on page 460

“malloc - memory allocator” on page 631

“memalloc - memory allocator (BS2000)” on page 638

“memchr - find byte in memory” on page 640

“memcmp - compare bytes in memory” on page 641

“memfree - free memory area (BS2000)” on page 643

“memmove - copy bytes in memory with overlapping areas” on page 644

“memset - initialize memory area” on page 645

“mmap - map memory pages” on page 660

“mprotect - modify access protection for memory mapping” on page 667

“msync - synchronize memory” on page 677

“munmap - unmap memory pages” on page 679

“offsetof - get offset of structure component from start of structure (BS2000)” on page 688

“realloc - memory reallocator” on page 741

“swab - swap bytes” on page 900

“valloc - request memory aligned with page boundary” on page 970

System environment Functions and variables arranged by theme

180 U23711-J-Z125-5-76

3.6 System environment

“bs2cmd - execute BS2000 commands by means of the CMD macro” on page 221

“bs2system - execute BS2000 command (extension)” on page 227

“confstr - get string value of system variable” on page 262

“_edt - call EDT (BS2000)” on page 293

“environ - external variable for environment” on page 301

„fpathconf - get value of pathname variable" (see pathconf on page 702)

“getcontext, setcontext - display or modify user context” on page 466

“getenv - get value of environment variable” on page 478

“getpagesize - get current page size” on page 496

“getrlimit, setrlimit - get or set limit for resource” on page 508

“getrusage - get information on usage of resources” on page 512

“initgroups - initialize group access lists” on page 537

“localeconv - change components of locale” on page 602

“makecontext, swapcontext - set up user context” on page 629

“mount - mount file system (extension)” on page 665

“nl_langinfo - get locale values” on page 687

“pathconf, fpathconf - get value of pathname variable” on page 702

“putenv - change or add environment variables” on page 717

“setenv - add or change environment variable” on page 792

“setgroups - write group numbers” on page 794

“setlocale - set or query locale” on page 799

“setrlimit - set resource limit” on page 807

“sysconf - get numeric value of configurable system variable” on page 905

“sysfs - get information on file system type (extension)” on page 909

“system - execute system command” on page 911

“umount - unmount file system (extension)” on page 950

“uname - get basic data on current operating system” on page 951

“unsetenv - remove an environment variable” on page 959

Functions and variables arranged by theme Characters and strings

U23711-J-Z125-5-76 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

3

3.7 Characters and strings

Single character processing

“ffs - seek first set bit” on page 347

“isalnum - test for alphanumeric character” on page 556

“isalpha - test for alphabetic character” on page 557

“isascii - test for 7-bit ASCII character” on page 558

“iscntrl - test for control character” on page 561

“isdigit - test for decimal digit” on page 562

“isebcdic - test for EBCDIC character (BS2000)” on page 563

“isgraph - test for visible character” on page 564

“islower - test for lowercase letter” on page 565

“isprint - test for printing character” on page 567

“ispunct - test for punctuation character” on page 568

“isspace - test for white-space character” on page 569

“isupper - test for uppercase letter” on page 570

“iswalnum - test for alphanumeric wide character” on page 571

“iswalpha - test for alphabetic wide character” on page 572

“iswcntrl - test for control wide character” on page 573

“iswctype - test wide character for class” on page 574

“iswdigit - test for decimal digit wide character” on page 575

“iswgraph - test for visible wide character” on page 576

“iswlower - test for lowercase wide character” on page 577

“iswprint - test for printing wide character” on page 578

“iswpunct - test for punctuation wide character” on page 579

“iswspace - test for white-space wide character” on page 580

“iswupper - test for uppercase wide character” on page 581

“iswxdigit - test for hexadecimal digit wide character” on page 582

“isxdigit - test for hexadecimal digit” on page 583

Characters and strings Functions and variables arranged by theme

182 U23711-J-Z125-5-76

“mblen - get number of bytes in multi-byte character” on page 632

“mbrlen - get number of bytes in multi-byte character” on page 632

“mbsinit - test for “initial conversion” state” on page 634

“wctype - define wide character class” on page 1019

“wcwidth - get number of column positions of wide character code” on page 1020

String processing

“a64l, l64a - convert string to 32-bit integer” on page 195

“ascii_to_ebcdic - convert ASCII string to EBCDIC string (extension)” on page 205

“crypt - encode strings using algorithms” on page 270

“ebcdic_to_ascii - convert EBCDIC string to ASCII string (extension)” on page 290

“encrypt - encode strings blockwise” on page 293

“getsubopt - get suboptions from string” on page 516

“index - get first occurrence of character in string” on page 536

“rindex - get last occurrence of character in string” on page 771

“setkey - set encoding key” on page 798

“strcasecmp, strncasecmp - non-case-sensitive string comparison” on page 860

“strcat - concatenate two strings” on page 861

“strchr - scan string for characters” on page 861

“strcmp - compare two strings” on page 862

“strcoll - compare strings using collating sequence” on page 863

“strcpy - copy string” on page 864

“strcspn - get length of complementary substring” on page 864

“strdup - duplicate string” on page 865

“strfill - copy substring (BS2000)” on page 867

“strlen - get length of string” on page 875

“strlower - convert a string to lowercase letters (BS2000)” on page 875

“strncasecmp - non-case-sensitive string comparisons” on page 876

“strncat - concatenate two substrings” on page 876

“strnlen - determine length of a string up to a maximum length” on page 879

Functions and variables arranged by theme Characters and strings

U23711-J-Z125-5-76 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

3

“strncmp - compare two substrings” on page 877

“strncpy - copy substring” on page 878

“strpbrk - get first occurrence of character in string” on page 879

“strrchr - get last occurrence of character in string” on page 884

“strspn - get length of substring” on page 885

“strstr - find substring in string” on page 885

“strtok - split string into tokens” on page 888

“strtok_r - split string into tokens (thread-safe)” on page 889

“strupper - convert string to uppercase letters (BS2000)” on page 898

“strxfrm - string transformation based on LC_COLLATE” on page 899

“towctrans - map wide characters” on page 938

“wcscat - concatenate two wide character strings” on page 986

“wcschr - scan wide character string for wide characters” on page 987

“wcscmp - compare two wide character strings” on page 988

“wcscoll - compare two wide character strings according to LC_COLLATE” on page 989

“wcscspn - get length of complementary wide character substring” on page 991

“wcslen - get length of wide character string” on page 993

“wcsncat - concatenate two wide character strings” on page 994

“wcsncmp - compare two wide character substrings” on page 995

“wcsncpy - copy wide character substring” on page 996

“wcspbrk - get first occurrence of wide character in wide character string” on page 997

“wcsrchr - get last occurrence of wide character in wide character string” on page 998

“wcsspn - get length of wide character substring” on page 1000

“wcsstr - search for first occurrence of a wide character string” on page 1001

“wcstok - split wide character string into tokens” on page 1004

“wcswcs - find wide character substring in wide character string” on page 1014

“wcswidth - get number of column positions of wide character string” on page 1015

“wctrans - define wide character mappings” on page 1018

“wmemchr - search for wide character in a wide character string” on page 1021

Characters and strings Functions and variables arranged by theme

184 U23711-J-Z125-5-76

“wmemcmp - compare two wide character strings” on page 1022

“wmemcpy - copy wide character string” on page 1022

“wmemmove - copy wide character string in overlapping area” on page 1023

“wmemset - set first n wide characters in wide character string” on page 1023

Character and string conversions

“btowc - (one byte) convert multi-byte character to wide character” on page 230

“iconv - code conversion function” on page 532

“iconv_close - deallocate code conversion descriptor” on page 534

“iconv_open - allocate code conversion descriptor” on page 535

“mbrtowc - complete and convert multi-byte string to wide-character string” on page 633

“mbsrtowcs - convert multi-byte string to wide-character string” on page 635

“mbtowc - convert multi-byte character to wide character” on page 637

“strftime - convert date and time to string” on page 872

“strptime - convert string to date and time” on page 880

“_tolower - convert uppercase letters to lowercase” on page 936

“tolower - convert characters to lowercase” on page 937

“_toupper - convert lowercase letters to uppercase” on page 937

“toupper - convert characters to uppercase” on page 937

“towlower - convert wide characters to lowercase” on page 938

“towupper - convert wide characters to uppercase” on page 939

“wcrtomb - convert wide characters to multi-byte characters” on page 985

“wcsrtombs - convert wide character string to multi-byte string” on page 999

“wcstombs - convert wide character string to character string” on page 1009

“wctomb - convert wide character code to character” on page 1017

“wctob - convert wide character to 1-byte multi-byte character” on page 1017

Functions and variables arranged by theme Conversion of entities

U23711-J-Z125-5-76 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

3

3.8 Conversion of entities

“atof - convert string to double-precision number” on page 213

“atoi - convert string to integer” on page 214

“atol - convert string to long integer” on page 215

“atoll - convert string to long long integer (long long int)” on page 216

“ecvt, fcvt, gcvt - convert floating-point number to string” on page 291

“fcvt - convert floating-point number to string” on page 337

“gcvt - convert floating-point number to string” on page 460

“getdents - convert directory entries” on page 475

“getsubopt - get suboptions from string” on page 516

“l64a - convert 32-bit integer number to string” on page 588

“strftime - convert date and time to string” on page 872

“strtod - convert string to double-precision number” on page 886

“strtol - convert string to long integer” on page 890

“strtoll - convert string to long long integer” on page 892

“strtoul - convert string to unsigned long integer” on page 894

“strtoull - convert string to unsigned long long” on page 896

“toascii - convert integer to legal value” on page 935

“toebcdic - convert integer to legal value (BS2000)” on page 936

“wcsftime - convert date and time to wide character string” on page 992

“wcstod - convert wide character string to double-precision number” on page 1002

“wcstol - convert wide character string to long integer” on page 1005

“wcstoll - convert wide character string to long long integer” on page 1007

“wcstoul - convert wide character string to unsigned long” on page 1010

“wcstoull - convert wide character string to unsigned long long” on page 1012

Regular expressions / Time functions Functions and variables arranged by theme

186 U23711-J-Z125-5-76

3.9 Regular expressions

“advance - pattern match given compiled regular expression” on page 203

“compile - produce compiled regular expression” on page 261

“loc1, loc2 - pointers to characters matched by regular expressions” on page 601

“locs - stop regular expression matching in string” on page 612

“re_comp, re_exec - compile and execute regular expressions” on page 743

“regcmp, regex - compile and execute regular expression” on page 746

“regcomp, regexec, regerror, regfree - interpret regular expression” on page 749

“regexp: advance, compile, step, loc1, loc2, locs - compile and match regular expressions”
on page 755

“step - compare regular expressions” on page 860

3.10 Time functions

“asctime - convert date and time to string” on page 206

“asctime_r - convert date and time to string (thread-safe)” on page 208

“clock - report CPU time used by a process” on page 253

“clock_gettime, clock_gettime64 - get time of a specified clock” on page 254

“cputime - calculate CPU time used by current task (BS2000)” on page 264

“ctime, ctime64 - convert date and time to string” on page 276

“ctime_r - thread-safe conversion of date and time to string” on page 277

“_ _DATE_ _ - macro for compilation date” on page 279

“daylight - daylight savings time variable” on page 279

“difftime, difftime64 - compute difference between two calendar time values” on page 283

“gmtime, gmtime64 - convert date and time to UTC” on page 525

“gmtime_r - convert date and time to UTC (thread-safe)” on page 527

“ftime, ftime64 - get date and time” on page 433

“getdate - convert time and date to user format” on page 470

“getitimer, setitimer - read or set” on page 486

Functions and variables arranged by theme Regular expressions / Time functions

U23711-J-Z125-5-76 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

3

“getsubopt - get suboptions from string” on page 516

“localtime, localtime64 - convert date and time to local time” on page 606

“localtime_r - convert date and time to string (thread-safe)” on page 608

“mktime, mktime64 - convert local time into time since the Epoch” on page 657

“_ _TIME_ _ - macro for compilation time” on page 929

“time, time64 - get time since the Epoch” on page 930

“timezone - variable for difference between local time and UTC” on page 932

“tzname - array variable for timezone strings” on page 945

“tzset - set timezone conversion information” on page 946

“ualarm - set interval timer” on page 947

“usleep - suspend process for defined interval” on page 960

Math functions Functions and variables arranged by theme

188 U23711-J-Z125-5-76

3.11 Math functions

Arithmetic with integers

“abs - return integer absolute value” on page 198

“div - divide with integers” on page 285

“labs - return long integer absolute value” on page 588

“ldiv - long division of integers” on page 592

“llabs - return absolute value of an integer (long long int)” on page 597

“lldiv - division of integers (long long int)” on page 598

“llrint, llrintf, llrintl - round to nearest integer value (long long int)” on page 599

“llround, llroundf, llroundl - round up to next integer value (long long int)” on page 600

“lrint, lrintf, lrintl - round to nearest integer value (long int)” on page 619

“lround, lroundf, lroundl - round up to next integer value (long int)” on page 620

“rint, rintf, rintl - round to nearest integer value” on page 772

“round, roundf, roundl - round up to next integer value” on page 775

Arithmetic with floating-point numbers

“cabs - calculate absolute value of complex number (BS2000)” on page 231

“ceil, ceilf, ceill - round up floating-point number” on page 239

“cbrt - cube root” on page 237

“errno - variable for error return values” on page 310

“exp - use exponential function” on page 319

“expm1 - compute exponential function” on page 319

“fabs - compute absolute value of floating-point number” on page 320

“floor, floorf, floorl- round off floating point number” on page 360

“fmod - compute floating-point remainder value function” on page 361

“frexp - extract mantissa and exponent from double precision number” on page 403

“gamma - compute logarithm of gamma function” on page 459

“hypot - Euclidean distance function” on page 531

“ilogb - get exponent part of floating-point number” on page 536

Functions and variables arranged by theme Math functions

U23711-J-Z125-5-76 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

3

“isnan - test for NaN (not a number)” on page 566

“j0, j1, jn - Bessel functions of first kind” on page 584

“ldexp - load exponent of floating-point number” on page 591

“lgamma - compute logarithm of gamma function” on page 593

“log - natural logarithm function” on page 612

“log10 - base 10 logarithm function” on page 613

“log1p - compute natural log” on page 613

“logb - get exponent part of floating-point number” on page 614

“modf - split floating-point number into integral and fractional parts” on page 664

“nextafter - next displayable floating-point number” on page 682

“pow - power function” on page 713

“remainder - remainder from division” on page 762

“rint, rintf, rintl - round to nearest integer value” on page 772

“scalb - load exponent of base-independent floating-point number” on page 776

“signgam - variable for sign of lgamma” on page 840

“sqrt - square root function” on page 852

“y0, y1, yn - Bessel functions of the second kind” on page 1033

Trigonometric, hyperbolic and arc functions

“acos - arc cosine function” on page 201

“acosh, asinh, atanh - inverse hyperbolic functions” on page 202

“asin - arc sine function” on page 209

“atan - arc tangent function” on page 210

“atan2 - arc tangent of x/y” on page 211

“cos - cosine function” on page 263

“cosh - hyperbolic cosine function” on page 263

“sin - sine function” on page 848

“sinh - hyperbolic sine function” on page 848

“tan - compute tangent” on page 914

“tanh - compute hyperbolic tangent” on page 914

Search and sort procedures Functions and variables arranged by theme

190 U23711-J-Z125-5-76

Random numbers

“drand48 - generate pseudo-random numbers between 0.0 and 1.0” on page 286

"erand48 - generate pseudo-random numbers between 0.0 and 1.0 with initialization value"
(see drand48 on page 286)

“initstate, random, setstate, srandom - generate pseudo-random numbers” on page 538

"jrand48 - generate pseudo random numbers between -231 and 231 with initialization value"
(see drand48 on page 286)

„lcong48 - pseudo-random number (signed long int) generator" (see drand48 on page 286)

"lrand48 - generate pseudo random numbers between 0 and 231" (see drand48 on
page 286)

"mrand48 - generate pseudo random numbers between -231 and 231" (see drand48 on
page 286)

"nrand48 - generate pseudo random numbers between 0 and 231 with initialization value"
(see drand48 on page 286)

“rand - pseudo-random number generator (int)” on page 729

“seed48 - set seed (int) for pseudo-random numbers” on page 777" (see drand48 on
page 286)

“srand - generate pseudo-random numbers with seed” on page 852

"srand48 - seed (double-precision) pseudo-random number generator" (see drand48 on
page 286)

3.12 Search and sort procedures

“bsearch - conduct binary search of sorted array” on page 229

“hsearch, hcreate, hdestroy - manage hash tables” on page 529

"lfind - find entry in linear search table" (see lsearch on page 621)

“lsearch, lfind - linear search and update” on page 621

“qsort - sort table of data” on page 726

"tdelete - delete node from binary search tree" (see tsearch on page 940)

"tfind - find node in binary search tree" (see tsearch on page 940)

“tsearch, tfind, tdelete, twalk - process binary search trees” on page 940

Functions and variables arranged by theme Terminal interface and data transmission

U23711-J-Z125-5-76 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
a

rc
h

20
18

S

ta
nd

 1
5:

03
.0

4
P

fa
d

: P
:\F

T
S

-B
S

\C
om

p
ile

r\
C

+
+

\V
3.

2\
M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.k
0

3

“twalk - traverse binary search tree” on page 945

“wcscoll - compare two wide character strings according to LC_COLLATE” on page 989

3.13 Terminal interface and data transmissions

“cfgetispeed - get input baud rate” on page 242

“cfgetospeed - get output baud rate” on page 242

“cfsetispeed - set input baud rate” on page 243

“cfsetospeed - set output baud rate” on page 244

“ctermid - generate pathname for controlling terminal” on page 275

“grantpt - grant access to the slave pseudoterminal” on page 528

“isascii - test for 7-bit ASCII character” on page 558

“ptsname - name of pseudoterminal” on page 714

“tcdrain - wait for transmission of output” on page 915

“tcflow - suspend or restart data transmission” on page 916

“tcflush - discard non-transmitted data” on page 917

“tcgetattr - get parameters associated with terminal” on page 918

“tcgetpgrp - get foreground process group ID” on page 919

“tcgetsid - get session ID of specified terminal” on page 920

“tcsetpgrp - set foreground process group ID” on page 924

“ttyname - find pathname of terminal” on page 942

“ttyname_r - find pathname of terminal (thread-safe)” on page 943

“unlockpt - remove lock from master/slave pseudoterminal pair” on page 958

3.14 Database functions

“dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_firstkey,
dbm_nextkey, dbm_open, dbm_store - functions for managing dbm databases” on
page 280

List processing Functions and variables arranged by theme

192 U23711-J-Z125-5-76

3.15 List processing

“insque, remque - Insert element in queue or remove element from queue” on page 540

3.16 POSIX-IO macros

For functions in the C library that work with data, you must determine if the file is a POSIX
file system file or a BS2000 file before executing the actual function. If you already know
that you will only be working with files from the POSIX file system, then you can save
yourself the effort and obtain better performance in doing so. For the following macros
CRTE contains a special version of the macro for working with files in the POSIX file
system:

getc (p): read characters from a file

getchar(): read characters from standard input

putc(x, p): write characters to file

putchar(x) write characters to standard output

clearerr (p): clear end-of-file and error flags

feof(p): test for end-of-file

ferror(p): test for file error

fileno(p): get file descriptor

The macros are still stored in the <stdio.h> header as before. In order to generate the
POSIX variant, the user must set the __POSIX_MACROS define before the <stdio.h>
header file is included.

U23711-J-Z125-5-76 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

4 Functions and variables in alphabetical order

This chapter contains detailed descriptions, in alphabetical order, of the functions, macros
and external variables that are supported by the C runtime system in both the POSIX
subsystem as well as in BS2000.

Format of entries

Each description begins with a title containing the symbolic name and some keywords to
describe the functionality and is always followed by the same subsections:

Syntax Syntax of the function call or variable declaration and of the header file in which the relevant
interface is defined or declared.

A syntax line may be additionally identified as follows:

Optional
An include statement identified as optional need not be specified in newly created source
code. Nor need it be deleted from existing source code. The end of each such section is
indicated by the end marker. ❑

Description Describes the functionality of the respective function, macro or external variable and
explains the arguments to be specified.

Return val. Lists and describes the possible return values of a function.

Some functions do not have a return value. In such cases and when describing external
variables, the "Return value" section is omitted.

Errors Lists and describes the error codes stored in the external variable errno in the case of an
invalid function call or an execution error.

Some functions do not store an error code in errno in the event of an error. In such cases
and when describing external variables, the "Errors" section is omitted.

Notes Typically includes explanations of concepts, information on interaction with other functions,
and/or tips concerning application usage. This section may be omitted in some cases.

See also Contains cross-references to function descriptions, header files, sections in the chapters on
concepts and other manuals.

Format of entries Functions and variables in alphabetical order

194 U23711-J-Z125-5-76

Text segments that are not specially identified describe XPG4-conformant implementations.
Extensions and deviations with respect to the Standard are indicated by the following
markers:

BS2000
Information on extensions of the C runtime system describing functionality in connection
with access to DMS and C runtime versions up to V2.1C (i.e. BS2000 functionality). The
end of each such section is indicated by the end marker. ❑

Extension
Information on extensions of the C runtime system. The end of each such section is
indicated by the end marker ❑.
If a function is an extension, as supported on many UNIX systems, it is marked as such:
(extension).

Restriction
Information on current restrictions of the C runtime system as opposed to the XPG4
standard. The end of each such section is indicated by the end marker. ❑

Functions and variables in alphabetical order a64l, l64a

U23711-J-Z125-5-76 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

a... a64l, l64a - convert string to 32-bit integer

Syntax #include <stdlib.h>

long a64l (const char *s);
char *l64a (long value);

Description These functions are used to manage numbers stored in radix-64 ASCII characters. These
characters define a notation with which long integers can be represented by a maximum of
six characters; each character represents a ’digit’ in a base 64 notation.

The characters used to represent ’digits’ are . for 0, / for 1, 0 through 9 for 2-11, A through
Z for 12-37 and a through z for 38-63.

a64l() expects a pointer to a base 64 representation ending in a null byte, and returns the
corresponding long value. If the string pointed to by s contains more than six characters,
a64l() uses the first six characters. If the passed string was empty, the return value is 0L.

a64l() runs through the string from left to right (with the least significant digit on the left)
and decodes each character as a 6-bit number in base 64. If the type long contains
more than 32 bits, the result is prefixed with a sign. The behavior of a64l() is undefined
if s is the null pointer or if the string pointed to by s was not generated by a previous call of
l64a().

l64a() expects a long argument and returns a pointer to the corresponding base 64 repre-
sentation. If the argument is 0, l64a() returns a pointer to a null string. The behavior of
l64a() is undefined if the value of the argument is negative.

Return val. a64l():

Integer value of type long
for strings with a structure like the one described above.

0L for empty strings.
Undefined if s is the null pointer or if the string was not generated by a previous call of

l64a(). errno is set to indicate the error.

l64a():

Pointer to a string represented in base 64
for value > 0

Pointer to an empty string
for value = 0

Undefined for value < 0

a64l, l64a Functions and variables in alphabetical order

196 U23711-J-Z125-5-76

Errors a64l() fails if the following applies:

ERANGE The result cannot be represented.

Notes The value returned by l64a() is a pointer to a static buffer, whose contents are overwritten
with each call.

If the type long contains more than 32 bits, the result of a64l(l64a(l)) occupies the 32
least significant bits.

See also strtoul(), stdlib.h

Functions and variables in alphabetical order abort

U23711-J-Z125-5-76 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

abort - abort process

Syntax #include <stdlib.h>

void abort(void);

Description If the function is called with POSIX functionality, its behavior conforms with XPG4 as
described below:

– If the signal SIGABRT is not being caught and the signal handler does not return,
abort() causes abnormal process termination to occur. The SIGABRT signal is sent
to the calling process as if by means of the raise() function with the argument
SIGABRT. Before the process is terminated, all open streams and message catalog
descriptors are closed as if by a call to fclose(), and the default actions defined for
SIGABRT are performed (see signal.h).

– The status made available to wait() or waitpid() by abort() will be that of a
process terminated by the SIGABRT signal. The abort() function will override blocking
or ignoring the SIGABRT signal.

– Process abort functions registered with atexit() are not called.

If threads are used, then the function affects the process or a thread in the following
manner:

– The process is aborted and all its threads are aborted with it.

BS2000
– The following deviation in behavior must be noted when the function is called with

BS2000 functionality:

If the program does not provide any signal handling function or if such a function returns
to the interrupt point, the process is aborted with _exit(-1). ❑

Notes Catching the signal is intended to provide the application writer with a portable means to
abort processing, free from possible interference from any proprietary library functions.

If SIGABRT is neither caught nor ignored, and the current directory is writable, a core dump
may be produced.

See also atexit(), exit(), kill(), raise(), signal(), stdlib.h, section “Signals” on
page 146.

abs Functions and variables in alphabetical order

198 U23711-J-Z125-5-76

abs - return integer absolute value

Syntax #include <stdlib.h>

int abs(int i);

Description abs() computes the absolute value of an integer i.

Return val. Absolute value of i if successful.

Notes The absolute value of the negative integer with the largest magnitude is not representable.
If a negative number with the highest magnitude (-231) is specified as the argument i, the
program will terminate with an error.

See also cabs(), fabs(), labs(), stdlib.h.

Functions and variables in alphabetical order access, faccessat

U23711-J-Z125-5-76 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

access, faccessat - check access permissions for file

Syntax #include <unistd.h>

int access(const char *path, int amode);
int faccessat(int fd, const char *path, int amode, int flag);

Description access() checks the file named by the path argument for accessibility according to the bit
pattern contained in amode, using the real user ID in place of the effective user ID and the
real group ID in place of the effective group

The following symbolic constants can be specified for amode:

R_OK to check for read permission

W_OK to check for write permission

X_OK to check for execute (search) permission

F_OK to check if the file exists

The value of amode is either the bit-wise inclusive OR of the access permissions to be
checked (R_OK, W_OK, X_OK) or the existence test, F_OK (see also unistd.h).

Extension
Other values for amode may be permitted in addition to those listed above (e.g. if a system
has extended access controls). ❑

A process with appropriate privileges may search a file even if none of the execute file
permission bits are set, but success will not indicated when checking for X_OK.

The faccessat() function is equivalent to the access() function except when the path pa-
rameter specifies a relative path. In this case the file whose access rights are to be checked
is not searched for in the current directory, but in the directory connected with the file de-
scriptor fd. If the file descriptor was opened without O_SEARCH, the function checks whether
a search is permitted in the connected file descriptor with the authorizations applicable for
the directory. If the file descriptor was opened with O_SEARCH, the check is not performed.

In the flag parameter, the value AT_EACCESS, which is defined in the fnctl.h header, can
be transferred. In this case the effective user and group numbers are used for the check
instead of the real ones.

When the value AT_FDCWD is transferred to the faccessat() function for the fd parameter,
the current directory is used.

Return val. 0 The requested access is permitted.

-1 The requested access is not permitted; errno is set to indicate the error.

access, faccessat Functions and variables in alphabetical order

200 U23711-J-Z125-5-76

Errors access() and faccessat() will fail if:

EACCES Permission bits of the file mode do not permit the requested access, or
search permission is denied on a component of the path prefix.

Extension
EFAULT path is an invalid address.

EINTR A signal was caught during the access() system call. ❑

EINVAL An attempt was made to access a BS2000 file.

ELOOP The maximum number of symbolic links in path was exceeded
(or the maximum number of symbolic links is defined by MAXSYMLINKS in
the header file sys/param.h).

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

ENOENT The path argument points to a non-existent file or to an empty string.

ENOTDIR A component of the path prefix is not a directory.

EROFS Write access is requested for a file on a read-only file system.

In addition, faccessat() fails if the following applies:

EACCES The fd parameter was not opened with O_SEARCH, and the authorizations
applicable for the directory do not permit the directory to be searched.

EBADF The path parameter does not specify an absolute pathname, and the fd pa-
rameter does not have the value AT_FDCWD, nor does it contain a valid file
descriptor opened for reading or searching.

ENOTDIR The path parameter does not specify an absolute pathname, and the file de-
scriptor fd is not connected with a directory.

EINVAL The value of the flag parameter is invalid.

Note access() and faccessat() are executed for POSIX files only.

See also chmod(), stat(), fcntl.h, unistd.h.

Functions and variables in alphabetical order acos

U23711-J-Z125-5-76 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

acos - arc cosine function

Syntax #include <math.h>

double acos(double x);

Description acos() is the inverse function of cos(). It returns the principal value (i.e. corresponding
angle in radians) of the arc cosine of a floating-point number x in the range [-1.0, +1.0].

Return val. arc cosine(x)
if successful. A floating-point number of type double in the range [0, π] is
returned.

0 if x does not lie in the range [-1.0, +1.0]. errno is set to indicate the error.

Errors acos() will fail if:

EDOM The value of x is not in the range [-1.0, +1.0].

Note To make sure you catch an error, you should set errno to 0 before calling acos(). If after
execution errno ≠ 0, an error has occurred.

See also asin(), atan(), atan2(), cos(), sin(), tan(), math.h.

acosh, asinh, atanh Functions and variables in alphabetical order

202 U23711-J-Z125-5-76

acosh, asinh, atanh - inverse hyperbolic functions

Syntax #include <math.h>

double acosh (double x);
double asinh (double x);
double atanh (double x);

Description acosh(), asinh() and atanh() compute respectively the inverse hyperbolic cosine, the
inverse hyperbolic sine and the inverse hyperbolic tangent for the argument x.

Return valueacosh():

Arch(x) if successful.

0.0 if x < 1.0. errno is set to indicate the error.

asinh() :

Arsh(x) the function is always successful.

atanh():

Arth(x) if successful.

0.0 if | x| > 1.0. errno is set to indicate the error.

Errors acosh() will fail if:

EDOM x < 1.0.

atanh() will fail if:

EDOM | x| > 1.0.

See also cosh(), sinh(), tanh(), math.h.

Functions and variables in alphabetical order advance

U23711-J-Z125-5-76 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

advance - pattern match given compiled regular expression

Syntax #include <regexp.h>

int advance(const char *string, const char *exbuf);

Description See regexp().

Notes This function will not be supported in future issues of the X/Open standard.

alarm Functions and variables in alphabetical order

204 U23711-J-Z125-5-76

alarm - schedule alarm signal

Syntax #include <unistd.h>

Optional
#include <signal.h> ❑

unsigned int alarm(unsigned int seconds);

Description alarm() causes the system to send the calling process a SIGALRM signal after the number
of real-time seconds specified by seconds have elapsed (see also signal.h).

If seconds is 0, a pending alarm request, if any, is cancelled.

Alarm requests are not stacked; only one SIGALRM generation can be scheduled in this
manner; if the SIGALRM signal has not yet been generated, the call will result in resched-
uling the time at which the SIGALRM signal will be generated.

Interactions between alarm() and the functions setitimer(), ualarm() and
usleep() are not defined.

If threads are used, then the function affects the process or a thread in the following
manner:

– A SIGALRM signal is generated for the process when the specified time limit has
expired.

BS2000
– If the signal is not caught (see also signal()), the program is terminated with

exit(-1). ❑

Return val. Number of seconds until the generation of a SIGALRM signal
if there is a previous alarm request with time remaining on the alarm clock.

0 if there is no pending alarm request.

alarm() is always successful.

Notes fork() clears pending alarms in the child process. A new process image created by one
of the exec functions inherits the time left to an alarm signal in the old process image.

Processor scheduling delays may prevent the process from handling the signal as soon as
it is generated.

BS2000
SIGALRM corresponds to the STXIT event class RTIMER (real-time interval timer). ❑

See also exec(), fork(), pause(), sigaction(), signal.h, unistd.h, section “Signals” on
page 146.

Functions and variables in alphabetical order altzone / ascii_to_ebcdic

U23711-J-Z125-5-76 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

altzone - variable for time zone (extension)

Syntax #include <time.h>

extern long int altzone;

Description The external variable altzone contains the difference, in seconds, between
UTC (Universal Time Coordinated, January 1, 1970) and the alternative time zone.

By default, altzone is 0 (UTC).

altzone is set by tzset().

See also asctime(), ctime(), daylight, environ, gmtime(), localtime(), setlocale(),
timezone, tzname, tzset()ms, time.h.

ascii_to_ebcdic - convert ASCII string to EBCDIC string (extension)

Syntax int ascii_to_ebcdic(char *in, char *out);

Description ascii_to_ebcdic converts ASCII strings to EBCDIC strings, where in is the input string
in ASCII, and out is the output string in EBCDIC. The buffer must be supplied by the caller.

The characters of the input string are interpreted as ASCII characters and translated into
the corresponding characters of the EBCDIC code.

Return val. 0 if successful.

1 if an error occurs.

See also ebcdic_to_ascii.

asctime Functions and variables in alphabetical order

206 U23711-J-Z125-5-76

asctime - convert date and time to string

Syntax #include <time.h>

char *asctime(const struct tm *timeptr);

Description asctime() converts a time specification that is broken down in accordance with the
structure tm (see below) into an EBCDIC string. No check is made here to see whether the
time specification is meaningful, i.e. whether, for instance, the specified number of days fits
the specified month. An error exists only when the data entered cannot be displayed in the
time format. Consequently the earliest possible date which can be displayed is -999, and
the latest date which can be displayed is 9999.

This structure can be specified with *timeptr as defined in the header time.h:

struct tm
{
 int tm_sec; /* Seconds [0,61] */
 int tm_min; /* Minutes [0,59] */
 int tm_hour; /* Hours [0,23] */
 int tm_mday; /* Day of month [1,31] */
 int tm_mon; /* Months since beginning of year [0,11]*/
 int tm_year; /* Years since 1900 */
 int tm_wday; /* Weekday [0,6] Sunday=0 */
 int tm_yday; /* Days since January 1 [0,365] */
 int tm_isdst; /* Daylight saving time (always 0) */
};

asctime() is not thread-safe. Use the reentrant function asctime_r() when needed.

Return val. Pointer to the generated EBCDIC string
if successful. The result string has a length of 26 (including the null byte)
and the format of a date and time specification in English:

weekday month-name day-of-month hours:minutes:seconds year

e.g. Thu Jun 30 15:20:54 1994\n\0

EOVEFLOW In case of an error NULL und errno.

Notes The asctime(), ctime(), ctime64(), gmtime(), gmtime64(), localtime() and
localtime64() functions write their result into the same internal C data area. This means
that each of these function calls overwrites the previous result of any of the other functions.

A structure of type tm is returned by the functions gmtime() and localtime(). These
functions continue to be offered for reasons of compatibility. They support neither localized
date formats nor localized time formats, i.e. regional peculiarities in the representation of
the date or time. To be portable, applications should use the strftime() function instead.

Functions and variables in alphabetical order asctime

U23711-J-Z125-5-76 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

See also asctime_r(), clock(), ctime(), difftime(), gmtime(), localtime(),
mktime(), strftime(), time(), utime(), time.h.

asctime_r Functions and variables in alphabetical order

208 U23711-J-Z125-5-76

asctime_r - convert date and time to string (thread-safe)

Syntax #include <time.h>

char *asctime_r(const struct tm *tm, char *buf);

Description asctime_r() converts a time specification pointed to by tm into the same form as
asctime() and writes the result into the data area pointed to by buf (with at least 26 bytes).

Return val. Pointer to the string that buf points to
if successful.

EOVEFLOW In case of an error NULL und errno.

See also asctime(), ctime(), ctime_r(), localtime(), localtime_r(), time().

Functions and variables in alphabetical order asin / asinh

U23711-J-Z125-5-76 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

asin - arc sine function

Syntax #include <math.h>

double asin(double x);

Description asin() is the inverse function of sin(). It returns the principal value (i.e. corresponding
angle in radians) of the arc sine of a floating-point number x in the range [-1.0, +1.0].

Return val. arc sine(x)
if successful. A floating-point number of type double in the range
[-π/2, +π/2] is returned.

0.0 for values of x that are not in the range [-1.0, +1.0].
errno is set to indicate the error.

0.0 if the result causes an underflow.

Errors asin() will fail if:

EDOM The value of x is not in the range [-1.0, +1.0].

Notes To be sure of catching an error, you should set errno to 0 before calling asin().
If after execution errno ≠ 0, an error has occurred.

See also acos(), atan(), atan2(), cos(), sin(), tan(), math.h.

asinh - inverse hyperbolic sine function

Syntax #include <math.h>

double asinh (double x);

Description See acosh().

assert / atan Functions and variables in alphabetical order

210 U23711-J-Z125-5-76

assert - output diagnostic messages

Syntax #include <assert.h>

void assert(int expression);

Description assert() is implemented as a macro. When it is executed, it checks whether expression
evaluates to false (0) at a specific position in the program. If an error occurs, assert()
writes a comment about the particular call that failed on stderr and calls abort(). The
message includes the text of the argument, the name of the source file (__FILE__), and
the source file line number (__LINE__).

Notes assert calls are not executed if NDEBUG is defined. This can be done by the following
methods:

– by specifying a preprocessor option when calling the compiler (see the manuals "C
Compiler" [3] and "C/C++ Compiler" [4])

– by inserting a preprocessor control statement #define NDEBUG in the source program
before the #include <assert.h> statement.

See also abort(), __FILE__, __LINE__, stderr(), assert.h.

atan - arc tangent function

Syntax #include <math.h>

double atan(double x);

Description atan() is the inverse function of tan(). It returns the principal value (i.e. corresponding
angle in radians) of the arc tangent of a floating-point number x .

Return val. arc tangent(x)
if successful. A floating-point number of type double in the range
[-π/2, +π/2] is returned.

See also acos(), asin(), atan2(), cos(), sin(), tan(), math.h.

Functions and variables in alphabetical order atan2 / atanh

U23711-J-Z125-5-76 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

atan2 - arc tangent of x/y

Syntax #include <math.h>

double atan2(double x, double y);

Description atan2() computes the arc tangent of x/y, using the signs of both arguments to determine
the quadrant of the return value.

x is the dividend of the expression for which the arc tangent is to the calculated.

y is the divisor of the expression for which the arc tangent is to the calculated.

Return val. arc tangent(x/y)
if neither argument is 0.0.
A floating-point number of type double in the range [-π/2, +π/2] is returned.

-π/2 or +π/2
if the divisor is 0.0, depending on the sign of the dividend.

0 if the dividend is 0.0.

π/2 if both arguments are 0.0. errno is set to indicate the error.

Errors atan2() will fail if:

EDOM Both arguments are 0.0.

See also acos(), asin(), atan(), cos(), sin(), tan(), math.h.

atanh - inverse hyperbolic tangent function

Syntax #include <math.h>

double atanh (double x);

Description See acosh().

atexit Functions and variables in alphabetical order

212 U23711-J-Z125-5-76

atexit - register function to run at process termination

Syntax #include <stdlib.h>

int atexit(void (*func) (void));

Description atexit() registers a function func() to be called without arguments at normal process
termination. The registered functions are called in the reverse order to that in which they
were registered. Functions for which multiple registrations exist are called more than once.

Functions registered with atexit() are called only if the process is terminated "normally"
by one of the following methods:

– an explicit exit() call

– termination of the main function without an explicit exit call

BS2000
– Process termination by the C runtime system with exit(-1), i.e. on occurrence of a

raise signal (not SIGABRT) which is handled by the default signal handling mechanism
via SIG_DFL (see signal()) or not handled at all.

Up to 40 functions can be registered.

Following a successful call to any of the exec functions, all functions previously registered
by atexit() will no longer be registered.

Return val. 0 if the function is registered successfully.

≠ 0 if an error occurs.

Notes Functions registered by a call to atexit() must return to ensure that all registered
functions are called.

The sysconf() function returns the value of ATEXIT_MAX, which specifies the
total number of functions that can be registered. However, it is not possible to find out how
many functions have already been registered (except by counting them).

See also bs2exit(), exit(), signal(), stdlib.h.

Functions and variables in alphabetical order atof

U23711-J-Z125-5-76 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

atof - convert string to double-precision number

Syntax #include <stdlib.h>

double atof(const char *str);

Description atof() converts an EBCDIC string pointed to by str into a floating-point number of type
double. The string to be converted may be formatted as follows:

[tab...][][digit...][.][digit...][[]digit...]

All control characters for white space are legal for tab (see definition under isspace()).

The atof(str) function differs from strtod(str,(char**)NULL) only in error
handling.

Return val. Floating-point number of type double
for strings formatted as described above and representing a numeric value
that is within the permissible floating point range.

Extension
0 for strings which do not correspond to the syntax described above.

HUGE_VAL for strings whose numeric value lies outside the permissible floating-point
range. errno is set to indicate the error.

Errors atof() will fail if:

ERANGE The return value causes an overflow or underflow. ❑

Notes atof() is completely contained in strtod(). However, the function continues to be
offered because it is used in many existing applications.
The decimal character in the string to be converted is affected by the locale (category
LC_NUMERIC). The decimal point is the default.

atof() also recognizes strings that begin with digits but then end with any character.
atof() cuts off the numeric part, converts it according to the above description, and
ignores the rest.

See also atoi(), atol(), strtod(), strtol(), strtoul(), stdlib.h.

+

-

E

e

+

-

atoi Functions and variables in alphabetical order

214 U23711-J-Z125-5-76

atoi - convert string to integer

Syntax #include <stdlib.h>

int atoi(const char *str);

Description atoi() converts an EBCDIC string to which str points into an integer. The string to be
converted may be formatted as follows:

[tab ...][]digit...

All characters that produce white space are legal for tab (see isspace()).

The atoi(str) function differs from strtol(str,(char**)NULL) only in error handling.

Return val. Integer value of type int
for strings formatted as described above and representing a numeric value
that lies in the permissible range of integers.

0 for strings that do not conform to the syntax described above.

INT_MAX or INT_MIN
in the case of an overflow, depending on the sign.

Notes atoi() is completely contained in strtol(). However, the function continues to be
offered because it is used in many existing applications.

atoi() also recognizes strings that begin with digits but then end with any character.
atoi() cuts off the numeric part, converts it according to the above description, and ignores
the rest.

See also atof(), atol(), strtod(), strtol(), strtoul(), stdlib.h.

+

-

Functions and variables in alphabetical order atol

U23711-J-Z125-5-76 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

atol - convert string to long integer

Syntax #include <stdlib.h>

long int atol(const char *str);

Description atol() converts an EBCDIC string to which str points into an integer of type long. The
string to be converted may be formatted as follows:

[tab...][]digit...

All characters that produce white space are legal for tab (see the definition under
isspace()).

The atol(str) function differs from strtol(str,(char**)NULL,10) only in error
handling.

Return val. Integer value of type long
for strings formatted as described above and representing a numeric value.

0 for strings that do not conform to the syntax described above.

LONG_MAX or LONG_MIN
in the case of an overflow, depending on the sign.

Notes atol() is completely contained in strtol(). However, the function continues to be
offered because it is used in many existing applications.

atol() also recognizes strings that begin with digits but then end with any character.
atol() cuts off the numeric part, converts it according to the above description, and
ignores the rest.

See also atof(), atoi(), strtod(), strtol(), strtoul(), stdlib.h.

+

-

atoll Functions and variables in alphabetical order

216 U23711-J-Z125-5-76

atoll - convert string to long long integer (long long int)

Syntax #include <stdlib.h>

long long int atoll(const char *str);

Description atoll() converts an EBCDIC string to which str points into an integer of type long long.
The string to be converted may be formatted as follows

[tab...][]digit...

All characters that produce white space are legal for tab (see the definition under
isspace()).

Return val. Integer value of type long long
for strings formatted as described above and representing a numeric value.

0 for strings that do not conform to the syntax described above.

LONG_MAX or LLONG_MIN
in the case of an overflow, depending on the sign.

Notes atoll() also recognizes strings that begin with digits but then end with any character.
atoll() cuts off the numeric part, converts it according to the above description, and
ignores the rest.

If zg is a null pointer and base is equal to 10, then atoll(str) differs from
strtoll(str,(char**)NULL,10) only in error handling.

See also atof(), atoi(), atol(), strtod(), strtol(), stroll(), strtoul(),
stroull()

+

-

Functions and variables in alphabetical order basename

U23711-J-Z125-5-76 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

b... basename - return last element of pathname

Syntax #include <libgen.h>

char *basename (char *path);

Description When basename() is passed a pointer to a null-terminated string which
contains a pathname, basename() returns a pointer to the last element of path. Termi-
nating slash (/) characters are deleted.

If the passed string only consists of the ’/’ character, a pointer to the ’/’ string is returned.

If path or *path is zero, a pointer to the ’.’ string is returned.

basename() is not reentrant.

Return val. Pointer to the last component of path.

Example Input string Output pointer

/usr/lib lib
/usr/ usr
/ /

Notes basename() works on the passed string. If necessary, the string is modified by overwriting
terminating slashes (’/’) with '\0'.

See also dirname(), libgen.h.

bcmp / bcopy Functions and variables in alphabetical order

218 U23711-J-Z125-5-76

bcmp - compare memory areas

Syntax #include <strings.h>

int bcmp(const void *s1, const void *s2, size_t n);

Description bcmp() compares the first n bytes as of the memory address pointed to by s1 with the
memory area addressed via s2. It is assumed that both areas in the memory are at least n
bytes long.

Return val. 0 All n bytes are the same, or n=0.

≠ 0 The two memory areas are different.

Note Portable applications should use the memcmp() function instead of bcmp().

See also memcmp(), strings.h.

bcopy - copy memory area

Syntax #include <strings.h>

void bcopy(const void *s1, const void *s2, size_t n);

Description bcopy() copies n bytes as of the memory address pointed to by s1 into the memory area
addressed via s2. Overlapping areas are corrected.

Notes Portable applications should use the memmove() function instead of bcopy().

The two function calls below are virtually equivalent. (Caution: the sequence of the
arguments s1 and s2 is different!):

bcopy(s1, s2, n) ≅ memmove(s2, s1, n)

See also memmove(), strings.h.

Functions and variables in alphabetical order brk, sbrk

U23711-J-Z125-5-76 219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

brk, sbrk - modify size of data segment

Syntax #include <unistd.h>

int brk(void *addr);
void *sbrk(int incr);

Description brk() and sbrk() are used for dynamic modification of the storage space allocated to the
data segment of the calling process (cf. exec). The modification is made by resetting the
space limit, or ’break value’, of the process and allocating a corresponding area. The break
value is the first unoccupied address above the data segment. The extent of the allocated
storage space increases as the break value is increased. Newly allocated storage space is
set to zero, but if the same storage space is reallocated to the same process, its contents
are undefined.

brk() sets the break value to addr and modifies the allocated space accordingly.

sbrk() adds incr bytes to the break value and modifies the allocated space accordingly.
incr can be negative. In this case, the extent of the assigned storage space is reduced. The
current break value is returned by sbrk(0).

If an application also uses additional functions for storage space management, e.g.
malloc(), mmap() or free(), the behavior of brk() and sbrk() is undefined. Other
functions may use these other memory management functions silently.

brk() and sbrk() are not reentrant.

Return val. brk():
0 if successful.
-1 if an error occurs. errno is set to indicate the error.

sbrk():
previous break value

if successful.
(void*)-1 if an error occurs. errno is set to indicate the error.

Errors brk() and sbrk() are unsuccessful and do not modify the allocated storage space if:

ENOMEM Such a modification would cause more space to be allocated than is allowed
by the system-dependent maximum process size (see ulimit()).

brk, sbrk Functions and variables in alphabetical order

220 U23711-J-Z125-5-76

Notes The functions brk() and sbrk() used to be needed in special cases where no other
memory management function would have offered the same possibilities. Now, however,
the mmap() function is recommended, as it can be used simultaneously with all other
memory management functions without problems.

The pointer returned by sbrk() is not suitable for any other use.

See also exec(), malloc(), mmap(), ulimit(), unistd.h.

Functions and variables in alphabetical order bs2cmd

U23711-J-Z125-5-76 221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

bs2cmd - execute BS2000 commands by means of the CMD macro

Syntax #include <bs2cmd.h>

int bs2cmd(const char *cmd, bs2cmd_rc *rc, int maxoutput, int flag
[, int *outbuflen, char *outbuf [, int *errbuflen, char *errbuf]]);

bs2cmd() can be used to execute a BS2000 command by means of the BS2000 CMD
macro. Only commands for which the CMD macro is permissible can be used. In particular,
it makes no sense to execute commands that lead to the unloading of the calling program,
since the interface does not include any precautionary features that prevent this.

The command outputs can be buffered optionally. In this case the interface can also be
used by an rlogin task without a SYSFILE environment.

Parameters const char *cmd
This parameter contains the command to be executed or a list of commands separated
by semicolons. Except for strings enclosed in apostrophes, all characters are converted
to uppercase letters in cmd before the call.

bs2cmd_rc *rc
rc is a pointer to the structure bs2cmd_rc, which contains return information.

bs2cmd_rc is structured as follows:

typedef struct bs2cmd rc {
 unsigned char subcode2;
 unsigned char subcode1;
 unsigned short maincode;
 unsigned short progrc;
 char cmdmsg[8];
 } bs2cmd rc;

If the NULL pointer is passed when bs2cmd is called with rc, no return information is
made available.

int maxoutput
This parameter specifies the size of the buffer to be created for command output in
bytes. When setting the buffer size you must take into account that administration infor-
mation is also output in addition to the command output itself.

The following constants can be specified:

BS2CMD_DEFAULT
A standard buffer of 256 KB is used.

bs2cmd Functions and variables in alphabetical order

222 U23711-J-Z125-5-76

BS2CMD_NOBUFFER
Output is not buffered. With this setting, commands that generate output can only
be executed under rlogin tasks if the user provides a buffer (specification of
BS2CMD_FLAG_USER_BUFFER in the parameter flag).

If the buffer is set too small for the pending output, command execution is aborted.

int flag
This parameter specifies the interface configuration flags. The following flags and flag
combinations (linked with "|") can currently be specified:

BS2CMD_FLAG_STRIP
The print control characters in the command output are removed before output is
made.

BS2CMD_FLAG_SPLIT
The command outputs are split between stdout and stderr. Messages are output to
stderr.

BS2CMD_FLAG_USER_BUFFER
bs2cmd is called with a variable parameter list. The parameters of the variable
parameter list are then evaluated. These parameters must be specified completely,
otherwise the behaviour of the bs2cmd function is undefined.

Parameters of the variable parameter list:

The following parameters allow command outputs to be sent to a memory area provided by
the user if BS2CMD_FLAG_USER_BUFFER is set in the parameter flag.

int *outbuflen
Length of the memory area for stdout outputs. After bs2cmd is executed, outbuflen
contains the number of bytes actually written to outbuf, or -1 if outbuf is set too small
for the output.

char *outbuf
Address of the memory area for stdout outputs.

Functions and variables in alphabetical order bs2cmd

U23711-J-Z125-5-76 223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

int *errbuflen
Length of the memory area for stderr outputs. After bs2cmd is executed, errbuflen
contains the number of bytes actually written to errbuf, or -1 if errbuf was set too
small for the output.
*errbuflen is only relevant if BS2CMD_FLAG_SPLIT is set in the parameter flag.

char *errbuf
address of the memory area for stderr outputs. *errbuf is only relevant if the
BS2CMD_FLAG_SPLIT is set in the parameter flag.

Notes The messages are written into the memory area passed by the user and terminated with \n.
Depending on the values specified in the parameter flag, the messages are either only
written to outbuf or split over outbuf and errbuf, either with or without print control
characters in each case.
If the size of the memory area is big enough for the pending data, the output is terminated
with \0.
The \0 byte is not included in the returned length.

If the size of the memory area is too small for the pending data, the value -1 is returned and
EFBIG is set in errno. To discriminate between whether one of the user memory areas or
the internal buffer is too small, the value -1 is entered in outbuflen or errbuflen if
outbuf or errbuf is too small.

If the value BS2CMD_NOBUFFER is specified for maxoutput and the value
BS2CMD_FLAG_USER_BUFFER is simultaneously set for flag, no internal buffering is
used and command outputs are sent directly to the buffer outbuf provided by the user. The
structure of the outputs to outbuf is described in the "Macro Calls to the Runtime Section"
manual.

 Caution!

In the case described, the address of the memory area must be aligned to word
boundaries, otherwise errno is set to EFAULT.

If no buffering is used, the flag values BS2CMD_FLAG_STRIP and
BS2CMD_FLAG_SPLIT are not evaluated. Specifying these values is ignored.

!

bs2cmd Functions and variables in alphabetical order

224 U23711-J-Z125-5-76

Return val. maincode If the command is executed successfully, errno is not set.

-1 In the event of an error, errno is set to one of the following values:

EINVAL
One of the arguments has an impermissible value (e.g. an empty
command or a negative buffer size).

ENOMEM
There is not enough memory available for the buffers to be created.

EFAULT
After the command is executed, the contents of the output buffer cannot
be interpreted or there is an outbuf alignment error.

EFBIG
The output buffer is not large enough for the outputs.

In the event of an error, the contents of the user buffer are undefined.

Functions and variables in alphabetical order bs2exit

U23711-J-Z125-5-76 225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

bs2exit - program termination with MONJV (BS2000)

Syntax #include <stdlib.h>

void bs2exit(int status, const char *monjv_rcode);

Description bs2exit() terminates the calling program. Before this is done, all files opened by the
process are closed, and the following messages are output on stderr:

– "CCM0998 used CPU-time t seconds", if CPU-TIME=YES is set in the RUNTIME option.

– "CCM0999 exit status", if status ≠ EXIT_SUCCESS (value 0).

– "CCM0999 exit FAILURE", if status = EXIT_FAILURE (value 9990888).

– "EXC0732 ABNORMAL PROGRAMM TERMINATION. ERROR CODE NRT0101“

The status indicator of the monitoring job variable (1st to 3rd byte) is set to the value "$A"
in accordance with the status argument just like for the exit() function if status =
EXIT_FAILURE. The monitoring job variable is set to “$T” for all other values of status.

The return code of the MONJV (4th - 7th byte) can be additionally supplied with monjv_rcode.
The monjv_rcode parameter may be specified as a pointer to 4 bytes of data (the return
code) that is loaded in the MONJV when the program terminates.

The contents and evaluation of the status argument are the same as for exit() .

Notes When a program is terminated with bs2exit(), the termination routines registered with
atexit() are not called (see exit()).

In order to set and query monitoring job variables, the C program must be started with the
following command

/START-PROG program,MONJV=monjvname

The contents of the job variable can then be queried, e.g. with the following command:

/SHOW-JV JV-NAME(monjvname)

Further information on job monitoring using MONJV can be found in the "Job Variables"
manual.

See also exit(), _exit().

bs2fstat Functions and variables in alphabetical order

226 U23711-J-Z125-5-76

bs2fstat - get BS2000 file names from catalog (BS2000)

Syntax #include <stdlib.h>

int bs2fstat(const char *pattern, void (*function)(const char *filename, int len));

Description bs2fstat returns the fully-qualified file names (:catid:$userid.filename) of files that
satisfy the selection criterion given by pattern along with the length of each respective file
name, including the terminating null byte (\0).

For each file found, bs2fstat calls a given function (which must be supplied by the user)
and passes to it the particular filename (string char *) and the name length len (integer) as
current arguments.

const char *pattern is a string specifying the selection criterion for one or more files.

pattern is a fully or partially qualified file name with wildcard syntax

For compatibility reasons, further parameters may be specified to determine which files are
selected, e.g.:

file and catalog attributes (FCBTYPE, SHARE, etc.)

creation and access date (CRDATE, EXDATE, etc.)

These parameters must be specified in the syntax of the ISP command FSTAT.

The pattern "*,crdate=today", for example, returns the names of all files that were created
or updated on today's date.

void (*function)(const char *filename, int len) is a user-supplied function with the param-
eters filename (file name) and len (name length). These parameters are supplied with
current values by bf2stat at each function call. The function calls are made automatically
by bs2fstat (in a while loop) .

Return val. 0 if successful.

DMS error message code
if an error occurs.

Notes The flag for DMS error message codes can be only queried from outside the user-defined
function, since the function is not called if the search was unsuccessful

See also system(), stdio.h.

Functions and variables in alphabetical order bs2system

U23711-J-Z125-5-76 227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

bs2system - execute BS2000 command (extension)

Syntax #include <stdlib.h>

int bs2system(const char *command);

Description bs2system() executes the BS2000 command given in the string command.

Return val. 0 if the BS2000 command was executed successfully (return value of the
corresponding BS2000 command: 0).

-1 if the BS2000 command was not executed successfully (return value of the
BS2000 command: error code ≠ 0).

undefined if control is not returned to the program after execution of the BS2000
command (see Notes).

Notes bs2system() passes the command string as input to the BS2000 command processor
MCLP without any changes (see also the manual "Executive Macros" [10]). No conversion
to uppercase letters occurs, so the BS2000 command to be executed must be specified in
uppercase. It may consist of up to 2048 characters and must not be specified with the
system slash (/).

In the case of some BS2000 commands (e.g. START-PROG, LOAD-PROG, CALL-
PROCEDURE, DO, HELP-SDF), control is not returned to the calling program after they are
called. Programs that permit premature terminations should therefore flush all buffers
(fflush()) and/or close files before the bs2system call.

See also system(), stdlib.h.

bsd_signal Functions and variables in alphabetical order

228 U23711-J-Z125-5-76

bsd_signal - simplified signal handling

Syntax #include <signal.h>

void (*bsd_signal(int sig, void (*func)(int))) (int);

Description The bsd_signal() function provides a partially compatible interface for programs that
were written for old-style system interfaces (see “Notes” below).

The function call bsd_signal(sig, func) acts as though it were implemented as follows:

void (*bsd_signal(int sig, void (*func)(int)))(int)
{
 struct sigaction act, oact;

 act.sa_handler = func;
 act.sa_flags = SA_RESTART;
 sigemptyset(&act.sa_mask);
 sigaddset(&act.sa_mask, sig);
 if (sigaction(sig, &act, &oact) == -1)
 return(SIG_ERR);
 return(oact.sa_handler);
}

The event handling function should be declared as follows:

void handler(int sig);

where sig stands for the signal number. The behavior is not defined if func is a function which
has more than one argument or an argument of a different type.

Return val. The preceding action for sig
if successful.

SIG_ERR if an error occurs. errno is set to indicate the error.

Errors See sigaction()

Notes This function is a direct substitute for the BSD function signal() for simple applications
for which a signal handling function with an argument is installed. If a BSD signal handling
function which expects more than one argument is installed, the application must be
modified such that it uses sigaction(). The bsd_signal() function differs from
signal() in that the SA_RESTART flag is set and SA_RESETHAND is deleted if
bsd_signal() is used. The status of these flags is not specified for signal().

See also sigaction(), sigaddset(), sigemptyset(), signal(), signal.h .

Functions and variables in alphabetical order bsearch

U23711-J-Z125-5-76 229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

bsearch - conduct binary search of sorted array

Syntax #include <stdlib.h>

void *bsearch(const void *key, const void *base, size_t nel,
 size_t width, int (*compar) (const void *, const void *));

Description bsearch() is a binary search function. It searches nel elements of an array base for the
value in the data item key. The size of each element in the array is specified by width.

compar() is a user-supplied comparison function which is called by bsearch() with two
arguments, a pointer to key and a pointer to an array element

compar() must return an integer less than, equal to, or greater than 0, depending on whether
the first argument is less than, equal to or greater than the second argument. The array
must consist of the following objects in the order given: all the elements that compare less
than, all the elements that compare equal to, and all the elements that compare greater than
the key object, in that order.

Return val. Pointer to the sought element
if successful. If more than one instance of the element is found, there is no
indication as to which element the pointer refers to.

Null pointer if no element has been found.

Notes The pointers to the key and the element at the base of the array should be of type
pointer-to-element.

The comparison function need not compare every byte, so arbitrary data may be contained
in the elements in addition to the values being compared.

In practice, the elements of the array are usually sorted according to the comparison
function.

If the number of elements in the array is less than the size reserved for the array, nel should
be the lower number.

BS2000
If, for example, the qsort() function is used for sorting the array, it makes sense to use the
same comparison function compar() that is used by bsearch(). The current arguments of
qsort() are then pointers to two array elements to be compared. ❑

See also hsearch(), lsearch(), qsort(), tsearch(), stdlib.h.

btowc Functions and variables in alphabetical order

230 U23711-J-Z125-5-76

btowc - (one byte) convert multi-byte character to wide character

Syntax #include <stdio.h>
#include <wchar.h>

wint_t btowc(int c);

Description btowc() converts the multi-byte character c that consists of one byte and that must be in
the “initial shift” state to a wide character.

Return val. wide character if successful.

WEOF if c contains the value EOF or (unsigned char)c does not represent a
(1 byte) multi-byte character in the “initial shift” state.

Notes In this version of the C runtime system only 1 byte characters are supported as multi-byte
characters.
The shift state of the multi-byte character is ignored.

See also mblen(), mbtowc(), wcstombs(), wctomb()

Functions and variables in alphabetical order bzero / cabs

U23711-J-Z125-5-76 231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

bzero - initialize memory with X‘00‘

Syntax #include <strings.h>

void bzero(void *s, size_t n);

Description bzero() overwrites n bytes as of the address pointed to by s with X‘00‘.

Note Portable applications should use the memset() function instead of bzero().

See also memset(), strings.h.

c... cabs - calculate absolute value of complex number (BS2000)

Syntax #include <math.h>

double cabs(_ _complex z);

Description cabs() calculates the absolute value of a complex number z.

struct (_ _complex z) is a complex number z with real part x and imaginary part y.

_ _complex is a type predefined in the header math.h:

#typdef struct{double x, y;} _ _complex

Return val. Absolute value of the complex number z if successful.

If an overflow occurs, the program aborts (signal SIGFPE).

See also abs(), fabs(), labs(), sqrt(), math.h.

calloc Functions and variables in alphabetical order

232 U23711-J-Z125-5-76

calloc - allocate memory

Syntax #include <stdlib.h>

void *calloc(size_t nelem, size_t elsize);

Description calloc() allocates unused memory space at execution time for an array of nelem elements,
where the size of each element in bytes is elsize. calloc() initializes each element of the
new array with binary zeros.

calloc() is part of a C-specific memory management package that internally handles the
requested and released memory areas. As far as possible, new requests are satisfied first
from areas already being managed, and only then from the operating system.

nelem is an integer value that specifies the number of array elements.
elsize is an integer value that specifies the size of an array element.

If memory areas were assigned via successive calls of calloc(), the arrangement of
these areas in the memory is undefined. The pointer that is returned if allocation is
successful is aligned with a doubleword boundary, so that it can be assigned to a pointer to
any type of object. After the assignment, the object or an array of such objects in the newly
assigned memory area can be accessed (until the area is explicitly released or reassigned).

Return val. Pointer to the new memory space
if nelem and elsize are not 0 and sufficient memory is available.

Null pointer if the available memory does not suffice for the request.
errno is set to indicate the error.

Errors calloc() will fail if:

ENOMEM Insufficient memory is available.

Notes The new data area begins on a doubleword boundary.
To ensure that the correct size for an array element is requested, the sizeof operator
should be used when calculating elsize.
If the length of the allocated memory area is exceeded during writing, serious errors in the
working memory may occur.

calloc() is interrupt-protected, i.e. the function can be used in signal handling and contin-
gency routines.

See also free(), malloc(), realloc(), stdlib.h.

Functions and variables in alphabetical order catclose

U23711-J-Z125-5-76 233

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

catclose - close message catalog

Syntax #include <nl_types.h>

int catclose(nl_catd catd);

Description catclose() closes the message catalog identified by the message catalog descriptor catd.
If a file descriptor is used to define the type nl_catd, this file descriptor is also closed.

Return val. 0 if successful.

-1 if unsuccessful. errno is set to indicate the error.

Errors catclose() will fail if:

EBADF The catalog descriptor is not valid.

EINTR catclose() is interrupted by a signal.

See also catgets(), catopen(), nl_types.h, section “Locale” on page 86.

catgets Functions and variables in alphabetical order

234 U23711-J-Z125-5-76

catgets - read message

Syntax #include <nl_types.h>

char *catgets(nl_catd catd, int set_id, int msg_id, const char *s);

Description catgets() attempts to read message msg_id, in set set_id, from the message catalog
identified by catd.

catd is a message catalog descriptor returned from an earlier call to catopen().

The s argument points to a default message string which will be returned by catgets() if
it cannot retrieve the identified message

Return val. Pointer to an internal buffer area containing the message which ends in X‘00‘
if successful.

s if unsuccessful. errno is set to indicate the error.

Errors catgets() will fail if:

EBADF The message catalog descriptor is not valid for reading.

EINTR The read operation is interrupted by a signal, and no data is transferred.

See also catopen(), nl_types.h, section “Locale” on page 86.

Functions and variables in alphabetical order catopen

U23711-J-Z125-5-76 235

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

catopen - open message catalog

Syntax #include <nl_types.h>

nl_catd catopen(const char *name, int oflag);

Description catopen() opens a message catalog and returns a message catalog descriptor.

The name argument specifies the name of the message catalog to be opened. If name
contains a "/", then name is interpreted as an absolute pathname for the message catalog.
Otherwise, the environment variable NLSPATH is evaluated and used with name substituted
for %N (see also section “Locale” on page 86).

If the environment variable NLSPATH does not exist or if a message catalog cannot be found
in any of the path components specified by NLSPATH, then the default path is used (see
nl_types.h).

If the value of oflag is NL_CAT_LOCALE, the default is determined by the category
LC_MESSAGES.

If oflag is 0, only the LANG environment variable is evaluated, regardless of the contents of
the LC_MESSAGES category (see also section “Environment variables” on page 104).

A message catalog descriptor remains valid in a process until it is closed by that process or
by a successful call to one of the exec functions. A change in the LC_MESSAGES category
can make existing open catalogs invalid.

If a file descriptor is used to define message catalog descriptors, the FD_CLOEXEC bit is set
(see also fcntl.h).

Return val. Message catalog descriptor
if successful. This message catalog descriptor can then be used on subse-
quent calls to catgets() and catclose().

(nl_catd) -1 if unsuccessful. errno is set to indicate the error.

catopen Functions and variables in alphabetical order

236 U23711-J-Z125-5-76

Errors catopen() will fail if:

EACCES Search permission is denied for a component of the path prefix of the
message catalog
or read permission is denied for the message catalog.

EMFILE The process uses more than {OPEN_MAX} file descriptors at one time.

ENAMETOOLONG
The length of the pathname of the message catalog exceeds {PATH_MAX},
or a pathname component is longer than {NAME_MAX}, or the resolution of
a symbolic link produces an interim result that is longer than {PATH_MAX}.

ENFILE Too many files are currently open in the system.

ENOENT The message catalog does not exist,
or the name argument points to an empty string

ENOMEM Insufficient storage space is available.

ENOTDIR A component of the path prefix of the message catalog is not a directory.

Notes catopen() uses malloc() to allocate space for internal buffer areas. The catopen()
function may fail if there is insufficient storage space available to accommodate these
buffers.

Portable applications must assume that message catalog descriptors are not valid after a
call to one of the exec functions.

Every application must store the associated message catalog in one of the default direc-
tories defined by DEF_NLSPATH in a format that allows it to be found on substitution of name
for %N (see also nl_types.h).

See also catclose(), catgets(), fcntl.h, nl_types.h, section “Locale” on page 86 and
section “Environment variables” on page 104.

Functions and variables in alphabetical order cbrt

U23711-J-Z125-5-76 237

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

cbrt - cube root

Syntax #include <math.h>

double cbrt (double x);

Description cbrt() returns the cube root of x.

Return val. Cube root of x
if successful.

See also math.h.

cdisco Functions and variables in alphabetical order

238 U23711-J-Z125-5-76

cdisco - disconnect contingency routine (BS2000)

Syntax #include <cont.h>

void cdisco(struct enacop *enacopar);

Description cdisco() disconnects a contingency routine (TU or P1) defined with cenaco(). Detailed
information on contingency routines can be found in the section “Contingency and STXIT
routines” on page 152 and in the manual "Executive Macros" [10].

The structure enacop is defined in cont.h as follows:

struct enacop
{
 char resrv1 [7]; /* reserved for int. use */
 char coname [54]; /* name of cont. routine */
 char resrv2 [15]; /* reserved for int. use */
 char level; /* priority of cont.rout. */
 int (*econt)(); /* start adr of cont.rout. */
 int comess; /* contingency message */
 char coidret [4]; /* contingency identifier */
 errcod secind; /* secondary indicator */
 char resrv3 [2]; /* reserved for int. use */
 errcod rcode1; /* return code */
};

#define errcod char
#define _norm 0 /* normterm */
#define _abnorm 4 /* abnormend */
#define _enabled 4 /* codefenabled */
#define _preven 12 /* coprevenabled */
#define _parerr 16 /* coparerror */
#define _maxexc 24 /* comaxexceed */

cdisco() evaluates only the coidret structure component (identifier of the contingency
process).

Structure components supplied by cdisco():

See also cenaco().

secind "Secondary Indicator", as stored in the most significant byte of register 15
(values 4 or 20) after execution of the ENACO macro.

rcode1 "Return Code", as stored in the least significant byte of register 15 (values 0
or 4) after execution of the ENACO macro.

Functions and variables in alphabetical order ceil, ceilf, ceill

U23711-J-Z125-5-76 239

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

ceil, ceilf, ceill - round up floating-point number

Syntax #include <math.h>

double ceil(double x);
float ceilf(float x);
long double ceill(long double x);

Description ceil(), ceilf() and ceill() round up the floating-point number x.

Return val. Smallest integer of type double, float or long double
(greater than or equal to x) if successful.

HUGE_VAL if an overflow occurs.
errno is set to indicate the error.

Errors ceil() will fail if:

ERANGE Overflow; the return value is too high.

Note The integer value returned by ceil(), ceilf() and ceill() as double, float or long
double cannot always be represented as int or long int. The result should always
be checked before it is assigned to a variable of type int, so that an integer overflow can
be caught.

To make sure that any errors are caught, errno should be set to 0 before ceil(),
ceilf() or ceill() is called. If after the execution errno ≠ 0, an error has occurred.

The result of ceil(), ceilf() and ceill() can only overflow if the following applies for
the representation of the floating-point numbers: DBL_MANT_DIG > DBL_MAX_EXP.

See also abs(), fabs(), floor(), floorf, floorl(), ()isnan(), math.h.

cenaco Functions and variables in alphabetical order

240 U23711-J-Z125-5-76

cenaco - define contingency routine (BS2000)

Syntax #include <cont.h>

void cenaco(struct enacop *enacopar);

Description cenaco() defines a contingency routine (TU or P1) and can thus be used to assign a
routine written by the user as a contingency routine. For more detailed information on
contingency routines, refer to section “Contingency and STXIT routines” on page 152 and
the manual "Executive Macros" [10].

The structure enacop is defined in cont.h as follows:

struct enacop
{
 char resrv1 [7]; /* reserved for int. use */
 char coname [54]; /* name of cont. routine */
 char resrv2 [15]; /* reserved for int. use */
 char level; /* priority of cont.rout. */
 int (*econt)(); /* start adr of cont.rout. */
 int comess; /* contingency message */
 char coidret [4]; /* contingency identifier */
 errcod secind; /* secondary indicator */
 char resrv3 [2]; /* reserved for int. use */
 errcod rcode1; /* return code */
};

#define errcod char
#define _norm 0 /* normterm */
#define _abnorm 4 /* abnormend */
#define _enabled 4 /* codefenabled */
#define _preven 12 /* coprevenabled */
#define _parerr 16 /* coparerror */
#define _maxexc 24 /* comaxexceed */

Some entries for the structure components can or must be supplied by the user before the
call to cenaco(); others are used by cenaco() to store information during the run.

Functions and variables in alphabetical order cenaco

U23711-J-Z125-5-76 241

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Entries supplied by the user:

Entries supplied by cenaco():

Notes A maximum of 255 contingency routines can be defined.

See also cdisco(), cstxit(), signal(), alarm(), raise(), sleep().

coname Name of the contingency process. The name can have a maximum length of
54 bytes (without the null byte), must be in uppercase, and must be end with
at least one blank (a null byte immediately after the actual name is not recog-
nized as an end criterion by the system). The strfill() function, for
example, is suitable for supplying coname This input is mandatory.

level Priority level of the contingency process. This input is mandatory.
Values from 1 - 126 are legal.

econt Start address of the contingency routine. This input is mandatory.

comess Contingency message. This input is optional. The value is passed to the
contingency routine as a parameter.

coidret Short ID of the contingency process. This short ID must be used in further
macros (e.g. SOLSIG) for the identification of the contingency process.

secind "Secondary Indicator", as stored in the most significant byte of register 15
(values 4 or 20) after execution of the ENACO macro.

rcode1 "Return Code", as stored in the least significant byte of register 15 (value 0 or
4) after execution of the ENACO macro.

cfgetispeed / cfgetospeed Functions and variables in alphabetical order

242 U23711-J-Z125-5-76

cfgetispeed - get input baud rate

Syntax #include <termios.h>

speed_t cfgetispeed(const struct termios *termios_p);

Description cfgetispeed() extracts the input baud rate from the termios structure to which the
termios_p argument points. It returns exactly the value in the termios data structure.

Extension
Since different baud rates are not supported by the hardware, it is only relevant whether this
value is zero or non-zero. See tcsetattr() for details. ❑

Return val. Input baud rate of type speed_t
if successful.

See also cfgetospeed(), cfsetispeed(), cfsetospeed(), tcgetattr(), termios.h, section
“General terminal interface” on page 129.

cfgetospeed - get output baud rate

Syntax #include <termios.h>

speed_t cfgetospeed(const struct termios *termios_p);

Description cfgetospeed() extracts the output baud rate from the termios structure to which the
termios_p argument points. It returns exactly the value in the termios data structure.

Return val. Output baud rate of type speed_t
if successful.

Extension
Since different baud rates are not supported by the hardware, it is only relevant whether this
value is zero or non-zero. See tcsetattr() for details. ❑

See also cfgetispeed(), cfsetispeed(), cfsetospeed(), tcgetattr(), termios.h, section
“General terminal interface” on page 129.

Functions and variables in alphabetical order cfsetispeed

U23711-J-Z125-5-76 243

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

cfsetispeed - set input baud rate

Syntax #include <termios.h>

int cfsetispeed(struct termios *termios_p, speed_t speed);

Description cfsetispeed() sets the input baud rate in the termios structure pointed to by termios_p
to the value of speed.

cfsetispeed() has no effect on the baud rates set in the hardware until a subsequent
successful call to tcsetattr() on the same termios structure.

Extension
Only the corresponding value in the termios structure is changed. Since different baud
rates are not supported by the hardware, it is only relevant whether or not this value is equal
to zero. All baud rates defined in termios.h can, however, be specified and stored in the
termios structure. If baud rates which are not defined in termios.h are specified, they
are not stored: -1 is returned, and errno is set to the value EINVAL. See tcsetattr() for
more details.

If the input baud rate is set to zero, it is assigned the value of the output baud rate. Attempts
to set unsupported baud rates are ignored. This applies to changes to baud rates not
supported by the hardware and to the setting of different input and output baud rates (if this
is not supported by the hardware). ❑

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors cfsetispeed() will fail if:

EINVAL speed is not a valid baud rate (e.g. 9999) or the value of speed is not within
the permitted range of values defined in termios.h.

See also cfgetispeed(), cfgetospeed(), cfsetospeed(), tcsetattr(), termios.h, section
“General terminal interface” on page 129.

cfsetospeed Functions and variables in alphabetical order

244 U23711-J-Z125-5-76

cfsetospeed - set output baud rate

Syntax #include <termios.h>

int cfsetospeed (struct termios *termios_p, speed_t speed);

Description cfsetospeed() sets the output baud rate stored in the termios structure pointed to by
termios_p to speed.

cfgetospeed() has no effect on the baud rates set in the hardware until a subsequent
successful call to tcsetattr() on the same termios structure.

Extension
Only the corresponding value in the termios structure is changed. Since different baud
rates are not supported by the hardware, it is only relevant whether or not this value is equal
to zero. All baud rates defined in termios.h can, however, be specified and stored in the
termios structure. If baud rates which are not defined in termios.h are specified, they
are not stored: -1 is returned, and errno is set to the value EINVAL. See tcsetattr() for
more details. The zero baud rate, B0, is used to terminate the connection. If B0 is specified,
the modem control lines are no longer be asserted. Normally, this disconnects the line. ❑

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors cfsetospeed() will fail if:

EINVAL speed is not a valid baud rate or the value of speed is not within the permitted
range of values defined in termios.h.

See also cfgetispeed(), cfgetospeed(), cfsetispeed(), tcsetattr(), termios.h, section
“General terminal interface” on page 129.

Functions and variables in alphabetical order chdir

U23711-J-Z125-5-76 245

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

chdir - change working directory

Syntax #include <unistd.h>

int chdir(const char *path);

Description chdir() causes the directory pointed to by the path argument to become the current
working directory, i.e. the starting point for path searches for pathnames not beginning
with a /.

path points to the pathname of a directory.

Return val. 0 if successful. The specified directory becomes the current working directory.

-1 if an error occurs. errno is set to indicate the error.

Errors chdir() will fail if:

EACCES Search permission is denied for any component of the pathname.

Extension
EFAULT path is an invalid address.

EINTR A signal was caught during the execution of the chdir() system call.

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in resolving path. ❑

ENAMETOOLONG
The length of path exceeds {PATH_MAX} or a component of path is longer
than {NAME_MAX} and {POSIX_NO_TRUNC} is set.

ENOENT A component of path does not exist or is a null pathname.

ENOTDIR A component of the pathname is not a directory.

Notes The effect of changing the working directory applies only for the duration of the current
program (or current shell). If a new program or shell is started, the home directory is reset
as the current working directory.

In order to make a directory the current working directory, a process must have execute
(search) permission for that directory.
chdir() will work only in the currently active process and only until termination of the active
program. chdir() is executed only for POSIX files.

See also chroot(), getcwd(), unistd.h.

chmod, fchmodat Functions and variables in alphabetical order

246 U23711-J-Z125-5-76

chmod, fchmodat - change mode of file

Syntax #include <sys/stat.h>

Optional
#include <sys/types.h> ❑

int chmod(const char *path, mode_t mode);
int fchmodat(int fd, const char *path, mode_t mode, int flag);

Description chmod() changes S_ISUID, S_ISGID and the file permission bits of the file pointed to by
the path argument to the corresponding bits in the mode argument. The effective user ID of
the process must match the owner of the file or have appropriate privileges for this purpose.

S_ISUID, S_ISGID and the file permission bits are described in sys/stat.h.

If the calling process does not have appropriate privileges, and if the group ID of the file
does not match the effective group ID or one of the supplementary group IDs, and if the file
is a regular file, the S_ISGID (set-group-ID on execution) bit in the file´s mode will be
cleared upon successful return from chmod().

In the C runtime system, chmod() is also executed for open files. Other X/Open-compatible
systems can define other specifications for this case.

Upon successful completion, chmod() will mark for update the st_ctime field of the file.

The fchmodat() function is equivalent to the chmod() function except when the path pa-
rameter specifies a relative path. In this case the file to be updated is not searched in the
current directory, but in the directory connected with the file descriptor fd. If the file descrip-
tor was opened without O_SEARCH, the function checks whether a search is permitted in the
connected file descriptor with the authorizations applicable for the directory. If the file de-
scriptor was opened with O_SEARCH, the check is not performed.

In the flag parameter, the value AT_SYMLINK_NOFOLLOW, which is defined in the fnctl.h
header, can be transferred. If path specifies a symbolic link, the symbolic link is updated.

When the value AT_FDCWD is transferred to the fchmodat() function for the fd parameter,
the current directory is used.

Return val. 0 if successful. The access permissions of the specified file are set as
defined.

-1 if an error occurs. The file mode is not changed, and errno is set to indicate
the error.

Functions and variables in alphabetical order chmod, fchmodat

U23711-J-Z125-5-76 247

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Errors chmod and fchmodat() will fail if:

EACCES Search permission is denied on a component of the path prefix.

Extension
EFAULT path points outside the allocated address space of the process.

EINTR A signal was caught during execution of the system call. ❑

EINVAL The value of mode is invalid.

An attempt was made to access a BS2000 file.

Extension

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in resolving path. ❑

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

ENOENT path points to the name of a file that does not exist or to an empty string.

ENOTDIR A component of path is not a directory.

EPERM The effective user ID does not match the owner of the file and the process
does not have appropriate privileges.

EROFS The named file resides on a read-only file system.

In addition, fchmodat() fails if the following applies:

EACCES The fd parameter was not opened with O_SEARCH, and the authorizations
applicable for the directory do not permit the directory to be searched.

EBADF The path parameter does not specify an absolute pathname, and the fd pa-
rameter does not have the value AT_FDCWD, nor does it contain a valid file
descriptor opened for reading or searching.

ENOTDIR The path parameter does not specify an absolute pathname, and the file de-
scriptor fd is not connected with a directory.

EINVAL The value of the flag parameter is invalid.

Notes chmod() and fchmodat() are executed only for POSIX files

See also chown(), fchmod(), mkdir(), mkfifo(), open(), stat(), fcntl.h, sys/types.h,
sys/stat.h.

chown, fchownat Functions and variables in alphabetical order

248 U23711-J-Z125-5-76

chown, fchownat - change owner and group of file

Syntax #include <unistd.h>

Optional
#include <sys/types.h> ❑

int chown(const char *path, uid_t owner, gid_t group);
int fchownat(int fd, const char *path, uid_t owner, gid_t group, int flag);

Description path points to a pathname naming a file. The user ID and group ID of the named file are set
to the numeric values contained in owner and group, respectively.

Only processes with an effective user ID equal to the user ID of the file or processes with
appropriate privileges may change the user ID and group ID of a file. The following applies
if {_POSIX_CHOWN_RESTRICTED} has been activated for path:

– Changing the user ID is restricted to processes with appropriate privileges.

– Changing the group ID is permitted to a process with an effective user ID equal to the
user ID of the file, but without appropriate privileges, if and only if owner is equal to the
user ID of the file and group is equal to either the effective group ID of the process or to
one of its supplementary group IDs.

If path refers to a regular file, the set-user-ID (S_ISUID) and set-group-ID (S_ISGID) bits of
the file mode are cleared upon successful return from chown(), unless the call is made by
a process with appropriate privileges, in which case these bits are not altered under POSIX.
If chown() is successfully invoked on a file that is not a regular file, these bits may be
cleared. These bits are defined in sys/stat.h.

If owner or group is specified as (uid_t)-1 or (gid_t)-1, respectively, the corre-
sponding ID of the file is unchanged.

Upon successful completion, chown() will mark for update the st_ctime field of the file.

The fchownat() function is equivalent to the chown() or lchown() function except when
the path parameter specifies a relative path. In this case the file whose user and group num-
bers are to be updated is not searched for in the current directory, but in the directory con-
nected with the file descriptor fd. If the file descriptor was opened without O_SEARCH, the
function checks whether a search is permitted in the connected file descriptor with the au-
thorizations applicable for the directory. If the file descriptor was opened with O_SEARCH, the
check is not performed.

In the flag parameter, the value AT_SYMLINK_NOFOLLOW, which is defined in the fnctl.h
header, can be transferred. If path specifies a symbolic link, the user and group numbers of
the symbolic link are updated.

When the value AT_FDCWD is transferred to the fchownat() function for the fd parameter,
the current directory is used.

Functions and variables in alphabetical order chown, fchownat

U23711-J-Z125-5-76 249

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Return val. 0 if successful.

-1 if an error occurs; errno is set to indicate the error.

Errors chown() and fchownat() will fail if:

EACCES Search permission is denied on a component of path.

Extension
EFAULT An invalid address was passed as an argument.

EINTR A signal was caught during the chown call. ❑

EINVAL The value of the specified user ID or group ID is not supported (e.g. if the
value is less than 0) or
an attempt was made to access a BS2000 file.

Extension
EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in resolving path. ❑

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

ENOENT path points to the name of a file that does not exist or to an empty string.

ENOTDIR A component of path is not a directory.

EPERM The effective user ID does not match the owner of the file or the calling
process does not have the appropriate privileges, although
{_POSIX_CHOWN_RESTRICTED} indicates that such privileges are required.

EROFS The named file resides on a read-only file system.

In addition, fchownat() fails if the following applies:

EACCES The fd parameter was not opened with O_SEARCH, and the authorizations
applicable for the directory do not permit the directory to be searched.

EBADF The path parameter does not specify an absolute pathname, and the fd pa-
rameter does not have the value AT_FDCWD, nor does it contain a valid file
descriptor opened for reading or searching.

ENOTDIR The path parameter does not specify an absolute pathname, and the file de-
scriptor fd is not connected with a directory, or the flag parameter has the
value AT_REMOVEDIR, and path does not specify a directory.

EINVAL The value of the flag parameter is invalid.

chown, fchownat Functions and variables in alphabetical order

250 U23711-J-Z125-5-76

Notes chown() and fchownat() are executed only for POSIX files

See also chmod(), fcntl.h, sys/stat.h, sys/types.h, unistd.h.

Functions and variables in alphabetical order chroot

U23711-J-Z125-5-76 251

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

chroot - change root directory

Syntax #include <unistd.h>

int chroot(const char *path);

Description path points to a pathname naming a directory. The chroot() function causes the named
directory to become the root directory, i.e. the starting point for path searches for
pathnames beginning with /. The working directory of the user is not affected by chroot().

The process must have appropriate privileges to change the root directory.

The .. (dot-dot) entry in the root directory is interpreted to mean the root directory itself.
Thus, .. cannot be used to access files outside the subtree rooted at the root directory.

chroot() is not reentrant.

Return val. 0 if successful

-1 if an error occurs. errno is set to indicate the error.

Errors chroot() will fail if:

EACCES Search permission is denied for a component of path.

Extension
EFAULT An invalid address was passed as an argument.

EINTR A signal was caught during the chroot() system call.

ELOOP Too many symbolic links were encountered in resolving path. ❑

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

ENOENT path points to the name of a directory that does not exist or to an empty
string.

ENOTDIR A component of the pathname path is not a directory .

EPERM The effective user ID is not that of a process with appropriate privileges.

Notes chroot() is executed only for POSIX directories.

chroot() works only in the currently active process and remains in effect only until the
termination of that process.

See also chdir(), unistd.h.

clearerr Functions and variables in alphabetical order

252 U23711-J-Z125-5-76

clearerr - clear end-of-file and error indicators

Syntax #include <stdio.h>

void clearerr(FILE *stream);

Description clearerr() clears the end-of-file and error indicators for the stream to which stream points.

BS2000
clearerr() is implemented both as a macro and as a function.

clearerr() can also be used on files with record I/O. ❑

Notes The program environment determines whether clearerr() is executed for a BS2000 or
POSIX file.

See also feof(), ferror(), stdio.h.

Functions and variables in alphabetical order clock

U23711-J-Z125-5-76 253

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

clock - report CPU time used by a process

Syntax #include <time.h>

clock_t clock(void);

Description The behavior of clock() is determined by the selected functionality (see section “Scope
of the supported C library” on page 49) as described below:

When called with POSIX functionality, clock() returns the elapsed CPU time since the first
clock call.

BS2000
When called with BS2000 functionality, clock() returns the CPU time since the start of the
program. ❑

Return val. Amount of CPU time elapsed since the first call to clock()
if successful. The return value for the first call to clock() is 0.

BS2000
CPU time since the start of the program

if successful. ❑

(clock_t)-1 if the CPU time is not available or cannot be represented. This applies to
both POSIX and BS2000 functionality.

Notes The value returned by clock() is defined in ten thousandths of a second for compatibility
across systems that have CPU clocks with high resolutions. Consequently, the value
returned by clock() may wrap around to 0 on some systems. For example, on a machine
with 32-bit values for clock_t, it will wrap after 2147 seconds or 36 minutes.

If the CPU time is to be specified in seconds, the return value of clock() must be divided
by the value of the macro CLOCKS_PER_SEC (see time.h).

See also asctime(), cputime(), ctime(), difftime(), gmtime(), localtime(), mktime(),
strftime(), strptime(), system(), time(), times(), utime(), wait(), time.h,
section “Scope of the supported C library” on page 49.

clock_gettime, clock_gettime64 Functions and variables in alphabetical order

254 U23711-J-Z125-5-76

clock_gettime, clock_gettime64 - get time of a specified clock

Syntax #include <time.h>

int clock_gettime(clockid_t clk_id,
struct timespec *tp);

int clock_gettime64(clockid_t clk_id,
struct timespec64 *tp);

Description In the structure which points to tp, clock_gettime() and clock_gettime64() supply the
time of the clock that is pecified by clk_id as the number of seconds and milliseconds which
have passed since the reference date (epoch). Only the system-wide real time clock
CLOCK_REALTIME is supported. It supplies the number of seconds and nanoseconds
which have passed since the reference date (epoch).

The reference date is 1/1/1970 00:00:00.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Error clock_gettime() will fail, if:

EINVAL the specified clk_id is not supported.

See also gettimeofday

Functions and variables in alphabetical order close

U23711-J-Z125-5-76 255

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

close - close file

Syntax #include <unistd.h>

int close(int fildes) ;

Description fildes is a file descriptor obtained from a creat(), open(), dup(), fcntl or pipe()
system call. close() closes the file descriptor indicated by fildes. All existing record locks
owned by the process on the file specified with fildes are removed.

If close() is interrupted by a signal that is to be caught, it will return -1 with errno set to
EINTR, and the state of fildes is unspecified.

When all file descriptors associated with a pipe or FIFO special file are closed, any data
remaining in the pipe or FIFO will be discarded.

When all file descriptors associated with a file description have been closed, the file
description will be freed.

If the link count of the file is 0, when all file descriptors associated with the file are closed,
the space occupied by the file will be freed and the file will no longer be accessible.

Extension
If a stream-based file is closed and the calling process was previously registered to receive
a SIGPOLL signal (see signal() and sigset()) for events associated with that stream,
the calling process will be unregistered for events associated with the stream. The last
close() for a stream causes the stream associated with fildes to be dismantled. If
O_NDELAY and O_NONBLOCK are not set and there have been no signals posted for the
stream, close() waits for up to 15 seconds for each module and driver for any queued
output to drain before dismantling the stream. If O_NDELAY or O_NONBLOCK is set, or if there
are any pending signals, close() does not wait for the output to drain and dismantles the
stream immediately. ❑

Return val. 0 if successful. The specified file is closed.

-1 if an error occurs; errno is set to indicate the error.

Errors close() will fail if:

EBADF fildes is not a valid file descriptor. or
the BS2000 file is not accessible in the process.

EINTR close() was interrupted by a signal.

close Functions and variables in alphabetical order

256 U23711-J-Z125-5-76

Notes If the file was opened with fopen(), it must be closed with fclose() instead of close().

When a program is terminated (normally or with exit()), all open files are automatically
closed.

The program environment determines whether close() is executed for a BS2000 or
POSIX file.

See also creat(), dup(), fcntl(), lseek(), open(), read(), tell(), write(), unistd.h.

Functions and variables in alphabetical order closedir

U23711-J-Z125-5-76 257

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

closedir - close directory

Syntax #include <dirent.h>

Optional
#include <sys/types.h> ❑

int closedir(DIR *dirp);

Description closedir() closes the directory stream referred to by the argument dirp. Upon return, the
value of dirp will no longer point to an accessible object of the type DIR. The file descriptor
used in the DIR structure is closed.

Return val. 0 if successful.

-1 if an error occurs; errno is set to indicate the error.

Errors closedir() will fail if:

EBADF The dirp argument does not refer to an open directory stream.

EINTR closedir() was interrupted by a signal.

Notes closedir() is executed only for POSIX files.

See also opendir(), dirent.h, sys/types.h.

closelog, ... Functions and variables in alphabetical order

258 U23711-J-Z125-5-76

closelog, openlog, setlogmask, syslog - control system log

Syntax #include <syslog.h>

void closelog(void)

void openlog(const char *ident, int logopt, int facility);

int setlogmask(int maskpri);

void syslog(int priority, const char *message, ... / * arguments */);

Description By default syslog() writes a message message to the /var/adm/messages file. Optionally
the system administrator can also define different log files for the syslog daemon. Details
of how the syslog daemon works and is controlled are provided in the "POSIX Basics"
manual [1].

The message consists of a message header and the message text. The message header
contains the specification of the message weight, the time specification, the syslog ID and,
optionally, the process ID.

The message text is created from the message argument and the subsequent arguments as
though these arguments had been passed to printf(), except that %m in the format string
to which message points is replaced by the error message that corresponds to the current
value of errno. A trailing newline character is added if necessary.

Values for priority are formed by inclusive OR from the message weight and, if applicable,
the function value. If no function was specified for facility, the predefined default function is
used.

Possible values for the message weight are:

LOG_EMERG A “panic“ condition. This condition is normally passed to all users.
LOG_ALERT A condition that should be corrected immediately, e.g. a damaged

system database.
LOG_CRIT Critical condition, e.g. device error.
LOG_ERR Error.
LOG_WARNING Warning messages.
LOG_NOTICE Conditions which do not involve error conditions but may require special

steps.
LOG_INFO Information messages.
LOG_DEBUG Messages containing information which are normally only used during

program debugging.

Functions and variables in alphabetical order closelog, ...

U23711-J-Z125-5-76 259

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

facility indicates which application or which system component has generated the
message. Possible values are:

LOG_USER Messages created by optional user processes. This is the default
function ID if no other one is specified.

LOG_LOCAL0 Reserved for local use.
LOG_LOCAL1 Reserved for local use.
LOG_LOCAL2 Reserved for local use.
LOG_LOCAL3 Reserved for local use.
LOG_LOCAL4 Reserved for local use.
LOG_LOCAL5 Reserved for local use.
LOG_LOCAL6 Reserved for local use.
LOG_LOCAL7 Reserved for local use.

openlog() sets process attributes which control subsequent calls of syslog(). The ident
argument is a string that is prefixed to every message. logopt is a bit field in which log
options are displayed. Values for logopt are generated from any number of the following
values via bit-wise inclusive OR. The following are current values for logopt:

LOG_PID Logs the process ID with each message. This is useful for the identifi-
cation of special processes.

LOG_CONS Outputs messages on the system console if they cannot be written to
the log file (by default: /var/adm/syslog) . This option can be used
safely in processes which do not have a control terminal, because
syslog() generates a child process before the console is opened.

LOG_NDELAY Opens the log file (by default: /var/adm/syslog) on execution of
openlog(). Normally the opening is delayed until the first message is
logged. This option is useful for programs which have to pay attention
to the sequence when allocating file descriptors.

LOG_ODELAY Delays the opening until syslog() is called.
LOG_NOWAIT Does not wait for child processes which were split up for the logging of

messages on the console. This option should be used by processes
which, with the help of SIGCHLD, output notification of the termination
of a child process, otherwise syslog() might be blocked by the wait for
a child process whose end status has already been reached.

The facility argument encodes a standard function which is to be assigned to all messages
that do not have an already encoded explicit function. The default for the standard function
is LOG_USER.

The openlog() and syslog() functions can assign file descriptors. It is not necessary to
call openlog() before syslog().

The closelog() function closes all open file descriptors that were assigned by previous
calls of openlog() and syslog().

closelog, ... Functions and variables in alphabetical order

260 U23711-J-Z125-5-76

setlogmask() sets the log priority mask for the current process to maskpri and returns the
previous mask. If maskpri has the value 0, the current log priority mask is not changed.
syslog() calls by the current process whose priority is not specified in maskpri are
rejected. The mask for a specific priority pri is computed from the LOG_MASK(pri) macro.
The masks for all priorities up to and including toppri are specified in the LOG_UPTO(toppri)
macro. By default all priorities can be logged.

Symbolic constants which are used as values for logopt, facility, priority and maskpri are
defined in the syslog.h header file.

Return val. setlogmask():

Previous log priority mask.

See also printf(), syslog.h.

Functions and variables in alphabetical order compile

U23711-J-Z125-5-76 261

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

compile - produce compiled regular expression

Syntax #include <regexp.h>

int compile(char *instring, char *exbuf, const char *endbuf, int eof);

Description See regexp().

Notes This function will not be supported by the X/Open standard in the future.

confstr Functions and variables in alphabetical order

262 U23711-J-Z125-5-76

confstr - get string value of system variable

Syntax #include <unistd.h>

size_t confstr(int name, char *buf, size_t len);

Description confstr() provides a method of obtaining the current string values of a configurable
system variable. Its use and purpose are similar to sysconf(), but it is used where string
values rather than numeric values are returned.

The implementation supports only value of _CS_PATH, defined in unistd.h, for name.

If len is not 0, and if name has a configuration-defined value, confstr() copies that value
into the len-byte buffer pointed to by buf. If the string to be returned is longer than len bytes,
including the terminating null byte, then confstr() truncates the string to len-1 bytes and
null-terminates the result. The application can detect that the string was truncated by
comparing the value returned by confstr() with len.

If len is 0 and buf is a null pointer, then confstr() still returns the integer value as defined
below, but does not return a string. If len is 0 but buf is not a null pointer, the result is
unspecified.

Return val. Buffer size for the value of name
if name has a configuration-defined value. If this return value is longer than
len, the string returned in buf is truncated.

0 if name does not have a configuration-defined value. errno is not set.

if name has an invalid value. errno is set to indicate the error.

Errors confstr() will fail if:

EINVAL The value of the name argument is invalid.

Notes An application can distinguish between an invalid name parameter value and one that corre-
sponds to a configurable environment variable that has no configuration-defined value by
checking if errno is modified. This mirrors the behavior of sysconf().

confstr() was originally needed as a way of finding the configuration-defined default
value for the environment variable PATH. Since PATH can be extended by the user, applica-
tions need a way to determine the system-supplied PATH environment variable value that
contains the correct search path for the XPG4 commands.

See also sysconf(), pathconf(), unistd.h.

Functions and variables in alphabetical order cos / cosh

U23711-J-Z125-5-76 263

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

cos - cosine function

Syntax #include <math.h>

double cos(double x);

Description cos() computes the cosine of the floating-point number x, which specifies an angle in
radians.

Return val. cos(x)
if successful. The return value is a floating-point number in the range
[-1.0, +1.0].

See also acos(), asin(), atan(), atan2(), sin(), tan(), math.h.

cosh - hyperbolic cosine function

Syntax #include <math.h>

double cosh(double x);

Description cosh() computes the hyperbolic cosine of the floating-point number x.

Return val. cosh(x) if successful.

HUGE_VAL if an overflow occurs.
errno is set to indicate the error.

Errors cosh() will fail if:

ERANGE The value of x causes an overflow.

See also acos(), asin(), atan(), cos(), sinh(), tanh(), math.h.

cputime Functions and variables in alphabetical order

264 U23711-J-Z125-5-76

cputime - calculate CPU time used by current task (BS2000)

Syntax #include <stdlib.h>

int cputime(void);

Description cputime() returns the CPU time used by the current task (since LOGON).

Return val. CPU time used in ten thousandths of a second.

See also clock(), stdlib.h, section “Scope of the supported C library” on page 49.

Functions and variables in alphabetical order creat

U23711-J-Z125-5-76 265

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

creat - create new file or overwrite existing one

Name creat, creat64

Syntax #include <fcntl.h>

Optional
#include <sys/types.h>

#include <sys/stat.h>

int creat(const char *path, mode_t mode);
int creat64(const char *path, mode_t mode);

BS2000
int creat(const char *path, int mode);
int creat64(const char *path, int mode);

Description If POSIX files are created, the behavior of this function conforms to the XPG standard as
described below:

creat() creates a new file or prepares to rewrite an existing file named by the pathname
pointed to by path.

If the file exists, its length is truncated to 0, and the mode and owner are unchanged.

If the file does not exist, the file's owner ID is set to the effective user ID of the process. The
group ID of the file is set to the effective group ID of the process, unless the S_ISGID bit is
set in the parent directory, in which case the group ID of the file is inherited from the parent
directory. The access permission bits of the file mode are set to the value of mode modified
as follows:

– If the group ID of the new file does not match the effective group ID or one of the supple-
mentary group IDs, the S_ISGID bit is cleared.

– All bits set in the process's file mode creation mask are cleared (see umask()).

– The 'save text image after execution bit' of the mode is cleared (see chmod()).

Upon successful completion, a write-only file descriptor is returned, and the file is opened
for writing even if the mode does not permit writing. The file position indicator is set to the
beginning of the file. The file descriptor is set to remain open across exec system calls (see
fcntl()). A new file may be created with a mode that forbids writing.

The call creat(path, mode) is equivalent to:

open(path, O_WRONLY | O_CREAT | O_TRUNC, mode)

creat Functions and variables in alphabetical order

266 U23711-J-Z125-5-76

There is no difference in functionality between creat() and creat64() except that the
identifier for a large file is stored in the file description linked to the file descriptor, i.e. the
O_LARGEFILE bit is set. A file identifier is returned that can be used to increase the size
of the file beyond 2 GB.

BS2000
The following must be noted when creating BS2000 files:

path can be:

– any valid BS2000 file name

– "link=linkname"
linkname denotes a BS2000 link name.

mode:
Only the lbp switch, the Nosplit switch, and the O_RECORD specification are evaluated in this
parameter. All other specifications in this parameter are ignored. However, it is required for
the creation of portable programs since it controls the protection bit assignment in the UNIX
operating system.

lbp switch

The lbp switch controls handling of the Last Byte Pointer (LBP). It is only relevant for
binary files with PAM access mode and can be combined with all specifications permis-
sible for open. If O_LBP is specified as the lbp switch, a check is made to see whether
LBP support is possible. If this is not the case, the creat(), creat64() function will fail
and errno is set to ENOSYS. The switch has further effects only when the file is closed.

O_LBP
When a file which has been newly created is closed, no marker is written and a valid
LBP is set.
In the case of NK files the last logical block is padded with binary zeros, in the case
of K files the file is padded to the physical end of file.

O_NOLBP
When a file which has been newly created is closed, the LBP is set to zero (= inval-
id). A marker is written. In the case of NK files the last logical block is padded with
binary zeros, in the case of K files the file is padded to the physical end of file.
In the case of NK files the last logical block is padded with binary zeros, in the case
of K files the file is padded to the physical end of file.

Functions and variables in alphabetical order creat

U23711-J-Z125-5-76 267

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

If the lbp switch is specified in both variants (O_LBP and O_NOLBP), the creat(),
creat64() function fails and errno is set to EINVAL.

If the lbp switch is not specified, the behavior depends on the environment variable
LAST_BYTE_POINTER (see also section “Environment variables” on page 104):

LAST_BYTE_POINTER=YES

The function behaves as if O_LBP were specified.

LAST_BYTE_POINTER=NO

The function behaves as if O_NOLBP were specified.

Nosplit switch

This switch controls the processing of text files with SAM access mode and variable re-
cord length when a maximum record length is also specified. It can be combined with
any of the other constants.

O_NOSPLIT
When writing with write(), records which are longer than the maximum record
length are truncated to the maximum record length.

If the switch is not specified, the following applies when writing:
A record which is longer than the maximum record length will be split into multiple
records. If a record has precisely the maximum record length, a record of the length
zero is written after it.

The constant O_RECORD can be specified in the modus parameter to open files with record-
oriented input/output (record I/O). It can always be combined with every other constant
except O_LBP.

O_RECORD

This switch functions as follows:

The write function writes a record to the file. In the case of SAM and PAM files the
record is written to the current file position. In the case of ISAM files the record is
written to the position which corresponds to the key value in the record. If the num-
ber n of the characters to be written is greater than the maximum record length, only
a record with the maximum record length is written. The remaining data is lost. In
the case of ISAM files a record is written only if it contains at least a complete key.
If in the case of files with a fixed record length n is less than the record length, binary
zeros are used for padding. When a record is updated in a SAM or PAM file, the
length of the record may not be modified. The write function returns the number
of actually written characters also in the case of record I/O.

The BS2000 file name or link name may be written in lowercase and uppercase letters. It
is automatically converted to uppercase letters.

creat Functions and variables in alphabetical order

268 U23711-J-Z125-5-76

If the file does not exist, the following file is created by default:
for KR functionality (only available with C/C++ versions lower than V3), a SAM file with
variable record length and standard block length;
for ANSI functionality, an ISAM file with variable record length and standard block length.

When using a link name, the following file attributes can be changed by means of the
SET-FILE-LINK command: access method, record length, record format, block length and
block format.

If an existing file is truncated to length 0, the catalog attributes of the file are preserved.

A maximum of _NFILE files may be open simultaneously. _NFILE is defined as 2048 in
stdio.h.

Return val. File descriptor
if successful.

-1 if an error occurs. errno is set to indicate the error. No file is opened or
modified.

Errors creat() will fail if:

EACCES Search permission is denied on a component of the path.

The file does not exist and the directory in which the file is to be created
does not permit writing.

The file exists and write permission is denied.

Extension
EAGAIN The file exists, mandatory file/record locking is set, and there are

outstanding record locks on the file (see chmod()).

EEXIST O_CREAT and O_EXCL are set, and the file name already exists.

Extension
EFAULT path points outside the allocated address space of the process.

EINTR A signal was caught during the creat() system call.

EISDIR The specified file is a directory.

Extension
ELOOP Too many symbolic links were encountered in resolving path.

EMFILE The process has too many open files (see getrlimit()).

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX} or a path component
is longer than {NAME_MAX}.

ENFILE The system file table is full.

Functions and variables in alphabetical order creat

U23711-J-Z125-5-76 269

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

ENOENT A component of the pathname does not exist or path points to an empty
string.

ENOSPC The file system is out of inodes.

ENOTDIR A component of the pathname is not a directory.

ENXIO The named file is a character special or block special file, and the device
associated with this special file does not exist.

EROFS The specified file resides or would reside on a read-only file system.

ETXTBSY The file is a pure program file that is currently being executed.

Notes The program environment determines whether a BS2000 or POSIX file is created.

See also chmod(), close(), dup(), fcntl(), getrlimit(), lseek(), open(), read(), umask(),
write(), stat(), fcntl.h, sys/stat.h, sys/types.h.

crypt Functions and variables in alphabetical order

270 U23711-J-Z125-5-76

crypt - encode strings using algorithms

Syntax #include <unistd.h>

char *crypt(const char *key, const char *salt);

Description crypt() is a string encoding function. It is based on a one-way encoding algorithm with
variations intended to prevent the use of hardware implementations for a key search.

key is the input string to be encoded, typically a user's password. salt is a two-character
string chosen from the set of characters (a-z, A-Z, 0-9, . , /).
This string is used to vary the encoding algorithm in one of 4096 different ways, after which
the input string is used as the key to repeatedly encode a constant string. The returned
value points to the encoded input string.

Return val. Pointer to the encoded string.
The first two characters of the returned value are those of the salt argument.

Null pointer if an error occurs;
errno is set to indicate the error.

Notes The return value of crypt() points to static data that is overwritten at each call.

See also encrypt(), setkey(), unistd.h.

Functions and variables in alphabetical order cstxit

U23711-J-Z125-5-76 271

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

cstxit - define STXIT routine (BS2000)

Syntax #include <stxit.h>

void cstxit(struct stxitp stxitpar);

Description cstxit() defines an STXIT routine and can thus be used to assign a routine written by the
user as an STXIT routine.

Detailed information on the programming of STXIT routines can be found in the section
“Contingency and STXIT routines” on page 152 and in the manual "Executive Macros" [10].

The structure of stxit is defined in stxit.h as follows:

struct stxitp
{

 addr bufadr; /* Address of the message for the program (OPINT) */
 enum err_set retcode; /* Return code */
 struct cont contp; /* Address of the STXIT routines */
 struct nest nestp; /* Max. nesting level */
 struct stx stxp; /* Control of the cstxit call */
 struct diag diagp; /* Diagnostic controlling */
 struct type typep; /* Parameter transfer mode */
};

struct cont /* Address of the STXIT routine for */
{ /* the particular event class */
 int (*prchk) ();
 int (*timer) ();
 int (*opint) ();
 int (*error) ();
 int (*runout) ();
 int (*brkpt) ();
 int (*abend) ();
 int (*pterm) ();
 int (*rtimer) ();
};

struct nest /* Max. nesting level for the */
{ /* particular event class */
 char prchk;
 char timer;
 char opint;
 char error;
 char runout;
 char brkpt;

cstxit Functions and variables in alphabetical order

272 U23711-J-Z125-5-76

 char abend;
 char pterm;
 char rtimer;
 char filler;
};

struct stx /* Control of the cstxit call for */
{ /* the particular event class */
 stx_set prchk;
 stx_set timer;
 stx_set opint;
 stx_set error;
 stx_set runout;
 stx_set brkpt;
 stx_set abend;
 stx_set pterm;
 stx_set rtimer;
 stx_set filler;
};

struct diag /* Diagnostic control for */
{ /* the particular event class */
 diag_set prchk;
 diag_set timer;
 diag_set opint;
 diag_set error;
 diag_set runout;
 diag_set brkpt;
 diag_set abend;
 diag_set pterm;
 diag_set rtimer;
 diag_set filler;
};

struct type /* Parameter transfer mode for */
{ /* the particular event class */
 type_set prchk;
 type_set timer;
 type_set opint;
 type_set error;
 type_set runout;
 type_set brkpt;
 type_set abend;
 type_set pterm;
 type_set rtimer;
 type_set filler;

Functions and variables in alphabetical order cstxit

U23711-J-Z125-5-76 273

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

};
#define stx_set char
#define old_stx 0
#define new_stx 4
#define del_stx 8

#define diag_set char
#define ful_diag 0
#define min_diag 4
#define no_diag 8

#define err_set char
#define no_err 0
#define par_err 4
#define stx_err 8
#define mem_err 12

#define type_set char
#define par_opt 0
#define par_std 4

Control of the cstxit call:

This information is used to control the execution of the cstxit call. It defines which actions
are to be performed for the particular event class. .

Diagnostic control:

old_stx No change is required for the corresponding event class. A previously
assigned STXIT routine is retained. The remaining data for that event
class is not evaluated.

new_stx A new STXIT routine is assigned for the corresponding event class. The
remaining data for the event class is evaluated in this case. The address
of the routine, in particular, must be present in the corresponding entry of
contp.

del_stx The STXIT routine that was assigned to this point is deleted for the corre-
sponding event class. The remaining data for the event class is not
evaluated.

ful_diag,
min_diag,
no_diag

Diagnostic control parameters are accepted syntactically for compatibility
reasons, but are no longer evaluated since the conversion to ILCS. The
routine is activated without a preceding diagnostic message.

cstxit Functions and variables in alphabetical order

274 U23711-J-Z125-5-76

Parameter transfer mode:

Return code:

Notes The parameter structure stxitpar must be supplied by the user.

To standardize initialization, a defined prototype (stxit_pr) is provided in the stxit.h
header. This prototype can be copied into any user-defined structure of type stxitp, so
that only the fields for the event classes for which the assignment of an STXIT routine is to
be changed need to be set.

For event class INTR, the address (stxitpar.bufadr) at which the information for the program
is to be provided must also be supplied. The STXIT contingency routine can then fetch the
message from the given address and evaluate it.

See also alarm(), cenaco(), raise(), signal(), sleep().

par_opt The parameters are passed in registers 1-4.

par_std The parameters are passed in a parameter list. This is the only value
permitted in C.

no_err The STXIT routine was defined correctly.

par_err The parameter structure stxitpar was incorrectly supplied.

stx_err Error on activating the STXIT routine.

mem_err Error in the memory space request (when activating the STXIT routine).

Functions and variables in alphabetical order ctermid

U23711-J-Z125-5-76 275

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

ctermid - generate pathname for controlling terminal

Syntax #include <stdio.h>

char *ctermid(char *s);

Description ctermid() generates a string that, when used as a pathname, refers to the current
controlling terminal for the current process.

If s is a null pointer, the string is generated in an internal static area that is overwritten by
the each call to ctermid(), and the address of this area is returned. Otherwise, s is
assumed to point to a character array of at least L_ctermid elements; the pathname is
placed in this array and the value of s is returned. The symbolic constant L_ctermid is
defined in the header file stdio.h.

Return val. In non-conformance with the XPG4 standard, /dev/tty is always returned.

Notes The difference between ctermid() and ttyname() is that ttyname() must be handed a
file descriptor and returns the pathname of the terminal associated with that file descriptor,
while ctermid() returns a string (such as /dev/tty) that will refer to the current
controlling terminal if used as a pathname. In other words, ttyname() is only useful if the
process has already opened at least one file for a terminal.

See also ttyname(), stdio.h.

ctime, ctime64 Functions and variables in alphabetical order

276 U23711-J-Z125-5-76

ctime, ctime64 - convert date and time to string

Syntax #include <time.h>

char *ctime(const time_t *clock);
char *ctime64(const time64_t *clock);

Description ctime() converts the time specified by clock to a local time specification. The function
returns a pointer to a string consisting of 26 characters (see return value).

clock is represented as the time in seconds since 00:00:00 UTC (Universal Time Coordi-
nated; January 1, 1970).

A call to ctime() has the same effect as asctime(localtime(clock)).

Calling ctime64() has the same effect as asctime64(localtime(clock)), the latest and
earliest displayable dates being 31.12.9999 23:59:59 hrs. local time and 1.1.1900
00:00:00 hrs.

ctime() is not thread-safe. Use the reentrant function ctime_r() when needed.

Return val. Pointer to a string
if successful. The resulting string has a length of 26 (incl. the null byte) and
is formatted as a date and time specification in the form:

weekday month day hrs:min:sec year

e.g. Thu Jun 14 15:20:54 2018\n\0

EOVEFLOW In case of an error NULL und errno.

Notes The asctime(), ctime(), ctime64(), gmtime(), gmtime64(), localtime() and
localtime64() functions write their result into the same internal C data area. This means
that each of these function calls overwrites the previous result of any of the other functions.

See also altzone, asctime(), ctime_r(), daylight, gmtime(), localtime(), timezone,
tzname, tzset(), time.h.

Functions and variables in alphabetical order ctime_r

U23711-J-Z125-5-76 277

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

ctime_r - thread-safe conversion of date and time to string

Syntax #include <time.h>

char *ctime_r(const time_t *clock, char *buf);

Description ctime_r() converts the time specified by clock to the same format as ctime() and writes
the result to the data area pointed to by buf (at least 26 bytes).

Return val. Pointer to the string pointed to by buf,
if successful.

Null pointer if an error occurs. (errno is set to indicate the error.)

See also asctime(), asctime_r(), ctime(), localtime(), localtime_r(), time().

cuserid Functions and variables in alphabetical order

278 U23711-J-Z125-5-76

cuserid - get login name

Syntax #include <stdio.h>

char *cuserid(char *s);

Description cuserid() generates a character representation of the name associated with the real
user ID of the current process.

If s is a null pointer, this string is generated in an area that may be static and thus overwritten
by subsequent calls to cuserid(). The address of this area is returned.

If s is not a null pointer, s is assumed to point to an array of at least {L_cuserid} bytes,
and the string representation of the login name is placed in this array. The symbolic
constant {L_cuserid} is defined in stdio.h and has a value greater than 0.

cuserid() is not thread-safe.

Return val. s if s is not a null pointer. If the login name cannot be found, the null byte 0 will
be placed at *s .

Address of the buffer containing the login name
if s is a null pointer and the login name can be found.

Null pointer if s is a null pointer and the login name cannot be found.

Notes The functionality of cuserid() defined in the POSIX.1-1988 standard and XPG3 differs
from that of historical implementations and XPG2. In the ISO POSIX-1 standard, the
cuserid function has been removed entirely. Both functionalities are allowed in XPG4, but
both are also marked to be withdrawn.

The XPG2 functionality can be obtained by using the following syntax:

getpwuid(getuid())

The XPG3 functionality can be obtained by using the following syntax:

getpwuid(geteuid())

See also getlogin(), getpwnam(), getpwuid(), getuid(), geteuid(), stdio.h, and the
manual "POSIX Basics" [1].

Functions and variables in alphabetical order _ _DATE_ _ / daylight

U23711-J-Z125-5-76 279

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

d... _ _DATE_ _ - macro for compilation date

Syntax _ _DATE_ _

Description This macro generates the compilation date of a source file as a string in the form:

"dd Mmm yyyy\0"

where:

dd is the day (without leading zero for days < 10)

Mmm is the name of the month (abbreviated as with asctime())

yyyy is the year

Notes This macro need not be defined in any header file. Its name is recognized and replaced by
the compiler.

See also asctime(), _ _TIME_ _.

daylight - daylight savings time variable

Syntax #include <time.h>

extern int daylight;

Description The external variable daylight indicates whether time should reflect daylight savings time.
daylight is non-zero if an alternate time zone exists. The timezone names are contained
in the external variable tzname, which is set by default as follows:

char *tzname[2] = { "GMT", " " };

The functions ctime(), localtime(), gmtime() and asctime() take the peculiarities of
the conversions for various time periods for the U.S. (specifically, the years 1974, 1975, and
1987) into account. They handle the new daylight savings time starting with the first Sunday
in April, 1987.

Notes The system administrator must change the start and end date for daylight savings time each
year if the Julian calendar format is used.

See also altzone, asctime(), ctime(), gmtime(), localtime(), timezone,
tzname, tzset(), time.h.

dbm_clearerr, ... Functions and variables in alphabetical order

280 U23711-J-Z125-5-76

dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch,
dbm_firstkey, dbm_nextkey, dbm_open, dbm_store - functions for
managing dbm databases

Syntax #include <ndbm.h>

int dbm_clearerr(DBM *db);

void dbm_close(DBM *db);

int dbm_delete(DBM *db, date key);

int dbm_error(DBM *db);

date dbm_fetch(DBM *db, date key);

date dbm_firstkey(DBM *db);

date dbm_nextkey(DBM *db);

DBM *dbm_open(const char *file, int open_flags, mode_t file_mode);

int dbm_store(DBM *db, date key, date content, int store_mode);

Description These functions manage pairs made up of a key and appropriate contents (key/content) of
at least 1024 bytes in a database. The functions process very large databases (with one
billion blocks) and access an object which has a key in one or two accesses to the file
system. This package replaces the earlier dbm library, which can only manage one
database at a time.

key and content are described by the type definition (typedef) date, where date specifies a
string of dsize bytes to which dptr points. Both random binary data and normal ASCII strings
are permitted.

The database is stored in two files. One file is a directory with the suffix .dir which contains
a bit mask. The second file with the suffix .pag contains the data.

dbm_open() opens a database. The file argument must contain the pathname of the
database. In this way, the files file.dir and file.pag are opened and/or created, depending
on the open_flags argument. The meaning of open_flags corresponds to the meaning of oflag
in the open() function (see page 689), except that in the case of the files of the database
which are opened in WRITE-ONLY mode, write and read access is permitted. file_mode has
the same meaning as the third argument of open().
dbm_open() returns a pointer to a structure of type DBM. This pointer must be passed by all
remaining functions of this group as the db argument.

dbm_close() closes a database.

dbm_fetch() reads a record from the database. key is of the type date and must contain
the value of the corresponding key of the record that is to be read.

Functions and variables in alphabetical order dbm_clearerr, ...

U23711-J-Z125-5-76 281

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

dbm_store() writes a record to the database. key is of the type date and must contain the
value of the corresponding key of the record that is to be written. Under this key the record
can be read, modified or deleted at a later stage. content is also of the type date and
contains the contents of the record that is to be written. The store_mode argument can be
either DBM_INSERT or DBM_REPLACE. With DBM_INSERT, only new entries are included in
the database; an existing entry with the same key is not modified. With DBM_REPLACE, an
existing entry is replaced if it has the same key, while with DBM_INSERT an existing entry
with the same key is not replaced. If the specified key is not found in the database,
dbm_store() enters the record in the database, regardless of whether store_mode is set to
DBM_INSERT or DBM_REPLACE.

dbm_delete() deletes a record and the associated key from the database. key is of the
type date and must contain the value of the corresponding key of the record that is to be
deleted.

dbm_firstkey() returns the first key in the database.

dbm_nextkey() returns the next key in the database each time. To be able to work with
dbm_nextkey(), you must previously have called up dbm_firstkey(). Consecutive calls
of dbm_nextkey() return the next key each time, until all keys in the database have been
processed.

The dbm_error() function returns the error condition of the database. The db argument is
a pointer to a database structure that was returned by a dbm_open() call.

The dbm_clearerr() function deletes the error condition of the database. The db
argument is a pointer to a database structure that was returned by a dbm_open() call.
dbm_clearerr() is not thread-safe.

Return val. dbm_open():

Pointer to a structure of type DBM
if successful.

(DBM *)0 if an error occurs.

dbm_store():

0 if successful.
1 if flags has the value DBM_INSERT and the database already contains a

record with the specified key.
Negative value if an error occurs.

dbm_fetch():

date content
if successful.

dptr = null pointer
if the specified key was not found in the database or if an error occurs.

dbm_clearerr, ... Functions and variables in alphabetical order

282 U23711-J-Z125-5-76

dbm_delete():

0 if successful.
Negative value if an error occurs.

dbm_firstkey(), dbm_nextkey():

date key if successful.
dptr = null pointer

if the end of the database is reached or if an error occurs. In the event of an
error, the error indicator of the database is also set.

dbm_error():

0 if the error condition is not set.
≠ 0 if the error condition is set.

dbm_clearerr():

The return value is undefined.

Notes The following code runs through the entire database:

for (key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db))

The dbm_ functions made available in this library can on no account be compared with the
functions of a general database management system. They do not allow multiple search
key words in the same entry, they do not protect against multiple access (i.e. they do not
lock records or files) and they also do not provide the variety of additional database
functions that are offered in powerful database management systems. Because of the data
copies after hash collisions, creating and updating databases with these functions is a
relatively slow process. The dbm_ functions are useful for applications that want to manage,
without great expense, relatively static information that is indexed via a single key.

The dptr pointers returned by these functions point to a static memory, which can be
modified via subsequent calls.

dbm_delete() does not physically restore the file area, but it does make it available for
further use.

If the database is modified via dbm_store() or dbm_delete() calls during a sequential
run through the database with the dbm_firstkey() and dbm_nextkey() functions, it is
advisable to reset to the start of the database by calling dbm_firstkey().

See also open(), ndbm.h

Functions and variables in alphabetical order difftime, difftime64, dirfd

U23711-J-Z125-5-76 283

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

difftime, difftime64 - compute difference between two calendar time
values

Syntax #include <time.h>

double difftime(time_t time1, time_t time0);
double difftime(time64_t time1, time64_t time0);

Description difftime() and difftime64() compute the difference between two calendar times.

time1 and time0 are time values of type time_t or time64_t. These time values are
supplied by the mktime(), mktime64() and time(), time64() functions.

Return val. time1 - time0 if successful. The time difference is indicated in seconds and is of type
double.

See also ctime(), mktime(), time(), time.h.

dirfd - extract file descriptor

Syntax #include <dirent.h>
int dirfd(DIR *dirp);

Description The function dirfd() extracts the file descriptor from the DIR object to which dirp points.
If an attempt is made to close or modify the file descriptor with functions other than
closedir(), readdir(), readdir_r(), rewinddir() or seekdir(), the behaviour is
undefined.

Return val. File descriptor of the DIR object
if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors dirfd() fails, if:

EINVAL dirp does not point to an open directory stream.

See also closedir(), readdir(), readdir_r(), rewinddir(), seekdir()

dirname Functions and variables in alphabetical order

284 U23711-J-Z125-5-76

dirname - parent directory of pathname

Syntax #include <libgen.h>

char *dirname(char *path);

Description dirname() determines the parent directory of the pathname to which *path points, and
returns a pointer to a string which contains the name of this parent directory or the string ".".
Trailing slashes (/) at the end of the pathname are not interpreted as part of the path.

If path does not contain a slash, dirname() returns a pointer to the "." string.
If path is a null pointer or points to an empty string, dirname() likewise returns a pointer to
the "." string.
dirname() is not reentrant.

Return val. pointer to the name of the parent directory, or

pointer to "." string
If path does not contain a slash,
is a null pointer or points to an empty string.

Example Input value in path Return value

"/usr/lib" "/usr"
"/usr/" "/"
"usr" "."
"/" "/"
"." "."
".." "."

The following code fragment reads a pathname, makes the parent directory into the current
working directory, and opens the file:

char path(MAXPATHLEN), *pathcopy;
int fd;
fgets(path, MAXPATHLEN, stdin);
pathcopy = strup(path);
chdir(dirname(pathcopy));
fd = open(basename(path), O_RDONLY);

Notes dirname() can change the path string. The return value of dirname() can point to a static
area that is overwritten by a subsequent dirname() call.

dirname() and basename() together produce a complete pathname. dirname(path)
determines the pathname of the directory in which basename(path) resides.

See also basename(), libgen.h.

Functions and variables in alphabetical order div

U23711-J-Z125-5-76 285

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

div - divide with integers

Syntax #include <stdlib.h>

div_t div(int numer, int denom);

Description div() computes the quotient and remainder of the division numer / denom.

The sign of the quotient is that of the algebraic quotient, and the magnitude of the quotient
is the highest integer less than or equal to the absolute value of the algebraic quotient.

The remainder is expressed by the following equation:

quotient * divisor + remainder = dividend

Return val. Structure of type div_t
if successful. The structure contains both the quotient quot and the
remainder rem as integer values.

See also ldiv(), stdlib.h.

drand48 Functions and variables in alphabetical order

286 U23711-J-Z125-5-76

drand48 - generate pseudo-random numbers between 0.0 and 1.0

Syntax #include <stdlib.h>

double drand48 (void);
double erand48 (unsigned short int xsubi[3]);
long int jrand48 (unsigned short int xsubi[3]);
void lcong48 (unsigned short int param[7]);
long int lrand48 (void);
long int mrand48 (void);
long int nrand48 (unsigned short int xsubi[3]);
unsigned short int *seed48 (unsigned short int seed16v[3]);
void srand48 (long int seedval);

Description This family of functions generates pseudo-random numbers using a linear congruential
algorithm and 48-bit integer arithmetic.

drand48() and erand48() return non-negative, double-precision, floating-point values,
uniformly distributed over the interval [0.0 , 1.0].

lrand48() and nrand48() return non-negative, long integers, uniformly distributed over
the interval [0, 231].

mrand48() and jrand48() return signed long integers uniformly distributed over the
interval [-231, 231].

srand48(), seed48() and lcong48() are initialization entry points, one of which should
be invoked before either drand48(), lrand48() or mrand48() is called. Although it is not
recommended, drand48(), lrand48() or mrand48() can be invoked without a prior call
to an initialization entry point, since default initializer values are supplied automatically in
such cases.

erand48(), nrand48() and rand48() do not require an initialization entry point to be
called first.

All the routines work by generating a sequence of 48-bit integer values, Xi, according to the
linear congruential formula:

X n+1 = (aXn + c) mod m n≥0

The parameter m = 248; hence 48-bit integer arithmetic is performed. Unless lcong48()
has been invoked, the multiplier value a and the addend value c are given by:

a = 5DEECE66D16 = 2736731631558
c = B16 = 138

Functions and variables in alphabetical order drand48

U23711-J-Z125-5-76 287

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

The value returned by any of the drand48(), erand48(), jrand48(), lrand48(),
mrand48() or nrand48() functions is computed by first generating the next 48-bit Xi in the
sequence. Then the appropriate number of bits, according to the type of variable to be
returned, are copied from the high-order (leftmost) bits of Xi and transformed into the
returned value.

The drand48(), lrand48() and mrand48() functions store the last 48-bit Xi generated in
an internal buffer and must therefore be initialized prior to being invoked. The erand48(),
nrand48() and jrand48() functions require the calling program to provide storage for the
successive Xi values in the array specified as an argument when the functions are invoked.
Consequently, these functions do not have to be initialized; the calling program merely has
to place the desired initial value of Xi into the array and pass it as an argument.

By using different arguments, erand48(), nrand48() and jrand48() allow separate
modules of a large program to generate several independent streams of pseudo-random
numbers, i.e. the sequence of numbers in each stream will not depend on how many times
the routines are called to generate numbers for the other streams.

The initializer function srand48() sets the high-order 32 bits of Xi to the value of the
{LONG_BIT} bits contained in its argument. The low-order 16 bits of Xi are set to the
arbitrary value 330E16.

The initializer function seed48() sets the value of Xi to the 48-bit value specified in the
argument array. In addition, the previous value of Xi is copied into a 48-bit internal buffer,
used only by seed48(), and a pointer to this buffer is the value returned by seed48(). This
returned pointer, which can just be ignored if not needed, is useful if a program is to be
restarted from a given point at some future time; the pointer can be used to get at and store
the last Xi value, and this value can then be used to reinitialize via seed48() when the
program is restarted.

The initializer function lcong48() allows the user to specify default values for Xi, the
multiplier value a, and the addend value c. Argument array elements param[0] to param[2]
specify Xi, param[3] to param[5] specify the multiplier a, and param[6] specifies the 16-bit
addend c. After lcong48() is called, a subsequent call to either srand48() or seed48()
will restore the "standard" multiplier and addend values, a and c, specified above.

Return val. As described in the "Description" section above.

See also rand(), stdlib.h.

dup, dup2 Functions and variables in alphabetical order

288 U23711-J-Z125-5-76

dup, dup2 - duplicate file descriptor

Syntax #include <unistd.h>

int dup(int fildes);

int dup2(int fildes, int fildes2);

Description fildes is a file descriptor obtained from a creat() , open(), dup(), fcntl, or pipe()
system call. dup() returns a new file descriptor having the following in common with the
original file descriptor:

– the same open file or pipe

– the same file position indicator

– the same access mode (read, write or read/write)

fildes2 is a non-negative integer that is less than {OPEN-MAX}. dup2 causes fildes2 to point
to the same file as fildes. If fildes2 already points to an open file other than fildes, the open
file is first closed; however, if fildes2 points to fildes or if fildes is not a valid file descriptor,
fildes will not be first closed.

The dup() and dup2() functions provide an alternative interface to the service provided by
fcntl() using the F_DUPFD command. The call:

fid = dup (fildes);

is equivalent to:

fid = fcntl (fildes, F_DUPFD, 0);

The call

fid = dup2 (fildes, fildes2);

is equivalent to:

close (fildes2);

fid = fcntl (fildes, F_DUPFD, fildes2);

except for the following:

If fildes is a valid file descriptor and is equal to fildes2, dup2() returns fildes2 without closing
it.

Return val. Non-negative integer (the file descriptor)

 if successful.

-1 if an error occurs; errno is set to indicate the error.

Functions and variables in alphabetical order dup, dup2

U23711-J-Z125-5-76 289

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Errors dup() and dup2() will fail if:

EBADF fildes is not a valid open file descriptor or the argument fildes2 is negative
or greater than or equal to {OPEN_MAX}.

EINTR dup2() was interrupted by a signal.

Extension
EINVAL fildes and fildes2 designate BS2000 files. ❑

EMFILE The number of file descriptors in use by the process would exceed
{OPEN_MAX}, or no fildes2 file descriptors are available.

Notes dup() and dup2() are executed only for POSIX files.

See also close(), fcntl(), open(), unistd.h.

ebcdic_to_ascii Functions and variables in alphabetical order

290 U23711-J-Z125-5-76

e... ebcdic_to_ascii - convert EBCDIC string to ASCII string (extension)

Syntax int ebcdic_to_ascii(char *in, char *out);

Description ebcdic_to_ascii converts EBCDIC strings to ASCII strings, where in is the input string
in EBCDIC code, and out is the output string in ASCII. The buffer must be supplied by the
caller.

The characters of the input string are interpreted as EBCDIC characters and translated into
corresponding characters in ASCII code.

Return val. 0 if successful.

1 if an error occurs.

See also ascii_to_ebcdic.

Functions and variables in alphabetical order ecvt, fcvt, gcvt

U23711-J-Z125-5-76 291

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

ecvt, fcvt, gcvt - convert floating-point number to string

Syntax #include <stdlib.h>

char *ecvt(double val, int num, int *dec_p, int *sign);

char *fcvt (double value, int ndigit, int *decpt, int *sign);

char *gcvt (double value, int ndigit, char *buf);

Description ecvt() converts a floating-point number value to a string of ndigit EBCDIC digits and
returns a pointer to this string as its result. The output format corresponds to the %f format
of printf().

The string begins with the first non-zero digit of the floating-point number, i.e. leading zeros
are not included.

The decimal character and a negative sign, if any, do not form a part of the string. However,
ecvt() returns the position of the decimal point and the sign in result parameters.

value is a floating-point value that is to be edited for output.

ndigit is the number of digits in the result string (calculated from the first non-zero digit of
the floating-point number to be converted). If ndigit is less than the number of digits in value,
the least significant digit is rounded. If ndigit is greater, zero padding is used for right justi-
fication. The accuracy of the converted number is restricted by the maximum number of
significant digits that can be represented in the type double.

decpt is the pointer to an integer specifying the position of the decimal character in the result
string. If *decpt is a positive number, the position of the decimal character relative to the
beginning of the result string is specified. If *decpt is a negative number or 0, the decimal
character is to the left of the first digit. If the integer part of value cannot be represented in
full with ndigit digits, *decpt is greater than ndigit.

sign is the pointer to an integer specifying the sign of the result string. If *sign is 0, the sign
is positive; if *sign is not 0: the sign is negative.

fcvt() is identical to ecvt(), except that ndigit specifies the number of digits after the
decimal character.

If ndigit is less than the number of digits in value after the decimal character, the least signif-
icant digit is rounded. If ndigit is greater, zero padding is used for right justification.

gcvt() converts a floating-point number value into a string of EBCDIC digits according to
the %g format of printf() and writes the prepared string to an array which is pointed to
by buf. A pointer to this area is returned as the result. ndigit significant digits are generated
(upper limit for ndigit is the number of significant digits which corresponds to the precision

ecvt, fcvt, gcvt Functions and variables in alphabetical order

292 U23711-J-Z125-5-76

of the type double). If ndigit is less than the number of digits in value, the least significant
digit is rounded. If ndigit is greater, the string ends with the last digit that is not 0. If value
represents an integer, buf is zero-padded for right justification.

In addition the string contains a minus sign if the value is < 0, and the decimal character if
value is not an integer. The decimal character used is based on the current locale and is
determined there by the category LC_NUMERIC. If the locale was not explicitly changed
using setlocale(), the default value “POSIX“ applies. In the POSIX locale the decimal
character is a period (.).

Depending on the structure of the floating-point number to be converted, the output format
corresponds to

– the %f format of printf(), or

– the %e format of printf() (exponential / scientific notation).

ndigit is the number of digits in the result string (calculated as of the first non-zero digit from
the floating-point number to be converted).

 *buf is the pointer to the converted string.
The memory area pointed to by buf should be at least (ndigit + 4) bytes in size!

ecvt(), fcvt() and gcvt() are not thread-safe.

Return val. ecvt(), fcvt():
Pointer to the converted EBCDIC string

if successful. The string is terminated with the null byte (\0).

gcvt():
 *buf if successful. The string is terminated with the null byte (\0).

Notes An invalid parameter, such as an integer value instead of a double value, will cause the
program to abort.

Portable applications should use the sprintf() function instead of ecvt(), fcvt() and
gcvt().

ecvt() and fcvt(): The result is stored in an internal C data area which is overwritten
with each subsequent call of one of these functions.

See also printf(), setlocale(), sprintf(), stdlib.h.

Functions and variables in alphabetical order _edt / encrypt

U23711-J-Z125-5-76 293

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

_edt - call EDT (BS2000)

Syntax #include <stdlib.h>

void _edt(void);

Description _edt calls the BS2000 file editor EDT. Subsequently, when the file editor is terminated
normally, the program continues at the next C statement that follows the _edt call.

Notes Programs that call _edt require modules from the EDTLIB module library (under the $TSOS
ID by default) during execution. A RESOLVE statement for this library must be issued when
the modules are linked.

encrypt - encode strings blockwise

Syntax #include <unistd.h>

void encrypt(char block[64], int edflag);

Description encrypt() provides access to an encoding algorithm. The key that is generated by
setkey() is used as the key to encrypt the string block with the encrypt() function.

block is a character array of length 64 bytes containing only the bytes with values 0 and 1.
The argument array is modified in place to a similar array which contains the bits of the
argument after modification by the encoding algorithm using the key set by setkey().
If edflag is 0, the argument is encoded. The argument cannot be decoded; if this is
attempted (edflag = 1), errno is set to ENOSYS.

Errors encrypt() will fail if:

ENOSYS The functionality is not supported by the system.

Notes Since encrypt() does not return a value, errors can only be detected as follows: by setting
errno to 0, calling encrypt(), and then testing errno. If errno is non-zero, it may be
assumed that an error has occurred.

See also crypt(), setkey(), unistd.h.

endgrent, getgrent, setgrent Functions and variables in alphabetical order

294 U23711-J-Z125-5-76

endgrent, getgrent, setgrent - group management

Syntax #include <grp.h>

void endgrent (void);

void setgrent (void);

struct group *getgrent (void);

Description getgrent() returns a pointer to an object with the structure shown below, which contains
the individual fields of a line of the /etc/group file. Each line contains an object of the
group structure, which is declared in the header file grp.h, with the following elements:

struct group {
 char *gr_name; /* Name of the group */
 char *gr_passwd; /* Encoded group password */
 gid_t gr_gid; /* Numerical group ID */
 char **gr_mem; /* Pointer to names of the group members*/
};

getgrent() returns a pointer to the first group structure in the file the first time it is called;
after this it returns a pointer to the next group structure in the file. In this way, consecutive
calls can be used to search through the entire file.

setgrent() resets the file position indicator to the beginning of the group file, thus making
a repeat search possible.

endgrent() can be called at the end of processing in order to close the group file.

endgrent(), getgrent() and setgrent() are not thread-safe.

Return val. getgrent():

Pointer to the first group structure of the group file
at the first call

Pointer to the next group structure of the group file
at subsequent calls

Null pointer at EOF or if an error occurs. errno is set to indicate the error.

Functions and variables in alphabetical order endgrent, getgrent, setgrent

U23711-J-Z125-5-76 295

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Errors getgrent() will fail if:

EINTR getgrent() was interrupted by a signal.

EIO an I/O error occurred during reading or writing.

EMFILE The calling process contains {OPEN_MAX} open file descriptors.

ENFILE The maximum permissible number of files is open in the system.

Extension
ENOMEM There is not enough memory for storing the global data of getgrent(). ❑

Notes The return value of getgrent() can point to an area that will be overwritten by a subse-
quent call of getgrgid(), getgrnam() or getgrent().

These functions continue to be offered because they were common in the past. However,
the format of the group structure depends on the implementation, which is why applications
that use these functions are not portable. Portable applications should therefore use
getgrnam() and getgrgid().

See also getgrgid(), getgrnam(), getlogin(), getpwent(), grp.h.

endpwent, getpwent, setpwent Functions and variables in alphabetical order

296 U23711-J-Z125-5-76

endpwent, getpwent, setpwent - manage user catalog

Syntax #include <pwd.h>

void endpwent (void);

struct passwd *getpwent (void);

void setpwent (void);

Description getpwent() returns a pointer to an object with the structure shown below, which contains
the individual fields of a line of the /etc/passwd file. Each line contains an object of the
passwd structure, which is declared in the header file pwd.h, with the following elements:

struct passwd {
 char *pw_name;
 char *pw_passwd;
 uid_t pw_uid;
 gid_t pw_gid;
 char *pw_age;
 char *pw_comment;
 char *pw_gecos;
 char *pw_dir;
 char *pw_shell;
};

The components of this structure are read serially from the user catalog.
getpwent() returns a pointer to the first password structure in the user catalog the first
time it is called; after this it returns a pointer to the next password structure in the file. In this
way, consecutive calls can be used to search through the entire user catalog.

setpwent() deletes the pointer with which the user catalog is to be serially searched by
means of getpwent(). A subsequent getpwent call returns a pointer to the first password
structure.

endpwent() can be called at the end of processing in order to close the user catalog.

endpwent(), getpwent() and setpwent() are not thread-safe.

Return val. getpwent():

Pointer to the structure of type passwd
if successful.

Null pointer at EOF and if an error occurs. errno is set to indicate the error.

Functions and variables in alphabetical order endpwent, getpwent, setpwent

U23711-J-Z125-5-76 297

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Errors endpwent() will fail if:

EACCES the user ID (uid) of the caller is invalid.

getpwent(), setpwent() and endpwent() will fail if:

EFAULT errors occur during creation of the passwd structure.

ENOENT the user does not exists.

Notes The return value of getpwent() can point to an area that will be overwritten by a subse-
quent call of getpwuid(), getpwnam() or getpwent().

There is no /etc/passwd password file in the POSIX subsystem. The user data is stored
internally in the user catalog (see manual "POSIX Basics" [1]).

These functions are only supported for reasons of compatibility.

The characteristics of a current process can be defined as follows:

– getpwuid(geteuid()) returns the name of the effective user ID of the process
– getlogin() returns the login name of the process
– getpwuid(getuid()) returns the name of the real user ID of the process.

If error situations are to be investigated, errno must be set to 0 before getpwent() is
called.

See also endgrent(), getlogin(), getpwnam(), getpwuid(), putpwent(), pwd.h,
manual "POSIX Basics" [1].

endutxent, ... Functions and variables in alphabetical order

298 U23711-J-Z125-5-76

endutxent, getutxent, getutxid, getutxline, pututxline, setutxent -
manage utmpx entries

Syntax #include <utmpx.h>

void endutxent (void);

struct utmpx *getutxent (void);

struct utmpx *getutxid (const struct utmpx *id);

struct utmpx *getutxline (const struct utmpx *line);

struct utmpx *pututxline (const struct utmpx *utmpx);

void setutxent (void);

Description These functions allow access to the user accounting file /var/adm/utmpx.

getutxent(), getutxid() and getutxline() return a pointer to a structure of the
following type:

struct utmpx {
 char ut_user[32]; /* Login name of the user */
 char ut_id[4]; /* /sbin/inittab ID (normally line no.) */
 char ut_line[32]; /* Device name (console, lnxx) */
 pid_t ut_pid; /* Process ID */
 short ut_type; /* Type of entry */
 struct exit_status {
 short e_termination; /* End status */
 short e_exit; /* Exit status */
 } ut_exit; /* Exit status of a process marked as DEAD_PROCESS */
 struct timeval ut_tv; /* Time entry made */
 short ut_syslen; /* Significant length of ut_host */
 /* including trailing zero */
 char ut_host[257]; /* Host name if given */
};

getutxent() reads the next entry from a utmpx-similar file. If the file is not yet open, it
will be opened. If the end of the file is reached, the operation fails.

getutxid() searches forward from the current position in the utmpx file until an entry is
found whose ut_type matches the id->ut_type if the specified type is RUN_LVL, BOOT_TIME,
OLD_TIME or NEW_TIME. If the type specified in id is INIT_PROCESS, LOGIN_PROCESS,
USER_PROCESS or DEAD_PROCESS, then getutxid() returns a pointer to the
first entry whose type matches one of these four types and whose ut_id
component matches the value of the transferred id->ut_id. If the end of the file is reached
before a matching entry is found, the operation fails.

Functions and variables in alphabetical order endutxent, ...

U23711-J-Z125-5-76 299

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

In all entries that are found with getutxid(), the ut_type component identifies the type
of the entry. Depending on the value of ut_type, each entry contains further data that is
significant for the processing:

getutxline() searches forwards from the current position in the utmpx file until an entry
with the type LOGIN_PROCESS or USER_PROCESS is found, whose ut_line string matches
line->ut_line. If the end of the file is reached before a matching entry is found, the operation
fails.

pututxline() writes the specified utmpx structure to the utmpx file. getutxid() is used
to search for the correct position in the file if this is not given. It is expected that the user of
pututxline() has searched for the corresponding entry with one of the
getutx() functions. If this is the case, pututxline() does not perform a search. If
pututxline() does not find an appropriate position for the new entry, the entry is added
to the end of the file. A pointer to the utmpx structure is returned.
To be able to use pututxline(), the process must have the appropriate privileges.

setutxent() sets the position of the input stream to the beginning of the file. This should
be done before the whole file is searched for a new entry.

endutxent() closes the opened file.

endutxent(), getutxent(), getutxid(), getutxline(), pututxline() and
setutxent() are not thread-safe.

Value of ut_type Other components

EMPTY No further data

BOOT_TIME ut_tv

OLD_TIME ut_tv

NEW_TIME ut_tv

USER_PROCESS ut_id, ut_user (login name), ut_line, ut_pid, ut_tv

INIT_PROCESS ut_id, ut_pid, ut_tv

LOGIN_PROCESS ut_id, ut_user (implementation-specific name of the login
process), ut_pid, ut_tv

DEAD_PROCESS ut_id, ut_pid, ut_tv

endutxent, ... Functions and variables in alphabetical order

300 U23711-J-Z125-5-76

Return val. getutxent(), getutxid() and getutxline():

Pointer to a utmpx structure
if successful. The returned structure contains a copy of the desired entry in
the user accounting file.

Null pointer ar EOF or if an error occurs.

pututxline():

Pointer to a utmpx structure
if successful. The returned structure contains a copy of the entry that was
written to the user accounting file.

Errors pututxline() will fail if:

EPERM the process does not have sufficiently high privileges.

Notes The return value points to a static area that will be overwritten by a subsequent call of
getutxid() or getutxline().

The latest entry is stored in a static structure. Before the file is accessed again, this entry
must be copied. When getutxid() or getutxline() are called, the routines check the
static structure before further I/O operations are performed. If the contents of the static
structure match the pattern being sought, the search is discontinued. If several identical
entries are to be sought with getutxline(), the static structure must be deleted after
every successful search operation; otherwise getutxline() will keep returning the same
structure.

The implicit reading via pututxline() (if the correct position in the file has not yet been
reached) does not change the contents of the static structure that is returned by
getutxent(), getutxid() or getutxline(), as pututxline() saves the contents of
the structure before reading.

The size of the arrays in the structure can be determined via the sizeof operator.

See also utmpx.h.

Functions and variables in alphabetical order environ

U23711-J-Z125-5-76 301

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

environ - external variable for environment

Syntax extern char * *environ;

Description environ is an external variable that points to an array of strings with environment variables,
called the "environment" in short. Each string in the array has the form "name=value", where
name designates the environment variable and value represents its current value.
Environment variables provide a way to make information about a program's environment
available to applications (see section “Environment variables” on page 104).

Notes The environ array should not be directly accessed by the application.

See also exec, getenv(), putenv(), setenv(), unsetenv(), section “Environment variables” on
page 104.

epoll_create Functions and variables in alphabetical order

302 U23711-J-Z125-5-76

epoll_create - create an epoll instance

Syntax #include <sys/epoll.h>
int epoll_create (int size)

Description The epoll functions are a scalable I/O event notification mechanism and thus an alternative
to the present POSIX functions select() and poll().

epoll_create() creates an epoll instance and returns a file descriptor referring to the
new epoll instance. This file descriptor is used for all the subsequent calls to the epoll
interface. When no longer required, the file descriptor returned by epoll_create() should
be closed by using close().

The size argument is ignored, but must be greater than zero.

Return val. File descriptor
if successful.

-1 if an error occurs; errno is set to indicate the error.

Errors epoll_create() will fail if:

EINVAL size is not positive.

ENFILE The system-wide limit on the total number of open files has been reached.

ENOMEM There was insufficient memory to create the kernel object .

See also epoll_ctl(), epoll_wait()

Functions and variables in alphabetical order epoll_ctl

U23711-J-Z125-5-76 303

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

epoll_ctl - control epoll instance

Syntax #include <sys/epoll.h>
int epoll_ctl (int epfd, int op, int fd, struct epoll_event *event)

Description This system call performs control operations on the epoll instance epfd. It requests that
the operation op be performed for the target file descriptor, fd.

Parameters int op

Valid values for the op argument are :

EPOLL_CTL_ADD
Register the target file descriptor fd on the epoll instance referred to by the file
descriptor epfd and associate the event event with the internal file linked to fd.

EPOLL_CTL_MOD
Change the event event associated with the target file descriptor fd.

EPOLL_CTL_DEL
Remove (deregister) the target file descriptor fd from the epoll instance referred
to by epfd. The event argument is ignored and can be NULL.

struct epoll_event *event
The event argument describes the events to be monitored for file descriptor fd as well
as application specific data, which are to be returned if one of the events occurs.

The struct e poll_event is defined as:

typedef union epoll_data {
void *ptr;
int fd;
uint32_t u32;
uint64_t u64;

} epoll_data_t;

struct epoll_event {
uint32_t events; /* Epoll events */
epoll_data_t data; /* User data variable */

};

epoll_ctl Functions and variables in alphabetical order

304 U23711-J-Z125-5-76

The data member can be supplied with application specific data, which contain
additional information, e.g. on the file descriptor.

The events member is a bit mask composed using the following available event types:

EPOLLIN
Data other than high-priority data may be read without blocking. For
STREAMS, this flag is set in events even if the message is of zero length.

EPOLLPRI
Data other than high-priority data may be read without blocking. For
STREAMS, this flag is set in events even if the message is of zero length.

EPOLLOUT
Normal data (priority band equals 0) may be written without blocking.

EPOLLERR
An error has occurred on the device or stream. The function epoll_wait()
will always wait for this event; it is not necessary to set it in events for the
epoll_ctl() function.

EPOLLHUP
A hangup has occured in the stream. The device has been disconnected.
EPOLLHUP and EPOLLOUT are mutually exclusive; a stream can never be
writable if a hangup has occurred. However, this event and EPOLLIN,
EPOLLRDNORM, EPOLLRDBAND or EPOLLPRI are not mutually exclusive.
The function epoll_wait() will always wait for this event; it is not neces-
sary to set EPOLLHUP in events for the epoll_ctl() function.

EPOLLRDNORM
Normal data (priority band equals 0) may be read without blocking. For
STREAMS, this flag is set in events even if the message is of zero length.

EPOLLWRNORM
as EPOLLOUT.

EPOLLRDBAND
Data from a non-zero priority band may be read without blocking. For
STREAMS, this flag is set in events even if the message is of zero length.

EPOLLWRBAND
Priority data (priority band > 0) may be written.

EPOLLRDHUP
as EPOLLHUP.

EPOLLET
This functionality is not supported in POSIX.

Functions and variables in alphabetical order epoll_ctl

U23711-J-Z125-5-76 305

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Return val. Null if successful.

-1 if an error occurs; errno is set to indicate the error.

Errors epoll_ctl() will fail if:

EBADF epfd or fd is not a valid file descriptor.

ENOENT op was EPOLL_CTL_MOD or EPOLL_CTL_DEL, and fd is not registered
with the epoll instance epfd.

EEXIST op was EPOLL_CTL_ADD, and the supplied file descriptor fd is already re-
gistered with the epoll instance epfd.

EINVAL epfd is not an epoll file desriptor, or fd is the same as epfd, or the reque-
sted operation op is not supported by this interface.

See also epoll_create(), epoll_wait()

epoll_wait Functions and variables in alphabetical order

306 U23711-J-Z125-5-76

epoll_wait - wait for events (epoll instance)

Syntax #include <sys/epoll.h>
int epoll_wait (int epfd, struct epoll_event *events, int maxevents, int timeout)

Description The epoll_wait() system call waits for events on the epoll instance referred to by the
file descriptor epfd. The memory area pointed to by events will contain the events that will
be available for the caller. It must be an array of struct epoll_event structures and the
number of array members must be specified in maxevents. The maxevents argument
must be greater than zero. For each file descriptor for that an event occured, the
epoll_wait() system call provides a structure in that array. The system call return events
for up to maxevents file descriptors.

The call will block until one of the following events occurs:
– a file descriptor delivers an event
– the call is intrrupte by a signal

or
– the time specified by timeout expires.

The timeout argument specifies the number of milliseconds that epoll_wait() will block.

Specifying a timeout of -1 causes epoll_wait() to block indefinitely, while specifying a
timeout equal to zero causes epoll_wait() to return immediately , even if no events are
available.

The data of each returned structure will contain the same data the user set with an
epoll_ctl() while the events member will contain the returned event bit field.

Return val. Number of file descriptors ready for the requested I/O
if successful.

zero if no file descriptor became ready until time spezified by timeout expires.

-1 if an error occurs; errno is set to indicate the error.

Errors epoll_wait() will fail if:

EBADF epfd is not a valid file descriptor.

EINVAL epfd is not an epoll file descriptor,or maxevents is less than or equal
zero.

EFAULT The memory area pointed to by events is not accessible with write permis-
sions.

EINTR The call was interrupted by a signal handler bevor either any of the request-
ed events occurred or the timeout expired

Functions and variables in alphabetical order epoll_wait

U23711-J-Z125-5-76 307

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

See also epoll_create(), epoll_ctl()

erand48 Functions and variables in alphabetical order

308 U23711-J-Z125-5-76

erand48 - generate pseudo-random numbers between 0.0 and 1.0 with
initialization value

Syntax #include <stdlib.h>

double erand48 (unsigned short int xsubi[3]);

Description See drand48().

Functions and variables in alphabetical order erf, erfc

U23711-J-Z125-5-76 309

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

erf, erfc - error and complementary error functions

Syntax #include <math.h>

double erf(double x);
double erfc(double x);

Description erf() computes the error function of the floating-point number x. The error function is
defined as follows:

erfc() computes the complementary error function of the floating-point number x:

1.0 - erf(x).

Return val. Value of the error function of x
if erf() was completed successfully.

Value of the complementary error function of x
if erfc() was completed successfully.

Notes erfc() is provided due to the resulting loss of accuracy when the error function erf() is
called for large values of x .

See also math.h.

2
Π

-------- e
t– 2

0

x

 dt

errno Functions and variables in alphabetical order

310 U23711-J-Z125-5-76

errno - variable for error return values

Syntax #include <errno.h>

Description errno is used by many functions to return error values. Programs obtain the definition of
errno by the inclusion of the errno.h header. errno is set to an error number of type int
(see errno.h and section “Error handling” on page 161).

The value of errno is 0 at program startup, but it is never set to 0 to indicate an error by
any function described in this manual. The value of errno will be defined only after a
function call (see the "Errors" section for each function) and may be modified by a
subsequent function call.

A program that uses errno for error checking should therefore set it to 0 before a function
call and subsequently inspect it before a new function call.

Notes errno should not be declared in the source code; however, existing source code need not
be modified.

A mapping between the numeric values and symbolic names of the error numbers is not
guaranteed. Correct behavior is guaranteed only when using the symbolic constant names.
Furthermore, the mapping of error conditions to errno values is guaranteed only for the
cases required by X/Open.

See also perror(), strerror(), errno.h, section “Error handling” on page 161.

Functions and variables in alphabetical order exec

U23711-J-Z125-5-76 311

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

exec: execl, execv, execle, execve, execlp, execvp - execute file

Syntax #include <unistd.h>
extern char * *environ;

int execl (const char *path, const char *arg0, ... , (char *)0);
int execv (const char *path, char *const argv[]);
int execle (const char *path, const char *arg0, ... , (char *)0, char *const envp[]);
int execve (const char *path, char *const argv[], const char *envp[]);
int execlp (const char *file, const char *arg0, ... , (char *)0);
int execvp (const char *file, char *const argv[]);

Description The exec family of functions replaces the current process image with a new process image.
The new image is constructed from a regular, executable file (path or file) called the new
process image file. There is no return from a successful exec, because the calling process
image is overlaid by the new process image.

When a C program is executed as a result of a call to an exec function, it is entered as a C
function call as follows:

int main (int argc, char *argv[]);

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. argc is at least 1, and the first element of the array points to a string containing
the name of the executable file.

In addition, the following variable is initialized as the address of an array of char pointers
to the environment variables:

extern char **environ;

argv and environ are each terminated by a null pointer. The null pointer terminating the
argv array is not counted in argc.

The arguments specified by a program with one of the exec functions are passed on to the
new process image in the corresponding main() arguments.

path points to a pathname that identifies the new process image file.

file is used to construct a pathname that identifies the new process image file. If file contains
a slash character, then the file argument is used as the pathname for the process image
file. Otherwise, the path prefix for this file is obtained by a search of the directories defined
by the environment variable PATH (see section “Environment variables” on page 104). The
environment is typically supplied by the POSIX shell (see also the manual "POSIX Basics"
[1]). Other X/Open-compatible systems may define alternate mechanisms for this purpose.

If the process image file is not a valid executable object, execlp() and execvp() use the
contents of that file as standard input to a command interpreter conforming to system().
In this case, the command interpreter becomes the new process image.

exec Functions and variables in alphabetical order

312 U23711-J-Z125-5-76

arg0, ... are pointers to null-terminated character strings. These strings constitute the
argument list available to the new process image. The list is terminated by a null pointer.
The argument arg0 should point to a filename that is associated with the process being
started by one of the exec functions.

argv is an array of character pointers to null-terminated strings. The last element in this
array must be a null pointer. These strings constitute the argument list for the new process
image. The value in argv[0] should point to a filename that is associated with the process
being started by one of the exec functions.

envp is an array of character pointers to null-terminated strings. These strings constitute the
environment for the new process image. The envp array is terminated by a null pointer.

In the case of functions which do not pass envp as an argument (execl(), execv(),
execlp() and execvp()), the environment for the new process image is taken from the
external variable environ in the calling process.

The number of bytes available for the combined argument and environment lists of the
process is {ARG_MAX}. In the POSIX subsystem, the {ARG_MAX} constant includes the
space for null terminators, pointers, and/or any alignment bytes. This may be implemented
differently on other X/Open-compatible systems.

File descriptors open in the calling process image remain open in the new process image,
except for those whose close-on-exec flag FD_CLOEXEC is set (see also fcntl()). For
those file descriptors that remain open, all attributes of the open file description, including
file locks, remain unchanged.

The state of conversion descriptors and message catalog descriptors in the new process
image is undefined. For the new process, the equivalent of:

setlocale(LC_ALL, "C")

is executed at startup.

Signals set to the signal action SIG_DFL in the calling process image are set to the default
signal action in the new process image. Signals set to be ignored (SIG_IGN) by the calling
process image are also ignored by the new process image. Signals set to be caught by the
calling process image are set to the default signal action in the new process image (see
also signal.h).

After a successful call to any of the exec functions, any functions previously registered by
the atexit() function are no longer registered.

Functions and variables in alphabetical order exec

U23711-J-Z125-5-76 313

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

If the set-user-ID mode bit is set for the new process image file (see also chmod()), the
effective user ID of the new process image is set to the user ID of the new process image
file. Similarly, if the set-group-ID mode bit of the new process image file is set, the effective
group ID of the new process image is set to the group ID of the new process image file. The
real user ID, real group ID, and supplementary group IDs of the new process image remain
the same as those of the calling process image. The effective user ID and effective
group ID of the new process image are saved as the saved set-user-ID and the saved
set-group-ID for use by setuid().

Any shared memory segments attached to the calling process image will not be attached to
the new process image (see also shmat()).

The new process also inherits the following attributes from the calling process image:

– nice value (see also nice())
– semadj values (see also semop())
– process ID
– parent process ID
– process group ID
– session ID
– real user ID
– real group ID
– supplementary group IDs
– time left until an alarm clock signal (see also alarm())
– current working directory
– root directory
– file mode creation mask (see also umask())
– file size limit (see also ulimit())
– process signal mask (see also sigprocmask())
– pending signals (see also sigpending())
– tms_utime, tms_stime, tms_cutime and tms_cstime (see also times())

All other process attributes of the XPG4-compliant library functions will be the same in the
new and old process images.

Upon successful completion, the exec functions mark for update the st_atime field of the
file. If an exec function failed but was able to locate the process image file, whether the
st_atime field is marked for update is unspecified. Should the exec function succeed, the
process image file is considered to have been opened with open(). The corresponding
close() is considered to occur at a time after this open, but before process termination or
successful completion of a subsequent call to one of the exec functions.

POSIX files are closed on calling an exec function only if the CLOSE_ON_EXEC flag is set.

exec Functions and variables in alphabetical order

314 U23711-J-Z125-5-76

If threads are used, then the function affects the process or a thread in the following
manner:

– When one of the exec() functions are called in a process with more than one thread,
all threads are terminated and then the new executable program is loaded and
executed. No destructor functions are called.

BS2000
– BS2000 files are always closed on calling an exec() function. ❑

Return val. -1 if an error occurs. errno is set to indicate the error.

Errors The exec functions will fail if:

E2BIG The number of bytes used by the argument list and environment list of the
new process image is greater than the system-imposed limit of {ARG_MAX}
bytes.

EACCES Search permission is denied for a directory listed in the path prefix of the
new process image,
or the new process image file denies execution permission,
or the new process image file is not a regular file and the implementation
does not support execution of files of its type.

Extension
EFAULT The program could not be loaded.

EINTR A signal was caught.

ELOOP Too many symbolic links were encountered in resolving path or file. ❑

ENAMETOOLONG
The length of the path or file arguments, or an element of the environment
variable PATH prefixed to a file, exceeds {PATH_MAX}, or a pathname
component is longer than {NAME_MAX}.

Extension
ENOENT One or more components of the pathname of the new process image file

does not exist,
or path or file points to an empty string.

ENOMEM A new process image requires more memory than is allowed by the
hardware or system-imposed memory management constraints.

ENOTDIR A component of the path prefix of the new process image file is not a
directory. ❑

Functions and variables in alphabetical order exec

U23711-J-Z125-5-76 315

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

The exec functions - except for execlp() and execvp() - will fail if:

ENOEXEC The new process image file has the appropriate access permissions, but is
not in the proper format.

Notes Since the state of conversion descriptors and message catalog descriptors in the new
process image is undefined, portable applications should not rely on their use and should
close them prior to calling one of the exec functions.

Before the program to be executed is loaded, the environment variables BLSLIBnn
(where 00 <= nn <= 98) are evaluated in ascending order, starting with BLSLIB00. The
contents of the variables are interpreted as BS2000 file names, and a link to each
respective file name is set up using the variable name. The search is aborted at the first
variable that does not exist; however, a link to the file $.SYSLNK.CRTE is created with the
link name BLSLIB99 in any case. This mechanism allows incompletely linked programs,
which need to load modules dynamically, to be executed in a child process that does not
inherit the TFT (terminal file table) from its parent process.

See also alarm(), atexit(), exit(), fcntl(), fork(), getenv(), nice(), putenv(),
semop(), setlocale(), shmat(), sigaction(), system(), times(), ulimit(),
umask(), unistd.h, section “Environment variables” on page 104.

exit, _exit Functions and variables in alphabetical order

316 U23711-J-Z125-5-76

exit, _exit - terminate process

Syntax #include <stdlib.h>

void exit (int status);

#include <unistd.h>

void _exit (int status);

Description _exit() and exit() terminate the calling process.

A call to exit triggers the following actions:

1. exit() first calls all functions registered by atexit(), in the reverse order of their
registration. If a function registered by a call to atexit() fails to return, the remaining
registered functions are not called and the execution of exit() is aborted. If exit() is
called more than once, the effects are undefined.

2. exit() then flushes all output streams, closes all open streams, and removes all files
created by tmpfile().

In contrast to exit(), the _exit() function does not call the process termination
functions registered with atexit() and does not close the opened files.

_exit() and exit() terminate the calling process with the following consequences:

– All of the file descriptors, directory streams and message catalog descriptors open in
the calling process are closed.

– If the parent process of the calling process is executing a wait() or waitpid(), it is
notified of the termination of the calling process, and the low-order eight bits (i.e. bits
0377) of status are made available to it (see also wait() and waitpid()).

– If the parent is not waiting, the child´s status will be made available to it when the parent
subsequently executes a wait() or waitpid().

– If the parent process of the calling process is not executing a wait() or waitpid(),
the calling process is transformed into a zombie process. A zombie process is an
inactive process that will be deleted at some later time when its parent process
executes a wait() or waitpid().

– The termination of a process does not directly terminate its children. The sending of a
SIGHUP signal as described below indirectly terminates children in some circum-
stances.

– In the POSIX subsystem, the SIGCHLD signal is also sent to the parent process. Other
X/Open-compatible implementations may provide alternate mechanisms for this
purpose.

Functions and variables in alphabetical order exit, _exit

U23711-J-Z125-5-76 317

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

– The parent process ID of all of the calling process's existing child processes and zombie
processes is set to the process ID of a special system process. In other words, these
processes are inherited by the special system process init (whose process ID is 1).

– Each attached shared-memory segment is detached, and the value of shm_nattch
(see shmget()) in the data structure associated with its shared memory ID is decre-
mented by 1.

– For each semaphore for which the calling process has set a semadj value (see
semop()), that semadj value is added to the semval of the specified semaphore.

– If the process is a controlling process, the SIGHUP signal will be sent to each process
in the foreground process group of the controlling terminal belonging to the calling
process.

– If the process is a controlling process, the controlling terminal associated with the
session is disassociated from the session, allowing it to be acquired by a new
controlling process.

– If the exit of the process causes a process group to become orphaned, and if any
member of the newly-orphaned process group is stopped, then a SIGHUP signal
followed by a SIGCONT signal will be sent to each process in the newly-orphaned
process group.

The symbolic names EXIT_SUCCESS and EXIT_FAILURE are defined in stdlib.h and may
be used as the value of status to indicate successful or unsuccessful completion.

exit() and _exit() do not return.

If threads are used, then the function affects the process or a thread in the following
manner:

– The process is terminated. Threads that are terminated by calling _exit() do not call
their cancellation cleanup handler or the data destructors of the thread.

BS2000
– The monitor job variable MONJV is supplied in accordance with the following rules:

– Depending on the value of the status argument, the status indicator of the monitoring job
variable MONJV (1st to 3rd byte) is set to the value "$T " or "$A ", and the variables
SUBCODE1, SUBCODE2 and MAINCODE, which can be queried with the identically named
predefined functions of SDF-P, are supplied.

exit, _exit Functions and variables in alphabetical order

318 U23711-J-Z125-5-76

status may contain the symbolic constants EXIT_SUCCESS and EXIT_FAILURE (defined in
the header file stdlib.h) or any integer value:

EXIT_SUCCESS (value 0)
causes normal program termination.

The status indicator of the MONJV is assigned the value "$T ". In addition,
the following settings are made: SUBCODE=0, MAINCODE =CCM0998 and
SUBCODE2=status modulo 256.

EXIT_FAILURE (value 9990888)
causes a so-called job-step termination:

– The program is terminated abnormally.

– In a DO or CALL procedure, the system branches to the next ABEND,
END-PROCEDURE, SET-JOB-STEP or LOGOFF command.

– The system message "ABNORMAL PROGRAM TERMINATION" is issued.

The status indicator of the MONJV is assigned the value "$A ", and
SUBCODE=1, MAINCODE=CCM0999 and SUBCODE2=status modulo 256
are set.

integer value ≠ 0 and ≠ 9990888
A job-step termination is performed, and the status indicator of the MONJV is
assigned the value "$T". Furthermore, SUBCODE=1, MAINCODE=CCM0999,
and SUBCODE2=status modulo 256 are set.

If this value corresponds to the predefined values EXIT_SUCCESS or
EXIT_FAILURE, the actions indicated above are performed. ❑

Notes Applications should normally use exit() rather than _exit().

BS2000
In order to supply and query monitoring job variables, the C-language program must be
started from BS2000 with the command:

/START-PROG program,MONJV=monjvname

The contents of the job variables can then be checked, e.g. with the following command:

/SHOW-JV JV-NAME(monjvname)

Further information on the use of monitoring job variables for runtime monitoring can be
found in the "Job Variables (BS2000)" manual. ❑

See also abort(), atexit(), bs2exit(), close(), fclose(), semop(), shmget(),
sigaction(), wait(), stdlib.h, unistd.h.

Functions and variables in alphabetical order exp / expm1

U23711-J-Z125-5-76 319

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

exp - use exponential function

Syntax #include <math.h>

double exp(double x);

Description exp() computes the exponential function for a permitted floating-point number x.

Return val. ex if successful.

HUGE_VAL if an overflow occurs. errno is set to indicate the error.

Errors exp() will fail if:

ERANGE Overflow; the return value is too high.

See also log(), log10(), pow(), math.h.

expm1 - compute exponential function

Syntax #include <math.h>

double expm1(double x);

Description The expm1() function computes ex-1.0.

Return val. ex-1.0 if successful.

HUGE_VAL if an overflow occurs. errno is set to indicate the error.

Notes For small x values, the result of expm1(x) can be more accurate than the value of
exp (x)-1.0. The functions expm1() and log1p() are helpful for computing the expression
((1+x)n-1)/x, in the format: expm1(n * log1p(x))/x in the case of very small values of x.

This function can also be used to precisely represent inverse hyperbolic functions.

See also exp(), ilogb(), log1p(), math.h.

faccessat / fabs Functions and variables in alphabetical order

320 U23711-J-Z125-5-76

f... faccessat - check access permissions for file

Syntax #include <unistd.h>

int faccessat(int fd, const char *path, int amode, int flag);

Description See access().

fabs - compute absolute value of floating-point number

Syntax #include <math.h>

double fabs(double x);

Description fabs() computes the absolute value of the floating-point number x.

Return val. Absolute value of the floating-point number x
 if successful.

See also abs(), cabs(), ceil(), floor(), math.h.

Functions and variables in alphabetical order fattach

U23711-J-Z125-5-76 321

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fattach - assign file descriptor under STREAMS to object in name
space of file system

Syntax #include <stropts.h>

int fattach (int fildes, const char *path);

Description The fattach() function assigns a file descriptor under STREAMS to an object (file or
directory) in the name space of the file system, and fildes is assigned a pathname. fildes
must be a valid, open file descriptor which represents a STREAMS file. path is a pathname
of an existing object. The process must have appropriate privileges, or must be the owner
of the file path and have write permission. All subsequent operations on path work with the
STREAMS file until the assignment of the STREAMS file to the node is canceled. fildes can
be assigned to more than one path, i.e. the file descriptor can be assigned more than one
name.

The attributes of the given stream are initialized as follows (see also stat()): access
rights, user and group IDs and file times are the same as those of path, the number of links
is set to 1 and the size and device identifier are set to the same values as the STREAMS
device of fildes. If any attributes of the given are then subsequently modified (e.g. with
chmod()), neither the attributes of the underlying object nor the attributes of the STREAMS
file referred to by fildes are affected.

File descriptors which refer to the underlying object and were opened before an fattach()
call continue to refer to the underlying object.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

fattach Functions and variables in alphabetical order

322 U23711-J-Z125-5-76

Errors fattach() will fail if:

EACCES Search permission is denied for a component of the path, or if the user is
the owner of path but does not have write permission for path.

EBADF fildes is not a valid open file descriptor.

ENOENT A component of the pathname does not exist, or path points to an empty
string.

ENOTDIR A component of the pathname prefix is not a directory.

EPERM The effective user ID of the process is not that of the owner of the file
identified by path and the process does not have the appropriate access
permissions.

EBUSY path is currently a mount point or a STREAMS file is assigned to this path.

ENAMETOOLONG
The length of path exceeds {PATH_MAX}, or a component of the pathname
is longer than {NAME_MAX}, while {_POSIX_NO_TRUNC} is active; or
The resolving of a symbolic link of the pathname generates an interim result
which is longer than {PATH_MAX}.

ELOOP Too many symbolic links were encountered in resolving path.

EINVAL fildes does not represent a STREAMS file.

EREMOTE path is a file in a remotely mounted directory.

Notes fattach() behaves similarly to the older mount() function in that an object is temporarily
replaced by the root directory of the mounted file system. With fattach(), the replaced
object need not be a directory and the replacing file is a STREAMS file.

See also fdetach(), isastream(), stropts.h.

Functions and variables in alphabetical order fchdir

U23711-J-Z125-5-76 323

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fchdir - change current directory

Syntax #include <unistd.h>

int fchdir(int fildes);

Description Like chdir(), fchdir() also changes the current directory. The new directory is identified
by the file descriptor fildes. The current directory is the starting point for the search for
pathnames which do not begin with “/“. The fildes argument is an open file descriptor refer-
encing a directory.
To make a directory the current directory, a process must have execute (search) permission
for the directory.

Return val. 0 if successful.

-1 if an error occurs. The current working directory remains unchanged. errno
is set to indicate the error.

Errors fchdir() will fail if:

EACCES There is no search permission for fildes.

EBADF fildes is not a file descriptor for an open file.

ENOTDIR The open file descriptor does not point to a directory.

EINTR A signal was caught during the fchdir() system call.

EIO An I/O error occurred during reading or writing from the file system.

ENOLINK fildes refers to a remote computer and the link to this computer is no longer
active.

Notes The change of the current directory is effective for the duration of the current program (or
of the current shell). If a new program or shell is started, the home directory is again set as
the current directory.
To make a directory the current directory, a process must have execute permission (search)
for the directory.
fchdir() is only effective in the currently active process and only until the active program
terminates.
fchdir() is only executed for POSIX files.

See also chdir(), chroot(), unistd.h.

fchmod Functions and variables in alphabetical order

324 U23711-J-Z125-5-76

fchmod - change mode of file

Syntax #include <sys/types.h>
#include <sys/stat.h>

int fchmod(int fildes, mode_t mode);

Description Like chmod(), fchmod() changes S_ISUID, S_ISGID and the file mode bits of the
addressed file into the corresponding bits of mode, except that the file whose access permis-
sions are to be changed is identified not by the pathname but by the file descriptor fildes.
The file mode bits are interpreted as follows (see also sys/stat.h):

Other modes are constructed by a bit-wise OR combination of the file mode bits.

The effective user ID of the process must match the owner of the file or the process must
have the appropriate privilege to change the mode of a file.

If neither the process nor a member of the supplementary group list is privileged, and if the
effective group ID of the process does not match the group ID of the file, the mode bit 02000
(set group ID on execution) is cleared.

Symbolic name Bit pattern Meaning

S_ISUID 04000 Set user ID on execution

S_ISGID 020#0 Set group ID on execution if the value of # is 7, 5, 3 or 1. Remove
mandatory lock on files and file records if # is 6, 4, 2 or 0

S_ISVTX 01000 Save text segment after execution

S_IRWXU 00700 Read, write or execute (search) by owner

S_IRUSR 00400 Read by owner

S_IWUSR 00200 Write by owner

S_IXUSR 00100 Execute (search if a directory) by owner

S_IRWXG 00070 Read, write or execute (search) by group

S_IRGRP 00040 Read by group

S_IWGRP 00020 Write by group

S_IXGRP 00010 Execute by group

S_IRWXO 00007 Read, write or execute (search) by others

S_IROTH 00004 Read by others

S_IWOTH 00002 Write by others

S_IXOTH 00001 Execute by others

Functions and variables in alphabetical order fchmod

U23711-J-Z125-5-76 325

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

If the mode bit 02000 (set group ID on execution) is set and the mode bit 00010 (execute
or search by group) is not set, mandatory file/record locking will exist on a regular file. This
may affect future calls to open(), creat(), read() and write() on this file.

If the process is not a privileged process and the file is not a directory, the mode bit 01000
(save text segment after execution) is deleted.

If a directory can be written to and the sticky bit is set, files in this directory can only be
deleted or renamed if at least one of the following is true (see unlink() and rename()):

the file belongs to the user
the directory belongs to the user
the user has right permission for the file
the user is a privileged user

On successful completion, fchmod() marks the st_ctime field of the file for update.

Return val. 0 if successful.

-1 if an error occurs. The file mode is not changed. errno is set to indicate the
error.

Errors fchmod() will fail if:

EBADF fildes is not an open file descriptor.

EINVAL An attempt was made to access a BS2000 file, or the value of mode is
invalid.

EIO An I/O error occurred while reading from or writing to the file system.

EINTR A signal was caught during execution of the fchmod system call.

EPERM The user ID does not match that of the file owner, and the process does not
have the appropriate privileges.

EROFS The file referred to by fildes resides on a read-only file system.

Notes fchmod() is executed only for POSIX files.

See also chmod(), chown(), creat(), fcntl(), fstatvfs(), mknod(), open(),
read(),
rename(), stat(), unlink(), write(), sys/stat.h, sys/types.h.

fchmodat Functions and variables in alphabetical order

326 U23711-J-Z125-5-76

fchmodat - change mode of file

Syntax #include <sys/stat.h>

Optional
#include <sys/types.h> ❑

int fchmodat(int fd, const char *path, mode_t mode, int flag);

Description See chmod().

Functions and variables in alphabetical order fchown

U23711-J-Z125-5-76 327

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fchown - change owner or group of file

Syntax #include <unistd.h>

int fchown(int fildes, uid_t owner, gid_t group);

Description Like chown(), fchown() changes the user ID and the group ID of the addressed file,
except that the file is not identified by the pathname but by the file descriptor fildes. The user
ID is set to owner and the group ID is set to group. If owner or group is specified as -1, the
corresponding ID is not changed.

If fchown() is called by a process without appropriate privileges, the bits set-user-ID on
execution and set-group-ID on execution, i.e. S_ISUID and S_ISGID, are cleared (see
chmod()).
The effective user ID of the process must match the owner of the file or the process must
have the appropriate privilege to change ownership of a file.

On successful completion, fchown() marks the st_ctime field of the file for update.

Return val. 0 if successful. The user ID and group ID of the specified file are set as
required.

-1 if an error occurs. The user ID and group ID of the file are not changed, and
errno is set to indicate the error.

Errors fchown() will fail if:

EABDF fildes does not point to an open file.

EINTR A signal was caught during the system call.

EINVAL An attempt was made to access a BS2000 file.

group or owner is not in the permissible range.

EIO An I/O error occurred while reading from or writing to the file system.

EPERM The user ID does not match the owner of the file, or the process does not
have the appropriate privileges.

EROFS The file resides on a read-only file system.

Notes fchown() is executed only for POSIX files

See also chmod(), chown(), unistd.h.

fchownat Functions and variables in alphabetical order

328 U23711-J-Z125-5-76

fchownat - change owner and group of file

Syntax #include <unistd.h>

Optional
#include <sys/types.h> ❑

int fchownat(int fd, const char *path, uid_t owner, gid_t group, int flag);

Description See chown().

Functions and variables in alphabetical order fclose

U23711-J-Z125-5-76 329

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fclose - close stream

Syntax #include <stdio.h>

int fclose(FILE *stream);

Description fclose() causes the buffer of the stream pointed to by stream to be flushed and the
associated file to be closed. Any unwritten buffered data for the stream is written to the file;
any unread buffered data is discarded. The stream is disassociated from the file. If the
associated buffer was automatically allocated, it is deallocated. The fclose() function will
perform a close() on the file descriptor that is associated with the stream pointed to by
stream.

After the call to fclose(), the behavior of stream is undefined.

Return val. 0 if successful

EOF if an error occurs; errno is set to indicate the error.

Errors fclose() will fail if:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the write operation.

EBADF The file descriptor underlying stream is not valid.

Extension
The BS2000 file is not accessible in the process. ❑

EFBIG An attempt was made to write a file that exceeds the maximum file size or
the process file size limit (see also ulimit()).

EINTR fclose() was interrupted by a signal.

EIO An I/O error occurred.

The process is a member of a background process group attempting to
write to its controlling terminal, TOSTOP is set, the process is neither ignoring
nor blocking the SIGTTOU signal, and the process group of the process is
orphaned.

ENOSPC There was no free space remaining on the device containing the file.

ENXIO A request was made of a non-existent device, or the request was outside
the capabilities of the device.

fclose Functions and variables in alphabetical order

330 U23711-J-Z125-5-76

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.
If threads are used, then the function affects the process or a thread in the
following manner: If an EPIPE error occurs, the SIGPIPE signal is not sent
to the process, but is sent to the calling thread instead.

Notes Whenever a program is terminated normally or with exit(), an fclose() is automatically
executed for every open file. In other words, fclose() need not be called explicitly except
in cases when a file needs to be closed before program termination, e.g. to avoid exceeding
the limit for open files (=2048).

The program environment determines whether fclose() is executed for a BS2000 or
POSIX file.

BS2000
If stream does not point to a FILE structure, the program is aborted.

Since no data is buffered for record I/O, there is no internal call to the fflush() function. ❑

See also close(), exit(), fflush(), fopen(), setbuf(), stdio.h.

Functions and variables in alphabetical order fcntl

U23711-J-Z125-5-76 331

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fcntl - control open file

Syntax #include <fcntl.h>

Optional
#include <sys/types.h>
#include <unistd.h>

int fcntl(int fildes, int cmd, ... / * arg */);

Description fcntl() provides for control over open files.

fildes is a file descriptor of an open file.

fcntl() can take a third argument, whose data type and value depend upon the value of
the passed command cmd. The command cmd specifies the operation to be performed by
fcntl() and may be one of the following:

F_DUPFD Returns a new file descriptor with the following characteristics:

– Lowest numbered available (i.e. open) file descriptor greater than or
equal to the integer value passed as the third argument (arg).

– Same open file (or pipe) as the original file.
– Same file position indicator as the original file (i.e. both file descriptors

share one file position indicator).
– Same access mode (read, write, or read/write) as the original file.
– Same file status bits as the original file.
– The close-on-exec flag (see F_GETFD) associated with the new file

descriptor is set to remain open across exec system calls.

F_GETFD Gets the close-on-exec flag associated with file descriptor fildes. If the low-
order bit is 0, the file will remain open across exec. Otherwise, the file will
be closed upon execution of exec.

F_SETFD Sets the close-on-exec flag associated with fildes to the low-order bit of the
integer value given as the third argument (0 or 1 as above).

F_GETFL Gets the fildes status flag.

F_SETFL Sets the fildes status flag to the integer value given as the third argument.
Only certain flags can be set (see fcntl()).

fcntl Functions and variables in alphabetical order

332 U23711-J-Z125-5-76

Extension
F_FREESP Frees storage space associated with a section of the ordinary file fildes. The

section is specified by a variable of data type struct flock pointed to by
the third argument arg. The data type struct flock is defined in the
fcntl.h header file (see fcntl()) and contains the following members:

– l_whence is 0, 1 or 2 to indicate that the relative offset l_start will be
measured from the start of the file, the current position, or the end of the
file, respectively.

– l_start is the offset from the position specified in l_whence. l_len is
the size of the section. An l_len of 0 frees up to the end of the file; in
this case, the end of file (i.e., file size) is set to the beginning of the
section freed. Any data previously written into this section is no longer
accessible.

The following commands are used for file and record-locking. Locks may be placed on an
entire file or on segments of a file.

F_SETLK Set or clear a file segment lock according to the flock structure that arg
points to (see fcntl()). The cmd F_SETLK is used to establish read
(F_RDLCK) and write (F_WRLCK) locks, as well as remove either type of lock
(F_UNLCK). If a read or write lock cannot be set, fcntl() will return immedi-
ately with an error value of -1.

F_SETLKW This cmd is the same as F_SETLK except that if a read or write lock request
is blocked by other locks, the process will wait until the segment is free to
be locked.

F_GETLK If the lock request described by the flock structure that arg points to could
be created, then the structure is passed back unchanged except that the
lock type is set to F_UNLCK, and the l_whence field will be set to SEEK_SET.
If a lock is found that would prevent this lock from being created, then the
structure is overwritten with a description of the first lock that is preventing
such a lock from being created.

This command never creates a lock; it simply tests whether a particular lock
could be created.

F_RSETLK, F_RSETLKW, F_RGETLK
These commands are used by the network daemon lockd to lock NFS files
with the NFS server.

A read lock prevents any process from write locking the protected area. More than one read
lock may exist for a given segment of a file at a given time. The file descriptor on which a
read lock is being placed must have been opened with read access.

Functions and variables in alphabetical order fcntl

U23711-J-Z125-5-76 333

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

A write lock prevents any process from read locking or write locking the protected area.
Only one write lock and no read locks may exist for a given segment of a file at a given time.
The file descriptor on which a write lock is being placed must have been opened with write
access.

The flock structure describes the type (l_type), starting offset (l_whence), relative offset
(l_start), size (l_len), process ID (l_pid), and system ID (l_sysid) of the relevant
segment of the file.

The value of l_whence is SEEK_SET, SEEK_CUR or SEEK_END to indicate that the relative
offset l_start bytes will be measured from the start of the file, current position or end of
the file, respectively. The value of l_len is the number of consecutive bytes to be locked.
The value of l_len may be negative (where the definition of off_t permits negative values
of l_len). The l_pid field is only used with F_GETLK to return the process ID of the process
holding a blocking lock. After a successful F_GETLK request, i.e. one in which a lock was
found, the value of l_whence will be SEEK_SET.

If l_len is positive, the area affected starts at l_start and ends at l_start + l_len-1. If
l_len is negative, the area affected starts at l_start + l_len and ends at l_start-1.
Locks may start and extend beyond the current end of a file, but must not be negative
relative to the beginning of the file. A lock will be set to extend to the largest possible value
of the file offset for that file by setting l_len to 0. If such a lock also has l_start set to 0
and l_whence is set to SEEK_SET, the whole file will be locked.

There will be at most one type of lock set for each byte in the file. If the calling process
already has existing locks on bytes in the region specified by the request, the previous lock
type for each byte in the specified region will be replaced by the new lock type before a
successful return from an F_SETLK or an F_SETLKW request. As specified above under the
descriptions of shared locks and exclusive locks, an F_SETLK or an F_SETLKW request will
(respectively) fail or block when another process has existing locks on bytes in the specified
region and the type of any of those locks conflicts with the type specified in the request.

All locks associated with a file for a given process are removed when a file descriptor for
that file is closed by that process or the process holding that file descriptor terminates.
Locks are not inherited by a child process created using the fork() function.

A potential for deadlock occurs if a process controlling a locked region is put to sleep by
attempting to lock another process's locked region. If the system detects that sleeping until
a locked region is unlocked would cause a deadlock, the fcntl() function will fail with an
EDEADLK error.

When mandatory file and record locking is active on a file (see chmod()), open(), read()
and write() system calls issued on the file will be affected by the record locks in effect.

fcntl Functions and variables in alphabetical order

334 U23711-J-Z125-5-76

The following additional value can be used when creating oflag:

O_LARGEFILE If this value is set, the offset maximum specified in the internal description
of the open file is the highest value that can be properly represented in an
object of type off64_t.

The O_LARGEFILE flag can be enabled and disabled with F_SETFL.

The response of the following values is the same as the response for F_GETLK, F_SETLK,
F_SETLKW and F_FREESP except that an argument of type struct flock64 must be
passed instead of an argument of type struct flock:

F_GETLK64, F_SETLK64, F_SETLKW64 and F_FREESP64

The flock64 structure is defined like the flock structure (see <fcntl()) except for:

off64_t l_start and off64_t l_len.

If threads are used, then the function affects the process or a thread in the following
manner: When the F_SETLKW command is called, the thread waits until the request can be
fulfilled.

Return val. A new file descriptor
upon successful completion of the command F_DUPFD.

Value of process status flags, as defined in fcntl.h
upon successful completion of the command F_GETFD.
The return value will not be negative.

Value other than -1
upon successful completion of the commands F_SETFD, F_SETFL,
F_GETLK, F_SETLK and F_SETLKW.

0 upon successful completion of the command F_FREESP

Value of file status flags and access modes
upon successful completion of the command F_GETFL.
The return value will not be negative.

-1 if an error occurs. errno is set to indicate the error.

Errors fcntl() will fail if:

EACCES cmd is F_SETLK, the type of lock (l_type) is a read lock (F_RDLCK), and the
segment of a file to be locked is already write-locked by another process.

The type is a write lock (F_WRLCK) and the segment of a file to be locked is
already read or write locked by another process.

EAGAIN cmd is F_FREESP, the file exists, mandatory file/record locking is set, and
there are outstanding record locks on the file.

Functions and variables in alphabetical order fcntl

U23711-J-Z125-5-76 335

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Extension
EAGAIN cmd is F_SETLK or F_SETLKW, and the file is currently being mapped to virtual

memory using mmap() (see mmap()).

EBADF fildes is not a valid open file descriptor.

cmd is F_SETLK or F_SETLKW, the type of lock (l_type) is a write lock
(F_WRLCK), and fildes is not a valid file descriptor open for reading.

cmd is F_SETLK or F_SETLKW, the type of lock (l_type) is a write lock
(F_WRLCK), and fildes is not a valid file descriptor open for writing.

cmd is F_FREESP, and fildes is not a valid file descriptor open for writing.

Extension
EDEADLK cmd is F_FREESP, mandatory record locking is enabled, O_NDELAY and

O_NONBLOCK are clear, and a deadlock condition was detected.

EDEADLK cmd is F_SETLKW, the lock is blocked by a lock from another process, and
putting the calling process to sleep (i.e. in a wait state) until that lock
becomes free would cause a deadlock situation.

Extension
EFAULT cmd is F_FREESP, and the value pointed to by arg is located at an address

outside the address space used by the process.

cmd is F_GETLK, F_SET_LK or F_SETLKW, and the value pointed to by arg is
located at an address outside the address space used by the process.

EINTR A signal was caught during the fcntl() system call.

EINVAL cmd is F_DUPFD, and arg is either negative or greater than or equal to the
value for the maximum number of open file descriptors permitted for each
user.

cmd is not a valid value.

cmd is F_GETLK, F_SETLK or SETLKW, and arg or the data it points to is not
valid, or fildes refers to a file that does not support locking.

An attempt was made to access a BS2000 file.

Extension
EIO An I/O error occurred while reading from or writing to the file system.

EMFILE cmd is F_DUPFD, and the number of file descriptors currently open in the
calling process is the configured value for the maximum number of open file
descriptors allowed each user.

ENOLCK cmd is F_SETLK or F_SETLKW, the type of lock is a read or write lock, and
there are no more record locks available (too many file segments locked)
because the system maximum has been exceeded.

fcntl Functions and variables in alphabetical order

336 U23711-J-Z125-5-76

ENOLINK fildes is on a remote computer and the connection to this computer is not
active or cmd is F_FREESP, the file on a remote computer and the connec-
tion to it are not active.

EOVERFLOW One of the values returned cannot be represented correctly.

Notes fcntl() is executed only for POSIX files

See also close(), creat(), dup(), exec(), fork(), open(), sigaction(), pipe(), fcntl.h,
sys/type.h, unistdt.h.

Functions and variables in alphabetical order fcvt / FD_CLR ...

U23711-J-Z125-5-76 337

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fcvt - convert floating-point number to string

Syntax #include <stdlib.h>

char *fcvt(double value, int ndigit, int *decpt, int *sign);

Description See ecvt().

FD_CLR, FD_ISSET, FD_SET, FD_ZERO - macros for synchronous
I/O multiplexing

Syntax #include <sys/time.h>

FD_CLR (int fd, fd_set *fdset);

FD_ISSET (int fd, fd_set *fdset);

FD_SET (int fd, fd_set *fdset);

FD_ZERO (fd_set *fdset);

Description See select().

fdelrec Functions and variables in alphabetical order

338 U23711-J-Z125-5-76

fdelrec - delete record in ISAM file (BS2000)

Syntax #include <stdio.h>

int fdelrec(FILE *stream, void *key);

Description fdelrec() deletes the record with the key value key from an ISAM file with record I/O.

FILE *stream is the file pointer of an ISAM file that was opened in the mode type=record,
forg=key (see also fopen(), freopen()).

void *key is a pointer to an area which contains the key value of the record to be deleted
in its complete length or null. If key is equal to null, the last record read is deleted. The record
must be read immediately before the fdelrec call.

Return val. 0 if successful. The record with the specified key was deleted.

> 0 The record to be deleted does not exist.

EOF if an error occurs.

Notes If the call was error-free (return values 0 or > 0) the EOF flag of the file is reset.

If the specified key value is not present in the file (return value > 0) the current position of
the file position indicator remains unchanged. Sole exception: if, at the time of the fdelrec
call, the file is positioned on the second or higher key of a group of records with identical
keys, then fdelrec() positions the file on the first record after this group.

In ISAM files with key duplication, fdelrec() deletes the first record with the specified key.
The file is then positioned on the next record (with the same key or the next higher key).

See also flocate(), fopen(), freopen(), stdio.h.

Functions and variables in alphabetical order fdetach

U23711-J-Z125-5-76 339

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fdetach - cancel assignment to STREAMS file

Syntax #include <stropts.h>

int fdetach(const char *path);

Description The fdetach() function cancels the assignment of a file descriptor under STREAMS to a
name in the file system. path is the pathname of the object (file or directory) in the name
space of the file system to which the file descriptor was previously assigned with
fattach(). The user must be the owner of the file or a user with special permissions.

A successful fdetach() call has the following effects: all pathnames that have identified
the assigned STREAMS file then identify again the original object to which the STREAMS
file was assigned. All subsequent operations on path work with the node in the file system
and not with the STREAMS file.

The access permissions and the node status are restored as they were before the
assignment.

All open file descriptors established while the STREAMS file was assigned to the file
identified by path continue to refer to the STREAMS file after the fdetach() has taken
effect.

If there are no open file descriptors or other references to the STREAMS file, a successful
fdetach() has the effect on the assigned file of a final close() call on this file.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

fdetach Functions and variables in alphabetical order

340 U23711-J-Z125-5-76

Errors fdetach() will fail if:

EACCES Search permission is denied for a component of the path.

EPERM The effective user ID of the process is not that of the owner of the file
identified by path and the process does not have the appropriate access
permissions.

ENOTDIR A component of the pathname prefix is not a directory.

ENOENT A component of the pathname does not exist, or path points to an empty
string.

EINVAL path is not assigned to a STREAMS file.

ENAMETOOLONG
The length of path exceeds {PATH_MAX}, or a component of the pathname
is longer than{NAME_MAX}, while {_POSIX_NO_TRUNC} is active.

ELOOP Too many symbolic links were encountered in resolving path.

See also close(), fattach(), stropts.h.

Functions and variables in alphabetical order fdopen

U23711-J-Z125-5-76 341

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fdopen - associate stream with file descriptor

Syntax #include <stdio.h>

FILE *fdopen(int fildes, const char *mode);

Description fdopen() associates a stream with a file descriptor.

mode a character string having one of the following values:

r or rb open a file for reading

w or wb open a file for writing

a or ab open a file for writing at end of file

r+, r+b or rb+ open a file for update (reading and writing)

w+, w+b or wb+ open a file for update (reading and writing)

a+ , a+b or ab+ open a file for update (reading and writing)
at end of file

The meaning of these flags is exactly as specified in fopen(), except that mode arguments
beginning with w do not cause the file to be truncated to length 0 (see fopen()).

The mode argument for the stream must only include the access modes that were originally
defined for the file, i.e. fdopen() cannot be used to change the file access mode. The
file position indicator associated with the stream is set to the same position as the file
position indicator associated with the file descriptor.

The error and end-of-file indicators for the stream are cleared. The fdopen() function may
cause the st_atime field of the underlying file to be marked for an update.

BS2000
The st_atime field is ignored for BS2000 files. The file retains its original access mode. ❑

For automatic conversion, the b for binary must not be specified in mode. Furthermore, the
environment variable IO_CONVERSION must not be present or must have the value YES.

Return val. Pointer to a stream

if successful.

Null pointer if an error occurs; errno is set to indicate the error.

fdopen Functions and variables in alphabetical order

342 U23711-J-Z125-5-76

Errors fdopen() will fail if:

EBADF fildes is not a valid file descriptor.

EINVAL For POSIX files: mode is not a valid mode.

EMFILE {FOPEN_MAX} streams are already open in the calling process.

{STREAM_MAX} streams are already open in the calling process.

ENOMEM There is not enough memory to allocate a buffer.

BS2000
If errors occur, e.g. due to an invalid file descriptor, fdopen() will return neither a defined
result nor an error message. The program does not abort in this case. ❑

Notes {STREAM_MAX} is the number of streams that one process can have open at one time. If
defined, it has the same value as {FOPEN_MAX}, i.e. 2048.

File descriptors are obtained from calls like open(), dup(), creat() or pipe().

The program environment determines whether fdopen() is executed for a BS2000 or
POSIX file.

See also fclose(), fopen(), open(), stdio.h, section “File processing” on page 107.

Functions and variables in alphabetical order fdopendir / feof

U23711-J-Z125-5-76 343

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fdopendir - open directory

Syntax #include <unistd.h>

Optional
#include <sys/types.h> ❑

int fchownat(int fd, const char *path, uid_t owner, gid_t group, int flag);

Description See opendir().

feof - test end-of-file indicator on stream

Syntax #include <stdio.h>

int feof(FILE *stream);

Description feof() tests the end-of-file indicator for the stream pointed to by stream.

Return val. ≠ 0 EOF is set for stream; the end of file was reached.

0 EOF is not set.

Notes feof() is normally used after access functions that do not report end of file (fread()).

If the file has been repositioned (e.g. with fseek(), fsetpos(), rewind()) after EOF has
been reached, or if the clearerr() function has been called, feof() returns a value of 0.

The program environment determines whether feof() is executed for a BS2000 or POSIX
file.

BS2000
feof() is implemented both as a macro and as a function.

feof() can also be used unchanged on files with record I/O. ❑

See also clearerr(), ferror(), fopen(), fseek(), fsetpos(), stdio.h.

ferror Functions and variables in alphabetical order

344 U23711-J-Z125-5-76

ferror - test error indicator on stream

Syntax #include <stdio.h>

int ferror(FILE *stream);

Description ferror() tests the error indicator for the stream pointed to by stream.

Return val. ≠ 0 if the error indicator is set for stream.

0 if the error indicator is not set for stream.

Notes The error indicator remains set until the associated file pointer is released (e.g. by a
rewind(), fclose() or program termination) or until the clearerr() function is called.

The program environment determines whether ferror() is executed for a BS2000 or
POSIX file.

BS2000
ferror() is implemented both as a macro and as a function.

ferror() should always be used when reading from a file or writing to it.

ferror() can also be used unchanged on files with record I/O. ❑

See also clearerr(), feof(), fopen(), stdio.h.

Functions and variables in alphabetical order fflush

U23711-J-Z125-5-76 345

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fflush - flush stream

Syntax #include <stdio.h>

int fflush(FILE *stream);

Description If stream points to an output stream or an update stream in which the most recent operation
was not input, fflush() causes any buffered data for that stream to be written to the file.
If stream is a null pointer, the flushing action is performed on all open files.

Return val. 0 if successful. The buffer was flushed.

EOF if an error occurs. The buffer was not flushed. errno is set to indicate the
error.

BS2000
Alternatively, the buffer did not need to be flushed, since it does not exist
(because no write function has been executed on the file), or the file is an
input or INCORE file. ❑

stream is not associated with any file (since the file is already closed, for
example) or the buffered data could not be transferred.

Errors fflush() will fail if:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying stream, and the
process would be delayed in the write operation.

EBADF The file descriptor underlying stream is not valid.

EFBIG An attempt was made to write a file that exceeds the maximum file size or
the process file size limit (see also ulimit()).

EINTR fflush() was interrupted by a signal.

EIO An I/O error occurred.

The process is a member of a background process group attempting to
write to its controlling terminal; TOSTOP is set; the process is neither ignoring
nor blocking SIGTTOU, and the process group of the process is orphaned.

ENOSPC There was no free space remaining on the device containing the file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

If threads are used, then the function affects the process or a thread in the
following manner: If an EPIPE error occurs, the SIGPIPE signal is not sent
to the process, but is sent to the calling thread instead.

fflush Functions and variables in alphabetical order

346 U23711-J-Z125-5-76

Notes The program environment determines whether fflush() is executed for a BS2000 or
POSIX file.

BS2000
All standard I/O functions that write data to a BS2000 file (printf(), putc(), fwrite(),
etc.) store this data temporarily in a buffer and only write it to the file when one of the
following events occurs:

– A newline character (\n) is detected (only for text files).
– The maximum record length of a disk file is reached.
– For terminals: when output to the terminal is followed by input from the terminal.
– The functions fseek(), fsetpos(), rewind() or fflush() are called.
– The file is closed.

In addition, for ANSI functionality only:
If reading from any text file makes data transfer necessary from the external file to the
buffer, the data of all ISAM files still stored in buffers is automatically written out to the files.

Buffering does not take place in the case of outputs to strings (sprintf()) and to INCORE
files.
fflush() causes a line change in a text file even if the data in the buffer does not end with
a newline character. Data that follows is written to a new line (or a new record).

Exception for ANSI functionality:
If the data of an ISAM file in the buffer does not end in a newline character, fflush() does
not cause a change of line (or change of record). Subsequent data extends the record in
the file. Consequently, when an ISAM file is read, only those newline characters explicitly
written by the program are read in.

fflush() is automatically executed internally when a file is closed (fclose(), close())
or when a program ends normally or is terminated by means of an exit().
fflush() can be used to control the output of data during program execution, e.g. to
concatenate various inputs into a single output and print them together at a user-defined
point in time.
In the case of record I/O, calls to the fflush() function are not rejected with an error, but
have no effect. No data is buffered for files with record I/O. ❑

See also exit(), close(), fclose(), stdio.h.

Functions and variables in alphabetical order ffs

U23711-J-Z125-5-76 347

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

ffs - seek first set bit

Syntax #include <strings.h>

int ffs(int i);

Description ffs() searches for the first set bit in the transferred argument, beginning with the least-
significant bit, and returns the position of this bit. The numbering of the bits begins with 1,
starting with the least-significant bit.

Return val. Position of the first set bit
if i ≠ 0.

0 if i = 0.

See also strings.h.

fgetc Functions and variables in alphabetical order

348 U23711-J-Z125-5-76

fgetc - get byte from stream

Syntax #include <stdio.h>

int fgetc(FILE *stream);

Description fgetc() reads the next existing byte of type unsigned char from the input stream pointed
to by stream, converts it to an int, and advances the associated file position indicator for
the stream (if defined).

fgets() can mark the structure component st_atime for the file to which stream is
assigned for changing (see sys/stat.h). The structure component st_atime is updated
as soon as fgetc(), fgets(), fgetwc(), fgetws(), fread(), fscanf(),
getc(), getchar(), gets() or scanf() are called successfully for stream and return
data which is not was not provided by a preceding call to ungetc() or ungetwc().

Return val. Next byte from the input stream pointed to by stream
upon successful completion.

EOF if the stream is at end-of-file. The end-of-file indicator for the stream is set.

EOF if a read error occurs. The error indicator for the stream is set, and errno is
set to indicate the error.

Errors fgetc() will fail if:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying stream, and the
process would be delayed in the fgetc() operation.

EBADF The file descriptor underlying stream is not a valid file descriptor open for
reading.

EINTR The read operation was terminated due to the receipt of a signal, and no
data was transferred.

EIO A physical I/O error has occurred,
or the process is in a background process group attempting to read from its
controlling terminal, and either the process is ignoring or blocking the
SIGTTIN signal or the process group is orphaned.

Functions and variables in alphabetical order fgetc

U23711-J-Z125-5-76 349

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Notes If the integer value returned by fgetc() is stored into a variable of type char and then
compared against the integer constant EOF, the comparison may never succeed, because
sign-extension of a variable of type char on widening to integer is machine-dependent.
Portable applications should therefore always use an int variable for the result of
fgetc().

The ferror() or feof() functions must be used to distinguish between an error condition
and an end-of-file condition.

If a comparison such as:

while((c = fgetc(dz)) != EOF)

is used in a program, the variable c must always be declared as an int value.
Otherwise, if c were defined as a char, the EOF condition would never be satisfied for the
following reason: -1 is converted to the char value 0xFF (i.e. +255); however, EOF is
defined as -1.

If fgetc() is reading from the standard input stdin in the POSIX environment, and EOF
is the end criterion for reading, the EOF condition can be achieved by the following actions:

Ê on a block-special terminal: by entering the key sequence [@][@][d]

Ê on a character-special terminal: by entering [CTRL]+[D]

BS2000
If fgetc() is reading from the standard input stdin in the BS2000 environment, and EOF
is the end criterion for reading, the EOF condition can be achieved by means of the following
actions at the terminal:

1. by pressing the [K2] key.

2. by entering the system commands EOF and RESUME-PROGRAM.

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
split=no was entered for fopen(), records of maximum length are not concatenated with
the subsequent record when they are read. By default or with the specification split=yes,
when a record with maximum record length is read, it is assumed that the following record
is the continuation of this record and the records are concatenated ❑.

The program environment determines whether fgetc() is executed for a BS2000 or
POSIX file.

See also feof(), ferror(), fopen(), getchar, getc(), stdio.h, sys/stat.h.

fgetpos Functions and variables in alphabetical order

350 U23711-J-Z125-5-76

fgetpos - get current value of file position indicator in stream

Name fgetpos, fgetpos64

Syntax #include <stdio.h>

int fgetpos(FILE *stream, fpos_t *pos);
int fgetpos64(FILE *stream, fpos64_t *pos);

Description fgetpos() stores the current value of the file position indicator for the stream pointed to by
stream in the object pointed to by pos. The value stored contains information usable by
fsetpos() for repositioning the stream to its position at the time of the call to fgetpos().
There is no difference in functionality between fgetpos() and fgetpos64() except that
fgetpos64() uses a fpos64_t data type.

Return val. 0 if successful.

≠ 0 if an error occurs; errno is set to indicate the error.

BS2000
errno is set to EBADF.

Errors fgetpos() will fail if:

EBADF The file descriptor underlying stream is not valid.

ESPIPE The file descriptor underlying stream is associated with a pipe or FIFO.

Notes The program environment determines whether fgetpos() is executed for a BS2000 or
POSIX file.

BS2000
fgetpos() can be used on binary files (SAM in binary mode, PAM, INCORE) and text files
(SAM in text mode, ISAM). fgetpos() cannot be used on system files (SYSDTA, SYSLST,
SYSOUT).

For ISAM files, the function pair fgetpos()/fsetpos() is far more effective than the
comparable function pair ftell()/fseek().
For record I/O, fgetpos() returns the position after the last record to be read, written or
deleted or the position reached by an immediately preceding positioning operation.
For ISAM files with key duplication, fgetpos() always returns the position after the last
record of a group with identical keys if one of these records has previously been read,
written or deleted.

See also fseek(), fseek64(), lseek(), lseek64(), fsetpos(), fsetpos64(),
ftell(), ftell64(), ungetc(), stdio.h.

Functions and variables in alphabetical order fgets

U23711-J-Z125-5-76 351

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fgets - get string from stream

Syntax #include <stdio.h>

char *fgets(char *s, int n, FILE *stream);

Description fgets() reads at most n-1 bytes from the stream pointed to by stream until a newline
character or an end-of-file condition is encountered. The string is read into the array pointed
to by s and terminated with a null byte.

fgets() can mark the structure component st_atime for the file to which stream is
assigned for changing (see sys/stat.h). The structure component st_atime is updated
as soon as fgetc(), fgets(), fgetwc(), fgetws(), fread(), fscanf(),
getc(), getchar(), gets() or scanf() are called successfully for stream and return
data which is not was not provided by a preceding call to ungetc() or ungetwc().

Return val. Pointer to the result string
upon successful completion.

Null pointer if the stream is at end-of-file. The end-of-file indicator for the stream is set.

Null pointer if a read error occurs. The error indicator for the stream is set, and errno is
set to indicate the error.

Errors See fgetc().

Notes The area in which fgets() is to store the string that is read must be supplied explicitly.

In contrast to gets(), fgets() also enters a newline character (if read) into the result
string.

BS2000

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
split=no was entered for fopen(), records of maximum length are not concatenated with
the subsequent record when they are read. By default or with the specification split=yes,
when a record with maximum record length is read, it is assumed that the following record
is the continuation of this record and the records are concatenated ❑.

The program environment determines whether fgets() is executed for a BS2000 or
POSIX file.

Example See fputs().

See also fgetc(), fopen(), fputs(), fread(), gets(), stdio.h, sys/stat.h.

fgetwc Functions and variables in alphabetical order

352 U23711-J-Z125-5-76

fgetwc - get wide character string from stream

Syntax #include <wchar.h>

Optional
#include <stdio.h> ❑

wint_t fgetwc(FILE *stream);

Description fgetwc() reads the next character (if present) from the input stream pointed to by stream,
converts that to the corresponding wide character code and advances the file position
indicator for the stream (if defined).

If an error occurs, the resulting value of the file position indicator for the stream is indeter-
minate.

fgetwc() can mark the structure component st_atime for the file to which stream is
assigned for changing (see sys/stat.h). The structure component st_atime is updated
as soon as fgetc(), fgets(), fgetwc(), fgetws(), fread(), fscanf(),
getc(), getchar(), gets() or scanf() are called successfully for stream and return
data which is not was not provided by a preceding call to ungetc() or ungetwc().

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h).

Return val. Wide character code of type wint_t
upon successful completion.

WEOF if the stream is at end-of-file. The end-of-file indicator for the stream is set.

WEOF if a read error occurs. The error indicator for the stream is set, and errno is
set to indicate the error.

Errors fgetwc() will fail if:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying stream, and the
process would be delayed in the fgetc() operation.

EBADF The file descriptor underlying stream is not a valid file descriptor open for
reading.

EINTR The read operation was terminated due to the receipt of a signal, and no
data was transferred.

Functions and variables in alphabetical order fgetwc

U23711-J-Z125-5-76 353

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Extension
EINVAL An attempt was made to access a BS2000 file ❑

EIO The process is a member in a background process group attempting to read
from its controlling terminal, and either the process is ignoring or blocking
the SIGTTIN signal or the process group is orphaned.

Notes In this version of the runtime system the wide character functions are only supported for
UFS files.

ferror() or feof() must be used to distinguish between an error condition and an
end-of-file condition.

BS2000

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
split=no was entered for fopen(), records of maximum length are not concatenated with
the subsequent record when they are read. By default or with the specification split=yes,
when a record with maximum record length is read, it is assumed that the following record
is the continuation of this record and the records are concatenated ❑.

See also feof(), ferror(), fgetc(), fopen(), stdio.h, wchar.h.

fgetws Functions and variables in alphabetical order

354 U23711-J-Z125-5-76

fgetws - get wide character string from stream

Syntax #include <wchar.h>

Optional
#include <stdio.h> ❑

wchar_t *fgetws(wchar_t *ws, int n, FILE *stream);

Description fgetws() reads characters from stream, converts these to the corresponding
wide character codes, and places them in the wchar_t array pointed to by ws, until n-1
characters are read, or a newline character is read, converted and transferred to ws, or an
end-of-file condition is encountered. The wide character string, ws, is then terminated with
a null wide-character code.

If an error occurs, the resulting value of the file position indicator for the stream is
indeterminate.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

fgetws() can mark the structure component st_atime for the file to which stream is
assigned for changing (see sys/stat.h). The structure component st_atime is updated
as soon as fgetc(), fgets(), fgetwc(), fgetws(), fread(), fscanf(),
getc(), getchar(), gets() or scanf() are called successfully for stream and return
data which is not was not provided by a preceding call to ungetc() or ungetwc().

BS2000

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
split=no was entered for fopen(), records of maximum length are not concatenated with
the subsequent record when they are read. By default or with the specification split=yes,
when a record with maximum record length is read, it is assumed that the following record
is the continuation of this record and the records are concatenated ❑.

Return val. ws upon successful completion.

Null pointer if the stream is at end-of-file. The end-of-file indicator for the stream is set.

Null pointer if a read error occurs. The error indicator for the stream is set, and errno is
set to indicate the error.

Errors See fgetwc().

See also fgetwc(), fopen(), fread(), stdio.h, wchar.h.

Functions and variables in alphabetical order _ _FILE_ _ / fileno

U23711-J-Z125-5-76 355

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

_ _FILE_ _ - macro for source file names

Syntax _ _FILE_ _

Description This macro generates the file name of the source program as a string in the form:

"name\0"

Notes This macro does not need to be defined in a header file. Its name is recognized and
replaced by the compiler.

fileno - get file descriptor

Syntax #include <stdio.h>

int fileno(FILE *stream);

Description fileno() returns the integer file descriptor associated with the stream pointed to by
stream.

Return val. int value if successful. Value of the file descriptor associated with stream.

-1 if an error occurs; errno is set to indicate the error.

Errors fileno() will fail if:

EABDF stream is not a valid stream.

Notes The program environment determines whether fileno() is executed for a BS2000 or
POSIX file.

See also fdopen(), fopen(), stdin(), stdio.h, section “Interaction of file descriptors and
streams” on page 112.

flocate Functions and variables in alphabetical order

356 U23711-J-Z125-5-76

flocate - set file position indicator in ISAM file (BS2000)

Syntax #include <stdio.h>

int flocate(FILE *stream, void *key, size_t keylen, int option);

Description flocate() is used to explicitly position an ISAM file with record I/O. flocate() sets the
file position indicator of the file pointed to by stream according to the following specifications:
the key value key,
the key length keylen and
the specified option (_KEY_FIRST, _KEY_LAST, _KEY_EQ, _KEY_GE).

FILE *stream is the file pointer of an ISAM file opened in the mode
type=record,forg=key (see fopen(), freopen()).

void *key is the pointer to an area containing the key value.

size_t keylen is the length of the key value. The value must not be zero.

If keylen is less than the key length of the file, then flocate() internally pads the key value
with binary zeros to the key length of the file and uses this generated key as the basis for
positioning.

If keylen is greater than the key length of the file, flocate() internally truncates the key
value from the right to the key length of the file and uses this shortened key as the basis for
positioning.

int option may contain the following values defined in stdio.h:

Return val. 0 if successful. The record with the specified key exists.

> 0 The record does not exist.

EOF if an error occurs.

_KEY_FIRST Sets the file position indicator to beginning of file.
The key and keylen parameters are ignored.
Positioning works even if the file is empty.

_KEY_LAST Sets the file position indicator to end of file.
The key and keylen parameters are ignored.
Positioning works even if the file is empty.

_KEY_EQ Sets the file position indicator to the first record with the specified key.

_KEY_GE Sets the file position indicator to the first record with a key value
greater than or equal to the specified key.

Functions and variables in alphabetical order flocate

U23711-J-Z125-5-76 357

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Notes If the call was error-free (return values 0 or > 0), the EOF flag of the file is reset.

If the specified key value is not present in the file (return value > 0), the current setting of
the file position indicator remains unchanged. Sole exception: if at the time of the flocate
call the file is positioned on the second or higher key of a group of records with identical
keys, then flocate() positions the file on the first record after this group.

In ISAM files with key duplication, flocate() cannot be used to position on the second or
higher record of a group with identical keys. This can only be done by sequential reading
or deleting.
flocate() can only be used to position on the first record or after the last record of such
a group.

See also fdelrec(), fgetpos(), fsetpos(), fopen(), freopen(), stdio.h.

flockfile, ftrylockfile, funlockfile Functions and variables in alphabetical order

358 U23711-J-Z125-5-76

flockfile, ftrylockfile, funlockfile - functions for locking standard
input/output

Syntax #include <stdio.h>

 void flockfile(FILE *file);

 int ftrylockfile(FILE *file);

 void funlockfile(FILE *file);

Description The flockfile() and ftrylockfile() functions allow for the explicit locking of (FILE*)
objects at the application level. The lock can be eliminated with funlockfile(). These
functions can be used by a thread to represent a series of I/O statements that are to be
executed as a unit.

The flockfile() function is used by a thread to obtain access permission for a (FILE*)
object.

The ftrylockfile() function is used by a thread to obtain access permission for a
(FILE*) object if the object is available; ftrylockfile() is a version of flockfile() that
does not block the object.

The funlockfile() function is used by a thread to give up the access permission it
obtained. funlockfile() is ignored if the calling thread is not the owner of the (FILE*)
object.

It is logical to assign every (FILE*) object a lock counter. This counter is implicitly initialized
to 0 when the (FILE*) object is created. The lock for the (FILE*) object is removed when the
counter has the value 0.
When the counter value is positive, then a single thread is the owner of the (FILE*) object.
If the flockfile() function is called when the counter is 0 or contains a positive value and
the caller is the owner of the (FILE*) object then the counter is incremented. Otherwise the
calling thread is interrupted and waits until the counter is 0 again. Every funlockfile()
call decrements the counter. This allows for nested flockfile() calls [or successful
ftrylockfile() calls] and funlockfile() calls.

All functions that point to (FILE*) objects behave as if they used flockfile() and
funlockfile() to obtain access permission for these (FILE*) objects.

Return val. flockfile() and funlockfile():
no return value

ftrylock():

0 if successful.

≠0 if no lock can be activated.

Functions and variables in alphabetical order flockfile, ftrylockfile, funlockfile

U23711-J-Z125-5-76 359

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Notes In real time applications the use of FILE locks can result in the reversal of priorities. This
problem arises when a thread with higher priority “locks” a FILE object that was just
“unlocked” by a thread of lower priority, but the thread of lower priority is prematurely
stopped by a thread of medium priority. This situation leads to a reversal of the priorities; a
thread of higher priority is blocked by a thread of lower priority for an indefinite amount of
time.

Developers of real time applications must take the possibility of such reversals of priority
into account when designing a system. They could take a series of actions to counteract
such situations by having critical sections of code that are protected by FILE locks execute
with a higher priority so that a thread cannot be stopped prematurely while executing a
critical sections of code.

See also getc_unlocked(), pthread_intro(), stdio().

floor, floorf, floorl Functions and variables in alphabetical order

360 U23711-J-Z125-5-76

floor, floorf, floorl- round off floating point number

Syntax #include <math.h>
double floor(double x);
float floorf(float x)
long double floorl(long double)

Description floor() rounds down the floating-point number x to an integer.

Return val. If successful, largest integer of type double not greater than x.

-HUGE_VAL if an overflow occurs.
errno is set to indicate the error.

Errors floor(), floorf(), and floorl() will fail if:

ERANGE Overflow; the result is too large.

Notes The integral value returned by floor(), floorf(), or floorl() as a double, float or
long might not be expressible as an int or long int. The return value should be tested
before assigning it to an integer type to avoid the undefined results of an integer overflow.

See also ceil(), ceilf(), ceill(), fabs(), math.h.

Functions and variables in alphabetical order fmod

U23711-J-Z125-5-76 361

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fmod - compute floating-point remainder value function

Syntax #include <math.h>

double fmod(double x, double y);

Description fmod() computes the remainder of the division x/y. The remainder has the same sign as the
dividend x, and its absolute value is always less than the divisor y.

Return val. Remainder of the division x/y
if successful.

0 if y = 0.

Notes An application should verify that y is non-zero before calling fmod().

See also ceil(), ceilf(), ceill(), fabs(), floor(), math.h.

fmtmsg Functions and variables in alphabetical order

362 U23711-J-Z125-5-76

fmtmsg - output message to stderr and/or system console

Syntax #include <fmtmsg.h>

int fmtmsg(long classification, const char *label, int severity, const char *text,
 const char *action, const char *tag);

Description Building on the classification component of a message, fmtmsg() writes a formatted
message to stderr, the system console or both.

fmtmsg() can be used instead of the usual printf() interface to output messages via
stderr. In conjunction with gettxt(), fmtmsg() provides a simple interface for the
creation of language-independent application programs.

A formatted message consists of up to five standard components which are defined below.
The classification component is not part of the standard message that is shown to the user;
instead, it defines the message source and controls the display of the formatted message.

classification
contains identifiers from the following groups of main and secondary classifica-
tions. Every identifier of a subclass can be used with a single identifier of a
different subclass via inclusive OR. With the exception of the display classifi-
cation, two or more identifiers from the same subclass should not be used
together. Both identifiers of the display classification can be used such that the
messages appear on both stderr and the system console.

Major classifications
identify the origin of a status. The identifiers are: MM_HARD
(hardware), MM_SOFT (software) and MM_FIRM (firmware).

Message source subclassifications
identify the type of software in which the problem occurred. The
identifiers are: MM_APPL (application), MM_UTIL (utility routine) and
MM_OPSYS (operating system).

Display subclassifications
identify where the message is to be displayed. The identifiers are
MM_PRINT for outputting the message to standard error output, and
MM_CONSOLE for outputting the message to the system console. You
can use one or both identifiers or you can omit the specification (in
the latter case, nothing is output).

Status subclassifications
indicate whether the application program can recover after the
status. Identifiers are: MM_RECOVER (recoverable) and MM_NRECOV
(non-recoverable).

Functions and variables in alphabetical order fmtmsg

U23711-J-Z125-5-76 363

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Additional identifier MM_NULLMC
indicates that no classification component is specified for the
message.

label defines the origin of the message. The format of this component consists of two
fields separated by a colon. The first field is up to 10 characters long; the second
is up to 14 characters long.

It is advisable to mark the package and the program or the application name
with label. For example, the content UX:cat for label indicates that the package
UNIX system V and the application cat are meant.

severity indicates the severity level of the status. Identifiers for the severity levels are:

MM_HALT indicates that the application has come across a critical error and
processing is being halted. The string “HALT“ is output.

MM_ERROR indicates that the application has detected an error. The string
“ERROR“ is output.

MM_WARNING
indicates that an unusual state has arisen which could involve a
problem that needs monitoring. The string “WARNING“ is issued.

MM_INFO provides information on a state which does not represent an error.
The string “INFO“ is output.

MM_NOSEV indicates that no severity level exists for the message.

text describes the cause of the message. The text string is not limited to a particular
length. If the string is empty, the text that is output is undefined.

action describes the first action to be executed in the error recovery process.
fmtmsg() writes the prefix “TO FIX:“ before this string. The action string is not
limited to a particular length.

tag An identifier that refers to the online documentation for the message. It is
recommended that tag contain the origin of the message addressed via label
and a unique number. An example of tag is UX:cat:146.

fmtmsg Functions and variables in alphabetical order

364 U23711-J-Z125-5-76

Environment variables

There are two environment variables which influence the behavior of fmtmsg():
MSGVERB and SEV_LEVEL.

MSGVERB informs fmtmsg() which message components are to be selected when writing
the messages to stderr. The value of MSGVERB consists of a list of optional keywords
separated by colons. MSGVERB can be set as follows:

MSGVERB=[keyword[:keyword[:...]]]
export MSGVERB

Valid keywords are: label, severity, text, action and tag.
If MSGVERB contains a keyword for a component and this component does not have the null
value assigned to it (see below), fmtmsg() outputs this component to stderr at
message output. If MSGVERB does not contain the keyword for a message component, this
component is not output. The keywords can be specified in any order. If MSGVERB is not
defined, if this identifier contains a null string, if the value is not specified in the correct
format, or if invalid keywords are specified, fmtmsg() selects all components.

At the first call of fmtmsg() the MSGVERB environment variable is verified so that the
message components can be selected if a message is generated via the standard error
output stderr. The values accepted at the first call are saved for the subsequent calls.

MSGVERB influences only the selection of the components that are to be displayed via the
standard error output. In the case of output to the console, all messages are selected.

SEV_LEVEL defines the severity levels and assigns the strings to be output that are to be
used by fmtmsg(). The standard severity levels given below cannot be changed.
Additional severity levels can be defined, modified and deleted via the addseverity ()
function (see addseverity(3C)). If the same severity level is defined by SEV_LEVEL and
addseverity(), the addseverity() definition takes precedence.

 0 (no severity level used)
 1 HALT
 2 ERROR
 3 WARNING
 4 INFO

SEV_LEVEL can be set as follows:

SEV_LEVEL=[description[:description[:...]]]
export SEV_LEVEL

description contains a list with three fields, each separated by a comma:

description=severity_keyword,level,printstrin

severity_keyword is a string that is used as the keyword for the option -s severity of the
fmtmsg command. This field is not used by the fmtmsg() function.

Functions and variables in alphabetical order fmtmsg

U23711-J-Z125-5-76 365

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

level is a string containing a positive integer (not 0, 1, 2, 3 or 4 because these values are
reserved for the standard severity levels). If the keyword severity_keyword is used, level
represents the severity level of the value that was passed to the fmtmsg() function.

printstring is a string that is used by fmtmsg() for the standard message format when the
severity level level is specified.

If in the list description does not represent a list of three fields separated by commas, or if
the second field of a list is not an integer, description is ignored in the list.

When fmtmsg() is called for the first time, the SEV_LEVEL environment variable is checked
to see whether, in addition to the five standard severity levels and those defined via
addseverity(), any other severity levels were defined. The values established at the first
call are saved for later calls.

Return val. MM_OK if successful.

MM_NOTOK The function has completely failed.

MM_NOMSG The function could not generate a message via the standard error output,
but was otherwise successful.

MM_NOCON The function could not generate a message via the system console, but was
otherwise successful.

Notes One or more message components can be systematically omitted from the message if the
null value of the respective components is specified.
The following table shows the null values and identifiers for the arguments of fmtmsg().

A further means of systematic omission of a component consists of leaving out the
keywords of the component when defining the MSGVERB environment variable.

Argument Type Null value Identifier

label char* (char*) NULL MM_NULLLBL

severity int 0 MM_NULLSEV

class long 0L MM_NULLMC

text char* (char*) NULL MM_NULLTXT

action char* (char*) NULL MM_NULLACT

tag char* (char*) NULL MM_NULLTAG

fmtmsg Functions and variables in alphabetical order

366 U23711-J-Z125-5-76

Example 1 fmtmsg(MM_PRINT, "UX:cat", MM_ERROR, "Incorrect syntax",
 "See manual", "UX:cat:001")

returns a complete message with the standard message format:

UX:cat: ERROR: Incorrect syntax TO FIX: See manual UX:cat:001

Example 2 If the MSGVERB environment variable is set as follows:

MSGVERB=severity:text:action

and example 1 is then used, fmtmsg() generates:

ERROR: Incorrect syntax TO FIX: See manual

Beispiel 3 If the SEV_LEVEL environment variable is set as follows:

SEV_LEVEL=note,5,NOTE

the following fmtmsg() call

fmtmsg(MM_UTIL | MM_PRINT, "UX:cat", 5, "Incorrect syntax",
 "See manual", "UX:cat:001")

returns the following output:

UX:cat: NOTE: Incorrect syntax TO FIX: See manual UX:cat:001

See also printf(). fmtmsg.h.

Functions and variables in alphabetical order fopen

U23711-J-Z125-5-76 367

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fopen - open stream

Name fopen, fopen64

Syntax #include <stdio.h>

FILE *fopen(const char *filename, const char *mode);
FILE *fopen64(const char *filename, const char *mode);

Description fopen() opens the file whose pathname is the string pointed to by filename, and associates
a stream with it.

filename can be:

– a valid POSIX file name

– a valid BS2000 file name:

– link=linkname
linkname designates a BS2000 link name.

– (SYSDTA), (SYSOUT), (SYSLST), the corresponding system file

– (SYSTERM), terminal I/O

– (INCORE), temporary binary file that is created in virtual memory only.

mode is a string that specifies the desired access mode. It can have one of the following
values:

r Open text file for reading. The file must already exist.

w Open text file for writing. If the file exists, the old contents are deleted. If
the file does not exist, it is created.

a Open text file for appending to the end of the file. If the file exists, it is
positioned to end of file, i.e. the old contents are preserved and the new
data is appended to the end of the file. If the file does not exist, it is
created.

rb Open binary file for reading. The file must already exist.

wb Open binary file for writing. If the file exists, the old contents are deleted.
If the file does not exist, it is created.

ab Open binary file for appending to the end of the file. If the file exists, it is
positioned to end of file, i.e. the old contents are preserved and the new
data is appended to the end of the file. If the file does not exist, it is
created.

r+w, r+ Open text file for reading and writing. The file must already exist. The old
contents are preserved.

fopen Functions and variables in alphabetical order

368 U23711-J-Z125-5-76

The character b in the above access modes is ignored. Opening a file with read mode (i.e.
with r as the first character in the mode argument) fails if the file does not exist or cannot be
read.

Opening a file with append mode (i.e. with a as the first character in the mode argument)
causes all subsequent writes to the file to be forced to the then current end-of-file,
regardless of intervening calls to fseek().

When a file is opened with update mode (i.e. with + as the second character in the mode
argument), both input and output may be performed on the associated stream. However,
output must not be directly followed by input without an intervening call to fflush() or to
a file positioning function (fseek(), fsetpos() or rewind()), and input must not be
directly followed by output without an intervening call to a file positioning function, unless
the input operation encounters end-of-file.

When opened, a stream is fully buffered if and only if it can be determined not to refer to an
interactive device such as the terminal. The error and end-of-file indicators for the stream
are cleared.

For automatic conversion, the b for binary must not be specified in mode. Furthermore, the
environment variable IO_CONVERSION must not be present or must have the value YES.

w+r, w+ Open text file for writing and reading. If the file exists, the old contents
are deleted. If the file does not exist, it is created.

a+r, a+ Open text file for appending to the end of the file and for reading. If the
file exists, it is positioned to end of file, i.e. the old contents are
preserved, and new data is appended to the end of the file. For KR
functionality (only available with C/C++ versions lower than V3), existing
files are positioned to end of file when opened; for ANSI functionality, to
the beginning of the file.
If the file does not exist, it is created.

r+b, rb+ Open binary file for reading and writing. The file must already exist. The
old contents are preserved.

w+b, wb+ Open binary file for writing and reading. If the file exists, the old contents
are deleted. If the file does not exist, it is created.

a+b, ab+ Open binary file for appending to the end of the file and for reading. If the
file exists, it is positioned to end of file, i.e. the old contents are preserved
and the new data is appended to the end of the file. For KR functionality
(only available with C/C++ versions lower than V3), existing files are
positioned to end of file when opened; for ANSI functionality, to the
beginning of the file.
If the file does not exist, it is created.

Functions and variables in alphabetical order fopen

U23711-J-Z125-5-76 369

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

BS2000
The following must be noted when executing BS2000 files:
In mode optionally further functions may be controlled by additional specifications:

Tab character (\t)

Additionally to the access mode an optional entry to control handling of the tab
character (\t) may be specified in mode. This is relevant only for text files with the SAM
and ISAM access methods.

"...,tabexp=yes"
The tab character is expanded into the appropriate number of blanks. This is the default
setting for KR functionality (only available with C/C++ versions lower than V3).

"...,tabexp=no"
The tab character is not expanded. This is the default setting for ANSI functionality.

Last Byte Pointer (LBP)

In the mode parameter an optional entry controlling how the Last Byte Pointer (LBP) is
to be handled can be specified in addition to the access mode. This is relevant only for
binary files with PAM access mode. If lbp=yes is specified, a check is made to see
whether LBP support is possible. If this is not the case, the fopen(), fopen64() function
will fail and errno is set to ENOSYS. The switch has further effects only when the file is
closed.

When an existing file is opened and read, the LBP is always taken into account
independently of the lbp switch:

– If the file's LBP is not equal to 0, it is evaluated. Any marker which is present is
ignored.

– When LBP = 0, a marker is searched for, and the file length is determined from this.
If no marker is found, the end of the last complete block is regarded as the end of
file.

"...,lbp=yes"
When a file which has been modified or newly created is closed, no marker is
written (even if one was present), and a valid LBP is set. In this way files with a
marker can be converted to LBP without a marker.
In the case of NK files the last logical block is padded with binary zeros, in the case
of K files the file is padded to the physical end of file.

Additional specification Function

tabexp=yes/no Handling of the tab character (\t)

lbp=yes/no Handling of the Last Byte Pointers (LBP)

split=yes/no Processing text files with specification of a maximum record length

fopen Functions and variables in alphabetical order

370 U23711-J-Z125-5-76

"...,lbp=no"
When a file which has been newly created is closed, the LBP is set to zero
(=invalid). A marker is written. In the case of NK files the last logical block is padded
with binary zeros, in the case of K files the file is padded to the physical end of file.

When a file which has been modified is closed, the LBP is set to zero (=invalid). A
marker is written only if a marker existed before. If no marker existed, none is writ-
ten and the file ends with the complete last block. If the file had a valid LBP when it
was opened, no marker is written as in this case it is assumed that no marker exists.
In the case of NK files the last logical block is padded with binary zeros, in the case
of K files the file is padded to the physical end of file.

If the lbp switch is not specified, the behavior depends on the environment variable
LAST_BYTE_POINTER (see also section “Environment variables” on page 104):

LAST_BYTE_POINTER=YES

The function behaves as if lbp=yes were specified.

LAST_BYTE_POINTER=NO

The function behaves as if lbp=no were specified.

Split/Nosplit switch

This switch controls the processing of text files with SAM access mode and variable re-
cord length when a maximum record length is also specified.

"...,split=yes"

– The following applies when reading:
If a record has the maximum record length, it is assumed that the following record
is the continuation of this record and the records are concatenated.

– The following applies when writing:
A record which is longer than the maximum record length will be split into multiple
records. If a record has precisely the maximum record length, a record of the length
zero is written after it.

"...,split=no"
When reading, records of maximum length are not concatenated with the following
record.
When reading with one of the functions fwrite, fprintf(), printf(),
vfprintf(), vprintf(), fwprintf(), wprintf(), vfwprintf(), vwprintf(),
fputs(), fputws() or puts(), records which are longer than the maximum record
length are truncated.

If the switch is not specified, "...,split=yes" applies.

Functions and variables in alphabetical order fopen

U23711-J-Z125-5-76 371

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

There is no difference in functionality between fopen and fopen64 except that
fopen64 returns a pointer that can point past the 2GB limit. fopen64() sets the
O_LARGEFILE bit in the File status flag.

Return val. File pointer if successful.

Null pointer if filename cannot be accessed, mode is invalid, or the file cannot be opened.
errno is set to indicate the error.

Errors fopen() will fail if:

EACCES Search permission is denied on a component of the path prefix,
or the file exists and the permissions specified by mode are denied,
or the file does not exist and write permission is denied for the parent
directory of the file to be created.

EINTR A signal was caught during the fopen() system call.

EINVAL The value of the mode argument is invalid.

EISDIR The named file is a directory and mode requires write access.

EMFILE {OPEN_MAX} file descriptors are already open for the calling process.

{FOPEN_MAX} streams are already open for the calling process.

{STREAM_MAX} streams are already open for the calling process.

ENAMETOOLONG
The length of filename exceeds {PATH_MAX} or a pathname component is
longer than {NAME_MAX}.

ENFILE The maximum allowable number of files is currently open in the system.

ENOENT The named file does not exist or filename points to an empty string.

ENOMEM There is not enough memory available.

ENOSPC The file does not exist, and the directory in which the new file is to be
created cannot be expanded.

ENOTDIR A component of the path is not a directory.

ENXIO The named file is a character special or block special file, and the device
associated with this special file does not exist.

EROFS The named file resides on a read-only file system and mode requires write
access.

fopen Functions and variables in alphabetical order

372 U23711-J-Z125-5-76

ETXTBSY The file is a pure procedure file (shared text file) that is currently executing
and write protection is required for mode.

EOVERFLOW The file named is a regular file and the size of the file cannot be represented
correctly in an object of type off_t.

Notes {STREAM_MAX} is the number of streams that one process can have open at one time. If
defined, it has the same value as {FOPEN_MAX}, i.e. 2048.

The program environment determines whether fopen() is executed for a BS2000 or
POSIX file.

BS2000
The BS2000 file name or link name may be entered in lowercase and uppercase letters. It
is automatically converted to uppercase letters. Specifying a b as the second character in
the mode parameter causes the file to be opened as a binary file. This is relevant only for
SAM files, since only SAM files can be processed in both binary and text modes.

System files and ISAM files are always processed as text files. Specifying binary mode for
these files leads to an error on opening.

(INCORE) and PAM files are always processed as binary files. For compatibility reasons,
files may be opened as binary files without explicitly specifying the binary mode.

When a new file is created it is given the following attributes by default:

The following file attributes can be changed by using a link name with the SET-FILE-LINK
command: access method, record length, record format, block length and block format.

Whenever the old contents of an existing file are deleted (i.e. when a file is opened for
rewriting or for rewriting and reading), the catalog attributes of that file are preserved.

When a file is opened for an update, reading and writing can be performed via the same file
pointer. All the same, an output should not be immediately followed by an input without a
preceding positioning operation (with fseek(), fsetpos() or rewind()) or an fflush
call. This also applies to an output that follows an input.

Binary file Text file

Access method SAM SAM (KR functionality, only available with C/C++
versions lower than V3)
ISAM (ANSI functionality)

Record format F V

Functions and variables in alphabetical order fopen

U23711-J-Z125-5-76 373

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Set the file position indicator in append mode

(INCORE) files can only be opened for writing (w), for writing and reading (w+r) or for
reading (r). Data must first be written. The following options are available to read in the
written data: if the file was opened only for writing, it can be opened for reading with the
function freopen(). If it was opened for writing and reading, the file position indicator can
be set to the beginning of the file with rewind().

A file may be opened for different access modes simultaneously, provided these modes are
compatible with one another within the BS2000 data management system.

When a program begins, the following three file pointers are assigned to it automatically:

A maximum of _NFILE files may be open simultaneously. _NFILE is defined as 2048 in
stdio.h.

For opening files with record I/O, the mode parameter has two additional options. These
follow the access mode in the string (see above), each separated by a comma:

"...,type=record [,forg={seq/key}]"

If forg() is omitted, the file organization depends on the FCB type (FCBTYP) of the file:
The FCB type is defined by the catalog entry of an existing file or by a SET-FILE-LINK
command. Sequential organization is assumed for SAM and PAM files, index-sequential
organization for ISAM files.

If forg() is omitted and the FCB type is not defined (file does not exist, no SET-FILE-LINK
command), sequential file organization is assumed, and a SAM file is created.

The following restrictions apply to record I/O. If these restrictions are ignored, the file is not
opened, and an error value is returned:

stdin file pointer for standard input (terminal)

stdout file pointer for standard output (terminal)

stderr file pointer for standard error output (terminal)

type=record The file is opened for record I/O. If this option is omitted, the file is
opened for stream I/O.

forg=seq The file is organized sequentially.
Sequential files may be SAM or PAM files.

forg=key The file is organized index-sequentially.
Index-sequential files are ISAM files.

fopen Functions and variables in alphabetical order

374 U23711-J-Z125-5-76

The file must be opened in binary mode (b specified in the access mode).

type=record is permitted for SAM, PAM and ISAM files.

forg=seq is permitted for SAM and PAM files; forg=key for ISAM files.

The append mode a is invalid for ISAM files. The position is determined by the key in the
record.

See also creat(), fclose(), fdopen(), ferror(), freopen(), open(), stdio.h.

Functions and variables in alphabetical order fork

U23711-J-Z125-5-76 375

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fork - create new process

Syntax #include <unistd.h>

Optional
#include <sys/types.h> ❑

pid_t fork(void);

Description fork() creates a new process. The new process (child process) is an exact copy of the
calling process (parent process) in all of the following points:
– real and effective user and group IDs
– environment
– close-on-exec bit (see exec())
– signal actions (SIG_DFL, SIG_IGN, address off the signal handling function)
– supplementary group IDs
– set-user-ID mode bit
– set-group-ID mode bit
– nice value (see nice())
– all attached shared memory segments (see shmop())
– process group ID
– session ID (see exit())
– current working directory
– root directory
– file mode creation mask (see umask())
– resource limits (see getrlimit())
– controlling terminal

The child process differs from the parent process in the following points:

– The child process has a unique process ID. The child process ID also does not match
any active process group ID.

– The child process also has a different parent process ID (that is, the process ID of the
parent process).

– The child process has its own copy of the parent´s file descriptors. All the child´s file
descriptors share the same file description as the corresponding file descriptor of the
parent.

– The child process has its own copy of the parent´s directory streams. All directory
streams in the child process may share the file position indicator with the corresponding
directory stream of the parent.

– The child process may have its own copy of the parent´s message catalog descriptors.

– The child process values for the tms structure components tms_utime, tms_stime,
tms_cutime and tms_cstime are set to 0 (see times()).

fork Functions and variables in alphabetical order

376 U23711-J-Z125-5-76

– The time left until an alarm clock signal is reset to 0 (see alarm()).

– All semadj values are deleted (see semop()).

– File locks set by the parent process are not inherited by the child process (see also
fcntl()).

– The set of signals pending for the child process is initialized to the empty set.

If threads are used, then the function affects the process or a thread in the following
manner:

– A process is created with a single thread. If a ”multi-threaded” process calls fork(),
the new process contains a copy of the calling thread and its entire address space,
including the state of Mutex objects and other resources. Fork handlers can be set up
with the pthread_atfork() function.

BS2000

– BS2000 files, with the exception of memory pools, are not inherited with fork(). The
fork() function cannot be called in the signal-handling function either. The following
BS2000 resources are also not inherited:
– Opened BS2000 files do not remain open
– AID breakpoints
– Task File Table (TFT)
– SYSFILE assignments
– Registered STXIT and contingency routines ❑

Return val. 0 upon successful completion. fork() returns 0 to the child process and
returns the process ID of the child process to the parent process.

-1 if an error occurs. -1 is returned to the parent process, no child process is
created, and errno is set to indicate the error.

Errors fork() will fail if:

EAGAIN The system lacks the necessary resources to create another process, or the
system-imposed limit on the total number of processes under execution
system-wide or by a single user {CHILD_MAX} would be exceeded, or
if DIV or FASTRAM areas are stored in the parent process.

Extension
ENOMEM The swap area is too small. ❑

Notes As of this version, fork() can also be used in signal handling and contingency routines.

See also alarm(), exec, fcntl(), semop(), signal(), times(), sys/types.h, unistd.h.

Functions and variables in alphabetical order fpathconf

U23711-J-Z125-5-76 377

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fpathconf - get value of pathname variable

Syntax #include <unistd.h>

long int fpathconf(int fildes, int name);

Description See pathconf().

fprintf, printf, sprintf Functions and variables in alphabetical order

378 U23711-J-Z125-5-76

fprintf, printf, sprintf - write formatted output on output stream

Syntax #include <stdio.h>

int fprintf(FILE *stream, const char *format [, arglist]);
int printf (const char *format [, arglist]);
int sprintf (char *s, const char *format [, arglist]);

Description fprintf() writes formatted output on the output stream pointed to by stream.

printf() writes formatted output on the standard output stream stdout.

sprintf() writes formatted output, followed by the null byte, in consecutive bytes starting
at the address s. The user must ensure that sufficient space is available.

Each of these functions converts the arguments in arglist and outputs them under the
control of the format.

format is a character string, beginning and ending in its initial shift state, if defined. It is
composed of zero or more directives and may include the following three types of
characters:

– characters of type char, which are simply copied to the output stream (1: 1).

– white-space characters, starting with a backslash (\)
(see isspace()).

– conversion specifications beginning with the percent character (%), each of which is
associated with zero or more arguments in arglist. The results are undefined if fewer
arguments are passed in arglist than are defined in format. If the number of arguments
defined in format is greater than the arguments passed in arglist, the excess arguments
are ignored.

Characters

The following applies to the current version of the C runtime system:
Only characters from the EBCDIC character set are permitted.

Functions and variables in alphabetical order fprintf, printf, sprintf

U23711-J-Z125-5-76 379

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

White-space characters

Conversion specifications

Conversions can be applied to the n-th argument after the format in the argument list, rather
than to the next unused argument. In this case, the conversion character % is replaced by
the sequence %n$, where n is a decimal integer in the range [1, {NL_ARGMAX}], giving the
position of the argument in the argument list. This feature provides for the definition of
format strings that select arguments in an order appropriate to specific languages.

In format strings containing the %n$ form of conversion specifications, elements in the
argument list arglist can be referenced from the format string format as many times as
required (n-times). In format strings containing the % form of conversion specifications, each
argument in the argument list is evaluated exactly once.

All forms of fprintf() allow for the insertion of a language-dependent radix character in
the output string. The radix character is defined in the program´s locale (category
LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined,
the radix character defaults to a period (.).

Each conversion specification is introduced by the % character or by the character
sequence %n$, after which the following appear in sequence:

– Zero or more flags, which modify the meaning of the conversion specification.

– An optional decimal number that specifies a minimum field width. If the converted
value has fewer bytes than the field width, it will be padded to the field width with spaces
on the left (or padded on the right if the left-adjustment flag "-" was specified).

Character Meaning Format control action

\b backspace character The output is shifted to 1 character before the current position,
unless the current position is the start of a line
In this version of the C runtime system, \b is evaluated only
for BS2000 output, not for output to the POSIX subsystem.

\f form-feed character The output is shifted to the start of the next logical page.
In this version of the C runtime system, \f is evaluated only
for BS2000 output, not for output to the POSIX subsystem..

\n newline character The output is shifted to the start of the next line.

\r carriage return The output is shifted to the start of the current line. All output
that was already written on the stream of this line is discarded.

\t horizontal tab The output is shifted to 8 characters after the current position.

\v vertical tab The output is shifted to the next vertical tab position.
In this version of the C runtime system, \v is evaluated only
for BS2000 output, not for output to the POSIX subsystem.

fprintf, printf, sprintf Functions and variables in alphabetical order

380 U23711-J-Z125-5-76

– A precision that gives the minimum number of digits to appear for the d, i, o, u, x and
X conversions; the number of digits to appear after the radix character for the e, E and
f conversions; the maximum number of significant digits for the g and G conversions;
or the maximum number of bytes to be printed from a string in s conversion. The
precision takes the form of a period (.), followed by a decimal digit string, where a null
digit string is treated as 0.

– An optional h specifying that a following d, i, o, u, x or X conversion character applies
to a type short int or type unsigned short int argument (the argument will have
been promoted according to the integral promotions, and its value will be converted to
type short int or unsigned short int before printing);
an optional h specifying that a following n conversion character applies to a pointer to a
type short int argument;
an optional l (ell) specifying that a following d, i, o, u, x or X conversion character
applies to a type long int or unsigned long int argument;
an optional l (ell) specifying that a following n conversion character applies to a pointer
to a type long int argument;
or an optional L specifying that a following e, E, f, g or G conversion character applies
to a type long double argument.

If an h, l or L appears with any other conversion character, the behavior is undefined.

– A conversion character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an asterisk (*). In this case an
argument of type int supplies the field width or precision. Arguments specifying field width,
or precision, or both must appear in that order before the argument, if any, to be converted.
A negative field width is taken as a "-" flag followed by a positive field width. A negative
precision is taken as if the precision were omitted. In format strings containing the %n$ form
of a conversion specification, a field width or precision may be indicated by the sequence
*m$, where m s a decimal integer in the range [1, {NL_ARGMAX}] giving the position in the
argument list of an integer argument containing the field width or precision, for example:

printf ("%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

format can contain either numbered argument specifications (that is, %n$ and %m$), or
unnumbered argument specifications (that is, % and *), but normally not both. The results
of mixing numbered and unnumbered argument specifications in a format string are
undefined. When numbered argument specifications are used, specifying the Nth argument
requires that all the leading arguments, from the first to the (N-1)th, are specified in the
format string.

Functions and variables in alphabetical order fprintf, printf, sprintf

U23711-J-Z125-5-76 381

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Conversion specifications can be given in XPG4 Version 2-conformant environments as
shown below:

1. Start of a conversion specification

2. Flags

3. Field width

4. Precision

5. Characters that define the actual conversion

Flags

‘ The integer portion of the result of a decimal conversion (%i, %d, %u, %f,
%g or %G) will be formatted with thousands´ grouping characters. For other
conversions, the behavior is undefined. The non-monetary grouping
character is used.

- The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a sign (+ or -).

If the first character of a signed conversion is not a sign, a space will be
prefixed to the result. This means that if the space and + flags both appear,
the space flag will be ignored.

This flag specifies that the value is to be converted to an alternative form.
This flag has no effect for c, d, i, s and u. For o conversion, it increases
the precision to force the first digit of the result to be 0. For x or X conver-
sions, a non-zero result will have the string "0x" (or "0X") prefixed to it. For
e, E, f, g or G conversions, the result will always contain a radix character,
even if no digits follow the radix character. Without this flag, a radix
character appears in the result of these conversions only if a digit follows it.
For g and G conversions, trailing zeros will not be removed from the result
as they normally are.

{ %[a$] } [‘][-][+][Ë][#][0] [] []

_________ __________________ _______ _______ _____________________________

 1. 2. 3. 4. 5.

n

*

m

.*

[{h|l}] {d|i|o|u|x|X}
[{h|l}] n
[L] {e|E|f|g|G}
{c|C|p|s|S|n}
{D|O|U}
%

fprintf, printf, sprintf Functions and variables in alphabetical order

382 U23711-J-Z125-5-76

0 For d, i, o, u, x, X, e, E, f, g and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space
padding is performed. If the 0 and - flags both appear, the 0 flag will be
ignored. For d, i, o, u, x and X conversions, if a precision is specified, the 0
flag will be ignored. For other conversions, the behavior is undefined.

Conversion characters

d, i The int argument is converted to a signed decimal in the style [-]dddd. The
precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it will be expanded with
leading zeros. The default precision is 1. The result of converting 0 with an
explicit precision of 0 is no characters.

o The unsigned int argument is converted to unsigned octal format in the
style dddd. The precision specifies the minimum number of digits to appear;
if the value being converted can be represented in fewer digits, it will be
expanded with leading zeros. The default precision is 1. The result of
converting 0 with an explicit precision of 0 is no characters.

u The unsigned int argument is converted to unsigned decimal format in
the style dddd. The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in fewer digits, it
will be expanded with leading zeros. The default precision is 1. The result
of converting 0 with an explicit precision of 0 is no characters.

x The unsigned int argument is converted to unsigned hexadecimal format
in the style dddd; the letters abcdef are used in addition to the digits. The
precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it will be expanded with
leading zeros. The default precision is 1. The result of converting 0 with an
explicit precision of 0 is no characters.

X Behaves the same as the x conversion character except that letters ABCDEF
are used.

f The double argument is converted to decimal notation in the style
[-]ddd.ddd, where the number of digits after the radix character is equal to
the precision specification. If the precision is missing, it is taken as 6; if the
precision is explicitly 0 and no # flag is present, no radix character appears.
If a radix character appears, at least one digit appears before it. The value
is rounded to the appropriate number of digits.

e, E The double argument is converted in the style [-]d.ddde+-dd, where there
is one digit before the radix character (which is non-zero if the argument is
non-zero) and the number of digits after it is equal to the precision; if the
precision is missing, it is taken as 6; if the precision is 0 and no # flag is

Functions and variables in alphabetical order fprintf, printf, sprintf

U23711-J-Z125-5-76 383

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

present, no radix character appears. The value is rounded to the appro-
priate number of digits. The E conversion character will produce a number
with E instead of e introducing the exponent. The exponent always contains
at least two digits. If the value is 0, the exponent is 0.

g, G The double argument is converted in the style f or e (or in the style E in the
case of a G conversion character), with the precision specifying the number
of significant digits. If an explicit precision is 0, it is taken as 1. The style
used depends on the value converted; style e (or E) will be used only if the
exponent resulting from such a conversion is less than -4 or greater than or
equal to the precision. Trailing zeros are removed from the fractional portion
of the result; a radix character appears only if it is followed by a digit.

c The int argument is converted to an unsigned char, and the resulting
byte is written.

s The argument must be a pointer to an array of char. Bytes from the array
are written up to (but not including) any terminating null byte. If the precision
is specified, no more than that many bytes are written. If the precision is not
specified or is greater than the size of the array, the array must contain a
null byte.

p The argument must be a pointer to void. The value of the pointer is
converted to a sequence of printable characters; in the POSIX subsystem,
this is the hexadecimal representation of the address.

n The argument must be a pointer to an integer into which is written the
number of bytes written to the output so far by this call to one of the printf
functions. No argument is converted.

C wchar_t is converted to an array of bytes representing a character, and the
resulting character is written. If the precision is specified, the effect is
undefined. The conversion is the same as that expected from wctomb().
This version of the C runtime system only supports 1-byte characters as
wide character codes. They are of type wchar_t (see stddef.h). This
conversion character has therefore no effect.

S The argument must be a pointer an array of type wchar_t. Wide character
codes from the array, up to but not including any terminating null wide-
character code are converted to a sequence of bytes, and the resulting
bytes are written. If the precision is specified, no more than that many bytes
are written, and only complete characters are written. If the precision is not
specified, or is greater than the size of the array of converted bytes, the
array of wide characters must be terminated by a null wide character. The
conversion is the same as that expected from wcstombs().

fprintf, printf, sprintf Functions and variables in alphabetical order

384 U23711-J-Z125-5-76

This version of the C runtime system only supports 1-byte characters as
wide character codes. They are of type wchar_t (see stddef.h). This
conversion character has therefore no effect.

% The % character is output; no argument is converted.

If the character that follows % or the character sequence %a$ is not a valid conversion
character, the result of the conversion is undefined.

In no case does a non-existent or small field width cause truncation of a field; if the result
of a conversion is wider than the field width, the field is simply expanded to contain the
conversion result. Characters generated by printf() and fprintf() are printed as if
putc() had been called.

The structure components st_ctime and st_mtime of the file are marked for changing
between successful execution of fprintf() or printf() and the next successful
completion of a call to fflush() or fclose() for the same data stream or a call to exit()
or abort() (see sys/stat.h).

BS2000
The conversion specifications for output to STDOUT depend on whether KR (only available
with C/C++ versions lower than V3) or ANSI functionality is to be supported. The appro-
priate specifications for both functionalities are detailed below.

Conversion specifications (KR functionality)
(only available with C/C++ versions lower than V3)

The conversion specifications may be entered in the following format:

1. Every conversion specification must begin with a percent character (%).

2. Flags (i.e. formatting characters) to control the output of a sign, left or right justification,
width of the output field, etc.

3. Characters that define the actual conversion.

 % [-][+][0] [] []

____ _________________________ ______________________________

 1. 2. 3.

n

*

m

.*

[l] {d|o|u|x}
{D|O|U|X}

{e|f|g}
{c|s}
%

Functions and variables in alphabetical order fprintf, printf, sprintf

U23711-J-Z125-5-76 385

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Meanings of flags for KR functionality (only available with C/C++ versions lower than V3):

- Left-justified alignment of the output field. Default: right-justified alignment.

+ The result of a signed conversion will always be output with a sign.
Default: only a negative sign, if present, is output.

0 Zero padding. The output field will be padded with zero for all conversions.
Default: The output field is padded with blanks. Zero padding will also be
used with left-justified alignment (flag -).

n Minimum field width (including radix character). If more positions are
required for the conversion of a number, this specification has no effect. If
the output is shorter than the specified field width, it is padded with blanks
or zeros up to the field width (see flags - and 0).

* The total field width (see n) is defined by an argument instead of a
conversion specification. The current (integral) value must immediately
precede the argument to be converted or the value of the precision specifi-
cation (flag .m) in the argument list (delimited by a comma).

.m Precision specification.
e, f, g conversions: exact number of positions after the radix character
Default: 6 positions.
s conversion: maximum number of characters to be output. Default: all
characters up to the terminating null byte.
The precision specification is ignored for all other conversions.

.* The precision (see .m) is defined by an argument instead of a conversion
specification. The current (integral) value must immediately precede the
argument to be converted in the argument list (delimited by a comma).

Meanings of conversion characters for KR functionality (only available with C/C++ versions
lower than V3):

l l before d, o, u, x:
conversion of an argument of type long.
This specification is identical to be uppercase letters D, O, U, X.

d, o, u, x Representation of an integer (int) as
signed decimal number (d),
unsigned octal number (o),
unsigned decimal number (u),
signed hexadecimal number (x).

f Representation of a floating-point number (float or double) in the form
[-]ddd.ddd.
The radix character is determined by the locale (category LC_NUMERIC).

fprintf, printf, sprintf Functions and variables in alphabetical order

386 U23711-J-Z125-5-76

The default is a period. The number of positions after the radix character
depends on the precision specified in .m; the default is 6 positions. If the
precision is set to 0, the output will have no radix character.

e Representation of a floating-point number (float or double) in the form:
[-]d.ddde{+|-}dd. The radix character is determined by the locale
(category LC_NUMERIC). The default is a period. The number of positions
after the radix character depends on the precision specified in .m; the
default is 6 positions. If the precision is set to 0, the output will include the
radix character, but with no following digits.

g Representation of a floating-point number (float or double) in f or e form.
The number of positions after the radix character depends on the precision
specified in .m; the representation requiring the least space while
maintaining the precision is selected.

c Format for the output of a single character (char). The null byte is ignored.

s Format for the output of strings. The printf functions write the same
number of characters of the string as are specified in the precision .m.
Default: all characters up to (but not including) a terminating null byte are
written by printf() functions.

% Output of the character %, without conversion.

Conversion specifications ANSI functionality)

The conversion specifications may be entered in the following format: :

1. Every conversion specification must begin with a percent character (%).

2. Flags (i.e. formatting characters) to control the output of a sign, left or right justification,
width of the output field, etc.

3. Characters that define the actual conversion.

 % [-][+][Ë][#][0] [] []

____ _______________________________ _____________________________

 1. 2. 3.

n

*

m

.*

[{h|l|ll}] {d|i|o|u|x|X}
[{h|l|ll}] n
[L] {e|E|f|g|G}
{c|p|s}
{D|O|U}
%

Functions and variables in alphabetical order fprintf, printf, sprintf

U23711-J-Z125-5-76 387

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Meanings of flags (for ANSI functionality):

- Left-justified alignment of the output field. Default: right-justified
alignment.

+ The result of a signed conversion will always be output with a sign.
Default: only a negative sign, if present, is output.

Ë If the first character of a signed string to be converted is not a sign, the result
is prefixed by a blank. The flag Ë is ignored if + is specified at the same time.

Conversion of the result to an alternative form.
For o conversion, the precision is increased to force the first digit of the
result to be 0.
For x or X conversions, a non-zero result will have the string 0x or 0
prefixed to it.
For e, E, f, g or G conversions, the result will always contain a radix
character, even if no digits follow the radix character (a radix character
normally appears in the result of these conversions only if a digit follows it).
Furthermore, for g and G conversions, trailing zeros will not be removed
from the result.
The flag # has no effect with c, s, d, i and u conversions.

0 Zero padding. The output field is padded with zeros on converting integers
(d, i, o, u, x, X) and floating-point numbers (e, E, f, g, G). By default, the
output field is padded with blanks. 0 is ignored if the flag or a precision .m is
specified when converting integers. The 0 flag has no effect with c, p and s
conversions.

n Minimum total field width (including radix character). If more positions are
required for the conversion of a number, this specification has no effect. If
the output is shorter than the specified field width, it is padded with blanks
or zeros up to the field width (see flags - and 0).

* The total field width (see n) is defined by an argument instead of a
conversion specification. The current (integral) value must immediately
precede the argument to be converted or the value of the precision specifi-
cation (flag .m) in the argument list (delimited by a comma).

.m Precision specification.
d, i, o, u, x or X conversions: minimum number of digits to be output.
Default: 1.
e, E, and f conversions: exact number of positions after the radix character
(max 20). Default: 6 positions.
g or G conversions: maximum number of significant positions.
s conversions: maximum number of characters to be output.
Default: all characters up to the terminating null byte (\0).

fprintf, printf, sprintf Functions and variables in alphabetical order

388 U23711-J-Z125-5-76

.* The precision (see .m) is defined by an argument instead of a conversion
specification. The current (integral) value must immediately precede the
argument to be converted in the argument list (delimited by a comma).

Meanings of conversion characters (for ANSI functionality):

h h before d, i, o, u, x, X:
conversion of an argument of type short.

h before n:
The argument is of type pointer to short int (no conversion).

l l before d, i, o, u, x, X:
conversion of an argument of type long.
l before d, o, u is equivalent to the uppercase letters D, O, U.

l before n:
The argument is of type pointer to long int (no conversion).

ll ll before d, i, o, u, x, X :
conversion of an argument of type long long int or unsigned long long
int.

ll before n:
The argument is of type pointer to long long int.

L L before e, E, f, g, G:
conversion of an argument of type long double.

d, i, o, u, x, X Representation of an integer (int) as
signed decimal number (d, i),
unsigned octal number (o),
unsigned decimal number (u),
unsigned hexadecimal number (x, X).
The lowercase letters abcdef are used with x, and the uppercase letters
ABCDEF are used with X. The precision specification .m defines the minimum
number of digits to be output. If the value can be represented using fewer
digits, the result will be padded with leading zeros. A precision of 1 is set by
default. The result of converting the value 0 with precision 0 is no output.

f Representation of a floating-point number (float or double) in the form
[-]ddd.ddd. The radix character is determined by the locale (category
LC_NUMERIC). The default is a period. The number of positions after the
radix character depends on the precision specified in .m; the default is 6
positions. If the precision is set to 0, the output will have no radix character.

Functions and variables in alphabetical order fprintf, printf, sprintf

U23711-J-Z125-5-76 389

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

e, E Representation of a floating-point number (float or double) in the form
[-]d.ddde{+|-}dd. The radix character is determined by the locale
(category LC_NUMERIC). The default is a period.
For E conversions, the exponent is prefixed by the uppercase letter E. The
number of positions after the radix character depends on the precision
specified in .m; the default is 6 positions. If the precision is set to 0, the
output will have no radix character.

g, G Representation of a floating-point number (float or double) in f or e form
(or for G conversions, in E form). The number of significant positions defects
on the precision specified in .m. The e or E form is used only if the exponent
of the conversion result is less than -4 or greater than the specified
precision.

c Format for the output of a single character (char). The null byte is ignored.

p Conversion of an argument of type pointer to void. The output occurs as
an 8-digit hexadecimal number (analogous to the entry %08.8x).

s Format for the output of strings. The printf functions write the same
number of characters of the string as are specified in the precision .m.
Default: all characters up to (but not including) a terminating null byte are
written by printf() functions.

n No conversion and output of the argument occurs. The argument is of type
pointer to int. This integer variable is assigned the number of bytes that
were generated for output by the printf functions up to that point.

% Output of the character %, without conversion. ❑

Return val. Number of bytes transferred (excluding null bytes for sprintf())
upon successful completion.

Negative value
if an error occurs. errno is set to indicate the error.

fprintf, printf, sprintf Functions and variables in alphabetical order

390 U23711-J-Z125-5-76

Errors fprintf() and printf() will fail if:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the write operation.

EBADF The file descriptor underlying stream is not a valid file descriptor for writing.

EFBIG An attempt was made to write a file that exceeds the maximum file size or
the process file size limit (see ulimit()).

EINTR The write operation was terminated due to the receipt of a signal, and no
data was transferred.

EIO The process is a member of a background process group attempting to
write to it´s controlling terminal, TOSTOP is set, the process is neither
ignoring nor blocking SIGTOU, and the process group of the process is
orphaned.

ENOSPC No free space is available on the device containing the file.

EPIPE An attempt was made to write a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

Notes When floating-point numbers are converted, they are rounded to the specified precision by
the printf functions.

The printf functions do not perform conversions from one data type to another. Values
that are not to be output in accordance with their types must be converted explicitly (e.g.
with the cast operator).

The characters are not written to the external file immediately, but are temporarily stored in
an internal C buffer (see section “Buffering streams” on page 110).

The program environment determines whether fprintf() is executed for a BS2000 or
POSIX file.

BS2000
Maximum number of characters to be output:
for KR functionality (only available with C/C++ versions lower than V3), a maximum of 1400
characters per fprintf call;
for ANSI functionality, a maximum of 1400 characters per conversion element (e.g. %s).

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
split=no was entered for fopen(), records which are longer than the maximum record
length are truncated to the maximum record length when they are written. By default or with
the specification split=yes, these records are split into multiple records. If a record has
precisely the maximum record length, a record of the length zero is written after it. ❑

Functions and variables in alphabetical order fprintf, printf, sprintf

U23711-J-Z125-5-76 391

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Attempts to output uninitialized variables or to output variables in non-compliance with their
data types may lead to undefined results.

If the percent character (%) in a conversion specification is followed by an undefined flag or
conversion character, the behavior is undefined.

See also fputc(), fscanf(), setlocale(), stdio.h, section “Locale” on page 86.

fputc Functions and variables in alphabetical order

392 U23711-J-Z125-5-76

fputc - put byte on stream

Syntax #include <stdio.h>

int fputc(int c, FILE *stream);

Description fputc() converts the byte specified by c to an unsigned char and writes it to the output
stream pointed to by stream at the position indicated by the associated file position indicator
for the stream, if defined. The file position indicator is then advanced appropriately. If the
file cannot support positioning requests, or if the stream was opened with append mode,
the byte is appended to the output stream.

The structure components st_ctime and st_mtime of the file are marked for changing
between successful execution of fputc() and the next successful completion of a call to
fflush() or fclose() for the same data stream or a call to exit() or abort() (see
sys/stat.h).

Return val. The written value
if successful.

EOF if an error occurs, e.g. because stream was not opened for writing or the
output file could not be extended. The error indicator for the stream is set,
and errno is set to indicate the error.

Errors fputc() will fail if:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the write operation.

EBADF The file descriptor underlying stream is not a valid file descriptor open for
writing.

EFBIG An attempt was made to write to a file that exceeds the maximum file size
or the process file size limit (see ulimit()).

EINTR The write operation was terminated due to the receipt of a signal, and no
data was transferred.

EIO The process is a member of a background process group attempting to
write to its controlling terminal, TOSTOP is set, the process is neither ignoring
nor blocking SIGTTOU and the process group of the process is orphaned.

ENOSPC There was no free space remaining on the device containing the file.

Functions and variables in alphabetical order fputc

U23711-J-Z125-5-76 393

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

EPIPE An attempt was made to write to a pipe or FIFO that is not open for reading
by any process. A SIGPIPE signal will also be sent to the process.

If threads are used, then the function affects the process or a thread in the
following manner: If an EPIPE error occurs, the SIGPIPE signal is not sent
to the process, but is sent to the calling thread instead.

Notes The characters are not written immediately to the external file, but are stored in an internal
C buffer (see section “Buffering streams” on page 110).

On output to text files, control characters for white space (\n, \t, etc.) are converted to their
appropriate effect in accordance with the type of text file (see section “White-space
characters” on page 117).

fputc() does not execute as fast as putc(), but requires less memory per call.

The program environment determines whether fputc() is executed for a BS2000 or
POSIX file.

See also ferror(), fopen(), putc(), puts(), setbuf(), stdio.h, sys/stat.h.

fputs Functions and variables in alphabetical order

394 U23711-J-Z125-5-76

fputs - put string on stream

Syntax #include <stdio.h>

int fputs(const char *s, FILE *stream);

Description fputs() writes the null-terminated string pointed to by s to the stream pointed to by stream.
The terminating null byte is not written.

The structure components st_ctime and st_mtime of the file are marked for changing
between successful execution of fputs() and the next successful completion of a call to
fflush() or fclose() for the same data stream or a call to exit() or abort() (see
sys/stat.h).

Return val. Non-negative number
if successful.

BS2000
0 if successful. ❑

EOF if an error occurs; errno is set to indicate the error.

Errors See fputc().

Notes puts() appends a newline character while fputs() does not.

On output to text files, control characters for white space (\n, \t, etc.) are converted to their
appropriate effect in accordance with the type of text file (see section “White-space
characters” on page 117).

BS2000

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
split=no was entered for fopen(), records which are longer than the maximum record
length are truncated to the maximum record length when they are written. By default or with
the specification split=yes, these records are split into multiple records. If a record has
precisely the maximum record length, a record of the length zero is written after it. ❑

The program environment determines whether fputs() is executed for a BS2000 or
POSIX file.

See also fopen(), fputc(), putc(), puts(), stdio.h, sys/stat.h.

Functions and variables in alphabetical order fputwc

U23711-J-Z125-5-76 395

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fputwc - put wide-character code on stream

Syntax #include <wchar.h>

Optional
#include <stdio.h> ❑

wint_t fputwc(wint_t wc, FILE *stream);

Description fputwc() writes the character corresponding to the wide-character code wc to the output
stream pointed to by stream, at the position indicated by the associated file-position indicator
for the stream (if defined), and then advances the indicator appropriately. If the file cannot
support positioning requests, or if the stream was opened with append mode, the character
is appended to the output stream. If an error occurs when writing the character, the shift
state of the output file is left in an undefined state.

The structure components st_ctime and st_mtime of the file are marked for changing
between successful execution of fputwc() and the next successful completion of a call to
fflush() or fclose() for the same data stream or a call to exit() or abort() (see
sys/stat.h).

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

Return val. wc upon successful completion.

WEOF if an error occurs. The error indicator for the stream is set, and errno is set
to indicate the error.

Errors fputwc() will fail if either the stream is unbuffered or data in the stream´s buffer needs to
be written, and:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying stream, and the
process would be delayed in the write operation.

EBADF The file descriptor underlying the stream is not a valid file descriptor open
for a write operation.

EFBIG An attempt was made to write to a file that exceeds the maximum file size
or the process file size limit (see ulimit()).

EINTR The write operation was terminated due to the receipt of a signal, and no
data was transferred.

fputwc Functions and variables in alphabetical order

396 U23711-J-Z125-5-76

Extension
EINVAL An attempt was made to access a BS2000 file. ❑

EIO The process is a member of a background process group attempting to
write to its controlling terminal, TOSTOP is set, the process is neither ignoring
nor blocking SIGTTOU and the process group of the process is orphaned.

ENOSPC There was no free space remaining on the device containing the file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the process.

If threads are used, then the function affects the process or a thread in the
following manner: If an EPIPE error occurs, the SIGPIPE signal is not sent
to the process, but is sent to the calling thread instead.

See also ferror(), fopen(), setbuf(), stdio.h, sys/stat.h, wchar.h.

Functions and variables in alphabetical order fputws

U23711-J-Z125-5-76 397

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fputws - put wide character string on stream

Syntax #include <wchar.h>

Optional
#include <stdio.h> ❑

int fputws(const wchar_t *ws, FILE *stream);

Description fputws() writes a character string corresponding to the (null-terminated) wide character
string pointed to by ws to the stream pointed to by stream. No character corresponding to the
terminating null wide-character code is written.

The structure components st_ctime and st_mtime of the file are marked for changing
between successful execution of fputws() and the next successful completion of a call to
fflush() or fclose() for the same data stream or a call to exit() or abort() (see
sys/stat.h).

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

Return val. Non-negative number
upon successful completion.

-1 if an error occurs; e.g. because the stream is unbuffered or data in the
stream’s buffer needs to be written. The error indicator for the stream is set,
and errno is set to indicate the error.

Errors See fputwc().

Notes fputws() does not append a newline character.

BS2000

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
split=no was entered for fopen(), records which are longer than the maximum record
length are truncated to the maximum record length when they are written. By default or with
the specification split=yes, these records are split into multiple records. If a record has
precisely the maximum record length, a record of the length zero is written after it. ❑

See also fopen(), fputwc(), stdio.h, sys/stat.h, wchar.h.

fread Functions and variables in alphabetical order

398 U23711-J-Z125-5-76

fread - read binary data

Syntax #include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);

Description fread() reads, into the array pointed to by ptr, up to nitems elements whose size is
specified by size in bytes, from the stream pointed to by stream. The file position indicator for
the stream (if defined) is advanced by the number of bytes successfully read. If an error
occurs, the resulting value of the file position indicator for the stream is indeterminate. If a
partial member is read, its value is indeterminate.

fread() can mark the structure component st_atime for the file to which stream is
assigned for changing (see sys/stat.h). The structure component st_atime is updated
as soon as fgetc(), fgets(), fgetwc(), fgetws(), fread(), fscanf(),
getc(), getchar(), gets() or scanf() are called successfully for stream and return
data which is not was not provided by a preceding call to ungetc() or ungetwc().

BS2000
Record I/O

fread() reads a record (or block) from the current file position.

Number of bytes to be read:
In the following, n is the total number of bytes to be read, i.e.

n = size * nitems

If n is greater than the current record length, only the current record will be read.

If n is less than the current record length, only the first n bytes of the record will be read, and
the next read operation will access the data of the next record.

fread() returns the same value as for stream I/O, i.e. the number of elements read in their
entirety. For record I/O , it is best to use only element length 1, since the return value will
then correspond to the length of the record read (without any record length field). ❑

Return val. Number of elements successfully read
upon successful completion. The return value is less than nitems only if a
read error or end-of-file is encountered.

0 if size or nitems id equal to 0. The contents of the array pointed to by ptr and
the state of the stream remain unchanged. errno is not set.

if a read error occurs. The error indicator for the stream is set, and errno is
set to indicate the error.

Errors See fgetc().

Functions and variables in alphabetical order fread

U23711-J-Z125-5-76 399

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Notes ferror() or feof() must be used to distinguish between an error condition and an
end-of-file condition.

The array to which ptr points must be large enough to hold the data elements read.

To ensure that size specifies the correct number of bytes for a data element, the sizeof()
function should be used for the size of the data unit to which ptr points.

fread() reads beyond the newline (\n) character and is therefore specially suitable for
reading binary files.

BS2000

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
split=no was entered for fopen(), records of maximum length are not concatenated with
the subsequent record when they are read. By default or with the specification split=yes,
when a record with maximum record length is read, it is assumed that the following record
is the continuation of this record and the records are concatenated ❑.

The program environment determines whether fread() is executed for a BS2000 or
POSIX file.

See also feof(), ferror(), fgetc(), fopen(), getc(), gets(), scanf(), stdio.h,
sys/stat.h.

free Functions and variables in alphabetical order

400 U23711-J-Z125-5-76

free - free allocated memory

Syntax #include <stdlib.h>

void free(void *ptr);

Description free() releases memory space that was previously reserved using malloc(), calloc()
or realloc().

free() is part of a C-specific memory management package with its own free memory
management facility. Memory deallocated with free() is not returned to the operating system
but is handled by the free memory management facility.

ptr is the pointer to the memory area to be released. ptr must be the result of a previous
malloc(), calloc(), or realloc() call. Otherwise, the result is undefined.

See also calloc(), malloc(), realloc(), sdtlib.h.

Functions and variables in alphabetical order freopen

U23711-J-Z125-5-76 401

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

freopen - flush and reopen stream

Name freopen, freopen64

Syntax #include <stdio.h>

FILE *freopen(const char *filename, const char *mode, FILE *stream);
FILE *freopen64(const char *filename, const char *mode, FILE *stream);

Description freopen() first attempts to flush the stream and close any file descriptor associated with
stream. Failure to flush or close the file successfully is ignored. The error and end-of-file
indicators for the stream are cleared.

freopen() then opens the file whose pathname is the string pointed to by filename and
associates the stream pointed to by stream with it. The mode argument is used just as in
fopen() (see fopen()).

The original stream is closed regardless of whether the subsequent open succeeds.

For automatic conversion, the b for binary must not be specified in mode. Furthermore, the
environment variable IO_CONVERSION must not be present or must have the value YES.

There is no difference in functionality between freopen and freopen64 except that
freopen64 returns a pointer that can point past the 2GB limit freopen64() sets the
O_LARGEFILE bit in the File status flag.

BS2000
See fopen(), fopen64().

Restriction
If stream references a BS2000 file and filename refers to a POSIX file, the POSIX file can be
opened with freopen() only if stream refers to stdin, stdout or stderr. If this is not the
case, only the BS2000 file is closed, and 0 is returned.

If stream references a POSIX file and filename refers to a BS2000 file, the BS2000 file can
be opened with freopen() only if stream refers to stdin, stdout or stderr. If this is not
the case, only the POSIX file is closed, and 0 is returned. This applies regardless of the
current assignments for the standard streams.

Return val. Value of stream
if successful.

Null pointer if an error occurs; errno is set to indicate the error.

freopen Functions and variables in alphabetical order

402 U23711-J-Z125-5-76

Errors freopen() will fail if:

EACCES Search permission is denied on a component of the path,
or the file exists and the permissions specified by mode are denied,
or the file does not exist and write permission is denied for the parent
directory of the file to be created.

EINTR A signal was caught during the freopen() system call.

EISDIR The named file is a directory and mode requires write access.

ELOOP Too many symbolic links were found when resolving the path.

EMFILE {OPEN_MAX} file descriptors are currently open in the calling process.

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX} or a component of
the path is longer than {NAME_MAX}.

ENFILE The maximum allowable number of files is currently open in the system.

ENOENT The specified file does not exist or filename points to an empty string.

ENOSPC The file does not exist, and the directory or file system in which a new file
was to be created cannot be expanded.

ENOTDIR A component of the pathname is not a directory.

ENXIO The specified file is a character-oriented or block-oriented device file and
the device assigned to this file does not exist.

EOVERFLOW The specified file is a regular file, but its size cannot be represented correct-
ly in an object of type off_t.

EROFS The named file resides on a read-only file system and mode requires write
access.

ETXTBSY The file is a pure procedure file (shared text file) that is currently executing
and write protection is required for mode.

Notes freopen() is normally used to reassign the file pointers stdin, stdout and stderr to files
other than the default files opened. stderr is not buffered by default, but can be buffered
or line-buffered by using freopen().

The program environment determines whether freopen() is executed for a BS2000 or
POSIX file.

BS2000
See fopen().

See also creat(), fclose(), fopen(), fdopen(), stdio.h.

Functions and variables in alphabetical order frexp

U23711-J-Z125-5-76 403

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

frexp - extract mantissa and exponent from double precision number

Syntax #include <math.h>

double frexp(double num, int *exp);

Description frexp() splits a floating-point value num into the mantissa x and the exponent exp using the
formula:

num = x * 2exp

|x| is in the interval [0.5, 1.0]

exp is a pointer to an integer that specifies the exponent to the base 2t.

frexp() is the inverse function of ldexp().

Return val. Mantissa x a floating-point number of type double that lies in the interval [0.5, 1.0] and
satisfies the equation: num = x * 2exp. The exponent is stored in exp.

0 if num is equal to 0 (in which case the exponent is also equal to 0).

Notes An application wishing to check for error situations should set errno to 0 before calling
frexp(). If errno is set on return, an error has occurred.

See also ldexp(), modf(), math.h.

fscanf, scanf, sscanf Functions and variables in alphabetical order

404 U23711-J-Z125-5-76

fscanf, scanf, sscanf - read formatted input

Syntax #include <stdio.h>

int fscanf(FILE *stream, const char *format [, arglist]);
int scanf(const char *format [, arglist]);
int sscanf(const char *s, const char *format [, arglist]);

Description scanf() reads bytes from the standard input stream stdin according to a specified format.

fscanf() reads bytes from the stream pointed to by stream according to a specified format.

sscanf() reads bytes from the string s according to a specified format.

Each of these functions reads bytes, interprets them according to the directives given in the
control string format, and stores the results in the areas specified by the arguments in arglist,
if any.

format is a character string, beginning and ending in its initial shift state, if defined. It is
composed of zero or more directives and may include the following three types of
characters:

– characters of type char, which are simply copied to the output stream (1: 1).

– white-space characters, starting with a backslash (\) (see isspace()).

– conversion specifications beginning with the percent character (%), each of which is
associated with zero or more arguments in arglist. The results are undefined if fewer
arguments are passed in arglist than are defined in format. If the number of arguments
defined in format is greater than the arguments passed in arglist, the excess arguments
are ignored.

Characters

The following applies to the current version of the C runtime system:
Only characters from the EBCDIC character set are permitted.

The scanf functions read each input character, but do not convert it or store it in a variable.
If the input character does not match the character specified in format, input processing is
aborted.

White-space characters

The control string format may include zero or more characters producing white space.
These characters have no control function.

White-space characters in the input are treated as delimiters between input fields; they are
not converted (see %c and %[] for exceptions). Leading white space in the input is ignored.

Functions and variables in alphabetical order fscanf, scanf, sscanf

U23711-J-Z125-5-76 405

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Depending on which functionality is to be supported by the scanf functions, a different
number of white-space characters are recognized (shown in the table below):

Conversion specifications

Conversions can be applied to the n-th argument after the format in the argument list arglist,
rather than to the next unused argument. In this case, the conversion character % is
replaced by the sequence %n$, where n is a decimal integer in the range
[1, {NL_ARGMAX}], giving the position of the argument in the argument list. This feature
provides for the definition of format strings that select arguments in an order appropriate to
specific languages. In format strings containing the %n$ form of conversion specifications,
it is unspecified whether numbered elements in the argument list arglist can be referenced
from the format string format more than once.

format can contain either form of a conversion specification, that is, % or %n$, but the two
forms cannot normally be mixed within a single format string. The only exception to this is
that %% or % * can be mixed with the %n$ form.

All forms of fscanf() allow for the insertion of a language-dependent radix character in
the input string. The radix character is defined in the program´s locale (category
LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined,
the radix character defaults to a period (.).

Each conversion specification is introduced by the % character or by the character
sequence %n$, after which the following appear in sequence:

– An optional assignment-suppressing character *.

– An optional non-zero decimal integer that specifies the maximum field width.

– An optional size modifier h, l, ll or L indicating the size of the receiving object. The
conversion characters d, i and n must be preceded by h if the corresponding argument
is a pointer to short int rather than a pointer to int, or by l (ell) if it is a pointer to
long int. Similarly, o, u and x must be preceded by h if the corresponding argument
is a pointer to unsigned short int rather than a pointer to unsigned int, or by l (ell)
if it is a pointer to unsigned long int or an ll if it is a pointer to a long long int.

Characte
r

Meaning Valid for following functionality

XPG4 ANSI (BS2000) KR (BS2000)

Ë blank x x x

\n newline character x x x

\t horizontal tab x x x

\f form-feed x x -

\v vertical tab - x -

\r carriage return - x -

fscanf, scanf, sscanf Functions and variables in alphabetical order

406 U23711-J-Z125-5-76

Finally, e, f and g must be preceded by l (ell) if the corresponding argument is a pointer
to double rather than a pointer to float.
If an h, l (ell) or L appears with any other conversion character, the behavior is
undefined.

– A conversion character that specifies the type of conversion to be applied.

fscanf() executes each directive of the format in turn. If a directive fails, as detailed below,
the function returns. Failures are described as input failures (due to the unavailability of
input bytes) or matching failures (due to inappropriate input).

A directive composed of one or more white-space characters is executed by reading input
until no more valid input bytes can be read, or up to the first byte which is not a white-space
character (which remains unread).

A directive that is an ordinary character is executed as follows. The next byte is read from
the input and compared with the byte that comprises the directive; if the comparison shows
that they are not equivalent, the directive fails, and the differing and subsequent bytes
remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each conversion character. A conversion specification is executed in
the following steps:

Input white-space characters are skipped, unless the conversion specification includes a [
or one of the conversion characters c or n.

An item is read from the input, unless the conversion specification includes an n conversion
character. An input item is defined as the longest sequence of input bytes (up to any
specified maximum field width) which is an initial subsequence of a matching sequence.
The first byte, if any, after the input item remains unread. If the length of the input item is 0,
the execution of the conversion specification fails; this condition is a matching failure,
unless an error prevented input, in which case it is an input failure.

Except in the case of a % conversion character, the input item (or, in the case of a %n
conversion specification, the count of input bytes) is converted to a type appropriate to the
conversion character. If the input item is not a matching sequence, the execution of the
conversion specification fails; this condition is a matching failure. Unless assignment
suppression was indicated by a *, the result of the conversion is placed in the object pointed
to by the first argument following the format argument that has not already received a
conversion result. If this object does not have an appropriate type, or if the result of the
conversion cannot be represented in the space provided, the behavior is undefined.

Functions and variables in alphabetical order fscanf, scanf, sscanf

U23711-J-Z125-5-76 407

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Conversion specifications can be given in XPG4-conformant environments as shown
below:

Conversion characters

d Matches an optionally signed decimal integer, whose format is the same as
expected for strtod() with the value 10 for base. The corresponding
argument must be of type pointer to int.

i Matches an optionally signed decimal integer, whose format is the same as
expected for strtol() with the value 0 for base. The corresponding
argument must be of type pointer to int.

o Matches an optionally signed octal integer, whose format is the same as
expected for strtol() with the value 8 for base. The corresponding
argument must be of type pointer to unsigned.

u Matches an optionally signed decimal integer, whose format is the same as
expected for strtol() with the value 10 for base. The corresponding
argument must be of type pointer to unsigned.

x, X Matches an optionally signed hexadecimal integer, whose format is the
same as expected for strtol() with the value 16 for base. The corre-
sponding argument must be of type pointer to unsigned.

e, E, f, g, G These conversion characters match an optionally signed floating-point
number, whose format is the same as expected for strtod(). The corre-
sponding argument must be of type pointer to float.

s Matches a sequence of bytes that are not white-space characters. The
corresponding argument must be a pointer to the initial byte of a char array
that is large enough to accept the sequence and a terminating null character
byte, which will be added automatically.

S Matches a sequence of characters that are not white space. The sequence
is converted to a sequence of wide character codes in the same manner as
mbstowcs(). The corresponding argument must be a pointer to the first
byte of an array of type wchar_t, which must be large enough to accept the

{ %[a$] } []
n

*

[{h|l}] {d|i|o|u|x|X}
[{h|l}] n
[l|L] {e|E|f|g|G}
{c|C|p|s|S}
{[...]|[^...]}
%

fscanf, scanf, sscanf Functions and variables in alphabetical order

408 U23711-J-Z125-5-76

sequence and a terminating null byte, which will be added automatically. If
the field width is specified, it determines the maximum number of characters
accepted.

This conversion character is only recognized in XPG4 mode.

[Matches a non-empty sequence of bytes from a set of expected bytes (the
scanset). The corresponding argument must be a pointer to the initial byte
of a char array that is large enough to accept the sequence and a termi-
nating null byte, which is added automatically. The conversion specification
includes all subsequent bytes in the format string up to and including the
matching right square bracket (]). The bytes between the square brackets
(the scanlist) comprise the scanset, unless the byte after the left square
bracket is a circumflex (^), in which case the scanset contains all bytes that
do not appear in the scanlist between the circumflex and the right square
bracket. As a special case, if the conversion specification begins with [] or
[^], the right square bracket is included in the scanlist, and the next right
square bracket is the matching right square bracket that ends the
conversion specification. If a - is in the scanlist and is not the first character,
nor the second where the first character is a ^, nor the last character, the
behavior is undefined.

c Matches a sequence of bytes of the number specified by the field width (or
1 if no field width is present). The corresponding argument must be a pointer
to the initial byte of a char array that is large enough to accept the
sequence. No terminating null byte is added. The normal skip over white-
space characters is suppressed in this case; %1s should be used to read the
next byte that is not a white-space character.

C Matches a sequence of characters of the number specified by the field width
(1 if no field width is present in the directive). The sequence is converted to
a sequence of wide character codes in the same manner as mbstowcs().
The corresponding argument must be a pointer to the first byte of an array
of type wchar_t large enough to accept the sequence which is the result of
the conversion. No null wide character code is added.
If the matched sequence begins with the initial shift state, the conversion is
the same as expected for the mbstowcs() function; otherwise, the behavior
of the conversion is undefined. The normal skip over white-space
characters is suppressed in this case.

p Matches a set of sequences, which must be the same as the set of
sequences that is produced by the %p conversion of the printf functions.
p must match the implementation for printf functions. The corresponding
argument must be a pointer to a pointer to void. The interpretation of the
input item is implementation-dependent; if the input item is not a value that

Functions and variables in alphabetical order fscanf, scanf, sscanf

U23711-J-Z125-5-76 409

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

was converted earlier during the same program execution, the behavior of
the %p conversion is undefined. This is specially true for pointer outputs
generated by other systems.

n No input is processed. The corresponding argument must be a pointer to
the integer into which the number of input bytes read thus far by this call are
to be entered. Execution of a %n conversion specification does not
increment the assignment count returned at the completion of execution of
the function.

% Matches a single %; no conversion or assignment occurs. The complete
conversion specification must be %%.

If a conversion specification is invalid, the behavior of scanf() is undefined.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any bytes matching the current conversion specification have been read (other than
leading white-space characters, where permitted), execution of the current conversion
specification terminates with an input failure. Otherwise, unless execution of the current
conversion specification is terminated with a matching failure, execution of the following
conversion specification (if any) is terminated with an input failure.

Reaching the end of the string in a sscanf call is equivalent to encountering the end-of-file
indicator during an fscanf call.

If conversion terminates on a conflicting input, the offending input byte is left unread in the
input stream. Any trailing white space (including newline characters) is left unread unless
matched by a conversion specification. The success of literal matches and suppressed
assignments cannot be directly determined, except via the %n conversion specification.

BS2000
Conversion specifications (KR functionality)
(only available with C/C++ versions lower than V3)

Conversion specifications contain directives that specify how input fields are to be inter-
preted and converted. They may be entered in the following format:

 % []
n

*

[{h|l}] {d|o|x}
[l] {e|f}
[D|E|F|O|X}
{c|s}
{[...]|[^...]}
%

fscanf, scanf, sscanf Functions and variables in alphabetical order

410 U23711-J-Z125-5-76

Every conversion specification must begin with a percent character (%). The remaining
characters are interpreted as follows:

* Skip an assignment.
The next input field is read and converted, but not stored in a variable.

n Maximum length of the input field to be converted.
If a white-space character or a character that does not match the type
specified in the conversion specification appears before this entry, the
length is truncated accordingly.

l l before d, o, x:
conversion of an argument of type pointer to long int (d) or unsigned
long int (o, x). The specification is identical to the uppercase letters
D, O, X.

l before e, f:
conversion of an argument of type pointer to double.
The specification is identical to the uppercase letters E, F.

h h before d, o, x:
conversion of an argument of type pointer to short int (d) or
unsigned short int (o, x).

d A decimal integer value is expected. The corresponding argument must be
a pointer to int.

o An octal integer value is expected. The corresponding argument may be a
pointer to unsigned int or int. The value is internally represented as
unsigned.

x A hexadecimal integer value is expected. The corresponding argument may
be a pointer to unsigned int or int. The value is internally represented as
unsigned.

e, f A floating-point number is expected. The corresponding argument must be
a pointer to float. The floating-point number can contain a sign as well as
an exponent (E or e, followed by an integer value). The radix character is
determined by the locale (category LC_NUMERIC). The default is a period.

c A character is expected. The corresponding argument should be a pointer
to char. In this case scanf() will also read blanks. %1s should be used to
read the next non-blank character. c is suitable for reading strings that
include blanks; to do so, a pointer to a char array must be passed as an
argument, and a field length of n must be specified (e.g. %10c). The
scanf() function does not automatically terminate the string with the null
byte in this case.

Functions and variables in alphabetical order fscanf, scanf, sscanf

U23711-J-Z125-5-76 411

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

s A string is expected. The corresponding argument must be a pointer to a
char array that is large enough to accept the string and a terminating null
byte. scanf() automatically terminates the string with the null byte.
Leading white-space characters in the input are ignored; a trailing white-
space character is interpreted as a delimiter (end of the string).

[] A string is expected. The corresponding argument must be a pointer to a
char array that is large enough to accept the string (including the automat-
ically appended null byte). In this specification, as opposed to %s, blanks do
not automatically function as delimiters.

% Input of the % character, without conversion. ❑

[...] In this specification, characters are read in until the first
character not listed in the square brackets appears. Thus, the
string may only consist of the characters appearing within [];
any characters not specified are treated as delimiters.

[^...] In this specification, characters are read in until one of the
characters listed in the square brackets after ̂ is encountered.
Only the characters specified within the [] are treated as
delimiters.

fscanf, scanf, sscanf Functions and variables in alphabetical order

412 U23711-J-Z125-5-76

BS2000
Conversion specifications (ANSI functionality)

Conversion specifications contain directives that specify how input fields are to be inter-
preted and converted. They may be entered in the following format:

Leading white-space characters in the input are ignored.

Every conversion specification must begin with a percent character (%). The remaining
characters are interpreted as follows:

* Skip an assignment. The next input field is read and converted, but not
stored in a variable.

n Maximum length of the input field to be converted. If a white-space
character or a character that does not match the type specified in the
conversion specification appears before this entry, the length is truncated
accordingly.

l l before d, i, o, u, x, X:
conversion of an argument of type pointer to long int (d, i) or
unsigned long int (o, u, x, X).

l before e, E, f, g, G:
conversion of an argument of type pointer to double.

l before n:
The argument is of the type pointer to long int (no conversion).

ll ll before d, i, o, u, x, X :
conversion of an argument of type long long int or unsigned long long
int.

ll before n:
The argument is of type pointer to long long int.

 % []
n

*

[{h|l|ll}] {d|i|o|u|x|X}
[{h|l|ll}] n
[l|L] {e|E|f|g|G}
{c|p|s}
{[...]|[^...]}
%

Functions and variables in alphabetical order fscanf, scanf, sscanf

U23711-J-Z125-5-76 413

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

h h before d, i, o, u, x, X:
conversion of an argument of type pointer to short int (d, i) or
unsigned short int (o, u, x, X).

h before n: The argument is of the type pointer to short int (no
conversion).

L L before e, E, f, g, G: conversion of an argument of type pointer to long
double.

d A decimal integer value is expected. The corresponding argument must be
a pointer to int.

i An integer value is expected. The base (hexadecimal, octal, decimal) is
determined from the structure of the input field. Leading 0x or 0X:
hexadecimal; leading 0: octal; otherwise: decimal. The corresponding
argument must be a pointer to int.

o An octal integer value is expected. The corresponding argument may be a
pointer to unsigned int or int. The value is internally represented as
unsigned.

u A decimal integer value is expected. The corresponding argument must be
a pointer to unsigned int.

x, X A hexadecimal integer value is expected. The corresponding argument may
be a pointer to unsigned int or int. The value is internally represented as
unsigned.

e, E, f, g, G A floating-point number is expected. The corresponding argument must be
a pointer to float. The floating-point number can contain a sign as well as
an exponent (E or e, followed by an integer value). The radix character is
determined by the locale (category LC_NUMERIC). The default is a period.

c A character is expected. The corresponding argument should be a pointer
to char. In this case scanf() will also read blanks. %1s should be used to
read the next non-blank character. c is suitable for reading strings that
include blanks; to do so, a pointer to a char array must be passed as an
argument, and a field length of n must be specified (e.g. %10c). The
scanf() function does not automatically terminate the string with the null
byte in this case.

p An 8-digit pointer value is expected, analogous to the format %08.8x. The
corresponding argument must be of type pointer to void.

fscanf, scanf, sscanf Functions and variables in alphabetical order

414 U23711-J-Z125-5-76

s A string is expected. The corresponding argument must be a pointer to a
char array that is large enough to accept the string and a terminating null
byte. scanf() automatically terminates the string with the null byte.
Leading white-space characters in the input are ignored; a trailing white-
space character is interpreted as a delimiter (end of the string).

[] A string is expected. The corresponding argument must be a pointer to a
char array that is large enough to accept the string (including the automat-
ically appended null byte). In this specification, as opposed to %s, blanks do
not automatically function as delimiters.

n No characters are read from the input field. The argument is of type pointer
to int. This integer variable is assigned the number of characters
processed thus far by scanf().

% Input of the % character, without conversion. ❑

fscanf() and scanf() can mark the structure component st_atime for the file
to which stream is assigned for changing (see sys/stat.h). The structure component
st_atime is updated as soon as fgetc(), fgets(), fgetwc(), fgetws(),
fread(), fscanf(), getc(), getchar(), gets() or scanf() are called success-
fully for stream and return data which is not was not provided by a preceding call to
ungetc() or ungetwc().

Return val. number of successfully matched and assigned input items
upon successful completion.

0 if an input character that does not match the format string is found at the
outset.

EOF if the input ends before the first conflicting input or conversion. In contrast
to XPG4, errno is not set.

[...] In this specification, characters are read until the first
character not listed in the square brackets appears. Thus, the
string may only consist of the characters appearing within [];
characters not specified therein are treated as delimiters.
The closing bracket] can be included in the list of characters
to be read by specifying it as the first character immediately
after the opening bracket: []...].

[^...] In this specification, characters are read until one of the
characters listed in the square brackets after ̂ is encountered.
Only the characters specified within the [] are treated as
delimiters. The closing bracket] can be included in the list of
delimiters by specifying it as the first character immediately
after the ^ character: [^]...].

Functions and variables in alphabetical order fscanf, scanf, sscanf

U23711-J-Z125-5-76 415

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Notes If the application calling fprintf() has any objects of type wchar_t, it must also include
either sys/types.h or stddef.h to have wchar_t defined.

In format strings containing the % form of conversion specifications, each argument in the
argument list is used exactly once. In format strings containing the %n$ form of conversion
specifications, each numbered argument of the argument list may be used as often as
required.

When integer values are converted to unsigned int (o, u, x, X) the two´s complement is
formed from a value with a negative sign. For example, format %u for input -1 returns
X'FFFFFFFF'.

The return value of a scanf call should always be checked to ensure that no error has
occurred!

The next scanf call starts reading immediately after the character last processed by the
previous call.

If an input character does not correspond to the format specified, it is written back to the
input buffer. It must be fetched from there with getc(); otherwise, the next scanf call will
receive the same character again.

BS2000

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
split=no was entered for fopen(), records of maximum length are not concatenated with
the subsequent record when they are read. By default or with the specification split=yes,
when a record with maximum record length is read, it is assumed that the following record
is the continuation of this record and the records are concatenated ❑.

The program environment determines whether fscanf() is executed for a BS2000 or
POSIX file.

See also getc(), printf(), setlocale(), strtod(), strtol(), langinfo.h, stdio.h.

fseek Functions and variables in alphabetical order

416 U23711-J-Z125-5-76

fseek - reposition file position indicator in stream

Name fseek, fseek64, fseeko, fseeko64

Syntax #include <stdio.h>

int fseek(FILE *stream, long int offset, int whence);
int fseek64(FILE *stream, long long int offset, int whence);
int fseeko(FILE *stream, off_t offset, int whence);
int fseeko64(FILE *stream, off64_t offset, int whence);

Description When POSIX files are executed, the function behaves in conformance with XPG as
described below:

fseek() sets the file position indicator for the stream pointed to by stream.

The new position, measured in bytes from the beginning of the file, is obtained by adding
offset to the position specified by whence. The specified point is the beginning of the file for
SEEK_SET, the current value of the file position indicator for SEEK_CUR, or end-of-file for
SEEK_END.

If the stream is to be used with wide character input/output functions, offset must either be 0
or a value returned by an earlier call to ftell() on the same stream and whence must be
SEEK_SET.

A successful call to fseek() clears the end-of-file indicator for the stream and undoes any
effects of ungetc() and ungetwc() on the same stream. After an fseek() call, the next
operation on a stream opened for an update may be either input or output.

If the most recent operation, other than ftell(), on a given stream is fflush(), the file
offset in the underlying open file description will be adjusted to reflect the location specified
by fseek().

fseek() allows the file position indicator to be set beyond the end of existing data in the
file. If data is later written at this point, subsequent reads of data in the gap will return null
bytes until data is actually written into the gap.

If the stream was opened for writing and buffered data has not yet been written to the under-
lying file, fseek() will cause the unwritten data to be written to the file and mark the
st_ctime and st_mtime fields of the file for update.

The fseek64() function behaves like fseek() except that the offset type long long is
used for fseek64().

There is no difference in functionality between fseeko() and fseeko64() except that
fseeko64() uses the off64_t structure.
The fseeko() function is the same as the modified fseek() function except that the offset
argument is of type off_t and that the EOVERFLOW error has changed.

Functions and variables in alphabetical order fseek

U23711-J-Z125-5-76 417

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

BS2000
The following must be noted when executing BS2000 files:

fseek() sets the file position indicator for the file associated with stream in accordance with
the specifications in offset and whence. This allows files to be processed non-sequentially.

Text files (SAM in text mode, ISAM) can be positioned absolutely to the beginning or end of
the file as well as to any position previously marked with ftell().

Binary files (SAM in binary mode, PAM, INCORE) can be positioned absolutely (see above)
or relatively, i.e. relative to beginning of file, end of file, or current position (by a desired
number of bytes).

The significance, combination options, and effects of the offset and whence parameters differ
for text and binary files and are therefore discussed individually below:

Text files (SAM in text mode, ISAM)

Possible values:

Meaningful combinations and their effects:

Binary files (SAM in binary mode, PAM, INCORE)

Possible values:

offset 0L or value determined by a previous ftell call.

whence SEEK_SET (beginning of file)
SEEK_END (end of file)

offset whence Effect

ftell value SEEK_SET Position to the location marked by ftell()

0L SEEK_SET Position to the beginning of the file

0L SEEK_END Position to the end of the

offset Number of bytes by which the current file position indicator is to be shifted.
This number may be

positive: position forwards toward the end of the file
negative: position backwards toward the beginning of the file
0L: absolute positioning to the beginning or end of the file

fseek Functions and variables in alphabetical order

418 U23711-J-Z125-5-76

Meaningful combinations and their effects:

Return val. 0 if successful.

-1 if the specified file cannot be positioned. errno is set to indicate the error.

An improper seek can be, for example, an fseek() done on a file that has
not been opened via fopen(); in particular, fseek() may not be used on a
terminal or on a file opened via popen(). After a stream is closed, no further
operations are defined on that stream.

fseek() and fseeko() will fail if, either the stream is unbuffered or the stream's buffer
needed to be flushed, and the call to fseek() or fseeko() causes an underlying lseek()
or write() to be invoked:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the write operation.

EBADF The file descriptor underlying stream is not open for writing or the stream´s
buffer needed to be flushed and the file is not open.

EFBIG An attempt was made to write a file that exceeds the maximum file size or
the process file size limit (see also ulimit()).

EINTR The write operation was terminated due to the receipt of a signal, and no
data was transferred.

whence For absolute positioning to the beginning or end of the file,
the location at which the file position indicator is to be set.

For relative positioning, the reference point from which the file position
indicator is to be moved by offset bytes:
SEEK_SET (beginning of file)
SEEK_CUR (current position)
SEEK_END (end of file)

offset whence Effect

0L SEEK_SET Position to the beginning of the file.

0L SEEK_END Position to the end of the file.

positive number SEEK_SET
SEEK_CUR
SEEK_END

Forward positioning from beginning of file,
from current position,
from end of file (beyond the end of file).

negative number SEEK_CUR
SEEK_END

Backward positioning from current position,
from end of file.

ftell value SEEK_SET Position to the location marked by an ftell call.

Functions and variables in alphabetical order fseek

U23711-J-Z125-5-76 419

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

EINVAL The whence argument is invalid. The resulting file-position indicator would
be set to a negative value.

EIO An I/O error occurred.
The process is a member of a background process group attempting to
write to its controlling terminal, TOSTOP is set, the process is neither ignoring
nor blocking the SIGTTOU signal, and the process group of the process is
orphaned.

ENOSPC There was no free space remaining on the device containing the file.

EPIPE An attempt was made to write to a pipe or FIFO that is not open for reading
by any process; a SIGPIPE signal will also be sent to the process.

If threads are used, then the function affects the process or a thread in the
following manner: If an EPIPE error occurs, the SIGPIPE signal is not sent
to the process, but is sent to the calling thread instead.

ENXIO The device does not exist or it cannot be accessed.

EOVERFLOW For fseek(): The resulting file offset value cannot be represented correctly in
an object of type long.

EOVERFLOW For fseeko(): The resulting file offset value cannot be represented correctly
in an object of type off_t.

Notes For POSIX files, the file offset returned by ftell() is measured in bytes, and a seek to a
position relative to that file offset is permissible; however, portability to other systems
requires that a direct file offset (i.e. the value returned by ftell()) be used by fseek().
Arithmetic operations cannot always be meaningfully performed on any other file offset
which may not necessarily be measured in bytes.

The program environment determines whether fseek() is executed for a BS2000 or
POSIX file.

BS2000
The call fseek(stream,0L,SEEK_SET) is equivalent to the call rewind(stream).

If new records are written to a text file that was opened in the write or append mode and an
fseek call is issued, any data that may still be in the buffer is first written to the file and
terminated with a newline character (\n).

Exception for ANSI functionality:
If the data of an ISAM file in the buffer does not end in a newline character, fseek() does
not insert a change of line (or record). In other words, the data is not automatically termi-
nated with a newline character when it is written from the buffer. Subsequent data extends
the record in the file. Consequently, when an ISAM file is read, only the newline characters
that were explicitly written by the program are read in.

fseek Functions and variables in alphabetical order

420 U23711-J-Z125-5-76

If a binary file is positioned past the end of file, a gap appears between the last physically
stored data and the newly written data. Reading from this gap returns binary zeros.

It is not possible to position to system files (SYSDTA, SYSLST, SYSOUT).

A successful fseek() call deletes the EOF flag of the file and cancels all the effects of the
preceding ungetc calls for that file.

In the case of record I/O, fseek() can be only be used for positioning to the beginning or
end of the file.

fseek(stream,0L,SEEK_SET) positions on the first record of the file.

fseek(stream,0L,SEEK_END) positions after the last record of the file.

If fseek() is called with any other arguments, it will return EOF.

See also fopen(), fsetpos(), ftell(), lseek(), rewind(), tell(), ungetc(), stdio.h.

Functions and variables in alphabetical order fsetpos

U23711-J-Z125-5-76 421

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fsetpos - set file position indicator for stream to current value

Name fsetpos, fsetpos64

Syntax #include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);
int fsetpos64(FILE *stream, const fpos64_t *pos);

Description fsetpos() sets the file position indicator for the stream pointed to by stream to a position
pos, obtained from an earlier call to fgetpos().

fsetpos() clears the end-of-file indicator for the stream and undoes any effects of
ungetc() on the same stream. After an fsetpos() call, the next operation on an update
stream may be either input or output.

There is no difference in the functionality between fsetpos() and fsetpos64() except
that fsetpos64() uses an fpos64_t type.

Return val. 0 if successful.

≠ 0 if an error occurs.

BS2000
errno is set to EBADF.

Notes The program environment determines whether fsetpos() is executed for a BS2000 or
POSIX file.

BS2000
fsetpos() can be used on binary files (SAM in binary mode, PAM, INCORE) and text files
(SAM in text mode, ISAM). fsetpos() cannot be used on system files (SYSDTA, SYSLST,
SYSOUT).

A successful call to the fsetpos() function deletes the EOF flag of the file and cancels all
the effects of the preceding ungetc calls for that file.

If new records are written to a text file that was opened in the write or append mode and an
fsetpos call is issued, any data that may still be in the buffer is first written to the file and
terminated with a newline character (\n).

Exception for ANSI functionality:
If the data of an ISAM file in the buffer does not end in a newline character, fseetpos()
does not insert a change of line (or record). In other words, the data is not automatically
terminated with a newline character when it is written from the buffer. Subsequent data
extends the record in the file. Consequently, when an ISAM file is read, only the newline
characters that were explicitly written by the program are read in.

fsetpos Functions and variables in alphabetical order

422 U23711-J-Z125-5-76

After positioning, the next operation may be either a read or write operation.

For ISAM files, the function pair fgetpos()/fsetpos() is far more efficient than the
comparable function pair ftell()/fseek().

In the case of record I/O in ISAM files with key duplication, fsetpos() cannot be used to
position on the second or higher record of a group with identical keys. This can only be done
by sequential reading or deletion. fsetpos() can only be used to position on the first
record or after the last record of such a group.

See also fgetpos(), fseek(), ftell(), open(), rewind(), ungetc(), stdio.h.

Functions and variables in alphabetical order fstat, fstatat

U23711-J-Z125-5-76 423

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fstat, fstatat - get file status of open file

Name fstat, fstat64, fstatat, fstatat64

Syntax #include <sys/stat.h>

Optional
#include <sys/types.h>

int fstat(int fildes, struct stat *buf);
int fstat64(int fildes, struct stat64 *buf);
int fstatat(int fd, const char *path, struct stat *buf, int flag);
int fstatat64(int fd, const char *path, struct stat64 *buf, int flag);

Description fstat() obtains information on an open file associated with the file descriptor fildes, which
is returned by a successful open(), creat(), dup(), fcntl() or pipe() system call.

buf is a pointer to a stat structure into which information concerning the respective file is
placed.

There is no difference in functionality between fstat() and fstat64() except that
fstat64() returns the file status in a stat64 structure.

The contents of the structure pointed to by buf include the following members:

mode_t st_mode; /* File mode (see mknod()) */
ino_t st_ino; /* Inode number (i-Node) */
dev_t st_dev; /* ID of device containing a
 directory entry for this file */
dev_t st_rdev; /* Device ID, only defined for
 character special or block special files */
nlink_t st_nlink; /* Number of links */
uid_t st_uid; /* User ID of the file's owner */
gid_t st_gid; /* Group ID of the file's group */
off_t st_size; /* File size in bytes */
time_t st_atime; /* Time of last access */
time_t st_mtime; /* Time of last data modification */
time_t st_ctime; /* Time of last file status change
 The time is measured in seconds since
 00:00:00 UTC, Jan 1, 1970 */
long st_blksize; /* Preferred I/O block size */
blkcnt_t st_blocks; /* Number of st_blksize blocks allocated */

The stat64 structure is defined like the stat structure except for the following compo-
nents:

ino64_t st_ino
off64_t st_size and
blkcnt64_t st_blocks

fstat, fstatat Functions and variables in alphabetical order

424 U23711-J-Z125-5-76

The elements have the following meanings:

st_mode The mode of the file is defined in the system call mknod(). Apart from the
modes defined in mknod(), the mode of a file can be S_IFLNK if the file is a
symbolic link, or S_IFSOCK if a socket descriptor is involved.

st_ino Uniquely identifies the file in a given file system. The pair st_ino and
st_dev uniquely identifies regular files.

st_dev Uniquely identifies the file system that contains the file.

st_rdev May be used only by administrative commands. It is valid only for block
special or character special files and only has meaning on the system
where the file was configured.

st_nlink May be used only by administrative commands.

st_uid The user ID of the file's owner.

st_gid The group ID of the file's group.

st_size For regular files, this is the address of the end of the file. It is undefined for
block special or character special files. For PAM files this member contains
the file size. Any existing marker is not considered. If the LBP is zero, the
entire last block counts to the size.

st_atime Time when file data was last accessed. Modified by the following system
calls: creat(), mknod(), pipe(), utime() and read().

st_mtime Time when data was last updated. Modified by the following system calls:
creat(), mknod(), pipe(), utime() and write().

st_ctime Time when the file status was last changed. Modified by the following
system calls: chmod(), chown(), creat(), link(), mknod(), pipe(),
unlink(), utime() and write().

st_blksize A hint as to the 'best' unit size for I/O operations. This field is not defined for
block special or character special files.

st_blocks The total number of physical blocks of size 512 bytes actually allocated on
disk. This field is not defined for block special or character special files.

BS2000

With BS2000 files the following elements of the stat structure are set:

mode_t st_mode File mode containing access permissions and file type.

Access permissions: Here the Basic ACL is mapped to the file mode
bits. The file mode bits are all 0 if the file does not have basic ACL
protection.

Functions and variables in alphabetical order fstat, fstatat

U23711-J-Z125-5-76 425

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

File type: Introduction of a new file type S_IFDVSBS2=X'10000000'.
This type is, however, not disjoint to S_IFPOSIXBS2. The
S_ISDVSBS2(mode) macro can be used to query.

Introduction of a new file type S_IFDVSNODE=X'20000000'. This
type is also not disjoint to S_IFPOSIXBS2. The
S_ISDVSNODE(mode) macro can be used to query.

A node file is also a BS2000 DVS file. I.e. for node files the bit
S_IFDVSBS2 is always set.

time_t st_atime Last access time as is usual in BS2000, but in seconds since
1.1.1970 UTC).

time_t st_mtime Last modification time.

time_t st_ctime Creation time.

long st_blksize Block size, 2K (i.e. 1 PAM page).

long st_blocks Number of blocks on the disk that are occupied by the file.

dev_t st_dev Contains the 4-byte catalog ID.

The two consecutive fields

uid_t st_uid and

gid_t st_uid contain the 8-byte BS2000 user ID.

All other fields are set to 0.

The fstatat() and fstatat64() functions are equivalent to the stat() and stat64()
and the lstat() and lstat64() functions depending on the value flag except when the
path parameter specifies a relative path. In this case the file whose status is to be deter-
mined is not searched for in the current directory, but in the directory connected with the file
descriptor fd. If the file descriptor was opened without O_SEARCH, the functions check
whether a search is permitted in the connected directory with the authorizations applicable
for the directory. If the file descriptor was opened with O_SEARCH, the check is not per-
formed.

In the flag parameter, the value AT_SYMLINK_NOFOLLOW, which is defined in the fnctl.h
header, can be transferred. If path specifies a symbolic link, the status of the symbolic link
is returned.

Return val. 0 if successful.

-1 if an error occurs; for POSIX files errno is set to indicate the error.

fstat, fstatat Functions and variables in alphabetical order

426 U23711-J-Z125-5-76

Errors fstat(), fstat64(), fstatat() and fstatat64() will fail if:

EBADF fildes is not a valid file descriptor.

EFAULT buf points to an invalid address.

EIO An I/O error occurred while reading the file system.

ENOLINK fildes refers to a remote computer, whereby the connection to this computer
is not active anymore.

EOVERFLOW A component is too large and cannot be stored in the structure pointed to
by buf.

EINTR A signal was caught during the fstat() system call.

In addition, fstatat() and fstatat64() fail when the following applies:

EACCES The fd parameter was not opened with O_SEARCH, and the authorizations
applicable for the directory do not permit the directory to be searched.

EBADF The path parameter does not specify an absolute pathname, and the fd pa-
rameter does not have the value AT_FDCWD, nor does it contain a valid file
descriptor opened for reading or searching.

ENOTDIR The path parameter does not specify an absolute pathname, and the file de-
scriptor fd is not connected with a directory.

EINVAL The value of the flag parameter is invalid.

See also chmod(), chown(), creat(), link(), lstat(), mknod(), stat(), unlink(), write(),
fcntl.h, sys/stat.h, sys/types.h.

Functions and variables in alphabetical order fstatvfs, statvfs

U23711-J-Z125-5-76 427

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fstatvfs, statvfs - read file system information

Name fstatvfs, fstatvfs64, statvfs, statvfs64

Syntax #include <sys/statvfs.h>
#include <sys/types.h>

int fstatvfs (int fildes, struct statvfs *buf);
int statvfs (const char *path, struct statvfs *buf);
int fstatvfs64 (int fildes, struct statvfs64 *buf);
int statvfs64 (const char *path, struct statvfs64 *buf);

Description fstatvfs() returns information on the file system to which the file identified by fildes
belongs. buf is a pointer to a structure that is described below. The information on the file
system is entered in this structure during the system call.

fildes identifies an open file descriptor that is the result of a successful open(), creat(),
dup(), fcntl() or pipe() system call. The type of the file system containing the file
assigned to fildes is known to the operating system. Read, write or execute permissions for
the specified file are not needed.

There is no difference in functionality between fstatvfs() / statvfs() and
fstatvfs64() / statvfs64() except that fstatvfs64() and statvfs64() both return
the file status in statvfs64 structure.

The statvfs structure pointed to by buf contains the following components:

u1ong_t f_bsize; /* Preferred block size of the file system */
u1ong_t f_frsize; /* Basic block size of the file system
 (if supported) */
fsblkcnt_t f_blocks; /* Total number of blocks on the file system
 in units of f_frsize */
fsblkcnt_t f_bfree; /* Total number of free blocks */
fsblkcnt_t f_bavail; /* Number of available free blocks for a
 non-system administrator */
fsfilcnt_t f_files; /* Total number of files (inodes) */
fsfilcnt_t f_ffree; /* Total number of free nodes */
fsfilcnt_t f_favail; /* Number of inodes for a
 non-system administrator */
ulong_t f_fsid; /* File system ID (currently dev) */
char f_basetype[FSTYPSZ]; /* Type name of destination file system,
 null-terminated */
ulong_t f_flag; /* Bit mask of the options */
ulong_t f_namemax; /* Maximum length of the file names */
char f_fstr[32]; /* File-system-specific string */
ulong_t f_filler[16]; /* Reserved for future extensions */

fstatvfs, statvfs Functions and variables in alphabetical order

428 U23711-J-Z125-5-76

The statvfs64 structure differs from the statvfs structure by the following components:

fsblkcnt64_t f_blocks
fsblkcnt64_t f_bfree
fsblkcnt64_t f_bavail
fsfilcnt64_t f_files
fsfilcnt64_t f_ffree
fsfilcnt64_t f_favail

f_basetype contains a null-terminated type name of the file system (FST name) above the
mounted destination (e.g. s5 mounted above rfs results in s5).

The following values can be returned in the f_flag component:

ST_RDONLY 0x01 /* Write-protected file system */
ST_NOSUID 0x02 /* setuid/setgid semantics are not supported */
ST_NOTRUNC 0x04 /* Does not truncate file name longer than NAME_MAX*/

statvfs() works in the same way as fstatvfs(), except that the file is addressed via
the pathname referenced by path. Search authorization is required for every directory in the
pathname.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors fstatvfs() and statvfs() will fail if:

EIO An I/O error occurs during reading of the file system.

EINTR A signal was received during execution of the function.

fstatvfs() will fail if:

EBADF fildes is not an open file descriptor.

EOVERFLOW One of the values returned cannot be represented correctly in the structure
pointed to by buf, .

Functions and variables in alphabetical order fstatvfs, statvfs

U23711-J-Z125-5-76 429

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

statvfs() will fail if:

EACCES No search authorization exists for a component of the path prefix.

ELOOP Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
The pathname to which path points is longer than {PATH_MAX}, or the
length of a component of the pathname exceeds {NAME_MAX}.

ENOENT A component of the pathname does not exist, or path points to an empty
string.

ENOTDIR A component of the path prefix of path is not a directory.

statvfs() will fail if:

ENAMETOOLONG
The resolving of symbolic links in the pathname leads to an interim result
whose length exceeds {PATH_MAX}.

Notes Not all elements of the statvfs structure are used in all file systems.

See also chmod(), chown(), creat(), dup(), exec, link(), mknod(), pipe(), read(), time(),
unlink(), utime(), write(), sys/statvfs.h.

fsync Functions and variables in alphabetical order

430 U23711-J-Z125-5-76

fsync - synchronize changes to file

Syntax #include <unistd.h>

int fsync(int fildes);

Description fsync() causes all the modified data and attributes of fildes that are still in the buffer to be
written to the physical storage medium.

Return val. 0 if successful

-1 if an error occurs; errno is set to indicate the error.

Errors fsync() will fail if:

EBADF fildes is not a valid file descriptor.

EINTR A signal was caught during the fsync() system call.

EINVAL fildes refers to a file on which this operation is not possible.

An attempt was made to access a BS2000 file.

EIO An I/O error occurred while reading from or writing to the file system.

Notes fsync() should be used by programs which require modifications to a file to be completed
before continuing; for example, a program which contains a simple transaction facility might
use it to ensure that all modifications to a file or files caused by a transaction are recorded.

fsync() is executed only for POSIX files.

See also unistd.h.

Functions and variables in alphabetical order ftell

U23711-J-Z125-5-76 431

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

ftell - get current value of file position indicator for stream

Name ftell, ftell64, ftello, ftello64

Syntax #include <stdio.h>

long int ftell(FILE *stream);
long long ftell64(FILE *stream);
off_t ftello(FILE *stream);
off64_t ftello64(FILE *stream);

Description ftell() and ftello() obtain the current value of the file position indicator for the stream
pointed to by stream. This value can be used for positioning with fseek()/fseeko().

The ftello() function is the same as the modified ftell() function except that the offset
argument is of type off_t and that the EOVERFLOW error has changed.

There is no difference in functionality between ftell() and ftell64() except that
ftell64() uses the offset type long long.

ftello64() defined like ftello() except that ftello64() uses the offset type off64_t.

Return val. If successful, current value of the file position indicator
for the stream, i.e. the number of bytes that offsets the file position indicator
from the beginning of the file.

-1L if an error occurs; errno is set to indicate the error.

BS2000
For binary files, current value of the file position indicator
i.e. the number of bytes that offsets the file position indicator from the beginning of the file,
if successful.

For text files, absolute position
of the file position indicator if successful.

-1 if an error occurs; errno is set to ERANGE if the file position cannot be repre-
sented in 4 bytes.

ftell Functions and variables in alphabetical order

432 U23711-J-Z125-5-76

Errors ftell() and ftello() will fail if:

EBADF The file descriptor underlying stream is not open for writing or the stream´s
buffer needed to be flushed and the file is not open.

ESPIPE The file descriptor underlying stream is associated with a pipe or FIFO.

EOVERFLOW For ftell(): the resulting file offset is a value that cannot be represented
correctly in an object of type long .

EOVERFLOW For ftello(): the current file offset cannot be represented correctly in an
object of type off_t.

Notes The program environment determines whether ftell() / ftello() is executed for a
BS2000 or POSIX file.

BS2000
ftell() can be used on both binary files (SAM in binary mode, PAM, INCORE) as well as
text files (SAM in text mode, ISAM).

ftell() cannot be used for system files (SYSDTA, SYSLST, SYSOUT).

See also fopen(), fseek(), lseek(), stdio.h.

Functions and variables in alphabetical order ftime, ftime64

U23711-J-Z125-5-76 433

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

ftime, ftime64 - get date and time

Syntax #include <sys/timeb.h>

int ftime(struct timeb *tp);
int ftime64(struct timeb64 *tp);

Description ftime() enters in the structure pointed to by tp the exact time in milliseconds since January
1, 1970, 00:00:00. As of 19.1.2038 03:14:08 hrs UTC ftime() outputs the message
CCM0014 and ends the program.

The ftime64() function behaves like ftime() with the difference that it also returns cor-
rect results after 19.1.2038 03:14:07 hrs.

tp is a pointer to a structure that is defined in sys/timeb.h as follows.

struct timeb {
 time_t time; /* Share of seconds */
 unsigned short millitim; /* Share of milliseconds */
 short timezone; /* Not supported */
 short dstflag; /* Not supported */
};

or

struct timeb64 {
 time64_t time;
 unsigned short millitm;
 short timezone;
 short dstflag;
 short filler;
};

The timezone and dstflag values are always zero. In other words, ftime() cannot be
used to determine the local time zone and the setting for daylight saving time.

BS2000
ftime() returns, in a structure, the same time as time (current local time as the number
of seconds elapsed since January 1, 1970 00:00:00) and also includes milliseconds.

For portability reasons, additional options have been included in the structures timeb and
timeb64 . However, they are not supplied in the BS2000 environment. ❑

Return val. 0 always.

Notes Depending on the resolution of the system clock, as a rule the value in millitim is not
accurate to the last millisecond. Applications that depend on a particular level of precision
in millitim are therefore not portable.

ftime() cannot be used together with the external variable timezone in a source file.

ftime, ftime64 Functions and variables in alphabetical order

434 U23711-J-Z125-5-76

The variable _TIMEZONE_STRUCT must be set by means of a DEFINE at compilation.

BS2000

The memory space for the result structure must be supplied explicitly!

The type time_t is defined in sys/types.h.

From the following structure components, only the time and millitim components are
provided with values in the BS2000 environment. The other components are included in the
structure only for portability reasons:

See also ctime(), gettimeofday(), time(), sys/timeb.h.

time: Time in seconds since January 1, 1950 00:00:00

millitim: Specification in milliseconds (0 to 999) to increase the precision of time.

timezone: Local time zone, measured in minutes west of Greenwich (not supported).

dstflag: Flag for daylight saving time (not supported). ❑

Functions and variables in alphabetical order ftok

U23711-J-Z125-5-76 435

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

ftok - interprocess communication

Syntax #include <sys/ipc.h>

key_t ftok(const char *path, int id);

Description ftok() returns a key which is based on path and id and can be used in subsequent
msgget(), semget() and shmget() system calls. path must be the pathname of an
existing file which can be accessed by the process. id is a character which uniquely
identifies a project.
For all path pointers with which the same file is addressed, ftok() returns the same key if
it is called with the same ID id.
ftok() returns different keys if different IDs id are specified or if various files which are
located in the same file system at the same time are addressed via path. As a rule, ftok()
does not return the same key if it is called up again with the same path and id arguments
but the file thus identified was in the meantime deleted and then created again with the
same name.
Only the 8 least-significant bits of id are used. If these bits are zero, the behavior of ftok()
is undefined.

Return val. Key of type key_t if successful.

(key_t) -1 if an error occurs. errno is set to indicate the error.

Errors ftok() will fail if:

EACCES No search authorization exists for a component of the path prefix.

ELOOP Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
The pathname pointed to by path is longer than {PATH_MAX}, or the length
of a component of the pathname exceeds {NAME_MAX}; or
the resolving of symbolic links in the pathname leads to an interim result
whose length exceeds {PATH_MAX}.

ENOENT A component of the pathname does not exist, or path points to an empty
string.

ENOTDIR A component of the path prefix of path is not a directory.

Notes To achieve maximum portability, the ID should occupy the least-significant byte in id. The
remaining bytes should be set to 0.

See also msgget(), semget(), shmget(), sys/ipc.h.

ftruncate, truncate Functions and variables in alphabetical order

436 U23711-J-Z125-5-76

ftruncate, truncate - set file to specified length

Name ftruncate, ftruncate64, truncate, truncate64

Syntax #include <unistd.h>

int ftruncate (int fildes, off_t length);
int ftruncate64 (int fildes, off64_t length);
int truncate (const char *path, off_t length);
int truncate64 (const char *path, off64_t length);

Description ftruncate() sets the length of a normal file with the file descriptor fildes to length bytes.

truncate() differs from ftruncate() only in that the file is addressed via a pointer path
which references a pathname.

The effect of ftruncate() and truncate() on other types of file is undefined. If the file
was previously longer than length bytes, the bytes after the position length can no longer be
accessed. If the file was previously shorter, the bytes between the EOF mark before the call
and the EOF mark after the call are padded with zeros. With ftruncate() the file must be
opened for writing; with truncate() the effective user ID of the process must have write
permission for the file.

If the request would cause the file size to exceed the current limit defined for the process
for the maximum length of a file, the function is not executed and the system sends the
SIGXFSZ signal to the process.

These functions do not change the current position in the file. On successful execution, if
the file size was changed, these functions update the st_ctime and st_mtime fields of
the file. The S_ISUID and S_ISGID bits of the file mode may be deleted.

There is no difference in functionality between ftruncate()/ truncate() and
ftruncate64()/ truncate64() except that for ftruncate64() and truncate64()
the length is specified as offset type off64_t.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Functions and variables in alphabetical order ftruncate, truncate

U23711-J-Z125-5-76 437

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Errors ftruncate() and truncate() will fail if:

EINTR A signal was received during execution.

EINVAL The value of length is negative.

EFBIG or EINVAL
The value of length is greater than the maximum permissible file size.

EIO An I/O error occurred when reading from or writing to the file system.

ftruncate() will fail if:

EBADF or EINVAL
fildes is not a file descriptor that is opened for writing.

EINVAL fildes identifies a file that was opened for reading only.

truncate() will fail if:

EACCES No search authorization exists for a component of the path prefix or no write
authorization exists for the file addressed via path.

EISDIR The file addressed via path is a directory.

ELOOP Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
The length of a component of the pathname exceeds {NAME_MAX} bytes, or
the length of the pathname exceeds {PATH_MAX} bytes; or

ENOENT Either a component of the path prefix does not exist, or path references an
empty string.

ENOTDIR A component of the path prefix from path is not a directory.

EROFS The file addressed via path resides on a read-only file system.

truncate() will fail if:

ENAMETOOLONG
The resolving of symbolic links in the pathname leads to an interim result
whose length exceeds {PATH_MAX}.

See also open(), unistd.h.

ftrylockfile Functions and variables in alphabetical order

438 U23711-J-Z125-5-76

ftrylockfile - lock standard input/output

Syntax #include <stdio.h>

int ftrylockfile(FILE *file);

Description See flockfile().

Functions and variables in alphabetical order ftw

U23711-J-Z125-5-76 439

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

ftw - traverse (walk) file tree

Syntax #include <ftw.h>

int ftw(const char *path, int (*fn) (const char *, const struct stat *ptr, int flag), int ndirs);

Description ftw() recursively descends the directory hierarchy rooted in path. For each object in the
hierarchy, ftw() calls the function pointed to by fn, passing it a pointer to a null-terminated
character string containing the name of the object, a pointer to a stat structure (see also
sys/stat.h) containing information about the object, and an integer. The possible values
of the integer are defined in the ftw.h header. These are:

FTW_F for a file

FTW_D for a directory

FTW_DNR for a directory that cannot be read

FTW_NS for an object on which stat() could not successfully be executed

If the integer is FTW_DNR, descendants of that directory will not be processed. If the integer
is FTW_NS, the stat structure will contain undefined values. An example of an object that
would cause FTW_NS to be passed to the function pointed to by fn would be a file in a
directory with read but without execute (search) permission.

ftw() visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a non-
zero value, or some error is detected within ftw().

ndirs specifies the maximum number of directory streams and/or file descriptors or both
available for use by ftw() while traversing the tree. When ftw() returns, it closes any
directory streams and file descriptors it uses not counting any opened by the fn function of
the user.

Return val. 0 if successful, i.e. when the file tree is exhausted. ftw() returns the result of
the function pointed to by fn.

-1 if an error occurs; errno is set to indicate the error.

If the function pointed to by fn returns a non-zero value, ftw() stops its tree
traversal and returns whatever value was returned by the function pointed
to by fn. If ftw() detects an error, it returns -1 (see above).

If the function pointed to by fn detects a system error, errno can be set to
that error value.

ftw Functions and variables in alphabetical order

440 U23711-J-Z125-5-76

Errors ftw() will fail if:

EACCES Search permission is denied for any component of path or read permission
is denied for path.

Extension
EBADF An attempt was made to access a BS2000 file. ❑

ENAMETOOLONG

The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

ENOENT path points to the name of a file that does not exist or to an empty string.

ENOTDIR A component of path is not a directory.

Notes Since ftw() is recursive, it is possible for it to terminate with a memory error when applied
to very deep file structures.

ftw() uses malloc() to allocate dynamic storage during its operation. If ftw() is forcibly
terminated, such as by longjmp() or siglongjmp() being executed by the function
pointed to by fn or a signal-handling routine, ftw() will not have a chance to free that
storage, so it will remain permanently allocated. A safe way to handle interrupts is to store
the fact that an interrupt has occurred, and arrange to have the function pointed to by fn
return a non-zero value at its next invocation.

ftw() is executed only for POSIX files.

See also longjmp(), malloc(), siglongjmp(), stat(), ftw.h.

Functions and variables in alphabetical order futimesat

U23711-J-Z125-5-76 441

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

futimesat - setting file access and update times

Syntax #include <sys/time.h>

int futimesat(int fd, const char *path, const struct timeval times[2]);

Description The futimesat() function sets the access and update times of a file to the values
specified in times. The times of the file are changed to which the path parameter points
relative to the directory connected with the file descriptor fd. The function permits time
specifications which are accurate to the microsecond.

The times parameter is an array consisting of two structures of the type timeval. The access
time is set to the value of the first element, and the update time to the value of the second
element. The times in the timeval structure are specified in seconds and microseconds
since the epoch.

When times is the null pointer, the access and update times are set to the current time. If the
file descriptor was opened without O_SEARCH, the function checks whether a search is per-
mitted in the connected file descriptor with the authorizations applicable for the directory. If
the file descriptor was opened with O_SEARCH, the check is not performed.

A process may call futimesat() with the null pointer for times parameter only if it has one
of the following properties:
– owner of the file,
– write authorization for the file, or
– special rights.

When the value AT_FDCWD is transferred to the futimesat() function for the fd parameter,
the current directory is used.

Return val. 0 in the case of success,

-1 in the case of an error errno is set to display the error.

Errors futimesat() fails when the following applies:

EACCES A component of the path may not be searched, or times is a null pointer and
the effective user number is not that of the system administrator and not that
of the owner of the file, and write access is rejected
or
the fd parameter was not opened with O_SEARCH, and the authorizations ap-
plicable for the directory do not permit the directory to be searched.

EBADF The path parameter does not specify an absolute pathname, and the fd pa-
rameter does not have the value AT_FDCWD, nor does it contain a valid file
descriptor opened for reading or searching.

futimesat Functions and variables in alphabetical order

442 U23711-J-Z125-5-76

Extension
EFAULT times is not equal to zero and points beyond the process's assigned address

space, or path points beyond the process's assigned address space.

EINTR A signal was intercepted during the system call utime() .

EINVAL An attempt was made to access a BS2000 file or the value of the flag pa-
rameter is invalid.

ELOOP During the compilation of path too many symbolic links occurred to ❑.

ENAMETOOLONG
The length of path exceeds {PATH_MAX} or the length of a component of
path exceeds {NAME_MAX}.

ENOENT The specified file does not exist.

ENOTDIR A component of the path is not a directory, or the path parameter does not
specify an absolute pathname, and the file descriptor fd is not connected
with a directory.

EPERM The effective user number if not that of the system administrator and not
that of the owner of the file, and times is not equal to zero.

EROFS The file system containing the file has been mounted write-protected.

See also sys/time.h.

Functions and variables in alphabetical order funlockfile / fwide

U23711-J-Z125-5-76 443

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

funlockfile - unlock standard input/output

Syntax #include <stdio.h>

void funlockfile(FILE *file);

Description See flockfile().

fwide - specify file orientation

Syntax #include <stdio.h>
#include <wchar.h>

int fwide(FILE *dz, int mode);

Description fwide() specifies the orientation of the file with the file pointer dz as long as this file does
not have an orientation. If the orientation has already been specified, for example by a
previous I/O operation, then fwide() does not change this orientation.

fwide() attempts to set the orientation depending on the mode argument in the following
manner:

mode > 0 FIle is wide character-oriented.

mode < 0 FIle is byte-oriented.

mode = 0 The file orientation is not changed.

Returnwert > 0 if dz is wide character-oriented after calling fwide().

< 0 if dz is byte-oriented after calling fwide().

0 if dz does not have an orientation.

Notes In this version of the C runtime system only 1 byte characters are supported as wide
characters.

fwprintf, ... Functions and variables in alphabetical order

444 U23711-J-Z125-5-76

fwprintf, swprintf, vfwprintf, vswprintf, vwprintf, wprintf - output
formatted wide characters

Syntax #include <stdio.h>
#include <wchar.h>

int fwprintf(FILE *dz, const wchar_t *format [, arglist]);

#include <stdarg.h>
#include <wchar.h>

int vwprintf(const wchar_t *format, va_list arg);

#include <wchar.h>

int wprintf(const wchar_t *format [, arglist]);
int swprintf(wchar_t *s, size_t n, const wchar_t *format [, arglist]);

#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vfwprintf(FILE *dz, const wchar_t *format, va_list arg);
int vswprintf(wchar_t *s, size_t n, const wchar_t *format, va_list arg);

Description These functions are used to format output.

fwprintf() prepares the arguments in arglist according to the specifications in the wide
character string format and writes them to the file pointed to by the file pointer dz.
fwprintf() returns when the end of format is reached.

vwprintf() is the same as the fwprintf() function with dz = stdout where the
argument list is replaced by an argument of type va_list that must have been initialized
by the va_start macro (possibly followed by va_arg calls). The function does not call the
va_end macro.

wprintf() is the same as the fwprintf() function with dz = stdout.

swprintf() writes formatted output to the wide character string s. Otherwise swprintf()
is the same as the fwprintf() function. A maximum of n wide characters are written,
including the closing null character that is automatically appended when n > 0.

vfwprintf() is the same as the fwprintf() function where the argument list is replaced
by an argument of type va_list that must have been initialized by the va_start macro
(possibly followed by va_arg calls). The function does not call the va_end macro.

vswprintf() is the same as the swprintf() function where the argument list is replaced
by an argument of type va_list that must have been initialized by the va_start macro
(possibly followed by va_arg calls). The function does not call the va_end macro.

Functions and variables in alphabetical order fwprintf, ...

U23711-J-Z125-5-76 445

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

format is a wide character string composed of zero or more directives and wide characters:

– conversion specifications beginning with the percent character (%), each of which is
associated with zero or more arguments in arglist. The results are undefined if fewer
arguments are passed in arglist than are defined in format. If the number of arguments
defined in format is greater than the arguments passed in arglist, the excess arguments
are ignored.
The arguments assigned to a directive are converted, formatted and written to the
output stream according to the directive.

– Characters of type wchar_t (but not %) that can be copied directly to the output as is.

– white-space characters (see section “White-space characters” on page 117).

Conversion specifications

Each conversion specification is introduced by the % character, after which the following
appear in sequence:

– Zero or more flags, which modify the meaning of the conversion specification.

– An optional non-zero decimal number or an asterisk (*) that specifies a minimum field
width. If the converted value has fewer bytes than the field width, it will be padded to
the field width with spaces on the left (or padded on the right if the left-adjustment flag
"-" was specified).

– An optional precision that gives the minimum number of digits to appear for the d, i,
o, u, x and X conversions; the number of digits to appear after the radix character for
the e, E and f conversions; the maximum number of significant digits for the g and G
conversions or the maximum number of bytes to be printed from a string in s conversion.
The precision takes the form of a period (.), followed by a decimal digit string or an
asterisk (*), where a null digit string (only “.” specified) is treated as 0.

– An optional size modifier h, l, ll or L preceding a conversion character.
l before c means that an argument of type wint_t is to be converted;
l before s: means that an argument of type wchar_t (pointer to a wide character) is
to be converted;
h before d, i, o, u, x or X: conversion of an argument of type short int or unsigned
short int (the argument is extended according to the integer extension and its value
is converted to a short int or unsigned short int before output);
h before n: conversion of an argument of type pointer to short int;

l before d, i, o, u, x or X: conversion of an argument of type long int or unsigned
long int;
l before n: conversion of an argument of type pointer to long int;
ll before d, i, o, u, x or X: conversion of an argument of type long long int or

fwprintf, ... Functions and variables in alphabetical order

446 U23711-J-Z125-5-76

unsigned long long int;
ll before n: conversion of an argument of type pointer to long long int;
L before e, E, f, g or G: conversion of an argument of type long double.

If an h, l (ell) or L appears before any other conversion character, the behavior is
undefined.

– A conversion character of type wchar_t that specifies the type of conversion to be
applied (see the list below).

A field width, or precision, or both, may be indicated by an asterisk (*). In this case the
values are obtained from the argument list instead of from the format specification. The
(integer) values specifying the field width, precision or both must appear in that order before
the argument, if any, to be converted.
A negative field width is taken as a "-" flag followed by a positive field width. A negative
precision is taken as if the precision were omitted.

Conversion specifications have the following structure:

1. Start of a conversion specification

2. Flags

3. Field width

4. Precision

5. Characters that define the actual conversion

 % [-][+][Ë][#][0] [] [.]

_________ __________________ _______ _______ _____________________________

 1. 2. 3. 4. 5.

n

*

m

*

[{h|l|ll}] {d|i|o|u|x|X}
[{h|l|ll}] n
[L] {e|E|f|g|G}
[l] {c|s|p}
{D|O|U|C|S}
%

Functions and variables in alphabetical order fwprintf, ...

U23711-J-Z125-5-76 447

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Flags

- The result of the conversion will be left-justified within the array.

+ The result of a signed conversion will always begin with a sign (+ or -).

If the first wide character of a signed conversion is not a sign or the result
of a signed conversion is not a wide character, a space will be prefixed to
the result. This means that if the space and + flags both appear, the space
flag will be ignored.

This flag specifies that the value is to be converted to an alternative form.
This flag has no effect for c, d, i, s and u. For o conversion, it increases
the precision to force the first digit of the result to be 0. For x or X conver-
sions, a non-zero result will have the string "0x" (or "0X") prefixed to it. For
e, E, f, g or G conversions, the result will always contain a wide radix
character, even if no digits follow the radix character. Without this flag, a
radix character appears in the result of these conversions only if a digit
follows it. For g and G conversions, trailing zeros will not be removed from
the result as they normally are. For other conversions, the behavior is
undefined.

0 For d, i, o, u, x, X, e, E, f, g and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the array width; no space
padding is performed. If the 0 and - flags both appear, the 0 flag will be
ignored.
For d, i, o, u, x and X conversions, if a precision is specified, the 0 flag will
be ignored. For other conversions, the behavior is undefined.

Conversion characters

d, i The int argument is converted to a signed decimal in the style [-]dddd. The
precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it will be expanded with
leading zeros. The default precision is 1.
The result of converting 0 with an explicit precision of 0 is no characters.

o, u The unsigned int argument is converted to unsigned octal format (o) or
in an unsigned decimal number (u) in the style dddd. The precision specifies
the minimum number of digits to appear; if the value being converted can
be represented in fewer digits, it will be expanded with leading zeros. The
default precision is 1.
The result of converting 0 with an explicit precision of 0 is no characters.

x, X The unsigned int argument is converted to unsigned hexadecimal format
in the style dddd; the letters abcdef (for x) or ABCDEF (for X) are used in
addition to the digits. The precision specifies the minimum number of digits

fwprintf, ... Functions and variables in alphabetical order

448 U23711-J-Z125-5-76

to appear; if the value being converted can be represented in fewer digits,
it will be expanded with leading zeros. The default precision is 1.
The result of converting 0 with an explicit precision of 0 is no characters.

f The double argument is converted to decimal notation in the style
[-]ddd.ddd, where the number of digits after the radix character is equal to
the precision specification.
If the precision is missing, it is taken as 6.
If the precision is explicitly 0 and no # flag is present, no radix character
appears.
If a radix character appears, at least one digit appears before it. The value
is rounded to the appropriate number of digits.

e, E The double argument is converted in the style [-]d.ddde+-dd, where there
is one digit before the radix character (which is non-zero if the argument is
non-zero) and the number of digits after it is equal to the precision; if the
precision is missing, it is taken as 6.
If the precision is 0 and no # flag is present, no radix character appears. The
value is rounded to the appropriate number of digits.
The E conversion character will produce a number with E instead of e intro-
ducing the exponent. The exponent always contains at least two digits. If the
value is 0, the exponent is 0.

g, G The double argument is converted in the style f or e (or in the style E in the
case of a G conversion character), with the precision specifying the number
of significant digits. If an explicit precision is 0, it is taken as 1.
The style used depends on the value converted; style e (or E) will be used
only if the exponent resulting from such a conversion is less than -4 or
greater than or equal to the precision. Trailing zeros are removed from the
fractional portion of the result; a radix character appears only if it is followed
by a digit.

c If the character “1” precedes it, the argument is converted from type wint_t
to type wchar_t, the resulting character is written.
If not preceded by a l, the argument is converted from type int to a wide
character, just like for the btowc() function call. The resulting character is
written.

s If not preceded by a l, the argument is of type pointer to a char array. Char-
acters in the array are converted in the same manner as when the
mbrtowc() function is called. The conversion status is written to an object
of type mbstate_t and initialized to 0 before the first multi-byte character is
converted. Data is written up to the terminating null character (and only to
there).

Functions and variables in alphabetical order fwprintf, ...

U23711-J-Z125-5-76 449

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

If preceded by a l, the argument is of type pointer to a wchar_t array. Wide
characters from the array are written up to the terminating null character
(and only to there).

If a precision m is specified, no more than m bytes are written. If the preci-
sion is not specified or is greater than the size of the array, the array must
contain a wide character null byte (as a terminator).

S Same as ls.

C Same as lc.

p The argument must be a pointer to void. The value is output as an 8-digit
hexadecimal number.

n The argument must be a pointer to int into which is written the number of
bytes written to the output so far by this call to one of the fwprintf
functions. No argument is converted.

% The wide character % is output; no argument is converted. The complete
conversion specification must be of the form %%.

If the character that follows % is not a valid conversion character, the result of the conversion
is undefined.

If an argument is a UNION or a pointer to a UNION, the result of the conversion is
undefined.
The same applies when an argument is an array or a pointer to an array, except for the
following three cases:
The argument is an array of type char and uses %s,
The argument is an array of type wchar_t and uses %ls or
The argument is a pointer and uses %p.

A non-existent array width or a missing array width will never result in the truncation of an
array. If the result of a conversion is wider than the array width, the array is simply extended
to accept the output.

Return val. Number of wide characters output
if successful.

Negative value if an error occurs.

fwprintf, ... Functions and variables in alphabetical order

450 U23711-J-Z125-5-76

Notes In this version of the C runtime system, only 1-byte characters are supported as wide
characters.

BS2000

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
split=no was entered for fopen(), records which are longer than the maximum record
length are truncated to the maximum record length when they are written. By default or with
the specification split=yes, these records are split into multiple records. If a record has
precisely the maximum record length, a record of the length zero is written after it. ❑

See also btowc(), fprintf(), mbrtowc(), printf()

Functions and variables in alphabetical order fwrite

U23711-J-Z125-5-76 451

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fwrite - output binary data

Syntax #include <stdio.h>

size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);

Description fwrite() writes, from the array pointed to by ptr, up to nitems elements whose size is
specified by size, to the stream pointed to by stream. The file-position indicator for the stream
(if defined) is advanced by the number of bytes successfully written. If an error occurs, the
resulting value of the file-position indicator for the stream is indeterminate.

The structure components st_ctime and st_mtime of the file are marked for changing
between successful execution of fwrite() and the next successful completion of a call to
fflush() or fclose() for the same data stream or a call to exit() or abort() (see
sys/stat.h).

BS2000
Record I/O

– fwrite() writes a record to the file.

– For sequential files (SAM, PAM), the record is written at the current file position .

– For index-sequential files (ISAM), the record is written at the position corresponding to
the key value in the record.

– Number of characters to be output:

n is taken to be the total number of characters to be output, i.e.
n = size * nitems

– If n is greater than the maximum record length, only one record with the maximum
record length is written. The remaining data is lost.

– If n is less than the minimum record length no record is written. The minimum record
length is defined only for ISAM files and means that n must cover at least the area
of the key in the record.

– If n is less than the record length when a record is written to a file with fixed record
length, the record is padded with binary zeros at the end.

– When an existing record is updated in a sequential file (SAM, PAM), n must be equal
to the length of the record to be updated. Otherwise, an error occurs. In PAM files,
the record length is the length of a logical block.

– When an existing record is updated in an index-sequential file (ISAM), n need not
be equal to the length of the record to be updated. In other words, a record can be
shortened or lengthened.

fwrite Functions and variables in alphabetical order

452 U23711-J-Z125-5-76

– In ISAM files for which key duplication is permitted, it is not possible to perform a direct
update on a record. Whenever a record with an existing key is written, a new record is
written. The old record must be explicitly deleted.

– fwrite() produces the same return value as for stream I/O, i.e. the number of
elements written in their entirety. For record I/O, it is best to use only an element length
of 1, since the return value will then correspond to the length of the record written
(without any record length field).
In the case of a fixed record length, however, any required padding with binary zeros is
not taken into account in the return value. ❑

Return val. Number of elements successfully written
if successful. This number may be less than nitems if a write error is
encountered.

0 if size or nitems is 0. The contents of the array and the state of the stream
remain unchanged.

if a write error occurs. The error indicator for the stream is set, and errno
is set to indicate the error.

Errors See fputc().

Notes To ensure that size specifies the correct number of bytes for a data element, the sizeof()
function should be used for the size of the data unit to which ptr points.

On output to files with stream I/O, data is not written immediately to the external file, but is
stored in an internal C buffer (see section “Buffering streams” on page 110).

On output to text files, control characters for white space (\n, \t, etc.) are converted to their
appropriate effect in accordance with the type of text file (see section “White-space
characters” on page 117).

BS2000

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
split=no was entered for fopen(), records which are longer than the maximum record
length are truncated to the maximum record length when they are written. By default or with
the specification split=yes, these records are split into multiple records. If a record has
precisely the maximum record length, a record of the length zero is written after it. ❑

The program environment determines whether fwrite() is executed for a BS2000 or
POSIX file.

See also ferror(), fopen(), printf(), putc(), puts(), write(), stdio.h, sys/stat.h.

Functions and variables in alphabetical order fwscanf, swscanf, wscanf

U23711-J-Z125-5-76 453

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

fwscanf, swscanf, wscanf - formatted read

Syntax #include <stdio.h>
#include <wchar.h>

int fwscanf(FILE *dz, const wchar_t *format [, arglist]);

#include <wchar.h>

int swscanf(const wchar_t *s, const wchar_t *format [, arglist]);
int wscanf(const wchar_t *format [, arglist]);

Description These functions are used for formatted input.
They read the input, convert it according to the specifications in the format string format and
store the result in the area that was specified in the optional argument list arglist.

fwscanf() reads formatted input from the file pointed to by dz.

swscanf() reads formatted input from the wide character string s. swscanf() is the same
as the fwscanf() function otherwise. The end of the wide character string is EOF.

wscanf() reads formatted input from the standard input stdin. wscanf() is the same as
the fwscanf() function with dz = stdin.

format is a character string, beginning and ending in its initial shift state, if defined. It is
composed of zero or more directives and may include the following three types of
characters:

– characters of type char (but no white-space characters or %), which are simply copied
to the output stream (1: 1).

– white-space characters, starting with a backslash (\) (see iswspace()).

– conversion specifications beginning with the percent character (%), each of which is
associated with zero or more arguments in arglist. The results are undefined if fewer
arguments are passed in arglist than are defined in format. If the number of arguments
defined in format is greater than the arguments passed in arglist, the excess arguments
are ignored.

The wscanf() functions read the input characters without converting them at first and
stores them in a variable. If the input character does not match the character specified in
format, input processing is aborted and the function returns. If the conversion is aborted
because a wide character does not fit, then this character is left unread in the input stream.

fwscanf, swscanf, wscanf Functions and variables in alphabetical order

454 U23711-J-Z125-5-76

White-space characters

The control string format may include zero or more characters producing white space.
These characters have no control function.

White-space characters in the input are treated as delimiters between input fields; they are
not converted (see %c, %n and %[] for exceptions). Leading white space in the input is
ignored.

Conversion specifications

All forms of fwscanf() allow for the insertion of a language-dependent radix character in
the input string. The radix character is defined in the program’s locale (category
LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined,
the radix character defaults to a period (.).

Each conversion specification is introduced by the % character, after which the following
appear in sequence:

– An optional assignment-suppressing character *.

– An optional non-zero decimal integer that specifies the maximum field width.

– An optional size modifier h, l, or L indicating the size of the receiving object:
l before the conversion characters c, s and [: The corresponding argument is a pointer
to wchar_t .
h or l before d, i and n : The corresponding argument is a pointer to short int (h)
or long int (l).
h or l before o, u and x : The corresponding argument is a pointer to unsigned short
int (h) or unsigned long int (l).
ll before d, i and n : The corresponding argument is a pointer to long long int.
ll before o, u and x : The corresponding argument is a pointer to unsigned long long
int.
l or L before e, f and g : The corresponding argument is a pointer to double (l) or
long double (L).
If h, l or L is before any other conversion character, the behavior is undefined.

– A conversion character that specifies the type of conversion to be applied.

fwscanf() executes each directive of the format in turn. If a directive fails, as detailed
below, the function returns. Failures are described as input failures (due to the unavailability
of input bytes) or matching failures (due to inappropriate input).

A directive composed of one or more white-space characters is executed by reading input
until no more valid wide characters can be read (EOF), or up to the first byte which is not a
white-space character (which remains unread).

Functions and variables in alphabetical order fwscanf, swscanf, wscanf

U23711-J-Z125-5-76 455

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

A directive that is an ordinary character is executed as follows. The next wide character is
read from the input and compared with the wide character that comprises the directive; if
the comparison shows that they are not equivalent, the directive fails, and the differing and
subsequent wide characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each conversion character. A conversion specification is executed in
the following steps:

Input white-space characters are skipped, unless the conversion specification includes a [
or one of the conversion characters c or n.

An item is read from the input, unless the conversion specification includes an n conversion
character. An input item is defined as the longest sequence of input bytes (up to any
specified maximum field width) which is an initial subsequence of a matching sequence.
The first byte, if any, after the input item remains unread.
If the length of the input item is 0, the execution of the conversion specification fails; this
condition is a matching failure, unless an error prevented input, in which case it is an input
failure.

Except in the case of a % conversion character, the input item (or, in the case of a %n
conversion specification, the count of input bytes) is converted to a type appropriate to the
conversion character. If the input item is not a matching sequence, the execution of the
conversion specification fails; this condition is a matching failure.
Unless assignment suppression was indicated by a *, the result of the conversion is placed
in the object pointed to by the first argument following the format argument that has not
already received a conversion result. If this object does not have an appropriate type, or if
the result of the conversion cannot be represented in the space provided, the behavior is
undefined.

Conversion specifications have the following format:

 { % } []
m

*

[{h|l|ll}]{d|i|o|n|u|x|X}
[l] {c|s}
[l|L] {e|E|f|g|G}
{p}
[l] {[...]|[^...]}
%

fwscanf, swscanf, wscanf Functions and variables in alphabetical order

456 U23711-J-Z125-5-76

Conversion characters

d Matches an optionally signed decimal integer, whose format is the same as
expected for wcstol() with the value 10 for base. The corresponding
argument must be of type pointer to int.

i Matches an optionally signed decimal integer, whose format is the same as
expected for wcstol() with the value 0 for base. The corresponding
argument must be of type pointer to int.

o Matches an optionally signed octal integer, whose format is the same as
expected for wcstoul() with the value 8 for base. The corresponding
argument must be of type pointer to unsigned integer.

u Matches an optionally signed decimal integer, whose format is the same as
expected for wcstoul() with the value 10 for base. The corresponding
argument must be of type pointer to unsigned integer.

x, X Matches an optionally signed hexadecimal integer, whose format is the
same as expected for wcstoul() with the value 16 for base. The corre-
sponding argument must be of type pointer to unsigned integer.

e, E, f, g, G These conversion characters match an optionally signed floating-point
number, whose format is the same as expected for wcstod(). The corre-
sponding argument must be of type pointer to float.

s Matches a sequence of wide characters that are not white-space
characters.
The corresponding argument must be a pointer to the initial byte of a
wchar_t array that is large enough to accept the sequence and a termi-
nating null character byte, which will be added automatically.

s Reads a sequence of wide characters that are not white space characters.
If l is not specified, the sequence is converted to a sequence of wide
character codes in the same manner as wcrtomb(). The conversion status
is written to an object of type mbstate_t and initialized to 0 before the first
wide character is converted. Data is written up to the terminating null
character. The corresponding argument must be a pointer to the first byte
of an array of type char, which must be large enough to accept the
sequence and a terminating null byte, which will be added automatically.
If l is specified, the corresponding argument must be a pointer to the initial
byte of a wchar_t array that is large enough to accept the sequence and a
terminating null character byte, which will be added automatically.

[Matches a non-empty sequence of bytes from a set of expected bytes (the
scanset).
If l is not specified, the sequence is converted to a sequence of wide
character codes in the same manner as wcrtomb(). The conversion status

Functions and variables in alphabetical order fwscanf, swscanf, wscanf

U23711-J-Z125-5-76 457

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

is written to an object of type mbstate_t and initialized to 0 before the first
wide character is converted. Data is written up to the terminating null
character. The corresponding argument must be a pointer to the first byte
of an array of type char, which must be large enough to accept the
sequence and a terminating null byte, which will be added automatically.
If l is specified, the corresponding argument must be a pointer to the initial
byte of a wchar_t array that is large enough to accept the sequence and a
terminating null character byte, which will be added automatically.
The conversion specification includes all subsequent wide characters in the
format string up to and including the matching right square bracket (]). The
wide characters between the square brackets (the scanlist) comprise the
scanset, unless the first wide characters after the left square bracket is a
circumflex (^), in which case the scanset contains all wide characters that
do not appear in the scanlist between the circumflex and the right square
bracket.
As a special case, if the conversion specification begins with [] or [^], the
right square bracket is included in the scanlist, and the next right square
bracket is the matching right square bracket that ends the conversion speci-
fication. If a - is in the scanlist and is not the first character nor the last
character after [or [^ , the behavior is undefined.

c Matches a sequence of wide characters of the number specified by the field
width (or 1 if no field width is present).
If l is not specified, the sequence is converted to a sequence of wide
character codes in the same manner as wcrtomb(). The conversion status
is written to an object of type mbstate_t and initialized to 0 before the first
wide character is converted. Data is written up to the terminating null
character. The corresponding argument must be a pointer to the first byte
of an array of type char, which must be large enough to accept the
sequence. No terminating null byte is added.
If l is specified, the corresponding argument must be a pointer to the initial
byte of a wchar_t array that is large enough to accept the sequence. No
terminating null byte is added.

The normal skip over white-space characters is suppressed in this case;
%1s should be used to read the next byte that is not a white-space character.

p Matches a set of sequences, which must be the same as the set of
sequences that is produced by the %p conversion of the fwprintf
functions. The corresponding argument must be a pointer to a pointer to
void. The interpretation of the input item is implementation-dependent; if
the input item is not a value that was converted earlier during the same
program execution, the behavior of the %p conversion is undefined. This is
specially true for pointer outputs generated by other systems.

fwscanf, swscanf, wscanf Functions and variables in alphabetical order

458 U23711-J-Z125-5-76

n No input is processed. The corresponding argument must be a pointer to an
int into which the number of input wide characters read thus far by this call
are to be entered. Execution of a %n conversion specification does not
increment the assignment count returned at the completion of execution of
the function.

% Matches a single %; no conversion or assignment occurs. The complete
conversion specification must be %%.

If a conversion specification is invalid, the behavior of fwscanf() is undefined.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any wide characters matching the current conversion specification have been read
(other than leading white-space characters, where permitted), execution of the current
conversion specification terminates with an input failure. Otherwise, unless execution of the
current conversion specification is terminated with a matching failure, execution of the
following conversion specification (if different from %n) is terminated with an input failure.

Reaching the end of the string in a swscanf() call is equivalent to encountering the end-
of-file indicator during an fwscanf() call.

Any trailing white space (including newline characters) is left unread unless matched by a
conversion specification.

The success of literal matches and suppressed assignments cannot be directly determined,
except via the %n conversion specification.

Return val. Number of input elements read in and successfully assigned if no input error occurred
before the first assignment.
The number is null when a format error occurs in the first input element.

EOF if an input error occurred
before the first assignment.

Notes In this version of the C runtime system, only 1-byte characters are supported as wide
characters.

BS2000

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
split=no was entered for fopen(), records of maximum length are not concatenated with
the subsequent record when they are read. By default or with the specification split=yes,
when a record with maximum record length is read, it is assumed that the following record
is the continuation of this record and the records are concatenated ❑.

See also scanf(), sscanf(), fscanf(), wcstod(), wcstol(), wcstoul(), wcrtomb()

Functions and variables in alphabetical order gamma

U23711-J-Z125-5-76 459

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

g... gamma - compute logarithm of gamma function

Syntax #include <math.h>

double gamma(double x);

extern int signgam;

Description gamma() computes the mathematical gamma function for a given floating-point number x:

The sign of this value is stored as +1 or -1 in the internal C variable signgam. The signgam
variable may not be defined by the user.

gamma() is not reentrant.

Return val. gamma(x) if successful.

HUGE_VAL if the correct value results in an overflow.
errno is set to indicate the error.

HUGE_VAL if x is a non-positive integer.
errno is set to indicate the error.

Errors gamma() will fail if:

ERANGE Overflow; the return value is too large.

EDOM x is a non-positive integer.

See also lgamma(), math.h.

e t–

0

∞

 tx 1– dt

garbcoll / gcvt Functions and variables in alphabetical order

460 U23711-J-Z125-5-76

garbcoll - release memory space to system (BS2000)

Syntax #include <stdlib.h>

void garbcoll(void);

Description The calloc(), malloc(), realloc() and free() functions comprise the C-specific
memory management package. This package essentially consists of an internal free
memory management facility.
Memory released by free() is not returned to the system (RELM-SVC), but is acquired by
this free memory management facility.
All the memory request functions (calloc(), malloc(), realloc()) will first attempt to
allocate the required memory via the free memory management facility and only then from
the operating system (REQM-SVC).

If no memory is available even from the system, the memory administered by the free
memory management facility is returned (page-wise if possible) to the system (garbage
collection).

This garbage collection mechanism is effective in the address space ≤ 2 GB and can also
be called explicitly with the garbcoll() function.

Notes All memory areas which were previously released with free() and which can be combined
to form free pages are returned to the system by garbcoll().

See also calloc(), malloc(), realloc(), free().

gcvt - convert floating-point number to string

Syntax #include <stdlib.h>

char *gcvt(double value, int ndigit, char *buf);

Description See ecvt().

Functions and variables in alphabetical order getc

U23711-J-Z125-5-76 461

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getc - get byte from stream

Syntax #include <stdio.h>

int getc(FILE *stream);

Description The getc() function is equivalent to fgetc(), except that if it is implemented as a macro
it may evaluate stream more than once, so the argument should never be an expression
with side effects.

getc() is defined both as a function and as a macro.

getc(stdin) is identical to getchar().

The getc_unlocked() function is functionally equivalent to getc() except that it is not
implemented as a thread-safe function. For this reason, it can only be safely used in a multi-
threaded program if the thread that calls it owns the corresponding (FILE *) object. This is
the case after successfully calling the flockfile() or ftrylockfile() functions.

Return val. See fgetc().

Errors See fgetc().

Notes If the integer value returned by getc() is stored in a variable of type char and then
compared against the integer constant EOF, the comparison may not succeed, because
sign-extension of a variable of type char on widening to integer is machine dependent.
Portable applications should therefore ensure that the return value of getc() is always
stored in a variable of type int.

If a comparison such as:

while((c = fgetc(dz)) != EOF)

is used in a program, the variable c must always be declared as an int value.
Otherwise, if c were defined as a char, the EOF condition would never be satisfied for the
following reason: -1 is converted to the char value 0xFF (i.e. +255); however, EOF is
defined as -1.

Since getc() may be implemented as a macro, it may treat a stream argument with side
effects incorrectly. In particular, getc(*f++) may not work as expected. The use of getc()
is therefore not recommended in such situations; fgetc() should be used instead.

If fgetc() is reading from the standard input stdin in the POSIX environment, and EOF is
the end criterion for reading, the EOF condition can be achieved by the following actions:

Ê on a block-special terminal: by entering the key sequence [@][@][d]

Ê on a character-special terminal: by entering [CTRL]+[D]

getc Functions and variables in alphabetical order

462 U23711-J-Z125-5-76

BS2000
If fgetc() is reading from the standard input stdin in the BS2000 environment, and EOF
is the end criterion for reading, the EOF condition can be achieved by means of the following
actions at the terminal:

1. by pressing the [K2] key.

2. by entering the system commands EOF and RESUME-PROGRAM.

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
split=no was entered for fopen(), records of maximum length are not concatenated with
the subsequent record when they are read. By default or with the specification split=yes,
when a record with maximum record length is read, it is assumed that the following record
is the continuation of this record and the records are concatenated ❑.

Notes The program environment determines whether getc() is executed for a BS2000 or POSIX
file.

See also fgetc(), putc(), putchar_unlocked(), stdio.h.

Functions and variables in alphabetical order getc_unlocked, putc_unlocked, ...

U23711-J-Z125-5-76 463

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked
- standard I/O with explicit lock by the client

Syntax #include <stdio.h>

int getc_unlocked(FILE *stream);

int getchar_unlocked(void);

int putc_unlocked(int c, FILE *stream);

int putchar_unlocked(int c);

Description The functions getc_unlocked(), getchar_unlocked(), putc_unlocked() and
putchar_unlocked() are functionally equivalent to the original versions getc(),
getchar(), putc() and putchar() except that it is not implemented as a thread-safe
function.

For this reason, it can only be safely used in a multithread program if the thread that calls
it owns the corresponding (FILE *) object. This is the case after successfully calling the
flockfile() or ftrylockfile() functions.

Return val. See getc(), getchar() (both in getc()), putc() and putchar() (both in putc()).

See also getc(), putc(), flockfile(), pthread_intro(), stdio().

getchar Functions and variables in alphabetical order

464 U23711-J-Z125-5-76

getchar - get byte from standard input stream

Syntax #include <stdio.h>

int getchar(void);

Description The function call getchar(void) is equivalent to getc(stdin), i.e. getchar() reads
1 byte from the standard input stream.

Return val. See fgetc().

Errors See fgetc().

Notes If the integer value returned by getchar() is stored into a variable of type char and then
compared against the integer constant EOF, the comparison may never succeed, because
sign-extension of a variable of type char on widening to integer is machine-dependent.
Portable applications should therefore ensure that the return value of getchar() is always
stored in a variable of type int.

If a comparison such as:
while((c = fgetc(dz)) != EOF)
is used in a program, the variable c must always be declared as an int value.
Otherwise, if c were defined as a char, the EOF condition would never be satisfied for the
following reason: -1 is converted to the char value 0xFF (i.e. +255); however, EOF is
defined as -1.

If fgetc() is reading from the standard input stdin in the POSIX environment, and EOF is
the end criterion for reading, the EOF condition can be achieved by the following actions:

Ê on a block-special terminal: by entering the key sequence [@][@][d]

Ê on a character-special terminal: by entering [CTRL]+[D]

BS2000
If fgetc() is reading from the standard input stdin in the BS2000 environment, and EOF
is the end criterion for reading, the EOF condition can be achieved by means of the following
actions at the terminal:

1. by pressing the [K2] key.

2. by entering the system commands EOF and RESUME-PROGRAM. ❑

The program environment determines whether getchar() is executed for a BS2000 or
POSIX file.

See also fgetc(), getc(), stdio.h.

Functions and variables in alphabetical order getchar_unlocked

U23711-J-Z125-5-76 465

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getchar_unlocked - standard input with explicit lock by the client

Syntax #include <stdio.h>

int getchar_unlocked(void);

Description See getc_unlocked().

getcontext, setcontext Functions and variables in alphabetical order

466 U23711-J-Z125-5-76

getcontext, setcontext - display or modify user context

Syntax #include <ucontext.h>

int getcontext(ucontext_t *ucp);

int setcontext(const ucontext_t *ucp);

Description In conjunction with the functions defined in makecontext(), these functions serve to
implement the change of context at user level between several control flows of a process.

getcontext() initializes the structure pointed to by ucp as the current user context of the
calling process. The ucontext_t structure pointed to by ucp defines the user context and
contains the contents of the machine register, the signal mask and the stack of the calling
process.

setcontext() restores the user context pointed to by ucp. A successful setcontext()
call does not return; the program execution continues at the position pointed to by the
context structure of setcontext(). The context structure should be generated by a
preceding getcontext() call or have been supplied by the system as the third argument
to a signal handling routine (see sigaction()).

– If the context structure was generated with getcontext(), the program execution is
resumed as if the corresponding call of getcontext() had returned.

– If the context structure was generated with makecontext(), the program execution is
resumed with the function specified by makecontext(). If this function returns, the
process is continued, like after a setcontext() call, with the ucp argument that
was also the argument for makecontext().

– If the ucp argument is passed to a signal handling routine, the program execution is
continued with the next instruction after the one interrupted by the signal.

If the uc_link component from the ucontext_t structure pointed to by ucp has the
value 0, this is a basic process and the process terminates when this context is terminated.
The use of a ucp argument that was generated differently from the description above leads
to unpredictable results.

If threads are used, then the function affects the process or a thread in the following
manner:

– getcontext() gets the current user context of the calling thread.
– setcontext() sets the current user context of the calling thread.

Functions and variables in alphabetical order getcontext, setcontext

U23711-J-Z125-5-76 467

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Return val. getcontext():

0 if successful.
-1 if an error occurs.

setcontext():

does not return if successful.
-1 if an error occurs.

Notes If a signal handling routine is executed, the user context is stored and a new context
generated. If the process leaves the signal handling routine via longjmp(), the original
context will not be restored and subsequent getcontext() calls are no longer reliable.
Signal handling routines should therefore use siglongjmp() or setcontext().

Portable applications should neither access nor modify the uc_mcontext component of the
ucontext_t structure. A portable application cannot assume that
getcontext() stores static data of the process in ucp, not even errno.
Care must be taken when manipulating contexts.

See also bsd_signal(), makecontext(), setjmp(), sigaction(), sigaltstack(),
sigprocmask(), sigsetjmp(), ucontext.h.

getcwd Functions and variables in alphabetical order

468 U23711-J-Z125-5-76

getcwd - get pathname of current working directory

Syntax #include <unistd.h>

char *getcwd(char *buf, int size);

Description getcwd() returns a pointer to the current directory pathname. The value of size must be at
least one greater than the length of the pathname to be returned.

If buf is not null, the pathname will be stored in the space pointed to by buf.

If buf is a null pointer, getcwd() will obtain size bytes of space by calling malloc(). In this
case, the pointer returned by getcwd() may be used as the argument in a subsequent call
to free().

The current directory will correspond to the home directory so long as no call to chdir() is
made. The home directory can be checked with getpwuid() or getpwnam(). Both
functions return a structure that includes a pointer to the original working directory.

When a C program is started, the current directory is set to the home directory, as defined
in the file SYSSRPM. If the environment variable HOME is defined for a C program, the home
directory is set to that value.

If the directory entered in the file SYSSRPM does not exist, a slash (/) is returned.

BS2000
If an SDF-P variable SYSPOSIX.HOME exists, the HOME variable of the C programming
environment is initialized with the value of the SYSPOSIX.HOME variable. ❑

The current directory can be changed at any time by calling chdir(). The effect of a call
to chdir() extends for the duration of the calling program. The home directory is not
changed by the call.

Return val. 0 if size is not large enough or an error occurs in a subordinate function. errno
is set to indicate the error.

Functions and variables in alphabetical order getcwd

U23711-J-Z125-5-76 469

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Errors getcwd() will fail if:

EACCES The name of a parent directory could not be obtained because the directory
could not be read.

EINVAL size is equal to 0.

ENOMEM Insufficient storage space is available.

ERANGE size is less than 0, or is greater than 0, but smaller than the length of the
pathname + 1.

Notes getcwd() is executed only for POSIX files

See also malloc(), unistd.h.

getdate Functions and variables in alphabetical order

470 U23711-J-Z125-5-76

getdate - convert time and date to user format

Syntax #include <time.h>

struct tm *getdate (const char *string);

extern int getdate_err;

Description getdate() converts user-definable date and/or time specifications from string into a tm-
structure. The structure declaration can be found in the time.h file (see also ctime()).

User-defined templates are used for dismantling and interpreting the input string. These
templates are text files, which the user creates; they are specified via the DATEMSK
environment variable. Each line of the template represents an acceptable date and/or time
specification, with some of the field descriptors which are also used by the date command
being used here. The first line in the template that matches the input specification is used
for interpretation and conversion into the internal time format. If the operation is successful,
the getdate() function returns a pointer to a structure of type tm; otherwise, NULL is
returned and the global variable getdate_err is set.

The following field descriptors are supported:

%% same as %
%a abbreviated weekday name
%A weekday name in full
%b abbreviated month name
%B month name in full
%c local date and time representation
%d day of the month (01 - 31; the leading 0 is optional)
%e same as %d
%D date as %m/%d/%y
%h abbreviated month name
%H hour (00 - 23)
%I hour (01 - 12)
%m month number (01 - 12)
%M minute (00 - 59)
%n same as \n
%p local equivalent of AM or PM
%r time as %I:%M:%S %p
%R time as %H:%M
%S second (00-61). Leap seconds are allowed, but the effects of using

algorithms are unpredictable.
%t insert tab
%T time as %H:%M:%S
%w weekday number (0 - 6; Sunday = 0)
%x local date representation

Functions and variables in alphabetical order getdate

U23711-J-Z125-5-76 471

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

%X local time representation
%y year in current century (00 - 99)
%Y year as ccyy (e.g. 1997)
%Z name of time zone, or no character if no time zone exists. If the time zone

under %Z is not the one expected by getdate(), an input error occurs.
getdate() computes an appropriate time zone based on the information
passed to the function (e.g. hour, day and month).

When comparing the template and the input specification, getdate() does not distinguish
between upper and lowercase.

The month and weekday names can consist of any combination of lowercase and
uppercase letters. The user can define that the specification of the input time or the input
date is language-dependent by setting the values LC_TIME and LC_CTYPE in
setlocale().

The descriptors for which digits must be specified have at most two positions. Leading
zeros are allowed but they can also be omitted. Blanks in the template or in string are
ignored.

The field descriptors %c, %x and %X are rejected if they contain invalid field descriptors.

The following rules apply to the conversion of input specifications into the internal format:

– If %Z is specified, getdate() sets the elements of the tm structure to the current time
of the specified time zone. Otherwise the formatted time is initialized with the current
local time as if localtime() had been executed.

– If only the weekday is given, the current day is assumed if the specified weekday is
identical to the current day. If the given day is before the current one, the weekday is
taken from the next week.

– If only the month is specified, the current month is assumed if the specified month is the
same as the current month. If the specified month is earlier than the current month, the
next year is assumed if no year is otherwise specified. (The first day of the month is
assumed if no day is specified.)

– If the hour, minute and second are not specified, the current hour, minute and second
are taken.

– If no date is specified, the current day is assumed if the specified hour is later than the
current one. If the specified hour is earlier than the current one, the next day is
assumed.

getdate() uses the external variable or the getdate_err macro to return the error
weight.

getdate Functions and variables in alphabetical order

472 U23711-J-Z125-5-76

Return val. Pointer to a tm structure
if successful.

Null pointer if an error occurs. getdate_err is set to indicate the error.

Errors getdate() will fail if any of the following errors occur. The error weights are returned in
getdate_err. The contents of errno are not significant here.

1 The DATEMSK environment variable is undefined or zero.

2 The template file cannot be opened for reading.

3 The file status could not be read.

4 The template file is not a regular file.

5 An error occurred during reading of the template file.

6 malloc() could not be executed successfully, as there was not enough
memory available.

7 There is no line in the template file which matches the input.

8 The input format is invalid, e.g. February 31, or a time was specified which
cannot be represented in a time_t type; time_t contains the time in
seconds since 00:00:00 UTC, which corresponds to January 1, 1970.

Notes The following getdate() calls modify the contents of getdate_err.

The declaration of the external variable getdate_err is contained in the header file
time.h. getdate_err should therefore not be explicitly declared in the program; time.h
should be inserted instead.

Dates before 1970 and after 2037 are invalid.

Functions and variables in alphabetical order getdate

U23711-J-Z125-5-76 473

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Example 1 Possible contents of a template:

%m
%A %B %d, %Y, %H:%M:%S
%A
%B
%m/%d/%y %I %p
%d,%m,%Y %H:%M
at %A the %dst of %B in %Y
run job at %I %p,%B %dnd
%A den %d. %B %Y %H.%M Uhr

Example 2 Some examples of valid input specifications for the temple in example 1:

getdate("10/1/87 4 PM");
getdate("Friday");
getdate("Friday September 19 1987, 10:30:30");
getdate("24,9,1986 10:30");
getdate("at monday the 1st of december in 1986");
getdate("run job at 3 PM, december 2nd");

If the LC_TIME environment variable is set or if LANG is set to german, the following speci-
fication is valid:

getdate("Freitag den 10. Oktober 1986 10.30 Uhr") ;

Beispiel 3 Local time and date specifications are also supported. Example 3 shows how these can be
defined in templates.

Call Line in template file

getdate("11/27/86"); %m/%d/%y

getdate("27.11.86"); %d.%m.%y

getdate("86-11-27"); %y-%m-%d

getdate("Friday 12:00:00"); %A %H:%M:%S

getdate Functions and variables in alphabetical order

474 U23711-J-Z125-5-76

Example 4 The following examples clarify the above rules. It is assumed that the current date and time
are Monday September 22, 1986, 12:19:47 EDT and that the LANG and LC_TIME environ-
ment variables are not set.

See also ctime(), localtime(), setlocale(), strftime(), times(), time.h.

Input Line in template file Date

Mon %a Mon Sep 22 12:19:48 EDT 1986

Sun %a Sun Sep 28 12:19:49 EDT 1986

Fri %a Fri Sep 26 12:19:49 EDT 1986

September %B Mon Sep 1:19:49 EDT 1986

January %B Thu Jan 1:19:49 EST 1987

December %B Mon Dec 1:19:49 EST 1986

Sep Mon %b %a Mon Sep 1:19:50 EDT 1986

Jan Fri %b %a Fri Jan 2 12:19:50 EST 1987

Dec Mon %b %a Mon Dec 1:19:50 EST 1986

Jan Wed 198 %b %a %Y Wed Jan 4 12:19:51 EST 1989

Fri 9 %a %H Fri Sep 26 09:00:00 EDT 1986

Feb 10:30 %b %H:%S Sun Feb 1 10:00:30 EST 1987

10:30 %H:%M Tue Sep 23 10:30:00 EDT 1986

13:30 %H:%M Mon Sep 22 13:30:00 EDT 1986

Functions and variables in alphabetical order getdents

U23711-J-Z125-5-76 475

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getdents - convert directory entries

Name getdents, getdents64

Syntax #include <sys/dirent.h>

int getdents(int fildes, struct dirent *buf, size_t nbyte);
int getdents64(int fildes, struct dirent64 *buf, size_t nbyte);

Description fildes is a file descriptor that is returned by a open() or dup() system call.
getdents() attempts to read nbyte bytes from the directly associated with fildes and to
place them in the buffer pointed to by buf as directory entries independent of the file system.
Since the directory entries independent of the file system have different lengths, the actual
number of bytes returned is much smaller than nbyte in most cases.

You look in dirent() (Reference Manual for System Administrators) to calculate the
number of bytes.
The file system independent directory entries are specified using the dirent structure.
You will find a description in dirent().
For devices that can position, getdents() starts at the location in the file that is specified
by the read/write pointer assigned to fildes. After returning from getdents(), the read/write
pointer is incremented so that it points to the next directory entry. This system call was
developed to implement the readdir() function (You will find a description in
directory()) and should therefore not be used for any other purpose.

There is no difference in functionality between getdents() and getdents64() except
that for getdents64() buf points to a dirent64 structure.

Errors The following descriptions of the error codes depend on the function. You will find a gener-
ally applicable description in intro_prm2() and in errno().

getdents() and getdents64() are unsuccessful if one or more of the following arise:

EBADF fildes is not a open and valid file descriptor for reading.

EFAULT buf points beyond the assigned address space.

EINVAL nbyte is not large enough for a directory entry.

ENOENT The current read/write pointer for the directory does not point to a valid en-
try.

ENOLINK fildes points to a remote computer and the connection to this computer is
not active anymore.

ENOTDIR fildes is not a directory.

EIO An I/O error occurred while accessing the file system.

getdents Functions and variables in alphabetical order

476 U23711-J-Z125-5-76

Return val. After successful completion, a non-negative integer that specifies the actual number of
bytes read is returned. A return value of 0 means that the end of the
directory was reached. If the system call failed, then -1 is returned and
errno is set to indicate the error.

See also directory(), dirent().

Functions and variables in alphabetical order getdtablesize / getegid

U23711-J-Z125-5-76 477

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getdtablesize - get size of descriptor table

Syntax #include <unistd.h>

int getdtablesize(void);

Description getdtablesize() is equivalent to the getrlimit() function if RLIMIT_NOFILE is
specified.

getdtablesize() is not thread-safe.

Return val. Current limit for the number of simultaneously open file descriptors per process
if successful.

-1 if an error occurs.

Notes There is no direct relationship between the value returned by getdtablesize() and the
{OPEN_MAX} constant defined in limits.h.

See also close(), getrlimit(), open(), select(), setrlimit(), limits.h, unistd.h.

getegid - get effective group ID of process

Syntax #include <unistd.h>

Optional
#include <sys/types.h> ❑

gid_t getegid(void);

Description getegid() returns the effective group ID of the calling process.

Return val. Effective group ID of the calling process.
The function is always successful.

See also getgid(), setgid(), sys/types.h, unistd.h. manual "POSIX Basics" [1].

getenv Functions and variables in alphabetical order

478 U23711-J-Z125-5-76

getenv - get value of environment variable

Syntax #include <stdlib.h>

char *getenv(const char *name);

Description getenv() searches the current environment of the process, i.e. the string array pointed to
by environ, for a string of the form "name=value" and returns a pointer to the string
containing the value for the specified variable name.

getenv() is not thread-safe.

Return val. Value of name
if a corresponding string exists.

Null pointer if no corresponding string exists,
or if the application is called with BS2000 functionality (see section “Scope
of the supported C library” on page 49).

Notes The string "name=value" cannot be altered, but may be overwritten by subsequent putenv
calls. Other library functions do not overwrite the string.

BS2000
The string array to which environ points can be initialized with values from the SDF-P
variable SYSPOSIX.name on starting the program (see environ and the section
“Environment variables” on page 104). ❑

See also exec, environ, putenv(), setenv(), unsetenv(), stdlib.h, section “Scope of the
supported C library” on page 49, and section “Environment variables” on page 104.

Functions and variables in alphabetical order geteuid / getgid / getgrent

U23711-J-Z125-5-76 479

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

geteuid - get effective user ID of process

Syntax #include <unistd.h>

Optional
#include <sys/types.h> ❑

uid_t geteuid(void);

Description geteuid() returns the effective user ID of the calling process.

Return val. Effective user ID of the calling process
The function is always successful.

See also getuid(), setuid(), sys/types.h, unistd.h, manual "POSIX Basics" [1].

getgid - get real group ID of process

Syntax #include <unistd.h>

Optional
#include <sys/types.h> ❑

gid_t getgid(void);

Description getgid() returns the real group ID of the calling process.

Return val. Real group ID of the calling process.
The function is always successful.

Siehe auch getegid(), getuid(), setgid(), sys/types.h, unistd.h, td.h, manual "POSIX Basics"
[1].

getgrent - get group file entry

Syntax #include <grp.h>

struct group *getgrent (void);

Description See endgrent().

getgrgid Functions and variables in alphabetical order

480 U23711-J-Z125-5-76

getgrgid - get group file entry for group ID

Syntax #include <grp.h>

Optional
#include <sys/types.h> ❑

struct group *getgrgid(gid_t gid);

Description getgrgid() searches the group file for an entry containing a gr_gid component that
matches gid (see grp.h and the manual "POSIX Basics" [1]).

getgrgid() is not thread-safe. Use the reentrant function getgrgid_r() when needed.

Return val. Pointer to an object of the structure group
if an entry with a gr_gid component matching gid is found.

Null pointer if an error occurs or no entry with a gr_gid component matching gid is found.
errno is set to indicate the error.

Errors getgrgid() fails if:

EIO An I/O error occurred.

EINTR A signal was caught during the execution of getgrgid().

EMFILE Too many file descriptors are currently open in the calling process.

ENFILE The file table of the system is currently full.

Notes The return value may point to a static area which may be overwritten by a subsequent call
to getgrgid() or getgrnam().

Since getgrgid() calls functions for file processing that may fail, errno should be set to o
before the call to getgrgid(). If errno is set to some other value on return from the
function, an error has occurred.

See also getgrgid_r(), getgrnam(), grp.h, limits.h, sys/types.h, and the manual "POSIX
Basics" [1].

Functions and variables in alphabetical order getgrgid_r

U23711-J-Z125-5-76 481

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getgrgid_r - get group file entry for group ID (thread-safe)

Syntax #include <grp.h>

int getgrgid_r(gid_t gid, struct group *grp, char *buffer,
size_t bufsize, struct group **result);

Description The getgrgid_r() updates the group structure pointed to by grp and stores a pointer to
this structure at the address pointed to by result. The structure contains the entry from the
group file whose gr_gid component matches the gid. The structure found in the group file
is copied to the memory area of length bufsize passed in the buffer parameter.
The maximum size required for this buffer can be determined via the sysconf() parameter
{_SC_GETGR_R_SIZE_MAX}. When an error occurs or when the desired entry could not be
found, a null pointer is returned in the data area pointed to by result.

Return val. 0 if successful.

Error number if an error occurs. errno is set to indicate the error.

Errors The getgrgid_r() function fails if:

ERANGE The memory area pointed to by buffer of length bufsize is not large enough
to hold the data pointed to by the resulting group structure.

Notes Applications in which there are checks for error situations must set errno to 0 before calling
getgrgid_r(). If errno is set to a value not equal to null when it returns, then an error
occurred.

See also getgrgid(), getgrnam(), grp.h, limits.h, sys/types.h.

getgrnam Functions and variables in alphabetical order

482 U23711-J-Z125-5-76

getgrnam - get group file entry for group name

Syntax #include <grp.h>

Optional
#include <sys/types.h> ❑

struct group *getgrnam(const char *name);

Description The getgrnam() function searches the group file for an entry containing a gr_name
component that matches name (see also grp.h and the manual "POSIX Basics" [1]).

getgrnam() is not thread-safe. Use the reentrant function getgrnam_r() when needed.

Return val. Pointer to an object of the structure group (see grp.h)
if successful.

Null pointer if an error occurs or no entry with a gr_name component matching name is
found. errno is set to indicate the error.

Errors The getgrnam() function fails if:

EIO An I/O error occurred.

EINTR A signal was caught during the execution of getgrnam().

EMFILE Too many file descriptors are currently open in the calling process.

ENFILE The system file table is currently full.

Notes The return value may point to a static area which may be overwritten by a subsequent call
to getgrgid() or getgrnam().

To check for error situations, errno should be set to 0 before calling getgrnam().

See also getgrnam_r(), getgrgid(), grp.h, limits.h, sys/types.h,

Functions and variables in alphabetical order getgrnam_r

U23711-J-Z125-5-76 483

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getgrnam_r - get group file entry for group name (thread-safe)

Syntax #include <sys/types.h>

#include <grp.h>

int getgrnam_r(const char * name, struct group * grp, char * buffer,
size_t bufsize, struct group ** result);

Description The getgrnam_r() updates the group structure pointed to by grp and stores a pointer to
this structure at the address pointed to by result. The structure contains the entry from the
group file whose gr_name component matches the name.

The structure found in the group file is copied to the memory area of length bufsize passed
in the buffer parameter. The maximum size required for this buffer can be determined via
the sysconf() parameter {_SC_GETGR_R_SIZE_MAX}.

When an error occurs or when the desired entry could not be found, a null pointer is
returned in the data area pointed to by result.

Return val. 0 if successful.

Error number if an error occurs. errno is set to indicate the error.

Errors The getgrnam_r() function fails if:

ERANGE The memory area pointed to by buffer of length bufsize is not large enough
to hold the data pointed to by the resulting group structure.

See also getgrnam(), getgrgid_r(), grp.h, limits.h, sys/types.h,
manual "POSIX Basics" [1].

getgroups Functions and variables in alphabetical order

484 U23711-J-Z125-5-76

getgroups - get supplementary group IDs

Syntax #include <unistd.h>

Optional
#include <sys/types.h> ❑

int getgroups(int gidsetsize, gid_t grouplist[]);

Description getgroups() determines the current supplementary group IDs of the calling process and
stores the result in the array grouplist.

gidsetsize specifies the number of elements in the array grouplist and must be large enough
to accept the complete list. This list cannot be greater than {NGROUPS_MAX}. The actual
number of supplementary group IDs stored in the array is returned. The values of array
entries with indices greater than or equal to the value returned are undefined.

If gidsetsize is 0, getgroups() returns the number of supplementary group IDs associated
with the calling process without modifying the array pointed to by grouplist.

Return val. Number of supplementary group IDs
if successful. The return value is non-zero or less than the number of
group IDs for the calling process.

-1 if unsuccessful. errno is set to indicate the error.

Errors getgroups() fails if:

EINVAL The value of gidsetsize is non-zero or less than gr_number for the calling
process.

Notes The effective group ID of the calling process is included in grouplist.

See also getegid(), getuid(), setgid(), sys/types.h, unistd.h, and the manual "POSIX
Basics" [1].

Functions and variables in alphabetical order gethostid / gethostname

U23711-J-Z125-5-76 485

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

gethostid - get ID of current host

Syntax #include <unistd.h>

long gethostid(void);

Description gethostid() outputs a 32-bit ID for the current host. The ID is formed from the CPU serial
number (3 bytes) and the VM ID (1 byte), so that several VMs in a system can be distin-
guished from each other.

Return val. Unique ID for the current host
if successful.

See also random(), unistd.h.

gethostname - get name of current host

Syntax #include <unistd.h>

int gethostname(char *name, size_t namelen);

Description gethostname() determines the default name of the current host. The namelen parameter
specifies the size of the file pointed to by name. A trailing zero is appended to the name,
provided namelen is long enough.
If the host name exceeds the value namelen, the name is truncated and it is not guaranteed
that a trailing zero will be appended.

Return val. 0 if successful.

-1 otherwise.

See also gethostid(), unistd.h.

getitimer, setitimer Functions and variables in alphabetical order

486 U23711-J-Z125-5-76

getitimer, setitimer - read or set

Syntax #include <sys/time.h>

int getitimer(int which, struct itimerval *value);

int setitimer(int which, const struct itimerval *value, struct itimerval *ovalue);

Description The system offers each process three interval timers that are declared in the sys/time.h
file. The getitimer() call stores the current value of the which timer in the structure to
which value points. The setitimer() call sets the value of which to the value in the
structure to which value points; if ovalue is not zero, the previous value of the timer is stored
in the structure to which ovalue points.

The setting of a timer is defined via the itimerval structure (see sys/time.h), which
contains at least the following components:

struct timeval it_interval; /* Clock interval */
struct timeval it_value; /* Current value */

If it_value is not zero, the time until the next expiry of the timer is specified. If
it_interval is not zero, a value is specified to which it_value is set if the timer expires.
If it_value is set to zero, the timer is deactivated, regardless of the value of
it_interval. Setting it_interval to zero deactivates the timer after its next expiry
(provided it_value is not zero).

If time values are smaller than the resolution of the system clock, they are rounded to the
system clock’s resolution.

Each process has three timers at its disposal which can be addressed via the following
values for which:

ITIMER_REAL decrements in real time. The SIGALRM signal is sent when this timer
expires.

ITIMER_VIRTUAL decrements in the virtual process time. This timer only runs when the
process is executed. The SIGVTALRM signal is sent when this timer
expires.

ITIMER_PROF decrements in virtual process time, regardless of ITIMER_VIRTUAL.
Whenever the ITIMER_PROF timer expires, the SIGPROF signal is sent.
Because this signal interrupts system calls of the process, the programs
which use this timer must be prepared to repeat the interrupted system
calls.

setitimer() and sleep() or usleep() should not be used together, as this may result
in undesirable interactions - in particular, a sleep() call signs on its own signal handling
routine, so the signal handling routine of the user is not activated.

Functions and variables in alphabetical order getitimer, setitimer

U23711-J-Z125-5-76 487

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors setitimer() will fail if:

EINVAL The values to which the value argument points are invalid. (For the micro-
seconds a non-negative integer lower than 1,000,000 must be specified, for
the seconds a non-negative integer.)

getitimer() and setitimer() will fail if:

EINVAL The which parameter was not recognized

Notes The field with the microseconds must not contain a value greater than or equal to one
second.

See also alarm(), sleep(), ualarm(), usleep(), signal.h, sys/time.h.

getlogin Functions and variables in alphabetical order

488 U23711-J-Z125-5-76

getlogin - get login name

Syntax #include <unistd.h>

Optional
#include <stdlib.h> ❑

char *getlogin(void);

Description getlogin() returns a pointer to a string with the user name of the calling process (which
corresponds to the login name of the calling process). If getlogin() returns a non-null
pointer, then that pointer points to the name that the user logged in under, even if there are
several login names with the same user ID.

getlogin() is not thread-safe. Use the reentrant function getlogin_r() when needed.

Return val. Pointer to the login name
The function is always successful.

Null pointer if unsuccessful, e.g. if getlogin() is called from within a process for which
the login name cannot be found. errno is set to indicate the error.

Notes The return value usually points to static data whose content is overwritten by each call.
Portable applications should therefore save the login name elsewhere if it is required after
a subsequent call to the same function.

Three names associated with the current process can be determined:
getpwuid(geteuid()) returns the name associated with the effective user ID of the
process; getlogin() returns the name associated with the current login activity; and
getpwuid(getuid()) returns the name associated with the real user ID of the process.

See also getlogin_r(), getpwnam(), getpwuid(), geteuid(), getuid(), limits.h,
unistd.h.

Functions and variables in alphabetical order getlogin_r

U23711-J-Z125-5-76 489

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getlogin_r - get login name (thread-safe)

Syntax #include <unistd.h>

int getlogin_r(char * name, size_t namesize);

Description The getlogin() function writes the user name of the calling process (which corresponds
to the login name of the calling process) in the data area pointed to by name. The data area
is namesize characters long and should be large enough for the name and the terminating
null character. The maximum size of the login name is {LOGIN_NAME_MAX}.

If getlogin() is successful, then name points to the name that the user logged in under,
even if there are several login names with the same user ID.

Return val. 0 if successful.

Error number otherwise.

Errors The getlogin_r() function fails if:

ERANGE The value of namesize is smaller than the length of the login name found in-
cluding the terminating null character.

See also getlogin() , getpwnam_r(), getpwuid_r().

getmsg Functions and variables in alphabetical order

490 U23711-J-Z125-5-76

getmsg - get message from STREAMS file

Syntax #include <stropts.h>

int getmsg(int fildes, struct strbuf *ctlptr, struct strbuf *dataptr, int *flagsp);

int getpmsg(int fildes, struct strbuf *ctlptr, struct strbuf *dataptr, int *bandp, int *flagsp);

Description getmsg() fetches the contents of a message located in the read queue of the stream head
of a STREAMS file, and writes them to a buffer specified by the user. The message contains
either a data section, a control section or both. The data and control sections of the
message are written to separate buffers, as described below. The semantics of the sections
are defined via the STREAMS module which generated the message.

The getpmsg() function does the same as getmsg(), but it performs a more precise check
on the priority of the messages received. Unless otherwise indicated, all information
concerning getmsg() also applies to getpmsg().

fildes specifies a file descriptor that points to an open stream.

ctlptr and dataptr each reference an strbuf structure which has the following elements:

int maxlen; /* Maximum buffer size */
int len; /* Length of the data */
char *buf; /* Pointer to the buffer */

buf points to a buffer to which the data or control information is to be written. maxlen
denotes the highest possible number of bytes that this buffer can hold. On return, len
contains the number of bytes of the data or control information that was actually received,
or the value is 0 if the control or data section has a null length, or the value is -1 if a message
does not contain any data or control information.

If getmsg() is called, flagsp should reference an integer which indicates the type of
message the user can receive. This is described later.

ctlptr is used to receive the control section of the message and dataptr is used to receive
the data section. If ctlptr (or dataptr) is zero or the maxlen field is -1, the control (or data)
section of the message is not processed and remains in the read queue of the stream head.
If ctlptr (or dataptr) is not zero and there is no corresponding control (or data) section of the
message in the read queue of the stream head, len is set to -1. If the maxlen field is set to
0 and there is a control (or data) section with a null length, this null-length section is
removed from the read queue and len is set to 0. If the maxlen field is set to 0 and there
are more than 0 bytes of control (or data) information, this information remains in the read
queue and len is set to 0. If the maxlen field in ctlptr or dataptr is smaller than the control
or data section of the message, maxlen bytes will be fetched. In this case the remainder of
the message is left in the read queue of the stream head and a non-zero return value is
supplied (see return value).

Functions and variables in alphabetical order getmsg

U23711-J-Z125-5-76 491

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

By default getmsg() processes the first message available in the read queue. If the integer
to which flagsp points is set to RS_HIPRI, the process only receives high-priority messages.
In this case, getmsg() only processes the next message if it has high priority. If the integer
referenced by flagsp is 0, getmsg() places each available message in the read queue of
the stream head. In this case on return, the integer referred to by flagsp is set to RS_HIPRI
if a high-priority message was encountered, otherwise it is set to 0.

The options for getpmsg() are different from those for getmsg(). flagsp references a bit
mask with the following options, which are mutually exclusive: MSG_HIPRI, MSG_BAND and
MSG_ANY. Like getmsg(), getpmsg() processes the next message to become available in
the read queue of the stream head. The user in turn can choose to receive only high-priority
messages by setting the integer referenced by flagsp to MSG_HIPRI and the integer refer-
enced by bandp to 0. In this case, getpmsg() only processes the next message if it is high-
priority. Similarly, the user can call up a message from a special priority range by setting the
integer referenced by flagsp to MSG_BAND, and the integer referenced by bandp to the
desired priority range. In this case, getpmsg() only processes the next message if it is in
a priority range greater than or equal to the integer referenced by bandp, or if it is a high-
priority message. If a user only wants to call the first message in the queue, the integer
referenced by flagsp should be set to MSG_ANY, and the integer referenced by bandp should
be set to 0. If the message received was a high-priority one, on return the integer referenced
by flagsp is set to MSG_HIPRI, and the integer referenced by bandp is set to 0. With all other
messages the integer referenced by flagsp is set to MSG_BAND, and the integer referenced
by bandp is set to the priority range of the message.

If O_NDELAY and O_NONBLOCK were not set, getmsg() and getpmsg() block until there
is a message of the type specified by flagsp in the read queue of the stream head. If
O_NDELAY or O_NONBLOCK was set and there is no message of the specified type in the read
queue, getmsg() and getpmsg() are unsuccessful and errno is set to EAGAIN.

If a stream from which the messages are to be fetched experiences a loss of connection,
getmsg() and getpmsg() continue to work normally, as described above, until the read
queue is empty. Afterwards, 0 is returned in the len fields of ctlptr and dataptr.

If a message is not fully read with a getmsg() or getpmsg() call, the rest of the message
can be fetched with subsequent getmsg() or getpmsg() calls. If, however, a high-priority
message arrives in the stream head of the read queue, the next getmsg() or getpmsg()
call gives priority to this message before processing the rest of the partial message received
previously.

getmsg Functions and variables in alphabetical order

492 U23711-J-Z125-5-76

Return val. Non-negative value
if successful.

0 if a complete message was read successfully.

MORECTL indicates that there is more control information waiting to be retrieved.

MOREDATA indicates that there is more data waiting to be retrieved.

bit-wise OR of MORECTL and MOREDATA
indicates that both types still remain.

Errors getmsg() or getpmsg() will fail if:

EAGAIN O_NDELAY or O_NONBLOCK is set and there are no messages available.

EBADF fildes is not a valid file descriptor open for reading.

EBADMSG The message in the queue that is to be read is not valid for getmsg() or
getpmsg().

EINTR A signal was caught during the getmsg() or getpmsg() system call.

EINVAL An invalid value was specified in flagsp, or the stream or multiplexer
specified by fildes is directly or indirectly linked downstream with a multi-
plexer.

ENOSTR No stream is assigned to the fildes file descriptor.

getmsg() and getpmsg() can also fail if a STREAMS error message was received at the
stream head before the getmsg() call. In this case, errno displays the STREAMS error
which occurred before.

See also poll(), putmsg(), read(), write(), stropts.h.

Functions and variables in alphabetical order getopt, optarg, ...

U23711-J-Z125-5-76 493

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getopt, optarg, optind, opterr, optopt - command option parsing

Syntax #include <unistd.h>

int getopt(int argc, char * const argv[], const char *optstring);
extern char *optarg;
extern int optind, opterr, optopt;

Description getopt() is a command-line parser that can be used by applications that follow the specific
conventions for entering commands defined in the XPG4 specification (see the manual
"POSIX Commands" [2]. The remaining guidelines are the responsibility of the application.

getopt() returns the next option character from argv that matches a character in optstring.

argc is the argument count, as passed to main() (see exec).

argv points to an array of argc+1 elements containing argc pointers to character strings,
followed by a null pointer. It contains the option names, as passed to main() (see exec).

optstring is a string of recognized option characters (see the manual "POSIX Commands"
[2]). If a character in this string is followed by a colon (:), the option is expected to take one
or more arguments.

optind is an external variable that represents the index of the next element of the argv[]
vector to be evaluated. It is initialized to 1 by the system, and getopt() updates it when it
finishes evaluating each element of argv[]. If an element of argv[] contains multiple option
characters, it is unspecified how getopt() determines which options have already been
processed.

optarg is an external variable that is set by getopt() when an option takes an argument.
This is done as follows.

1. If the option was the last character in the string pointed to by an element of argv, then
optarg contains the next element of argv, and optind is incremented by 2. If the
resulting value of optind is not less than argc, this indicates a missing option-argument,
and getopt() reports an error.

2. Otherwise, optarg is set to point to the string following the option character, and optind
is incremented by 1.

opterr is an external variable that controls the output of error messages in the event of an
error. If it is set to 0, the output of an error message is suppressed.

optopt is an external variable containing the option character that caused getopt() to fail.

getopt, optarg, ... Functions and variables in alphabetical order

494 U23711-J-Z125-5-76

Return val. Next option character from the command line
upon successful completion.

: if an option-argument is missing and the first character in optstring was a
colon;
getopt() sets the variable optopt to the option character that caused the
error.

? if an option character that is not contained in optstring is found or if an
option-argument is missing and the first character in optstring was not a
colon or if the next option character is the question mark (?) from the
command line.
In these cases, getopt() sets the variable optopt to the option character
that caused the error. If the application has not set the variable opterr to
0, getopt() prints a diagnostic message to stderr in the format specified
for the getopt()s command (see also the manual "POSIX Commands"
[2]).

An error has occurred only if the optopt variable does not contain a ques-
tion mark (?). Otherwise the question mark is the next option character from
the command line, and the function was concluded successfully.

-1 if argv[optind] is a null pointer, or
if *argv[optind] is not the character "–" , or
if argv[optind] points to the string "–":
optind is not changed In these cases.

-1 if argv[optind] points to the string "– –".
optind is incremented.

Functions and variables in alphabetical order getopt, optarg, ...

U23711-J-Z125-5-76 495

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Notes getopt() does not fully check for mandatory arguments. That is, given an option string a:b
and the input -a -b, getopt() will assume that -b is the mandatory argument for option
-a and not that a mandatory argument is missing for -a.

Multiple options cannot be combined if the last option requires an argument. For example,
if a and b are normal options and option o requires the argument xxx, then cmd -ab -o xxx
should be specified, not cmd -abo xxx. Although the latter grouped syntax is still supported
by the current implementation, it may not be supported in future releases.

BS2000
When a program is started in the BS2000 environment, the program parameters are
supplied as is usual for C programs (see the manuals "C Compiler" [3] and "C/C++
Compiler" [4]). ❑

If the integer value returned by getchar() is stored into a variable of type char and then
compared against the integer constant EOF, the comparison may never succeed, since no
sign-extension of a variable of type char on widening to integer occurs.

See also exec, unistd.h, getopts command (see also the manual "POSIX Commands" [2]).

getpagesize Functions and variables in alphabetical order

496 U23711-J-Z125-5-76

getpagesize - get current page size

Syntax #include <unistd.h>

int getpagesize(void);

Description getpagesize() returns the number of bytes of a memory page.

A getpagesize() call is equivalent to calling sysconf(_SC_PAGE_SIZE) or
sysconf(_SC_PAGESIZE).

getpagesize() is not thread-safe.

Return val. Current page size
The function is always successful.

Notes The page size returned by getpagesize() does not have to match the size of the memory
pages as divided up for the hardware.
Under POSIX, however, this size is the same as that set for the hardware.

This page size need not match the minimum size that can be requested with malloc(), nor
may an application rely on the fact that an object of this size can be allocated with
malloc().

See also brk(), getrlimit(), mmap(), mprotect(), munmap(), msync(), sysconf(),
unistd.h.

Functions and variables in alphabetical order getpass

U23711-J-Z125-5-76 497

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getpass - read string of characters without echo

Syntax #include <unistd.h>

char *getpass(const char *prompt);

Description getpass() performs the following actions. It

– opens the process´ controlling terminal,

– writes the null-terminated string prompt to that device,

– disables echoing,

– reads a string of characters up to the next newline character or EOF,

– restores the terminal state, and

– closes the special file for the terminal.

Return val. Pointer to a null-terminated string
upon successful completion. The return value consists of at most
{PASS_MAX} bytes that were read from the terminal device.

Null pointer if an error occurs. The original state of the terminal is restored, and errno
is set to indicate the error.

Errors getpass() will fail if:

EINTR getpass() was interrupted by a signal.

EIO The process is a member of a background process attempting to read from
its controlling terminal; the process is ignoring or blocking the SIGTTIN
signal or the process group is orphaned.

EMFILE {OPEN_MAX} file descriptors are currently open in the calling process.

ENFILE The maximum allowable number of files is currently open in the system.

ENXIO The process does not have a controlling terminal.

Notes The return value points to static data whose content may be overwritten by each call.

pclose() is executed only for POSIX files.

getpass() is not thread-safe. Will no longer be supported by the X/Open-Standard in
future.

See also limits.h, unistd.h.

getpgid / getpgmname Functions and variables in alphabetical order

498 U23711-J-Z125-5-76

getpgid - get process group ID

Syntax #include <unistd.h>

pid_t getpgid(pid_t pid);

Description getpgid() returns the process group ID of the process whose process ID is pid. If pid is 0,
the process group ID of the calling process is returned.

Return val. Process group ID
if successful.

(pid_t)-1 if an error occurs. errno is set to indicate the error.

Errors getpgid() will fail if:

EPERM The process whose process ID is pid is not in the same session as the
calling process, and the implementation does not allow access to the
process group ID of this process from within the calling process.

ESRCH There is no process with a process ID pid.

EINVAL The value of pid is invalid.

See also exec, fork(), getpgrp(), getpid(), getsid(), setpgid(), setsid(), unistd.h.

getpgmname - get program name (BS2000)

Syntax #include <stdlib.h>

char *getpgmname(void);

Description getpgmname() returns the name of the calling program.

getpgmname() returns the path name of the exec() function via which the program was
started, that was passed as the first parameter. This path name may differ from argv[0].
For example, getpgmname() always returns the fully qualified path name for programs
started directly from the shell, but argv[0] contains the name just as it was specified by
the user.

BS2000

The result corresponds to argv[0] of the main function. ❑

Return val. Pointer to the program name.
The function is always successful.

Functions and variables in alphabetical order getpgrp / getpid / getpmsg

U23711-J-Z125-5-76 499

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getpgrp - get process group ID

Syntax #include <unistd.h>

Optional
#include <sys/types.h> ❑

pid_t getpgrp(void);

Description getpgrp() returns the process group ID of the calling process.

Return val. Process group ID
The function is always successful.

See also exec, fork(), getpid(), getppid(), kill(), setpgid(), setsid(),sys/types.h,
unistd.h, and the manual "POSIX Basics" [1].

getpid - get process ID

Syntax #include <unistd.h>

Optional
#include <sys/types.h> ❑

pid_t getpid(void);

Description getpid() returns the process ID of the calling process.

Return val. Process ID of the calling process.
The function is always successful.

See also exec, fork(), getpgrp(), getppid(), kill(), setpgid(), setsid(), sys/types.h,
unistd.h.

getpmsg - get message from STREAMS file

#include <pwd.h>

int getpmsg(int fildes, struct strbuf *ctlptr, struct strbuf *dataptr, int *bandp, int *flagsp);

Description See getmsg().

getppid Functions and variables in alphabetical order

500 U23711-J-Z125-5-76

getppid - get parent process ID

Syntax #include <unistd.h>

Optional
#include <sys/types.h> ❑

pid_t getppid(void);

Description getppid() returns the parent process ID of the calling process.

Return val. Parent process ID of the calling process.
The function is always successful.

See also exec, fork(), getpgrp(), getpid(), kill(), setpgid(), setsid(), sys/types.h,
unistd.h.

Functions and variables in alphabetical order getpriority, setpriority

U23711-J-Z125-5-76 501

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getpriority, setpriority - get or set process priority

Syntax #include <sys/resource.h>

int getpriority(int which, id_t who);

int setpriority(int which, id_t who, int priority);

Description getpriority() retrieves the current scheduling priority of the process, the process group
or the user.

setpriority() sets the scheduling priority of the process, the process group or the user.

The arguments which and who define which process is addressed. which can take the
following values: PRIO_PROCESS, PRIO_PGRP or PRIO_USER. Depending on this, the
contents of who are interpreted as process ID, process group ID or user ID respectively. A
null value for who denotes the current process, the current process group or the current
user.

getpriority() returns the highest priority (the lowest numerical value) that is claimed by
one of the specified processes. setpriority() sets the priorities of all specified
processes to the value specified via priority.

The default priority is 0; lower priorities mean improved scheduling. If the priority is below
-20, the value -20 is used; if it is over 20, the value 20 is used.

Only users with the appropriate authorization can reduce priorities.

When threads are used, the getpriority() and setpriority() functions affect the
process or a thread in the following manner:

– Query or set the scheduling priority of the process.

– If the process is multithreaded, the scheduling priority affects all threads of the process.

Return val. getpriority():

-20 ≤ return value ≤ 20
if successful.

-1 if an error occurs. errno is set to indicate the error.

setpriority():

0 if successful.
-1 if an error occurs. errno is set to indicate the error.

getpriority, setpriority Functions and variables in alphabetical order

502 U23711-J-Z125-5-76

getpriority() and setpriority() will fail if:

ESRCH No process was found to which the specified values which and who apply.
EINVAL which was neither PRIO_PROCESS, PRIO_PGRP nor PRIO_USER, or who did

not contain a valid process ID, process group ID or user ID.

setpriority() can also fail if:

EPERM A process was found but neither the effective user ID nor the real one
matches the effective user ID of the process whose priority is to be
changed.

EACCES An attempt was made to set the priority to a lower value, which means a
higher priority, but the current process does not have the appropriate autho-
rization.

Notes What effect the changing of the scheduling priority has depends on the algorithm of the
process scheduling.

As getpriority() can legitimately also return the value -1, the external variable errno
must be deleted before the call and then checked to establish whether the value -1 indicates
an error or a permissible value.

See also nice(), sys/resource.h.

Functions and variables in alphabetical order getpwent

U23711-J-Z125-5-76 503

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getpwent - read user data from user catalog

Syntax #include <pwd.h>

struct passwd *getpwent(void);

DescriptionSee endpwent().

getpwnam Functions and variables in alphabetical order

504 U23711-J-Z125-5-76

getpwnam - get user name

Syntax #include <pwd.h>

Optional
#include <sys/types.h> ❑

struct passwd *getpwnam(const char *name);

Description getpwnam() searches the user catalog for an entry in which the pw_name component
matches name (see also pwd.h and the manual "POSIX Basics" [1]).

getpwnam() is not thread-safe. Use the reentrant function getpwnam_r() when needed.

Return val. Pointer to a structure of type passwd (see pwd.h)
if successful.

Null pointer if an error occurs when reading or no matching entry was found.
errno is set to indicate the error.

Errors getpwnam() fails if:

EINVAL name is too long.

EFAULT An error occurs when creating the passwd structure, or
an invalid name string is specified.

ENOENT The user is not recognized.

Notes The return value may point to a static area which may be overwritten by a subsequent call
to cuserid, getpwnam or getpwuid.

Applications wishing to check for error situations should set errno to 0 before calling
getpwnam(). If errno is set to non-zero on return, an error occurred.

The three names associated with the current process can be determined as follows:
getpwuid(geteuid()) returns the name associated with the effective user ID of the
process; getlogin() returns the name associated with the current login activity; and
getpwuid(getuid()) returns the name associated with the real user ID of the process.

See also geteuid(), getlogin(), getpwnam_r(), getpwuid(), getuid(), limits.h, pwd.h,
sys/types.h, and the manual "POSIX Basics" [1].

Functions and variables in alphabetical order getpwnam_r

U23711-J-Z125-5-76 505

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getpwnam_r - get user name (thread-safe)

Syntax #include <sys/types.h>
#include <pwd.h>

int getpwnam_r(const char *nam, struct passwd *pwd, char *buffer,
size_t bufsize, struct passwd **result);

Description The getpwnam_r() and getpwuid_r() functions update the passwd structure pointed to
by pwd and store a pointer to this structure at the address pointed to by result. The structure
contains the entry from the user catalog whose pw_name or pw_uid component matches
nam or uid, respectively.

The passwd structure found in the user catalog is copied to the memory area of length
bufsize passed in the parameter buffer. The maximum size required for this buffer can be
determined via the sysconf() parameter {_SC_GETPW_R_SIZE_MAX}.

Return val. 0 if successful.

Otherwise errno is set to indicate the error.

Errors The getpwnam_r() and getpwuid_r() fail if:

ERANGE The memory area pointed to by buffer of length bufsize is not large enough
to hold the data pointed to by the resulting group structure.

Notes If an error occurs or if the requested entry is not found, a null pointer is returned in the
address pointed to by result.

See also getpwnam(), getpwuid(), pwd(), types().

getpwuid Functions and variables in alphabetical order

506 U23711-J-Z125-5-76

getpwuid - get user ID

Syntax #include <pwd.h>

Optional
#include <sys/types.h> ❑

struct passwd *getpwuid(uid_t uid);

Description getpwuid() searches the user catalog for an entry in which the pw_uid component (see the
passwd structure in pwd.h) matches uid. Subsequent structures with the same user ID are
not found.

Return val. Pointer to a structure of type passwd (see pwd.h)
if successful.

Null pointer if an error occurs when reading or no matching entry with a pw_uid
component matching uid was found in the user catalog.

Errors getpwuid() fails if: :

EFAULT An error occurs when creating the passwd structure.

ENOENT The user is not recognized.

Notes The return value may point to a static area which may be overwritten by a subsequent call
to cuserid, getpwnam or getpwuid.

Applications wishing to check for error situations should set errno to 0 before calling
getpwuid().

The three names associated with the current process can be determined as follows:
getpwuid(geteuid()) returns the name associated with the effective user ID of the
process; getlogin() returns the name associated with the current login activity; and
getpwuid(getuid()) returns the name associated with the real user ID of the process.

See also cuserid(), getpwuid_r(), getpwnam(), geteuid(), getuid(), getlogin(),
limits.h, pwd.h,
sys/types.h, and the manual "POSIX Basics" [1].

Functions and variables in alphabetical order getpwuid_r

U23711-J-Z125-5-76 507

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getpwuid_r - get user ID (thread-safe)

Syntax #include <sys/types.h>
#include <pwd.h>

int getpwuid_r(uid_t uid, struct passwd *pwd, char *buffer,
size_t bufsize, struct passwd **result);

Description See getpwuid().

getrlimit, setrlimit Functions and variables in alphabetical order

508 U23711-J-Z125-5-76

getrlimit, setrlimit - get or set limit for resource

Name getrlimit, getrlimit64, setrlimit, setrlimit64

Syntax #include <sys/resource.h>

int getrlimit (int resource, struct rlimit *rlp);
int getrlimit64 (int resource, struct rlimit64 *rlp);
int setrlimit (int resource, const struct rlimit *rlp);
int setrlimit64 (int resource, const struct rlimit64 *rlp);

Description This call limits the use of a variety of resources via a process and all its child processes;
getrlimit() reads the limits and setrlimit() sets them.

Each getrlimit() or setrlimit() call specifies a particular resource resource and a
particular limit for it which is referenced by rlp. The limit comprises a pair of values located
in the rlimit structure. rlp must be a pointer to such a structure.
rlimit contains the following components:

rlim_t rlim_cur; /* Current limit */
rlim_t rlim_max; /* Maximum limit */

rlim_t is an arithmetical data type to which objects of types int, size_t and off_t can
be converted without information getting lost.
rlim_cur specifies the current or soft limit, rlim_max the maximum or hard limit. Soft limits
can be set by a process to a value that is less than or equal to the hard limit. A process can
reduce its hard limit (this is not reversible), so that it becomes greater than or equal to the
soft limit. Only a process with the appropriate privileges can increase a hard limit. Both hard
and soft limits can be changed by a single setrlimit() call, taking the above restrictions
into account.

The RLIM_INFINITY value, which is defined in sys/resource.h, is equivalent to an
infinitely large limit, i.e. if getrlimit() returns RLIM_INFINITY for a resource, the imple-
mentation does not allow for a limit for this resource. If setrlimit() with RLIM_INFINITY
is successfully executed for a resource, it is no longer checked whether
this resource complies with this value.

If the limit for a resource is correctly represented in an object of type rlimit_t when the
getrlimit() function is used, then this representation is returned. However, if the limit for
the parameter is equal to the saved limit , then the value RLIM_SAVED_MAX is returned.
Otherwise the value RLIM_SAVED_CUR is returned.

If the requested limit is RLIM_INFINITY for the setrlimit() function, then no value is
intended for the new limit. If the requested limit is RLIM_SAVED_MAX, the new limit is the
saved hard limit. If RLIM_SAVED_CUR is requested as the limit , the new limit is the saved

Functions and variables in alphabetical order getrlimit, setrlimit

U23711-J-Z125-5-76 509

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

soft limit. Otherwise the new value is the requested value. Furthermore, the corresponding
saved limit is overwritten by the new limit if it can be correctly represented in an object of
type rlim_t.

If a limit is set to RLIM_SAVED_MAX or RLIM_SAVED_CUR, the result is undefined unless an
earlier getrlimit() call returned this value as the hard or soft limit for the corresponding
resource limit.

The same also applies to the getrlimit64(), setrlimit64() functions and to the
RLIM64_INFINITY, RLIM64_SAVED_MAX and RLIM64_SAVED_CUR values.

The following table lists the possible resources with their descriptions and the resulting
measures when a limit is exceeded:

Resource Description Measure

RLIMIT_CORE Maximum size of a core dump file in
bytes that can be generated by a
process. A size of 0 prevents the
generation of memory dump files.

Writing of a core dump file ceases when
this size is reached.

RLIMIT_CPU Maximum CPU time used by a
process.

SIGXCPU is sent to the process. If the
process blocks, catches or ignores
SIGXCPU, the behavior is undefined.

RLIMIT_DATA Maximum size of the data segment
of a process in bytes. Under POSIX
the size is unlimited, because
sbrk(), brk() and malloc() use
independent memory.

brk(), malloc() and sbrk() will fail
and errno will contain ENOMEM.

RLIMIT_FSIZE Maximum length of a file in bytes
that can be generated by a process.
A length of 0 prevents files from
being generated.

SIGXFSZ is sent to the process. If the
process blocks, catches or ignores
SIGXFSZ, further attempts to enlarge the
file will fail and errno will contain EFBIG.

RLIMIT_NOFILE Maximum number of open file
descriptors that a process can have.

Functions which create new file
descriptors will fail and errno will contain
EMFILE.

RLIMIT_STACK Maximum size of the process stack
in bytes. The system does not let
the stack grow automatically
beyond this limit.

SIGSEGV is sent to the process. If the
process blocks, ignores or catches
SIGSEGV and does not use an alternative
stack (see sigaltstack()), SIG_DFL is
set as the handling mode of SIGSEGV.

RLIMIT_AS Maximum length of the address
area of a process in bytes.

The functions brk(), malloc(), mmap()
and sbrk() will fail and errno will
contain ENOMEM. Also, the stack can no
longer increase and the above-mentioned
effects occur.

getrlimit, setrlimit Functions and variables in alphabetical order

510 U23711-J-Z125-5-76

As the limit information is managed for each process, the shell statement ulimit must
execute this system call directly in order to influence all future processes that are generated
by the shell.

The value of the current limit of the following resources influences these implementation-
dependent constants:

There is no difference in functionality between getrlimit() / setrlimit() and
getrlimit64()/setrlimit64() except that getrlimit64() and setrlimit64() use
a rlimit64 structure.

The rlimit64 structure is defined in the same manner as rlimit:

rlim64_t rlim_cur
rlim64_t rlim_max

If threads are used, then the function affects the process or a thread in the following
manner:

– RLIMIT_CPU: ... if the process traps or ignores the SIGXCPU signal or all threads
belonging to this process block this signal, then the behavior is undefined.

– RLIMIT_FSIZE: ... the SIGXFSZ signal is generated for the thread. If the thread blocks
the SIGXFSZ signal or the process traps or ignores this signal, further attempts to
increase the size of the file will fail and errno is set to EFBIG.

– RLIMIT_STACK:... the SIGSEGV signal is generated for the thread. If the thread blocks
the SIGSEGV signal or the process traps or ignores this signal and does not use an alter-
native stack, the SIG_DFL handling mode of SIGSEGV SIG_DFL is set.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Limit Implementation-dependent constant

RLIMIT_FSIZE FCHR_MAX

RLIMIT_NOFILE OPEN_MAX

Functions and variables in alphabetical order getrlimit, setrlimit

U23711-J-Z125-5-76 511

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Errors getrlimit() and setrlimit() will fail if:

EINVAL An invalid resource was specified, or in a setrlimit() call the new value
in rlim_cur is greater than the value in rlim_max.

EPERM The limit specified in setrlimit() would increase the maximum limit, but
the calling process does not have the appropriate privileges.

In addition, setrlimit() will fail if:

EINVAL The specified limit cannot be reduced because a higher value is currently in
use.

See also brk(), exec, fork(), getdtablesize(), malloc(), open(), sigaltstack(),
sysconf(), ulimit(), stropts.h, sys/resource.h.

getrusage Functions and variables in alphabetical order

512 U23711-J-Z125-5-76

getrusage - get information on usage of resources

Syntax #include <sys/resource.h>

int getrusage(int who, struct rusage *r_usage);

Description getrusage() returns information on the resources used by the current process or its termi-
nated child processes and the child processes whose termination the process is waiting for.

The who argument can contain the value RUSAGE_SELF or RUSAGE_CHILDREN. In the first
case, information on the resources of the current process is returned. In the second case,
getrusage() outputs information on the resources of the terminated child processes of the
current process and the resources of the child process which the current process is waiting
for. If the process never waits for a child process, e.g. because SA_NOCLDWAIT is set in the
parent process or SIGCHLD is set to SIG_IGN, no information on the resource usage of the
child process will be returned.

The r_usage argument points to an rusage structure which contains the following compo-
nents:

struct timeval ru_utime The total time the execution takes in user mode.
 The interval is specified in seconds and micro-
 seconds.
struct timeval ru_stime The total time the execution takes in system
 mode. The interval is specified in seconds and
 microseconds.

Return val. 0 if successful. The rusage structure is filled up with the corresponding
values.

-1 if an error occurs. errno is set to indicate the error.

Errors getrusage() will fail if:

EINVAL The who argument does not contain a valid value.

Extension
EFAULT The address specified by the r_usage argument is not a valid area of the

address area of the process. ❑

See also exit(), gettimeofday(), read(), sigaction(), time(), times(), wait(), write(),
sys/resource.h.

Functions and variables in alphabetical order gets

U23711-J-Z125-5-76 513

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

gets - get string from standard input stream

Syntax #include <stdio.h>

char *gets(char *s);

Description gets() reads bytes from the standard input stream into the array pointed to by s until a
newline is read or an end-of-file condition is encountered. A newline character, if any, is
overwritten by a null byte.

gets() can mark the structure component st_atime for the file to which stream is
assigned for changing (see sys/stat.h). The structure component st_atime is updated
as soon as fgetc(), fgets(), fgetwc(), fgetws(), fread(), fscanf(),
getc(), getchar(), gets() or scanf() are called successfully for stream and return
data which is not was not provided by a preceding call to ungetc() or ungetwc().

Return val. Pointer to the result string
upon successful completion. gets() terminates the string with a null byte.

Null pointer if the stream is at end-of-file. The end-of-file indicator for the stream is set;
errno is not set.

If a read error occurs. The error indicator for the stream is set, and errno
is set to indicate the error.

Errors See fgetc().

gets Functions and variables in alphabetical order

514 U23711-J-Z125-5-76

Notes Reading a line that overflows the array pointed to by s causes undefined results. The use
of fgets() is recommended.

If gets() is reading from the standard input stdin in the POSIX environment, and EOF is
the end criterion for reading, the EOF condition can be achieved by the following actions:

Ê on a block-special terminal: by entering the key sequence [@][@][d]

Ê on a character-special terminal: by entering [CTRL]+[D]

BS2000
If fgetc() is reading from the standard input stdin in the BS2000 environment, and EOF
is the end criterion for reading, the EOF condition can be achieved by means of the following
actions at the terminal:

1. by pressing the [K2] key.

2. by entering the system commands EOF and RESUME-PROGRAM. ❑

The program environment determines whether gets() is executed for a BS2000 or POSIX
file.

See also feof(), ferror(), fgets(), stdio.h.

Functions and variables in alphabetical order getsid

U23711-J-Z125-5-76 515

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getsid - get process group ID

Syntax #include <unistd.h>

pid_t getsid(pid_t pid);

Description The getsid() function returns the process group ID of the process that is session leader
of the process with the ID pid. If pid is (pid_t)0, then getsid() returns the session
number of the calling process.

Return val. Process group ID
if successful.

(pid_t)-1 if an error occurs. errno is set to indicate the error.

Errors getsid() will fail if:

EPERM The process with the process ID pid is not in the same session as the calling
process, and the implementation does not support access by the calling
process to the session number of the specified process.

ESRCH There is no process with the process ID pid.

See also exec, fork(), getpid(), getpdig(), setpgid(), setsid(), unistd.h.

getsubopt Functions and variables in alphabetical order

516 U23711-J-Z125-5-76

getsubopt - get suboptions from string

Syntax #include <stdlib.h>

int getsubopt (char * *optionp, char * const *tokens, char * *valuep);

Description getsubopt() extracts subobtions from an option argument which was first processed by
getopt(). These suboptions must be separated by commas and can consist of either a
single token or a pair of token values separated by an equals sign. Because commas are
used to delimit suboptions in the option string, they must not be part of the suboption or the
value of a suboption. Similarly, a token must not contain an equals sign, because tokens
and associated values are separated by equals signs.

getsubopt() receives the address of a pointer to the option string which represents an
array of possible tokens and the address of a pointer to a value string. The index of the
token that corresponds to the suboption from the transferred string is returned; if no corre-
sponding suboption is found, -1 is returned. If the option string under *optionp only contains
one suboption, getsubopt() updates *optionp such that the null byte at the end of the
string is pointed to; otherwise, the suboption is isolated through replacement of the
separating comma being with a null byte, and *optionp points to the beginning of the next
suboption. If the suboption is assigned a value, getsubopt() updates *valuep such that
the first character of the value is pointed to. Otherwise, *valuep is set to zero.

The token array is organized as a sequence of pointers to null-terminated strings. The end
of the token array is identified by a null pointer.

If valuep is not zero, getsubopt() returns the suboption to which a value was assigned.
The calling program can use this information to determine whether the presence or the
omission of a value for this suboption represents an error.
If getsubopt() does not find a suboption in the tokens array, the calling program should
decide whether this means an error or whether the non-recognized option should be
passed to another program.

Return val. Index of the matching token if successful.

-1 if no matching token was found.

Notes During processing of the token, commas in the option string are changed into null bytes.
Blanks in tokens or pairs of token values must be protected from shell by quotation marks.

See also getopt(), stdlib.h

Functions and variables in alphabetical order gettimeofday, gettimeofday64

U23711-J-Z125-5-76 517

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

gettimeofday, gettimeofday64 - read current time of day

Syntax #include <sys/time.h>

int gettimeofday(struct timeval *tp, void *tzp);
int gettimeofday64(struct timeval64 *tp, void *tzp);

Description gettimeofday() und gettimeofday64() read the current system time, expressed as
seconds and microseconds since 00:00 Coordinated Universal Time (UTC), January 1,
1970. The resolution of the system clock is hardware-dependent; the time may be updated
continuously or at specific time intervals.

tp points to a structure of type timeval or timeval64, containing the following members:
long tv_sec; /* seconds since January 1, 1970 */
or
time64_t tv_sec; /* seconds since January 1, 1970 */
and
long tv_usec; /* and microseconds */

If tp is a null pointer, the current time is not read.

tzp must be a null pointer, otherwise the behavior is undefined.

Information on time zones is contained in the environment variable TZ. See timezone.

Return val. 0 if successful.

-1 if an error occurs.

Notes Programs which want to be portable must not rely on the return value -1 in the event of an
error.

See also ctime(), ftime(), timezone, sys/time.h.

gettsn / getuid Functions and variables in alphabetical order

518 U23711-J-Z125-5-76

gettsn - get TSN (task sequence number) (BS2000)

Syntax #include <stdlib.h>

char *gettsn(void);

Description gettsn() returns the task sequence number (TSN) of the calling program.

Return val. Task sequence number (TSN) of the calling program.

Notes gettsn() writes its result into an internal C data area that is overwritten with each call.

getuid - get real user ID

Syntax #include <unistd.h>

Optional
#include <sys/types.h> ❑

uid_t getuid(void);

Description getuid() returns the real user ID of the calling process.

Return val. Real user ID of the calling process.
The function is always successful.

See also getegid(), geteuid(), getgid(), setuid(), sys/types.h, unistd.h.

Functions and variables in alphabetical order getutxent, getutxid, getutxline

U23711-J-Z125-5-76 519

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getutxent, getutxid, getutxline - get utmpx entry

Syntax #include <utmpx.h>

struct utmpx *getutxent (void);

struct utmpx *getutxid (const struct utmpx *id);

struct utmpx *getutxline (const struct utmpx *line);

Description See endutxent().

getw Functions and variables in alphabetical order

520 U23711-J-Z125-5-76

getw - read word from stream

Syntax #include <stdio.h>

int getw(FILE *stream);

Description getw() reads the next word from the input stream pointed to by stream. The size of a word
is the size of an int and may vary from machine to machine. The getw() function
presumes no special alignment in the file.

getw() can mark the structure component st_atime for the file to which stream is
assigned for changing (see sys/stat.h). The structure component st_atime is updated
as soon as fgetc(), fgets(), fgetwc(), fgetws(), fread(), fscanf(),
getc(), getchar(), gets() or scanf() are called successfully for stream and return
data which is not was not provided by a preceding call to ungetc() or ungetwc().

getw() is not thread-safe.

Return val. Next word from the input stream pointed to by stream (as an int)
upon successful completion.

EOF if the stream is at end-of-file. The end-of-file indicator for the stream is set;
errno is not set.

EOF if a read error occurs. The error indicator for the stream is set, and errno is
set to indicate the error.

Errors See fgetc().

Functions and variables in alphabetical order getw

U23711-J-Z125-5-76 521

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Notes Due to possible differences in word length and byte ordering, files written using putw() are
machine-dependent, and may not be correctly read when getw() is used on a different
processor.

Since the representation of EOF is a valid integer, applications wishing to check for errors
should use ferror() and feof().

BS2000

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
split=no was entered for fopen(), records of maximum length are not concatenated with
the subsequent record when they are read. By default or with the specification split=yes,
when a record with maximum record length is read, it is assumed that the following record
is the continuation of this record and the records are concatenated ❑.

The program environment determines whether getw() is executed for a BS2000 or POSIX
file.

See also ferror(), getc(), putw(), stdio.h.

getwc Functions and variables in alphabetical order

522 U23711-J-Z125-5-76

getwc - get wide character from stream

Syntax #include <wchar.h>

Optional
#include <stdio.h> ❑

wint_t getwc(FILE *stream);

Description getwc() is implemented both as a function and as a macro. It is equivalent to fgetwc(),
except that if it is implemented as a macro it may evaluate stream more than once, so the
argument should never be an expression with side effects.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

Return val. See fgetwc().

Errors See fgetwc().

Notes This interface is provided to support some current implementations and possible future ISO
standards.

When getwc() is implemented as a macro, it may handle a stream argument with side
effects incorrectly. In particular, getwc(*f++) may not work as expected. The use of
fgetwc() is therefore recommended in such situations.

See also fgetwc(), stdio.h, wchar.h.

Functions and variables in alphabetical order getwchar

U23711-J-Z125-5-76 523

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

getwchar - get wide character from standard input stream

Syntax #include <wchar.h>

wint_t getwchar(void);

Description The function call getwchar(void) is equivalent to getwc(stdin), i.e. it reads a wide
character from the standard input stream.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

Return val. See fgetwc().

Errors See fgetwc().

Notes If the value returned by getwchar() is stored into a variable of type wchar_t and then
compared against the wint_t macro WEOF, the comparison may never succeed.

See also fgetwc(), getwc(), wchar.h.

getwd / gmatch Functions and variables in alphabetical order

524 U23711-J-Z125-5-76

getwd - get pathname of current working directory

Syntax #include <unistd.h>

char *getwd(char *path_name);

Description getwd() determines the absolute pathname of the current working directory of the calling
process and copies it into a string pointed to by the path_name argument.

If the length of the pathname of the current working directory including the null byte is
greater than {PATH_MAX}+1, getwd() will fail and return a null pointer.

Return val. Pointer to a string
if successful. The string contains the absolute pathname of the current
working directory.

Null pointer if an error occurs. The string pointed to by path_name contains an error text.

Notes Portable applications should use the getcwd() function instead of getwd().

See also getcwd(), unistd.h.

gmatch - global pattern matching (extension)

Syntax #include <libgen.h>

int gmatch(const char *str, const char *pattern);

Description gmatch() checks whether the null-terminated string str matches the null-terminated pattern
string pattern. A backslash \ is used as an escape character in pattern strings.

Return val. ≠ 0 if the string matches the pattern.

0 if no match was found.

Functions and variables in alphabetical order gmtime, gmtime64

U23711-J-Z125-5-76 525

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

gmtime, gmtime64 - convert date and time to UTC

Syntax #include <time.h>

struct tm *gmtime(const time_t *clock);
struct tm *gmtime64(const time64_t *clock);

Description The functions gmtime() and gmtime64() interpret the time specification of the value to
which clock points as the number of seconds that have elapsed since 1.1.1970 00:00:00
hrs UTC (epoch). They calculate from this the date and time in UTC and store it in a type
tm structure. Negative values are interpreted as seconds before the epoch. The following
points in time are considered invalid:
– with gmtime() points in time before 13.12.1901 20:45:52 hrs UTC and after 19.01.2038

03:14:07 Uhr UTC
– with gmtime64() points in time before 1.1.1900 00:00:00 hrs UTC and after 31.12.9999

23:59:59 hrs UTC.

The declarations of all functions, external values, and of the tm structure are contained in
the header time.h. The tm structure is defined as follows:

struct tm {
 int tm_sec; /* Seconds - [0, 61] for skipped seconds */
 int tm_min; /* Minutes - [0, 59] */
 int tm_hour; /* Hours - [0, 23] */
 int tm_mday; /* Day of month - [1, 31] */
 int tm_mon; /* Months - [0, 11] */
 int tm_year; /* Years since 1900 */
 int tm_wday; /* Days since Sunday - [0, 6] */
 int tm_yday; /* Days since January 1 - [0, 365] */
 int tm_isdst; /* Option for daylight saving time */
};

tm_isdst is positive if daylight saving time is set,
null if daylight saving time is not set,
and negative if the information is not available.

BS2000
gmtime() interprets the time specification of type time_t as the number of seconds that
have elapsed since January 1, 1970, 00:00:00 local time. From this number, gmtime()
calculates the date and time and stores the result in a structure of type tm. In this imple-
mentation, gmtime() is equivalent to localtime(); both functions return the local time. ❑

gmtime() is not thread-safe. Use the reentrant function gmtime_r() when needed.

gmtime, gmtime64 Functions and variables in alphabetical order

526 U23711-J-Z125-5-76

Return val. Pointer to a structure of type struct tm
if successful.

EOVEFLOW In case of an error NULL und errno.

Notes The asctime(), ctime(), ctime64(), gmtime(), gmtime64(), localtime() and
localtime64() functions write their result into the same internal C data area. This means
that each of these function calls overwrites the previous result of any of the other functions.

gmtime() does not support local date and time formats; to ensure maximum portability,
strftime() should be used instead.

gmtime() writes its result to an internal C data area that is overwritten with each call.
Furthermore, gmtime() and localtime() use the same data area, which means that if
they are called in succession, the result of the first call will be overwritten.

See also altzone(), ctime(), daylight, localtime(), strftime(), tzname, tzset().

Functions and variables in alphabetical order gmtime_r

U23711-J-Z125-5-76 527

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

gmtime_r - convert date and time to UTC (thread-safe)

Syntax #include <time.h>

struct tm *gmtime_r(const time_t * clock, struct tm * result);

Description The gmtime_r() function converts the time (number of seconds since the beginning of the
epoch) pointed to by clock to the UTC time (Coordinated Universal Time) in the format
described in the struct tm structure. The result is stored in the data area pointed to by
result.

Return val. Address of the structure pointed to by result,
if successful.

Null pointer if an error occurs or if UTC is not available.

See also gmtime().

grantpt Functions and variables in alphabetical order

528 U23711-J-Z125-5-76

grantpt - grant access to the slave pseudoterminal

Syntax #include <stdlib.h>

int grantpt(int fildes);

Description The grantpt() function changes the access permissions and the owner of the slave
pseudoterminal assigned to its master counterpart. fildes is a file descriptor that was
returned when the master pseudoterminal was opened successfully. A program with the s
bit set for root is called (/usr/lib/pt-chmod). The user ID of the slave device is the
same as the effective user ID of the calling process, and the group ID is set to a reserved
group ID. The access permissions are set such that for the slave pseudoterminal reading
and writing are permitted for the owner and writing is permitted for the group.

Return val. 0 if successful.

-1 if there is an error. errno is set to indicate the error.

Errors grantpt() will fail if:

EBADF fildes is not a valid open file descriptor

EINVAL fildes is not assigned to a main pseudoterminal.

EACCES The corresponding slave device could not be accessed.

Notes grantpt() will also fail if the application has implemented a signal handling routine to
catch SIGCHLD signals.

See also open(), ptsname(), setuid(), unlockpt(), stdlib.h.

Functions and variables in alphabetical order hsearch, hcreate, hdestroy

U23711-J-Z125-5-76 529

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

h... hsearch, hcreate, hdestroy - manage hash tables

Syntax #include <search.h>

ENTRY *hsearch(ENTRY item, ACTION action);
int hcreate(size_t nel);
void hdestroy(void);

Description hsearch() is a hash-table search routine. It returns a pointer into a hash table indicating
the location at which an entry can be found. The comparison function used by hsearch() is
strcmp(). item is a structure of type ENTRY (defined in the search.h header) containing two
pointers: item.key points to the comparison key (of type char*), and item.data (a void*)
points to any other data to be associated with that key.

Extension
Pointers to types that are not void must be converted to pointers to void. ❑

action is a member of the enumeration type ACTION (defined in search.h) indicating the
disposition of the entry if it cannot be found in the table. ENTER indicates that item should be
inserted in the table at an appropriate point.

Extension
If a duplicate to an existing entry is present, the new item is not entered, and hsearch()
returns the pointer to the existing entry. ❑

FIND indicates that no entry should be made. Unsuccessful resolution is indicated by the
return of a null pointer.

hcreate() allocates sufficient space for the table and must be called before hsearch() is
used. The nel argument is an estimate of the maximum number of entries that the table will
contain. This number may be adjusted upward by the algorithm in order to obtain certain
mathematically favorable circumstances.

hdestroy() destroys the search table and may be followed by another call to hcreate().
After the call to hdestroy(), the data can no longer be considered accessible.

Return val. Null pointer hsearch(): if the action is FIND and the item could not be found, or if the
action is ENTER and the table is full.
hcreate(): if it cannot allocate sufficient space for the table.
hdestroy() returns no value.

Errors hsearch() will fail if:

ENOMEM Insufficient storage space is available.

hsearch, hcreate, hdestroy Functions and variables in alphabetical order

530 U23711-J-Z125-5-76

Notes hsearch() and hcreate() use malloc() to allocate space.

Extension
Only one hash search table may be active at a given time. ❑

See also bsearch(), lsearch(), malloc(), strcmp(), tsearch(), search.h.

Functions and variables in alphabetical order hypot

U23711-J-Z125-5-76 531

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

hypot - Euclidean distance function

Syntax #include <math.h>

double hypot(double x, double y);

Description hypot() computes the Euclidean distance. x and y are the coordinates of the point for
which the Euclidean distance is to be computed.

Return val. sqrt(x *x + y *y) if successful.

HUGE_VAL if an overflow occurs.
errno is set to indicate the error.

Errors hypot() will fail if:

ERANGE Overflow; the result is too large.

Notes If the result overflows, the program will abort (SIGFPE signal)!

See also cabs(), sqrt(), math.h.

iconv Functions and variables in alphabetical order

532 U23711-J-Z125-5-76

i... iconv - code conversion function

Syntax #include <iconv.h>

size_t iconv(iconv_t cd, const char * *inbuf, size_t *inbytesleft, char * *outbuf,
size_t *outbytesleft);

Description iconv() converts a sequence of characters from one codeset into a sequence of corre-
sponding characters in another codeset. The sequence to be converted is located in the
array specified by inbuf; the converted sequence is placed in the array specified by outbuf.
The codesets are those specified in the iconv_open() call that returned the conversion
descriptor cd. The inbuf argument points to a variable that points to the first character in the
input buffer and inbytesleft indicates the number of bytes to be converted. The outbuf
argument points to a variable that points to the first byte in the output buffer, and outbytesleft
indicates the number of the bytes.

For state-dependent encodings, the conversion descriptor cd is placed into its initial shift
state by a call for which inbuf is a null pointer, or for which inbuf points to a null pointer. When
iconv() is called in this way, and if outbuf is not a null pointer or a pointer to a null pointer,
and outbytesleft points to a positive value, iconv() will place, into the output buffer, the byte
sequence to change the output buffer to its initial shift state. If the output buffer is not large
enough to hold the entire reset sequence, iconv() will fail and set errno to E2BIG. Subse-
quent calls with inbuf as other than a null pointer or a pointer to a null pointer cause the
conversion to take place from the current state of the conversion descriptor.

If a sequence of input bytes does not form a valid character in the specified codeset,
conversion stops after the previous successfully converted character. If the input buffer
ends with an incomplete character or shift sequence, conversion stops after the previous
successfully converted bytes. If the output buffer is not large enough to hold the entire
converted input, conversion stops just prior to the input bytes that would cause the output
buffer to overflow. The variable pointed to by inbuf is updated to point to the byte following
the last byte successfully used in the conversion. The value pointed to by inbytesleft is
decremented to reflect the number of bytes still not converted in the input buffer. The
variable pointed to by outbuf is updated to point to the byte following the last byte of
converted output data. The value pointed to by outbytesleft is decremented to reflect the
number of bytes still available in the output buffer.

For state-dependent encodings, the conversion descriptor is updated to reflect the shift
state in effect at the end of the last successfully converted byte sequence.

If iconv() encounters a character in the input buffer that is valid, but for which an identical
character does not exist in the target codeset, iconv() performs an implementation-
dependent conversion on this character.

Functions and variables in alphabetical order iconv

U23711-J-Z125-5-76 533

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Return val. iconv() updates the variables pointed to by the arguments to reflect the extent of the
conversion and returns the number of non-identical conversions performed. If the entire
string in the input buffer is converted, the value pointed to by inbytesleft will be 0. If the input
conversion is stopped due to any conditions mentioned above, the value pointed to by
inbytesleft will be non-zero and errno is set to indicate the error condition. If an error occurs
iconv() returns (size_t)-1 and sets errno to indicate the error.

Errors iconv() will fail if:

EILSEQ Input conversion stopped due to an input byte that does not belong
to the input codeset.

E2BIG Input conversion stopped due to lack of space in the output buffer.

EINVAL Input conversion stopped due to an incomplete character or shift
sequence at the end of the input buffer.

EBADF The cd argument is not a valid conversion descriptor for an open file.

See also iconv_open(), iconv_close(), iconv.h.

iconv_close Functions and variables in alphabetical order

534 U23711-J-Z125-5-76

iconv_close - deallocate code conversion descriptor

Syntax #include <iconv.h>

int iconv_close(iconv_t cd);

Description iconv_close() deallocates the conversion descriptor cd and all other associated
resources allocated by iconv_open().

Return val. Upon successful completion, 0 is returned.
Otherwise, -1 is returned and errno is set to indicate the error.

Errors iconv_close() will fail if:

EBADF The conversion descriptor is invalid.

See also iconv(), iconv_open(), iconv.h.

Functions and variables in alphabetical order iconv_open

U23711-J-Z125-5-76 535

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

iconv_open - allocate code conversion descriptor

Syntax #include <iconv.h>

iconv_t iconv_open(const char *tocode, const char *fromcode);

Description iconv_open() returns a conversion descriptor that describes a conversion from the
codeset specified by the string pointed to by the fromcode argument to the codeset specified
by the string pointed to by the tocode argument. For state-dependent encodings, the
conversion descriptor will be in a codeset-dependent initial shift state, ready for immediate
use with iconv().

A conversion descriptor remains valid in a process until that process closes it.

iconv_open() uses the malloc() function to allocate space for internal buffer areas. The
iconv_open() function will fail if insufficient space is available for these buffers.

Return val. Conversion descriptor
for use on subsequent calls to iconv().
Otherwise, iconv_open() returns (iconv_t)-1 and sets
errno to indicate the error.

Errors iconv_open() will fail if:

EMFILE OPEN_MAX file descriptors are currently open in the calling process.

ENFILE Too many files are currently open in the system.

ENOMEM Insufficient storage space is available.

EINVAL The conversion specified by fromcode and tocode is not supported by
the current version.

See also iconv(), iconv_close(), iconv.h.

ilogb / index Functions and variables in alphabetical order

536 U23711-J-Z125-5-76

ilogb - get exponent part of floating-point number

Syntax #include <math.h>

int ilogb (double x)

Description The ilogb() function returns the exponent part of x. In form, for all xs not equal to zero,
the return value is the integral, signed part of logr |x|, where r is the base of the floating-point
arithmetic of the processor (in BS2000, r = 16).

The ilogb(x) function call is equivalent to the (int)logb(x) call.

Return val. Exponent part of x
if successful.

INT_MIN if x = 0.0.

See also logb(), math.h.

index - get first occurrence of character in string

Syntax #include <strings.h>

char *index(const char *s, int c);

Description index() searches for the first occurrence of character c in string s and returns a pointer to
the located position in s if successful.

The terminating null byte (\0) is also treated as a character.

Return val. Pointer to the position of c in string s,
if successful.

Null pointer if c is not contained in string s.

Notes index() and strchr() are equivalent.

Portable applications should use the strchr() function instead of index().

See also rindex(), strchr(), strings.h.

Functions and variables in alphabetical order initgroups

U23711-J-Z125-5-76 537

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

initgroups - initialize group access lists

Syntax #include <grp.h>
#include <sys/types.h>

initgroups(const char *name, gid_t basegid);

Description The initgroups() function can only be called by the system administrator. The
initgroups() function initializes the additional group access list of the calling process. To
do this, initgroups() reads the group database /etc/group and uses all groups whose
user specified by the name parameter is a member. Groups that are additionally specified
by the basegid parameter are also entered in the list.

Generally, the primary group number is passed in basegid, as defined in the BS2000 SRPM
(System Resources and Privileges Management) with the /MOD-POSIX-USER- ATTR or
/MOD-POSIX-USER-DEFAULTS command.

The initgroups() function also exists as an ASCII function.

Return val. 0 Execution was successful.

-1 Otherwise. errno indicates the cause of the error.

Errors initgroups() schlägt fehl, wenn gilt:

EPERM The effective user number is not the user number of the system administra-
tor.

initstate, random, ... Functions and variables in alphabetical order

538 U23711-J-Z125-5-76

initstate, random, setstate, srandom - generate pseudo-random
numbers

Syntax #include <stdlib.h>

char *initstate(unsigned int seed, char *state, size_t size);

long random(void);

char *setstate(const char *state);

void srandom(unsigned int seed);

Description random() uses a non-linear, additive feedback random-number generator and uses a
standard status array with the size of 31 long integers to generate successive pseudo-
random numbers in the range 0 through 231-1. The period of this random-number generator
is very large - approximately 16 x (231-1). The size of the status array determines the period
of the random-number generator. If a larger status array is used, the period is extended.

With 256-byte status information the period of the random-number generator is greater than
269.

Like rand(), random() generates by default a sequence of numbers which can be dupli-
cated by calling srandom() with seed equals 1 beforehand.

srandom() initializes the current status array with the contents of seed.

The initstate() and setstate() functions handle the restart and the modification of
random-number generators. With initstate() the status vector pointed to by the state
argument can be initialized for later use. The size argument specifies the size of the status
vector in bytes. initstate() uses size to establish how demanding the random-number
generator used is to be - the more status information, the better the random numbers
generated. Optimum values for the amount of status information are 8, 32, 64, 128 and 256
bytes; other specifications > 8 are rounded down to the next lowest of these values. For
values < 8, random() uses a simple, linear, congruent random-number generator. The seed
argument determines the start value for the initialization via which a starting point for the
random-number sequence is specified which also serves simultaneously for a restart.
initstate() returns a pointer to the previous array with status information.

If random() is called without initstate() having been executed beforehand, random()
behaves as if initstate() had been executed with seed=1 and size=128 beforehand.

Once a status has been initialized, the setstate() function allows a quick change of the
status arrays. The status array pointed to by state is used for the generation of further
random numbers until the next call of initstate() or setstate(). setstate() returns
a pointer to the previous status array.

inistate() is not thread-safe. Use the reentrant function rand_r() when needed.

Functions and variables in alphabetical order initstate, random, ...

U23711-J-Z125-5-76 539

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Return val. random():

Pseudo-random number
The function is always successful.

initstate() and setstate():

Pointer to the previous status array
if successful.

Null pointer if an error occurs.

Notes After a status array has been initialized, it can be restarted in a different place:

– by calling initstate() with the desired start value, the status array and its size.

– by calling setstate() with the status array, followed by srandom() with the desired
start value. The advantage of calling these two functions is that the size of the status
vector does not need to be stored after its initialization.

Example The following statements initialize a status array, transfer an initstate() and output a
random number generated with random():

static long state1[32] = { 3, 0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342,
0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd, 0x8c2e680f, 0xeb3d799f,
0xb11ee0b7, 0x2d436b86, 0xda672e2a, 0x1588ca88, 0xe369735d, 0x904f35f7,
0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc, 0xde3b81e0, 0xdf0a6fb5,
0xf103bc02, 0x48f340fb, 0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b,
0xf5ad9d0e, 0x8999220b, 0x27fb47b9 };

main()
{
 unsigned seed;
 int n;
 seed = 1;
 n = 128;
 initstate(seed, state1, n);
 setstate(state1);
 printf("%d", random());
}

See also drand48drand48(), rand(), rand_r(), srand(), stdlib.h.

insque, remque Functions and variables in alphabetical order

540 U23711-J-Z125-5-76

insque, remque - Insert element in queue or remove element from
queue

Syntax #include <search.h>

void insque(void *element, void *pred);

void remque(void *element);

Description insque() and remque() modify queues which are generated from double-concatenated
elements. The queue can be concatenated in linear or ring form. For the insque() and
remque() functions to be used, a structure must be defined in the application that
first/initially contains two pointers to this structure. The other components of the structure
are application-specific. The first pointer of the structure references the next entry in the
queue. The second pointer references the previous entry in the queue. If the queue is linear,
it is completed by null pointers. The names of the structure and the pointers it contains are
freely selectable.

insque() inserts the element pointed to by element in a queue directly after pred.

remque() removes the element pointed to by element from a queue.

The call insque(&element, NULL), where element is the first element in the queue, serves
to initialize a linear list. Both pointers of element are occupied by null pointers.

To build up a ring-concatenated list, the application must first enter the address of the start
element of the queue in both pointers of the start element.

Functions and variables in alphabetical order ioctl

U23711-J-Z125-5-76 541

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

ioctl - control devices and STREAMS

Syntax #include <stropts.h>

int ioctl(int fildes, int request, .../ * arg */);

Description ioctl() executes a variety of control functions for devices and STREAMS. With non-stream
files the functions executed by this call are undefined. The request argument and an optional
third argument of varying type are forwarded to the file identified by fildes and are inter-
preted by the device driver.

fildes is an open file descriptor that refers to a device.

request selects the control function to be executed and depends on the respective devices
addressed.

arg contains additional information required by these specific devices to execute the
requested function. The data type of arg depends on the relevant control function, but is
either an integer or a pointer to a device-specific data structure.

The following ioctl() commands, with the respective error IDs specified, can be applied
to all stream files:

I_PUSH ’Pushes’ the module whose name is pointed to by arg into the beginning of the
current stream, directly below the stream head. If the stream is a pipe, the
module will be pushed between the stream heads of both ends of the pipe. This
command then calls the open() function of the newly pushed-in module.

ioctl() with the I_PUSH command will fail if:

EINVAL Invalid module name.
EFAULT arg references a point outside the reserved address space.
ENXIO The open() function of the new module failed.
ENXIO Hang-up signal received for fildes.

I_POP ’Pops’ the module directly below the stream head out of the stream referenced
by fildes. If a module is to be popped out of a pipe, it must be popped out from
the side from which it was pushed in. In this case, arg should equal 0. In the
event of an error, errno assumes one of the following values:

ioctl() with the I_POP command will fail if:

EINVAL No module stream exists.
ENXIO Hang-up signal received for fildes.

I_LOOK Determines the name of the module directly below the stream head in the
stream specified by fildes, and stores it in a null-terminated string pointed to by
arg. The buffer to which arg points should be at least FMNAMESZ+1 bytes long.
FMNAMESZ is defined in stropts.h.

ioctl Functions and variables in alphabetical order

542 U23711-J-Z125-5-76

ioctl() with the I_LOOK command will fail if:

EINVAL There is no module in the stream.
EFAULT arg references a point outside the reserved address space.

I_FLUSH Flushes all read and/or write queues, depending on the value of arg. arg can
have any of the following values:

FLUSHR Flush read queues.
FLUSHW Flush write queues.
FLUSHRW Flush read and write queues.

ioctl() with the I_FLUSH command will fail if:

EINVAL Invalid value for arg.
EAGAIN or ENOSR
 No buffer could be reserved for the flush message, because not

enough STREAMS storage space was available.
ENXIO Hang-up signal received for fildes.

I_FLUSHBAND
Flushes a particular band of messages. arg points to a bandinfo structure that
has the following components:

unsigned char bi_pri;
int bi_flag;

The bi_flag component can equal FLUSHR, FLUSHW or FLUSHRW (see above).
The bi_pri component determines the priority band.

I_SETSIG
Informs the stream head that the user wants the system kernel to issue the
SIGPOLL signal (see signal()) if a particular event occurs for the stream
assigned to fildes. I_SETSIG supports the capability of asynchronous
processing under STREAMS. The value of arg is a bit mask which specifies the
events for which the signal is to be issued. It is the bit-wise OR of any combi-
nation of the following constants:

S_RDNORM There is a message with normal priority (priority band = 0) at the
head of the read queue of the stream head. A signal is issued even
if the message has the length 0.

S_RDBAND There is a message in the priority band > 0 at the head of the read
queue of the stream head. A signal is issued even if the message
has the length 0.

S_INPUT A message not equal to M_PCPROTO (high priority) has arrived in the
read queue of the stream head. This event is still supported for
reasons of compatibility with earlier versions of UNIX System V. A
signal is issued even if the message has the length 0.

Functions and variables in alphabetical order ioctl

U23711-J-Z125-5-76 543

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

S_HIPRI There is a message with high priority (M_PCPROTO) at the head of
the read queue of the stream head. A signal is issued even if the
message has the length 0.

S_OUTPUT
A write queue for regular data (priority band = 0) directly below the
stream head is no longer full (without flow control). This informs the
user that there is room in the queue to write or send normal data
downstream.

S_WRNORM
Exactly like S_OUTPUT.

S_WRBAND
A write queue for data in the priority band ≠ 0) just below the stream
head is no longer full. This informs the user that there is room in the
queue to write or send priority data downstream.

S_MSG An M_SIG or M_PCSIG message containing the SIGPOLL signal has
reached the head of the read queue of the stream head.

S_ERROR An M_ERROR message has reached the stream head.

S_HANGUP
An M_HANGUP message has reached the stream head.

S_BANDURG
If this event is used together with S_RDBAND, then SIGURG is
generated instead of SIGPOLL if a high-priority message reaches
the head of the read queue of the stream head.

If arg is 0, the calling process logs off again and does not receive any further
SIGPOLL signals.

A user process can decide to only receive a signal in the event of messages
with high priority, by setting the arg bit mask to the value S_HIPRI.

Processes which want to receive the SIGPOLL signal must sign on explicitly for
its receipt by using I_SETSIG. If several processes sign on for this signal
requesting the same event for the same stream, then every process receives
the signal when the event occurs.

ioctl() with the I_SETSIG command will fail if:

EINVAL The value of arg is invalid or arg is 0 and the process does not sign
on for receipt of the SIGPOLL signal.

EAGAIN The reservation of a data structure for the signal request failed.

ioctl Functions and variables in alphabetical order

544 U23711-J-Z125-5-76

I_GETSIG
Returns the events for which the calling process has currently signed on to
receive a SIGPOLL signal. The events are returned in the bit mask pointed to by
arg, where the events are the ones specified in the description of I_SETSIG
(see above).

ioctl() with the I_GETSIG command will fail if:

EINVAL The process is not signed on for receipt of the SIGPOLL signal.

EFAULT arg references a point outside the reserved address space.

I_FIND Compares the names of all modules currently located in the stream with the
name pointed to by arg. It returns the value 1 if the specified module is present
in the stream. It returns the value 0 if the specified module is not popped in.

ioctl() with the I_FIND command will fail if:

EINVAL arg does not contain a valid module name.

EFAULT arg references a point outside the reserved address space.

I_PEEK Allows a user to read the information in the first message in the read queue of
the stream head without removing the message from the queue. I_PEEK works
in the same way as getmsg(), except that it does not remove the message
from the queue.

arg points to an strpeek structure containing the following components:

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;

The maxlen component in the strbuf structures ctlbuf and databuf (see
getmsg()) must be set to the number of bytes to be read as control and/or data
information. flags can be set to RS_HIPRI or to 0. If RS_HIPRI is set, I_PEEK
searches for a message with high priority in the read queue of the stream head.
Otherwise, I_PEEK searches for the first message in the read queue of the
stream head.

I_PEEK returns the value 1 if a message was found, and 0 if no message was
found in the read queue of the stream head or if flags was set to RS_HIPRI and
no message with a high priority was found. This command does not wait for a
message to arrive. After the return, ctlbuf supplies the information from the
control section, databuf the information from the data section, and flags contains
the value RS_HIPRI or 0.

ioctl() with the I_PEEK command will fail if:

Functions and variables in alphabetical order ioctl

U23711-J-Z125-5-76 545

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

EFAULT arg references a point outside the reserved address space, or the
buffer area specified in ctlbuf or databuf is located outside the
reserved address space.

EBADMSG The message to be read is invalid for I_PEEK.

EINVAL flags has an invalid value.

I_SRDOPT
Sets the setting for the reading (see read()) to the value of the arg argument.
arg can take the following values:

RNORM Byte-stream mode (default).

RMSGD Message-discard mode.

RMSGN Message-nondiscard mode.

If the value for arg is the result of bit-wise inclusive OR of RMSGD and RMSGN, this
produces the error EINVAL. Bit-wise inclusive OR of RNORM with RMSGD
produces RMSGN; bit-wise inclusive OR of RNORM with RMSGN produces RMSGD.

In addition, the handling of control messages by the stream head can be
changed via the following identifiers for arg:

RPROTNORM
read() will fail with EBADMSG if there is a control message at the
beginning of the read queue of the stream head. This is the default
behavior.

RPROTDAT
Returns the control section of a message as data if a user calls
read().

RPROTDIS
Discards the control section of a message and delivers an existing
data section if a user calls read().

ioctl() with the I_SRDOPT command will fail if:

EINVAL arg does not have any of the valid values listed above.

I_GRDOPT
Supplies the currently valid setting for the reading in the int variable pointed to
by arg. The settings for the reading are described under read().

ioctl() with the I_GRDOPT command will fail if:

EFAULT arg references a point outside the reserved address space.

ioctl Functions and variables in alphabetical order

546 U23711-J-Z125-5-76

I_NREAD Counts the number of data bytes in the data blocks of the first message in the
read queue of the stream head and stores this number in the variable pointed
to by arg. The result for this command is the number of messages in the read
queue of the stream head. If, for example, the value 0 is returned in arg, but the
ioctl call returns a result greater than 0, this indicates that the next message
in the queue has the length 0.

ioctl() with the I_NREAD command will fail if:

EFAULT arg references a point outside the reserved address space.

I_FDINSERT
Generates a message from user-defined buffers, adds information about a
different stream and sends the message downstream. The message contains a
control section and an optional data section. The data and control sections to
be sent are stored in separate buffers (see below).

arg points to an strfdinsert structure that has the following components:

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;
Int fildes;
int offset;

The len component in the strbuf structure ctlbuf (see putmsg()) must be the
same as the size of a pointer plus the number of bytes for the control information
of this message. fildes in the strfdinsert structure specifies the file descriptor
of the other stream. offset must be aligned with a word boundary and specifies
the number of bytes after which I_FDINSERT stores a pointer after the start of
the control buffer. This pointer is the address of the read queue structure of the
driver for the stream that corresponds to fildes in the strfdinsert structure.
The len component in the strbuf structure databuf must be set to the same as
the number of bytes to be sent as data information with the message, or 0 if no
data section is to be sent.

flags indicates what type of message is to be generated. A normal message is
generated if flags is 0, and a high-priority message is generated if flags is
RS_HIPRI. With normal messages, I_FDINSERT blocks if the write queue of the
stream is full because of the internal flow control. With high-priority messages,
I_FDINSERT does not block in this case. With normal messages, I_FDINSERT
does not block if the write queue is full but O_NDELAY or O_NONBLOCK is set.
Instead, the call fails and errno is then EAGAIN.

I_FDINSERT also blocks if the call is waiting for the availability of message
blocks and is not prevented from doing this because internal resources are
missing. Here it is irrelevant which priority is set and whether O_NDELAY or
O_NONBLOCK were specified. No partial message is sent.

Functions and variables in alphabetical order ioctl

U23711-J-Z125-5-76 547

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

ioctl() with the I_FDINSERT command will fail if:

EAGAIN A message without priority was specified, O_NDELAY or
O_NONBLOCK is set and the write queue of the stream is full because
of the internal flow control.

EAGAIN or ENOSR
 No buffers could be reserved for the message to be generated,

because there was too little storage space available under
STREAMS.

EINVAL One of the following applies:
– fildes in the strfdinsert structure is not a valid open file

descriptor for a stream.
– The size of a pointer plus offset is greater than the len

component of the buffer specified by ctlptr.
– offset does not specify a correctly aligned location in the data

buffer.
– flags has an undefined value.

ENXIO A hang-up signal was received for fildes in the ioctl call or for fildes
in the strfdinsert structure.

ERANGE The len component for the buffer specified by databuf is not in the
range defined by the values for the maximum and minimum packet
size of the highest module in the stream. Or the len component for
the buffer specified by databuf is greater than the configured
maximum size of the data section of a message. Or the len
component for the buffer specified by ctlbuf is greater than the
configured maximum size of the control section of a message.

EFAULT arg references a point outside the reserved address space, or the
buffer area specified in ctlbuf or databuf is outside the reserved
address space.

I_FDINSERT can also fail if an error message by the head of the stream is
received which belongs to fildes in the strfdinsert structure. In this case,
errno has the value in the message.

I_STR Generates an internal ioctl message from the data to which arg points and
sends this message downstream.

This mechanism is provided for sending user-defined ioctl() requests
downstream to modules and drivers. It allows information to be sent with
ioctl() and returns to the user all information that is sent upstream from the
downstream recipient. I_STR blocks until the system responds with a positive
or negative confirmation, or until a timeout occurs after a certain length of time.
If a timeout occurs, the call fails with errno set to ETIME.

ioctl Functions and variables in alphabetical order

548 U23711-J-Z125-5-76

There can never be more than one active I_STR call in a stream. Other I_STR
calls will block until the active I_STR call terminates at the stream head. The
default value for a timeout with these requests is 15 seconds. O_NDELAY and
O_NONBLOCK (see open()) do not affect this call.

For requests to be sent downstream, arg must point to an strioctl structure
containing the following components:

int ic_cmd;
int ic_timout;
int ic_len;
char *ic_dp;

ic_cmd is the internal ioctl() command that is to be sent to a module located
downstream or a driver, and ic_timout is the number of seconds for a timeout
(-1 = infinite, 0 = default, > 0 = as specified). ic_len is the number of bytes in the
data argument and ic_dp is a pointer to the data argument. The ic_len
component has two uses: at input it contains the length of the transferred data
argument, and on return from the command it contains the number of bytes
returned to the user (the buffer pointed to by ic_dp should be large enough to
hold the maximum length of the data to be returned from a module or driver).

The stream head converts the information in the strioctl structure into an
internal ioctl() message and sends it downstream.

ioctl() with the I_STR command will fail if:

EAGAIN or ENOSR
 Due to insufficient storage space, no buffer could be reserved for

the ioctl() message.

EINVAL ic_len is less than 0, or ic_len is greater than the configured
maximum size of the data section of a message, or ic_timout is less
than -1.

ENXIO Hang-up signal received for fildes.

ETIME A downstream ioctl() call received a timeout before a confir-
mation was received.

EFAULT arg references a point outside the reserved address space, or the
buffer area that was specified by ic_dp and ic_len (separate for sent
and received data) is outside the reserved address space.

An I_STR call can also fail if an error message or hang-up signal message is
received by the head of the stream while it is waiting for confirmation. In
addition, an error ID can be returned in the positive or negative message if the
ioctl command fails further downstream. In this case, errno has the value in
the message.

Functions and variables in alphabetical order ioctl

U23711-J-Z125-5-76 549

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

I_SWROPT Defines the settings for the writing, where the value of the arg argument is
used. arg can have the following values:

SNDZERO Sends a message of length 0 downstream if a write() call with 0
bytes occurs.
If in this case no message of length 0 is to be sent, then this bit must
not be set in arg.

ioctl() with the I_SWROPT command will fail if:

EINVAL arg does not contain the value specified above.

I_GWROPT
Returns the currently valid setting for the writing in the int variable pointed to
by arg (see under I_SWROPT).

I_SENDFD
Requests the stream assigned to fildes to send a message containing a file
pointer to the stream head at the other end of the pipe. The file pointer corre-
sponds to the arg argument, which must be an open file descriptor.

I_SENDFD converts arg into the corresponding file pointer. The command
reserves a message block and inserts the file pointer in this block. The user ID
and group ID of the sending process are also inserted. This message is entered
directly in the read queue of the stream head at the other end of the pipe.

ioctl() with the I_SENDFD command will fail if:

EAGAIN The sending stream is not in a position to reserve a message block
that can include the file pointer, or the read queue of the receiving
stream head is full and cannot take the message sent by I_SENDFD.

EBADF arg is not a valid open file descriptor.

EINVAL fildes is not linked with a pipe.

ENXIO Hang-up signal received for fildes.

I_RECVFD
Determines the assignment to an open file description of a message that was
sent with the I_SENDFD command for ioctl() via a pipe and reserves a new
file descriptor in the calling process which refers to this open file description. arg
is a pointer to a data buffer large enough to take an strrecvfd data structure.
The strrecvfd structure is defined in stropts.h and contains the following
components:

int fd;
uid_t uid;
gid_t gid;
char fill[8];

ioctl Functions and variables in alphabetical order

550 U23711-J-Z125-5-76

 fd is a file descriptor. uid and gid are the user ID and group ID of the sending
stream.

If O_NDELAY and O_NONBLOCK are not set (see open()), then I_RECVFD blocks
until there is a message at the stream head. If O_NDELAY or O_NONBLOCK is set,
I_RECVFD will fail, with errno equaling EAGAIN, if there is no message at the
stream head.

If the message at the stream head is a message that was sent by I_SENDFD, a
new user file descriptor is reserved for the file pointer contained in the message.
The new file descriptor is stored in the fd component of the strrecvfd
structure. The structure is copied into the data buffer of the user to which arg
points.

ioctl() with the I_RECVFD command will fail if:

EAGAIN There is no message in the read queue of the stream head and
O_NDELAY or O_NONBLOCK is set.

EBADMSG The message in the read queue of the stream head does not
contain a transferred file descriptor.

EMFILE NOFILES file descriptors are already open.

ENXIO Hang-up signal received for fildes.

EOVERFLOW
uid or gid is too big to be stored in the structure pointed to by arg.

EFAULT arg references a point outside the reserved address space.

I_LIST Allows a user to output all module names in the stream, including the highest
driver. If arg is zero, the result of the call is the number of modules (including
drivers) in the stream referenced by fildes. This allows the user to reserve
enough space for the module names. If arg is not zero, this argument should
point to an str_list structure which has the following components:

int sl_nmods;
struct str_mlist *sl_modlist;

The str_mlist structure has the following components:

char l_name[FMNAMESZ+1];

sl_nmods specifies the number of entries reserved by the user in the array. After
the return, sl_modlist contains the list of module names and sl_nmods contains
the number of entries in the sl_modlist array; this is the number of all modules
including the driver. The return value of ioctl() is 0. When the entries are
written, they start at the top of the stream and continue downstream until either
the end of the stream or the number of desired modules (sl_nmods) is reached.

Functions and variables in alphabetical order ioctl

U23711-J-Z125-5-76 551

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

ioctl() with the I_LIST command will fail if:

EINVAL The sl_nmods component is less than 1.

EAGAIN or ENOSR
 Buffer could not be reserved.

I_ATMARK
Enables the user to check whether the current message in the read queue of
the stream head was “marked” by a module further downstream. arg defines
how the check is carried out if there can be more than one “marked” message
in the read queue of the stream head. It can take the following values:

ANYMARK Check whether the message is marked.

LASTMARK Check whether the message is the last one marked in the queue.

The result is 1 if the relevant marking condition is fulfilled. Otherwise it is 0. In
the event of an error, errno can have the following value:

ioctl() with the I_ATMARK command will fail if:

EINVAL The value of arg is invalid.

I_CKBAND
Checks whether a message exists in a given priority band in the read queue of
the stream head. The result is 1 if such a message exists, or -1 in the event of
an error. arg should be an integer containing the value of the priority band to be
checked.

ioctl() with the I_CKBAND command will fail if:

EINVAL The value of arg is invalid.

I_GETBAND
Returns the priority band of the first message in the read queue of the stream
head in the integer value pointed to by arg.

ioctl() with the I_GETBAND command will fail if:

ENODATA There is no message in the read queue of the stream head.

I_CANPUT
Checks whether a band can be written to. arg is the same as the priority band
to be checked. The result is 0 if the priority band arg is subject to flow control, 1
if the band can be written to, or -1 for an error.

ioctl() with the I_CANPUT command will fail if:

EINVAL The value of arg is invalid.

ioctl Functions and variables in alphabetical order

552 U23711-J-Z125-5-76

I_SETCLTIME
Enables a user to define how long the stream head is to wait if a stream is
closed while there is still data in the write queue. Before it closes every module
and every driver, the stream head waits the specified length of time so that the
data can still be transferred. If there is still data in the queue after the wait time,
this data is discarded. arg is a pointer to the number of milliseconds to be
waited, always rounded up to the next highest valid value in the system. The
default value is 15 seconds.

ioctl() with the I_SETCLTIME command will fail if:

EINVAL The value of arg is invalid.

I_GETCLTIME
Returns the wait time when closing in the long variable pointed to by arg.

Multiplex configurations under STREAMS

I_LINK Links two data streams, where fildes is the file descriptor of the stream linked to
the multiplex driver, and arg is the file descriptor of the stream that is linked to
another driver. The stream specified by arg is linked below the multiplex driver.
I_LINK expects the multiplex driver to send a confirmation to the stream head.
This call supplies a multiplexer identifier (this identifier is necessary for unlinking
the multiplexer; see I_UNLINK) if successful and -1 if an error occurs.

ioctl() with the I_LINK command will fail if:

ENXIO Hang-up signal received for fildes.

ETIME Timeout occurred before the confirmation was received by the
stream head.

EAGAIN or ENOSR
 Insufficient memory available under STREAMS to execute I_LINK.

EBADF arg is not a valid open file descriptor.

EINVAL One of the following errors has occurred:

– The stream assigned to fildes does not support multiplexing.
– arg is not a stream, or is already linked under a multiplexer.
– The specified link would create a loop in the resulting configu-

ration, i.e. a particular driver exists in more than one place in a
multiplex configuration.

– fildes is the file descriptor of a pipe or a FIFO file.

Functions and variables in alphabetical order ioctl

U23711-J-Z125-5-76 553

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

The I_LINK operation can also fail if it waits for the multiplex driver to confirm
the link request. This can happen if a message arrives at the stream head of
fildes, indicating an error or a hang-up signal. In addition, the positive or
negative confirmation can contain an error ID. In these cases, I_LINK fails, with
errno equal to the value in the message.

I_UNLINK
Cancels the link between the two data streams specified by fildes and arg. fildes
is the file descriptor of the stream linked to the multiplex driver. arg is the multi-
plexer identifier that was returned by I_LINK. If arg equals MUXID_ALL, all data
streams that were linked with fildes are unlinked. Like I_LINK, this command
also expects the multiplex driver to confirm cancellation of the link.

ioctl() with the I_UNLINK command will fail if:

ENXIO Hang-up signal received for fildes.

ETIME Timeout occurred before a confirmation was received by the stream
head.

EAGAIN or ENOSR
 Not enough storage space can be reserved for the confirmation.

EINVAL arg is not a valid multiplexer identifier, or fildes is not the stream for
which the I_LINK operation supplied by arg was executed.

EINVAL fildes is the file descriptor of a pipe or FIFO file.

The I_UNLINK operation can also fail if it waits for the multiplex driver to confirm
the link request. This can happen if a message arrives at the stream head of
fildes indicating an error or a hang-up signal. In addition, the positive or negative
confirmation can contain an error ID. In these cases, I_UNLINK will fail, with
errno having the value in the message.

I_PLINK Links two data streams, where fildes is the file descriptor of the stream that is
linked to the multiplex driver, and arg is the file descriptor of the stream that is
linked to another driver. The stream specified by arg is linked below the
multiplex driver via a constant link. This call generates a constant link, which
can also exist if the file descriptor fildes, which is assigned to the upper stream
of the multiplex driver, is closed. I_PLINK expects the multiplex driver to send
confirmation to the stream head. This call supplies a multiplexer identifier (this
identifier is necessary for unlinking the multiplexer; see I_PUNLINK) if
successful and -1 if an error occurs.

ioctl() with the I_PLINK command will fail if:

ENXIO Hang-up signal received for fildes.

ETIME A timeout occurred before a confirmation was received by the
stream head.

ioctl Functions and variables in alphabetical order

554 U23711-J-Z125-5-76

EAGAIN or ENOSR
 Insufficient memory available under STREAMS to execute I_PLINK.

EBADF arg is not a valid open file descriptor.

EINVAL One of the following errors has occurred:

– The stream assigned to fildes does not support multiplexing.
– arg is not a stream, or it is already mounted under a multiplexer.
– The specified link would generate a loop in the resulting config-

uration, i.e. a particular driver exists in more than one place in a
multiplex configuration.

– fildes is the file descriptor of a pipe or a FIFO file.

The I_PLINK operation can also fail if it waits for the multiplex driver to
acknowledge the link request. This can happen if a message arrives at the
stream head of fildes indicating an error or a hang-up signal. In addition, the
positive or negative acknowledgement can contain an error ID. In these cases,
I_PLINK fails, with errno having the value in the message.

I_PUNLINK
Cancels the constant link between the two data streams specified by fildes and
arg. fildes is the file descriptor of the stream linked to the multiplex driver. arg is
the multiplexer identifier that was returned by I_PLINK when a stream was
mounted under the multiplex driver. If arg equals MUXID_ALL, all data streams
that were connected to fildes via constant links are unmounted. Like I_PLINK,
this command also expects the multiplex driver to acknowledge the cancellation
of the connection.

ioctl() with the I_PUNLINK command will fail if:

ENXIO Hang-up signal received for fildes.

ETIME Timeout occurred before a confirmation was received by the stream
head.

EAGAIN or ENOSR Buffer for the confirmation could not be reserved.

EINVAL Invalid multiplexer identifier.

EINVAL fildes is the file descriptor of a pipe or a FIFO file.

The I_PUNLINK operation can also fail if it waits for the multiplex driver to
acknowledge the link request. This can happen if a message arrives at the
stream head of fildes indicating an error or a hang-up signal. In addition, the
positive or negative acknowledgement can contain an error ID. In these cases,
I_PUNLINK fails, with errno set to the value in the message.

Functions and variables in alphabetical order ioctl

U23711-J-Z125-5-76 555

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Return val. non-negative integer
if successful. The value returned depends on the relevant device control
function.

-1 if an error occurs. errno is set to indicate the error.

Errors ioctl() will fail with any file type if one or more of the following apply:

EBADF fildes is not a valid open file descriptor.

EINTR A signal was caught during the ioctl() system call.

EINVAL The stream or multiplexer identified by fildes is (directly or indirectly)
mounted under a multiplexer.

ioctl() will also fail if the device driver detects an error. In this case, the error is forwarded
to the caller by ioctl() without any changes. Not all of the errors listed below can occur
with any driver:

EINVAL request or arg is not valid for this device.

EIO A physical I/O error has occurred.

ENOTTY fildes does not identify a device driver/STREAMS file which accepts control
functions.

ENXIO request and arg are valid for this device driver but the requested service
cannot be executed on this device.

ENODEV fildes identifies a valid STREAMS file, but the associated device driver does
not support the ioctl() function.

ENOLINK fildes is located on a remote computer and the link to this computer is no
longer active.

EFAULT request requests a data transfer to or from a buffer pointed to by arg, but part
of the buffer is outside the address space allocated to the process.

If a stream is connected downstream from a multiplexer, every ioctl() command except
for I_UNLINK and I_PUNLINK leads to the error EINVAL.

See also streamio() in “Programmer Reference Guide: STREAMS“,
termio() in “System Administrator Reference Guide“,
close(), fcntl(), getmsg(), open(), pipe(), poll(), putmsg(), read(),
sigaction(), write(), stropts.h.

isalnum Functions and variables in alphabetical order

556 U23711-J-Z125-5-76

isalnum - test for alphanumeric character

Syntax #include <ctype.h>

int isalnum(int c);

Description isalnum() tests whether the character c is a letter or a digit.

In all cases, the argument c is an int, the value of which must be representable as an
unsigned char or must equal the value of the macro EOF. If the argument c has any other
value, the behavior is undefined.

Return val. ≠ 0 Alphanumeric

0 Not alphanumeric

Notes isalnum() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef isalnum).

The behavior of isalnum() is determined by the classes alpha and digit of the current
locale. The current locale is the C locale, unless it was explicitly changed using
setlocale().

See also isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), setlocale(), ctype.h, stdio.h.

Functions and variables in alphabetical order isalpha

U23711-J-Z125-5-76 557

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

isalpha - test for alphabetic character

Syntax #include <ctype.h>

int isalpha(int c);

Description isalpha() tests whether the character c is a letter.

In all cases, the argument c is an int, the value of which must be representable as an
unsigned char or must equal the value of the macro EOF. If the argument c has any other
value, the behavior is undefined.

Return val. ≠ 0 Letter

0 Not a letteρ

Notes isalpha() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef isalpha).

The behavior of isalpha() is determined by the classes alpha and digit of the current
locale. The current locale is the C locale, unless it was explicitly changed using
setlocale().

See also isalnum(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), setlocale(), ctype.h, stdio.h.

isascii Functions and variables in alphabetical order

558 U23711-J-Z125-5-76

isascii - test for 7-bit ASCII character

Syntax #include <ctype.h>

int isascii (int c)

Description isascii() tests whether c is less than 128.
(The US-ASCII codeset is defined for values from 0 through 127).

isascii() is defined on all integer values.

BS2000
isascii() is a synonym for isebcdic(). isascii() tests whether the value of the
character c represents an EBCDIC character (values 0 - 255). ❑

Return val. ≠ 0 The value of c lies between 0 and 127 (ASCII character).

0 Not an ASCII character (values ≠ 0 - 127).

BS2000
≠ 0 The value of c lies between 0 and 255 (EBCDIC character).

0 Not an EBCDIC character (values ≠ 0 - 255). ❑

Notes isascii() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef isascii).

See also isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), isxdigit(), ctype.h, ascii_to_ebcdic(),
ebcdic_to_ascii().

Functions and variables in alphabetical order isastream / isatty

U23711-J-Z125-5-76 559

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

isastream - test file descriptor

Syntax #include <stropts.h>

int isastream(int fildes);

Description The isastream() function checks whether a file descriptor represents a STREAMS file.
fildes refers to an open file.

Return val. 1 if fildes represents a STREAMS file.

0 if fildes does not represent a STREAMS file.

-1 if an error occurs. errno is set to indicate the error.

Errors isastream() will fail if:

EBADF fildes is not a valid open file descriptor.

See also stropts.h.

isatty Functions and variables in alphabetical order

560 U23711-J-Z125-5-76

isatty - test for terminal device

Syntax #include <unistd.h>

int isatty(int fildes);

Descriptionisatty() tests whether the file descriptor specified with fildes is associated with a terminal
device.

Return val. 1 if successful. fildes is associated with a terminal.

0 if an error occurs. errno is set to indicate the error.

Errors isatty() will fail if:

EBADF fildes is not a valid file descriptor.

ENOTTY fildes is not associated with a terminal.

See also unistd.h.

Functions and variables in alphabetical order iscntrl

U23711-J-Z125-5-76 561

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

iscntrl - test for control character

Syntax #include <ctype.h>

int iscntrl(int c);

Description iscntrl() whether the character c is a control character. Control characters are
non-printable characters, e.g. for printer control.

In all cases, the argument c is an int, the value of which must be representable as an
unsigned char or must equal the value of the macro EOF. If the argument c has any other
value, the behavior is undefined.

Return val. ≠ 0 Control character

0 Not a control character

Notes iscntrl() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef iscntrl).

The behavior of iscntrl() is determined by the class cntrl of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

See also isalnum(), isalpha(), isdigit(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), setlocale(), ctype.h.

isdigit Functions and variables in alphabetical order

562 U23711-J-Z125-5-76

isdigit - test for decimal digit

Syntax #include <ctype.h>

int isdigit(int c);

Description isdigit() whether the character c is a decimal digit.

In all cases, the argument c is an int, the value of which must be representable as an
unsigned char or must equal the value of the macro EOF. If the argument c has any other
value, the behavior is undefined.

Return val. ≠ 0 Decimal digit

0 Not a decimal digit

Notes isdigit() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef isdigit).

The behavior of isdigit() is determined by the class digit of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

See also isalnum(), isalpha(), iscntrl(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), ctype.h.

Functions and variables in alphabetical order isebcdic

U23711-J-Z125-5-76 563

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

isebcdic - test for EBCDIC character (BS2000)

Syntax #include <ctype.h>

int isebcdic(int c);

Description isebcdic tests whether the value of the character c represents an EBCDIC character
(values 0 - 255).

Return val. ≠ 0 The value of c represents an EBCDIC character (values 0 - 255).

0 Not an EBCDIC character (values ≠ 0 - 255).

Notes isebcdic is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef isebcdic).

isebcdic is a synonym for isascii.

See also isalpha(), isalnum(), isascii(), iscntrl(), isdigit(), isgraph(), islower(),
isprint(), ispunct(), isspace(), isupper(), isxdigit().

isgraph Functions and variables in alphabetical order

564 U23711-J-Z125-5-76

isgraph - test for visible character

Syntax #include <ctype.h>

int isgraph(int c);

Description isgraph() tests whether c is a character with a visible representation, i.e. an alphanumeric
or a special character. Spaces are not considered to be visible.

In all cases, the argument c is an int, the value of which must be representable as an
unsigned char or must equal the value of the macro EOF. If the argument c has any other
value, the behavior is undefined.

Return val. ≠ 0 Character with a visible representation

0 Not a character with a visible representation

Notes isgraph() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef isgraph).

The behavior of isgraph() is determined by the class graph of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

See also isalnum(), isalpha(), iscntrl(), isdigit(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), setlocale(), ctype.h.

Functions and variables in alphabetical order islower / isnan

U23711-J-Z125-5-76 565

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

islower - test for lowercase letter

Syntax #include <ctype.h>

int islower(int c);

Description islower() tests whether the character c is a lowercase letter.

In all cases, the argument c is an int, the value of which must be representable as an
unsigned char or must equal the value of the macro EOF. If the argument c has any other
value, the behavior is undefined.

Return val. ≠ 0 Lowercase letter

0 Not a lowercase letter

Notes islower() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef islower).

The behavior of islower() is determined by the class lower of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

See also isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), setlocale(), ctype.h.

isnan Functions and variables in alphabetical order

566 U23711-J-Z125-5-76

isnan - test for NaN (not a number)

Syntax #include <math.h>

int isnan(double x);

Description isnan() tests whether x is not NaN.
Not NaN means that x is a valid bit pattern of a floating-point number.

Return val. 0 if x is not NaN.

Notes In this implementation, isnan() always returns the value 0, i.e. all bit patterns for floating-
point numbers are valid.

See also math.h.

Functions and variables in alphabetical order isprint

U23711-J-Z125-5-76 567

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

isprint - test for printing character

Syntax #include <ctype.h>

int isprint(int c);

Description isprint() tests whether c is a printing character, i.e. an alphanumeric character, a special
character, or a space.

In all cases, the argument c is an int, the value of which must be representable as an
unsigned char or must equal the value of the macro EOF. If the argument c has any other
value, the behavior is undefined.

Return val. ≠ 0 Printing character (alphanumeric, special character or space).

0 Non-printing character

Notes isprint() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef isprint).

The behavior of isprint() is determined by the class print of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

See also isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), ispunct(),
isspace(), isupper(), isxdigit(), setlocale(), ctype.h.

ispunct Functions and variables in alphabetical order

568 U23711-J-Z125-5-76

ispunct - test for punctuation character

Syntax #include <ctype.h>

int ispunct(int c);

Description ispunct() tests whether c is a punctuation character, i.e. not a control, alphanumeric, or
white-space character (see isspace).

In all cases, the argument c is an int, the value of which must be representable as an
unsigned char or must equal the value of the macro EOF. If the argument c has any other
value, the behavior is undefined.

Return val. ≠ 0 Punctuation character

0 Not a punctuation character

Notes ispunct() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef ispunct).

The behavior of ispunct() is determined by the class punct of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

See also isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
isspace(), isupper(), isxdigit(), setlocale(), ctype.h.

Functions and variables in alphabetical order isspace

U23711-J-Z125-5-76 569

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

isspace - test for white-space character

Syntax #include <ctype.h>

int isspace(int c);

Description isspace() tests whether c is a white-space character, i.e. a blank, horizontal tab, carriage
return, newline, form-feed, or vertical tab.

In all cases, the argument c is an int, the value of which must be representable as an
unsigned char or must equal the value of the macro EOF. If the argument c has any other
value, the behavior is undefined.

Return val. ≠ 0 White-space character

0 Not a white-space character

Notes isspace() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef isspace).

The behavior of isspace() is determined by the class space of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

See also isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isupper(), isxdigit(), setlocale(), ctype.h.

isupper Functions and variables in alphabetical order

570 U23711-J-Z125-5-76

isupper - test for uppercase letter

Syntax #include <ctype.h>

int isupper(int c);

Description isupper() tests whether the character c is an uppercase letter.

In all cases, the argument c is an int, the value of which must be representable as an
unsigned char or must equal the value of the macro EOF. If the argument c has any other
value, the behavior is undefined.

Return val. ≠ 0 Uppercase letter

0 Not an uppercase letter

Notes isupper() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef isupper).

The behavior of isupper() is determined by the class upper of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

See also isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isxdigit(), setlocale(), ctype.h.

Functions and variables in alphabetical order iswalnum

U23711-J-Z125-5-76 571

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

iswalnum - test for alphanumeric wide character

Syntax #include <wchar.h>

int iswalnum(wint_t wc);

Description iswalnum() tests whether the wide character wc is alphanumeric.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined

Return val. ≠ 0 Alphanumeric

0 Not alphanumeric

Notes iswalnum() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undefiswalnum).

The behavior of iswalnum() is determined by the classes alpha and digit of the current
locale. The current locale is the C locale, unless it was explicitly changed using
setlocale().

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also iswalpha(), iswcntrl(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), iswxdigit(), setlocale(), wchar.h,
stdio.h.

iswalpha Functions and variables in alphabetical order

572 U23711-J-Z125-5-76

iswalpha - test for alphabetic wide character

Syntax #include <wchar.h>

int iswalpha(wint_t wc);

Description iswalpha tests whether the wide character wc is alphabetic, i.e. a letter.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 Alphabetic

0 Not alphabetic

Notes iswalpha() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef iswalpha).

The behavior of iswalpha() is determined by the class alpha of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also iswalnum(), iswcntrl(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), iswxdigit(), setlocale(), wchar.h,
stdio.h.

Functions and variables in alphabetical order iswcntrl

U23711-J-Z125-5-76 573

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

iswcntrl - test for control wide character

Syntax #include <wchar.h>

int iswcntrl(wint_t wc);

Description iswcntrl() tests whether the wide character wc is a control character. Control characters
are non-printing characters, typically used for printer control.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 Control wide character code

0 Not a control wide character code

Notes iswcntrl() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef iswcntrl).

The behavior of iswcntrl() is determined by the class cntrl of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also iswalnum(), iswalpha(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), iswxdigit(), setlocale(), wchar.h.

iswctype Functions and variables in alphabetical order

574 U23711-J-Z125-5-76

iswctype - test wide character for class

Syntax #include <wchar.h>

int iswctype(wint_t wc, wctype_t charclass);

Description iswctype() tests whether the wide character wc has the character class charclass.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

Return val. ≠ 0 Wide character in character class charclass

0 Wide character not in character class charclass

Notes The twelve strings "alnum", "alpha", "blank", "cntrl", "digit", "graph", "lower",
"print", "punct", "space", "upper" and "xdigit" are reserved for the standard
character classes. In the table below, the functions in the left column are equivalent to the
functions in the right column:

The call iswctype(wc, wctype("blank")) does not have an equivalent isw * function.

See also wctype(), iswalnum(), iswalpha(), iswcntrl(), iswdigit(), iswgraph(),
iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit(),
wchar.h.

iswalnum(wc) iswctype(wc, wctype("alnum"))

iswalpha(wc) iswctype(wc, wctype("alpha"))

iswcntrl(wc) iswctype(wc, wctype("cntrl"))

iswdigit(wc) iswctype(wc, wctype("digit"))

iswgraph(wc) iswctype(wc, wctype("graph"))

iswlower(wc) iswctype(wc, wctype("lower"))

iswprint(wc) iswctype(wc, wctype("print"))

iswpunct(wc) iswctype(wc, wctype("punct"))

iswspace(wc) iswctype(wc, wctype("space"))

iswupper(wc) iswctype(wc, wctype("upper"))

iswxdigit(wc) iswctype(wc, wctype("xdigit"))

Functions and variables in alphabetical order iswdigit

U23711-J-Z125-5-76 575

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

iswdigit - test for decimal digit wide character

Syntax #include <wchar.h>

int iswdigit(wint_t wc);

Description iswdigit() tests whether the wide character wc is a decimal digit.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

Return val. ≠ 0 Decimal digit

0 Not a decimal digit

Notes iswdigit() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef iswdigit).

The behavior of iswdigit() is determined by the class digit of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

See also iswalnum(), iswalpha(), iswcntrl(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), iswxdigit(), wchar.h.

iswgraph Functions and variables in alphabetical order

576 U23711-J-Z125-5-76

iswgraph - test for visible wide character

Syntax #include <wchar.h>

int iswgraph(wint_t wc);

Description iswgraph() tests whether the wide character specified by wc is a character with a visible
representation, i.e. an alphanumeric or a special character. Spaces are not considered to
be visible.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 Character with a visible representation

0 Not a character with a visible representation

Notes iswgraph() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef iswgraph).

The behavior of iswgraph() is determined by the class graph of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also iswalnum(), iswalpha(), iswcntrl(), iswdigit(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), iswxdigit(), setlocale(), wchar.h.

Functions and variables in alphabetical order iswlower

U23711-J-Z125-5-76 577

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

iswlower - test for lowercase wide character

Syntax #include <wchar.h>

int iswlower(wint_t wc);

Description iswlower() tests whether the wide character wc is a lowercase letter.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 Lowercase letter

0 Not a lowercase letter

Notes iswlower() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef iswlower).

The behavior of iswlower() is determined by the class lower of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also iswalnum(), iswalpha(), iswcntrl(), iswdigit(), iswgraph(), iswprint(),
iswpunct(), iswspace(), iswupper(), iswxdigit(), setlocale(), wchar.h.

iswprint Functions and variables in alphabetical order

578 U23711-J-Z125-5-76

iswprint - test for printing wide character

Syntax #include <wchar.h>

int iswprint(wint_t wc);

Description iswprint() tests whether wc is a printing wide character. Printing wide characters include
alphanumeric characters, special characters, and blanks.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 Printing character (alphanumeric character, special character or blanks)

0 Not a printing character

Notes iswprint() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef iswprint).

The behavior of iswprint() is determined by the class print of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

See also iswalnum(), iswalpha(), iswcntrl(), iswdigit(), iswgraph(), iswlower(),
iswpunct(), iswspace(), iswupper(), iswxdigit(), setlocale(), wchar.h.

Functions and variables in alphabetical order iswpunct

U23711-J-Z125-5-76 579

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

iswpunct - test for punctuation wide character

Syntax #include <wchar.h>

int iswpunct(wint_t wc);

Description iswpunct() tests whether wc is a punctuation wide character, i.e. not a control,
alphanumeric or white-space wide character (see iswspace).

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 Punctuation wide character

0 Not a punctuation wide character

Notes iswpunct() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef iswpunct).

The behavior of iswpunc() is determined by the class punct of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also iswalnum(), iswalpha(), iswcntrl(), iswdigit(), iswgraph(), iswlower(),
iswprint(), iswspace(), iswupper(), iswxdigit(), setlocale(), wchar.h.

iswspace Functions and variables in alphabetical order

580 U23711-J-Z125-5-76

iswspace - test for white-space wide character

Syntax #include <wchar.h>

int iswspace(wint_t wc);

Description iswspace() tests whether wc is a white-space wide character. White-space wide
characters include: blanks, horizontal tabs, carriage returns, newlines, form-feeds, and
vertical tabs.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 White-space wide character

0 Not a white-space wide character

Notes iswspace() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef iswspace).

The behavior of iswspace() is determined by the class space of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also iswalnum(), iswalpha(), iswcntrl(), iswdigit(), iswgraph(), iswlower(),
iswprint(), iswpunct(), iswupper(), iswxdigit(), setlocale(), wchar.h.

Functions and variables in alphabetical order iswupper

U23711-J-Z125-5-76 581

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

iswupper - test for uppercase wide character

Syntax #include <wchar.h>

int iswupper(wint_t wc);

Description iswupper() tests whether the wide character wc is an uppercase letter.

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 Uppercase letter

0 Not an uppercase letter

Notes iswupper() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef iswupper).

The behavior of isprint() is determined by the class print of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

The behavior of iswupper() is determined by the class upper of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also iswalnum(), iswalpha(), iswcntrl(), iswdigit(), iswgraph(), iswlower(),
iswprint(), iswpunct(), iswspace(), iswxdigit(), setlocale(), wchar.h.

iswxdigit Functions and variables in alphabetical order

582 U23711-J-Z125-5-76

iswxdigit - test for hexadecimal digit wide character

Syntax #include <wchar.h>

int iswxdigit(wint_t wc);

Description iswxdigit tests whether the wide character wc is a hexadecimal digit (0-9, A-F or a-f).

In all cases, wc is an argument of type wint_t, the value of which must be a wide character
code corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument wc has any other value, the behavior is undefined.

Return val. ≠ 0 Hexadecimal digit wide character code

0 Not a hexadecimal digit wide character code

Notes iswxdigit() is implemented both as a function and as a macro. To generate a function
call, the definition of the macro name must be first undefined (#undef iswxdigit).

The behavior of iswxdigit() is determined by the class xdigit of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also iswalnum(), iswalpha(), iswcntrl(), iswdigit(), iswgraph(), iswlower(),
iswprint(), iswpunct(), iswspace(), iswupper(), wchar.h.

Functions and variables in alphabetical order isxdigit

U23711-J-Z125-5-76 583

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

isxdigit - test for hexadecimal digit

Syntax #include <ctype.h>

int isxdigit(int c);

Description isxdigit tests whether the character c is a hexadecimal digit character (0-9, A-F or a-f).

In all cases, the argument c is an int, the value of which must be representable as an
unsigned char or must equal the value of the macro EOF. If the argument c has any other
value, the behavior is undefined.

Return val. ≠ 0 Hexadecimal digit

0 Not a hexadecimal digit

Notes isxdigit() is implemented both as a function and as a macro. To generate a function call,
the definition of the macro name must be first undefined (#undef isxdigit).

The behavior of isxdigit() is determined by the class xdigit of the current locale. The
current locale is the C locale, unless it was explicitly changed using setlocale().

See also isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), ctype.h.

j0, j1, jn / jrand48 Functions and variables in alphabetical order

584 U23711-J-Z125-5-76

j... j0, j1, jn - Bessel functions of first kind

Syntax #include <math.h>

double j0(double x);
double j1(double x);
double jn(int n, double x);

Description j0(), j1() and jn() compute the Bessel functions of the first kind for floating-point values
x and the integer orders 0, 1 or n.

Return val. Bessel value of x if successful.

See also y0(), y1(), yn(), math.h.

jrand48 - generate pseudo-random numbers between -231 and 231 with
initialization value

Syntax #include <stdlib.h>

long int jrand48 (unsigned short int xsubi[3]);

Description See drand48().

Functions and variables in alphabetical order kill

U23711-J-Z125-5-76 585

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

k... kill - send signal to process or process group

Syntax #include <signal.h>

Optional
#include <sys/types.h> ❑

int kill(pid_t pid, int sig);

Description If the function is called with POSIX functionality, its behavior conforms with XPG4 as
described below:

– kill() sends a signal sig to a process or a group of processes specified by pid, where
sig is either one from the list given in signal.h or 0. If sig is 0 (the null signal), error
checking is performed, but no signal is actually sent. The null signal can be used to
check the validity of pid.

– {_POSIX_SAVED_IDS} is defined on all X/Open-conformant systems. For a process to
have permission to send a signal to a process designated by pid, the real or effective
user ID of the sending process must match the real or saved set-user-ID of the receiving
process, unless the sending process has appropriate privileges.

– If pid is greater than 0, sig is sent to the process whose process ID is equal to pid.

– If pid is 0, sig is sent to all processes (excluding a number of system processes) whose
process group ID is equal to the process group ID of the sender, and for which the
process has permission to send a signal.

– If pid is -1, sig is sent to all processes (excluding system processes) for which the
process has permission to send that signal.

– If pid is negative, but not -1, sig is sent to all processes whose process group ID is equal
to the absolute value of pid, and for which the process has permission to send a signal.

– If the value of pid causes sig to be generated for the sending process, and if sig is not
blocked, either sig or at least one pending unblocked signal is delivered to the sending
process before kill() returns.

– No user ID test is applied when sending SIGCONT to a process that is a member of the
same session as the sending process.

– kill() is successful if the process has permission to send sig to any of the processes
specified by pid. If kill() fails, no signal is sent.

If threads are used, then the function affects the process or a thread in the following
manner:

– A signal is sent to a process or a process group;
The following applies to the (special) case caused by the value of pid in which sig is
generated for the sending process: If the signal is not blocked for the calling thread and

kill Functions and variables in alphabetical order

586 U23711-J-Z125-5-76

all other threads of the process block the signal or do not wait for the signal in a
sigwait() function, then sig (or at least a follow-up non-blocking signal) is sent to the
sending thread before kill() returns.

– BS2000
The following deviations in behavior must be noted if the function is called with BS2000
functionality:

– pid must be 0, so the signal is sent to the calling process.

– The following subset of the signals defined in signal.h can be used for sig:

❑

Return val. 0 upon successful completion.

-1 if an error occurs. errno is set to indicate the error.

Errors kill() will fail if:

EINVAL The value of the sig argument is an invalid or unsupported signal number.

EPERM The process does not have permission to send the signal to any receiving
process.

BS2000
EPERM is not supported. ❑

ESRCH No process or process group can be found corresponding to that specified
by pid.

See also getpid(), raise(), setsid(), sigaction(), signal.h, sys/types.h.

Signal STXIT class Meaning

SIGHUP
SIGINT
SIGILL
SIGABRT
SIGFPE
SIGKILL
SIGSEGV
SIGALRM
SIGTERM
SIGUSR1
SIGUSR2
SIGDVZ
SIGXCPU
SIGTIM
SIGINTR

ABEND
ESCPBRK
PROCHK
 -
PROCHK
 -
ERROR
RTIMER
TERM
 -
 -
PROCHK
RUNOUT
TIMER
INTR

Disconnection of link to terminal
Interrupt from the terminal with [K2]
Execution of an invalid instruction
raise signal for program abort with _exit(-1)
Error in a floating-point operation
raise signal for program abort with exit(-1)
Memory access with invalid segment access
A time interval has elapsed (real time)
Signal at program termination
Defined by the user
Defined by the user
Division by 0
CPU time has run out
A time interval has elapsed (CPU time)
SEND-MESSAGE command

Functions and variables in alphabetical order killpg

U23711-J-Z125-5-76 587

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

killpg - send signal to process group

Syntax #include <signal.h>

int killpg(pid_t pgrp, int sig);

Description killpg() sends the signal sig to the process group pgrp.

The real or effective user ID of the sending process must match the real or saved “set-user-
ID“ of the receiving process, unless the effective user ID of the sending process comes from
a user with corresponding permission. The only exception is the SIGCONT signal, which can
always be sent to any successor of the current process.

If pgrp is greater than 1, killpg(pgrp, sig) corresponds to the call of kill(-pgrp,sig).
If pgrp is less than or equal to 1, the behavior of killpg() is undefined.

Return val. See kill().

Errors See kill().

See also getpgid(), getpid(), kill(), raise(), signal.h.

l64a / labs Functions and variables in alphabetical order

588 U23711-J-Z125-5-76

l... l64a - convert 32-bit integer number to string

Syntax #include <stdlib.h>

char *l64a (long value);

Description See a64l().

labs - return long integer absolute value

Syntax #include <stdlib.h>

long int labs(long int j);

Description labs() computes the absolute value of an integer j of type long.

Return val. Absolute value of the long integer j if successful.

Notes The absolute value of the negative integer with the largest magnitude is not representable.
If a negative number with the highest magnitude (-231) is specified as the argument j, the
program will terminate with an error.

See also abs(), cabs(), stdlib.h.

Functions and variables in alphabetical order lchown

U23711-J-Z125-5-76 589

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

lchown - change owner/group of file

Syntax #include <unistd.h>

int lchown(const char *path, uid_t owner, gid_t group);

Description The lchown() function sets the owner and the group affiliation of the specified file. This is
the same as chown() unless the file consists of a symbolic link. In this case lchown()
changes the ownership of the link file, whereas chown() changes the ownership of the file
or directory to which the link refers.

If chown(), lchown() or fchown() is called by a process that does not have system
administrator status, the bit for setting the user and group IDs on execution, or S_ISUID
and S_ISGID, is deleted [see chmod()].

The operating system has the configuration option _POSIX_CHOWN_RESTRICTED to prevent
affiliation changes for chown(), lchown() and fchown() system calls. In POSIX,
_POSIX_CHOWN_RESTRICTED is active, therefore the chown(), lchown() and fchown()
system calls protect the owner of a file from having the owner IDs of his/her files changed,
and they restrict the group change of the file to the list of supplementary group IDs.

After successful completion, chown(), lchown() and fchown() mark the ST_CTIME field
of the file for update.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error. If -1 is returned, the user
ID and group ID of the file are not changed.

Errors lchown() will fail if:

EACCES Search permission is denied for a component of path.

EINVAL The value of the specified user ID or group ID is not supported, e.g. if the
value is less than 0,
or an attempt was made to access a BS2000 file.

ENAMETOOLONG
The length of the pathname exceeds {PATH_MAX}, or the length of a
component of the pathname exceeds {NAME_MAX}.

ENOENT A component of the pathname does not exist, or path points to an empty
string.

ENOTDIR A component of the pathname prefix is not a directory.

EOPNOTSUPP The path argument identifies a symbolic link and the implementation does
not support changing the owner or the group affiliation of a symbolic link.

lchown Functions and variables in alphabetical order

590 U23711-J-Z125-5-76

ELOOP Too many symbolic links were encountered in resolving path.

EPERM The effective user ID does not match the owner of the file, and the calling
process does not have the appropriate access permissions.

EROFS The file is resides on a read-only file system.

EIO An I/O error occurred while reading from or writing to the file system.

EINTR A signal was caught during execution of the function.

ENAMETOOLONG
The resolution of symbolic links in the pathname leads to an interim result
whose length exceeds {PATH_MAX}.

See also chmod(), chown(), symlink(), unistd.h.

Functions and variables in alphabetical order lcong48 / ldexp

U23711-J-Z125-5-76 591

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

lcong48 - pseudo-random number (signed long int) generator

Syntax #include <stdlib.h>

void lcong48 (unsigned short int param[7]);

Description See drand48().

ldexp - load exponent of floating-point number

Syntax #include <math.h>

double ldexp(double x, int exp);

Description ldexp() computes the quantity:
x * 2exp
where x is the mantissa and exp is the exponent.

ldexp() is the inverse function of frexp().

Return val. Value of x * 2exp
if successful.

+/-HUGE_VAL (depending on the sign of x) if an overflow occurs.
errno is set to indicate the error.

Errors ldexp() will fail if:

ERANGE Overflow.

See also frexp(), modf(), math.h.

ldiv / lfind Functions and variables in alphabetical order

592 U23711-J-Z125-5-76

ldiv - long division of integers

Syntax #include <stdlib.h>

ldiv_t ldiv(long int numer, long int denom);

Description ldiv() computes the quotient and remainder of the division of the numerator numer by the
denominator denom.

Both the arguments and the result are of type long int.

The sign of the quotient is the same as the sign of the algebraic quotient. The value of the
quotient is the highest integer less than or equal to the absolute value of the algebraic
quotient.

The remainder is expressed by the following equation:

Quotient * Divisor + Remainder = Dividend

Return val. Structure of type ldiv_t
if successful. The structure includes the quotient quot as well as the
remainder rem as long values.

See also div(), stdlib.h.

lfind - find entry in linear search table

Syntax #include <search.h>

void *lfind(const void *key, const void *base, size_t *nelp, size_t width
int (*compar) (const void *, const void *))

Description See lsearch().

Functions and variables in alphabetical order lgamma / _ _LINE_ _

U23711-J-Z125-5-76 593

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

lgamma - compute logarithm of gamma function

Syntax #include <math.h>

double lgamma(double x);

extern int signgam;

Description lgamma() computes the mathematical gamma function for a given floating-point number x:

The sign of this value is stored as +1 or -1 in the internal C variable signgam. The signgam
variable may not be defined by the user.

Return val. lgamma(x) if successful.

HUGE_VAL if the correct value results in an overflow.
errno is set to indicate the error.

HUGE_VAL if x is a non-positive integer.
errno is set to indicate the error.

Errors lgamma() will fail if:

ERANGE Overflow; the return value is too large.

EDOM x is a non-positive integer.

See also gamma(), math.h.

_ _LINE_ _ - macro for current source program line number

Syntax _ _LINE_ _

Description This macro generates the current line number of the source program as a decimal number.

Notes This macro need not be defined in an header file. Its name is recognized and replaced by
the compiler.

e t–

0

∞

 tx 1– dt

link, linkat Functions and variables in alphabetical order

594 U23711-J-Z125-5-76

link, linkat - create link to file

Syntax #include <unistd.h>

int link(const char *path1, const char *path2);
int linkat(int fd1, const char *path1, int fd2, const char *path2, int flag);

Description link() creates a new link (directory entry) for the existing file, path1.

path1 points to a pathname naming an existing file. path2 points to a pathname naming the
new directory entry to be created. The link() function will atomically create a new link for
the existing file, and the link count of the file is incremented by one.

If path1 names a directory, link() will fail.

Upon successful completion, link() will mark for update the st_ctime structure
component of the file. The st_ctime and st_mtime fields of the directory that contains the
new entry are also marked for update.

If the link() function fails, no link is created, and the link count of the file remains
unchanged.

The calling process must have permission to access the existing file.

link() is not executed between files of different file systems.

If link(*path1, *path2) is called successfully, and both path1 and path2 point to files of
the POSIX file system, an internal link count is incremented by 1. Similarly, any successful
call to unlink(*path) or remove(*path) decreases this link count by 1. If the count = 0
and the file is no longer open for any process, the file is deleted.

The linkat() function is equivalent to the link() function except when symbolic links are
to be handled in accordance with the value transferred in the flag parameter (see below),
or when the path1 or path2 parameter specifies a relative path. If path1 specifies a relative
pathname, this is interpreted as a path relative to the directory connected with the file de-
scriptor fd1. If path2 specifies a relative pathname, this is interpreted as a path relative to
the directory connected with the file descriptor fd2. If a file descriptor was opened without
O_SEARCH, the function checks whether a search is permitted in the connected file descrip-
tor with the authorizations applicable for the directory. If the file descriptor was opened with
O_SEARCH, the check is not performed.

When the value AT_FDCWD was transferred to the linkat() function for the fd1 or fd2 pa-
rameter, the current directory for determining the file of the corresponding path is used.

In the flag parameter, the value AT_SYMLINK_FOLLOW, which is defined in the fnctl.h
header, can be transferred. If path1 specifies a symbolic link, a new symbolic link is gener-
ated for the destination.

Functions and variables in alphabetical order link, linkat

U23711-J-Z125-5-76 595

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Return val. 0 if successful

-1 if the process that calls link() is denied access to the file involved; errno
is set to EACCES to indicate the error.
for a call with a BS2000 file (/BS2/name); errno is set to EINVAL.

Errors link() and linkat() will fail if:

EACCES Search permission is denied for a component of either path prefix, or the
requested link requires writing in a directory with a mode that denies write
permission, or the calling process does not have permission to access the
existing file.

EEXIST The link named by path2 exists.

Extension
EFAULT path1 or path2 points outside the allocated address space.

EINTR A signal was caught during the link() system call.

EINVAL An attempt was made to access a BS2000 file.

ELOOP Too many symbolic links were encountered in resolving path1 or path2. ❑

EMLINK The number of links to the file named by path1 would exceed {LINK_MAX}.

ENAMETOOLONG
The length of path1 or path2 exceeds {PATH_MAX}, or a pathname
component is longer than {NAME_MAX}.

ENOENT A component of either path prefix does not exist; the file named by path1
does not exist; or path1 or path2 points to an empty string.

ENOSPC The directory to contain the link cannot be extended.

ENOTDIR A component of one of the paths is not a directory.

EPERM The file named by path1 is a directory, and the process does not have
appropriate privileges.

EROFS The requested link requires writing in a directory on a read-only file system.

EXDEV The link named by path2 and the file named by path1 are on different file
systems.

link, linkat Functions and variables in alphabetical order

596 U23711-J-Z125-5-76

In addition, linkat() fails if the following applies:

EACCES The file descriptor fd1 or fd2 was not opened with O_SEARCH, and the autho-
rizations applicable for the directory do not permit the directory to be
searched.

EBADF The path1 parameter does not specify an absolute pathname, and the fd1
parameter does not have the value AT_FDCWD, nor does it contain a valid
file descriptor opened for reading or searching, or the path2 parameter does
not specify an absolute pathname, and the fd2 parameter does not have the
value AT_FDCWD, nor does it contain a valid file descriptor for reading or
searching.

ENOTDIR The path1 or path2 parameter does not specify an absolute pathname, and
the corresponding file descriptor fd1 / fd2 is not connected with a directory.

EINVAL The value of the flag parameter is invalid.

Notes link() and linkat() are executed only for POSIX files

See also readlink(), remove, symlink(), unlink(), fcntl.h, unistd.h.

Functions and variables in alphabetical order llabs

U23711-J-Z125-5-76 597

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

llabs - return absolute value of an integer (long long int)

Syntax #include <stdlib.h>

long long int llabs(long long int j);

Description llabs() computes the absolute value of an integer j of type long long int.

Return val. |j| for an integer j.

undefined for overflow or underflow. errno is set to ERANGE to indicate an error.

Errors llabs() fails if:

ERANGE The absolute value of the negative integer of type long long int with the
largest magnitude is not representable. If a negative number with the high-
est magnitude is specified as the argument j, the program will terminate with
an error.

See also abs(), cabs(), labs()

lldiv Functions and variables in alphabetical order

598 U23711-J-Z125-5-76

lldiv - division of integers (long long int)

Syntax #include <stdlib.h>

lldiv_t lldiv(long long int dividend, long long int divisor);

Description lldiv() computes the quotient and remainder of the division of the numerator numer by
the denominator denom. Both the arguments and the result are of type long long int.

The sign of the quotient is the same as the sign of the algebraic quotient. The value of the
quotient is the highest integer less than or equal to the absolute value of the algebraic
quotient.

The remainder is expressed by the following equation:

Quotient * Divisor + Remainder = Dividend

Return val. Structure of type lldiv_t,
if successful. The structure includes the quotient quot as well as the
remainder rem as long long values.

See also div(), ldiv()

Functions and variables in alphabetical order llrint, llrintf, llrintl

U23711-J-Z125-5-76 599

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

llrint, llrintf, llrintl - round to nearest integer value (long long int)

Syntax #include <math.h>

long long int llrint(double x);

long long int llrintf (float x);

long long int llrintl (long double x);

Description The functions return the integer value (displayed as a number of type long long int)
nearest to x.

The returned value is rounded according to the currently set rounding mode of the
computer. If the default mode is set to ’round-to-nearest’ and the difference between x and
the rounded result is exactly 0.5, the next even integer is returned.

If the currently set rounding mode rounds infinitely in the positive direction, llrint() is
identical to ceil(). If the currently set rounding mode rounds infinitely in the negative
direction, llrint() is identical to floor().

In this version the rounding mode is set to round infinitely in the positive direction.

Return val. Integer value (type long long int) nearest to x
if successful.

Undefined for overflow or underflow. errno is set to ERANGE to indicate an error.

Errors llrint(), llrintf(), llrintl() fails if:

ERANGE The value is too large, and errno is set to indicate an error.

See also abs(), ceil(), floor(), llround(), lrint(), lround(), rint(), round()

llround, llroundf, llroundl Functions and variables in alphabetical order

600 U23711-J-Z125-5-76

llround, llroundf, llroundl - round up to next integer value (long long
int)

Syntax #include <math.h>

long long int llround(double x);

long long int llroundf (float x);

long long int llroundl (long double x);

Description The functions return the integer value (displayed as a number of type long long int)
nearest to x.

The returned value does not depend on the rounding mode currently set. If the difference
between x and the rounded result is exactly 0.5, the next highest integer is returned.

Return val. Integer value (type long long int) nearest to x
if successful.

Undefined for overflow or underflow. errno is set to ERANGE to indicate an error.

Errors llround(), llroundf(), llroundl() fails if:

ERANGE The value is too large, and errno is set to indicate an error.

Errors abs(), ceil(), floor(), llrint(), lrint(), lround(), rint(), round()

Functions and variables in alphabetical order loc1, loc2

U23711-J-Z125-5-76 601

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

loc1, loc2 - pointers to characters matched by regular expressions

Syntax #include <regexp.h>

extern char *loc1;
extern char *loc2;

Description See regexp().

Notes This function will not be supported by the X/Open standard in the future.

New applications should use fnmatch(), glob(), regcomp() and regexec(), which
guarantee full internationalized regular expression functionality (see "Regular expressions"
in the manual "POSIX Commands" [2].

localeconv Functions and variables in alphabetical order

602 U23711-J-Z125-5-76

localeconv - change components of locale

Syntax include <locale.h>

struct lconv *localeconv(void);

Description localeconv() sets the components of a structure of type struct lconv (defined in locale.h)
with the values appropriate for the formatting of numeric quantities (monetary and
otherwise) according to the current locale.

The *char members of the structure lconv are pointers to strings, any of which (except
decimal_point) can point to "", to indicate that the value is not available in the current
locale or is of zero length.

The *char members of the structure lconv are non-negative numbers, any of which can
assume the value {CHAR_MAX} (see limits.h), to indicate that the value is not available
in the current locale.

The members for non-monetary numeric values (LC_NUMERIC) are interpreted as follows:

char *decimal_point
The radix character used to format non-monetary quantities.

char *thousands_sep
The character used to separate groups of digits before the decimal-point
character in formatted non-monetary quantities.

char *grouping
A string whose elements taken as one-byte integer values indicate the size
of each group of digits in non-monetary quantities (see below).

The members for monetary numeric values (LC_MONETARY) are interpreted as follows:

char *int_curr_symbol
The international currency symbol used in the current locale. The operand
consists of a string of four characters: the first three characters contain the
alphabetic international currency symbol, as defined in ISO 4217:1897; the
fourth character, which immediately precedes the null byte, is the separator
between the international currency symbol and the monetary quantity.
In the "De.EDF04F@euro" locale the value “EUR“ is entered as an alphabet-
ical currency symbol.

char *currency_symbol
The local currency symbol applicable to the current locale.

char *mon_decimal_point
The radix character used to format monetary quantities. This member is
restricted to one byte in the ISO-C standard. If a multi-byte operand is
specified, the result is undefined.

Functions and variables in alphabetical order localeconv

U23711-J-Z125-5-76 603

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

char *mon_thousands_sep
The separator for groups of digits before the decimal point in formatted
monetary quantities. This member is restricted to one byte in the ISO-C
standard. If a multi-byte operand is specified, the result is undefined.

char *mon_grouping
A string whose elements taken as one-byte integer values indicate the size
of each group of digits in formatted monetary quantities. The operand
consists of a sequence of integers, delimited by semi-colons. Each number
specifies the number of positions in each group; the first number indicates
the size of the group that immediately precedes the decimal separator, and
the following numbers define the preceding groups. If the last number is not
equal to -1, the preceding group (if one exists) is repeatedly used for the
remaining positions. If the last number is -1, no further grouping is
performed (see below).

char *positive_sign
The string used to indicate a non-negative, formatted monetary quantity.

char *negative_sign
The string used to indicate a negative formatted monetary quantity.

char int_frac_digits
The number of decimal places to be displayed in internationally formatted
monetary quantities, where int_curr_symbol is used.

char frac_digits
The number of decimal places to be displayed in a formatted monetary
quantity, where currency_symbol is used.

char p_cs_precedes
Set to 1 if currency_symbol or int_curr_symbol precedes the value for a
non-negative formatted monetary quantity. Set to 0 if either of these
symbols follows the value.

char p_sep_by_space
Set to 0 if no space separates the currency_symbol or
int_curr_symbol from the value for a non-negative formatted monetary
quantity. Set to 1 if a space separates the symbol from the value, and set to
2 if a space separates the symbol and the sign string, if adjacent.

char n_cs_precedes
If the value of this member is 1, the currency_symbol or int_curr_symbol
precedes the value for a negative formatted monetary quantity. Otherwise,
the member is set to 0.

localeconv Functions and variables in alphabetical order

604 U23711-J-Z125-5-76

char n_sep_by_space
Set to 0 if no space separates the currency_symbol or int_curr_symbol
from the value for a negative formatted monetary quantity. Set to 1 if a space
separates the symbol from the value, and set to 2 if a space separates the
symbol and the sign string, if adjacent.

char p_sign_posn
This member is set to a value that indicates the position of the
positive_sign for a non-negative formatted monetary quantity (see
below).

char n_sign_posn
Set to a value indicating the positioning of the negative_sign for a negative
formatted monetary quantity (see below).

The elements of grouping and mon_grouping are interpreted as follows:

CHAR-MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the
digits.

other The integer value is the number of digits that comprise the current group.
The next element is examined to determine the size of the next group of
digits before the current group.

The values of p_sign_posn and n_sign_posn are interpreted as follows:

0 Parentheses surround the quantity and currency_symbol or
int_curr_symbol.

1 The sign precedes the quantity and currency_symbol or
int_curr_symbol.

2 The sign follows the quantity and currency_symbol or
int_curr_symbol.

3 The sign immediately precedes the currency_symbol or int_curr_symbol

4 The sign immediately follows the currency_symbol or
int_curr_symbol.

The implementation will behave as if no function calls localeconv().

Return val. Pointer to the structure in which the values were entered
upon successful completion.

Functions and variables in alphabetical order localeconv

U23711-J-Z125-5-76 605

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Notes The structure pointed to by the return value must not be modified by the program, but may
be overwritten by a subsequent call to localeconv(). In addition, calls to setlocale() with
the categories LC_ALL, LC_MONETARY, or LC_NUMERIC may overwrite the contents of the
structure.

Example The following table illustrates the rules which may be used by three countries to format
monetary quantities:

For these three countries, the respective values for the monetary members of the structure
returned by localeconv() are:

See also isalpha(), isascii(), nl_langinfo(), printf(), scanf(), setlocale(), strcat(),
strchr(), strcmp(), strcoll(), strcpy(), strftime(), strlen(), strpbrk(),
strspn(), strtok(), strxrfm(), strtod(), langinfo.h, local.h, section “Locale” on
page 86.

Country Positive format Negative format International format

Germany EUR 1.234,56 -EUR 1.234,56 EUR 1.234,56

Norway kr1.234,56 kr1.234,56- NOK 1.234,56

Switzerland SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56

Component value Germany Norway Switzerland

int_curr_symbol "EUR" "NOK " "CHF "

currency_symbol "?" "kr" "SFrs."

mon_decimal_point "," "," "."

mon_thousands_sep "." "." ","

mon_grouping 3;3 "\3" "\3

positive_sign "" "" ""

negative_sign "-" "-" "C"

int_frac_digits 2 2 2

frac_digits 2 2 2

p_cs_precedes 0 1 1

p_sep_by_space 1 0 0

n_cs_precedes 0 1 1

n_sep_by_space 1 0 0

p_sign_posn 1 1 1

n_sign_posn 1 2 2

localtime, localtime64 Functions and variables in alphabetical order

606 U23711-J-Z125-5-76

localtime, localtime64 - convert date and time to local time

Syntax #include <time.h>

struct tm *localtime(const time_t *clock);
struct tm *localtime64(const time64_t *clock);

Description The functions localtime() and localtime64() interpret the time specification of the
value to which clock points as the number of seconds that have elapsed since 1.1.1970
00:00:00 hrs UTC (epoch). They calculate from this the date and time in UTC and store it
in a type tm structure. Negative values are interpreted as seconds before the epoch. The
following points in time are considered invalid:
– with localtime() points in time before 13.12.1901 20:45:52 hrs UTC and after

19.01.2038 03:14:07 Uhr UTC
– with localtime64() points in time before 1.1.1900 00:00:00 hrs UTC and after

31.12.9999 23:59:59 hrs UTC.

The local time zone information is used as if the tzset function has been called.

The localtime() function corrects for the timezone and any seasonal time adjustments.

The declarations of all functions, external values, and of the tm structure are contained in
the header time.h. The tm structure is defined as follows:

struct tm {
 int tm_sec; /* Seconds - [0, 61] for skipped seconds */
 int tm_min; /* Minutes - [0, 59] */
 int tm_hour; /* Hours - [0, 23] */
 int tm_mday; /* Day of month - [1, 31] */
 int tm_mon; /* Months - [0, 11] */
 int tm_year; /* Years since 1900 */
 int tm_wday; /* Days since Sunday - [0, 6] */
 int tm_yday; /* Days since January 1 - [0, 365] */
 int tm_isdst; /* Option for daylight saving time */
};

tm_isdst is positive if daylight saving time is set, null if daylight saving time is not set, and
negative if the information is not available.

localtime() is not thread-safe. Use the reentrant function localtime_r() when needed.

BS2000
localtime() interprets the time specification of type time_t as the number of seconds
that have elapsed since January 1, 1970, 00:00:00 local time. From this number,
localtime() calculates the date and time and stores the result in a structure of type tm.

In this implementation, localtime() is equivalent to gmtime(); both functions return the
local time. ❑

Functions and variables in alphabetical order localtime, localtime64

U23711-J-Z125-5-76 607

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Return val. Pointer to the tm structure
if successful.

EOVEFLOW In case of an error NULL und errno.

Notes The asctime(), ctime(), ctime64(), gmtime(), gmtime64(), localtime() and
localtime64() functions write their result into the same internal C data area. This means
that each of these function calls overwrites the previous result of any of the other functions.

localtime() does not support local date and time formats; to ensure maximum portability,
strftime() should be used instead.

localtime() writes its result to an internal C data area that is overwritten with each call.

Furthermore, localtime() and gmtime() use the same data area, which means that if
they are called in succession, the result of the first call will be overwritten.

See also altzone, ctime(), daylight, gmtime(), localtime_r(), strftime(), tzname,
tzset(), time.h.

localtime_r Functions and variables in alphabetical order

608 U23711-J-Z125-5-76

localtime_r - convert date and time to string (thread-safe)

Syntax #include <time.h>

struct tm *localtime_r(const time_t *clock, struct tm *result);

Description localtime_r() converts the time value pointed to by clock to exactly the same time format
as localtime() and writes the result in the memory area pointed to by result (with at least
26 bytes).

Return val. Pointer to a string pointed to by result
if successful.

Null pointer if an error occurs.

See also asctime(), asctime_r(), ctime(), ctime_r(), localtime(), time().

Functions and variables in alphabetical order lockf

U23711-J-Z125-5-76 609

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

lockf - lock file section

Name lockf, lockf64

Syntax #include <unistd.h>

int lockf(int fildes, int function, off_t size);
int lockf64(int fildes, int function, off64_t size);

Description lockf() is used to lock file sections, whereby recommended or mandatory write locks
depend on the respective mode bits of the file (see chmod()). Lock calls from other
processes attempting to lock an already locked file section either cause an error value to
be returned or they pause until the resource is released. All locks for a process are removed
if the process is terminated. lockf() can be used on normal files.

fildes is an open file descriptor. The file descriptor must have O_WRONLY or O_RDWR
permission so that the lock can be set up with this function call.

function is control value which specifies the measures to be taken. The permissible values
for function are defined as follows in unistd.h:

 #define F_ULOCK 0 /* Release locked section */
 #define F_LOCK 1 /* Lock section exclusively */
 #define F_TLOCK 2 /* Test section and lock it exclusively */
 #define F_TEST 3 /* Test section for locks of other processes */

All other values of function are reserved for future extensions and lead to an error message
if they are not implemented.

F_TEST is used to determine whether a section contains a lock from another process.
F_LOCK and F_TLOCK each lock a section of a file if this section is
available. F_ULOCK removes the locks of a file section.

size is the number of contiguous bytes to be locked or unlocked. The resource to be locked
or unlocked begins at the current offset in the file and extends forward for a positive size and
backward for a negative size (the preceding bytes up to but not including the current offset).
If size is zero, the section from the current offset to the largest file offset is locked, i.e. from
the current offset up to the current or any future end of file. An area does not need to be
allocated to a file in order to be locked, because these locks can also extend beyond the
end of the file.

The sections locked with F_LOCK or F_TLOCK can contain or be contained in all or part
of a section which was previously locked by the same process. If this situation occurs in this
or neighboring sections, the sections are combined into one section. If the request requires
a new element to be added to the table of active locks and this table is already full, an error
message is issued and the new section is not locked.

lockf Functions and variables in alphabetical order

610 U23711-J-Z125-5-76

The requirements of F_LOCK and F_TLOCK differ only in the action that is taken if the
resource is not available. F_LOCK causes the calling process to pause until the resource
is available. F_TLOCK causes the function to return -1 and set errno to the EACCES error
if the section is already locked by another process.

Locked sections are released by the first close call issued by the process which set the
lock for a file descriptor of the associated file.

F_ULOCK requests can fully or partially release one or more locked sections controlled by
the process. Locked sections are unlocked as of the point of the offset until size bytes have
been unlocked or until the end of the file if size has the value (off_t)0. If the sections are
not fully unlocked, the remaining sections stay locked by the process. The release of the
middle segment of a locked section requires an additional entry in the table of active locks.
If this table is full, errno is set to ENOLK and the requested section is not released.

A deadlock situation can arise if a process that controls a locked resource is made to pause
by a request for the locked resource of another process. Therefore when lockf() or
fcntl() are called, a check is first made for possible deadlocks before the
process is suspended until a locked resource is released. If the waiting for a locked
resource would cause a deadlock, the call fails and errno is set to EDEADLK.

Simultaneous locking with lockf() and fcntl() leads to undefined interactions.

The waiting for a resource is interrupted with a random signal. The alarm() system call
can be used for the provision of a time lock for applications which
require such a facility.

There is no difference in functionality between lock() and lock64() except that
lockf64() the size of the area to be locked is specified in an offset type off64_t.

If threads are used, then the function affects the process or a thread in the following
manner:

File section is locked, lock calls from other threads that attempt to lock a file section that is
already locked will result in the return of an error number or the calling thread will be blocked
until the section is released. All locks for a process are deleted when the process is termi-
nated.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error. Existing locks are not
changed.

Functions and variables in alphabetical order lockf

U23711-J-Z125-5-76 611

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Errors lockf() and lockf64() will fail if:

EBADF fildes is not a valid open file descriptor, or function is F_LOCK or F_TLOCK and
the file addressed via fildes is not opened for writing.

EACCES function is F_TLOCK or F_TEST, and the section is already locked by another
process.

EDEADLK function is F_LOCK and a deadlock would occur.

EINTR A signal was caught during execution of the function.

EAGAIN function is F_LOCK or F_TLOCK and the file was generated with mmap().

ENOLCK function is F_LOCK, F_TLOCK or F_ULOCK, and there is no longer enough
storage space for additional entries in the lock table.

EINVAL fildes points to a file type that cannot be locked in this implementation, or
the contents of function are invalid, or
the sum of size plus the current file offset is less than 0 or greater than the
highest permissible file offset.

ECOMM fildes is on a remote computer and the link to this computer is no longer
active.

EOVERFLOW The offset of the first byte or, when the size is not equal to 0, the last byte in
the requested section cannot be represented correctly in an object of type
off_t.

Notes Unexpected events can occur in processes that buffer in the address space of the user. The
process can later read or write data that is or was locked. The standard I/O package is the
most common cause of unexpected buffering. Instead of this, simpler functions should be
used which work unbuffered, e.g. open().

Because the errno variable will in future be set to EAGAIN and not to EACCES if a file section
is already locked by another process, portable user programs must expect and check both
values.

The alarm() function can be used to monitor a timeout which may occur.

See also alarm(), chmod(), close(), creat(), fcntl(), mmap(), open(), read(),
write(), unistd.h.

locs / log Functions and variables in alphabetical order

612 U23711-J-Z125-5-76

locs - stop regular expression matching in string

Syntax #include <regexp.h>

extern char *locs;

Description See regexp().

Notes This function will not be supported by the X/Open standard in the future.

New applications should use fnmatch(), glob(), regcomp() and regexec(), which
guarantee full internationalized regular expression functionality (see "Regular expressions"
in the manual "POSIX Commands" [2].

log - natural logarithm function

Syntax #include <math.h>

double log(double x);

Description log() computes the natural logarithm of the positive floating-point number x to the base e.

Return val. ln(x) for a positive x.

-HUGE_VAL if x is less than or equal to 0.
errno is set to indicate the error.

Errors log() will fail if:

EDOM The value of x is negative.

ERANGE The value of x is 0.

See also exp(), log10(), pow(), sqrt(), math.h.

Functions and variables in alphabetical order log10 / log1p

U23711-J-Z125-5-76 613

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

log10 - base 10 logarithm function

Syntax #include <math.h>

double log10(double x);

Description log10() computes the natural logarithm of the positive floating-point number x to the
base 10.

Return val. lg(x) for a positive x.

-HUGE_VAL if x is less than or equal to 0.
errno is set to indicate the error.

Errors log10() will fail if:

EDOM The value of x is negative.

ERANGE The value of x is 0.

See also exp(), log(), pow(), sqrt(), math.h.

log1p - compute natural log

Syntax #include <math.h>

double log1p (double x);

Description The log1p() function computes loge (1.0 + x), where x must be greater than -1.0.

Return val. ln (1.0 + x) if successful.

-HUGE_VAL if x ≤ -1.0.

Errors log1p() will fail if:

EDOM The value of x is less than -1.0.

See also log(), math.h.

logb Functions and variables in alphabetical order

614 U23711-J-Z125-5-76

logb - get exponent part of floating-point number

Syntax #include <math.h>

double logb(double x);

Description logb() is identical to ilogb(), except that logb() does not return the exponent
part of x as int, but as a double-precision signed floating-point number.

Return val. Exponent part of x
if successful

-HUGE_VAL for x = 0.0. errno is set to indicate the error.

Errors logb() will fail if:

EDOM The value of x is 0.0.

See also ilogb(), math.h.

Functions and variables in alphabetical order _longjmp, _setjmp

U23711-J-Z125-5-76 615

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

_longjmp, _setjmp - non-local jump (without signal mask)

Syntax #include <setjmp.h>

void _longjmp(jmp_buf env, int val);

int _setjmp(jmp_buf env);

Description The _longjmp() and _setjmp() functions are identical to longjmp() and setjmp()
respectively, except that they leave the signal mask unchanged.

If _lngjmp() is called without env having been previously initialized by _setjmp(), or if the
last _setjmp() call was in a function which has returned in the meantime, the behavior is
undefined.

Return val. See longjmp() and setjmp().

Notes Errors can occur if _longjmp() is executed and the environment in which _setjmp() was
executed no longer exists. The environment of the _setjmp() call no longer exists if the
function containing the call terminates, or leaves the save area with the automatic variables.
This error might not be detected, which leads to _longjmp() being executed. In this case
the contents of the save area are unpredictable. This error can also cause the process to
terminate. When the function returns, the result is undefined.

If a pointer to an area that was not generated by setjmp(), _setjmp() or sigsetjmp()
is passed to longjmp(), _longjmp() or siglongjmp(), or if the area was changed by the
user, the errors described above as well as addition problems can occur.

_longjmp() and _setjmp() are offered for reasons of compatibility. New applications
should use siglongjmp() or sigsetjmp().

See also longjmp(), setjmp(), siglongjmp(), sigsetjmp(), setjmp.h.

longjmp Functions and variables in alphabetical order

616 U23711-J-Z125-5-76

longjmp - execute non-local jump

Syntax #include <setjmp.h>

void longjmp(jmp_buf env, int val);

Description longjmp() can only be used in combination with setjmp(). A call to longjmp() causes
the program to branch to a position previously saved by setjmp(). In contrast to goto
jumps, which are only permitted within the same function (i.e. locally), longjmp() allows
jumps from any given function to any other active function (i.e. non-local jumps).

setjmp() saves the current process environment (address in the C runtime stack, program
counter, register contents) in a variable of type jmp_buf (see setjmp.h). longjmp()
restores the process environment saved by setjmp(), and the program is then continued
with the statement immediately following the setjmp() call.

If no call to setjmp() precedes the longjmp() call, or if the function containing the
setjmp() call has already completed execution, the results are undefined.

env is the array in which setjmp() stores its values (see setjmp.h).

val is an integer that is interpreted as the return value of the setjmp call when the process
returns. If val is equal to 0, setjmp() returns a value of 1; 0 would imply that control was
transferred "normally" to the position after the setjmp() call, i.e. that no branch was made
with longjmp() (see also setjmp()).

All accessible objects will have the same values as when longjmp() was called, except
for the values of "automatic" objects (i.e. objects of automatic storage duration), which are
undefined under the following conditions:

– They are local to the function containing the corresponding setjmp call.

– They are not of type volatile.

– They are changed between the setjmp and longjmp calls.

Since longjmp() bypasses the usual function call and return mechanisms, longjmp() will
execute correctly in contexts of interrupts, signals and any of their associated functions.
However, if longjmp() is invoked from a nested signal handler (that is, from a function
invoked as a result of a signal raised during the handling of another signal), the behavior is
undefined.

After longjmp() is completed, program execution continues as if the corresponding call to
setjmp() had just returned the value specified by val. The longjmp() function cannot
cause setjmp() to return 0; if val is 0, setjmp() returns 1.

The result of a call to this function is undefined if the jmp_buf structure was not initialized
in the calling thread.

Functions and variables in alphabetical order longjmp

U23711-J-Z125-5-76 617

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

The jmp_buf structure must be initialized by setjmp(). This must be done in the same
thread when threads are used.

Notes Non-local jumps are useful in the handling of interrupts (see signal()). For example, if
error handling or interrupt handling is carried out in routines on a low level (i.e. when a
number of previously called functions are still active), longjmp() and setjmp() can be
used to circumvent normal processing of still active functions and immediately branch to a
function on a higher level. A longjmp call from an interrupt or error handling routine flushes
the entries in the runtime stack up to the position marked by setjmp(). In other words,
functions that were active thus far on a lower level are now no longer active, and the
program is continued on a higher level.

When program execution is resumed, the variables will have the same values as after a
goto call, i.e. the global variables will have the values they had at the time of the longjmp
call, and the register variables and other local variables will be undefined, i.e. should be
checked and re-initialized, if required.

See also setjmp(), sigaction(), siglongjmp(), sigsetjmp(), setjmp.h.

lrand48 Functions and variables in alphabetical order

618 U23711-J-Z125-5-76

lrand48 - generate pseudo-random numbers between 0 and 231

Syntax #include <stdlib.h>

long int lrand48 (void);

Description See drand48().

Functions and variables in alphabetical order lrint, lrintf, lrintl

U23711-J-Z125-5-76 619

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

lrint, lrintf, lrintl - round to nearest integer value (long int)

Syntax #include <math.h>

long int lrint(double x);

long int lrintf (float x);

long int lrintl (long double x);

Description The functions return the integer value (displayed as a number of type long int) nearest to
x.

The returned value is rounded according to the currently set rounding mode of the
computer. If the default mode is set to ’round-to-nearest’ and the difference between x and
the rounded result is exactly 0.5, the next even integer is returned.

If the currently set rounding mode rounds infinitely in the positive direction, lrint() is
identical to ceil(). If the currently set rounding mode rounds infinitely in the negative
direction, lrint() is identical to floor().

In this version the rounding mode is set to round infinitely in the positive direction.

Return val. Integer value (type long int) nearest to x
if successful.

Undefined for overflow or underflow. errno is set to ERANGE to indicate an error.

See also abs(), ceil(), floor(), llrint(), llround(), lround(), rint(), round()

lround, lroundf, lroundl Functions and variables in alphabetical order

620 U23711-J-Z125-5-76

lround, lroundf, lroundl - round up to next integer value (long int)

Syntax #include <math.h>

long int lround (double x);

long int lroundf (float x);

long int lroundl (long double x);

Description The functions return the integer value (displayed as a number of type long int) nearest to
x.

The returned value does not depend on the rounding mode currently set. If the difference
between x and the rounded result is exactly 0.5, the next highest integer is returned.

Return val. Integer value (type long int) nearest to x
if successful.

Undefined for overflow or underflow. errno is set to ERANGE to indicate an error.

See also abs(), ceil(), floor(), llrint(), llround(), lrint(), rint(), round()

Functions and variables in alphabetical order lsearch, lfind

U23711-J-Z125-5-76 621

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

lsearch, lfind - linear search and update

Syntax #include <search.h>

void *lsearch (const void *key, void * base, size_t *nelp,
size_t width, int (*compar) (const void *, const void *));

void *lfind (const void *key, const void *base, size_t *nelp,
size_t width, int (*compar)(const void *, const void *));

Description lsearch() is a linear search routine. It returns a pointer into a table indicating the position
at which a specific value may be found. If the searched value is not present, it is added at
the end of the table. key points to the entry to be sought in the table; base points to the first
element in the table; nelp points to an integer containing the current number of elements in
the table. The integer to which nelp points is incremented if the entry is added to the table.
width is the size of an element in bytes. compar points to a comparison function which the
user must supply (strcmp(), for example). It is called with two arguments that point to the
elements being compared. The function must return 0 if the elements are equal and
non-zero otherwise.

lfind() has the same effect as lsearch() except that if the entry is not found, it is not
added to the table. Instead, a null pointer is returned.

Return val. *key lfind(): if successful.
lsearch(): if successful, and also for a newly added element.

Null pointer lfind(): if an error occurs.

Notes The comparison function need not compare every byte, so arbitrary data may be contained
in the elements in addition to the values being compared.

Undefined results can occur if there is not enough room in the table to add a new item.

Extension
The pointers to the key and the element at the base of the table may be pointers of any type.

The returned value should be convertible to the type pointer to element. ❑

See also bsearch(), hsearch(), tsearch(), search.h.

lseek Functions and variables in alphabetical order

622 U23711-J-Z125-5-76

lseek - move read/write file offset

Name lseek, lseek64

Syntax
Optional
#include <sys/types.h>
#include <unistd.h>

off_t lseek (int fildes, off_t offset, int whence);
off64_t lseek64 (int fildes, off64_t offset, int whence);

Description If POSIX files are executed, the behavior of this function conforms to the XPG standard as
described below:

lseek() sets the file offset (i.e. the file position indicator) for the file with the file descriptor
fildes as follows:

If whence is SEEK_SET, the file offset is set to offset bytes.

If whence is SEEK_CUR, the file offset is set to its current location plus offset.

If whence is SEEK_END, the file offset is set to the size of the file plus offset.

The symbolic constants SEEK_SET, SEEK_CUR and SEEK_END are defined in the header
unistd.h.

The lseek() function has no effect when applied on a file that is incapable of seeking.

lseek() allows the file offset to be set beyond the end of the existing data in the file. If data
is later written at this point, subsequent reads of data in the gap will return bytes with the
value 0 until data is actually written into the gap.

lseek() will not, by itself, extend the size of a file.

There is no difference in functionality between lseek() and lseek64() except that
lseek64() uses the offset type off64_t.

BS2000
The following must be noted when executing BS2000 files:

lseek() sets the file position indicator for the file with file descriptor fildes according to the
specifications in offset and whence. This allows a file to be processed non-sequentially. The
return value of lseek() is the current position in the file.

Text files (SAM, ISAM) can be positioned absolutely to the beginning or end of the file as
well as to any position previously marked with tell().

Functions and variables in alphabetical order lseek

U23711-J-Z125-5-76 623

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Binary files (PAM, INCORE) can be positioned absolutely (see above) or relatively, i.e.
relative to beginning of file, end of file, or current position (by a desired number of bytes).
SAM are always processed as text files with elementary functions.

The significance, combination options, and effects of the offset and whence parameters differ
for text and binary files and are therefore discussed individually below.

Text files (SAM, ISAM)

Possible values:

Meaningful combinations and their effects:

Binary files (PAM, INCORE)

Possible values:

offset 0L or value determined by a previous tell/lseek call.

whence SEEK_SET (beginning of file)
SEEK_CUR (current position)
SEEK_END (end of file)

offset whence Effect

tell/lseek value SEEK_SET Position to the location marked by tell() or lseek().

0L SEEK_SET Position to the beginning of the file.

0L SEEK_CUR Check current position without moving.

0L SEEK_END Position to the end of the file.

offset Number of bytes by which the current file position indicator is to be shifted.
This number may be
– positive: position forwards toward the end of the file
– negative: position backwards toward the beginning of the file
– 0L: absolute positioning to the beginning or end of the file

whence For absolute positioning to the beginning or end of the file,
the location at which the file position indicator is to be set.
For relative positioning, the reference point from which the file position
indicator is to be moved by offset bytes:
SEEK_SET (beginning of file)
SEEK_CUR (current position)
SEEK_END (end of file)

lseek Functions and variables in alphabetical order

624 U23711-J-Z125-5-76

Meaningful combinations and their effects:

❑

Return val. New value of the file position indicator, measured in bytes from the beginning of the file,
if successful.

(off_t) -1 if an error occurs; errno is set to indicate the error. The value of the file
position indicator remains the same.

BS2000
New value of the file position indicator, measured in bytes from the beginning of the file;
for binary files,

if successful

Absolute position
in text files,
if successful.

-1 if an error occurs.

Errors lseek() and lseek64() will fail if:

EBADF fildes is not an open file descriptor.

EINVAL whence is not a proper value, or the resulting file offset would be invalid.

ESPIPE fildes is associated with a pipe or FIFO.

EOVERFLOW The resulting file offset cannot be represented correctly in the structure
pointed to by offset.

offset whence Effect

0L SEEK_SET Position to the beginning of the file.

0L SEEK_CUR Check current position without moving.

0L SEEK_END Position to the end of the file.

positive number SEEK_SET
SEEK_CUR
SEEK_END

Forward positioning from beginning of file,
from current position,
from end of file (beyond the end of file).

negative number SEEK_CUR
SEEK_END

Backward positioning from current position,
from end of file.

tell/lseek value SEEK_SET Position to the location marked by a tell() or lseek call.

Functions and variables in alphabetical order lseek

U23711-J-Z125-5-76 625

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Notes The program environment determines whether a BS2000 or POSIX file is created.

BS2000
The calls lseek (stream, 0L, SEEK_CUR) and tell(stream) are equivalent, i.e. they both seek
the current position in the file without moving it.

If new records are written to a text file (opened for creation or in append mode) and an
lseek call is issued, any data that may still be in the internal C buffer is first written to the
file and terminated with a newline character (\n).

Exception for ANSI functionality:
If the data of an ISAM file in the buffer does not end in a newline character, lseek() does
not insert a change of line (or record). In other words, the data is not automatically termi-
nated with a newline character when it is written from the buffer. Subsequent data extends
the record in the file. Consequently, when an ISAM file is read, only the newline characters
that were explicitly written by the program are read in.

If a binary file is positioned past the end of file, a gap appears between the last physically
stored data and the newly written data. Reading from this gap returns binary zeros.

It is not possible to position to system files (SYSDTA, SYSLST, SYSOUT).

Since information on the file position is stored in a field that is 4 bytes long, the following
restrictions apply to the size of SAM and ISAM files when processing them with
tell()/lseek():

SAM file

ISAM file

See also fseek(), ftell(), open(), tell(), sys/types.h, unistd.h.

Record length ≤ 2048 bytes

Number of records/block ≤ 256

Number of blocks ≤ 2048

Record length ≤ 32 KB

Number of records ≤ 32 K

lstat Functions and variables in alphabetical order

626 U23711-J-Z125-5-76

lstat - query file status

Name lstat, lstat64

Syntax #include <sys/stat.h>
#include <sys/types.h>

int lstat (const char *path, struct stat *buf);
int lstat64 (const char *path, struct stat64 *buf);

Description Like stat(), lstat() returns file attributes, except that if path points to a symbolic link,
lstat() outputs information on the link, while stat() outputs information on the file to
which the link refers.

buf is a pointer to a stat structure to which the information on the specified file is written.

There is no difference in functionality between lstat() and lstat64() except that
lstat64() returns the file status in a stat64 structure.

The stat structure contains the following elements:

mode_t st_mode; /* File mode (see mknod()) */
ino_t st_ino; /* Inode number */
dev_t st_dev; /* Device ID which contains a directory entry for
 this file */
dev_t st_rdev; /* Device ID, defined for character-special or
 block-special files only */
nlink_t st_nlink; /* Number of links */
uid_t st_uid; /* User ID of the file owner */
gid_t st_gid; /* Group ID of the file owner */
off_t st_size; /* File size in bytes */
time_t st_atime; /* Time of the last access */
time_t st_mtime; /* Time of the last data modification */
time_t st_ctime; /* Time of the last change of file status
 The time is measured in seconds as of
 January 1, 1970, 00:00:00 */
long st_blksize; /* Preferred I/O block size */
blkcnt_t st_blocks; /* Number of assigned st_blksize blocks */

The stat64 structure is defined like stat except for the following components:

ino64_t st_ino
off64_t st_size and
blkcnt64_t st_blocks

In addition to the modes described in mknod(), st_mode can also be S_IFLNK if the file
is a symbolic link.

Functions and variables in alphabetical order lstat

U23711-J-Z125-5-76 627

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

The st_size component contains the length of the pathname in the symbolic
link. Trailing zeros are not counted. The contents of all remaining components of the stat
structure are undefined.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors lstat() and lstat64() will fail if:

EACCES Search permission is denied for a component of the path.

EIO An I/O error occurred when reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
The length of the pathname exceeds{PATH_MAX}, or the length of a
component of the pathname exceeds {NAME_MAX}.

ENOTDIR A component of the pathname prefix is not a directory.

ENOENT A component of the pathname does not exist, or path points to an empty
string.

EOVERFLOW A component is too large to be stored in the structure pointed to by buf.

BS2000
EINVAL An attempt was made to access a BS2000 file.

ENAMETOOLONG
The resolving of symbolic links in the pathname leads to an interim result
whose length exceeds {PATH_MAX}.

EOVERFLOW A component is too big to be stored in the structure pointed to by buf.

EFAULT buf or path point to an invalid address.

EINTR A signal was caught during the stat() or lstat() system call.

major Functions and variables in alphabetical order

628 U23711-J-Z125-5-76

m... major - get major component of device number (extension)

Syntax #include <sys/types.h>
#include <sys/mkdev.h>

major_t major(dev_t device);

Description major() returns the major component of the device number for a named device.

Return val. Formatted device number
if successful.

NODEV if an error occurs. errno is set to indicate the error.

Errors major() will fail if:

EINVAL The device argument is NODEV,
or the major component of device is too large.

See also makedev(), minor(), mknod(), stat().

Functions and variables in alphabetical order makecontext, swapcontext

U23711-J-Z125-5-76 629

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

makecontext, swapcontext - set up user context

Syntax #include <ucontext.h>

void makecontext (ucontext_t *ucp, (void *func) (), int argc,...);
int swapcontext (ucontext_t *oucp, const ucontext_t *ucp);

Description These functions serve to implement a change of context between several control flows
within a user process.

makecontext() changes the context specified by ucp which was initialized via
getcontext(). If this context is activated with swapcontext() or setcontext() (see
getcontext()), the program execution is continued with the call of the function func.
The arguments which follow argc are passed to makecontext(). The integer value of argc
must correspond to the number of arguments that follow argc. Otherwise, the behavior is
undefined.

Before makecontext() is called, the context to be modified should be assigned a stack.
The structure element uc_link defines the context that is activated when the context
modified by makecontext() returns.

swapcontext() saves the current context in the context structure pointed to by oucp, and
sets the context to the context structure pointed to by ucp.

Return val. 0 after successful execution of swapcontext().

-1 if an error occurs. errno is set to indicate the type of the error.

Errors These functions will fail if:

ENOMEM ucp no longer has enough space in the stack to perform the operation.

See also exit(), getcontext(), sigaction(), sigprocmask(), ucontext.h.

makedev Functions and variables in alphabetical order

630 U23711-J-Z125-5-76

makedev - get formatted device number (extension)

#include <sys/types.h>
#include <sys/mkdev.h>

dev_t makedev(major_t maj, minor_t min);

Description makedev() returns a formatted device number. maj is the major number of the device, and
min is its minor number. makedev() can be used to generate a device number for mknod().

Return val. Formatted device number
if successful.

NODEV if an error occurs. errno is set to indicate the error.

Errors makedev() will fail if:

EINVAL One or both of the maj and min arguments is too large, or the device number
created from maj and min is NODEV.

See also major(), minor(), mknod(), stat().

Functions and variables in alphabetical order malloc

U23711-J-Z125-5-76 631

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

malloc - memory allocator

Syntax #include <stdlib.h>

void *malloc(size_t size);

Description malloc() allocates contiguous memory of size bytes at execution time.
If size = 0, malloc() returns a null pointer.

malloc() is part of a C-specific memory management package that internally administers
memory areas which are requested and subsequently freed. As far as possible, all new
requests are first satisfied from the areas that are already being managed and only then
from the operating system.

Return val. Pointer to the new memory area
if size was not 0 and malloc() was able to allocate new memory. This
pointer may be used for any data type.

Null pointer if malloc() was unable to provide the memory, e.g. because the available
memory space was insufficient for the request or because an error
occurred.
errno is set to indicate the error.

Errors malloc() will fail if:

ENOMEM The available memory space is insufficient.

Notes The new data area begins on a double-word boundary.

The actual length of the data area is equal to the requested length size + 8 bytes for internal
administration data. If required, this amount is rounded up to the next power of 2.

The sizeof operator should be used to ensure that sufficient space for a variable is
requested.
If the length of the allocated memory area is exceeded when writing, critical errors may
occur in the working memory.

malloc() is interrupt-protected as of this version, i.e. the function can now also be used in
signal handling and contingency routines.

See also calloc(), free(), realloc(), stdlib.h.

mblen / mbrlen Functions and variables in alphabetical order

632 U23711-J-Z125-5-76

mblen - get number of bytes in multi-byte character

Syntax #include <stdlib.h>

int mblen(const char *s, size_t n);

Description mblen() returns the number of bytes of a multi-byte character to which s points. A maximum
of n bytes in s are evaluated.

No characters consisting of multiple bytes are implemented in this version. Multi-byte
characters always have a length of 1 (MB_CUR_MAX =1).

Return val. -1 if n = 0.

0 if s is a null pointer or points to a null byte.

1 in all other cases.

See also mbstowcs(), mbtowc(), wcstombs(), wctomb(), stdlib.h.

mbrlen - get number of bytes in multi-byte character

Syntax #include <wchar.h>

size_t mbrlen(const char *s, size_t n, mbstate_t *ps);

Description mbrlen() returns the number of bytes required to complete a multi-byte character starting
at the position *s. A maximum of n bytes are evaluated.

mbrlen() corresponds to the call
mbrtowc(NULL, s, n, ps!= NULL ? ps: internal)
where internal is the mbstate_t object for the function.

See mbrtowc() for a detailed description.

Functions and variables in alphabetical order mbrtowc

U23711-J-Z125-5-76 633

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

mbrtowc - complete and convert multi-byte string to wide-character
string

Syntax #include <wchar.h>

size_t mbrtowc(wchar_t *pwc, const char *s, size_t n, mbstate_t *ps);

Description If s is not a null pointer, mbrtowc() determines how many bytes (starting at the position
pointed to by *s) are required to complete the next multi-byte character. Any Shift
sequences are also taken into account. A maximum of the next n bytes are tested. If
mbrtowc() can compete the multi-byte character, the corresponding wide character is
determined and stored in *pwc as long as pwc is not a null pointer.
If the corresponding wide character is the null character, the final state corresponds to the
“initial conversion” state.
If s is a null pointer, mbrtowc() corresponds to the call mbrtowc(NULL, "", 1, ps).
In this case the parameters pwc and n are ignored.

Return val. Depending on the current conversion state, mbrtowc() returns the value of the first
condition of the following conditions that is met:

0 if the next (maximum of n) bytes result in a valid multi-byte character that
corresponds to the wide character “null”.

Number of bytes required to complete the multi-byte character
if the next (maximum of n) bytes result in a valid multi-byte character. The
wide character corresponding to this multi-byte character is stored.

(size_t)-2 if the next n bytes result in an incomplete, but potentially valid multi-byte
character. No value is stored.

(size_t)-1 if a coding error occurs, i.e. if the next (maximum of n) bytes do not result in
a complete and valid multi-byte character. No value is stored an the value
of the EILSEQ macro is written in errno. The conversion status is unde-
fined.

Notes In this version of the C runtime system, only 1-byte characters are supported as wide
characters.

See also mblen(), mbtowc(), wcstombs(), wctomb()

mbsinit Functions and variables in alphabetical order

634 U23711-J-Z125-5-76

mbsinit - test for “initial conversion” state

Syntax #include <wchar.h>

int mbsinit(const mbstate_t *ps);

Description If ps is not a null pointer, mbsinit() tests if the mbstate_t object pointed to by ps describes
an “initial conversion” state.

Return val. Value ≠ 0 if ps is a null pointer or points to an object that describes an “initial
conversion” state.

0 otherwise.

Functions and variables in alphabetical order mbsrtowcs

U23711-J-Z125-5-76 635

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

mbsrtowcs - convert multi-byte string to wide-character string

Syntax #include <wchar.h>

size_t mbsrtowcs(wchar_t *dst, const char **src, size_t len, mbstate_t *ps);

Description mbsrtowcs() converts a sequence of multi-byte characters in the array indirectly pointed
to by src to wide characters. mbsrtowcs() starts the conversion with the conversion state
described in *ps. The converted characters are written to the array pointed to by dst as long
as dst is not a null pointer. Every character is converted as if the mbrtowc() was called.

The conversion terminates when a terminating null character is encountered. The null
character is also converted and written into the array.

The conversion is terminated abnormally if

– a sequence of bytes is found that does not represent a valid multi-byte character or

– dst is not a null pointer and len characters were written into the array pointed to by dst.

If dst is not a null pointer, the pointer object pointed to by src is assigned one of the following
two values:

– a null pointer if the conversion terminated when it reached a null character

– the address directly after the last multi-byte character converted

If dst is not a null pointer and the conversion terminated when it reached a null character,
then the final state is the same as the “initial conversion” state.

Return val. (size_t)-1 if a conversion error occurred, i.e. a sequence of bytes that does not
represent a valid multi-byte character was found. The value of the EILSEQ
macro is written in errno. The conversion status is undefined.

Otherwise the number of successfully converted multi-byte characters.
The terminating null character (if present) is not counted.

See also mblen(), mbtowc(), wcstombs(), wctomb()

mbstowcs Functions and variables in alphabetical order

636 U23711-J-Z125-5-76

mbstowcs - convert multi-byte string to wide-character string

Syntax #include <stdlib.h>

size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

Description mbstowcs() converts a sequence of multi-byte characters in the string s to the appropriate
wchar_t values and stores a maximum of n wchar_t values in the area pwcs. mbstowcs()
converts until either n values have been converted or a null value is encountered (null is
converted into the wchar_t value 0).

If pwcs is a null pointer, mbstowcs() returns the length required to convert the entire string,
regardless of the value n, but does not save any values.

If an invalid character is present in the string to be converted, mbstowcs() returns the value
(size_t)-1.

The wchar_t values (type long) which are stored by mbstowcs() in the pwcs area corre-
spond to the values of the individual bytes in the string s.

Return val. Number of wchar_t values stored in pwcs (excluding the terminating null byte)
if pwcs is not a null pointer.
If the return value corresponds to the value n, the result area pwcs is not
terminated with the null byte.

Length required to convert the entire string,
if pwcs is a null pointer. No values are stored.

(size_t)-1 if an error occurs.

Notes The behavior is undefined if memory areas overlap.

No characters consisting of multiple bytes are implemented in this version. Multi-byte
characters always have a length of 1 byte, and wchar_t values are always of type long.

See also mblen(), mbtowc(), wcstombs(), wctomb(), stdlib.h.

Functions and variables in alphabetical order mbtowc

U23711-J-Z125-5-76 637

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

mbtowc - convert multi-byte character to wide character

Syntax #include <stdlib.h>

int mbtowc(wchar_t *pwc, const char *s, size_t n);

Description mbtowc() converts a multi-byte character in s to the corresponding wchar_t value and
stores this value in the area pwc. A maximum of n bytes in s are evaluated.

The wchar_t value (type long) stored by mbtowc() in the area pwc corresponds to the
value of the byte in s.

No assignment takes place if:
pwc or s is a null pointer, or
n = 0.

Return val. -1 if n = 0.

0 if s is a null pointer or points to a null byte.

1 in all other cases.

Notes No characters consisting of multiple bytes are implemented in this version. Multi-byte
characters always have a length of 1 byte, and wchar_t values are always of type long.

See also mblen(), mbstowcs(), wcstombs(), wctomb(), stdlib.h.

memalloc Functions and variables in alphabetical order

638 U23711-J-Z125-5-76

memalloc - memory allocator (BS2000)

Syntax #include <stdlib.h>

void *memalloc(size_t num);

Description memalloc() allocates contiguous memory of num bytes at execution time.

memalloc() passes the request for memory directly to the appropriate operating system
call. This function is particularly suitable for memory areas with a size of more than 2 KB
(see also memfree()).

Return val. Pointer to the new memory area
if memalloc() was able to allocate new memory. This pointer may be used
for any data type.

Null pointer if memalloc() was unable to provide the memory, e.g. because the
available memory space was insufficient for the request.

Notes The new memory area begins on a double-word boundary.

The requested length num is rounded up to the next multiple of 2 KB.

If the length of the allocated memory area is exceeded when writing, a serious disruption in
working memory may occur.

The memory area requested with memalloc() can be released by using memfree().

See also memfree().

Functions and variables in alphabetical order memccpy

U23711-J-Z125-5-76 639

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

memccpy - copy bytes in memory

Syntax #include <string.h>

void *memccpy(void *s1, const void *s2, int c, size_t n);

Description memccpy() copies bytes from memory area s2 into s1 until

– either c is copied for the first time (where c is converted to an unsigned char),

– or n bytes have been copied.

If the copy process affects objects which overlap, the behavior is undefined.

Return val. Pointer to the byte after the copy of c in s1
if successful.

Null pointer if c was not found in the first n characters of s2.

Notes memccpy() does not check whether there will be an overflow in the memory area to which
it copies.

See also memchr(), memcmp(), memcpy(), memset(), string.h.

memchr Functions and variables in alphabetical order

640 U23711-J-Z125-5-76

memchr - find byte in memory

Syntax #include <string.h>

void *memchr(const void *s, int c, size_t n);

Description memchr() locates the first occurrence of c in the initial n bytes of the memory area pointed
to by s.

s is the pointer to the memory area in which byte c is to be found.

c is the EBCDIC value of the byte to be found.

n is the integer value that specifies the number of bytes to be found in s.

Return val. Pointer to the position of c in area s
if successful.

Null pointer if c does not occur in the specified area.

Notes The function is suitable for processing character arrays, which, in contrast to character
strings, need not be terminated by the null byte (\0).

See also memcmp(), memcpy(), memset(), string.h.

Functions and variables in alphabetical order memcmp

U23711-J-Z125-5-76 641

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

memcmp - compare bytes in memory

Syntax #include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

Description memcmp() compares the contents of the first n bytes of the memory areas to which s1 and
s2 point.

s1 and s2 are pointers to the memory areas to be compared.

n is an integer value that specifies the number of bytes to be compared.

Return val. Integer value, which may be:

< 0 In the first n bytes, the contents of s1 are lexically smaller than the contents
of s2.

0 In the first n bytes, the contents of s1 and s2 are of equal lexical size (i.e.
identical).

> 0 In the first n bytes, the contents of s1 are lexically larger than the contents
of s2.

Notes This function is suitable for processing character arrays, which, in contrast to character
strings, need not be terminated by the null byte (\0).

See also memchr(), memcpy(), memset(), string.h.

memcpy Functions and variables in alphabetical order

642 U23711-J-Z125-5-76

memcpy - copy bytes in memory

Syntax #include <string.h>

void *memcpy(void *s1, const void *s2, size_t n);

Description memcpy() copies the first n bytes of the memory area to which s2 points into the memory
area pointed to by s1.

s1 is a pointer to the memory area to which the bytes are to be copied.

s2 is a pointer to the memory area from which the first n bytes are to be copied.

n is an integer value that specifies the number of bytes in s2 to be copied.

Return val. Pointer to the memory area s1
if successful.

Notes This function is suitable for processing character arrays, which, in contrast to character
strings, need not be terminated by the null byte (\0).

memcpy() does not check whether data in result area s1 is in danger of being overwritten.

The behavior is undefined if memory areas overlap.

See also memccpy(), memchr(), memcmp(), memset(), string.h.

Functions and variables in alphabetical order memfree

U23711-J-Z125-5-76 643

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

memfree - free memory area (BS2000)

Syntax #include <stdlib.h>

void memfree(const void *ptr, size_t num);

Description memfree() releases num bytes of the memory area to which ptr points.

memfree() passes on the release request directly to the appropriate operating system call.
memfree() can only be used in conjunction with memalloc(). Both functions are mainly
suitable for memory areas with a size of more than 2 KB.

ptr is a pointer to the memory area to be freed.
ptr must be the result of a preceding memalloc() call.

num is an integer value that specifies the size of the memory area in bytes.

Notes memfree() can only be used to free a memory area requested by memalloc().

The values passed to memfree() must match those of the corresponding memalloc() call.
Random values will lead to critical errors in the working memory!

See also memalloc().

memmove Functions and variables in alphabetical order

644 U23711-J-Z125-5-76

memmove - copy bytes in memory with overlapping areas

Syntax #include <string.h>

void *memmove(void *s1, const void *s2, size_t n);

Description memmove() copies the first n bytes of the memory area to which s2 points into the memory
area pointed to by s1.
memmove() first copies the n bytes to a temporary field that does not overlap memory areas
s1 and s2 and then copies the bytes from that field to the memory area s1.

s1 is a pointer to the memory area to which the bytes are be copied.

s2 is a pointer to the memory area from which the first n bytes are to be copied.

n is an integer value that specifies the number of bytes in s2 to be copied.

Return val. Pointer to memory area s1
if successful.

Notes This function is suitable for processing character arrays, which, in contrast to strings, need
not be terminated with the null byte (\0).

memmove() also works with memory areas that overlap; memcpy(), by contrast, does not.

See also memcpy(), string.h.

Functions and variables in alphabetical order memset

U23711-J-Z125-5-76 645

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

memset - initialize memory area

Syntax #include <string.h>

void *memset(void *s, int c, size_t n);

Description memset() copies the value of character c into each of the first n bytes of the memory area
to which s points.

s is a pointer to the memory area to be initialized with character c.

c is the EBCDIC value of the character to be copied.

n is an integer value that specifies the number of bytes in s to be initialized with character c.

Return val. Pointer to the memory area s
if successful.

Notes This function is suitable for processing character arrays, which, in contrast to strings, need
not be terminated by the null byte (\0).

memset() does not check whether data in result area s is in danger of being overwritten.

See also memcpy(), memchr(), memcmp(), memcpy(), string.h.

minor Functions and variables in alphabetical order

646 U23711-J-Z125-5-76

minor - get minor component of device number (extension)

Syntax #include <sys/types.h>
#include <sys/mkdev.h>

minor_t minor(dev_t device);

Description minor() returns the minor component of the device number for a named device.

Return val. Formatted device number
if successful.

NODEV if an error occurs. errno is set to indicate the error.

Errors minor() will fail if:

EINVAL The device argument is NODEV.

See also makedev(), major(), mknod(), stat().

Functions and variables in alphabetical order mkdir, mkdirat

U23711-J-Z125-5-76 647

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

mkdir, mkdirat - make directory

Syntax #include <sys/stat.h>

Optional
#include <sys/types.h> ❑

int mkdir(const char *path, mode_t mode);
int mkdirat(int fd, const char *path, mode_t mode);

Description mkdir() creates a new directory with the name path. The mode of the new directory is
initialized from mode (see chmod() for values of mode). The file permission bits of the mode
argument are modified by the file creation mask of the process (see umask()).

The directory's user ID is set to the process' effective user ID. The directory's group ID is
set to the process' effective group ID, or if the S_ISGID bit is set in the parent directory, then
the group ID of the directory is inherited from the parent. The S_ISGID bit of the new
directory is inherited from the parent directory.

If path is a symbolic link, it is not used.

The newly created directory will be an empty directory, except for the entries for itself and
its parent directory.

Upon successful completion, mkdir() will mark for update the st_atime, st_ctime and
st_mtime fields of the directory. The st_ctime and st_mtime fields of the directory that
contains the new entry are also marked for update.

The mkdirat() function is equivalent to the mkdir() function except when the path pa-
rameter specifies a relative path. In this case the new directory is not created in the current
directory, but in the directory connected with the file descriptor fd. If the file descriptor was
opened without O_SEARCH, the function checks whether a search is permitted in the con-
nected file descriptor with the authorizations applicable for the directory. If the file descriptor
was opened with O_SEARCH, the check is not performed.

When the value AT_FDCWD is transferred to the mkdirat() function for the fd parameter,
the current directory is used.

Return val. 0 if successful.

-1 if an error occurs. No directory is created and errno is set to indicate the
error.

mkdir, mkdirat Functions and variables in alphabetical order

648 U23711-J-Z125-5-76

Errors mkdir() and mkdirat() will fail if:

EACCES Either there is no search permission for a component of the path prefix, or
there is no write permission for the parent directory of the new directory.

EEXIST The specified file already exists.

Extension
EFAULT path points outside the allocated address space of the process.

EIO An I/O error occurred when accessing the file system.

ELOOP Too many symbolic links were encountered in resolving path. ❑

EMLINK The maximum number of links {LINK_MAX} in the parent directory was
exceeded.

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX} or a component of
path is longer than {NAME_MAX}.

ENOENT A component of the path does not exist or path points to an empty string.

Extension
ENOLINK path points to a remote computer and the link to that computer is no longer

active. ❑

ENOSPC No free space is available on the device containing the directory.

ENOTDIR A component of the path is not a directory.

EROFS The specified file resides on a read-only file system.

In addition, mkdirat() fails if the following applies:

EACCES The file descriptor fd was not opened with O_SEARCH, and the authorizations
applicable for the directory do not permit the directory to be searched.

EBADF The path parameter does not specify an absolute pathname, and the fd pa-
rameter does not have the value AT_FDCWD, nor does it contain a valid file
descriptor opened for reading or searching.

ENOTDIR The path parameter does not specify an absolute pathname, and the file de-
scriptor fd is not connected with a directory.

Notes mkdir() and mkdirat() are executed only for POSIX files

See also chmod(), mknod(), umask(), stat(), fcntl.h, sys/stat.h, sys/types.h.

Functions and variables in alphabetical order mkfifo, mkfifoat

U23711-J-Z125-5-76 649

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

mkfifo, mkfifoat - create FIFO file

Syntax #include <sys/stat.h>

Optional
#include <sys/types.h> ❑

int mkfifo(const char *path, mode_t mode);
int mkfifoat(int fd, const char *path, mode_t mode);

Description mkfifo() creates a new FIFO special file (FIFO for short) with the pathname path. The
access mode of the new FIFO is initialized from mode. The file permission bits of the mode
argument are modified by the process' file creation mask (see umask()).

The user ID of the FIFO is set to the effective user ID of the process, and the group ID of
the FIFO is set to the effective group ID of the process, unless the S_ISGID bit is set in the
parent directory, in which case the group ID of the FIFO is inherited from the parent
directory.

Upon successful completion, mkfifo() will mark for update the st_atime, st_ctime and
st_mtime fields of the file. The st_ctime and st_mtime fields of the directory that
contains the new entry are also updated (see sys/stat.h).

The mkfifoat() function is equivalent to the mkfifo() function except when the path pa-
rameter specifies a relative path. In this case the new FIFO device file is not created in the
current directory, but in the directory connected with the file descriptor fd. If the file descrip-
tor was opened without O_SEARCH, the function checks whether a search is permitted in the
connected file descriptor with the authorizations applicable for the directory. If the file de-
scriptor was opened with O_SEARCH, the check is not performed.

When the value AT_FDCWD is transferred to the mkfifoat() function for the fd parameter,
the current directory is used.

Return val. 0 if successful.

-1 if no FIFO was created. errno is set to indicate the error.

Errors mkfifo() and mkfifoat() will fail if:

EACCES Either no search permission exists for a component of the path, or no write
permission exists for the parent directory of the new FIFO file.

EEXIST The specified file already exists.

ELOOP Too many symbolic links were encountered during in resolving path.

mkfifo, mkfifoat Functions and variables in alphabetical order

650 U23711-J-Z125-5-76

Extension
EINVAL An attempt was made to access a BS2000 file. ❑

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX} and {_POSIX_NO_TRUNC} is set.

ENOENT A component of the path prefix does not exist or path points to an empty
string.

ENOSPC The directory that would contain the new file cannot be extended or the file
system is out of file-allocation resources.

ENOTDIR A component of the path prefix is not a directory.

EROFS The specified file resides on a read-only file system.

In addition, mkfifoat() fails if the following applies:

EACCES The file descriptor fd was not opened with O_SEARCH, and the authorizations
applicable for the directory do not permit the directory to be searched.

EBADF The path parameter does not specify an absolute pathname, and the fd pa-
rameter does not have the value AT_FDCWD, nor does it contain a valid file
descriptor opened for reading or searching.

ENOTDIR The path parameter does not specify an absolute pathname, and the file de-
scriptor fd is not connected with a directory.

Notes Bits other than the file permission bits in mode are ignored.

path can only be a POSIX file.

See also umask(), fcntl.h, sys/stat.h, sys/types.h.

Functions and variables in alphabetical order mknod, mknodat

U23711-J-Z125-5-76 651

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

mknod, mknodat - make directory, special file, or text file

Syntax #include <sys/stat.h>

int mknod(const char *path, mode_t mode, dev_t dev);
int mknodat(int fd, const char *path, mode_t mode, dev_t dev);

mknod() creates a new file with the pathname pointed to by path. The file type and permis-
sions of the new file are initialized from mode.
If path is a symbolic link it is not traced.

Description The file type for path is incorporated in the mode argument via a bit-wise OR. The file type
must be one of the following symbolic constants:

S_IFIFO FIFO special file
S_IFCHR Character-special file (not portable)
S_IFDIR Directory (not portable)
S_IFBLK Block-special file (not portable)
S_IFPOSIXBS2 File in the POSIX file system (not portable)
S_IFREG Regular file (not portable)

mknod() can only be used portably in accordance with the X/Open standard if a FIFO file is
generated. If the file type is not S_IFIFO, or dev does not have the value 0, the behavior of
mknod() is undefined.
The access permissions of the file are also incorporated in the mode argument via a bit-wise
OR. They can be defined by any combination of the following symbolic constants:

Symbolic name Bit pattern Meaning

S_ISUID 04000 Set user ID on execution

S_ISGID 020#0 Set group ID on execution

S_IRWXU 00700 Read, write or execute (search if a directory is involved) by owner

S_IRUSR 00400 Read by owner

S_IWUSR 00200 Write by owner

S_IXUSR 00100 Execute by owner (search if a directory is involved)

S_IRWXG 00070 Read, write or execute (search) by group

S_IRGRP 00040 Read by group

S_IWGRP 00020 Write by group

S_IXGRP 00010 Execute (search) by group

S_IRWXO 00007 Read, write or execute (search) by others

S_IROTH 00004 Read by others

mknod, mknodat Functions and variables in alphabetical order

652 U23711-J-Z125-5-76

The user ID of the file is set to the effective user ID of the process, and the group ID of the
file is set to the effective group ID of the process, unless the S_ISGID bit is set in the parent
directory, in which case the group ID of the file is inherited from the parent directory.

The access permission bits of mode are modified by the file mode creation mask of the
process: all bits which are set in the file mode creation mask are set to 0 by mknod().

If mode indicates a block- or character-special file, dev is the configuration-dependent speci-
fication of that file; if mode does not indicate a block- or character-special file, dev is ignored
(see mkdev()).

For non-FIFO file types, mknod() can only be invoked with appropriate privileges (uid = 0).

The mknodat() function is equivalent to the mknod() function except when the path pa-
rameter specifies a relative path. In this case the new directory or the new file is not created
in the current directory, but in the directory connected with the file descriptor fd. If the file
descriptor was opened without O_SEARCH, the function checks whether a search is permit-
ted in the connected file descriptor with the authorizations applicable for the directory. If the
file descriptor was opened with O_SEARCH, the check is not performed.

When the value AT_FDCWD is transferred to the mknodat() function for the fd parameter,
the current directory is used.

Return val. 0 if successful.

-1 if an error occurs; errno is set to indicate the error.
In the event of an error, no new file is created.

Errors mknod() and mknodat() will fail if:

EACCES Either there is no search permission for a component of the path, or there
is no write permission for the parent directory of the new file.

EEXIST The specified file already exists.

EINTR A signal was caught during the mknod() system call.

EINVAL An argument is invalid.

EIO An I/O error occurred during access to the file system.

ELOOP Too many symbolic links were encountered in resolving path.

S_IWOTH 00002 Write by others

S_IXOTH 00001 Execute by others

S_ISVTX 01000 For directories: unrestricted delete permission

Symbolic name Bit pattern Meaning

Functions and variables in alphabetical order mknod, mknodat

U23711-J-Z125-5-76 653

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX}, or a component of
path is longer than {NAME_MAX}.

The resolving of a symbolic link led to an interim result whose length
exceeds {PATH_MAX}.

ENOENT A component of the path prefix does not exist or path is an empty string.

ENOLINK path refers to a remote computer and the link to this computer is no longer
active.

ENOSPC The directory in which the file is to be created cannot be extended, or no
memory is available.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user ID is not that of the system administrator and the file type
is not FIFO.

EROFS The directory in which the file is to be created is located on a read-only file
system.

In addition, mknodat() fails if the following applies:

EACCES The file descriptor fd was not opened with O_SEARCH, and the authorizations
applicable for the directory do not permit the directory to be searched.

EBADF The path parameter does not specify an absolute pathname, and the fd pa-
rameter does not have the value AT_FDCWD, nor does it contain a valid file
descriptor opened for reading or searching.

ENOTDIR The path parameter does not specify an absolute pathname, and the file de-
scriptor fd is not connected with a directory.

Notes mknod() and mknodat() are executed only for POSIX files.
If mknod() creates a special file in a remote directory with RFS (remote file sharing), the
device class and device number will be interpreted by the server.

For reasons of portability to implementations which comply with earlier versions of the
X/Open standard, the mkfifo() function is recommended for creating FIFO files.

See also chmod(), creat(), exec(), mkdir(), mkfifo(), open(), stat(), umask(), sys/stat.h,
sys/types.h.

mkstemp Functions and variables in alphabetical order

654 U23711-J-Z125-5-76

mkstemp - make unique temporary file name

Syntax #include <stdlib.h>

int mkstemp(char *template);

Description mkstemp() creates a unique file name, normally in a temporary file system, and returns an
open file descriptor for this file. The file is opened for reading and writing.
In this way, mkstemp() prevents a possible race between an existence check and the
opening of the file.

The string to which template points should contain a file name followed by six Xs. mkstemp()
replaces these Xs with a letter and the current process ID to create a unique file name. The
letter is chosen so that the new file name will be unique, i.e. will not match any existing file
name.

Return val. open file descriptor
if successful

-1 if no suitable file could be created.

Notes It is possible that the letters may run out.

mkstemp() does not check whether the file name component in template exceeds the
maximum permitted length for file names.

For reasons of portability to implementations that comply with earlier versions of the
X/Open standard, the tmpfile() function is recommended for creating a unique file name.

mkstemp() changes the transferred string that is specified by template. This means that you
cannot use a string that is specified by template more than once. For each unique temporary
file you want to open, you need a new template.

If mkstemp() creates a new unique file name, the system first checks whether a file with this
name has already existed beforehand. Therefore, if you create more than one unique file
name, the same file name component should not be used in template for more than one
mkstemp() call.

See also getpid(), open(), tmpfile(), tmpnam(), stdlib.h.

Functions and variables in alphabetical order mktemp

U23711-J-Z125-5-76 655

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

mktemp - make unique temporary file name (extension)

Syntax #include <stdlib.h>

char *mktemp(char *template);

Description mktemp() replaces the contents of the string pointed to by template with a unique file name
and returns the address of template.
The string to which template points should contain a file name followed by six Xs. mkstemp()
replaces these Xs with a letter and the current process ID to create a unique file name.

The letter is chosen so that the new file name will be unique, i.e. will not match any existing
file name.

BS2000
mktemp() creates a unique file name for a temporary SAM file. The name must consist of
at least 8 characters and is constructed as follows:

– The first three characters are replaced by "#T.".

– The fourth character is replaced by a character that varies for each mktemp call
(letters A - Z, digits 0 - 9).

– The last four characters are replaced by the TSN of the current task (since LOGON).

– Characters between the first and last four characters remain unchanged.

For example, if the value of template is "XXXX.ABC.XXXX" and the TSN of the current task
is 6082, the temporary name generated by mktemp() at the first call will be:
#T.A.ABC.6082 ❑

Return val. Pointer to a string containing the new name
if successful.

Pointer to an empty string
if no unique name can be created, e.g. because no more letters are free.

Notes In the time between the creation of the file name and the opening of the file, another process
can create a file with the same name. To avoid this problem, use the mkstemp() function.

For reasons of portability to implementations which comply with earlier versions of the
X/Open standard, the tmpnam() function is recommended for creating a unique file name.

mktemp() can create a maximum of 26 unique file names per process for each unique
template.

mktemp Functions and variables in alphabetical order

656 U23711-J-Z125-5-76

BS2000
Temporary files are automatically deleted on termination of a task (LOGOFF). However, if
the standard prefix (#) for temporary files was changed at system generation, the files are
retained. ❑

The program environment determines whether a BS2000 or POSIX file is created.

See also tmpfile(), stdlib.h.

Functions and variables in alphabetical order mktime, mktime64

U23711-J-Z125-5-76 657

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

mktime, mktime64 - convert local time into time since the Epoch

Syntax #include <time.h>

time_t mktime(struct tm *timeptr);
time64_t mktime64(struct tm *timeptr);

Description The mktime() and mktime64() functions convert the date and time of the local time which
are specified in a structure of the type tm into the number of seconds which have passed
since 1.1.1970 00:00:00 hrs UTC (Universal Time Coordinated).

The two functions differ merely in the range of dates which can be displayed:

– mktime():
13.12.1901 20:45:52 hrs UTC through 19.1.2038 03:14:07 hrs

– mktime64():
1.1.1900 20:45:52 hrs UTC through 31.12.9999 23:59:59 hrs

The tm structure has the following format:

 struct tm {
 int tm_sec; /* Seconds [0, 61] */
 int tm_min; /* Minutes [0, 59] */
 int tm_hour; /* Hours [0, 23] */
 int tm_mday; /* Day of the month [1, 31] */
 int tm_mon; /* Month [0, 11] */
 int tm_year; /* Years since 1900 */
 int tm_wday; /* Days since Sunday [0, 6] */
 int tm_yday; /* Days since January 1 [0, 365] */
 int tm_isdst; /* Flag for daylight saving time */
 };

Besides computing the calendar time, mktime() normalizes the supplied tm structure. The
original values of the tm_wday and tm_yday components of the structure are ignored, and
the original values of the other components are not restricted to the ranges indicated in the
definition of the structure. Upon successful completion, the values of the tm_wday and
tm_yday components are set appropriately, and the other components are set to represent
the specified calendar time, but with their values forced to be within the appropriate ranges.
The final value of tm_mday is not set until tm_mon and tm_year are determined.

The original values of the components may be either greater than or less than the specified
range. For example, a tm_hour of -1 means 1 hour before midnight; a tm_mday of 0 means
the day preceding the current month, and a tm_mon of -2 means 2 months before January
of the tm_year.

If tm_isdst is > 0, the original values are assumed to be in the alternate timezone, i.e.
summer time applies. If it turns out that the alternate timezone is not valid for the computed
calendar time, then the components are adjusted to the main timezone. Conversely, if
tm_isdst is zero, the original values are assumed to be in the main timezone, i.e. normal

mktime, mktime64 Functions and variables in alphabetical order

658 U23711-J-Z125-5-76

time applies, and are converted to the alternate timezone if the main timezone is invalid. If
tm_isdst is negative, mktime() determines the correct timezone.
Local timezone information is set as if mktime() had called the tzset() function.

BS2000
mktime() converts the date and time, which are specified by the user in a structure of type
tm, into a time specification of type time_t. This is the number of seconds that have
elapsed since 00:00:00, January 1, 1970. ❑

Return val. Number of seconds
if successful.

(time_t) - 1 or
(time64_t) - 1

if the calendar time cannot be represented. Furthermore, errno is set to
EOVERFLOW.

BS2000
For local times as of January 1, 1970, 00.00.00, the number of seconds that
have elapsed since then (positive value).

For local times prior to January 1, 1970, 00.00.00, the number of elapsed seconds up to
that point (negative value). ❑

Functions and variables in alphabetical order mktime, mktime64

U23711-J-Z125-5-76 659

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Example Which day of the week was July 4, 2001?

#include <stdio.h>
#include <time.h>

struct tm time_str
char daybuf[20]

int main (void)

{

 time_str.tm_year = 2001 - 1900;
 time_str.tm_mon = 7 - 1;
 time_str.tm_mday = 4;
 time_str.tm_hour = 0;
 time_str.tm_min = 0;
 time_str.tm_sec = 1;
 time_str.tm_isdst = -1;

 if (mktime (&time_str) == -1)
 (void) puts (" -unknown-“);
 else {
 (void) strftime (daybuf, sizeof (daybuf), "%A", &time_str);
 }
 return 0;
}

Notes The value for tm_year in the tm structure must be for the year 1970 or later. Calendar times
before 00:00:00 UTC, January 1, 1970 or after 03:14:07 UTC, January 19, 2038 cannot be
represented.

BS2000
mktime() returns valid values for times ranging from 1.1.1880, 00:00:00, through 1.1.2021,
00:00:00.

See also ctime(), getenv(), timezone, time.h.

mmap Functions and variables in alphabetical order

660 U23711-J-Z125-5-76

mmap - map memory pages

Name mmap

Syntax #include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot, int flags, int fildes, off_t off);

Description mmap() produces a mapping between the address area of a process ([pa, pa + len)) and a
file section ([off, off + len)).

The call has the following format:

pa = mmap(addr, len, prot, flags, fildes, off);

A mapping is produced between the address space of the process at the address pa for len
bytes on the one hand and the file described by the file descriptor fildes with the offset off
for len bytes on the other.
The value of pa is an implementation-dependent function of addr and the value flags. A
successful mmap() call returns pa as the result. The address areas defined by [pa, pa + len)
and [off, off + len) must be permissible for the possible (not necessarily the current) address
area of the process or the file. mmap() cannot enlarge a file.

The mapping, which is produced by mmap() with MAP_FIXED, replaces all previous
mappings for the pages of the process in the area [pa, pa + len).

If the size of the mapped file is changed after the mmap() call, the effect on references to
mapping sections which correspond to a newly added or deleted part of the file is undefined.

mmap() is supported for normal files only.

The prot parameter determines whether read, write or execute accesses or combinations
of these are to be allowed for the mapped pages. The access permissions are defined in
sys/mman.h as follows:

PROT_READ Page can be read.
PROT_WRITE Page can be written.
PROT_EXEC Page can be executed.
PROT_NONE Page cannot be accessed.

PROT_WRITE is implemented as PROT_WRITE|PROT_EXEC and PROT_EXEC as
PROT_READ|PROT_EXEC.

Three states are possible:

– the page cannot be accessed
– access to the page is read-only
– the page can be accessed for both reading and writing

Functions and variables in alphabetical order mmap

U23711-J-Z125-5-76 661

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

The behavior of PROT_WRITE can be influenced by the MAP_PRIVATE in the flags parameter,
as described in more detail below.

The flags parameter contains further information on the handling of the mapped pages. The
options are defined in sys/mman.h as follows:

MAP_SHARED Changes are shareable
MAP_PRIVATE Changes are private
MAP_FIXED addr must be interpreted exactly

MAP_SHARED and MAP_PRIVATE control the visibility of write accesses to the memory pages.
Either MAP_SHARED or MAP_PRIVATE must be specified.
The mapping type is retained after a fork().

If MAP_SHARED is specified, write accesses to the memory pages modify the file, and the
changes are visible in all mappings of the relevant file section produced with MAP_SHARED.

If MAP_PRIVATE is specified, write accesses to the memory pages do not modify the file, and
the changes are not visible to any other process which maps the relevant file section. The
first write access generates a privately kept copy of the memory pages and redirects the
mapping to the copy. Note that the privately kept copy is not generated until the first write
access; until then, other users who have mapped the file section with MAP_SHARED can
modify the file section.

MAP_FIXED defines that the value of pa must match addr exactly. Use of MAP_FIXED is not
recommended, as this parameter can prevent effective use of the system resources.

If MAP_FIXED is not set, depending on the implementation an address pa is returned through
selection of an area from the address space of the process which the system considers
suitable for mapping len bytes.
An addr value of zero means that pa can be freely selected in accordance with the condi-
tions described below. If addr has a value other than zero, this is interpreted as a suggestion
to select the mapping close to this address.
On no account is the value 0 selected for pa, is an existing mapping overwritten or does
mapping take place to dynamically assigned memory areas.

The off parameter is subject to restrictions in its size and alignment, which are based on the
return value of sysconf() with regard to the _SC_PAGESIZE and _SC_PAGE_SIZE param-
eters. If MAP_FIXED is specified, the addr parameter must also comply with these restric-
tions.
The system performs mapping operations over entire pages. Because the len parameter is
not tied to specific sizes or alignments, the system includes in the mapping operation all
page remainders which arise during mapping of the area [pa, pa + len).
The system fills such part-pages with zeros at the end of a [pa, pa + len) memory area.
Changes to this area are not written back.
If the mapping extends over whole pages which are located after the last byte of the file,

mmap Functions and variables in alphabetical order

662 U23711-J-Z125-5-76

references to these pages generate a SIGSEGV signal.
SIGSEGV signals can also be sent in the case of various error conditions of the file system,
including exceeding of the quota.

mmap() generates an additional reference to the file that is described by fildes. This
reference is not deleted when a close() is issued for fildes, but only when no more
mappings to the file exist.

Return val. pa Address where the mapping was placed.

-1 in the event of an error. errno is set to indicate the error.

Errors mmap() will fail if:

EACCES fildes is not opened for reading, regardless of the specified prot argument,
or fildes is not opened for writing and PROT_WRITE was requested in an
mapping of type MAP_SHARED.

EAGAIN The mapping cannot be locked in the memory.

EBADF fildes is not a valid open file descriptor.

ENXIO Addresses in the [off, off + len) area are invalid for fildes.

EINVAL The off argument (or addr if MAP_FIXED was specified) does not contain a
multiple of the page length returned by sysconf(), or off or addr has an
invalid value.

The value in flags is invalid (neither MAP_PRIVATE nor MAP_SHARED is set).

The len argument has a value less than or equal to 0.

EMFILE The number of mappings exceeds the maximum permissible value.

ENOMEM MAP_FIXED was specified and the [addr, addr + len) area exceeds the
address area allowed for a process, or
MAP_FIXED was not specified but there is not enough storage space
available in the address area for the mapping.

ENODEV fildes refers to a file whose type is not supported by mmap(), e.g. a special
file.

EOVERFLOW The value of off plus len exceeds the offset maximum specified in the inter-
nal description of the open file assigned to fildes.

Functions and variables in alphabetical order mmap

U23711-J-Z125-5-76 663

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

Notes The use of mmap() reduces the space available for other functions which also occupy
storage space.

The specification MAP_FIXED is not recommended, as this parameter can prevent effective
use of the system resources.

The application must make sure that the file accesses are synchronized if mmap() is used
together with other file access methods like read(), write(), standard input/output and
shmat().

mmap() allows access to resources via address area manipulations in place of the
read/write interface. If a file is mapped, a processes need only access the address to
which the file object is mapped. Observe the following (incomplete) code:

fildes = open(...)
lseek(fildes, some_offset)
read(fildes, buf, len)
 /* Use data in buf */

Using mmap(), the code can be rewritten as follows:

fildes = open(...)
address =mmap(0, len, PROT_READ, MAP_PRIVATE, fildes, some_offset)
 /* Use address data */

See also exec(), fcntl(), fork(), lockf(), munmap(), msync(), mprotect(), shmat(),
sysconf(), sys/mman.h.

modf Functions and variables in alphabetical order

664 U23711-J-Z125-5-76

modf - split floating-point number into integral and fractional parts

Syntax #include <math.h>

double modf(double x, double *iptr);

Description modf() splits a floating-point number x into its integral and fractional parts. Both parts
receive the sign of x. modf() returns the fractional part of x as the result and writes the
integral part as a value of type double to the address to which iptr points.

Return val. Fractional part of x with the sign of x if successful.

0 if an error occurs.

Notes The iptr argument must be a pointer!

See also frexp(), ldexp(), math.h.

Functions and variables in alphabetical order mount

U23711-J-Z125-5-76 665

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

mount - mount file system (extension)

Syntax #include <sys/types.h>
#include <sys/mount.h>

int mount(const char *spec, const char *dir, int mflag,
[int fstyp, const char *datptr, size_t datalen]);

Description mount() mounts a removable file system, which is contained in the block-special file
identified by spec, in an existing directory dir (mount point).

spec and dir are pointers to pathnames.

mflag can assume the following values:

MS_FSS to describe a file system type.

MS_DATA to describe a block of file-system specific data of length datalen starting at
the address dataptr.

MS_RDONLY if the file system is to be mounted as read-only, in which case, no further
arguments are expected.

The argument fstyp is interpreted by mount() when either MS_FSS or MS_DATA is set in
mflag. fstyp is the file system type number or a pointer to a string containing the file system
type. The system call sysfs() can be used to determine the file system type number.

If neither MS_FSS nor MS_DATA are set in mflag, mount() defaults to the root file system
type.

If MS_DATA is set in mflag, the system expects the dataptr and datalen arguments. This data
is interpreted by file-system specific code within the operating system. Its format depends
on the file system type. If a particular file system type does not require this data, dataptr and
datalen should both be zero.

Upon successful completion of mount(), the name in dir refers to the root directory on the
newly mounted file system.

Return val. 0 upon successful completion.

-1 if an error occurs. errno is set to indicate the error.

mount Functions and variables in alphabetical order

666 U23711-J-Z125-5-76

Errors mount() will fail if:

EBUSY dir is already mounted at the time of the call, or
dir has some other owner, or
dir is otherwise busy, or
the special file associated with spec is currently mounted, or
no more mount table entries are available.

EFAULT spec, dir or datalen points outside the allocated address space of the
process.

EINVAL The super-block has an invalid magic number or fstyp is invalid.

ELOOP Too many symbolic links were encountered in resolving dir.

ENAMETOOLONG
The length of the dir argument exceeds PATH_MAX or NAME_MAX.

ENOENT One of the named files is not recognized.

ENOSPC The file system state in the super-block is not FsOKAY and mflag requests
write permission.

ENOTBLK spec is not a block-special file.

ENOTDIR A component of spec or dir is not a directory.

ENXIO The special file associated with spec is not recognized.

EPERM The effective user ID is not that of a process with appropriate privileges.

EREMOTE spec is not local and cannot be mounted.

EROFS spec is write-protected, and mflag requests write permission.

Notes mount() may only be called under the effective user ID of a process with appropriate
privileges.

As soon as a directory is mounted, it is treated as a subtree. In other words, files on the
mounted file system can be accessed by processes without making allowances for the fact
a mounted file system is involved. Links across file system boundaries with link() are not
permitted, however, since that function checks the file system of a file.

The interface is intended only for the mount command.

See also sysfs(), umount(), and the commands mount and fsck in the manual "POSIX
Commands" [2].

Functions and variables in alphabetical order mprotect

U23711-J-Z125-5-76 667

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

mprotect - modify access protection for memory mapping

Syntax #include <sys/mman.h>

int mprotect(void *addr, size_t len, int prot);

Description The mprotect() function changes the access permissions for the mappings in the
[addr, addr + len) area to the access permission specified in prot. The value specified in len
is rounded to a multiple of the page size specified by sysconf().
All values that can also be specified in mmap() are permissible for prot:

The values for prot are defined in sys/mman.h as follows:

PROT_READ Page can be read.
PROT_WRITE Page can be written.
PROT_EXEC Page can be executed.
PROT_NONE Page cannot be accessed.

If mprotect() fails but the reason is not EINVAL, it may be that the access permissions of
some pages were already changed in the specified area [addr, addr + len). If the error is in
the address addr2, the access permissions of all whole pages in the area [addr, addr2] will
be changed.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors Under the conditions described below, the mprotect() function will fail and set errno to the
following values:

EACCES prot contains a value that does not match the access permissions of the
process for the underlying file.

EAGAIN prot contains the value PROT_WRITE for a mapping of type MAP_PRIVATE and
a memory bottleneck occurs, i.e. the storage resources for reserving and
locking the private page are not sufficient.

EINVAL addr is not a multiple of the page size specified by sysconf(), or

the len argument contains a value less than or equal to 0.

ENOMEM Addresses in the area [addr, addr + len) are invalid for the address area of
the process, or one or more pages have been specified which are not
mapped.

See also mmap(), sysconf(), sys/mman.h.

mrand48 Functions and variables in alphabetical order

668 U23711-J-Z125-5-76

mrand48 - generate pseudo-random numbers between -231 and 231

Syntax #include <stdlib.h>

long int mrand48 (void);

Description See drand48().

Functions and variables in alphabetical order msgctl

U23711-J-Z125-5-76 669

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

msgctl - message control operations

Syntax #include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

Description msgctl() provides message control operations as specified by cmd. The possible values
for cmd, and the message control operations they specify, are:

IPC_STAT Place the current value of each member of the data structure associated
with msqid into the structure pointed to by buf. The contents of this structure
are defined in sys/msg.h.

IPC_SET Set the value of the following members of the msgqid_ds data structure
associated with msqid to the corresponding value found in the structure
pointed to by buf:

msg_perm.uid
msg_perm.gid
msg_perm.mode
msg_qbytes

IPC_SET can only be executed by a process with appropriate privileges
or a process that has an effective user ID equal to the value of
msg_perm.cuid or msg_perm.uid in the msqid_ds data structure
associated with msqid. Only a process with appropriate privileges can raise
the value of msg_qbytes.

IPC_RMID Remove the message queue identifier specified by msqid and destroy the
message queue and the data structure associated with it. IPC_RMD can only
be executed by a process with appropriate privileges or one that has an
effective user ID equal to the value of msg_perm.cuid or msg_perm.uid
in the msqid_ds data structure associated with msqid.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

msgctl Functions and variables in alphabetical order

670 U23711-J-Z125-5-76

Errors msgctl() will fail if:

EACCES cmd is IPC_STAT and the calling process does not have read permission.

Extension
EFAULT buf points to an invalid address. ❑

EINVAL msqid is not a valid message queue identifier,
or cmd is not a valid operation,
or cmd is IPC_SET, and msg_perm.uid or msg_perm.gid is invalid.

EPERM cmd is IPC_SET, and the effective user ID of the calling process is not equal
to that of a process with appropriate privileges and not equal to the value of
msg_perm.cuid or msg_perm.uid in the data structure associated with
msqid.

EPERM cmd is IPC_SET, an attempt is being made to increase to the value of
msg_qbytes, and the effective user ID of the calling process does not have
appropriate privileges.

Notes The IEEE 1003.4 Standards Committee is developing alternative interfaces for interprocess
communication. Application developers who need to use interprocess communication (IPC)
should design their applications so that modules using the IPC routines described here can
be easily modified at a later date.

See also msgget(), msgrcv(), msgsnd(), sys/msg.h, section “Interprocess communication” on
page 147.

Functions and variables in alphabetical order msgget

U23711-J-Z125-5-76 671

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

msgget - get message queue

Syntax #include <sys/msg.h>

int msgget(key_t key, int msgflg);

Description msgget() returns the message queue identifier associated with key.

A message queue identifier, associated message queue, and data structure (see
sys/msg.h) are created for key if one of the following is true:

– key is IPC_PRIVATE.

– key does not already have a message queue identifier associated with it, and
(msgflg & IPC_CREAT) is non-zero.

Upon creation, the data structure associated with the new message queue identifier is
initialized as follows:

– msg_perm.cuid, msg_perm.uid, msg_perm.cgid and msg_perm.gid are set equal
to the effective user ID and effective group ID, respectively, of the calling process.

– The low-order 9 bits of msg_perm.mode are set equal to the low-order 9 bits of msgflg.

– msg_qnum, msg_lspid, msg_lrpid, msg_stime and msg_rtime are set equal to 0.

– msg_ctime is set equal to the current time.

– msg_qbytes is set equal to the system limit.

Return val. Non-negative integer (message queue identifier)
if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors msgget() will fail if:

EACCES A message queue identifier exists for the argument key, but the access
permissions specified by the low-order 9 bits of msgflg are not granted (see
section “Interprocess communication” on page 147).

EEXIST A message queue identifier exists for the argument key, but the value of
((msgflg & IPC_CREAT) && (msgflg & IPC_EXCL)) is non-zero.

ENOENT A message queue identifier exists for the argument key and
(msgflg & IPC_CREAT) is 0.

ENOSPC A message queue identifier is to be created, but the system-imposed limit
on the maximum number of allowed message queue identifiers system-
wide would be exceeded.

msgget Functions and variables in alphabetical order

672 U23711-J-Z125-5-76

Notes The IEEE 1003.4 Standards Committee is developing alternative interfaces for interprocess
communication. Application developers who need to use interprocess communication (IPC)
should design their applications so that modules using the IPC routines described here can
be easily modified at a later date.

See also msgctl(), msgrcv(), msgsnd(), sys/msg.h, section “Interprocess communication” on
page 147.

Functions and variables in alphabetical order msgrcv

U23711-J-Z125-5-76 673

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

msgrcv - receive message from queue

Syntax #include <sys/msg.h>

int msgrcv(int msqid, void *msgp, size_t msgsz, long int msgtyp, int msgflg);

Description msgrcv() reads a message from the queue associated with the message queue identifier
specified by msqid and places it in the user-defined buffer pointed to by msgp.

msgp points to a user-defined buffer that must contain first a field of type long int that will
specify the type of the message, and then a data portion that will hold the data bytes of the
message. The structure below is an example of what this user-defined buffer might look
like:

struct mymsg
{
 long int mtype; /* Message type */
 char mtext[1]; /* Message text */
}

The structure member mtype is the type of the received message, as specified by the
sending process.

The structure member mtext is the text of the message.

msgsz specifies the size in bytes of mtext. The received message is truncated to msgsz
bytes if it is larger than msgsz and (msgflg & MSG_NOERROR) is non-zero. The truncated part
of the message is lost and no indication of the truncation is given to the calling process.

msgtyp specifies the type of message requested as follows:

– If msgtyp is 0, the first message on the queue is received.

– If msgtyp is greater than 0, the first message of type msgtyp is received.

– If msgtyp is less than 0, the first message that is less than or equal to the absolute value
of msgtyp is received.

msgflg specifies the action to be taken if a message of the desired type is not on the queue.
The following actions are possible:

– If (msgflg & IPC_NOWAIT) is non-zero, the calling process will return immediately with
a return value of -1, and errno set to ENOMSG.

– If (msgflg & IPC_NOWAIT) is 0, the calling process will suspend execution until one of
the following events occurs:

– A message of the desired type is placed on the queue.

– The message queue identifier msqid is removed from the system; when this occurs,
errno is set equal to EIDRM, and -1 is returned.

msgrcv Functions and variables in alphabetical order

674 U23711-J-Z125-5-76

– The calling process receives a signal that is to be caught; in this case a message is
not received and the calling process resumes execution in the manner prescribed
in sigaction().

Upon successful completion, the following actions are taken with respect to the data
structure associated with msqid:

– msg_qnum is decremented by 1.

– msg_lrpid is set equal to the process ID of the calling process.

– msg_rtime is set equal to the current time.

If threads are used, then the function affects the process or a thread in the following
manner: The msgflg parameter refers to the calling thread.

Return val. number of bytes placed in mtext
if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors msgrcv() will fail if:

E2BIG The value of mtext is greater than msgsz and (msgflg & MSG_NOERROR) is 0.

EACCES Operation permission is denied to the calling process.

Extension
EFAULT msgp points to an invalid address. ❑

EIDRM The message queue identifier msqid is removed from the system.

EINTR msgrcv() was interrupted by a signal.

EINVAL msqid is not a valid message queue identifier;
or the value of msgsz is less than 0.

ENOMSG The queue does not contain a message of the desired type and
(msgtyp & IPC_NOWAIT) is non-zero.

Notes msgp should be converted to type void *.

The IEEE 1003.4 Standards Committee is developing alternative interfaces for interprocess
communication. Application developers who need to use interprocess communication (IPC)
should design their applications so that modules using the IPC routines described here can
be easily modified at a later date.

See also msgctl(), msgget(), msgsnd(), sigaction(), sys/msg.h, section “Interprocess
communication” on page 147.

Functions and variables in alphabetical order msgsnd

U23711-J-Z125-5-76 675

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

msgsnd - send message to queue

Syntax #include <sys/msg.h>

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

Description msgsnd() sends a message to the queue associated with the message queue identifier
specified by msqid.

msgp points to a user-defined buffer that must contain first a field of type long int that will
specify the type of the message, and then a data portion that will hold the data bytes of the
message. The structure below is an example of what this user-defined buffer might look
like:

struct mymsg
{
 long int mtype; /* Message type */
 char mtext[1]; /* message text */
}

The structure member mtype is a non-zero positive type long int that can be used by the
receiving process for message selection.

The structure member mtext is any text of length msgsz bytes. The argument msgsz can
range from 0 to a system-imposed maximum.

msgflg specifies the action to be taken if one or more of the following conditions are true:

– The number of bytes already on the queue is equal to msg_qbytes (see sys/msg.h).

– The total number of messages on all queues system-wide is already equal to the
system-imposed limit.

These actions are as follows:

– If (msgflg & IPC_NOWAIT) is non-zero, the message will not be sent, and the calling
process will return immediately.

– If (msgflg & IPC_NOWAIT) is 0, the calling process will suspend execution until one of
the following events occurs:

– The condition responsible for the suspension no longer exists, in which case the
message is sent.

– The message queue identifier msqid is removed from the system; when this occurs,
errno is set equal to EIDRM, and -1 is returned.

– The calling process receives a signal that is to be caught; in this case, the message
is not sent, and the calling process resumes execution in the manner prescribed in
sigaction().

msgsnd Functions and variables in alphabetical order

676 U23711-J-Z125-5-76

Upon successful completion, the following actions are taken with respect to the data
structure associated with msqid:

– msg_qnum is incremented by 1.

– msg_lspid is set equal to the process ID of the calling process.

– msg_stime is set equal to the current time.

If threads are used, then the function affects the process or a thread in the following
manner: The msgflg parameter refers to the calling thread.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors msgsnd() will fail if:

EACCES Operation permission is denied to the calling process.

EAGAIN The message cannot be sent for one of the reasons cited above and
(msgflg & IPC_NOWAIT) is non-zero.

Extension
EFAULT msgp points to an invalid address. ❑

EIDRM The message queue identifier msgid is removed from the system.

EINTR msgsnd() was interrupted by a signal.

EINVAL msqid is not a valid message queue identifier,
or the value of mtype is less than 1;
or the value of msgsz is less than 0 or greater than the system-imposed limit.

Notes The value of the msgp argument should be converted to type void *.

The IEEE 1003.4 Standards Committee is developing alternative interfaces for interprocess
communication. Application developers who need to use interprocess communication (IPC)
should design their applications so that modules using the IPC routines described here can
be easily modified at a later date.

See also msgctl(), msgget(), msgrcv(), sigaction(), sys/msg.h, section “Interprocess
communication” on page 147.

Functions and variables in alphabetical order msync

U23711-J-Z125-5-76 677

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

msync - synchronize memory

Syntax #include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

Description The msync() function writes all modified copies of pages in the [addr, addr + len) area back
to the appropriate storage media or makes copies in the memory invalid so that later
accesses to these pages will access the storage medium.
The storage medium for a modified mapping of type MAP_SHARED is the file to which the
page is mapped; the storage medium for a modified mapping of type MAP_PRIVATE is its
paging area.

flags must have one of the following values:

MS_ASYNC Perform asynchronous write accesses
MS_SYNC Perform synchronous write accesses
MS_INVALIDATE Mark mappings as invalid

If MS_ASYNC or MS_SYNC are set, msync() synchronizes the file contents with the current
contents of the allocated storage area:
All write accesses to the storage area that have taken place before the msync() call are
visible during read accesses to the file after msync().
Before msync() is called, however, it is undefined whether write accesses to the corre-
sponding file section will be visible during subsequent read accesses.

If MS_ASYNC is set, msync() returns as soon as all write operations have been initiated; if
MS_SYNC is set, msync() does not return until all write operations are completed.

If MS_INVALIDATE is set, msync() synchronizes the memory area with the current contents
of the assigned file section. Afterwards, all copies of data that are located in a cache
memory are marked as invalid. Later references to these pages are handled by the system
via the underlying storage medium.
All write accesses to the mapped file section that took place before the msync() call are
visible during subsequent read accesses to the allocated memory area.
Before msync() is called, however, it is undefined whether write accesses to the corre-
sponding file section will be visible during subsequent read accesses.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

msync Functions and variables in alphabetical order

678 U23711-J-Z125-5-76

Errors Under the conditions described below, the msync() function will fail and set errno to the
following values:

EINVAL addr is not a multiple of the page size defined by sysconf().

ENOMEM Addresses in the [addr, addr + len) area are invalid for the address area of
the process, or one or more pages have been specified which are not
mapped.

EIO An I/O error occurred during read or write access to the file.

Notes msync() should be used if it is required that a memory object be in a known state, e.g. in
transaction processing.

Memory pages can also be written to disk in the course of normal system operations.
Therefore it cannot be guaranteed that memory pages are only written to disk when
msync() is called.

See also mmap(), sysconf(), sys/mman.h

Functions and variables in alphabetical order munmap

U23711-J-Z125-5-76 679

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:1
5.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

1
.fm

munmap - unmap memory pages

Syntax #include <sys/mman.h>

int munmap(void *addr, size_t len);

Description The munmap() function removes mappings from pages in the area [addr, addr + len). The
value specified in len is rounded to a multiple of the page size defined by sysconf().
Further references to these pages result in a SIGSEGV signal to the process, provided that
a new mapping of these pages was not established in the meantime.

Areas within the specified interval which are not mmap mappings are ignored.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors munmap() will fail if:

EINVAL addr is not a multiple of the page size defined by sysconf(), or

addresses in the area [addr, addr + len) are not valid for the address area of
the process, or

the len argument contains a value less than or equal to 0.

See also mmap(), sysconf(), signal.h, sys/mman.h.

munmap Functions and variables in alphabetical order

680 U23711-J-Z125-5-76

Functions and variables in alphabetical order nanosleep

U23711-J-Z125-5-76 681

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

n... nanosleep - suspend current thread

Syntax #include <time.h>

int nanosleep(const struct timespec * rqtp, struct timespec * rmtp);

Description The function nanosleep() suspends the current thread until the time period specified via
rqtp expires or until a signal is sent to the calling thread that results in the calling of a signal
handling routine or the termination of the process. The time in suspension may be longer
than the time specified because the value was rounded up to be many times greater than
the sleep resolution or because the system still needs to carry out other activities.

Return val. 0 if the specified time expires.

- 1 if nanosleep() was interrupted by a signal. If rmtp is not a null pointer, the
time remaining will be stored in this case in the structure pointed to by rmtp.
If rmtp is NULL, the time remaining is not returned.

errno is set to indicate an error.

Errors nanosleep() fails if:

EINTR nanosleep() was interrupted by a signal.

EINVAL a value was specified in nanoseconds that is less than 0 or greater than or
equal to 1000 million in the rqtp argument.

ENOSYS The function nanosleep() is not supported in this implementation.

See also sleep(), time.h .

nextafter Functions and variables in alphabetical order

682 U23711-J-Z125-5-76

nextafter - next displayable floating-point number

Syntax #include <math.h>

double nextafter (double x, double y);

Description nextafter() returns the next displayable floating-point number that follows x in direction y.
If y is less than x, the largest displayable floating-point number smaller than x is returned.

Return val. Next displayable floating-point number that follows x in direction y if successful.

If x is finite but the result of nextafter(x, y) would cause an overflow, the value
HUGE_VAL is returned and errno is set to ERANGE.

Errors nextafter() will fail if:

ERANGE the correct value would cause an overflow

See also math.h.

Functions and variables in alphabetical order nftw

U23711-J-Z125-5-76 683

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

nftw - traverse file tree

Syntax #include <ftw.h>

int nftw (const char *path,
 int (*fn) (const char *, const struct stat *, in , struct FTW *),
 int depth, int flags);

Description nftw() recursively searches the directory hierarchy that begins with path. nftw() works
similarly to ftw(), but also processes the flags argument, which is formed by bitwise
inclusive ORing of the following values:

FTW_CHDIR The searched directory becomes the current working directory. If
FTW_CHDIR is not set, the current working directory remains unchanged.

FTW_DEPTH Before the directory itself, all subdirectories are traversed. If FTW_DEPTH is
not set, the directory is traversed first.

FTW_MOUNT Only directories in the same file system as path are traversed. If FTW_MOUNT
is not set, mounted directories are also traversed.

FTW_PHYS The directory hierarchy is physically traversed; nftw() does not follow any
symbolic links, but reports the links instead.
If FTW_PHYS is not set, nftw() follows symbolic links. nftw() does not
report the same file twice.

For every file or directory found, nftw() calls the user-defined function fn with the following
four arguments:

1. Pathname of the object.

2. Pointer to the stat buffer containing information on the object.

3. Number of type integer, in which nftw() provides additional information.

FTW_F The object is a file.

FTW_D The object is a directory.

FTW_DP The object is a directory; subdirectories have already been
traversed (this situation can only occur if flags contains the value
FTW_DEPTH).

FTW_SLN The object is a symbolic link that points to a non-existent file (this
situation can only occur if the flags does not contain the value
FTW_PHYS).

FTW_DNR The object is a directory which cannot be read. fn() is not called for
any of the files in it or directories under it.

nftw Functions and variables in alphabetical order

684 U23711-J-Z125-5-76

FTW_NS stat() cannot process the object because the access permissions
are not sufficient. The stat buffer passed to fn is undefined. If
stat() fails for other reasons, nftw() will fail and return -1.

4. Pointer to a struct FTW which contains the following elements:

 int base;
 int level;

nftw() uses one file descriptor for each level in the file tree. The depth argument limits the
number of file descriptors used. If depth is zero or negative, this has the same effect as the
value 1. depth must not be greater than the number of file descriptors available at the
specified time. If the nftw() function returns, it closes all file descriptors that it opened but
none of the ones that were opened by fn.

nftw() descends the file tree from the highest hierarchy level onward until either the tree
has been exhausted, an fn call returns a non-zero value, or an error is detected within
nftw () (e.g. an I/O error).

Return val. 0 if the tree has been exhausted and fn() always returned the value 0.

Return value of the fn() function
if fn() returns a value ≠ 0, nftw() stops traversing the file tree and returns
the value that was returned by fn

-1 if nftw() detects an error other than EACCES. errno is set to indicate the
error.

Errors nftw() will fail if:

EACCES Search permission is denied for any component of path, or
read permission is denied for path or
fn() returns the value -1 and does not reset.

ENAMETOOLONG
The length of the path argument is greater than {PATH_MAX} or a component
of the pathname is longer than {NAME_MAX}.

The resolving a symbolic link led to an interim result whose length exceeds
{PATH_MAX}.

ENOENT A component of the path prefix does not exist or path is an empty string.

ENOTDIR A component of path is not a directory.

ELOOP Too many symbolic links were encountered in resolving path.

Functions and variables in alphabetical order nftw

U23711-J-Z125-5-76 685

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

EMFILE {OPEN_MAX} file descriptors are already open.

ENFILE Too many files are open.

errno can also be set if the function pointed to by fn() sets errno.

Notes Since nftw() is recursive, it is possible for it to terminate with a memory error when applied
to very deep file structures.

See also lstat(), opendir(), readdir(), stat(), ftw.h.

nice Functions and variables in alphabetical order

686 U23711-J-Z125-5-76

nice - change priority of process

Syntax #include <unistd.h>

int nice(int incr);

Description nice() adds the value of incr to the nice value of the calling process.
Note that in the C runtime system, changing the nice value with incr has no effect on the
priority of a process. The function is supported only for conformance with XPG4.

A process nice value is a non-negative integer for which a more positive value results in
lower CPU priority. A maximum nice value of 2*{NZERO}-1 and a minimum nice value of 0
are imposed by the system. Requests for values above or below these limits result in the
nice value being set to the corresponding limit. Only a process with appropriate privileges
can lower the nice value.

If threads are used, then the function affects the process or a thread in the following
manner: Changes the priority of a process. If the process is multithreaded, the scheduling
priority affects all threads of the process throughout the scope of the system.

Return val. New nice value minus {NZERO}
upon successful completion.

-1 if an error occurs. The process nice value is not changed, and errno is set
to indicate the error.

Errors nice() will fail if:

EPERM incr is negative or greater than 2*{NZERO}-1, and the calling process does
not have appropriate privileges.

Notes As -1 is a permissible return value in a successful situation, an application wishing to check
for error situations should set errno to 0, then call nice(), and if it returns -1, check to see
if errno is non-zero.

See also limits.h, unistd.h.

Functions and variables in alphabetical order nl_langinfo / nrand48

U23711-J-Z125-5-76 687

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

nl_langinfo - get locale values

Syntax #include <langinfo.h>

char *nl_langinfo(nl_item item);

Description nl_langinfo() returns the value of the constant item in the current locale or environment.
The available constants and values for item are defined in langinfo.h.

Return val. Pointer to a string of the locale
if no langinfo data is defined in an environment.

Null pointer if item is invalid.

Notes The array pointed to by the return value should not be modified by the program, but may be
modified by further calls to nl_langinfo(). In addition, calls to setlocale() with a
category corresponding to the category of item or to the category LC_ALL may overwrite the
array.

If setlocale() is not called in an application, the current locale in the POSIX subsystem
defaults to "POSIX". The return values of nl_langinfo() are based on the current locale.
If the current locale does not contain any value for a given parameter, the corresponding
value of the default is returned.

See also setlocale(), langinfo.h, nl_types.h, section “Locale” on page 86 and section
“Environment variables” on page 104.

nrand48 - generate pseudo-random numbers between 0 and 231 with
initialization value

Syntax #include <stdlib.h>

long int nrand48 (unsigned short int xsubi[3]);

Description See drand48().

offsetof Functions and variables in alphabetical order

688 U23711-J-Z125-5-76

o... offsetof - get offset of structure component from start of
structure (BS2000)

Syntax #include <stddef.h>

size_t offsetof(type, component);

Description offsetof() returns the offset in bytes between the named structure component and the
start of the structure of the specified type.
offsetof() is a macro.

type is the name of the structure type (label).

component is the name of the structure component.

Return val. Offset of the structure component from the start of the structure in bytes
if successful.

Notes If the specified structure component is a bit field, the behavior is undefined.

Functions and variables in alphabetical order open, openat

U23711-J-Z125-5-76 689

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

open, openat - open file

Name open, open64, openat, openat64

Syntax #include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open (const char *path, int oflag , .../* mode_t mode*/);
int open64 (const char *path, int oflag , .../* mode_t mode*/);
int openat (int fd, const char *path, int oflag , ...);
int openat64 (int fd, const char *path, int oflag , ...);

Description If POSIX files are executed, the behavior of this function conforms to the XPG4 standard
as described below:

The open() function establishes the connection between a file and a file descriptor. It
creates an open file description that refers to a file and a file descriptor that refers to that
open file description. The file descriptor is used by other I/O functions to refer to that file.
The path argument points to a pathname naming the file.

open() will return a file descriptor for the named file that is the lowest file descriptor not
currently open for that process. The open file description is new, and therefore the file
descriptor does not share it with any other process in the system. The FD_CLOEXEC file
descriptor flag associated with the new file descriptor will be cleared (see fcntl()).

The file position indicator is set to the beginning of the file.

The file status byte and file access modes of the open file description will be set according
to the value of oflag.

Values for oflag are constructed by a bitwise-inclusive-OR of flags from the following list,
defined in fcntl.h. Applications must specify exactly one of the first four values (file
access modes) below in the value of oflag:

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing. The result is undefined if this flag is applied to
a FIFO file.

O_SEARCH Open directory for searching. The result is undefined if this flag is not
applied to a directory.

open, openat Functions and variables in alphabetical order

690 U23711-J-Z125-5-76

Any combination of the following flags may be used:

O_APPEND The file position indicator is set to the end of the file prior to each write.

O_CREAT If the file exists, this flag has no effect, except under the conditions noted
under O_EXCL below. Otherwise, the file is created; the user ID of the file is
set to the effective user ID of the process, and the group ID of the file is set
to to the effective group ID of the process or the group ID of the file´s parent
directory. The access permission bits (see sys/stat.h) of the file mode
are set to the value of mode and then modified as follows: a bitwise-AND is
performed on the individual file-mode bits and the corresponding bits in the
complement of the process´ file mode creation mask (see umask()). Thus,
all bits in the file mode for which a corresponding bit is set in the file mode
creation mask are cleared. When bits other than the file permission bits are
set, the effect is unspecified. The mode argument does not affect whether
the file is opened for reading, writing or for both.

O_EXCL open() will fail if O_CREAT and O_EXCL are set and the file exists. If the file
does not exist, the two actions, i.e. the check for the existence of the file and
the creation of the file, are treated as a single action that it is shielded from
intervention by other processes executing open() for the same file name in
the same directory with O_EXCL and O_CREAT set. If O_CREAT is not set, the
effect is undefined.

O_NOCTTY If this flag is set and path identifies a terminal device, open() will not cause
the terminal device to become the controlling terminal for the process.

O_NONBLOCK When opening a FIFO for reading or writing (O_RDONLY or O_WRONLY):

– If O_NONBLOCK is set:
An open() for reading only will return without delay. An open() for
writing only will return an error if no process currently has the file open
for reading.

– If O_NONBLOCK is clear:
An open() for reading only will block (i.e. wait) until a process opens
the file for writing. An open() for writing only will block until a process
opens the file for reading.

When opening a block special or character special file that supports
non-blocking opens:

– If O_NONBLOCK is set:
open() will return without blocking for the device to be ready or
available. Subsequent behavior of the device is device-specific.

– If O_NONBLOCK is clear:
The open() function will block until the device is ready or available
before returning. Otherwise, the behavior of O_NONBLOCK is undefined.

Functions and variables in alphabetical order open, openat

U23711-J-Z125-5-76 691

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

O_SYNC If O_SYNC is set on a regular file, writes to that file will cause the process to
block until the data is delivered to the underlying hardware.

O_TRUNC If the file exists and is a regular file, and the file is successfully opened
O_RDWR or O_WRONLY, its length is truncated to 0 and the mode and owner
are unchanged. This has no effect on FIFO special files or terminal device
files. The effect on other file types is implementation-dependent. The result
of using O_TRUNC with O_RDONLY is undefined.

O_LARGEFILE If specified, the offset maximum specified in the internal description of the
open file is the highest value that can be correctly represented in an object
of type off64_t .

If O_CREAT is set and the file did not previously exist, upon successful completion, open()
will mark for update the st_atime, st_ctime and st_mtime fields of the file and the
st_ctime and st_mtime fields of the parent directory.

If O_TRUNC is set and the file did previously exist, upon successful completion, open() will
mark for update the st_ctime and st_mtime fields of the file.

There is no difference in functionality between open() and open64() except that
open64() implicitly sets the O_LARGEFILE bit of the file status flag. The function open64()
corresponds to using the function open() when O_LARGEFILE is set in oflag.

If threads are used, then the function affects the process or a thread in the following
manner:

Opening a file; If O_NONBLOCK is not set in the parameter oflag, the following applies to
FIFO: an open() for reading blocks the calling thread until a thread opens the file for
writing. An open() for writing blocks the thread until a thread opens the file for reading. If
a block-oriented or character-oriented device file is opened that supports non-waiting
opens, the following applies: the open() function blocks the calling thread until the device
has finished or is available.

Extension
If O_CREAT and O_EXCL are set and path is a symbolic link, the link is not followed.

BS2000
The following must be noted when executing BS2000 files:

const char *path is a string specifying the file to be opened. path can be any valid BS2000
file name.
– link=linkname

linkname designates a BS2000 link name.
– (SYSDTA), (SYSOUT), (SYSLST), the corresponding system file
– (SYSTERM), terminal I/O
– (INCORE), temporary binary file that is created in virtual memory only.

open, openat Functions and variables in alphabetical order

692 U23711-J-Z125-5-76

mode is a constant defined in the <stdio.h> header which specifies the desired access mode
(or the corresponding octal value), namely:

O_RDONLY
0000

Open for reading. The file must already exist.

O_WRONLY
0001

Open for writing. The file must already exist. The previous contents are retained.

O_TRUNC|O_WRONLY
01001

Open for writing. If the file exists, the previous contents are deleted. If the file does
not exist, it is created.

O_RDWR
0002

Open for reading and writing. The file must already exist. The previous contents are
retained.

O_TRUNC|O_RDWR
01002

Open for reading and writing. If the file exists, the previous contents are deleted. If
the file does not exist, it is created.

O_WRRD
0003

Open for writing and reading. If the file exists, the previous contents are deleted. If
the file does not exist, it is created.

O_APPEND_OLD|O_TRUNC|O_WRONLY
0401

Open for appending to the end of the file. The file must already exist. The file is
positioned to end of file, i.e. the previous contents are preserved and the new text
is appended to the end of the file.

O_APPEND_OLD|O_RDWR
0402

Open for appending to the end of the file and for reading. The file must already exist.
The old contents are preserved and the new text is appended to the end of the file.
After it is opened, the file is positioned to the end of the file when KR functionality is
being used (applies to C/C++ versions prior to V3.0 only), with ANSI functionality to
the start of the file.

Functions and variables in alphabetical order open, openat

U23711-J-Z125-5-76 693

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

lbp switch

The lbp switch controls handling of the Last Byte Pointer (LBP). It is only relevant for
binary files with PAM access mode and can be combined with all specifications permis-
sible for open. If O_LBP is specified as the lbp switch, a check is made to see whether
LBP support is possible. If this is not the case, the creat(), creat64() function will fail
and errno is set to ENOSYS. The switch has further effects only when the file is closed.

When an existing file is opened and read, the LBP is always taken into account
independently of the lbp switch:

– If the file's LBP is not equal to 0, it is evaluated. Any marker which is present is
ignored.

– When LBP = 0, a marker is searched for, and the file length is determined from this.
If no marker is found, the end of the last complete block is regarded as the end of
file.

O_LBP
When a file which has been modified or newly created is closed, no marker is
written (even if one was present), and a valid LBP is set. In this way files with a
marker can be converted to LBP without a marker.
In the case of NK files the last logical block is padded with binary zeros, in the case
of K files the file is padded to the physical end of file.

O_NOLBP
When a file which has been modified or newly created is closed, the LBP is set to
zero (=invalid). A marker is written. In the case of NK files the last logical block is
padded with binary zeros, in the case of K files the file is padded to the physical end
of file.

When a file which has been modified or newly created is closed, the LBP is set to
zero (=invalid). If the file had a valid LBP when it was opened, no marker is written
as in this case it is assumed that no marker exists.
In the case of NK files the last logical block is padded with binary zeros, in the case
of K files the file is padded to the physical end of file.

If the lbp switch is specified in both variants (O_LBP and O_NOLBP), the creat(),
creat64() function fails and errno is set to EINVAL.

If the lbp switch is not specified, the behavior depends on the environment variable
LAST_BYTE_POINTER (see also section “Environment variables” on page 104):

LAST_BYTE_POINTER=YES

The function behaves as if O_LBP were specified.

LAST_BYTE_POINTER=NO

The function behaves as if O_NOLBP were specified.

open, openat Functions and variables in alphabetical order

694 U23711-J-Z125-5-76

Nosplit switch

This switch controls the processing of text files with SAM access mode and variable re-
cord length when a maximum record length is also specified. It can be combined with
any of the other constants.

O_NOSPLIT
When reading with read, records of maximum length are not concatenated with the
following record.
When writing with write, records which are longer than the maximum record length
are truncated to the maximum record length.

If the switch is not specified, the following applies:

– When writing
A record which is longer than the maximum record length will be split into multiple
records. If a record has precisely the maximum record length, a record of the length
zero is written after it.

– When reading
If a record has the maximum record length, it is assumed that the following record
is the continuation of this record and the records are concatenated.

The constant O_RECORD can be specified in the modus parameter to open files with record-
oriented input/output (record I/O). It can always be combined with every other constant
except O_LBP. Only in the case of ISAM files is adding to the end of the file not permitted,
i.e. the combination with 0401 and 0402. With ISAM files the position is determined from
the key in the record.

O_RECORD

This switch functions as follows:

– In the case of record I/O the read() function reads a record (or block) from the
current file position. If the number n of the characters to be read is greater than
the current record length, nevertheless only this record is read. If n is less than
the current record length, only the first n characters are read. The data of the
next record is read when the next read access takes place.

– The write() function writes a record to the file. In the case of SAM and PAM
files the record is written to the current file position. In the case of ISAM files the
record is written to the position which corresponds to the key value in the record.
If the number n of the characters to be written is greater than the maximum re-
cord length, only a record with the maximum record length is written. The re-
maining data is lost. In the case of ISAM files a record is written only if it contains
at least a complete key. If in the case of files with a fixed record length n is less
than the record length, binary zeros are used for padding. When a record is up-

Functions and variables in alphabetical order open, openat

U23711-J-Z125-5-76 695

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

dated in a SAM or PAM file, the length of the record may not be modified. The
write() function returns the number of actually written characters also in the
case of record I/O.

The openat() and openat64() functions are equivalent to the open() and open64()
functions except when the path parameter specifies a relative path. In this case the file to
be opened is not opened in the current directory, but in the directory connected with the file
descriptor fd. If the file descriptor was opened without O_SEARCH, the functions check
whether a search is permitted in the connected directory with the authorizations applicable
for the directory. If the file descriptor was opened with O_SEARCH, the check is not per-
formed.

The oflag parameter and the optional fourth parameter fmode correspond exactly to the pa-
rameters of open() / open64().

When the value AT_FDCWD is transferred to the openat() / openat64() function for the fd
parameter, the current directory is used.

Return val. Non-negative integer
indicating the the lowest numbered unused file descriptor, if successful.

-1 if an error occurs. No file is created or updated. errno is set to indicate the
error.

Errors open(), open64(), openat() and openat64() fail if:

EACCES Search permission is denied on a component of the path.

The file does not exist, and the access permissions specified by oflag are
denied.

The file does not exist, and write permission is denied by the parent
directory of the file to be created.

O_TRUNC is set, and write permission is denied for the file.

Extension
EAGAIN The file exists, mandatory file/record locking is set, and there are

outstanding record locks on the file (see chmod()).

EEXIST O_CREAT and O_EXCL are set, and the named file exists.

EFAULT path points beyond the assigned address space of the process.

EINTR A signal was caught during the open() system call.

EINVAL The value of the oflag argument is invalid.

EIO A connection was cleared or an error occurred while opening a stream-ori-
ented device.

open, openat Functions and variables in alphabetical order

696 U23711-J-Z125-5-76

EISDIR The named file is a directory and oflag includes O_WRONLY or O_RDWR.

EMFILE {OPEN_MAX} file descriptors are currently open in the calling process.

EMULTIHOP Components of path require hops to several remote computers, but the file
system does not permit this.

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

ENFILE The maximum allowable number of files is currently open in the system.

ENOENT O_CREAT is not set and the named file does not exist, or

O_CREAT is set and either the path prefix does not exist or path points to an
empty string.

ENOLINK path refers to a remote computer to which there is no active connection.

ENOSPC The file does not exist, and O_CREAT is specified or the directory or file
system that would contain the new file cannot be expanded.

ENOSR A stream cannot be assigned.

ENOTDIR A component of the path prefix is not a directory.

ENXIO The named file is a character special or block special file, and the device
associated with this special file does not exist, or
O_NONBLOCK is set, the named file is a FIFO, O_WRONLY is set and no
process has the file open for reading.

EROFS The named file resides on a read-only file system and either O_WRONLY,
O_RDWR, O_CREAT (if file does not exist) or O_TRUNC is set in the oflag
argument.

EOVERFLOW O_LARGEFILE is not set for a file and the size of the file cannot be repre-
sented correctly in an object of type off_t.

Functions and variables in alphabetical order open, openat

U23711-J-Z125-5-76 697

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

In addition, openat() and openat64() fail when the following applies:

EACCES The fd parameter was not opened with O_SEARCH, and the authorizations
applicable for the directory do not permit the directory to be searched.

EBADF The path parameter does not specify an absolute pathname, and the fd pa-
rameter does not have the value AT_FDCWD, nor does it contain a valid file
descriptor opened for reading or searching.

ENOTDIR The path parameter does not specify an absolute pathname, and the file de-
scriptor fd is not connected with a directory.

EINVAL The implementation does not support O_SEARCH for the POSIX file system
bs2fs.

Notes The program environment determines whether open() is executed for a BS2000 or POSIX
file.

BS2000
The BS2000 file name or link name can be written in both uppercase and lowercase. It is
automatically converted to uppercase.

Non-existent files are created by default with the following attributes:
for KR functionality (only available with C/C++ versions lower than V3), as a SAM file with
variable record length and standard block length;
for ANSI functionality, as an ISAM file with variable record length and standard block length.
SAM files are always opened as text files by open().

If a link name is used, the following file attributes may be changed with the SET-FILE-LINK
command: the access method, record length, record format, block length and block format.
When the old contents of an existing file are deleted (0003, 01001), the catalog attributes
of the file are preserved.

Location of the file position indicator in append mode:

If the file-position indicator of a file opened in append mode (0401, 0402) has been explicitly
moved from the end of the file (lseek()), it is handled differently for KR and ANSI function-
ality as described below. KR functionality (only available with C/C++ versions lower than
V3): the current file-position indicator is ignored only when writing with the elementary
function write(), and the file is automatically positioned to end of the file.
ANSI functionality: the current file-position indicator is ignored for all write functions, and the
file is automatically positioned to end of the file.

An attempt to open a non-existent file in the read (0000, 0002), update (0001), or append
(0401, 0402) mode will result in an error. A file may be opened for different access modes
simultaneously, provided these modes are mutually compatible within the BS2000 data
management system. (INCORE) files can only be opened for writing (01001) or for writing
and reading (0003). Data must first be written. To read in the written data again, the file must
be positioned to beginning of file with the lseek() function.

open, openat Functions and variables in alphabetical order

698 U23711-J-Z125-5-76

When a program starts, the standard files for input, output, and error output are automati-
cally opened with the following file descriptors:

A maximum of _NFILE files may be open simultaneously. _NFILE is defined as 2048 in
stdio.h.

See also chmod(), close(), creat(), creat64(), dup(), fcntl(), fdopen(), lseek(),
lseek64(), read(), umask(), write(), fcntl.h, sys/types.h, sys/stat.h.

stdin: 0

stdout: 1

stderr: 2

Functions and variables in alphabetical order opendir, fdopendir

U23711-J-Z125-5-76 699

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

opendir, fdopendir - open directory

Syntax #include <dirent.h>

Optional
#include <sys/types.h> ❑

DIR *opendir(const char *dirname);
DIR *fdopendir(int fd);

Description opendir() opens a directory stream corresponding to the directory named by dirname. The
directory stream is positioned at the first entry. The type DIR, which is defined in dirent.h,
represents a directory stream that is an ordered sequence of all directory entries in a special
directory. Since the type DIR is implemented in POSIX using a file descriptor, applications
can only open a maximum of {OPEN_MAX} files and directories.

If dirname cannot be accessed or is not a directory, or if not enough memory to hold a DIR
structure or a buffer for the directory entries can be allocated with malloc(), a null pointer
is returned.

The fdopendir() function is equivalent to the opendir() function, with the difference that
the directory is specified by the file descriptor fd instead of by a pathname.

After a successful return from fdopendir(), the file descriptor is under system control. If
an attempt is made to close the file descriptor or to change the status of the directory by
functions other than closedir(), readdir(), rewinddir() or seekdir(), the behavior
is undefined. closedir() also closes the file descriptor.

Return val. Pointer to a DIR object
if successful.

Null pointer if an error occurs. errno is set to indicate the error.

Errors opendir() and fdopendir() will fail if:

EACCES Search permission is denied for the component of dirname or read
permission is denied for dirname.

Extension
EFAULT dirname points outside the allocated address space of the process.

ELOOP Too many symbolic links were encountered in resolving dirname. ❑

EMFILE More than {OPEN_MAX} file descriptors are currently open in the calling
process.

ENAMETOOLONG
The length of the dirname argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

opendir, fdopendir Functions and variables in alphabetical order

700 U23711-J-Z125-5-76

ENFILE Too many file descriptors are currently open in the system.

ENOENT dirname points to the name of a file that does not exist or to an empty string.

ENOTDIR A component of dirname is not a directory.

In addition, fdopendir() fails if the following applies:

EBADF The fd parameter contains no valid file descriptor which is opened for read-
ing.

ENOTDIR The file descriptor fd is not connected with a directory.

Notes opendir() should be used in conjunction with readdir(), closedir() and
rewinddir() to examine the contents of the directory (see also readdir()). This method
is recommended for portability.

opendir() is executed only for POSIX files

See also closedir(), readdir(), rewinddir(), dirent.h, sys/types.h, limits.h.

Functions and variables in alphabetical order openlog / optarg, opterr, optind, optopt

U23711-J-Z125-5-76 701

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

openlog - system logging

Syntax #include <syslog.h>

void openlog(const char *ident, int logopt, int facility);

Description See closelog().

optarg, opterr, optind, optopt - variables for command options

Syntax #include <unistd.h>

extern char *optarg;
extern int optind, opterr, optopt;

Description See getopt().

pathconf, fpathconf Functions and variables in alphabetical order

702 U23711-J-Z125-5-76

p... pathconf, fpathconf - get value of pathname variable

Syntax #include <unistd.h>

long int pathconf(const char *path, int name);
long int fpathconf(int fildes, int name);

Description pathconf() and fpathconf() provide a method of determining the current value of a
configurable system variable name that is associated with a file or directory.

For pathconf(), path points to the pathname of a file or directory.

For fpathconf(), fildes is an open file descriptor.

The C runtime system supports the variables listed in the following table. Other X/Open-
conformant implementations may support additional variables. The table below contains
the system variables from the headers limits.h or unistd.h that can be queried with
pathconf() or fpathconf(); the symbolic constants, which are defined in unistd.h, are
the corresponding values used for the name argument:

1. If path or fildes refers to a directory, the value returned applies to the directory itself.

2. If path or fildes does not refer to a special file for a terminal, the {MAX_CANON},
{MAX_INPUT} and _POSIX_VDISABLE variables are ignored.

3. If path or fildes refers to a directory, the value returned applies to file names within the
directory.

4. If path or fildes does not refer to a directory, no association of the variables {NAME_MAX},
{PATH_MAX} and _POSIX_VDISABLE with the specified file is supported.

5. If path or fildes refers to a directory, the value returned is the maximum length of a
relative pathname when the specified directory is the working directory.

System variable Value of name (constant) Notes

{LINK_MAX} _PC_LINK_MAX 1.

{MAX_CANON} _PC_MAX_CANON 2.

{MAX_INPUT} _PC_MAX_INPUT 2.

{NAME_MAX} _PC_NAME_MAX 3., 4.

{PATH_MAX} _PC_PATH_MAX 4., 5.

{PIPE_BUF} _PC_PIPE_BUF 6.

_POSIX_CHOWN_RESTRICTED _PC_CHOWN_RESTRICTED 7.

_POSIX_NO_TRUNC _PC_NO_TRUNC 3., 4.

_POSIX_VDISABLE _PC_VDISABLE 2.

Functions and variables in alphabetical order pathconf, fpathconf

U23711-J-Z125-5-76 703

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

6. If path refers to a FIFO, or fildes refers to a pipe or FIFO, the value returned applies to
the referenced object. If path or fildes refers to a directory, the value returned applies to
any FIFO that exists or can be created within the directory. If path or fildes refers to any
other type of file, the behavior is undefined.

7. If path or fildes refers to a directory, the value returned applies to any files, other than
directories, which are defined in this standard and exist or can be created within the
directory.

Return val. Current value of name
if successful.
The value returned will not be more restrictive than the corresponding value
available to the application when it was compiled with the implementation´s
limits.h or unistd.h.

-1 if the variable corresponding to name has no limit for the path or file
descriptor. errno is not set.

-1 if name has an invalid value, or
if the implementation needs to use path or fildes to determine the value of
name, and the implementation does not support the association of name with
the file specified by path or fildes, or
if the process did not have appropriate privileges to query the file specified
by path or fildes, or
if path does not exist, or
if fildes is not a valid file descriptor.

In these cases, errno is set to indicate the error.

Errors pathconf() will fail if:

Extension
EACCES Search permission is denied for a component of the pathname. ❑

EINVAL The value of name is not valid,
or an attempt was made to access a BS2000 file.

Extension
ELOOP Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX} or
a pathname component is longer than {NAME_MAX} and _POSIX_NO_TRUNC
is set.

ENOENT The named file does not exist
or path points to an empty string. ❑

ENOTDIR A component of the path prefix is not a directory.

pathconf, fpathconf Functions and variables in alphabetical order

704 U23711-J-Z125-5-76

fpathconf() will fail if:

EINVAL The value of name is not valid, or
the implementation does not support an association of the variable name
with the specified file.

EBADF fildes is not a valid file descriptor.

See also sysconf(), limits.h, unistd.h.

Functions and variables in alphabetical order pause

U23711-J-Z125-5-76 705

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

pause - suspend process until signal is received

Syntax #include <unistd.h>

int pause(void);

Description pause() suspends the calling process until delivery of a signal whose action is either to
execute a signal-handling function or to terminate the process.

If the action is to terminate the process, pause() will not return.

If the action is to execute a signal-handling function, pause() will return after the
signal-handling function returns.

If threads are used, then the function affects the process or a thread in the following
manner: Suspends the thread until it receives a signal.

Return val. -1 if an error occurs. errno is set to indicate the error.

Since pause() suspends process execution indefinitely unless interrupted by a signal,
there is no successful completion return value.

Errors pause() will fail if:

EINTR A signal is caught by the calling process and control is returned from the
signal-handling function.

See also sigsuspend(), sleep(), unistd.h.

pclose Functions and variables in alphabetical order

706 U23711-J-Z125-5-76

pclose - close pipe stream

Syntax #include <stdio.h>

int pclose(FILE *stream);

Description pclose() closes the named stream that was opened by popen(), waits for the command
started by popen() to terminate, and returns its exit status. However, if the exit status is
unavailable to pclose(), then pclose() returns -1 and sets errno to ECHILD to report the
situation. This may occur if the application has already obtained the exit status by one of
the following functions:

– wait()

– waitpid() with a pid argument less than or equal to 0 or equal to the process ID of the
command interpreter.

In any case, pclose() will not return before the child process created by popen() has
terminated.

If the command interpreter cannot be executed, the child exit status returned by pclose()
will be the same as if the command interpreter had terminated using exit(127) or
_exit(127).

Return val. Exit status of the command interpreter
if successful.

-1 if stream was not created by popen().

Errors pclose() will fail if:

ECHILD The exit status of the child process could not be determined.

Extension
EINVAL An attempt was made to access a BS2000 file. ❑

Notes pclose() is executed only for POSIX files.

See also fork(), popen(), wait(), waitpid(), stdio.h.

Functions and variables in alphabetical order perror

U23711-J-Z125-5-76 707

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

perror - write error messages to standard error

Syntax #include <stdio.h>

void perror(const char *s);

Description perror() maps the error code in the external variable errno to a language-dependent
error_message, which is written to the standard error stream as follows:

s : error_message \n

s is a string that should include at least the name of the program in which the error occurred.
If s is a null pointer or the character to which s points is a null byte, the message portion is
omitted ("s : ").

The contents of the error message strings depend on the environment variable LANG. All
error codes and error messages are listed and explained in the header errno.h.

perror() will mark the file associated with the standard error stream as having been
written (st_ctime, st_mtime marked for update) at some time between its successful
completion and a call to exit(), abort(), or the completion of fflush() or fclose() on
stderr.

Notes The contents of the area in which the error code and error text are stored are not explicitly
deleted, i.e. the previous contents are retained until they are overwritten with appropriate
information when a fresh error occurs. perror calls are therefore only useful after a
function has provided an error return value.
The program environment determines whether perror() is executed for a BS2000 or
POSIX file.

The message text output can also contain inserts for POSIX error messages.

BS2000
In the case of I/O errors or when system commands are executed, error_message contains
the appropriate DMS error codes as supplementary information.
In KR mode (only available with C/C++ versions lower than V3), a value of type char * is
returned. It contains a pointer to an internal C buffer with the error message. The contents
are overwritten at each new call to perror (see also the manual "C Library Functions" [6]).
If the program is called in a BS2000 environment and the file does not exist, the following
error message is printed on standard output:

Program fopen: dataset not found (cmd: OPEN), errorcode=DD33

DD33 is the DMS error code. ❑

See also strerror(), errno.h, stdio.h, section “Selecting functionality” on page 73.

pipe Functions and variables in alphabetical order

708 U23711-J-Z125-5-76

pipe - create pipe

Syntax #include <unistd.h>

int pipe(int fildes[2]);

Description pipe() creates a pipe and places two file descriptors, which refer to the open file
descriptions for the read and write ends of the pipe, into the arguments fildes[0] and
fildes[1]. These integer values are the two lowest available at the time of the pipe() call.
The O_NONBLOCK bit is not set for either of the two file descriptors (the fcntl() function
can be used to set the O_NONBLOCK bit).

Data can then be written to the file descriptor fildes[1] and read from file descriptor
fildes[0]. A read on the file descriptor fildes[0] accesses the data written to file descriptor
fildes[1] on a first-in-first-out basis.

A process has the pipe open for reading if it has a file descriptor open that refers to the read
end of the pipe, i.e. fildes[0]; the same applies to writing and the write end, i.e. fildes[1].

Upon successful completion, pipe() will mark the stat structure components of the pipe,
i.e. st_atime, st_ctime and st_mtime, for update.

The FD_CLOEXEC bit is not set for either of the two file descriptors.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors pipe() will fail if:

EMFILE {OPEN_MAX} minus 2 file descriptors are already open for this process.

ENFILE The number of simultaneously open files in the system would exceed a
system-imposed limit.

Notes pipe() is executed only for POSIX files.

See also fcntl(), read(), write(), unistd.h.

Functions and variables in alphabetical order poll

U23711-J-Z125-5-76 709

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

poll - multiplex STREAMs I/O

Syntax #include <poll.h>

int poll(struct pollfd fds[], nfds_t nfds, int timeout);

Description poll() provides applications with a mechanism for multiplexing input/output over a set of
open file descriptors.
For each field element to which fds points, poll() checks whether one or more of the
events listed in events has occurred for the corresponding file descriptor. The number of
pollfd structures in the fds field is specified by the value nfds. poll() identifies the file
descriptors which the application can read from or write to, or for which events have
occurred.

fds defines the file descriptors to be checked as well as the events that are to be polled for
the respective file descriptors. fds is a pointer to a field with one element each for every file
descriptor to be checked. The elements of the field are pollfd structures, which contain
the following:

 int fd; /* Open file descriptor */
 short events; /* Events to be queried */
 short revents; /* Events that have occurred */

fd identifies an open file descriptor, events and revents are bit masks which are formed
from the following flags through bitwise ORing (any combinations are possible):

POLLIN Data which does not have the highest priority can be read without blocking.
For STREAMS this flag is set in revents even if the message has the length
0.

POLLRDNORM Normal data (priority = 0) can be read without blocking. For STREAMS this
flag is set in revents even if the message has the length 0.

POLLRDBAND Data with priority ≠ 0 can be read without blocking. For STREAMS this flag
is set in revents even if the message has the length 0.

POLLPRI Data with the highest priority can be received without blocking. For
STREAMS this flag is set in revents even if the message has the length 0.

POLLOUT Normal data (priority = 0) can be written without blocking.

POLLWRNORM As POLLOUT.

POLLWRBAND Data with priority ≠ 0 can be written.

POLLMSG An M_SIG or M_PCSIG message containing an ASIGPOLL signal has arrived
at the beginning of the stream head queue.

POLLERR An error has occurred for the STREAM or the special file. This flag is only
valid in the revents bit mask; in the events bit mask it is ignored.

poll Functions and variables in alphabetical order

710 U23711-J-Z125-5-76

POLLHUP A hang-up has occurred in the STREAM (the connection to the device has
been interrupted). POLLHUP and POLLOUT mutually exclude each other; data
can never be written to a stream if a hang-up has occurred. However, the
event and POLLIN or POLLRDNORM, POLLRDBAND or POLLPRI do not mutually
exclude each other.
The POLLHUP flag is only valid in the revents bit mask; in the events bit
mask it is ignored.

POLLNVAL The specified fd value is invalid. This flag is only valid in the revents bit
mask; in the events bit mask it is ignored.

If the value in fd is less than zero, events is ignored, and revents is set to 0 for this field
entry when poll() returns.

The results of the poll() query are displayed in the revents field in the pollfd structure.
poll() first sets all bits in revents to zero. If one or more of the events queried in events
has occurred, poll() sets the corresponding bits in revents. The bits for POLLHUP,
POLLERR and POLLNVAL are automatically set in revents when the corresponding events
occur; they do not need to be set in events.

If the check reveals that none of the events queried for the file descriptors has occurred,
poll() waits at least timeout milliseconds for an event to occur for one of the specified file
descriptors. On a machine which does not offer precision in milliseconds, timeout is rounded
up to the next permissible value available in this system.
If the value of timeout is 0, poll() returns immediately. If timeout has the value -1, poll()
waits until one of the queried events occurs, or until the call is interrupted (blocking poll()
call).

poll() is not affected by the O_NDELAY and O_NONBLOCK flags.

poll() supports text files, terminals, pseudoterminals, STREAMS-based files, FIFO files
and pipes, sockets and XTI.

With text files, poll() always returns a TRUE for reading and writing.

Return val. Value ≥ 0 if successful.
A positive value indicates the total number of file descriptors for which the
revents field is not equal to zero.
0 means that the time for the call has expired and there are no file
descriptors for which the revents field is not equal to zero.

-1 if an error occurs. errno is set to indicate the error.

Functions and variables in alphabetical order poll

U23711-J-Z125-5-76 711

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Errors poll() will fail if:

EAGAIN The allocation of the internal data structures has failed but could succeed if
repeated.

EFAULT An argument points to a storage space outside the allocated address space.

EINTR A signal was caught during the poll() system call.

EINVAL The nfds argument is less than zero or greater than OPEN_MAX, or
one of the fd entries refers to a STREAM or multiplexer which is connected
downstream via a multiplexer.

See also getmsg(), putmsg(), read(), select(), write(), poll.h, stropts.h.

popen Functions and variables in alphabetical order

712 U23711-J-Z125-5-76

popen - initiate pipe stream to or from process

Syntax #include <stdio.h>

FILE *popen (const char *command, const char *mode);

Description popen() executes the command specified by the string command, creates a pipe between
the calling program and the executed command, and returns a pointer to a stream that can
be used to either read from (I/O mode r) or write to (I/O mode w) the pipe.

The environment of the executed command in an XPG4-conformant implementation will be
as if a child process were created within the popen() call using fork(), and the child
invoked the sh utility using the call:
execl (shell_path, "sh", "-c", command, (char *)0);
where shell_path is an unspecified name for the sh utility.

popen() ensures that any streams from previous popen calls that remain open in the
parent process are closed in the new child process.
mode is a string that specifies I/O mode:

1. If mode is r when the child process is started, the standard output of the command will
be redirected to the pipe. The file descriptor STDOUT_FILENO will be the writable end of
the pipe, and the file descriptor fileno(stream), where stream is the stream pointer
returned by popen(), will be the readable end of the pipe.

2. If mode is w when the child process is started, the standard output of the command will
be redirected to the pipe. The file descriptor STDIN_FILENO will be the readable end of
the pipe, and the file descriptor fileno(stream), where stream is the stream pointer
returned by popen(), will be the writable end of the pipe.

After popen(), both the parent and the child process will be capable of executing indepen-
dently before either terminates.

Return val. Pointer to a stream
if successful.

Null pointer if files or processes cannot be created.

Notes If the parent process and the process created by popen() read or write a file simultane-
ously, neither of the processes may use buffered I/O. Problems with an output filter can be
avoided by taking the precaution of flushing the buffers, e.g. with flush() (see also
fclose()).
popen() is executed only for POSIX files.

See also pclose(), pipe(), sysconf(), system(), stdio.h, the sh command in the manual
"POSIX Commands" [2].

Functions and variables in alphabetical order pow

U23711-J-Z125-5-76 713

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

pow - power function

Syntax #include <math.h>

double pow(double x, double y);

Description pow() computes the value of xy.

x is the base of the exponential function (a floating-point number).

y is the exponent (also a floating-point number).

If x is 0, y must be positive;
if x is negative, y must be an integer value.

Return val. Value of xy if x, y and the result lie in the permitted floating-point interval.

+/-HUGE_VAL (depending on the sign) if an overflow occurs;
errno is set to indicate the error.

1.0 if x and y are both 0.

-HUGE_VAL if x is 0 and y is less than 0;
errno is set to indicate the error.

undefined if x is less than 0 and y is not an integer;
errno is set to indicate the error.

Errors pow() will fail if:

EDOM The value of x is negative, and y is not an integer.

The value of x is 0, and y is negative.

ERANGE The value of x would cause an overflow.

See also exp(), hypot(), log(), log10(), sinh(), sqrt(), math.h.

printf / ptsname Functions and variables in alphabetical order

714 U23711-J-Z125-5-76

printf - write formatted output on standard output stream

Syntax #include <stdio.h>

int printf(const char *format, arglist);

Description See fprintf().

ptsname - name of pseudoterminal

Syntax #include <stdlib.h>

char *ptsname(int fildes);

Description The ptsname() function returns the name of the slave pseudoterminal that is assigned to
the master pseudoterminal. fildes is the file descriptor that references the master terminal.
ptsname() returns a pointer to a string containing the pathname of the corresponding slave
terminal. The name is terminated with the null byte.

The name has the format /dev/pts/N, where N is an integer between 0 and 255.

ptsname() is not thread-safe.

Return val. Pointer to a string
if successful. The string contains the name of the slave terminal.

Null pointer if an error occurs. This can happen if fildes is not a valid file descriptor or if
the name of the slave terminal does not exist in the file system.

Notes The pointer points to a static data area that is overwritten every time ptsname() is called.

See also grantpt(), ttyname(), unlockpt(), stdlib.h.

Functions and variables in alphabetical order putc, putc_unlocked

U23711-J-Z125-5-76 715

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

putc, putc_unlocked - put byte on stream

Syntax #include <stdio.h>

int putc(int c, FILE *stream);

int putc_unlocked(int c, FILE *stream);

Description The function putc() is equivalent to fputc(), but is defined as a macro and a function.
When it is used as a macro, it may evaluate c and stream more than once, so these
argument should never be an expression with side-effects.

The function putc_unlocked() (see page 463 under getc_unlocked() ...) is
functionally equivalent to putc() except that it’s implementation is not thread-safe. For this
reason it can only be used safely in a multithreaded program if the thread that calls it owns
the corresponding (FILE *) object. This is the case after successfully calling the
flockfile() or ftrylockfile() functions.

Return val. See fputc().

Errors See fputc().

Notes If putc() is used as a macro, it may handle the arguments c and stream with side-effects
incorrectly. putc(c, *f++), in particular, will usually not work correctly. It is therefore
advisable to use fputc() instead.

The bytes are not written immediately to the external file but are stored in an internal C
buffer (see section “Buffering streams” on page 110).

The program environment determines whether putc() is executed for a BS2000 or POSIX
file.

BS2000
Control characters for white space (\n, \t, etc.) are converted to their appropriate effect
when output to text files, depending on the type of text file (see section “White-space
characters” on page 117). ❑

See also fputc(), getc_unlocked(), stdio.h.

putchar / putchar_unlocked Functions and variables in alphabetical order

716 U23711-J-Z125-5-76

putchar - put byte on standard output stream (thread-safe)

Syntax #include <stdio.h>

int putchar(int c);

int putchar_unlocked(int c);

Description The function call putchar(c) is equivalent to putc(c, stdout). putchar() is implemented
both as a function and as a macro.

The function putchar_unlocked() (see page 463 under getc_unlocked() ...) is
functionally equivalent to putchar() except that it’s implementation is not thread-safe. For
this reason it can only be used safely in a multithreaded program if the thread that calls it
owns the corresponding (FILE *) object. This is the case after successfully calling the
flockfile() or ftrylockfile() functions.

Return val. See fputc().

Notes The bytes are not written immediately to the external file but are stored in an internal C
buffer (see section “Buffering streams” on page 110).

For further information on output to text files and on converting control characters for white
space (\n, \t, etc.), see section “White-space characters” on page 117.

The program environment determines whether putchar() is executed for a BS2000 or
POSIX file.

See also getchar(), getchar_unlocked(), putc(), putc_unlocked(), stdio.h.

putchar_unlocked - put byte on standard output stream (thread-safe)

Syntax #include <stdio.h>

int putchar_unlocked(int c);

Description see getc_unlocked() .

Functions and variables in alphabetical order putenv

U23711-J-Z125-5-76 717

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

putenv - change or add environment variables

Syntax #include <stdlib.h>

int putenv (const char *string);

Description putenv() may be used to alter the value of an existing environment variable or to define a
new one. string must point to a string of the form "name=value", where name is the name of
an environment variable, and value is the value assigned to it. If name is identical to an
existing environment variable, the associated value of the existing variable is updated with
the new value. If name is a new environment variable, it is added to the environment. In either
case, string becomes part of the environment and thus alters it.

The space occupied by string is no longer used when a new value is assigned to an existing
environment variable with putenv().

putenv() is not thread-safe.

Return val. 0 if successful.

≠ 0 if an error occurs, e.g. because not enough memory is available. errno is
set to indicate the error.

Errors putenv() will fail if:

ENOMEM There is not enough memory available.

Notes putenv() manipulates the environment to which environ points and may be used in
connection with getenv().

putenv() may use malloc() to expand the environment.

A potential source of error is to call putenv() with an automatic variable as an argument
and then return from the calling function while string is still part of the environment.

BS2000
When a program is started from the POSIX shell, the SDF-P variable structure SYSPOSIX
is evaluated as part of the environment definition in addition to the defaults for the
environment (see also environ). putenv()does not, however, alter the SDF-P variables.
The POSIX environment corresponds to the one pointed to be environ. SYSPOSIX.name is
defined in BS2000, i.e. outside the POSIX subsystem. ❑

See also environ, exec, getenv(), malloc(), setenv(), unsetenv(), stdlib.h, section
“Environment variables” on page 104.

putmsg, putpmsg Functions and variables in alphabetical order

718 U23711-J-Z125-5-76

putmsg, putpmsg - send message to STREAMS file

Syntax #include <stropts.h>

int putmsg(int fildes, const struct strbuf *ctlptr,
 const struct strbuf *dataptr, int flags);

int putpmsg(int fildes, const struct strbuf *ctlptr,
 const struct strbuf *dataptr, int band, int flags);

Description putmsg() creates a message from the specified buffers and sends it to a STREAMS file.
The message can contain either a data section, a control section or both. The data and
control sections to be sent are distinguished from each other by being written to different
buffers (see below). The semantics of the sections is defined via the STREAMS module that
receives the message.

The putpmsg() function has the same functionality as putmsg(), but it allows the user to
send messages with different priorities.
All information described here for putmsg() also applies to putpmsg(), with exceptions
being explicitly indicated.

fildes is a file descriptor that references an open stream. ctlptr and dataptr each point to an
strbuf structure containing the following elements:

 int maxlen; /* Not used */
 int len; /* Length of data */
 void *buf; /* Pointer to buffer for data */

ctlptr points to the structure that describes the control section to be included in the message
(if there is one). The buf field in the strbuf structure points to the buffer containing the
control information, and the len field specifies the number of bytes to be sent.
The maxlen field is not used in putmsg() (see getmsg()). In the same way, dataptr
describes the data section which is to be included in the message. flags indicates what type
of message is to be sent (see below).

For the data section of a message to be sent, dataptr must not be the same as the null
pointer, and the len field of dataptr must contain a value ≥ 0. For the control section of a
message to be sent, the corresponding values must be set for ctlptr. A data (control) section
is not sent if either dataptr (ctlptr) is the null pointer or the corresponding len field is set to -1.

If a control section is specified in putmsg(), and flags is set to RS_HIPRI, a message with
high priority is sent.
If no control section is specified and flags is set to RS_HIPRI, putmsg() fails and sets errno
to EINVAL.
If flags is set to 0, a normal message is sent (priority=0).
If neither a control section nor a data section is specified and flags is set to 0, no message
is sent and the value 0 is returned.

Functions and variables in alphabetical order putmsg, putpmsg

U23711-J-Z125-5-76 719

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

The STREAM head guarantees that the control section of a message generated by
putmsg() is at least 64 bytes long.

Other flags are used for putpmsg(): flags is a bit mask which contains either MSG_HIPRI or
MSG_BAND or 0 (the values mutually exclude each other).
If flags is set to 0, putpmsg() fails and sets errno to EINVAL.
If a control section is specified and flags is set to MSG_HIPRI and band is set to 0, a message
with a high priority is sent.
If flags is set to MSG_HIPRI, and either no control section is specified or band ≠ 0, putpmsg()
fails and sets errno to EINVAL.
If flags is set to MSG_BAND, a message in the priority class specified by band is sent.
If no control section and no data section are specified, and flags is set to MSG_BAND, no
message is sent and 0 is returned.

Normally, putmsg() blocks if the read/write queue of the stream is full because of internal
control flow conditions. With high-priority messages, however, putmsg() does not block in
this case.
With other messages, putmsg() does not block if the read/write queue is full if O_NDELAY or
O_NONBLOCK is set. Instead, the call fails and errno is set to EAGAIN.

putmsg() or putpmsg() block regardless of the priority and O_NDELAY or O_NONBLOCK even
if they are waiting for the availability of message blocks in the stream. Partial messages are
not sent.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors putmsg() and putpmsg() will fail if:

EAGAIN A message without priority was specified, the O_NDELAY or O_NONBLOCK flag
is set, and the read/write queue of the STREAM is full because of internal
control flow conditions
or
no buffer could be allocated for the message to be created.

EBADF fildes is not a valid file descriptor open for writing.

EINTR A signal was caught during the putmsg() system call.

EFAULT ctlptr or dataptr point outside the allocated address space.

putmsg, putpmsg Functions and variables in alphabetical order

720 U23711-J-Z125-5-76

EINVAL An undefined value was specified in flags, or
flags is set to RS_HIPRI or MSG_HIPRI and no control section was provided,
or
the STREAM or multiplexer referenced by fildes is connected downstream
via a multiplexer.

For putpmsg() only:
flags is set to MSG_HIPRI and band ≠ 0.

ENOSR No buffer could be allocated for the message to be created because there
was not enough STREAMs storage space.

ENOSTR No STREAM belongs to fildes.

ENXIO A hang-up was generated downstream for the specified stream.

EPIPE or EIO
fildes references a STREAM-based pipe and the other end of the pipe is
closed. The SIGPIPE signal is generated for the calling process.

ERANGE The data section of the message has a size that is not within the range
defined by the maximum and minimum packet size of the highest stream
module.
ERANGE is also returned if the control section of the message is larger than
the configured maximum size of the control section of a message, or if the
data section of a message is larger than the configured maximum size of
the data section of a message.

putmsg() and putpmsg() also fail if an asynchronous STREAMs error message has
reached the stream head before the putmsg() or putpmsg() call. In this case, errno refers
to the error contained in the STREAMS error message.

Notes If two processes open a FIFO file, with one writing a high-priority message with putmsg()
and the other reading a high-priority message with getmsg(), messages can be lost. This
loss can be avoided by slowing down the send process with sleep between the individual
putmsg() calls.

See also getmsg(), poll(), read(), write(), stropts.h.

Functions and variables in alphabetical order putpwent

U23711-J-Z125-5-76 721

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

putpwent - enter user into user catalog (extension)

Syntax #include <pwd.h>

int putpwent(const struct passwd *p, FILE *f);

Description putpwent() writes the user data from the password structure p into the user catalog serially.
The calling process must have appropriate privileges.

p is a password structure that was obtained with getpwent(), getpwuid() or getpwnam()
and then modified.

f is supported only for compatibility reasons; it is not evaluated.

Return val. 0 if successful.

≠0 if an error occurs. errno is set to indicate the error.

Errors putpwent() will fail if:

EINVAL The user data is invalid.

EFAULT The specified address of the passwd structure is invalid.

ENOENT The user is not recognized.

EPERM The calling process does not have appropriate privileges.

Notes There is no /etc/passwd password file in the POSIX subsystem. User data is stored inter-
nally in the user catalog (see also the manual "POSIX Basics" [1]).

See also getpwent() and the manual "POSIX Basics" [1].

puts Functions and variables in alphabetical order

722 U23711-J-Z125-5-76

puts - put string on standard output

Syntax #include <stdio.h>

int puts(const char *s);

Description puts() writes the string pointed to by s, followed by a newline character, to the standard
output stream stdout. The terminating null byte is not written.

The structure components st_ctime and st_mtime of the file are marked for changing
between successful execution of puts() and the next successful completion of a call to
fflush() or fclose() for the same data stream or a call to exit() or abort() (see
sys/stat.h).

Return val. Non-negative number
if successful.

EOF if an error occurs. The error indicator for the stream is set, and errno is set
to indicate the error.

Errors See fputc().

Notes The puts() function appends a newline character, while fputs() does not.

The terminating null byte of s is not output.

BS2000

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
split=no was entered for fopen(), records which are longer than the maximum record
length are truncated to the maximum record length when they are written. By default or with
the specification split=yes, these records are split into multiple records. If a record has
precisely the maximum record length, a record of the length zero is written after it. ❑

The program environment determines whether puts() is executed for a BS2000 or POSIX
file.

For further information on output to text files and on converting control characters for white
space (\n, \t, etc.), see section “White-space characters” on page 117.

See also fputs(), fopen(), putc(), stdio, stdio.h.

Functions and variables in alphabetical order pututxline

U23711-J-Z125-5-76 723

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

pututxline - write utmpx entry

Syntax #include <utmpx.h>

struct utmpx *pututxline (const struct utmpx *utmpx);

Description See endutxent().

Return val. Pointer to a utmpx structure containing a copy of the added utmpx entry
if successful.

Null pointer if an error occurs. errno is not set.

Notes To be able to call pututxline(), the process must have the appropriate access permis-
sions.

See also utmpx.h.

putw Functions and variables in alphabetical order

724 U23711-J-Z125-5-76

putw - put word on stream

Syntax #include <stdio.h>

int putw(int w, FILE *stream);

Description putw() writes the word w to the output stream stream at the position at which the file offset,
if defined, is pointing. The size of a word corresponds to the size of a type int and varies
from machine to machine. In the C runtime system, the size of a type int is 4 bytes. putw()
neither assumes nor causes special alignment in the file.

The structure components st_ctime and st_mtime of the file are marked for changing
between successful execution of putw() and the next successful completion of a call to
fflush() or fclose() for the same data stream or a call to exit() or abort() (see
sys/stat.h).

putw() is not thread-safe.

Return val. 0 if successful.

≠ 0 if an error occurs. The error indicator for the stream is set, and errno is set
to indicate the error.

BS2000
EOF if an error occurs. ❑

Errors See fputc().

Notes Due to possible differences in word length and byte ordering, files written using putw() are
machine-dependent, and may not be readable using getw() on a different processor.

Since putw() does not indicate errors explicitly (-1 is a valid integer value), it is advisable
to also use ferror() to verify whether an error occurred before or after writing.
The bytes are not written immediately to the external file but are stored in an internal C
buffer (see section “Buffering streams” on page 110).

Control characters for white space (\n, \t, etc.) are converted to their appropriate effect
when output to text files, depending on the type of text file (see section “White-space
characters” on page 117).

The program environment determines whether putw() is executed for a BS2000 or POSIX
file.

See also fopen(), fputc(), fwrite(), getw(), stdio.h, sys/stat.h.

Functions and variables in alphabetical order putwc / putwchar

U23711-J-Z125-5-76 725

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

putwc - put wide character on stream

Syntax #include <wchar.h>

Optional
#include <stdio.h> ❑

wint_t putwc(wint_t wc, FILE *stream);

Description putwc() is equivalent to the fputwc() function, except that if it is implemented as a macro
it may evaluate stream more than once, so the stream argument should never be an
expression with side-effects.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

Return val. See fputwc().

Errors See fputwc().

Notes putwc(wc, *f++) may not work as expected. Therefore, use of this function is not recom-
mended; fputwc() should be used instead.

See also putwc(), stdio.h, wchar.h.

putwchar - put wide character on standard output stream

Syntax #include <wchar.h>

wint_t putwchar(wint_t wc);

Description The function call putwchar(wc) is equivalent to putwc(wc, stdout).

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

Return val. See putwc().

See also fputwc(), putwc(), wchar.h.

qsort Functions and variables in alphabetical order

726 U23711-J-Z125-5-76

q... qsort - sort table of data

Syntax #include <stdlib.h>

void qsort (void * base, size_t nel, size_t width, int (*compar) (const void *, const void *));

Description The qsort() function is an implementation of the quicksort algorithm. It sorts a table of data
in place. The contents of the table are sorted in ascending order according to the user-
supplied comparison function. base points to the element at the base of the table. nel is the
number of elements in the table. width specifies the size of each element in bytes. compar
is the name of the user-defined comparison function, which is called by qsort() with two
arguments that point to the elements being compared. This function must return an integer
less than, equal to, or greater than zero to indicate if the first argument is to be considered
less than, equal to, or greater than the second.

The comparison function may be defined as follows:

/* Program fragment 1 compares two char values */
int comp(const void *a, const void *b)
{
 if(*((const char *)a) < *((const char *) b))
 return(-1);
 else if(*((const char *)a) > *((const char *) b))
 return(1);
 return(0);
}

/* Program fragment 2 compares two integer values */
int compare(const void *a, const void *b)
{
 return (*((const int *) a) - *((const int *) b));
}

Notes The comparison function need not compare every byte, so arbitrary data may be contained
in the elements in addition to the values being compared.

Extension
In contrast to XPG4, the order of array members that are considered equal by the
comparison function is not changed. ❑

See also stdlib.h.

Functions and variables in alphabetical order raise

U23711-J-Z125-5-76 727

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

r... raise - send signal to calling process

Syntax #include <signal.h>

int raise (int sig);

Description If the function is called with POSIX functionality, its behavior conforms with XPG4 as
described below:

raise() sends the signal sig to the calling process. The defined signals are listed in
signal.h.

If threads are used, then the function affects the process or a thread in the following
manner:

– Sends a signal to the calling thread. The effect of raise(sig) is equivalent to calling
pthread_kill(pthread_self(), sig).

BS2000
– The following deviations in behavior must be noted if the function is called with BS2000

functionality:

– raise() can be used to simulate STXIT events as well as to send STXIT-independent
signals (self-defined or predefined by the C runtime system).

– The following subset of the signals defined in signal.h may be used for sig:

Signal STXIT class Meaning

SIGHUP
SIGINT
SIGILL
SIGABRT
SIGFPE
SIGKILL
SIGSEGV
SIGALRM
SIGTERM
SIGUSR1
SIGUSR2
SIGDVZ
SIGXCPU
SIGTIM
SIGINTR

ABEND
ESCPBRK
PROCHK
 -
PROCHK
 -
ERROR
RTIMER
TERM
 -
 -
PROCHK
RUNOUT
TIMER
INTR

Disconnection of link to terminal
Interrupt from the terminal with [K2]

Execution of an invalid instruction
raise signal for program abort with _exit(-1)
Error in a floating-point operation
raise signal for program abort with exit(-1)
Memory access with invalid segment access
A time interval has elapsed (real time)
Signal at program termination
Defined by the user
Defined by the user
Division by 0
CPU time has run out
A time interval has elapsed (CPU time)
SEND-MESSAGE command

❑

raise Functions and variables in alphabetical order

728 U23711-J-Z125-5-76

Return val. 0 if the signal was sent successfully.

-1 if an error occurs. errno is set to indicate the error.

Errors raise() will fail if:

Extension
EINVAL The value of sig is an invalid signal number. ❑

Notes raise(int sig) uses the following call to kill to send the signal to the calling process:

kill(getpid(), sig);

A detailed list of error conditions can be found under kill().

BS2000
With the exception of SIGKILL and SIGSTOP, the above signals can be intercepted with the
signal() function (see signal()).

If the program does not provide for the handling of raise signals, the process is terminated
with exit(-1) when a signal arrives, and the following messages are displayed:

"CCM0101 signal occurred: signal"
"CCM0999 Exit -1"

The SIGABRT signal causes the program to terminate with _exit(-1). In contrast to
exit(-1), the termination routines registered with atexit() are not called and open files
are not closed.

The SIGKILL signal causes the program to terminate with exit(-1). In contrast to
SIGABRT, SIGKILL cannot be intercepted, i.e. signal calls which specify the name of a
self-defined function or SIG_IGN as the argument are not valid for SIGKILL. ❑

See also atexit(), exit(), _exit(), kill(), sigaction(), signal(), signal.h.

Functions and variables in alphabetical order rand / rand_r

U23711-J-Z125-5-76 729

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

rand - pseudo-random number generator (int)

Syntax #include <stdlib.h>

int rand(void);

void srand(unsigned int seed);

Description rand() returns a positive random integer in the range [0, 215-1].

A rand call selects values from a series of pseudo-random numbers by using a multipli-
cative, congruent random-number generator. The generator has a period of 232.

rand() is not thread-safe. Use the reentrant function rand_r() when needed.

Return val. Random number in the range [0, 215-1] if successful.

Notes The random-number generator can be initialized or reset with srand(). If no initialization
takes place, the random-number generator starts with its default value.

See also drand48(), rand_r(), random(), srand(), stdlib.h.

rand_r - pseudo-random number generator (int, thread-safe)

Syntax #include <stdlib.h>

int rand_r(unsigned int *seed);

Description The function rand_r() is the thread-safe version of rand().

The function rand_r() returns an pseudo-random integer between 0 and 215-1. If
rand_r() is called with the same initial value for the object pointed to by seed and this
object is not changed between sequential calls to rand_r(), the same series of pseudo-
random numbers is created.

Return val. The function rand_r() returns a pseudo-random number.

See also rand(), stdlib().

random Functions and variables in alphabetical order

730 U23711-J-Z125-5-76

random - create pseudo-random numbers

Syntax #include <stdlib.h>

long random(void);

Description See initstate().

random() creates pseudo-random numbers in the range 0 through 2 31-1.

random() is not thread-safe. Use the reentrant function rand_r() when needed.

Return val. Pseudo-random number (see initstate()).

Example /* Initialize an array and pass it to initstate. */

static long state1[32] = { 3, 0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342,
0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd, 0x8c2e680f, 0xeb3d799f,
0xb11ee0b7, 0x2d436b86, 0xda672e2a, 0x1588ca88, 0xe369735d, 0x904f35f7,
0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc, 0xde3b81e0, 0xdf0a6fb5,
0xf103bc02, 0x48f340fb, 0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b,
0xf5ad9d0e, 0x8999220b, 0x27fb47b9 };

main()

{

unsigned seed;

int n;

seed = 1;

n = 128;

initstate(seed, state1, n);

setstate(state1);

printf("%d\0", random());

}

See also drand48(), rand(), rand_r(), srand(), stdlib.h

Functions and variables in alphabetical order read

U23711-J-Z125-5-76 731

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

read - read bytes from file

Syntax #include <unistd.h>

ssize_t read(int fildes, void *buf, size_t nbyte);

Description read() reads nbyte bytes from the file associated with the open file descriptor, fildes, into
the buffer pointed to by buf.

fildes is a file descriptor returned by a call to creat(), open(), dup(), fcntl() or
pipe().

If nbyte is 0, read() will return only the value 0 and buf.

On files that support seeking (for example, a regular file), read() starts at a position in the
file given by the file offset associated with fildes. The file offset is incremented by the number
of bytes actually read.

Files that do not support seeking, for example, terminals, always read from the current
position. The value of a file offset associated with such a file is undefined.

No data transfer will occur past the current end-of-file. If the starting position is at or after
the end-of-file, 0 will be returned.

The following occurs when attempting to read from an empty pipe or FIFO:

– If no process has the pipe open for writing, read() will return 0 to indicate end-of-file.

– If a process has the pipe open for writing and O_NONBLOCK is set, read() will
return -1 and set errno to EAGAIN.

– If a process has the pipe open for writing and O_NONBLOCK is clear, read() will block
until some data is written or the pipe is closed by all processes that had the pipe open
for writing.

The following occurs when attempting to read a file (other than a pipe or FIFO) that supports
non-blocking reads and has no data currently available:

– If O_NONBLOCK is set, read() will return a -1 and set errno to EAGAIN.

– If O_NONBLOCK is clear, read() will block until some data becomes available.

– The use of the O_NONBLOCK flag has no effect if there is some data available.

The read() function reads data previously written to a file. If any portion of a regular file
prior to the end-of-file has not been written, read() returns null bytes. For example,
lseek() allows the file offset to be set beyond the end of existing data in the file. If data is
later written at this point, subsequent reads in the gap between the previous end of data
and the newly written data will return null bytes until data is written into the gap.

read Functions and variables in alphabetical order

732 U23711-J-Z125-5-76

Upon successful completion, where nbyte is greater than 0, read() will mark for update the
st_atime structure component of the file (see sys/stat.h), and return the number of
bytes read. This number will never be greater than nbyte. The value returned may be less
than nbyte if the number of bytes left in the file is less than nbyte, if the read() request was
interrupted by a signal, or if the file is a pipe or FIFO or special file and has fewer than nbyte
bytes immediately available for reading. For example, a read() from a file associated with
a terminal may return one typed line of data.

If a read() is interrupted by a signal before it reads any data, it will return -1 with errno
set to EINTR.

If a read() is interrupted by a signal after it has successfully read some data, it will return
the number of bytes read.

If threads are used, then the function affects the process or a thread in the following
manner: When an attempt is made to read from an empty pipe or FIFO, the following
occurs: If a process has opened the pipe for writing and O_NONBLOCK is not set, read()
blocks the calling process until data is written or until the pipe is closed by all processes that
have opened it for reading. When an attempt is made to read from a file that is not a pipe
or a FIFO that supports non-blocking reads and for which there is no data currently
available, the following occurs: If O_NONBLOCK is not set, read() blocks the calling
process until data becomes available.

Return val. Number of bytes actually read
upon successful completion.

0 at end-of-file.

-1 if an error occurs. The contents of the buffer to which buf points are
undefined. errno is set to indicate the error.

Errors read() will fail if:

EAGAIN The O_NONBLOCK flag is set for the file descriptor, and the process would be
delayed by the read operation.

Extension
EAGAIN The currently available amount of system memory for "raw" I/O is

insufficient, or
there is no data in a terminal device file waiting to be read, and O_NONBLOCK
is set, or
there is no message in a stream waiting to be read, and O_NONBLOCK is
set. ❑

EBADF fildes is not a valid file descriptor open for reading.

EFAULT buf points outside the allocated address space of the process.

Functions and variables in alphabetical order read

U23711-J-Z125-5-76 733

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

EINTR The read operation was terminated due to the receipt of a signal, and no
data was transferred.

EINVAL An attempt was made to read from a stream linked with a multiplexer.

EIO A physical I/O error has occurred
or the process is a member of a background process attempting to read
from its controlling terminal, the process is ignoring or blocking the SIGTTIN
signal or the process group is orphaned.

ENXIO A request was made for a non-existent device
or the request exceeded the capabilities of the device.

Notes The number of bytes actually read may be less than the value specified in nbytes if the end
of the line is reached first (only for text files) and at end-of-file or the occurrence of an error.

The sizeof() function should be used to ensure that the number of bytes does not exceed
the capacity of the buffer.

BS2000

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
O_NOSPLIT was entered for open, records of maximum record length are not concatenat-
ed with the subsequent record when they are read. By default (i.e. without the specification
O_NOSPLIT), when a record with maximum record length is read, it is assumed that the
following record is the continuation of this record and the records are concatenated. ❑

The program environment determines whether read() is executed for a BS2000 or POSIX
file.

See also fcntl(), lseek(), open(), pipe(), unistd.h, and section “General terminal
interface” on page 129.

readdir Functions and variables in alphabetical order

734 U23711-J-Z125-5-76

readdir - read directory

Name readdir, readdir64

Syntax #include <dirent.h>
#include <sys/types.h>

struct dirent *readdir (DIR *dirp);
struct dirent64 *readdir64 (DIR *dirp);

Description The data type DIR, which is defined in the header dirent.h, represents a directory stream,
which is an ordered sequence of all the directory entries in a particular directory. Directory
entries represent files; files may be removed from a directory or added to a directory
asynchronously to the operation of readdir().

readdir() returns a pointer to a structure containing the next non-empty directory entry in
the directory stream to which dirp points, and positions the directory stream at the next
entry. It returns a null pointer upon reaching the end of the directory stream. The directory
entry is described by the structure dirent (see dirent.h).

readdir() does not return directory entries containing empty names. If entries for dot
(current directory) or dot-dot (parent directory) exist, one entry is returned for dot, and only
one entry is returned for dot-dot.

The pointer returned by readdir() points to data which may be overwritten by another call
to readdir() on the same directory stream. This data is not overwritten by another call to
readdir() on a different directory stream.

If a file was removed from or added to the directory after the most recent call to opendir()
or rewinddir(), it is undefined whether a subsequent call to readdir() will return an
entry for that file.

readdir() can buffer multiple directory entries in a single read operation; it updates the
st_atime structure component of the directory each time the directory is actually read (see
also sys/stat.h).

After a call to fork(), either the parent or child (but not both) may continue processing the
directory stream by using readdir(), rewind() or seekdir(). If both the parent and child
processes use these functions, the result is undefined.

There is no difference in functionality between readdir() and readdir64() except that
readdir64() uses a dirent64 structure.

Functions and variables in alphabetical order readdir

U23711-J-Z125-5-76 735

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

The dirent64 structure corresponds to the dirent structure except for the following
components:

ino64_t d_ino

readdir() and readdir64() are not thread-safe. Use the reentrant function
readdir_r() instead of readdir() if needed. There is currently no reentrant version of
the readdir64() function.

Return val. readdir() and readdir64():

Pointer to an object of type struct dirent
upon successful completion.

Null pointer if the end of the directory is encountered. errno is not changed.

Null pointer if an error occurs. errno is set to indicate the error.

Errors readdir() and readdir64() fail if:

EBADF The dirp argument does not point to an open directory stream.

ENOENT The current position of the directory stream is invalid.

EOVERFLOW A value in the structure returned cannot be correctly represented.

Notes readdir() should be used in conjunction with opendir(), closedir() and
rewinddir() to examine the contents of the directory. As readdir() returns a null pointer
both at the end of the directory and on error, an application wishing to check for error situa-
tions should set errno to 0 before calling readdir(), then check the value of errno, and
if it is non-zero, assume that an error has occurred.

readdir() is executed only for POSIX files.

See also closedir(), opendir(), readdir_r(), rewinddir(), dirent.h, sys/stat.h,
sys/types.h.

readdir_r Functions and variables in alphabetical order

736 U23711-J-Z125-5-76

readdir_r - read directory (thread-safe)

Syntax #include <sys/types.h>

#include <dirent.h>

int readdir_r(DIR *dirp, struct dirent *entry, struct dirent **result);

Description The function readdir_r() is the thread-safe version of the function readdir().

The function readdir_r() initializes the dirent structure pointed to by entry with the next
non-empty directory entry in the directory stream pointed to by dirp, stores a pointer to this
structure at the location pointed to by result and positions the directory stream to point to the
next entry.

The storage area pointed to by entry must be large enough to store {NAME_MAX} plus one
character for the char array d_name from the dirent structure in the worst-case scenario.

If it returns successfully, the pointer returned for *result has the same value as the entry
argument. If the end of the directory stream has been reached, this pointer contains the
value NULL.

The function readdir_r() does not return any directory entries that contain empty names.

readdir_r() can temporarily store several directory entries for a single read operation;
readdir_r() updates the st_atime structure component of the directory every time the
directory is actually read.

Return val. 0 if successful.

Error number
otherwise, to indicate an error. errno is set to indicate the error.

Errors The function readdir_r() fails if:

EBADF The dirp argument does not point to an open directory stream.

See also readdir(), dirent(), types().

Functions and variables in alphabetical order readlink, readlinkat

U23711-J-Z125-5-76 737

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

readlink, readlinkat - read contents of symbolic link

Syntax #include <unistd.h>

int readlink(const char *path, char *buf, size_t bufsize);
int readlinkat(int fd, const char *path, char *buf, size_t bufsize);

Description readlink() places the contents of the symbolic link referred to by path in the buffer buf,
which has size bufsize. The contents of the link are not terminated with a null byte when
returned.

The readlinkat() function is equivalent to the readlink() function except when the
path parameter specifies a relative path. In this case the symbolic link whose content is to
be read is not searched for in the current directory, but in the directory connected with the
file descriptor fd. If the file descriptor was opened without O_SEARCH, the function checks
whether a search is permitted in the connected file descriptor with the authorizations appli-
cable for the directory. If the file descriptor was opened with O_SEARCH, the check is not per-
formed.

When the value AT_FDCWD was transferred to the readlinkat() function for the fd param-
eter, the current directory is used.

Return val. Number of bytes placed in the buffer
upon successful completion.

-1 if an error occurs. errno is set to indicate the error. The contents of the
buffer remain unchanged.

Errors readlink() and readlinkat() will fail if:

EACCES Search permission is denied for a component of the path prefix of path.

EFAULT path or buf are outside the allocated address space of the process.

EINVAL path is not a symbolic link.

Extension
EINVAL An attempt was made to access a BS2000 file. ❑

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX} or the length of a path
component exceeds{NAME_MAX}.

readlink, readlinkat Functions and variables in alphabetical order

738 U23711-J-Z125-5-76

ENOENT The named file does not exist.

ENOSYS The file system does not support symbolic links.

ENOTDIR One of the component of the path prefix of path is not a directory.

In addition, readlinkat() fails if the following applies:

EACCES The file descriptor fd was not opened with O_SEARCH, and the authorizations
applicable for the directory do not permit the directory to be searched.

EBADF The path parameter does not specify an absolute pathname, and the fd pa-
rameter does not have the value AT_FDCWD, nor does it contain a valid file
descriptor opened for reading or searching.

ENOTDIR The path parameter does not specify an absolute pathname, and the file de-
scriptor fd is not connected with a directory.

Notes readlink() will only access POSIX files.

See also stat(), symlink(), fcntl.h, unistd.h.

Functions and variables in alphabetical order readv

U23711-J-Z125-5-76 739

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

readv - read array from file

Syntax #include <sys/uio.h>

ssize_t readv(int fildes, const struct iovec *iov, int iovcnt);

Description See read().

readv() behaves like read() but reads the input data from the file belonging to fildes into
the iovcnt buffers which are specified as elements of the iov field:
iov[0], iov[1], ..., iov[iovcnt-1].
0 must be < iovcnt ≤ {IOV_MAX}

The iovec structure contains the following elements:

addr_t iov_base;
size_t iov_len;

Each iovec entry specifies the basic address and length of a storage area (buffer) in which
data is to be put. readv() always fills a buffer completely before going on to the next one.

If successful, readv() returns the number of bytes that were actually read and written to
the buffer. If the end of file is reached, 0 is returned.

Return val. integer >0 if successful. The number is the number of bytes that were actually read.

0 if the end of file (EOF) was reached during reading.

-1 if an error occurs. errno is set to indicate the error. The
contents of the buffer are undefined.

Errors readv() will fail if:

EAGAIN The O_NONBLOCK flag is set for the file descriptor and the process would be
suspended by the read operation.

Extension
EAGAIN The currently available amount of system memory for "raw" I/O is

insufficient, or
there is no data in a terminal device file waiting to be read, and O_NONBLOCK
is set, or
there is no message in a stream waiting to be read, and O_NONBLOCK is
set. ❑

EBADF fildes is not a valid file descriptor open for reading.

EBADMSG The file is a STREAM file in control-normal mode, but the message waiting
to be read contains a control section.

EFAULT iov points outside the allocated address space of the process.

readv Functions and variables in alphabetical order

740 U23711-J-Z125-5-76

EINTR The read operation was terminated due to the receipt of a signal, and no
data was transferred.

EINVAL An attempt was made to read from a stream linked with a multiplexer, or
the sum of the iov-len values in the iov field caused a ssize_t overflow
or iovcnt ≤ 0 or iovcnt >16.

EIO A physical I/O error has occurred
or the process is a member of a background process group attempting to
read from its controlling terminal. The process is ignoring or blocking the
SIGTTIN signal or the process group is orphaned.

EISDIR fildes describes a directory that cannot be read with readv(). readdir()
should be used instead.

ENXIO A request was made for a non-existent device
or the request exceeded the capabilities of the device.

ENOLINK fildes is located on a remote computer to which the link is no longer active.

A readv() from a STREAMS file will also fail if an error message is received at the stream
head. In this case, errno is set to the value that is returned in the error message. If a hang-
up occurs in the stream currently being read, readv() continues running normally until the
read queue of the stream head is empty. Thereafter 0 is returned.

See also fcntl(), ioctl(), lseek(), open(), pipe(), stropts.h, sys/uio.h, unistd.h.

Functions and variables in alphabetical order realloc

U23711-J-Z125-5-76 741

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

realloc - memory reallocator

Syntax #include <stdlib.h>

void *realloc(void *ptr, size_t size);

Description realloc() changes the size of the memory area pointed to by ptr to size bytes.

realloc() is part of a C-specific memory management package that internally administers
memory areas which are requested and subsequently freed. As far as possible, all new
requests are first satisfied from the areas that are already being managed, and only then
from the operating system.

ptr is a pointer to the start of the memory area to be altered. It must be a pointer that was
returned earlier by malloc() or calloc().

size is an integer value that specifies the new size in bytes.

Return val. Pointer to the start of the reallocated memory area
if successful.

Null pointer if realloc() could not reallocate the space, e.g. because there was not
enough memory available or because an error occurred.
errno is set to indicate the error.

Errors realloc() will fail if:

ENOMEM There is not enough memory available.

Notes Changing the size of a memory area with realloc() may cause the allocated block to be
shifted. In such cases, the contents of the pointer passed as an argument are not identical
to the return value.
The contents of the block are preserved up to the minimum of the old (when enlarging) and
new (when reducing) sizes.

If realloc() returns a null pointer, the block to which ptr points may have been destroyed!

If ptr is a null pointer, realloc() has the same effect as a malloc call for the specified size.

See also calloc(), free(), malloc(), stdlib.h.

realpath Functions and variables in alphabetical order

742 U23711-J-Z125-5-76

realpath - output real file name/pathname

Syntax #include <stdlib.h>

char *realpath (const char *file_name, char *resolved_name);

Description From the pathname specified in file_name, realpath() derives an absolute pathname in
which all symbolic links and references to ’.’ and ’..’ are resolved. This “real” pathname is
stored in resolved_name up to {MAX_PATH} bytes.

Both relative and absolute pathnames can be processed. With absolute pathnames and
relative pathnames whose resolved name cannot be printed out relatively
(e.g. ../../reldir), the resolved absolute name is returned. For the other relative
pathnames the resolved relative name is returned.
resolved_name must be large enough to incorporate the resolved pathname.

Return val. Pointer to resolved_name
if successful.

Null pointer otherwise. errno is set to indicate the error.

Errors realpath() will fail if:

EACCES Read or search permission is denied for a component of file_name.

EINVAL The file_name or resolved_name argument is a null pointer.

EIO An I/O error occurred during reading from the file system.

ENAMETOOLONG
The length of the file_name argument exceeds {PATH_MAX}, or the length of
a component of file_name exceeds {NAME_MAX}.

In resolving a symbolic link, a interim result was produced whose length
exceeds {PATH_MAX}.

ENOENT A component of the path prefix does not exist or file_name is an empty string.

ENOTDIR A component of the path prefix is not a directory.

ENOMEM There is no longer enough memory available.

Notes realpath() handles null-terminated strings.
You should have execution permission for all directories in the given and resolved path.
In certain circumstances realpath() may not return to the current directory if an error
occurs.

See also getcwd(), sysconf(), stdlib.h.

Functions and variables in alphabetical order re_comp, re_exec

U23711-J-Z125-5-76 743

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

re_comp, re_exec - compile and execute regular expressions

Syntax #include <re_comp.h>

char *re_comp(const char *string);
int re_exec(const char *string);

Description re_comp() compiles a string into an internal format that is suitable for pattern matching.
re_exec compares the string pointed to by string with the last regular expression that was
passed to re_comp().

If re_comp() is called with the value 0 or a null pointer, the current regular expression
remains unchanged.

The strings that are passed to re_comp() and re_exec() must be null-terminated. They
can contain terminating or embedded newline characters.

re_comp() and re_exec() support simple regular expressions. The rules which apply for
the pattern matching are described below.

1. Regular one-character expressions match a character according to the following rules:

1.1 An ordinary character (none of the special characters listed under 1.2) is a regular
expression which matches itself.

1.2 A backslash (\) followed by a special character is a regular one-character expression
that matches this special character. The following special characters are defined:

– Period (.), asterisk (*), opening square bracket ([) and backslash (\). These
characters are special characters unless they occur in square brackets [] (see 1.4).

– Circumflex (^) is a special character if it occurs at the beginning of a regular
expression or if it occurs in square brackets and immediately follows the opening
bracket ([^]) (see 1.4).

– Dollar ($) is a special character if it occurs at the end of a regular expression (see
3.2).

– The character used to delimit a regular expression is a special character for this
regular expression.

1.3 A period (.) is a regular one-character expression which matches all characters except
the newline character.

re_comp, re_exec Functions and variables in alphabetical order

744 U23711-J-Z125-5-76

1.4 A non-empty string enclosed in square brackets is a regular one-character expression
which matches every individual character in this string. If, however, the first character
in the string is a circumflex (^), the regular expression matches all characters except for
the remaining characters in the string and the newline character. But the ^ character
only has this “power of exclusion“ if it is the first character after the opening square
bracket.
The minus sign (-) can be used to denote a range of consecutive ASCII characters, e.g.
[0-9] and [0123456789] mean the same. The minus sign is not a special character if it
is the first (possibly after a ^) or last character in the string.
The closing square bracket does not end such a string if it is the first character (possibly
after a ^) in the string. For example, []a-f matches a closing square bracket] or one of
the characters a, b, c, d, e or f.
The four characters period (.), asterisk (*), opening square bracket ([) and backslash
(\) stand for themselves within such a string.

2. With the help of the following rules, regular expressions can be constructed from regular
one-character expressions:

2.1 A regular one-character expression is a regular expression that matches everything
that matches the regular one-character expression.

2.2 An asterisk (*) followed by a regular one-character expression is a regular expression
which matches 0 or several occurrences of the one-character expression.
If there is more than one possibility, the longest left-most substring that matches is
selected.

2.3 A regular one-character expression followed by \{m\}, \{m,\} or \{m,n\} is a regular
expression that matches a multiple occurrence of the one-character expression. m and
n must be non-negative integers less than 256.
{m\} matches exactly m occurrences, \{m,\ matches at least m occurrences and \{m,n\}
matches occurrences between m and n (inclusive).
If there is more than one possibility, the highest number of occurrences that matches is
selected.

2.4 The concatenation of regular expressions is a regular expression that matches a string
which is produced from concatenation of the strings which match the corresponding
components of the regular expression.

2.5 A regular expression which occurs between the strings \(and \) matches everything that
matches the regular expression between these two strings.

2.6 The expression \n matches the same sequence of characters that earlier on in the same
regular expression matched an expression enclosed in \(and \). n is a digit; the partial
expression concerned begins with the nth occurrence of \, counting from the left. For
example, ^\(.\)\1$ matches a line that consists of a string and its repetition.

Functions and variables in alphabetical order re_comp, re_exec

U23711-J-Z125-5-76 745

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

3. In addition a regular expression can be restricted such that it matches only at the
beginning of a line, the end of a line or both:

3.1 A circumflex (^) at the beginning of a complete regular expression means that this
expression only matches a string at the beginning of the line.

3.2 A dollar sign ($) at the end of a complete regular expression means that this expression
only matches a string at the end of the line.
For example, ^completeexpression$ means that the complete regular expression must
match the entire line. The empty regular expression, i.e. //, is equivalent to the last
regular expression that occurred.

Return val. for re_comp():

Null pointer if re_comp() has compiled the passed string successfully.

String with error message
otherwise.

for re_exec():

1 if string matches the last compiled expression.

0 if string does not match the last compiled expression.

-1 if the compiled expression is invalid (in an internal error occurs).

Errors In the event of an error, re_comp() returns one of the following strings:

No previous regular expression
Regular expression too long
unmatched \(
missing]
too many \(\)

Notes A range contains all numbers that lie between the internal representation of the two range
limits. This can be different in an EBCDIC and an ASCII environment.

For reasons of portability to implementations that comply with earlier versions of the
X/Open standard, the regcomp() and regexec() functions are recommended instead of
the ones described here.

See also regcmp(), regexec(), re_comp.h.

regcmp, regex Functions and variables in alphabetical order

746 U23711-J-Z125-5-76

regcmp, regex - compile and execute regular expression

Syntax #include <libgen.h>

char *regcmp (const char *string1 [, char *string2, ...] / * , (char *) 0) */;
char *regex (const char *re, const char *subject [, char *ret0, ...]);
extern char *__loc1;

Description regcmp() compiles the regular expression that is produced by concatenation of the
arguments. The end of the argument chain is a null pointer. As the result, regcmp() returns
a pointer to the expression which was compiled into an internal format. The memory for the
compiled expression is provided via malloc(). The user is responsible for the release of
the memory thus allocated if the space is no longer required.
The return of a null pointer by regcmp() indicates that an argument has an invalid value.

regex() searches for a pattern re compiled by regcmp() in the subject string. Additional
arguments are passed to regex() to receive back matching partial expressions. If not
enough arguments are specified for all returned hits, the behavior of regex() is undefined.

The global character pointer __loc1 points to the first matching byte in subject.

regcmp() and regex() have been largely taken over by the editor ed(), although the
syntax and semantics were changed slightly. The valid symbols and their respective
meanings are as follows:

[]*.^ These symbols have the same meaning as in ed().

$ This symbol is equivalent to the end of the string (\n is equivalent to a
newline character).

- A minus sign enclosed in brackets means through. So, for example, [a-z]
means the same as [abcd...xyz]. The - can only mean ’minus’ if it is
used as the first or last character. So, for example, the expression []-]
matches the characters] and -.

+ A regular expression followed by a + means once or more. So, for example,
[0-9]+ means the same as [0-9] [0-9]*.

{m} {m,} {m,u}
Integer values enclosed in {} indicate the frequency with which the
preceding regular expression is to be applied. The value m is the minimum
number and u is the maximum. u must be less than 256. If only m is present
(e.g. {m}), this specifies exactly how often the regular expression is to be
applied. The value {m,} is the same as {m,infinite}. The operations with the
plus sign + and the asterisk * * are equivalent to {1,} and {0,} respectively.

Functions and variables in alphabetical order regcmp, regex

U23711-J-Z125-5-76 747

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

(...)$n The value of the bracketed regular expression is to be returned. The value
is stored in the (n+1)th argument after the subject argument. A maximum of
ten bracketed regular expressions are permitted. regex() executes the
assignments in all cases.

(...) Brackets are used for groupings. An operator, e.g. *, +, {}, can be applied
to individual characters or to a regular expression enclosed in brackets.
Example: (a*(cb+)*)$0.

All symbols defined above are special characters. They must therefore be preceded by a
backslash \ if they are to stand for themselves.

Return val. for regcmp():

Pointer to the compiled regular expression

if successful.

Null pointer if an error occurs. errno is set to indicate the error.

for regex():

Pointer to the next character in subject that does not match the pattern
if successful.

Null pointer if an error occurs.

Errors regcmp() will fail if:

ENOMEM There is no longer enough memory available.

Notes The user program may run out of memory if regcmp() is called iteratively without release
of the arrays that are no longer required.

If you use one of these functions you must link the libgen library to it at compilation
(cc -lgen).

Example 1 The following example searches for a leading newline character in the string subject
pointed to by cursor.

 char *cursor, *newcursor, *ptr;
 ...
 newcursor = regex((ptr = regcmp("^\n", (char *)0)), cursor);
 free(ptr);

regcmp, regex Functions and variables in alphabetical order

748 U23711-J-Z125-5-76

Example 2 The following example searches for a string Testing3 and returns the address of the
character after the last matching character (the character 4). The string Testing3 is copied
into the character field ret0.

 char ret0[9];
 char *newcursor, *name;
 ...
 name = regcmp("([A-Za-z][A-za-z0-9]{0,7})$0", (char *)0);
 newcursor = regex(name, "012Testing345", ret0);

Example 3 In this example, a precompiled regular expression in file.i (see regcmp(1)) is checked
against string.

 #include "file.i"
 char *string, *newcursor;
 ...
 newcursor = regex(name, string);

See also re_comp(), re_exec(), malloc().

Functions and variables in alphabetical order regcomp, regexec, regerror, regfree

U23711-J-Z125-5-76 749

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

regcomp, regexec, regerror, regfree - interpret regular expression

Syntax #include <sys/types.h>
#include <regex.h>

int regcomp(regex_t *preg, const char *pattern, int cflags);
int regexec(const regex_t *preg, cont char *string, size_t nmatch, regmatch_t pmatch[],

int eflags);
size_t regerror(int errcode, const regex_t *preg,char *errbuf, size_t errbuf_size);
void regfree(regex_t *preg);

Description These functions interpret basic and extended regular expressions as described in the XBD
specification, Chapter 7, Regular Expressions.

The structure type regex_t contains at least the following member:

The structure type regmatch_t contains at least the following members:

The regcomp() function compiles the regular expression contained in the string pointed to
by the pattern argument and places the results in the structure pointed to by preg.

The cflags argument is the bitwise inclusive OR of zero or more of the following flags, which
are defined in the header regex.h:

REG_EXTENDED
Use Extended Regular Expressions.

REG_ICASE Ignore case in match.

REG_NOSUB Report only success/fail in regexec().

REG_NEWLINE Change the handling of newline characters, as described in the text.

The default regular expression type for pattern is a Basic Regular Expression. The appli-
cation can specify Extended Regular Expressions using the REG_EXTENDED flag in the
cflags argument.

On successful completion, it returns 0; otherwise it returns non-zero, and the content of preg
is undefined.

If the REG_NOSUB flag was not set in cflags, then regcomp() will set re_nsub to the number
of parenthesised subexpressions (delimited by \(\) in basic regular expressions or () in
extended regular expressions) found in pattern.

size_t re_nsub Number of parenthesised subexpressions.

regoff_t rm_so Byte offset from start of string to start of substring.

regoff_t rm_eo Byte offset from start of string of the first character after the end of
substring.

regcomp, regexec, regerror, regfree Functions and variables in alphabetical order

750 U23711-J-Z125-5-76

The regexec() function compares the null-terminated string specified by string with the
compiled regular expression preg initialised by a previous call to regcomp(). If it finds a
match, regexec() returns 0; otherwise it returns non- zero indicating either no match or an
error. The eflags argument is the bitwise inclusive OR of zero or more of the following flags,
which are defined in the header regex.h:

REG_NOTBOL The first character of the string pointed to by string is not the beginning of
the line. Therefore, the circumflex character (ˆ), when taken as a special
character, will not match the beginning of string.

NEG_NOTEOL The last character of the string pointed to by string is not the end of the line.
Therefore, the dollar sign ($), when taken as a special character, will not
match the end of string.

If nmatch is 0 or REG_NOSUB was set in the cflags argument to regcomp(), then regexec()
will ignore the pmatch argument. Otherwise, the pmatch argument must point to an array with
at least nmatch elements, and regexec() will fill in the elements of that array with offsets
of the substrings of string that correspond to the parenthesised subexpressions of pattern:
pmatch[i].rm_so will be the byte offset of the beginning and pmatch[i].rm_eo will be one
greater than the byte offset of the end of substring i. (Subexpression i begins at the ith
matched open parenthesis, counting from 1.) Offsets in pmatch[0] identify the substring that
corresponds to the entire regular expression. Unused elements of pmatch up to
pmatch[nmatch-1] will be filled with -1. If there are more than nmatch subexpressions in
pattern (pattern itself counts as a subexpression), then regexec() will still do the match, but
will record only the first nmatch substrings.

When matching a basic or extended regular expression, any given parenthesised subex-
pression of pattern might participate in the match of several different substrings of string, or
it might not match any substring even though the pattern as a whole did match.

The following rules are used to determine which substrings to report in pmatch when
matching regular expressions:

1. If subexpression i in a regular expression is not contained within another subex-
pression, and it participated in the match several times, then the byte offsets in pmatch[i]
will delimit the last such match.

2. If subexpression i is not contained within another subexpression, and it did not partic-
ipate in an otherwise successful match, the byte offsets in pmatch[i] will be -1.

A subexpression does not participate in the match when:

– * or \{ \} appears immediately after the subexpression in a basic regular expression,
or *, ?, or { } appears immediately after the subexpression in an extended regular
expression, and the subexpression did not match (matched 0 times)

or:

Functions and variables in alphabetical order regcomp, regexec, regerror, regfree

U23711-J-Z125-5-76 751

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

– | is used in an extended regular expression to select this subexpression or another,
and the other subexpression matched.

3. If subexpression i is contained within another subexpression j, and i is not contained
within any other subexpression that is contained within j, and a match of subexpression
j is reported in pmatch[j], then the match or non-match of subexpression i in pmatch[i]
will be reported as described in 1. and 2. above, but within the substring reported in
pmatch[j] rather than the whole string.

4. If subexpression i is contained in subexpression j, and the byte offsets in pmatch[j] are
-1, then the pointers in pmatch[i] also will be -1.

5. If subexpression i matched a zero-length string, then both byte offsets in pmatch[i] will
be the byte offset of the character or null terminator immediately following the zero-
length string.

If, when regexec() is called, the locale is different from when the regular expression was
compiled, the result is undefined.

If REG_NEWLINE is not set in cflags, then a newline character in pattern or string will be
treated as an ordinary character.

If REG_NEWLINE is set, then newline will be treated as an ordinary character except as
follows:

1. A newline character in string will not be matched by a period outside a bracket
expression or by any form of a non-matching list (see the XBD specification, Chapter 7,
Regular Expressions).

2. A circumflex (ˆ) in pattern, when used to specify expression anchoring, will match the
zero-length string immediately after a newline in string, regardless of the setting of
REG_NOTBOL.

3. A dollar-sign ($) in pattern, when used to specify expression anchoring, will match the
zero-length string immediately before a newline in string, regardless of the setting of
REG_NOTEOL.

The regfree() function frees any memory allocated by regcomp() associated with preg.

The following constants are defined as error return values:

REG_NOMATCH regexec() failed to match.

REG_BADPAT Invalid regular expression.

REG_ECOLLATEInvalid collating element referenced.

REG_ECTYPE Invalid character class type referenced.

REG_EESCAPE Trailing \ in pattern.

REG_ESUBREG Number in \digit invalid or in error.

regcomp, regexec, regerror, regfree Functions and variables in alphabetical order

752 U23711-J-Z125-5-76

REG_EBRACK [] imbalance.

REG_ENOSYS The function is not supported.

REG_EEPAREN \(\) or () imbalance.

REG_EBRACE { \} imbalance.

REG_BADBR Content of \{ \} invalid: not a number, number too large, more than two num-
bers, first larger than second.

REG_ERANGE Invalid endpoint in range expression.

REG_ESPACE Out of memory.

REG_BADRPT ?, * or + not preceded by valid regular expression.

The regerror() function provides a mapping from error codes returned by regcomp()
and regexec() to unspecified printable strings. The generated string corresponds to the
value of the errcode argument, which must be the last non-zero value returned by
regcomp() or regexec() with the given value of preg. If errcode is not such a value, the
content of the generated string is unspecified.

If preg is a null pointer, but errcode is a value returned by a previous call to regexec() or
regcomp(), regerror() still generates an error string corresponding to the value of
errcode, but it might not be as detailed.

If the errbuf_size argument is not 0, regerror() will place the generated string into the
buffer with the size of errbuf_size bytes pointed to by errbuf. If the string including the termi-
nating null cannot fit in the buffer, regerror() will truncate the string and terminate the
result by null.

If errbuf_size is 0, regerror() ignores the errbuf argument, and returns the size of the
buffer needed to hold the generated string.

If the preg argument to regexec() or regfree() is not a compiled regular expression
returned by regcomp(), the result is undefined. A preg is no longer treated as a compiled
regular expression after it is given to regfree().

Return val. for regcomp():

0 if successful.

Integer value indicating an error as described in regex.h, and the content of preg is unde-
fined.

Functions and variables in alphabetical order regcomp, regexec, regerror, regfree

U23711-J-Z125-5-76 753

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

for regexec():

0 if successful.

REG_NOMATCH if no match has been found

REG_ENOSYS if the function is not implemented.

for regerror():

Number of bytes needed to hold the entire generated string
if successful.

0 if the function is not implemented.

for regfree():

The function returns no value.

Errors No errors are defined.

Example 1 #include <regex.h>

/*
* Match string against the extended regular expression in
* pattern, treating errors as no match.
*
* return 1 for match, 0 for no match
*/

int
match(const char *string, char *pattern)
{
int status;
regex_t re;
if (regcomp(&re, pattern, REG_EXTENDED | REG_NOSUB) != 0) {
return(0); /* report error */
}
status = regexec(&re, string, (size_t) 0, NULL, 0);
regfree(&re);
if (status != 0) {
return(0); /* report error */
}
return(1);
}

regcomp, regexec, regerror, regfree Functions and variables in alphabetical order

754 U23711-J-Z125-5-76

Example 2 The following demonstrates how the REG_NOTBOL flag could be used with regexec() to
find all substrings in a line that match a pattern supplied by a user.

For simplicity of the example, very little error checking is done.

(void) regcom (&re, pattern, 0);
/* Dieser Aufruf von regexec() findet die erste Uebereinstimmung in der
* Zeile.
*/
error = regexec (&re, &buffer[0], 1, pm, 0);
while (error == 0) { /* Solange eine Uebereinstimmung gefunden wird */
/* Eine Teilzeichenkette wurde gefunden zwischen pm.rm_so und
* pm.rem_eo.
* Dieser Aufruf von regexec() findet die naechste
* Uebereinstimmung.
*/
error = regexec (&re, buffer + pm.rm_eo, 1, &pm, REG_NOTBOL);
}

Notes An application could use

regerror(code,preg,(char *)NULL,(size_t)0)

to find out how big a buffer is needed for the generated string, malloc() a buffer to hold
the string, and then call regerror() again to get the string.
Alternatively, it could allocate a fixed, static buffer that is big enough to hold most strings,
and then use malloc() to allocate a larger buffer if it finds that this is too small.

See also fnmatch(), glob(), regex.h, sys/types.h

Functions and variables in alphabetical order regexp

U23711-J-Z125-5-76 755

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

regexp: advance, compile, step, loc1, loc2, locs - compile and match
regular expressions

Syntax #define INIT declarations
#define GETC () getc code
#define PEEKC() peekc code
#define UNGETC() ungetc code
#define RETURN(ptr) return code
#define ERROR(val) error code

#include <regexp.h>

char *compile(char *instring, char *expbuf, const char *endbuf, int eof);
int step(const char *string, const char *expbuf);
int advance(const char *string, const char *expbuf);
extern char *loc1, *loc2, *locs;

Description These functions are general-purpose functions for handling regular expressions in
programs that perform pattern matching for regular expressions. They are defined in the
header regexp.h.

Programs must have the following five macros declared before the #include <regexp.h>
statement. These macros are used by the compile() function. The macros GETC(),
PEEKC() and UNGETC() operate on the regular expression given as input to compile().

GETC() returns the value of the next character (byte) in the regular
expression pattern. The user must ensure that successive calls to
GETC() return successive characters of the regular expression.

PEEKC() returns the next character (byte) in the regular expression. The user
must ensure that immediately successive calls to PEEKC() return
the same byte, which should also be identical to the next character
returned by GETC().

UNGETC(c)causes the argument c to be returned by the next call to GETC() and PEEKC().
No more than one character of pushback is ever needed, and this
character is guaranteed to be the last character read by GETC().
The value of the macro UNGETC(c) is always ignored.

RETURN(ptr) is used on normal exit of the compile() function. The value of the
argument ptr is a pointer to the character after the last character of
the compiled regular expression. This is useful to programs that
have memory allocation to manage.

regexp Functions and variables in alphabetical order

756 U23711-J-Z125-5-76

ERROR (val) corresponds to the abnormal termination of the compile()
function. The argument val is an error number (see the Errors
section below for the meanings of individual return values). The
user must ensure that this call never returns.

The step() and advance() functions do pattern matching given a
character string and a compiled regular expression as input.

The compile() function takes as input a simple regular expression and produces a
compiled expression that can be used with step() and advance().

The syntax of the compile() function is as follows:

char *compile(char *instring, char *expbuf, const char *endbuf, int eof);

– The first parameter, instring, is never used explicitly by compile() but is useful for
programs that pass down different pointers to input characters. It is sometimes used in
the INIT declaration (see below). Programs which invoke functions to input characters
or which process characters in an external array can pass down the value (char*)0
for this parameter.

– The next parameter, expbuf, is a pointer to char. It points to the place where the
compiled regular expression will be placed.

– The parameter endbuf is one more than the highest address where the compiled regular
expression may be placed. If the compiled expression cannot fit in (endbuf-expbuf) bytes,
a call to ERROR(50) is made.

– The parameter eof is the character which marks the end of the regular expression.

Each program that contains the #include statement for regexp.h must also have a
#define statement for the INIT macro. This macro is used for dependent declarations and
initializations. Most often it is used to set a register variable to point to the beginning of the
regular expression so that this register variable can be used in the declarations for GETC(),
PEEKC() and UNGETC(). Otherwise, it can be used to declare external variables that might
be used by GETC(), PEEKC() and UNGETC().

The step() and advance() functions have two parameters each:

– The first parameter, string, is a pointer to a string of characters to be checked against a
regular expression. This string must be terminated with a null byte.

– The second parameter, expbuf, is the compiled regular expression which was obtained
by a call to compile().

step() returns a non-zero value if some substring of string matches the regular expression
in expbuf, and it returns the value 0 if there is no match. If there is a match, two external
character pointers are set as a side effect to the call to step(). The variable loc1 points to
the first character that matched the regular expression; the variable loc2 points to the

Functions and variables in alphabetical order regexp

U23711-J-Z125-5-76 757

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

character after the last character that matches the regular expression. Thus if the regular
expression matches the entire input string, loc1 will point to the first character of string and
loc2 will point to the null byte at the end of string.

advance() returns non-zero if the initial substring of string matches the regular expression
in expbuf. If there is a match, an external character pointer, loc2, is set as a side effect. The
variable loc2 points to the next character in string after the last character that matched.

If the advance() function encounters an * character or the character sequence \{ \} in
the regular expression, it will advance its pointer to the string to be matched as far as
possible and will recursively call itself trying to match the rest of the string to the rest of the
regular expression. As long as there is no match, advance() will test whether the pattern
sought is already contained in the previously matched substring by backing up along the
string until it finds a match or reaches the point in the string that initially matched the * or
\{ \}. It is sometimes desirable to stop this backing up before the initial point in the string
is reached. If the external character pointer locs is equal to the point in the string at some
time during the backing up process, advance() will break out of the loop that backs up and
will return 0.

The external variables circf, sed and nbra are reserved.

Simple regular expressions (historical version)

A simple regular expression (SRE) specifies a set of character strings. A member of this set
of strings is said to be matched by the SRE.

A pattern is constructed from one or more SREs. An SRE consists of ordinary characters
or metacharacters.

Syntax elements for constructing patterns:

Regular
expr.

Meaning Example Matching string

r+ One or more occurrences of the regular
expression r. r must be in one of the following
forms: r, \r, any character, [r], [r1-r2], [^s],
[^r1-r2], (r), (r1|r2)

u+ u, uu, uuu, ...

r? Zero or one occurrence of the redular
expression r. r must be in one of the following
forms: r, \r, any character, [r], [r1-r2], [^s],
[^r1-r2], (r), (r1|r2)

u? none or u

(r) Strings matching regular expression r.
r can be any expression.

(ok(abc))
(au)*

okabc
none or
aus, auau, ...

(r1|r2) Strings matching regular expression
r1 or r2.

(ok|ko) ok or ko

regexp Functions and variables in alphabetical order

758 U23711-J-Z125-5-76

Within a pattern, all alphanumeric characters that are not part of a bracket expression,
back-reference or duplication match themselves, i.e. the SRE pattern abc, when applied to
a set of strings, will match only those strings containing the character sequence abc
anywhere in them.

Only some of the characters, known as metacharacters, have a special meaning when
used in regular expressions. The other characters match themselves.The regular expres-
sions that may be used in regexp functions are constructed as follows:

Expression Meaning

c The character c, where c must not be a special character.

\c The character c, where c is any character other than a digit in the range 1-9.

^ The beginning of the line being compared.

$ The end of the line being compared.

. Any character in the input.

[s] Any character in the set s, where s is a sequence of characters. Ranges may
be specified as [c-c]. The character] may be included in the set only in the
first position; the character - may be included only in the first or last position,
and the character ^ may be included by placing it anywhere other than first
position in the set. Ranges in SREs are only valid if the LC_COLLATE
category is set to the C locale.

[^s] Any character not in the set s , where s is defined as above.

r* Zero or more successive occurrences of the regular expression r. The
longest leftmost matching string is used.

rx The occurrence of regular expression r followed by the occurrence of
regular expression x (concatenation).

r\{m,n\} Any number of m through n successive occurrences of the regular
expression r. The regular expression r\{m\} matches exactly m occur-
rences; r\{m,\} matches at least m occurrences. The maximum number of
occurrences is matched.

\(r\) The regular expression r. The \(and \) sequences are ignored.

\n When \n is a number in the range 1-9 and appears in a concatenated
regular expression, it stands for the regular expression x, where x is the n-th
regular expression enclosed in \(and \) sequences that appeared earlier
in the concatenated regular expression. For example, in the pattern
\(r\)x\(y the \2 matches the regular expression y, giving rxyzy.

Functions and variables in alphabetical order regexp

U23711-J-Z125-5-76 759

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

The following characters have special meaning when they do not appear within square
brackets [] or are preceded by a \ (backslash): ., *, [, \.
Other special characters, such as $ have special meaning in more restricted contexts.

The character ^ at the beginning of an expression permits a successful match only immedi-
ately after a newline or at the beginning of each of the strings to which the match is applied,
and the character $ at the end of an expression requires a trailing newline.

Two characters have special meaning only when used within square brackets. The
character - denotes a range, [c-c], unless it is just after the left square bracket or before
the right square bracket, [-c] or [c-], in which case it has no special meaning. The
character ^ has the meaning complement of if it immediately follows the left square
bracket, [^c]. Elsewhere between brackets, [c^], it stands for the ordinary character ^.
The right square bracket loses (]) its special meaning and represents itself in a bracket
expression if it occurs first in the list after any initial circumflex (^) character.

The special meaning of the \ operator can be escaped only by preceding it with another \,
that is, \\.

SRE operator precedence

[...] high precedence

concatenation low precedence

Internationalized SREs

Character expressions within square brackets are constructed as follows:

c A single character c, where c is not a special character.

[[:class:]] A char class expression. Any character of type class, as defined by
category LC_CTYPE in the program´s locale (see the manual "POSIX
Commands" [2])

One of the following may be substituted for class:

alpha a letter

upper an uppercase letter

lower a lowercase letter

digit a decimal digit

xdigit a hexadecimal digit

alnum an alphanumeric character (letter or digit)

space a blank

regexp Functions and variables in alphabetical order

760 U23711-J-Z125-5-76

punct a punctuation character

print a printing character

graph a character with a visible representation

cntrl a control character

[[=c=]] An equivalence class. Any collation element defined as having the same
relative order in the current collation sequence as c. As an example, if A and
a belong to the same equivalence class, then both [[=A=]b] and
[[=a=]b] are equivalent to [Aab].

[[.cc.]] A collating symbol. Multi-character collating elements must be represented
as collating symbols to distinguish them from single-character collating
elements. As an example, if the string ch is a valid collating element, then
[[.ch.]] will be treated as an element matching the same string of
characters, while ch will be treated as a simple list of c and h. If the string ch
is not a valid collating element in the current collating sequence definition,
the symbol will be treated as an invalid expression.

[c-c] Any collation element in the character expression range c-c, where c can
identify a collating symbol or an equivalence class. If the character -
appears immediately after an opening square bracket, for example, [-c], or
immediately prior to a closing square bracket, for example, [c-], it has no
special meaning.

^ Immediately following an opening square bracket, means the complement
of, for example, [^c]. Otherwise, it has no special meaning.

In the case of expressions within square brackets, a . that is not part of a [[.cc.]] sequence,
or a : that is not part of a [[:class:]] sequence, or an = that is not part of a [[=c=]]
sequence, matches itself.

Examples of regular expressions

ab.d ab any character d

ab.*d ab any sequence of characters (including none) d

ab[xyz]d ab one of the characters x y or z d

ab[^c]d ab any character, except c d

^abcd$ a line containing only abcd

a-d any one of the characters a b c or d

Functions and variables in alphabetical order regexp

U23711-J-Z125-5-76 761

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Return val. RETURN() when compile() is successful.

≠ 0 when step() and advance() are successful.

ERROR if compile() fails.

0 if step() and advance() fail.

Errors 11 Range endpoint too large

16 Invalid number

25 \digit out of range

36 Illegal or missing delimiter

41 No remembered search string in memory

42 \(\) imbalance

43 Too many \(

44 More than two numbers given in \{\}

45 } expected after \

46 First number exceeds second in \{\}

49 [] imbalance

50 Regular expression overflow

See also fnmatch(), glob(), regcomp(), regexec(), stlocale(), regex.h, regexp.h, and the
manual "POSIX Commands" [2].

remainder Functions and variables in alphabetical order

762 U23711-J-Z125-5-76

remainder - remainder from division

Syntax #include <math.h>

double remainder (double x, double y);

Description remainder() returns the floating-point remainder from dividing x by y. More precisely, it
returns the value r = x - yn if y ≠ 0, where n is the integer closest to the exact value x/y.
If | n - x/y| = 1/2, the even value is chosen for n.

Return val. Floating-point remainder = x-ny
if y ≠ 0.

HUGE_VAL if y = 0. errno is set to EDOM.

Errors remainder() will fail if:

EDOM y = 0.

See also abs(), math.h.

Functions and variables in alphabetical order remove

U23711-J-Z125-5-76 763

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

remove - remove files

Syntax #include <stdio.h>

int remove(const char *path);

Description remove() causes the file or empty directory named by the pathname pointed to by path to
be no longer accessible by that name. A subsequent attempt to open that file using that
name will fail, unless it is created anew.

remove() is identical to unlink() for files, and identical to rmdir() for directories.

BS2000
remove() can also be used for files with record I/O. ❑

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors See unlink() and rmdir().

Notes The program environment determines whether remove() is executed for a BS2000 or
POSIX file.

BS2000
path can be a fully or partially qualified file name. If a partially qualified file name is specified,
remove() will delete all corresponding files without first asking for a (Y/N) confirmation. The
response "Y" is assumed.

remove() performs only a logical deletion of the file(s), i.e. the catalog entry is deleted, and
the assigned memory is released.

If a file has been opened by any program, it is not deleted. ❑

See also rmdir(), unlink(), stdio.h.

remque Functions and variables in alphabetical order

764 U23711-J-Z125-5-76

remque - remove element from queue

Syntax #include <search.h>

void remque(void *element);

Description See insque().

insque() and remque() modify queues that are created from double-concatenated
elements.
insque() inserts the entry element in a queue. remque() removes element from a queue.

Functions and variables in alphabetical order rename, renameat

U23711-J-Z125-5-76 765

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

rename, renameat - rename file

Syntax #include <stdio.h>

int rename(const char *old, const char *new);
int renameat(int oldfd, const char *old, int newfd, const char *new);

Description rename() changes the name of a file. The old argument points to the pathname of the file
to be renamed. The new argument points to the new pathname of the file.

If old and new both refer to the same existing file, rename() returns successfully and
performs no other action.

If old points to the pathname of a file that is not a directory, new must not point to the
pathname of a directory. If the link named by the new argument exists, it is removed, and
old is renamed to new. In this case, a link named new will remain visible to other processes
throughout the renaming operation and will refer either to the file referred to by new or old
before the operation began. Write access permission is required for both the directory
containing old and the directory containing new.

If old points to the pathname of a directory, new must not point to the pathname of a file that
is not a directory. If the directory named by the new argument exists, it is removed, and old
is renamed to new. In this case, a link named new will exist throughout the renaming
operation and will refer either to the file referred to by new or old before the operation began.
Thus, if new names an existing directory, it must be an empty directory.

The pathname prefix of new must not be identical to old. Write access permission is required
for the directory containing old and the directory containing new.

If old points to the pathname of a directory, write access permission may be required for the
directory named by old, and, if it exists, the directory named by new.

If the link named by new exists, and the file´s link count becomes 0 when it is removed, and
no process has the file open, the space occupied by the file will be freed, and the file will no
longer be accessible. If one or more processes have the file open when the last link is
removed, the link will be removed before rename() returns, but the removal of the file
contents will be postponed until all references to the file are closed.

Upon successful completion, rename() will mark for update the st_ctime and st_mtime
fields of the parent directory of each file.

BS2000
rename() can also be used without changes for files with record I/O. ❑

rename, renameat Functions and variables in alphabetical order

766 U23711-J-Z125-5-76

The renameat() function is equivalent to the rename() function except when the old or
new parameter specifies a relative path. If old specifies a relative pathname, the file which
is to be renamed is searched for not in the current directory, but in that connected with the
file descriptor oldfd. If new specifies a relative pathname, the same happens relative to the
directory connected with the file descriptor newfd. If a file descriptor was opened without
O_SEARCH, the function checks whether a search is permitted in the connected file descrip-
tor with the authorizations applicable for the directory. If the file descriptor was opened with
O_SEARCH, the check is not performed.

When the value AT_FDCWD is transferred to the renameat() function for the oldfd or newfd
parameter, the current directory for determining the file of the corresponding path is used.

Return val. 0 if successful

-1 if an error occurs; errno is set to indicate the error. Neither the file named
by old nor the file named by new will be changed or created.

BS2000
errno is set to EMACRO.

If old and new point to files from different file systems, no changes are made.
errno is set to EXDEV. ❑

Errors rename() and renameat() will fail if:

EACCES A component of either path prefix denies search permission; or one of the
directories containing old or new denies write permissions; or write
permission is required and is denied for a directory pointed to by the old or
new arguments.

EBUSY One of the directories named by old or new is currently in use by the system
or another process, and the implementation considers this an error.

Extension
EDQUOT The directory in which the entry for the new name is being placed cannot be

extended because the user's quota of disk blocks on the file system
containing the directory has been exhausted. ❑

EEXIST or ENOTEMPTY
The link specified by new is a non-empty directory.

Extension
EFAULT old or new points outside the allocated address space of the process.

EINTR A signal was caught during execution of the rename() system call. ❑

EINVAL The directory pathname new contains a path prefix that designates the
directory old (see also "Notes").

Functions and variables in alphabetical order rename, renameat

U23711-J-Z125-5-76 767

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Extension
EIO An I/O error occurred when creating or updating a directory entry. ❑

EISDIR The new argument points to a directory and the old argument points to a file
that is not a directory.

Extension
ELOOP Too many symbolic links were encountered in resolving old or new. ❑

BS2000
EMACRO There is no existing file with the name old, or

there is already a file cataloged under the name old, or
the file to be renamed has been opened by a program. ❑

EMLINK old points to a directory, and the link count of the parent directory of new
exceeds {LINK_MAX}.

ENAMETOOLONG
The length of old or new exceeds {PATH_MAX} or a pathname component is
longer than {NAME_MAX}.

ENOENT The link named by old does not name an existing file, or either old or new
points to an empty string.

ENOSPC The directory that would contain new cannot be extended.

ENOTDIR A component of either path is not a directory, or the old argument names a
directory, and the new argument names a non-directory file.

EROFS The requested operation requires writing in a directory on a read-only file
system.

EXDEV The links named by new and old are on different file systems.

In addition, renameat() fails if the following applies:

EACCES The file descriptor oldfd or newfd was not opened with O_SEARCH, and the
authorizations applicable for the directory do not permit the directory to be
searched.

EBADF The old parameter does not specify an absolute pathname, and the oldfd pa-
rameter does not have the value AT_FDCWD, nor does it contain a valid file
descriptor opened for reading or searching,
or
the new parameter does not specify an absolute pathname, and the newfd
parameter does not have the value AT_FDCWD, nor does it contain a valid
file descriptor for reading or searching.

ENOTDIR The old or new parameter does not specify an absolute pathname, and the
corresponding file descriptor oldfd / newfd is not connected with a directory.

rename, renameat Functions and variables in alphabetical order

768 U23711-J-Z125-5-76

Notes rename() cannot be used to relocate a file from the POSIX subsystem to BS2000 or
vice-versa. The following statement, for example, will produce the error EINVAL:

rename(/BS2/hugo, *POSIX(hugo))

The program environment determines whether rename() is executed for a BS2000 or
POSIX file.

See also link(), rmdir(), unlink(), fcntl.h, stdio.h.

Functions and variables in alphabetical order rewind

U23711-J-Z125-5-76 769

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

rewind - reset file position indicator to start of stream

Syntax #include <stdio.h>

void rewind(FILE *stream);

Description The call rewind(stream) is equivalent to:
(void) fseek(stream, 0L, SEEK_SET)
except that rewind() also clears the error indicator for stream.

Errors See fseek() - with the exception of EINVAL.

Notes Since rewind() does not return a value, an application wishing to detect errors should first
set errno to 0, then call rewind(), and if errno is non-zero, assume that an error has
occurred.

The program environment determines whether rewind() is executed for a BS2000 or
POSIX file.

BS2000
rewind() can also be used without changes for files with record I/O. ❑

See also fseek(), fsetpos(), stdio.h.

rewinddir Functions and variables in alphabetical order

770 U23711-J-Z125-5-76

rewinddir - reset file position indicator to start of directory stream

Syntax #include <dirent.h>

Optional
#include <sys/types.h> ❑

void rewinddir(DIR *dirp);

Description rewinddir() resets the position of the directory stream to which dirp refers to the
beginning of the directory. It also causes the directory stream to refer to the current state of
the corresponding directory, as a call to opendir() would have done. If dirp does not refer
to a directory stream, the effect is undefined.

After a call to the fork() function, either the parent or child (but not both) may continue
processing the directory stream using readdir(), rewinddir() or seekdir(). If both the
parent and child processes use these functions, the result is undefined.

Notes rewinddir() should be used in conjunction with opendir(), readdir() and
closedir() to examine the contents of the directory. This method is recommended for
portability.

rewinddir() is executed only for POSIX files.

See also closedir(), opendir(), readdir(), dirent.h, sys/types.h.

Functions and variables in alphabetical order rindex

U23711-J-Z125-5-76 771

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

rindex - get last occurrence of character in string

Syntax #include <string.h>

char *rindex(const char *s, int c);

Description see strrchr().

rindex() searches for the last occurrence of character c in string s and returns a pointer
to the located position in s if successful.

The terminating null byte (\0) is also treated as a character.

Return val. Pointer to the (last) position of c in string s, if successful.

Null pointer if c is not contained in string s.

Notes index() and strrchr() are equivalent.

In BS2000, as in many other operating systems, you cannot use the null pointer to denote
a null string. In this case a null pointer is an error and causes the process to abort. If you
want to specify a null string, you must use a pointer which points to an explicit null string.
With some implementations of the C programming language on many computers, a null
pointer, when de-referenced, would result in a null string; this trick, which is portable only in
very few cases, has been used in some programs. Programmers who use a null pointer to
point to an empty string should be aware of this portability question; even with machines on
which de-referencing a null pointer does not cause the program to abort, it need not neces-
sarily result in a null string.

The moving of characters is performed differently in different implementations. Overlapping
can therefore lead to unpredictable results.

See also index(), strchr(), strrchr().

rint, rintf, rintl Functions and variables in alphabetical order

772 U23711-J-Z125-5-76

rint, rintf, rintl - round to nearest integer value

Syntax #include <math.h>

double rint(double x);

float rintf(float x);

long double rintl(long double x);

Description The functions return the integer value (displayed as a number of type double) nearest to x.
rint() represents the result as a number of type double, rintf() as a number of type
float and rintl() as a number of type long double.

The returned value is rounded according to the currently set rounding mode of the
computer. If the default mode is set to ’round-to-nearest’ and the difference between x and
the rounded result is exactly 0.5, the next even integer is returned.

If the currently set rounding mode rounds infinitely in the positive direction, rint() is
identical to ceil(). If the currently set rounding mode rounds infinitely in the negative
direction, rint() is identical to floor().
In this version the rounding mode is set to positive infinity.

Return val. Integer value represented as a number of type double, float or long double
if successful.

HUGE_VAL if an overflow occurs. errno is set to ERANGE to indicate the error.

Notes In this version the rounding mode is set to positive infinity.

See also abs(), ceil(), floor(), llrint(), llround(), lrint(), lround(), round.h.

Functions and variables in alphabetical order rmdir

U23711-J-Z125-5-76 773

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

rmdir - remove directory

Syntax #include <unistd.h>

int rmdir(const char *path);

Description rmdir() removes a directory whose name is given by path. The directory is removed only
if it is an empty directory.

If path is a symbolic link, it is not followed.

If path is the root directory, then path is set to EBUSY; if path is the current directory of an
active process, the behavior of rmdir() is unspecified.

If the directory link count becomes 0 and no process has the directory open, the space
occupied by the directory will be freed and the directory will no longer be accessible. If one
or more processes have the directory open when the last link is removed, the dot and
dot-dot entries, if present, are removed before rmdir() returns and no new entries may be
created in the directory, but the directory is not removed until all references to the directory
are closed.

Upon successful completion, rmdir() marks the st_ctime and st_mtime fields of the
parent directory for update.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors rmdir() will fail if:

EACCES Search permission is denied on a component of the path, or write
permission is denied on the parent directory of the directory to be removed.

EBUSY The directory to be removed is currently in use by the system or another
process.

EEXIST or ENOTEMPTY
path names a directory that is not an empty directory.

Extension
EFAULT path points outside the allocated address space of the process.

EINVAL The directory to be removed is the current directory.

EIO An I/O error occurred when accessing the file system.

ELOOP Too many symbolic links were encountered in resolving path. ❑

rmdir Functions and variables in alphabetical order

774 U23711-J-Z125-5-76

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX} and {_POSIX_NO_TRUNC} is set.

ENOENT path names a non-existent directory or points to an empty string .

ENOTDIR A component of the path is not a directory. ❑

EROFS The directory entry to be removed resides on a read-only file system.

Notes rmdir() is executed only for POSIX files

See also mkdir(), remove(), unlink(), unistd.h.

Functions and variables in alphabetical order round, roundf, roundl

U23711-J-Z125-5-76 775

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

round, roundf, roundl - round up to next integer value

Syntax #include <math.h>

double round(double x);

float roundf (float x);

long double roundl (long double x);

Description The functions return the integer value represented as a floating-point value (displayed as a
number of type double) nearest to x.
round() represents the result as a number of type double, roundf() as a number of type
float and roundl() as a number of type long double.

The returned value is rounded according to the currently set rounding mode of the
computer. If the default mode is set to ’round-to-nearest’ and the difference between x and
the rounded result is exactly 0.5, the next even integer is returned.

Return val. Integer value represented as a number of type double, float or long double
if successful.

undefined if an overflow occurs. errno is set to ERANGE to indicate the error.

See also abs(), ceil(), floor(), llrint(), llround(), lrint(), lround(), rint()

sbrk / scalb Functions and variables in alphabetical order

776 U23711-J-Z125-5-76

s... sbrk - modify size of data segment

Syntax #include <unistd.h>

void *sbrk(int incr);

Description See brk().

scalb - load exponent of base-independent floating-point number

Syntax #include <math.h>

double scalb (double x, double n);

Description scalb() computes x *rn, where r is the base of the machine-dependent floating-point arith-
metic. For r=2, scalb() is equivalent to ldexp().

Return val. x *rn if scalb() is executed successfully.

+-HUGE_VAL depending on the sign of x if scalb() causes an overflow. errno is set to
ERANGE

0 if scalb() causes an underflow. errno is set to ERANGE.

Errors scalb() will fail if:

ERANGE scalb() attempts an overflow or underflow.

Notes An application that wants to check the error situation should set errno to 0 before the
scalb() function is called. If on the return errno is then not equal to zero, this signals an
error.

For BS2000 the base is r=16

See also ldexp(), math.h

Functions and variables in alphabetical order scanf / seed48

U23711-J-Z125-5-76 777

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

scanf - read formatted input from standard input stream

Syntax #include <stdio.h>

int scanf(const char *format[, arglist]);

Description See fscanf().

seed48 - set seed (int) for pseudo-random numbers

Syntax #include <stdlib.h>

unsigned short int *seed48 (unsigned short int seed16v[3]);

Description See drand48().

seekdir Functions and variables in alphabetical order

778 U23711-J-Z125-5-76

seekdir - set position of directory stream

Syntax #include <dirent.h>

Optional
#include <sys/types.h>

void seekdir(DIR *dirp, long int loc);

Description seekdir() sets the position of the next readdir() operation on the directory stream
pointed to by dirp to the position specified by loc. The value of loc should have been
returned from an earlier call to telldir(). The new position reverts to the one associated
with the directory stream at the time the telldir() operation was performed.

Extension
Values returned by telldir() are valid only if the directory has not changed because of
compaction or expansion. This situation is not a problem with System V, but it may present
a problem with some file system types.

Errors seekdir() will fail if:

Extension
EBADF The stream associated with the directory is no longer valid. This error

occurs if the directory has been closed.

Notes seekdir() is executed only for POSIX files

See also opendir(), readdir(), telldir(), dirent.h, sys/types.h

Functions and variables in alphabetical order select

U23711-J-Z125-5-76 779

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

select - synchronous I/O multiplexing

Syntax #include <sys/time.h>

int select (int nfds, fd_set *readfds, fd_set *writefds,
 fd_set *execptfds, struct timeval *timeout);

void FD_CLR(int fd, fd_set *fdset);

int FD_ISSET(int fd, fd_set *fdset);

void FD_SET(int fd, fd_set *fdset);

void FD_ZERO(fd_set *fdset);

Description select checks the I/O descriptor sets that are transferred in readfds, writefds and execptfds
to see whether one of their descriptors is ready for reading or writing or has an error
condition pending. nfds is the number of bits to be checked in each bit mask that displays a
file descriptor set. The descriptors of the descriptor sets are checked from 0 through
nfds-1. On return, select replaces the given descriptor set with subsets comprising
descriptors that are ready for the desired operation. The return value of the select() call
is the number of descriptors that are ready.

The descriptor sets are stored as bit fields in ascending order. The following macros are
available for the manipulation of such descriptor sets:

FD_ZERO(&fdset) initializes a descriptor set fdset with the null set.

FD_SET(fd,&fdset) inserts a descriptor fd in fdset.

FD_CLR(fd,&fdset) removes fd from fdset

FD_ISSET(fd,&fdset) is not zero if fd is an element from fdset, otherwise it is zero.

The behavior of these macros is not defined if a descriptor value is less than zero or greater
than or equal to FD_SETSIZE. FD_SETSIZE is a constant that is defined in sys/select.h and
is normally at least as high as the maximum number of descriptors available from the
system.

If timeout is not a null pointer, it specifies a maximum time to be waited until the selection is
complete. If timeout is a null pointer, the select blocks until one of the queried events
occurs. select does not block if a structure containing only null values is transferred.
readfds, writefds and execptfds can be specified as null pointers if none of the descriptors is
of interest.

select Functions and variables in alphabetical order

780 U23711-J-Z125-5-76

Return val. Number ready descriptors in the descriptor sets

-1 if an error occurs

0 if the time limit was exceeded

Errors An error return from select can be:

EBADF One of the I/O descriptor sets has an invalid I/O descriptor.

EINTR A signal was issued before one of the desired events occurred, or the time
limit was exceeded.

EINVAL A component of the time limit that is referenced is outside the permitted
range: t_sec must be between 0 and 10 inclusive. t_usec must be greater
than or equal to 0 and less than 10.

Notes The default value for FD_SETSIZE (currently 2048) is the same as the default limit for the
number of open files. To adjust programs which use a larger number of open files with
select, it is possible to increase this size within a program by defining a higher value for
FD_SETSIZE before including <sys/types.h>.

In future versions of the system, select could return the time remaining from the original
time limit (if there is any) if the time value is changed at the right place. It is therefore not
advisable to assume that the value of the time limit will remain unchanged as a result of the
select call.

The descriptor sets are always changed on return, even if the call returns as the result of a
time limit.

See also poll(), read(), write().

Functions and variables in alphabetical order semctl

U23711-J-Z125-5-76 781

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

semctl - semaphore control operations

Syntax #include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, ...);

Description semctl() provides a variety of operations for controlling semaphores, as specified by cmd.

cmd is used to specify one of the semaphore control operations listed below; semid and
semnum are used to specify the semaphore for which the specified operation is to be
performed. The access permissions required for a particular operation are shown under the
relevant command (see also section “Interprocess communication” on page 147). The
symbolic names for the values for cmd are defined in the header file sys/sem.h:

GETVAL Return the value of semval (see also sys/sem.h). Requires read
permission.

SETVAL Set the value of semval to the value of the fourth argument of type int.
Upon successful execution of this cmd, the semadj value corresponding to
the specified semaphore is cleared in all processes. Requires alter
permission (see also section “Interprocess communication” on page 147).

GETPID Return the value of sempid. Requires read permission.

GETNCNT Return the value of semncnt. Requires read permission.

GETZCNT Return the value of semzcnt. Requires read permission.

The following commands affect every semval in the set of permissible semaphore:

GETALL Return the value of semval and place into the array pointed to by arg.array.
Requires read permission.

SETALL Set semval to the value of the array of type unsigned short pointed to by
the fourth argument to semctl(). When this command is successfully
executed, the semadj values corresponding to each specified semaphore
in all processes are cleared. Requires alter permission.

The following commands are also available:

IPC_STAT Place the current value of each member of the semid_ds data structure
associated with semid into the semid_ds structure pointed to by the fourth
argument to semctl().

semctl Functions and variables in alphabetical order

782 U23711-J-Z125-5-76

IPC_SET Set the value of the following members of the semid_ds data structure
associated with semid to the corresponding value found in the semid_ds
structure pointed to by the fourth argument to semctl():

sem_perm.uid
sem_perm.gid
sem_perm.mode /* only the least-significant 9 bits */

This command may be executed only by a process that has an effective
user ID equal to that of a process with appropriate privileges or which
matches the value of sem_perm.cuid or sem_perm.uid in the data
structure associated with semid.

IPC_RMID Remove the semaphore-identifier specified by semid from the system and
destroy the set of semaphores and the data structure associated with it.
This command can only be executed by a process that has an effective user
ID equal to that of a process with appropriate privileges or which matches
the value of sem_perm.cuid or sem_perm.uid in the data structure
associated with semid.

Return val. If successful, semctl() returns one of the values below, which depends on cmd as follows:

Value of semval
if GETVAL was specified for cmd.

Value of sempid
if GETVAL was specified for cmd.

Value of semncnt
if GETVAL was specified for cmd.

Value of semzcnt
if GETVAL was specified for cmd.

0 if other cmd values were specified.

-1 if unsuccessful. errno is set to indicate the error.

Errors semctl() will fail if:

EACCES The calling process does not have the required access permission for the
command to be executed (see section “Interprocess communication” on
page 147).

Extension
EFAULT msgp points to an invalid address. ❑

EINVAL semid is not a valid semaphore ID, semnum has a value less than 0 or greater
than sem_nsems, or cmd is not a valid command.

Functions and variables in alphabetical order semctl

U23711-J-Z125-5-76 783

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

EPERM cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling
process is not that of a process with appropriate privileges and does not
match sem_perm.cuid or sem_perm.uid in the data structure associated
with semid.

ERANGE cmd is equal to SETVAL or SETALL and the value to which semval is to be
set exceeds the highest value permitted in the system.

Notes The fourth argument in the "Syntax" section is identified in XPG4 as ... in order to avoid a
clash with the ISO C standard. The fourth argument can be defined by the application
programmer as follows:

union semun
{ int val;
 struct semid_ds *buf;
 unsigned short *array;
} arg;

See also semget(), semop(), sys/sem.h, section “Interprocess communication” on page 147.

semget Functions and variables in alphabetical order

784 U23711-J-Z125-5-76

semget - get semaphore ID

Syntax #include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

Description semget() creates a semaphore identifier with its associated semid_ds data structure and
its associated set of nsems semaphores (see sys/sem.h) for the argument key if one of the
following is true:

– key has the value IPC_PRIVATE.

– No semaphore ID has been created yet for key and (semflg & IPC_CREAT) is not
equal to 0.

When the new semaphore ID key is created, the corresponding data structure semid_ds is
initialized as follows:

– The effective user ID and the effective group ID of the calling process are entered for
the structure components sem_perm.cuid, sem_perm.uid, sem_perm.cgid and
sem_perm.gid.

– The 9 low-order bits of sem_perm.mode are set equal to the 9 low-order bits of semflg.

– sem_nsems is set to the value of nsems.

– sem_otime is set to 0 and sem_ctime is set equal to the current time.

– The data structures associated with the individual semaphores are not initialized. The
semctl() function with the command SETVAL or SETALL can be used to initialize each
semaphore.

Return val. Semaphore ID
if successful. The semaphore ID is a non-negative integer.

-1 if unsuccessful. errno is set to indicate the error.

Errors semget() will fail if:

EACCES There already exists a semaphore ID for key, but the permission specified in
the 9 low-order bits of semflg was not granted.

EEXIST A semaphore ID exists for the key, but
((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) is not equal to 0.

EINVAL The value of nsems is either less than or equal to 0 or exceeds the maximum
value specified by the system, or
a semaphore ID exists for the argument key, but the corresponding
semaphore set contains less than nsems semaphores and nsems is not equal
to 0.

Functions and variables in alphabetical order semget

U23711-J-Z125-5-76 785

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

ENOENT No semaphore ID exists for key and (semflg & IPC_CREAT) is equal to 0.

ENOSPC A semaphore ID is to be created, but this would exceed the maximum
number of semaphores permitted in the system.

See also semctl(), semop(), sys/sem.h, section “Interprocess communication” on page 147.

semop Functions and variables in alphabetical order

786 U23711-J-Z125-5-76

semop - semaphore operations

Syntax #include <sys/sem.h>

int semop(int semid, struct sembuf *sops, size_t nsops);

Description semop() permits the automatic execution of a user-defined list of semaphore operations on
the semaphore set with the semaphore ID specified in the argument semid.

sops points to a user-defined array of semaphore operation structures.

nsops specifies the number of structures in the array.

Each sembuf structure contains the following members:

Each semaphore operation defined by sem_op is performed on the semaphore specified by
semid and sem_num.

sem_op defines one of the following three semaphore operations:

1. If sem_op is a negative integer and the calling process has alter permission, one of the
following occurs:

– If semval is greater than or equal to the absolute value of sem_op, the absolute
value of sem_op is subtracted from semval.

– If (sem_flg & SEM_UNDO) is non-zero, the absolute value of sem_op is added to
the calling process semadj value for the specified semaphore (see exit()).

– If semval is less than the absolute value of sem_op, and
(sem_flg & IPC_NOWAIT) is non-zero, semop() will return immediately.

– If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT)
is 0, semop() increments the semncnt value of the specified semaphore and
suspends execution of the calling process until one of the following conditions
occurs:

– The value of semval becomes greater than or equal to the absolute value of
sem_op. When this occurs, the semncnt value of the specified semaphore is
decremented by 1, the absolute value of sem_op is subtracted from semval
and, if (sem_flg & SEM_UNDO) is non-zero, the absolute value of sem_op is
added to the calling process semadj value for the specified semaphore.

Data type Member name Description

short sem_num Semaphore number

short sem_op Semaphore operation

short sem_flg Operation flags

Functions and variables in alphabetical order semop

U23711-J-Z125-5-76 787

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

– The semid for which the calling process is awaiting action is removed from the
system. In this case, errno is set equal to EIDRM and the value -1 is returned.

– The calling process receives a signal that is to be caught. When this occurs, the
semncnt value of the specified semaphore is decremented by 1, and the calling
process resumes execution as described under the sigaction() function.

2. If sem_op is a positive integer and the calling process has write permission, the value
of sem_op is added to semval and, if (sem_flg & SEM_UNDO) is non-zero, the value of
sem_op is subtracted from the semadj value of the calling process for the specified
semaphore.

3. If sem_op is 0 and the calling process has read permission, one of the following will
occur:

– If semval is 0, semop() will return immediately.

– If semval and (sem_flg & IPC_NOWAIT) are both non-zero, semop() will return
immediately.

– If semval is non-zero and (sem_flg & IPC_NOWAIT) is 0, semop() will increment
the semzcnt value of the specified semaphore and suspend execution of the calling
process until one of the following events occurs:

– The value of semval becomes 0, at which time the semzcnt value of the
specified semaphore is decremented by 1.

– The identifier semid of the semaphore for which the calling process is awaiting
action is removed from the system. When this occurs, errno is set to EIDRM
and the value -1 is returned.

– The calling process receives a signal that is to be caught. When this occurs, the
semzcnt value of the specified semaphore is decremented by 1, and the calling
process resumes execution as described under sigaction().

Upon successful completion, the value of sempid for each semaphore specified in the array
pointed to by sops is set equal to the process ID of the calling process.

semop Functions and variables in alphabetical order

788 U23711-J-Z125-5-76

When threads are used, the functionality of semop changes in the following aspects:

Execution of semaphore operations:

Regarding 1. If semval is smaller than the absolute value of sem_op and (sem_flg &
IPC_NOWAIT) is equal to 0, semop() increments the value of semncnt of the specified
semaphore by 1 and the calling thread is stopped until one of the following conditions is
met:

– The value of semval is greater than or equal to the absolute value of sem_op. When
this occurs, the value of semncnt of the specified semaphore is decremented by 1,
the absolute value of sem_op is subtracted from semval and if (sem_flg & SEM_UNDO)
is not equal to 0, the absolute value of sem_op is added to the semadj value of the
calling process for the specified semaphore.

– The semid identifier for which the calling thread is waiting for an operation is deleted
from the system. In this case errno is set to EIDRM and -1 is returned.

– The calling thread receives a signal that must be trapped. In this case the value of
semncnt of the specified semaphore is decremented by 1 and the calling thread
continues execution in the manner described for the sigaction() function.

Regarding 3. If semval is not equal to 0 and (sem_flg & IPC_NOWAIT) is equal to 0, semop()
increments the value of semzcnt of the specified semaphore by 1 and the calling thread is
stopped until one of the following events occur:

– semval assumes the value 0. After that the value of semzcnt of the specified
semaphore is decremented by 1.

– The semid identifier for which the calling thread is waiting for an operation is deleted
from the system. In this case errno is set to EIDRM and -1 is returned.

The calling thread receives a signal that must be trapped. In this case the value of semzcnt
of the specified semaphore is decremented by 1 and the calling thread continues execution
in the manner described for the sigaction() function.

Return val. 0 if successful.

-1 if unsuccessful. errno is set to indicate the error.

Errors semop() will fail if:

E2BIG The value of nsops is greater than the system-imposed maximum value.

EACCES The process does not have the required access permission for the
command to be executed (see section “Error handling” on page 161).

EAGAIN The operation would result in suspension of the calling process, but
(sem_flg & IPC_NOWAIT) is non-zero.

Functions and variables in alphabetical order semop

U23711-J-Z125-5-76 789

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

EFBIG The value of sem_num is less than 0 or greater than or equal to the number
of semaphores in the set associated with semid.

EIDRM The semaphore identifier semid was removed from the system.

EINTR semop() was interrupted by a signal.

EINVAL The value of semid is not a valid semaphore identifier, or the number of
individual semaphores for which the calling process requests a SEM_UNDO
would exceed the system-imposed limit.

ENOSPC The system-specific limit on the maximum number of individual processes
requesting a SEM_UNDO would be exceeded.

ERANGE An operation would cause a semval or a semadj to exceed the maximum
value for the system.

See also exec, exit(), fork(), semctl(), semget(), sys/sem.h, section “Interprocess commu-
nication” on page 147.

setbuf Functions and variables in alphabetical order

790 U23711-J-Z125-5-76

setbuf - assign buffering to stream

Syntax #include <stdio.h>

void setbuf(FILE *stream, char *buf);

Description setbuf() may be used after the stream pointed to by stream has been assigned to an open
file but before any other operation has been performed on the stream. It causes the array
pointed to by buf to be used instead of an automatically allocated buffer.

The buffer size is not limited; however, the constant BUFSIZ (see stdio.h) is typically a
good buffer size:

char buf[BUFSIZ];

If buf is not a null pointer, the following function calls are equivalent:

setbuf(stream, buf)
setvbuf(stream, buf, _IOFBF, BUFSIZ)

If buf is a null pointer, input and output are unbuffered, and the following calls are equivalent:

setbuf(stream, buf)
setvbuf(stream, buf, _IONBF, BUFSIZ)

BS2000
If buf is a null pointer, the buffer assigned by the system is used.

In contrast to setvbuf(), setbuf() has no return value.

Notes A common source of error is to use an "automatic" variable (i.e. a variable of storage class
auto) as the buffer in a program block and then fail to close the file in the same block.

Since a portion of buf is required for internal administration data of the stream, buf will
contain less than size bytes when full. It is therefore preferable to use setvbuf() with
automatically assigned buffers.

setbuf() is executed for the file assigned to stream. This can be a POSIX file or a
BS2000 file.

BS2000
If the blocking factor is explicitly defined with the BUFFER-LENGTH parameter of the
SET-FILE-LINK command, the size of the area must correspond to this defined blocking
size. ❑

See also fopen(), setvbuf(), stdio.h, section “Streams” on page 110.

Functions and variables in alphabetical order setcontext

U23711-J-Z125-5-76 791

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

setcontext - modify user context

Syntax #include <ucontext.h>

int setcontext(const ucontext_t *ucp);

Description See getcontext()

setenv Functions and variables in alphabetical order

792 U23711-J-Z125-5-76

setenv - add or change environment variable

Syntax #include <stdlib.h>

int setenv (const char *envname, const char *envval, int overwrite);

The setenv() function updates or adds a variable in the environment of the calling
process.

The envname argument points to a string containing the name of an environment variable to
be added or altered. If the environment variable already exists, two cases must be distin-
guished: If the value of overwrite is not zero, the environment is changed; if the value is zero,
the environment remains unchanged. In both cases the function is terminated successfully.

If the application modifies environ or the pointers to which it points, the behavior of setenv
is undefined. The setenv function updates the list of pointers to which environ points.

The strings described by envname and envval are copied by this function.

setenv() is not thread-safe.

Return val. 0 if successful.

-1 otherwise. errno is set to indicate the error. The environment remains un-
changed.

Errors setenv() will fail if:

EINVAL The envname argument is a null pointer, points to an empty string, or points
to a string containing an '=' character.

ENOMEM Insufficient memory was available to add a variable or its value to the envi-
ronment.

See also environ, exec, getenv(), malloc(), putenv(), unsetenv(), stdlib.h, section
“Environment variables” on page 104.

Functions and variables in alphabetical order setgid

U23711-J-Z125-5-76 793

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

setgid - set group ID of process

Syntax #include <unistd.h>

Optional
#include <sys/types.h>

int setgid(gid_t gid);

Description If the process has appropriate privileges, setgid() sets the real group ID, effective group
ID, and the saved set-group-ID to gid.

If the process does not have appropriate privileges, but gid is equal to the real group ID or
the saved set-group-ID, setgid() sets the effective group ID to gid; the real group ID and
saved set-group-ID remain unchanged.
Any supplementary group IDs of the calling process remain unchanged.

Return val. 0 if successful.

-1 if unsuccessful. errno is set to indicate the error.

Errors setgid() will fail if:

EINVAL The value of gid is invalid and is not supported.

EPERM The process does not have appropriate privileges and gid does not match
the real group ID or the saved set-group-ID.

Notes At login, the real user ID, effective user ID, and saved set-user-ID of the login process are
set to the user ID of the user responsible for creating the process. The real group ID,
effective group ID, and saved set-group-ID of the login process are likewise set to the group
ID of the user responsible for creating the process.

When a process calls exec() to execute a file, the user and/or group IDs associated with
the process may change. If the file executed is a 'set-user-ID' file, the effective user ID and
saved set-user-ID of the process are set to the user of the file executed. If the file executed
is a 'set-group-ID' file, the effective group ID and saved set-group-ID of the process are set
to the group of the file executed. If the file executed is not a 'set-user-ID' or 'set-group-ID'
file, the effective user ID, saved set-user-ID, effective group ID, and saved set-group-ID are
not changed.

See also exec, getgid(), setuid(), sys/types.h, unistd.h.

setgrent / setgroups Functions and variables in alphabetical order

794 U23711-J-Z125-5-76

setgrent - reset file position indicator to beginning of group file

Syntax #include <grp.h>

void setgrent (void);

Description See endgrent().

setgroups - write group numbers

Syntax #include <unistd.h>

int setgroups(int ngroups, const gid_t grouplist[]);

Description The setgroups() function can only be called by the system administrator. The
setgroups() function sets the group access list of the calling process from the group
numbers field. The number of entries is specified by the ngroups parameter and must not
exceed NGROUPS_MAX.

Return val. 0 if successful.

-1 if unsuccessful. errno indicates the cause of the error.

Errors setgroups() will fail if:

EINVAL The value ngroups exceeds NGROUPS_MAX.

EFAULT A referenced part of the grouplist array is outside the address range as-
signed to the process.

EPERM The effective user number is not the user number of the system administra-
tor.

Functions and variables in alphabetical order setitimer / _setjmp

U23711-J-Z125-5-76 795

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

setitimer - set interval timer

Syntax #include <sys/time.h>

int setitimer(int which, const struct itimerval *value, struct itimerval *ovalue);

Description See getitimer().

_setjmp - set label for non-local jump (without signal mask)

Syntax #include <setjmp.h>

int _setjmp(jmp_buf env);

Description See _longjmp().

setjmp Functions and variables in alphabetical order

796 U23711-J-Z125-5-76

setjmp - set label for non-local jump

Syntax #include <setjmp.h>

int setjmp(jmp_buf env);

Description setjmp() saves the current calling environment (address in the C runtime stack, program
counter, register contents) in its env argument for later use by the longjmp() function.
setjmp() is implemented as a macro in the POSIX subsystem; it may be implemented as
a function in other X/Open-conformant systems.

If a macro definition is suppressed in order to access an existing function, or defines a
program or an external identifier with the name setjmp, the behavior is undefined.

setjmp() is only meaningful in combination with the longjmp() function: these two
functions can be combined to implement non-local jumps, i.e. jumps from any given function
to any other active function. A longjmp call restores the calling environment saved by
setjmp() and then resumes program execution (see also longjmp()).

env is the array in which setjmp() stores the current program state. The type jmp_buf is
defined in the header setjmp.h.

All accessible objects will have the same values as when longjmp() was called, except
for the values of "automatic" objects, which are undefined under the following conditions:

– They are local to the function containing the corresponding setjmp call.

– They are not of type volatile.

– They are changed between the setjmp and longjmp calls.

setjmp() should only be used in one of the following contexts:

– as the entire controlling expression of a selection or iteration statement, e.g.:

if (setjmp(env)) ...

– as one operand of a relational operator with the other operand an integral constant
expression, with the resulting expression being the entire controlling expression of a
selection or iteration statement, e.g.:

if (setjmp(env) == 0) ...

– as the operand of a unary "!" operator with the resulting expression being the entire
controlling expression of a selection or iteration statement, e.g.:

if (!setjmp(env)) ...

– as the entire expression of an expression statement (possibly cast to void):

void: (void)setjmp(env);

Functions and variables in alphabetical order setjmp

U23711-J-Z125-5-76 797

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Return val. 0 on successful return from a direct invocation of sigset.

≠ 0 if the return is from a call to longjmp(). In this case the return value corre-
sponds to the value of the val argument of the longjmp call.

Notes In general, sigsetjmp() is more suitable than setjmp() for handling errors and signals
which occur in low-level subroutines.

See also longjmp(), sigsetjmp(), setjmp.h.

setkey Functions and variables in alphabetical order

798 U23711-J-Z125-5-76

setkey - set encoding key

Syntax #include <stdlib.h>

void setkey(const char *key);

Description setkey() provides access to an encoding algorithm.
key is a character array of length 64 bytes containing only bytes with numerical values of 0
and 1. This string is divided into groups of 8, where the low-order bit in each group is
ignored. This gives a 56-bit key that is recorded. This is the key that will be used by the
algorithm to encode the string block passed to the encrypt() function.

Notes Since setkey() does not return a value, applications wishing to check for errors should set
errno to 0, call setkey(), then test errno and, if it is non-zero, assume that an error has
occurred.

See also crypt(), encrypt(), stdlib.h.

Functions and variables in alphabetical order setlocale

U23711-J-Z125-5-76 799

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

setlocale - set or query locale

Syntax #include <locale.h>

char *setlocale(int category, const char *locale);

Description setlocale() can be used to change a part of the locale, as specified by category and
locale, or to change or query the entire current locale or portions thereof. The following
constant names, which are assigned to a database, may be specified for category:

LC_ALL affects the entire locale (see section “Locale” on page 86).

BS2000
The locale component LC_MESSAGES is not supported for BS2000
functionality (see section “Scope of the supported C library” on page 49). ❑

LC_COLLATE affects the behavior of regular expressions and of string collation functions.

LC_CTYPE affects the behavior of regular expressions, character-handling functions,
and wide-character (multi-byte) functions.

LC_MESSAGES affects the format of message strings.

BS2000
This component of the locale is not supported for BS2000 functionality (see
section “Scope of the supported C library” on page 49). ❑

LC_MONETARY affects the monetary formatting information returned by localeconv().

LC_NUMERIC affects the radix character for formatted input/output functions, string
conversion functions, and of the non-monetary formatting information
returned by localeconv().

LC_TIME affects the behavior of time conversion functions.

The behavior of nl_langinfo() is also affected by the settings for category.

locale is a pointer to a character string containing the required settings for category. In
addition, the following preset values are defined for all settings of category:

"POSIX" specifies the minimal environment for the programming language C; this is
called the POSIX locale. If setlocale() is not invoked, the POSIX locale
is the default.

"C" same as "POSIX", but called the C locale.

"" specifies a language-dependent environment, which corresponds to the
environment variables LC_* and LANG associated with the value of category.

Null pointer is used to instruct the setlocale() function to query the current locale and
to return its name.

setlocale Functions and variables in alphabetical order

800 U23711-J-Z125-5-76

If threads are used, then the function affects the process or a thread in the following
manner: If the process is multithreaded, then the change to the locale affects all threads of
the process.

BS2000
"V1CTYPE" In contrast to the C locale, the characters X’8B’, X’8C’, X’8D’ are

treated as lowercase letters, the characters X’AB’, X’AC’, X’AD’ as
uppercase letters, and the characters X’C0’ and X’D0’ as special
characters. In the "C" locale, all these characters are treated as control
characters.

"V2CTYPE" In contrast to the C locale, the collating sequence is set to correspond to the
values of the EBCDIC character set.

"GERMANY" This setting specifies the usual conventions for German-speaking
countries.

"De.EDF04F" Country-specific locale whose conversion table is based on ASCII code ISO
8859-15 ASCII code or EDF04F EBCDIC code and that supports the “DM”
currency in the category LC_MONETARY.

"De.EDF04F@euro"
Country-specific locale whose conversion table is based on ASCII code ISO
8859-15 ASCII code or EDF04F EBCDIC code and that supports the “Euro”
currency in the category LC_MONETARY.

The strings are preset in the header file locale.h as follows:

❑

Symbolic constant Default value

LC_C_C "POSIX"

LC_C_C "C"

LC_C_DEFAULT ""

LC_C_V1CTYPE "V1CTYPE"

LC_C_V2TYPE "V2CTYPE"

LC_C_GERMANY "GERMANY"

LC_C_DeEDF04F "De.EDF04F"

LC_C_DeEDF04F@euro "De.EDF04F@euro"

Functions and variables in alphabetical order setlocale

U23711-J-Z125-5-76 801

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Return val. String that indicates the current locale for category
if locale is not a null pointer and setlocale() is completed successfully, or
if locale is a null pointer. The locale is not changed.

Null pointer if setlocale() fails. The locale is not changed.

A subsequent call to setlocale() with the returned string and its associated category will
restore that part of the locale. The string returned must not be modified by the program, but
may be overwritten by a subsequent call to setlocale().

Notes The following program statements show how a program can initialize the locale for a
language, while selectively modifying it so that regular expressions and string operations
can be applied to text recorded in a different language:

setlocale(LC_ALL, "De");
setlocale(LC_COLLATE, "Fr@dict");

Internationalized programs must call the setlocale() function to take a specific language
into account. This can be done by calling setlocale() as follows:

setlocale (LC_ALL, "");

This call uses the settings of the environment variables to initialize the locale.
Changing the setting of LC_MESSAGES has no effect on message catalogs that are already
opened by calls to catopen().

BS2000
When a program is started, the pointer vector environ is constructed from the variables
stored in SYSPOSIX.name. If setlocale() is called with the null string "" as the locale, the
environment variables stored in this vector and their values are taken into account. If the
queried environment variable is not present, the corresponding value from the POSIX
locale applies. ❑

User-specific locales may be implemented in addition to the predefined locales and can be
selected using setlocale() (see section “Locale” on page 86).

See also catopen(), ctime(), ctype(), environ, exec, getdate(), gettxt(), isalnum(),
isalpha(), iscntrl(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper(), iswalnum(), iswalpha(), iswcntrl(), iswgraph(), iswlower(),
iswprint(), iswpunct(), iswspace(), iswupper(), localeconv(), mblen(),
mbstowcs(), mbtowc(), nl_langinfo(), printf(), scanf(), strcoll(),
strerror(), strfmon(), strtime(), strtod(), strxrfm(), tolower(), toupper(),
towlower(), towupper(), wcscoll(), wcstod(), wcstombs(), wcsxfrm(), wctomb(),
langinfo.h, locale.h, section “Locale” on page 86.

setlogmask Functions and variables in alphabetical order

802 U23711-J-Z125-5-76

setlogmask - set log priority mask

Syntax #include <syslog.h>

int setlogmask(int maskpri);

Description See closelog()

Functions and variables in alphabetical order setpgid

U23711-J-Z125-5-76 803

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

setpgid - set process group ID for job control

Syntax #include <unistd.h>

Optional
#include <sys/types.h>

int setpgid(pid_t pid, pid_t pgid);

Description setpgid() is used either to join an existing process group or create a new process group
within the session of the calling process. If pgid is equal to pid, the process becomes a
process group leader. If pgid is not equal to pid, the process becomes a member of an
existing process group. The process group ID of the session leader does not change. Upon
successful completion, the process group ID of the process with the process ID that
matches pid is set to pgid.

If pid is 0, the process ID of the calling process is used.

If pgid is 0, the process group ID of the specified process is used.

Return val. 0 if successful.

-1 if unsuccessful. errno is set to indicate the error.

Errors setpgid() will fail if:

EACCES The value of pid matches the process ID of a child process of the calling
process and the child process has successfully executed one of the exec
functions.

EINVAL The value of pgid is less than 0 or not supported by the implementation.

EPERM The process specified by pid is a session leader, or
the value of pid matches the process ID of a child process of the calling
process and the child process is not in the same session as the calling
process, or
the value of pgid is valid but does not match the process ID of the process
specified by pid, and there is no process with a process group ID that
matches the value of pgid in the same session as the calling process.

ESRCH The value of pid does not match the process ID of the calling process or of
a child process of the calling process.

See also exec, getpgrp(), setsid(), tcsetpgrp(), sys/types.h, unistd.h.

setpgrp / setpriority / setpwent Functions and variables in alphabetical order

804 U23711-J-Z125-5-76

setpgrp - set process group ID

Syntax #include <unistd.h>

pid_t setpgrp (void);

Description If the calling process is not already a session leader, setpgrp() sets the process group ID
and the session number of the calling process to the process ID of the calling process and
releases the controlling terminal of the calling process.

The function does not have any effect if the calling process is a session leader.

Return val. setpgrp() returns the value of the new process group ID.

See also exec, fork(), getpid(), getsid(), kill(), setsid(), unistd.h.

setpriority - set process priority

Syntax #include <sys/resource.h>

int setpriority(int which, id_t who, int priority);

Description See getpriority().

setpwent - delete pointer to search user catalog

Syntax #include <pwd.h>

void setpwent(void);

Description See endpwent().

Functions and variables in alphabetical order setregid

U23711-J-Z125-5-76 805

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

setregid - set real and effective group IDs

Syntax #include <unistd.h>

int setregid(gid_t rgid, grid_t egid);

Description setregid() is used to set the real and the effective group IDs of the calling process. If rgid
is -1, the real group ID (GID) is not changed; if egid is -1, the effective GID is not changed.
The real and effective GIDs can be set to different values in the same call.

If the effective user ID of the calling process matches the superuser, the real GID and the
effective GID can be set to any permissible value.

If the effective user ID of the calling process does not match the superuser, either the real
GID can be set to the saved “set-GID“ from execv(), or the effective GID can be set to
either the saved “set-GID“ or the real GID.

If a process for setting the GID sets its effective GID to its real GID, it can still reset its
effective GID to the saved “set-GID“.

Both when the real GID is changed (i.e. if rgid is not -1) and when the effective GID is
changed into a value that does not match the real GID, the saved “set-GID“ is set to the
same as the new effective GID.

If the current value of the real GID is changed, the old value from the group access list is
deleted (see getgroups()), if it is entered in the list, and the new value is added to the
group access list if it does not already exist and as long as this does not cause the number
of groups in this NGROUPS list to be exceeded, as defined in the
/usr/include/sys/param.h file.

Return val. 0 if executed successfully

-1 if an error occurs. errno is set to indicate the error

Errors setregid() will fail if:

EINVAL The value of rgid or egid is invalid or outside the permitted value range.

EPERM The effective user ID of the calling process does not match the superuser,
and a different modification was specified, i.e. something other than
changing the real GID into the saved “set-GID“ or the effective GID into the
real or saved GID.

See also exec(), getuid(), setuid(), setreuid(), unistd.h.

setreuid Functions and variables in alphabetical order

806 U23711-J-Z125-5-76

setreuid - set real and effective user IDs

Syntax #include <unistd.h>

int setreuid(uid_t ruid, uid_t euid)

Description setreuid () is used to set the real and the effective user IDs of the calling process. If ruid
is -1, the real user ID is not changed; if euid is -1, the effective user ID is not changed. The
real and effective user IDs can be set to different values in the same call.

If the effective user ID of the calling process matches the superuser, the real user ID and
the effective user ID can be set to any permissible value.

If the effective user ID of the calling process does not match that of the superuser, either
the real user ID can be set to the effective user ID, or the effective user ID can be set to
either the saved “set-user-ID“ from execv or the real user ID.

If a process for setting the user ID (UID) sets its effective user ID to its real user ID, it can
still reset its effective user ID to the saved “set-user-ID“.

Both when the real user ID is changed (i.e. if ruid is not -1) and when the effective user ID
is changed to a value that does not match the real user ID, the saved “set-user-ID“ is set to
the same as the new effective user ID.

Return val. 0 if executed successfully

-1 if an error occurs. errno is set to indicate the error

Errors setreuid() will fail if:

EINVAL The value of the ruid or euid argument is invalid or outside the permitted
value range.

EPERM The effective user ID of the calling process does not match that of the
superuser, and a different modification was specified, i.e. something other
than changing the real user ID to the effective user ID or the effective user
ID into the real or saved “set-user-ID“.

See also getuid(), setuid(), unistd.h

Functions and variables in alphabetical order setrlimit

U23711-J-Z125-5-76 807

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

setrlimit - set resource limit

Name setrlimit, setrlimit64

Syntax #include <sys/resource.h>

int setrlimit (int resource, const struct rlimit *rlp);
int setrlimit64 (int resource, const struct rlimit64 *rlp);

Description See getrlimit().

setsid Functions and variables in alphabetical order

808 U23711-J-Z125-5-76

setsid - create session and set process group ID

Syntax #include <unistd.h>

Optional
#include <sys/types.h>

pid_t setsid(void);

Description The setsid() function creates a new session, unless the calling process is process group
leader. Following the return of this function, the calling process will be the session leader of
this new session, the process group leader of a new process group, and will have no
controlling terminal. The process group ID of the calling process is set to the process ID of
the calling process. The calling process will be the only process in the new process group
and the only process in the new session.

Return val. Process group ID of the calling process
if successful.

(pid_t) -1 if unsuccessful. errno is set to indicate the error.

Errors setsid() will fail if:

EPERM The calling process is already a process group leader, or the process group
ID of a process other than the calling process matches the process ID of the
calling process.

Notes If the calling process is the last component of a pipeline started by a job control shell, the
shell may make the calling process the process group leader. The other processes of the
pipeline become members of that process group. In this case, the call to setsid() will fail.
A process that calls setsid() and expects to be part of a pipeline should therefore always
execute a fork() first; the parent process should exit, and the child process should call
setsid(), thus ensuring that the process will work reliably regardless of whether or not it
is called by a job-control shell (see the manual "POSIX Basics" [1] and the manual "POSIX
Commands" [2]).

See also setpgid(), sys/types.h, unistd.h.

Functions and variables in alphabetical order setstate / setuid

U23711-J-Z125-5-76 809

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

setstate - pseudo-random numbers

Syntax #include <stdlib.h>

char *setstate(const char *state);

Description See initstate().

setuid - set user ID

Syntax #include <unistd.h>

Optional
#include <sys/types.h>

int setuid(uid_t uid);

Description If the process has appropriate privileges, the setuid() function sets the real user ID,
effective user ID, and the saved set-user-ID to uid.

If the process does not have appropriate privileges, but uid is equal to the real user ID or
the saved set-user-ID, setuid() sets the effective user ID to uid. The real user ID and
saved set-user-ID remain unchanged.

Return val. 0 if successful.

–1 if unsuccessful. errno is set to indicate the error.

Errors setuid() will fail if:

EPERM The process does not have appropriate privileges and uid does not match
the real user ID or the saved set-user-ID.

Notes setuid() is frequently used to relinquish privileges that are no longer needed in programs
that have the s-bit for the owner set (especially root). Such programs often need the
privileges granted by the s-bit only for very specific tasks. When the privileges are no longer
required, they can be relinquished by a call in the form given below:

erg = setuid(getuid());

See also setpgid(), sys/types.h, unistd.h.

setutxent Functions and variables in alphabetical order

810 U23711-J-Z125-5-76

setutxent - reset pointer to utmpx file

Syntax #include <utmpx.h>

void setutxent (void);

Description See endutxent().

Functions and variables in alphabetical order setvbuf

U23711-J-Z125-5-76 811

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

setvbuf - assign buffering to stream

Syntax #include <stdio.h>

int setvbuf(FILE *stream, char *buf, int type, size_t size);

Description setvbuf() may be used after the stream pointed to by stream has been associated with an
open file but before any other operation has been performed on the stream. It causes the
array pointed to by buf to be used instead of an automatically allocated buffer. If buf is a null
pointer, all I/O is unbuffered.

type determines how stream is to be buffered, as follows:

_IOFBF Full buffering of input and output

_IOLBF Line buffering

_IONBF Unbuffered input and output

If buf is not a null pointer, the array it points to may be used instead of a buffer allocated by
setvbuf().

size specifies the size of the buf array.

The contents of the buf array at any given time are indeterminate.

Return val. 0 if successful.

≠ 0 if an invalid value was specified for type or
if the request cannot be satisfied.
errno is set to indicate the error.

Errors setvbuf() will fail if:

EBADF The file descriptor underlying stream is not valid.

Notes A common source of error is to use an "automatic" variable (i.e. a variable of storage class
auto) as the buffer in a program block and then fail to close the file in the same block.

Since a portion of buf is required for internal administration data of the stream, buf will
contain less than size bytes when full. It is therefore preferable to use setvbuf() with
automatically allocated buffers.

Allocating a buffer of size bytes with setvbuf() does not necessarily imply that all of size
bytes will be used for the buffer area.

Applications should note that many implementations only provide line buffering on input
from terminal devices.

setvbuf Functions and variables in alphabetical order

812 U23711-J-Z125-5-76

setvbuf() is executed for the file that is assigned to stream. This file can be either a
POSIX file or a BS2000 file.

BS2000
If the blocking factor is explicitly defined with the BUFFER-LENGTH parameter of the
SET-FILE-LINK command, the size of the area must correspond to this defined blocking
size. ❑

See also fopen(), setbuf(), stdio.h, section “Streams” on page 110.

Functions and variables in alphabetical order shmat

U23711-J-Z125-5-76 813

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

shmat - shared memory attach operation

Syntax #include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflg);

Description shmat() attaches the shared memory segment designated by the shared memory identifier
shmid to the data segment of the calling process. The location at which the segment is
attached is determined by the following criteria:

– If shmaddr is equal to 0, the segment is attached at the first free address found by the
system.

– If shmaddr and (shmflg & SHM_RND) are not equal to 0, the segment is attached at the
address given by (shmaddr-((ptrdiff_t)shmaddr % SHMLBA)).
(The character % is the C-language remainder operator.)

– If shmaddr is not equal to 0 and (shmflg & SHM_RND) is equal to 0, the segment is attached
at the address specified with shmaddr.

– If (shmflg & SHM_RDONLY) is not equal to 0 and the calling process has read permission,
the segment is attached for reading.

– If (shmflg & SHM_RDONLY) is not equal to 0 and the calling process has read and write
permission, the segment is attached for reading and writing.

The following symbolic names are defined in the header file sys/shm.h:

Return val. Start address of the data segment for the shared memory area
if successful. The value of shm_nattach is incremented in the data
structure associated with the shared memory ID.

-1 if an error occurs. The shared memory segment is not attached. errno is
set to indicate the error.

Name Description

SHMLBA Multiple of the address of the lower segment boundary

SHM_RDONLY Attach only for reading

SHM_RND Round up attachment address

shmat Functions and variables in alphabetical order

814 U23711-J-Z125-5-76

Errors shmat() will fail if:

EACCES The calling process is denied the access permissions required for the
operation.

EINVAL The value of shmid is not a valid shared memory ID, or
the value of shmaddr is not equal to 0 and the value of
(shmaddr -((ptrdiff_t) shmaddr % SHMLBA)) is an invalid address for
attaching shared memory, or
the value of shmaddr is not equal to 0, (shmflg & SHM_RND) is equal to 0 and
the value of shmaddr is an invalid address for attaching shared memory.

EMFILE The number of attached shared memory segments for the calling process
would exceed the system-imposed limit.

ENOMEM The available data space is not large enough to accommodate the shared
memory segment.

Notes The IEEE 1003.4 Standards Committee is developing alternative interfaces for interprocess
communication. Application developers who need to use interprocess communication (IPC)
should design their applications so that modules using the IPC routines described here can
be easily modified at a later date.

See also exec, exit(), fork(), shmctl(), shmdt(), shmget(), sys/shm.h, section “Inter-
process communication” on page 147.

Functions and variables in alphabetical order shmctl

U23711-J-Z125-5-76 815

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

shmctl - shared memory control operations

Syntax #include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

Description shmctl() provides a number of shared memory control operations, as specified by cmd.
The following values for cmd are available:

IPC_STAT Enter the current values of all members of the shmid_ds data structure
associated with shmid into the structure pointed to by buf. The format of the
structure is defined in sys/shm.h.

IPC_SET Set the values of the following members of the shmid_ds data structure
associated with shmid to the corresponding values from the structure
pointed to by buf:

shm_perm.uid
shm_perm.gid
shm_perm.mode /* only the low-order 9 bits */

IPC_SET can only be executed by a process that has an effective user ID
equal to that of a process with appropriate privileges or to the value of
shm_perm.cuid or shm_perm.uid in the shmid_ds data structure
associated with shmid.

IPC_RMID Remove the shared memory identifier specified by shmid from the system
as well as the shared memory segment and the shmid_ds data structure
associated with it. IPC_RMID can only be executed by a process that has
an effective user ID equal to that of a process with appropriate privileges or
to the value of shm_perm.cuid or shm_perm.uid in the shmid_ds data
structure associated with shmid.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

shmctl Functions and variables in alphabetical order

816 U23711-J-Z125-5-76

Errors shmctl() will fail if:

EACCES cmd is equal to IPC_STAT and the calling process does not have read
permission.

Extension
EFAULT msgp points to an invalid address. ❑

EINVAL The value of shmid is not a valid shared memory identifier, or
the value of cmd is not a valid command, or
cmd is IPC_SET and shm_perm.uid or shm_perm.gid is invalid.

Extension
ENOMEM Not enough memory is available.

EPERM cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling
process is not equal to that of a process with appropriate privileges and it is
not equal to the value of shm_perm.cuid or shm_perm.uid in the data
structure associated with shmid.

See also shmat(), shmdt(), shmget(), sys/shm.h, section “Interprocess communication” on
page 147.

Functions and variables in alphabetical order shmdt

U23711-J-Z125-5-76 817

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

shmdt - shared memory detach operation

Syntax #include <sys/shm.h>

int shmdt(const void *shmaddr);

Description shmdt() detaches the shared memory segment located at the address specified with
shmaddr from the data segment of the calling process.

Restriction
In this version of the POSIX subsystem, a shared memory area can only exist if it is
attached to a process. The behavior of shmdt() therefore deviates from XPG4 in the
following respect: when the last process has detached itself from a shared memory area,
the memory area is released. The administration data for the memory area is, however,
retained by the POSIX kernel. If another process subsequently attaches itself to the same
shared memory area, the earlier contents are lost. ❑

Return val. 0 if successful. shmdt() decrements the value of shm_nattach in the data
structure associated with the shared memory ID.

-1 if an error occurs. The shared memory segment is not detached. errno is
set to indicate the error.

Errors shmdt() will fail if:

EINVAL The value of shmaddr is not the data segment starting address of a shared
memory segment.

See also exec, exit(), fork(), shmat(), shmctl(), shmget(), sys/shm.h, section “Inter-
process communication” on page 147.

shmget Functions and variables in alphabetical order

818 U23711-J-Z125-5-76

shmget - create shared memory segment

Syntax #include <sys/shm.h>

int shmget(key_t key, int size, int shmflg);

Description shmget() returns the shared memory identifier associated with key.

A shared memory identifier, associated data structure and shared memory segment of at
least size bytes (see sys/shm.h) are created for key if one of the following conditions is true:

– The argument key has the value IPC_PRIVATE.

– The argument key does not already have a shared memory identifier associated with it
and (shmflg & IPC_CREAT) is not equal to 0.

Upon creation, the data structure associated with the new shared memory identifier is
initialized as follows:

– The values of shm_perm.cuid, shm_perm.uid, shm_perm.cgid and shm_perm.gid
are set to the effective user/group ID of the calling process.

– The 9 low-order bits of shm_perm.mode are set equal to the 9 low-order bits of shmflg.
The argument shm_segsz is set to the value of size.

– The values of shm_lpid, shm_nattch, shm_atime and shm_dtime are set equal to 0.

– The current time is entered for shm_ctime.

Return val. Shared memory identifier
if successful. The shared memory ID is a non-negative integer.

-1 if an error occurs. errno is set to indicate the error.

Errors shmget() will fail if:

EACCES A shared memory ID for the argument key exists, but the permis-
sions specified in the 9 low-order bits of shmflg were not granted.

EEXIST A shared memory ID exists for the argument key, but
((shmflg & IPC_CREAT) && (shmflg & IPC_EXCL)) is not equal to 0.

EINVAL The value of size is less than the system-imposed minimum or
greater than the system-imposed maximum, or
a shared memory identifier exists for the argument key, but the size
of the segment associated with it is less than size and size is not 0.

ENOENT A shared memory identifier does not exist for key and
(shmflg & IPC_CREAT) is 0.

Functions and variables in alphabetical order shmget

U23711-J-Z125-5-76 819

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

ENOMEM The amount of available physical memory is not sufficient to fill the
request.

ENOSPC The system-imposed limit on the maximum number of allowed
shared memory IDs would be exceeded.

Note BS2000
Tasks with only read permission are not prevented from writing to the shared memory area
using BS2000 resources. ❑

See also shmat(), shmctl(), shmdt(), sys/shm.h, section “Interprocess communication” on
page 147.

sigaction Functions and variables in alphabetical order

820 U23711-J-Z125-5-76

sigaction - examine and change signal handling

Syntax #include <signal.h>

int sigaction(int sig, const struct sigaction *act, struct sigaction *oact);

Description sigaction() allows the calling process to examine and/or change the signal-handling
action associated with the signal sig. The possible values for sig are defined in the header
file signal.h (see signal.h).

The structure sigaction, which is used to describe the action to be taken, is defined in the
header signal.h and contains at least the following members:

If act is not a null pointer, it points to a structure specifying the new action to be associated
with sig, thus changing the current signal action. In this case, the argument oact must point
to a structure in which the current signal action is to be stored on return from sigaction().

If act is a null pointer, the current signal handling remains unchanged, so this call can be
used to examine the current handling for a given signal. The argument oact may be a null
pointer in this case,

sa_handler identifies the signal action for sig and may have any of the values defined as
signal actions in signal.h (see signal.h).

If sa_handler specifies a signal-handling function, the sa_mask member identifies a set of
signals that are added to the process signal mask before the signal-handling function is
called. Note that the SIGKILL and SIGSTOP signals cannot be blocked (i.e. are not added
to the signal mask by this mechanism) and that this restriction will be enforced by the
system without causing an error to be indicated.

sa_flags can be used to change the behavior of the specified signal. The following flag
bits, defined in the header signal.h, can be set in sa_flags:

SA_NOCLDSTOP
prevents SIGCHLD from being generated when a child process stops.

Member type Member name Description

void(*)(int) sa_handler SIG_DFL, SIG_IGN or a pointer to a signal-
handling function.

sigset_t sa_mask Additional set of signals to be blocked during
execution of the signal-handling function.

int sa_flags Special flags that can be used to affect the
behavior of sig.

Functions and variables in alphabetical order sigaction

U23711-J-Z125-5-76 821

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Extension
SA_NOCLDWAIT

If this flag bit is set and sig equals SIGCHLD, the system will not create
zombie processes when children of the calling process exit. If the calling
process subsequently executes successive wait calls, it will block until all
of the its children terminate; a value of -1 is then returned, with errno set to
ECHILD.

SA_NODEFER The signal is not automatically blocked by the system while being
processed by the signal-handling function.

SA_RESETHAND
If this option is set and the signal is caught, the disposition of the signal will
be reset to SIG_DFL, and the signal will be blocked on entry to the signal
handler (SIGILL and SIGTRAP cannot be automatically reset when
delivered; the system silently enforces this restriction).

SA_RESTART If this flag bit is set and the signal is caught, a system call that is interrupted
by the execution of the signal-handling routine is transparently restarted by
the system. Otherwise, that system call returns an EINTR error.

SA_SIGINFO If this flag bit is cleared and the signal is caught, sig is passed as the only
argument to the signal-catching function.
If the flag is set and the signal is caught, blocked signals of type sig are
reliably queued for the calling process, and two additional arguments are
passed to the signal-catching function. If the second argument is not a null
pointer, it points to a structure of type siginfo_t containing the reason for
the signal; the third argument points to a structure of type ucontext_t
containing the context of the receiving process at the time the signal was
received. ❑

If sig is SIGCHLD and SA_NOCLDSTOP is not set in sa_flags, then a SIGCHLD signal will be
generated for the calling process whenever any of its child processes stop. If sig is SIGCHLD
and SA_NOCLDSTOP is set in sa_flags, no SIGCHLD signal is generated.

When a signal is caught by a signal-handling function defined by sigaction(), a new
signal mask is calculated for the duration of the signal-handling function (or until a call to
either sigprocmask() or sigsuspend() is made). This mask is formed by taking the
union of the current signal mask and the value of the sa_mask for the signal being sent,
including the sent signal itself. If the user-defined signal handler returns normally, the
original signal mask is restored.

The current signal-handling action for sig remains in effect until sigaction() is called
again or until one of the exec functions is called.

If the previous action (oact) for sig was established by signal(), the values of the structure
components returned in the structure pointed to by oact are unspecified and, in particular,
oact->sa_handler is not necessarily the same value passed to signal(). However, if a

sigaction Functions and variables in alphabetical order

822 U23711-J-Z125-5-76

pointer to the same structure or a copy thereof is passed to a subsequent call to
sigaction() via the act argument, handling of the signal will be as if the original call to
signal() were repeated.

An attempt to set the action for a signal that cannot be caught or ignored to SIG_DFL causes
an error with errno set to EINVAL.

General notes on signal handling

A signal is said to be generated for (or sent to) a process when the event that causes the
signal first occurs. Examples of such events include detection of hardware faults, timer
expiration and terminal activity, or an invocation of kill(). In some circumstances, the
same event generates signals for multiple processes.

Each process must ensure that a signal action is specified for each signal defined by the
system (see section “Signal actions” on page 823). A signal is said to be delivered to a
process when the prescribed action for the process and signal is taken.

During the time between the generation of a signal and its delivery, the signal is said to be
pending. Ordinarily, this interval cannot be detected by an application. However, a signal
can be blocked from delivery to a process. If the action associated with a blocked signal is
anything other than to ignore the signal, and if that signal is generated for the process, the
signal will remain pending until either it is unblocked or the action associated with it is set
to ignore the signal. If the action associated with a blocked signal is to ignore the signal and
if that signal is generated for the process, it is unspecified whether the signal is discarded
immediately upon generation or remains pending.

Each process has a signal mask that defines the set of signals currently blocked from
delivery to it. The signal mask for a process is initialized from that of its parent. The
sigaction(), sigprocmask() and sigsuspend() functions control the manipulation of
the signal mask.

The determination of which action is taken in response to a signal is made at the time the
signal is delivered, allowing for any changes since the time of generation. This determi-
nation is independent of the means by which the signal was originally generated. If a signal
that is already pending is generated, it is undefined whether the signal will be delivered
more than once. The order in which multiple, simultaneously pending signals are delivered
to a process is unspecified.

When a stop signal (SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU) is generated for a process,
any pending signals of type SIGCONT for that process are discarded. Conversely, whenever
SIGCONT is generated for a process, all pending stop signals for that process are likewise
discarded. When SIGCONT is generated for a process that is stopped, the process is
continued even if the SIGCONT signal is blocked or ignored. If SIGCONT is blocked and not
ignored, it will remain pending until it is either unblocked or a stop signal is generated for
the process.

Functions and variables in alphabetical order sigaction

U23711-J-Z125-5-76 823

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Signal actions

The following signal actions can be associated with a signal:

– SIG_DFL
– SIG_IGN
– a pointer to a signal-handling function

All signals are set to SIG_DFL or SIG_IGN (see signal.h) prior to entry of the main()
routine. The signal actions prescribed by these values are as follows:

SIG_DFL - signal-specific default action:

– The default signal handling for supported signals is described in the signal.h section.

– If the default action is to stop the process, the execution of that process is temporarily
suspended. When a process stops, a SIGCHLD signal will be generated for its parent
process, unless the parent process has set the SA_NOCLDSTOP flag. While a process is
stopped, any additional signals that are sent to the process will not be delivered until
the process is continued, except for SIGKILL, which always terminates the receiving
process. A process that is a member of an orphaned process group will not be allowed
to stop in response to the SIGTSTP, SIGTTIN or SIGTTOU signals. In cases where
delivery of one of these signals would stop such a process, the signal will be discarded.

– Setting a signal action to SIG_DFL for a signal that is pending, and whose default action
is to ignore the signal (for example, SIGCHLD), will cause the pending signal to be
discarded, whether or not it is blocked.

SIG_IGN - ignore signal:

– Delivery of the signal will have no effect on the process. The behavior of a process is
undefined after it ignores a SIGFPE, SIGILL or SIGSEGV signal that was not generated
by kill() or raise().

– The system will not allow the action SIG_IGN for the signals SIGKILL or SIGSTOP.
Setting a signal action to SIG_IGN for a signal that is pending will cause the pending
signal to be discarded, whether or not it is blocked.

– If a process sets the action for the SIGCHLD signal to SIG_IGN, the signal will be
ignored.

Pointer to a signal-handling function - catch signal:

– On delivery of the signal, the receiving process is to execute the signal-catching
function at the specified address. After returning from the signal-handling function, the
receiving process will resume execution at the point at which it was interrupted.

– The signal-handling function is called in the form of a C function as follows:

void func (int signo);

sigaction Functions and variables in alphabetical order

824 U23711-J-Z125-5-76

– func is the specified signal-handling function, and signo is the signal number of the signal
being delivered.

– The behavior of a process is undefined after it returns normally from an error-handling
function for a SIGFPE, SIGILL or SIGSEGV signal that was not generated by kill() or
raise().

– The system will not allow a process to catch the signals SIGKILL and SIGSTOP.

– If a process establishes a signal-handling function for the SIGCHLD signal while it has a
terminated child process for which it has not waited, it is unspecified whether a SIGCHLD
signal is generated to indicate that child process.

When signal-handling functions are invoked asynchronously with process execution,
the behavior of some of the functions defined in this manual is unspecified if they are
called from a signal-handling function. The following table defines a set of functions that
are either reentrant or not interruptible by signals. These so-called safe functions may
therefore be invoked by applications from signal-handling functions without restrictions:

All functions not in the above table are considered to be unsafe with respect to signals.
In the presence of signals, all X/Open-conformant functions behave as defined when

access() free() raise() sysconf()

alarm() fstat() read() tcdrain()

calloc() getegid() rename() tcflow()

cfgetispeed() geteuid() rmdir() tcflush()

cfgetospeed() getgid() setgid() tcgetattr()

cfsetispeed() getgroups() setpgid() tcgetpgrp()

cfsetospeed() getpgrp() setsid() tcsendbreak()

chdir() getpid() setuid() tcsetattr()

chmod() getppid() sigaction() tcsetpgrp()

chown() getuid() sigaddset() time()

close() kill() sigdelset() times()

creat() link() sigemptyset() umask()

dup2() lseek() sigfillset() uname()

dup() malloc() sigismember() unlink()

execle() mkdir() signal() utime()

execve() mkfifo() sigpending() wait()

_exit() open() sigprocmask() waitpid()

fcntl() pathconf() sigsuspend() write()

fork() pause() sleep()

fpathconf() pipe() stat()

Functions and variables in alphabetical order sigaction

U23711-J-Z125-5-76 825

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

called from or interrupted by a signal-handling function, with a single exception: when
a signal interrupts an unsafe function and the signal-handling function calls an unsafe
function, the behavior is undefined.

Signal effects on other functions

Signals affect the behavior of the following functions if they are delivered to a process while
it is executing any of these functions:

This has the following consequences:

– If the action of the signal is to terminate the process, the process will be terminated and
the function will not return.

– If the action of the signal is to stop the process, the process will stop until continued or
terminated.

– The generation of a SIGCONT signal for a process causes the process to be continued
at the point at which the process was stopped.

– If the associated action of the signal is to invoke a signal-handling function, the relevant
signal-handling function will be invoked; in this case, the original function is said to be
interrupted by the signal.

– If the signal-handling function executes a return statement, the behavior of the inter-
rupted function will be as described for that function.

– Signals that are ignored will not affect the behavior of any function.

– Signals that are blocked will not affect the behavior of any function until they are
delivered.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error. No new signal-handling
function is defined.

catclose() fgetwc() getgrnam() tcdrain()

catgets() fopen() getpass() tcsetattr()

close() fputc() getpwnam() tmpfile()

dup() fputwc() getpwuid() wait()

fclose() freopen() open() write()

fcntl() fseek() pause()

fflush() fsync() read()

fgetc() getgrgid() sigsuspend()

sigaction Functions and variables in alphabetical order

826 U23711-J-Z125-5-76

Errors sigaction() will fail if:

Extension
EFAULT act and oact point outside the allocated address space of the process. ❑

EINVAL sig is not a valid signal number, or
an attempt was made to catch or ignore a signal that cannot be caught
ignored, or
an attempt was made to set the action to SIG_DFL for a signal that cannot
be caught or ignored (or both).

Notes sigaction() supersedes signal() and should therefore be used with preference. In
particular, sigaction() and signal() should not be used for the same signal in the same
process.

If the same signal is registered two or more times, only the last one applies. This is
especially true for signals mapped to one another. For example, the signal SIGDVZ is
mapped to SIGFPE, and SIGTIM is mapped to SIGVTALRM. If a signal belonging to such a
pair is registered first, and is then followed by the other, this will be treated as a repetition
of the same signal.

Reentrant functions behave as described in this manual and may be used in signal-
handling functions without restrictions. Applications should nonetheless consider all effects
of such functions on data structures, files and process states. In particular, application
writers need to consider the restrictions on interactions when interrupting sleep() and
interactions among multiple file descriptors for a file description. c

In order to prevent errors arising from interrupting non-reentrant function calls, applications
should protect calls to these functions either by blocking the appropriate signals or through
the use of some semaphore. This manual does not address the more general problem of
synchronizing access to shared data structures. Note that even the safe functions may
modify the external variable errno; the signal-handling function may want to save and
restore its value. Naturally, the same principles apply to reentrant application routines and
asynchronous data access.

siglongjmp() is not in the list of reentrant functions. This is because the code executing
after siglongjmp() can call any unsafe functions with the same danger as calling those
unsafe functions directly from the signal handler. Applications that use longjmp() and sig
longjmp() from within signal handlers require rigorous protection in order to be portable.
Many of the other functions that are excluded from the list are traditionally implemented
using either malloc(), free() or functions from stdio.h, all of which traditionally use
data structures in a non-reentrant manner. Since any combination of different functions
using a common data structure can cause reentrancy problems, this manual does not
define the behavior when any unsafe function is called in a signal handler that interrupts an
unsafe function.

Functions and variables in alphabetical order sigaction

U23711-J-Z125-5-76 827

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

If a signal occurs without abort(), kill() or raise() being called, the behavior is
undefined if the signal handler calls an X/Open-conformant library function other than one
of those listed in the table above or if an object of static storage duration other than a
variable of type volatile sig_atomic_t is accessed. If such a call fails, the value of
errno is indeterminate.

The association between the symbolic names of signal numbers and their numeric values
has not been standardized. An application will be portable only if sig uses the symbolic
names.

See also kill(), sigaddset(), sigdelset(), sigfillset(), sigemptyset(),
sigismember(), sigprocmask(), sigsuspend(), signal.h, and section “Signals” on
page 146.

sigaddset Functions and variables in alphabetical order

828 U23711-J-Z125-5-76

sigaddset - add signal to signal set

Syntax #include <signal.h>

int sigaddset(sigset_t *set, int sig);

Description sigaddset() adds the signal sig to the signal set pointed to by set.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors sigaddset() will fail if:

EINVAL The value of sig is an invalid or unsupported signal number.

Notes Applications should call sigemptyset() or sigfillset() for each object of type
sigset_t prior to any other use of that object. If such an object is not initialized in this way,
but is nonetheless supplied as an argument to any of sigaction(), sigaddset(),
sigdelset(), sigismember(), sigpending() or sigprocmask(), the behavior is
undefined.

See also sigdelset(), sigemptyset(), sigfillset(), sigismember(), signal.h.

Functions and variables in alphabetical order sigaltstack

U23711-J-Z125-5-76 829

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

sigaltstack - set/read alternative stack of signal

Syntax #include <signal.h>

int sigaltstack(const stack_t *ss, stack_t *oss);

Description sigaltstack() is used to define an alternative stack in which signals can be processed. If
ss is not zero, a pointer to a stack_t structure describing a stack on which the signals can
be processed is expected. With sigaction you can specify which signals are to be
handled on the alternative signal stack. The system then switches over to the signal stack
for the duration of the signal-handling routine.

The stack_t structure contains the following components:

int *ss_sp
long ss_size
int ss_flags

If ss is not zero, the stack_t structure describes an alternative signal stack, which becomes
effective after the return of sigaltstack(). The components ss_sp and ss_size
determine the base and the size of the stack. The ss_flags component indicates the status
of the new stack and can have the following values:

SS_DISABLE The stack is deactivated and ss_sp and ss_size are ignored. If
SS_DISABLE is not set, the stack will be activated.

If oss is not zero, on successful return from sigaltstack the structure contains the
description of the alternative signal stack which was active before the sigaltstack() call.
ss_sp and ss_size specify the base and the size of the stack.

The ss_flags component indicates the status of the stack and can have the following
values:

SS_ONSTACK The process is currently executed with the alternative signal stack. Any
attempts to modify the alternative signal stack during execution of the
process will fail.

SS_DISABLE The alternative signal stack is currently deactivated.

The value SIGSTKSZ represents the number of bytes that are generally necessary for an
alternative stack. The value MINSIGSTKSZ defines here the minimum stack size for a signal-
handling routine. When computing the stack size the program should still set up this
minimum value in addition, to take into account the operating system’s own requirements.
The constants SS_ONSTACK, SS_DISABLE, SIGSTKSZ and MINSIGSTKSZ are defined in
<signal.h>.

sigaltstack Functions and variables in alphabetical order

830 U23711-J-Z125-5-76

Return val. 0 if executed successfully.

-1 if an error occurs. errno is set to indicate the error.

Errors sigaltstack() will fail if:

EPERM An attempt was made to modify an active stack (deactivate).

EINVAL The ss argument is not zero and the ss_flags component to which ss points
contains other flags than SS_DISABLE.

ENOMEM The size of the alternative stack area is less than MINSIGSTKSZ.

Notes The following program excerpt is used to allocate an alternative stack area:

if ((sigstk.ss_sp = (char *)malloc(SIGSTKSZ)) == NULL)
 /* Error handling */;

sigstk.ss_size = SIGSTKSZ;
sigstk.ss_flags = 0;
if (sigaltstack(&sigstk, (stack_t *)0) < 0)
 perror("sigaltstack");

See also sigaction(), sigsetjmp(), signal.h

Functions and variables in alphabetical order sigdelset

U23711-J-Z125-5-76 831

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

sigdelset - delete signal from signal set

Syntax #include <signal.h>

int sigdelset(sigset_t *set, int sig);

Description sigdelset() deletes the signal sig from the signal set pointed to by set.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors sigdelset() will fail if:

EINVAL The value of sig is an invalid or unsupported signal number.

Notes Applications should call sigemptyset() or sigfillset() for each object of type
sigset_t prior to any other use of that object. If such an object is not initialized in this way,
but is nonetheless supplied as an argument to any of sigaction(), sigaddset(),
sigdelset(), sigismember(), sigpending() or sigprocmask(), the behavior is
undefined.

See also sigdelset(), sigemptyset(), sigfillset(), sigismember(), signal.h.

sigemptyset Functions and variables in alphabetical order

832 U23711-J-Z125-5-76

sigemptyset - initialize and empty signal set

Syntax #include <signal.h>

int sigemptyset(sigset_t *set);

Description sigemptyset() initializes the signal set pointed to by set in a manner that excludes all the
signals defined in the system.

Return val. 0 if successful.

-1 if an error occurs.

Notes Applications should call sigemptyset() or sigfillset() for each object of type
sigset_t prior to any other use of that object. If such an object is not initialized in this way,
but is nonetheless supplied as an argument to any of sigaction(), sigaddset(),
sigdelset(), sigismember(), sigpending() or sigprocmask(), the behavior is
undefined.

See also sigdelset(), sigemptyset(), sigfillset(), sigismember(), signal.h.

Functions and variables in alphabetical order sigfillset / sighold, sigignore

U23711-J-Z125-5-76 833

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

sigfillset - initialize and fill signal set

Syntax #include <signal.h>

int sigfillset(sigset_t *set);

Description sigfillset() initializes the signal set pointed to by set in a manner that includes all the
signals defined in the system.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors sigfillset() will fail if:

Extension
EFAULT set specifies an invalid address. ❑

Notes Applications should call sigemptyset() or sigfillset() for each object of type
sigset_t prior to any other use of that object. If such an object is not initialized in this way,
but is nonetheless supplied as an argument to any of sigaction(), sigaddset(),
sigdelset(), sigismember(), sigpending() or sigprocmask(), the behavior is
undefined.

See also sigdelset(), sigemptyset(), sigfillset(), sigismember(), signal.h.

sighold, sigignore - add signal to signal mask / register SIG_IGN
for signal

Syntax #include <signal.h>

int sighold(int sig);
int sigignore(int sig);

Description See signal().

siginterrupt Functions and variables in alphabetical order

834 U23711-J-Z125-5-76

siginterrupt - change behavior of system calls in response to
interrupts

Syntax #include <signal.h>

int siginterrupt(int sig, int flag);

Description siginterrupt () is used to modify the restart behavior of system calls if the system call
was interrupted by the specified signal. the function has the same effect as the following
implementation:

siginterrupt(int sig, int flag) {

int ret;
struct sigaction act;
(void) sigaction(sig, NULL, &act);
if (flag)

act.sa_flags &=~SA_RESTART;

else
act.sa_fags |= SA_RESTART;

ret=sigaction(sig, &act, NULL);
return ret;
}

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error..

Errors siginterrupt() will fail if:

EINVAL The sig argument specifies an invalid signal number.

Notes siginterrupt() supports programs which use “historical“ system interfaces. When a new
portable application is written or an existing one rewritten, it should use the sigaction()
function with the SA_RESTART flag instead of siginterrupt().

See also sigaction(), signal.h.

Functions and variables in alphabetical order sigismember

U23711-J-Z125-5-76 835

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

sigismember - test for member of signal set

Syntax #include <signal.h>

int sigismember(const sigset_t *set, int sig);

Description sigismember() tests whether the signal sig is a member of the set pointed to by set.

Return val. 1 upon successful completion, if the specified signal is a member of the
specified set.

0 upon successful completion, if the specified signal is not contained in the
specified set.

-1 if an error occurs. errno is set to indicate the error.

Errors sigismember() will fail if:

EINVAL The value of sig is an invalid or unsupported signal number.

Notes Applications should call sigemptyset() or sigfillset() for each object of type
sigset_t prior to any other use of that object. If such an object is not initialized in this way,
but is nonetheless supplied as an argument to any of sigaction(), sigaddset(),
sigdelset(), sigismember(), sigpending() or sigprocmask(), the behavior is
undefined.

See also sigdelset(), sigemptyset(), sigfillset(), sigismember(), signal.h.

siglongjmp Functions and variables in alphabetical order

836 U23711-J-Z125-5-76

siglongjmp - execute non-local jump using signal

Syntax #include <setjmp.h>

void siglongjmp(sigjmp_buf env, int val);

Description siglongjmp() restores the environment saved by the last invocation of sigsetjmp() in
the same process with the same sigjmp_buf argument. If there is no prior invocation or if
the function in which this macro was called has terminated in the interim, the behavior is
undefined.

All accessible objects have the same values as of the time siglongjmp() was called,
except that the values of automatic objects which are changed between the execution of
sigsetjmp() and the siglongjmp() call are indeterminate.

Since siglongjmp() bypasses the usual function call and return mechanisms, it also
executes correctly in contexts with interrupts, signals and their associated functions.
However, if siglongjmp() is invoked from a nested signal handler (that is, from a function
called as a result of a signal raised during another signal-handling function), the behavior
is undefined.

siglongjmp() restores the saved signal mask if and only if the env argument was
initialized by a call to sigsetjmp() with a savemask argument not equal to 0.

siglongjmp() is not thread-safe. The result of calling this function is undefined if the
jmp_buf structure was not initialized in the calling thread.

Return val. 0 After siglongjmp() is completed, program execution continues as if the
corresponding execution of the sigsetjmp() macro had just returned the
value specified by val. siglongjmp() cannot cause sigsetjmp() to
return the value 0.

Notes if val is 0, the corresponding sigsetjmp() macro returns the value 1. The distinction
between setjmp() or longjmp() and sigsetjmp() or siglongjmp() is only significant
for programs which use sigaction(), sigprocmask() or sigsuspend().

See also longjmp(), setjmp(), sigprocmask(), sigsetjmp(), sigsuspend(), setjmp.h.

Functions and variables in alphabetical order signal

U23711-J-Z125-5-76 837

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

signal - examine or change signal handling

Syntax #include <signal.h>

void (*signal(int sig, void (* func)(int)))(int);

int sighold(int sig);

int sigignore(int sig);

int sigpause(int sig);

int sigrelse(int sig);

void (*sigset(int sig, void (*disp)(int)))(int);

Description signal() defines how the receipt of a signal is to be subsequently handled.

sig may be any signal defined by the system, except SIGKILL and SIGSTOP (see signal.h).

func() defines the signal action. The following values are possible:

– SIG_DFL (default signal handling)

– SIG_IGN (ignore the signal)

– Address of a signal-handling function (also called a signal handler)
In this case, the system adds the signal sig to the signal mask of the calling process
before the signal handler is executed. On exiting the signal-handler, the system
restores the signal mask of the calling process to the existing state before the signal
was received.

If func() points to a function, the following steps are performed in sequence when a signal
occurs:

1. An equivalent of the following signal function is executed:

signal(sig, SIG_DFL);

If the value of sig in this example is SIGILL, a reset to SIG_DFL occurs.

2. An equivalent of the following function is executed next:

(*func)(sig);

The signal-handling function func() may be terminated by a return statement or by an
abort(), exit(), or longjmp() function. If func() executes a return statement and the
value of sig is SIGFPE, SIGILL or SIGDVZ, the behavior is undefined. Otherwise, the
program will resume execution at the point it was interrupted.

signal Functions and variables in alphabetical order

838 U23711-J-Z125-5-76

If a signal occurs without abort(), kill() or raise() being called, the behavior is
undefined if the signal handler calls an X/Open-conformant library function other than one
of those listed in the table under sigaction() or if an object of static storage duration other
than a variable of type volatile sig_atomic_t is accessed. If such a call fails, the value
of errno is indeterminate.

At program startup, the equivalent of the following function is executed for some signals:

signal(sig, SIG_IGN);

An equivalent of the following function is executed for all other signals (see exec):

signal(sig, SIG_DFL);

The functions sigset(), sighold(), sigignore(), sigpause() and sigrelse()
simplify signal management for application processes.

sigset() is used to modify signal handling. sig indicates the signal, which can be any one
except SIGKILL and SIGSTOP. disp defines the handling of the signal, which can be
SIG_DFL, SIG_IGN or the address of a signal-handling routine. If sigset() is used and
disp is the address of a signal-handling routine, the system adds the signal sig to the signal
mask of the calling process before the signal-handling routine is executed. When execution
of the signal-handling routine terminates, the system resets the signal mask of the calling
process to the status it had before the signal was received. If sigset() is used and disp
equals SIG_HOLD, then sig is added to the signal mask of the calling process, and the signal
handling remains unchanged.

sighold() adds sig to the signal mask of the calling process.

sigrelse() removes sig from the signal mask of the calling process.

sigignore() sets the handling of sig to SIG_IGN.

sigpause() removes sig from the signal mask of the calling process and deactivates the
calling process until a signal is received.

If one of the above functions is used to set the handling of SIGCHLD to SIG_IGN, the child
processes of the calling process will not generate any zombie processes when they are
terminated. If the calling process waits for its child processes consecutively, it blocks until
all its child processes are terminated. The value -1 is then returned and errno contains the
error ID ECHILD (see wait(), waitid(), waitpid()).

Functions and variables in alphabetical order signal

U23711-J-Z125-5-76 839

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Return val. Value of func() on successful completion.

SIG_ERR if an error occurs, e.g. if sig is not a valid signal number or func() points to
an invalid address. errno is set to indicate the error.

SIG_HOLD returned by sigset() on successful completion if the signal was blocked.
If it was not blocked, sigset() returns the previous handling.

SIG_ERR if an error occurs in sigset(), errno contains the relevant error ID.

All other functions return zero if successful. If an error occurs they return -1 and set errno.

Errors signal() will fail if:

EINVAL sig is an invalid signal number, or
an attempt was made to catch a signal that cannot be caught, or
to ignore a signal that cannot be ignored
or to set the action to SIG_DFL for a signal that can be neither caught nor
ignored.

BS2000
EFAULT Invalid address. ❑

sigset(), sighold(), sigrelse(), sigignore() and sigpause() will fail if:

EINVAL sig is an invalid signal number, or with sigset() and sigignore() an
attempt was made to catch a signal that cannot be caught or to ignore a
signal that cannot be ignored.

Notes sigaction() provides a more comprehensive and reliable mechanism for controlling
signals than signal(); new applications should therefore use sigaction().

sighold() in conjunction with sigrelse() or sigpause() can be used to create critical
program areas in which the receipt of a signal can be temporarily deactivated.

The sigsuspend() function can be used instead of sigpause() to increase the portability.

See also exec, pause(), sigaction(), waitid(), signal.h.

signgam / sigpause / sigpending Functions and variables in alphabetical order

840 U23711-J-Z125-5-76

signgam - variable for sign of lgamma

Syntax #include <math.h>

extern int signgam;

Description See lgamma().

sigpause - remove signal from signal mask and deactivate process

Syntax #include <signal.h>

int sigpause(int sig);

Description See signal()

Notes If threads are used, then the function affects the process or a thread in the following
manner: sigpause() deletes a signal from the signal mask and suspends the thread.

sigpending - examine pending signals

Syntax #include <signal.h>

int sigpending(sigset_t *set);

Description sigpending() stores the set of signals that are blocked from delivery and pending to the
calling process, in the object pointed to by set.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors sigpending() will fail if:

Extension
EFAULT set is not a valid pointer. ❑

See also sigaddset(), sigdelset(), sigemptyset(), sigfillset(), sigismember(),
sigprocmask(), signal.h.

Functions and variables in alphabetical order sigprocmask

U23711-J-Z125-5-76 841

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

sigprocmask - examine or change blocked signals

Syntax #include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

Description sigprocmask() allows the calling process to examine and/or change its signal mask, i.e.
the set of blocked signals.

If set is not a null pointer, it points to a set of signals to be used to change the currently
blocked set.

how indicates the way in which the set is to be changed, and can assume of one of the
following values (see also signal.h):

SIG_BLOCK The resulting set will be the union of the current set and the signal set
specified by set.

SIG_UNBLOCK The resulting set will be the intersection of the current set and the
complement of the signal set specified by set. The resulting set will be the
signal set pointed to by set.

SIG_SETMASK The resulting set will correspond to the signal set specified by set.

If oset is not a null pointer, the previous mask is stored in the location pointed to by oset.

If set is a null pointer, the value of the argument how is not significant and the process signal
mask is unchanged; thus the call can be used to enquire about currently blocked signals.

If there are any pending unblocked signals after the call to sigprocmask(), at least one of
those signals will be delivered before the call to sigprocmask() returns.

It is not possible to block those signals which cannot be ignored (see signal.h). This is
enforced by the system without causing an error to be indicated.

If any of the SIGFPE, SIGILL or SIGSEGV signals are generated while they are blocked, the
result is undefined, unless the signal was generated by a call to kill() or raise().

If sigprocmask() fails, the process signal mask is not changed.

sigprocmask() is not thread-safe. Use the function pthread_sigmask() when needed.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error. The process signal
mask is not changed.

sigprocmask Functions and variables in alphabetical order

842 U23711-J-Z125-5-76

Errors sigprocmask() will fail if:

EINVAL The value of how does not correspond to any of permitted value.

Extension
EFAULT set or oset points beyond the allocated process address space. ❑

See also kill(), raise(), sigaction(), sigaddset(), sigdelset(), sigemptyset(),
sigfillset(), sigismember(), sigpending(), sigsuspend(), signal.h.

Functions and variables in alphabetical order sigrelse / sigset

U23711-J-Z125-5-76 843

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

sigrelse - remove signal from signal mask

Syntax #include <signal.h>

int sigrelse(int sig);
void (*sigset(int sig, void (*disp) (int))) (int);

Description see signal().

sigset - modify signal handling

Syntax #include <signal.h>

void (*sigset(int sig, void (*func)(int)))(int);

Description sigset() is used to modify signal handling.

See signal().

Notes sigset() is not thread-safe.

sigsetjmp Functions and variables in alphabetical order

844 U23711-J-Z125-5-76

sigsetjmp - set label for non-local jump using signal

Syntax #include <setjmp.h>

int sigsetjmp(sigjmp_buf env, int savemask);

Description sigsetjmp() saves its calling environment in the argument env for later use by the
siglongjmp() function. sigsetjmp() is implemented as a macro.

If the value of savemask is not equal to 0, sigsetjmp() will also save the current signal
mask of the process as part of the calling environment. If setjmp() were used, this would
be lost.

All accessible objects will have the same values as when longjmp() was called, except
for the values of "automatic" objects, which are undefined under the following conditions:

– They are local to the function containing the corresponding setjmp() call.

– They are not of type volatile.

– They are changed between the setjmp invocation and the longjmp call.

sigsetjmp() may only be called in one of the following contexts:

– as the entire controlling expression of a selection or iteration statement, e.g.:

if (sigsetjmp(env, mask)) ...

– as one operand of a relational operator with the other operand an integral constant
expression, with the resulting expression being the entire controlling expression of a
selection or iteration statement, e.g.:

if (sigsetjmp(env, mask)==0) ...

– as the operand of a unary "!" operator with the resulting expression being the entire
controlling expression of a selection or iteration statement, e.g.:

if (!sigsetjmp(env, mask) ...

– as the entire expression of an expression statement (possibly cast to void), e.g.:

(void) sigsetjmp(env, mask);

If threads are used, then the function affects the process or a thread in the following
manner: If the value of savemask is not equal to 0, sigsetjmp() also stores the current
signal mask of the calling thread as part of the call environment.

Return val. 0 on successful return from a direct invocation of sigsetjmp().

≠ 0 if the return is from a call to siglongjmp().

Functions and variables in alphabetical order sigsetjmp

U23711-J-Z125-5-76 845

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Notes The distinction between setjmp() or longjmp() and sigsetjmp() or siglongjmp() is
only significant for programs which use sigaction(), sigprocmask() or
sigsuspend().

See also siglongjmp(), signal(), sigprocmask(), sigsuspend(), setjmp.h, section
“Signals” on page 146.

sigstack Functions and variables in alphabetical order

846 U23711-J-Z125-5-76

sigstack - set or query alternative stack for signal

#include <signal.h>

int sigstack (struct sigstack *ss, struct sigstack *oss);

Description sigstack() can be used to define an alternative stack, called a signal stack, in which the
signals are processed. If the action of a signal indicates that the processing routine is to be
executed in a signal stack (specified by a sigaction() call), the system checks whether
the process is currently being executed in this stack. If the process is not being executed in
the signal stack, the system switches over to the signal stack until the signal-handling
routine terminates.

A signal stack is specified by a sigstack structure which contains the following elements:

char *ss_sp; / * pointer of signal stack */

int ss_onstack; / * current status */

ss_sp is the start address of the stack. If the ss_onstack field is non-zero, the signal stack is
to be activated.

If ss is not a null pointer, sigstack() sets the status of the signal stack to the value in the
sigstack structure to which ss points. The length of the stack must be at least SIGSTKSZ
bytes. If ss_onstack is non-zero, the system assumes that the process is being executed in
the signal stack. If ss is a null pointer, the status of the signal stack remains unchanged. If
oss is not a null pointer, the current status of the signal stack is saved in the sigstack
structure to which oss points.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors sigstack() will fail if:

EPERM an attempt was made to modify an active stack

Notes Signal stacks are not automatically enlarged like normal stacks. Therefore, an overflow of
the signal stack can cause unexpected results.

Portable applications should use sigaltstack() instead of sigstack().

Programs should not terminate a signal-handling routine with longjmp() if it is executed in
a stack that was set up with sigstack(). In certain circumstances this stack can become
unusable. You are therefore advised to use the functions siglongjmp(), setcontext()
or swapcontext() in this case.

Functions and variables in alphabetical order sigsuspend

U23711-J-Z125-5-76 847

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

sigsuspend - wait for signal

Syntax #include <signal.h>

int sigsuspend(const sigset_t *sigmask);

Description sigsuspend() replaces the current signal mask of the process with the set of signals
pointed to by sigmask and then suspends the process until delivery of a signal whose action
is either to execute a signal-handling function or to terminate the process.

If the signal action is to terminate the process, then sigsuspend() will never return.

If the action is to execute a signal-handling function, the function will return on completion
of the signal-handling function, with the signal mask restored to the set that existed prior to
the sigsuspend() call.

It is not possible to block signals that cannot be ignored. (see signal.h). This is enforced
by the system without causing an error to be indicated.

If threads are used, then the function affects the process or a thread in the following
manner: sigsuspend() replaces the current signal mask of the calling thread with the
signal set specified and then suspends the thread.

Return val. -1 if an error occurs. errno is set to indicate the error.

Since sigsuspend() suspends process execution indefinitely until it is interrupted by a
signal, it cannot have a return value for successful completion.

Errors sigsuspend() will fail if:

EINTR A signal is caught by the calling process, and control is returned from the
signal-handling function.

Extension
EFAULT sigmask points beyond the allocated address space of the process. ❑

See also pause(), sigaction(), sigaddset(), sigdelset(), sigemptyset(),
sigfillset(), signal.h.

sin / sinh Functions and variables in alphabetical order

848 U23711-J-Z125-5-76

sin - sine function

Syntax #include <math.h>

double sin(double x);

Description sin() computes the sine of the floating-point number x, which specifies an angle in
radians.

Return val. sin(x) if successful. The return value is a floating-point number in the range
[-1.0, +1.0].

See also acos(), asin(), atan(), atan2(), cos(), sinh(), tan(), math.h.

sinh - hyperbolic sine function

Syntax #include <math.h>

double sinh(double x);

Description sinh() computes the hyperbolic sine of the floating-point number x.

Return val. sinh(x) if successful.

+HUGE_VAL if an overflow occurs. errno is set to indicate the error.

Errors sinh() will fail if:

ERANGE The value of x causes an overflow.

See also acos(), asin(), atan(), cos(), cosh(), sin(), tanh(), math.h.

Functions and variables in alphabetical order sleep

U23711-J-Z125-5-76 849

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

sleep - suspend process for fixed interval of time

Syntax #include <unistd.h>

unsigned int sleep(unsigned int seconds);

Description sleep() causes the current process to be suspended from execution until either the
number of real-time seconds specified by seconds has elapsed or a signal is delivered to the
calling process, and the action of that signal is to invoke a signal-handler or to terminate the
process. The actual suspension time may be longer than seconds for priority reasons (i.e.
due to the scheduling of other activity by the system).

If a SIGALRM signal is generated for the calling process during execution of sleep() and if
the SIGALRM signal is being ignored or blocked from delivery, it is undefined whether
sleep() will return when the signal is processed.

If the signal is blocked, it is likewise undefined whether it will still be pending after sleep()
returns or whether it will be discarded.

If a SIGALRM signal is generated for the calling process during the execution of sleep(),
except as a result of a prior call to alarm(), and if the SIGALRM signal is not being ignored
or blocked from delivery, it is undefined whether that signal will have any effect other than
forcing sleep() to return.

If sleep() is interrupted by a signal handler, the results are undefined under the following
conditions:

– if the signal handler examines or changes the time at which a SIGALRM signal is to be
generated

– if the signal handler changes the action associated with the SIGALRM signal

– if the signal handler changes whether the SIGALRM signal is to be blocked from delivery

If a signal handler interrupts sleep() and calls siglongjmp() or longjmp() to restore an
environment saved prior to the sleep() call, both the action associated with the SIGALRM
signal and the time at which the signal is to be generated are undefined. It is likewise
undefined whether the SIGALRM signal will be blocked if the signal mask of the process is
not also restored as part of the environment (see also sigsetjmp()).

If threads are used, then the function affects the process or a thread in the following
manner: sleep() causes the current thread to be suspended until the specified time has
expired or until a signal is sent to the thread.

sleep Functions and variables in alphabetical order

850 U23711-J-Z125-5-76

Return val. 0 if sleep() returns because the specified time has elapsed.

seconds minus the time already spent sleeping, i.e. the unslept time in seconds
if sleep() returns because it was terminated prematurely by the delivery of
a signal.

sleep() is always successful.

Notes Although the program is suspended by sleep(), time continues to run for a previously set
alarm clock (see alarm()). This has the following effects:

1. If the previously set alarm time is less than the sleep time, e.g.:

alarm(2);
sleep(30);

the alarm is triggered and the sleep call is ended after two "sleep" seconds have
elapsed.

2. If the previously set alarm time is greater than the sleep time, e.g.:

alarm(30);
sleep(5);

time continues to run on the alarm clock for 5 "sleeping" seconds. Following the sleep
call, the alarm clock will be set at 25.

The time for which the program is actually suspended may also deviate from seconds for the
following reasons:

– it may be up to one second shorter because "awakening" takes place at fixed 1-second
intervals;

– it may be longer by any amount for priority reasons because the system has "more
important" things to do.

See also alarm(), pause(), sigaction(), unistd.h.

Functions and variables in alphabetical order snprintf

U23711-J-Z125-5-76 851

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

snprintf - formatted output to a string

Syntax #include <stdio.h>

int snprintf(char *s, size_t n, const char *format, ...);

Description
snprintf() edits data (characters, strings, numerical values) according to specifications
in the string format and writes this data to the area pointed to by s.

snprintf() only outputs up to the buffer limit specified by the n parameter. This prevents
buffer overrun. Apart from that the functionality of snprintf() is the same as that of
sprintf().

snprintf() exists, analogous to sprintf() , as an ASCII, IEEE and ASCII/IEEE function
(cf. sections “IEEE floating-point arithmetic” on page 37 und “ASCII encoding” on page 42).

Parameters
See fprintf().

Return val. < 0 n > INT_MAX or output error.

= 0 .. n-1 was possible to edit the output completely. The return value specifies the
length of the output without the terminating NULL character.

> n It was not possible to edit the output completely. The return value specifies
the length of the output without the terminating NULL character which a
complete output would require.

sprintf / sqrt / srand Functions and variables in alphabetical order

852 U23711-J-Z125-5-76

sprintf - write formatted output to string

Syntax #include <stdio.h>

int sprintf(char *s, const char *format[, arglist]);

Description See fprintf().

sqrt - square root function

Syntax #include <math.h>

double sqrt(double x);

Description sqrt() computes the square root of a non-negative floating-point number x.

Return val. sqrt(x) if x > = 0.

0 if x is negative.
errno is set to indicate the error.

Errors sqrt() will fail if:

EDOM The value of x is negative.

See also exp(), hypot(), log(), log10(), pow(), sinh(), math.h.

srand - generate pseudo-random numbers with seed

Syntax #include <stdlib.h>

void srand(unsigned int seed);

Description srand() initializes the random number generator that is called by rand().

seed is any integer that sets the random number generator to a random number.
The number 1 sets the random number generator to its default initial value.

See also rand().

Functions and variables in alphabetical order srandom / srand48 / sscanf

U23711-J-Z125-5-76 853

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

srandom - pseudo-random numbers

Syntax #include <stdlib.h>

void srandom(unsigned int seed);

Description See initstate().

srand48 - seed (double-precision) pseudo-random number generator

Syntax #include <stdlib.h>

void srand48(long int seedval);

Description See drand48().

sscanf - read formatted input from string

Syntax #include <stdio.h>

int sscanf(const char *s, const char *format[, arglist]);

Description See fscanf().

stat Functions and variables in alphabetical order

854 U23711-J-Z125-5-76

stat - get file status

Name stat, stat64

Syntax #include <sys/stat.h>
#include <sys/types.h>

int stat (const char *path, struct stat *buf);
int stat64 (const char *path, struct stat64 *buf);

Description stat() obtains information about the named file and writes it to the area pointed to by buf.

path points to a pathname naming a file. Read, write or execute permission of the named
file is not required, but all directories listed in the pathname leading to the file must be
searchable.

buf is a pointer to a structure of type stat, as defined in the header file sys/stat.h, into
which information concerning the file is placed.

stat() updates any time-related structure components, as described in the definition of
"File times update" in the glossary, before writing into the stat structure.

The structure components st_mode, st_ino, st_dev, st_uid, st_gid, st_atime,
st_ctime and st_mtime will then have meaningful values for all file types. The value of
the structure component st_nlink will be set to the number of links to the file.

There is no difference in functionality between stat() and stat64() except that
stat64() uses a stat64 structure.

The contents of the stat structure pointed to by buf include the following members:

mode_t st_mode; /* File mode (see mknod()) */
ino_t st_ino; /* Inode number (i-Node) */
dev_t st_dev; /* ID of device containing a
 directory entry for this file */
dev_t st_rdev; /* Device ID, only defined for
 character-special or block-special files */
nlink_t st_nlink; /* Number of links */
uid_t st_uid; /* User ID of the file's owner */
gid_t st_gid; /* Group ID of the file's group */
off_t st_size; /* File size in bytes */
time_t st_atime; /* Time of last access */
time_t st_mtime; /* Time of last data modification */
time_t st_ctime; /* Time of last file status change
 The time is measured in seconds since
 00:00:00 UTC, Jan 1, 1970 */

Functions and variables in alphabetical order stat

U23711-J-Z125-5-76 855

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Extension

long st_blksize; /* Preferred I/O block size */
blkcnt_t st_blocks; /* Number of st_blksize blocks allocated */

The stat64 structure is defined like the structure for stat() with the exception of the
following components:

ino64_t st_ino
off64_t st_size and
blkcnt64_t st_blocks

The elements of the structure have the following meanings:

st_mode The mode of the file is defined in the system call mknod().

st_ino Uniquely identifies the file in a given file system. The pair st_ino and
st_dev uniquely identifies regular files.

st_dev Uniquely identifies the file system that contains the file.

st_rdev May be used only by administrative commands. This flag is valid only for
block special or character special files and only has meaning on the system
where the file was configured.

st_nlink May be used only by administrative commands.

st_uid The user ID of the file's owner.

st_gid Group ID of the group to which the file is assigned.

st_size For regular files, this is the size of the file in bytes. It is undefined for block
special or character special files. For PAM files this member contains the file
size. Any existing marker is not considered. If the LBP is zero, the entire last
block counts to the size.

st_atime Time when file data was last accessed. Modified by the following system
calls: creat(), mknod(), utime() and read().

st_mtime Time when data was last updated. Modified by the following system calls:
creat(), mknod(), utime() and write().

st_ctime Time when the file status was last changed. Modified by the following
system calls: chmod(), chown(), creat(), link(), mknod(), unlink(),
utime() and write().

Extension
st_blksize A hint as to the 'best' unit size for I/O operations. This field is not defined for

block special or character special files.

st_blocks The total number of physical blocks of size 512 bytes currently used on disk.
This field is not defined for block special or character special files.

stat Functions and variables in alphabetical order

856 U23711-J-Z125-5-76

BS2000

With BS2000 files the following elements of the stat structure are set:

mode_t st_mode File mode containing the access permissions and file type.

Access permissions: here the Basic ACL is mapped to the file mode
bits. The mode bits are all 0 if the file does not have Basic ACL
protection.
File type: introduces a new file type S_IFDVSBS2=X'10000000'.
This type, however, is not disjoint to S_IFPOSIXBS2. The
S_ISDVSBS2(mode) macro can be used for querying.

Introduces a new file type S_IFDVSNODE=X'20000000'. This type
is also not disjoint to S_IFPOSIXBS2. The S_ISDVSNODE(mode)
macro can be used for querying.

A node file is also a BS2000 DVS file. I.e. for node files the bit
S_IFDVSBS2 is always set.

time_t st_atime Last access time, as is usual in BS2000 but in seconds since
1.1.1970 UTC).

time_t st_mtime Last modification time.

time_t st_ctime Creation time.

long st_blksize Block size, 2K (i.e. 1 PAM page).

long st_blocks Number of blocks occupied by the file on the disk.

dev_t st_dev Contains the 4-byte catid.

The two consecutive fields

uid_t st_uid and

gid_t st_uid contain the 8-byte BS2000 user ID.

All other fields are set to 0.

Return val. 0 if successful

-1 if an error occurs. errno is set to indicate the error for POSIX files

Notes stat() is now also executed for BS2000 files.

Functions and variables in alphabetical order stat

U23711-J-Z125-5-76 857

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Errors stat() and stat64() fail if:

EACCES Search permission is denied for a component of the path.

Extension

EFAULT buf or path points to an invalid address.

EINTR A signal was caught during the stat() or lstat() system call.

EINVAL The named file does not exist or the path argument points to an empty
string.

EIO An I/O error occurred while reading the file system.

ELOOP Too many symbolic links were encountered in resolving path.

EMULTIHOP Components of path require hops to several remote computers, but the file
system does not permit this.

ENAMETOOLONG
The length of path exceeds {PATH_MAX} or a pathname component is
longer than {NAME_MAX} and {_POSIX_NO_TRUNC} is in effect.

ENOLINK path refers to a remote computer to which there is no active connection.

ENOENT The specified file does not exist or the path is the null path.

ENOTDIR A component of the path is not a directory.

EOVERFLOW A component is too large to be stored in the structure pointed to by buf.

Notes stat() is executed only for POSIX files

See also chmod(), chown(), creat(), fstat(), lstat(), link(), mknod(), sys/stat.h,
sys/types.h.

statvfs / _ _STDC_ _ / _ _STDC_VERSION_ _ Functions and variables in alphabetical order

858 U23711-J-Z125-5-76

statvfs - read file system information

Name statvfs, statvfs64

Syntax #include <sys/statvfs.h>
#include <sys/types.h>

int statvfs (const char *path, struct statvfs *buf);
int statvfs64 (const char *path, struct statvfs64 *buf);

Description See fstatvfs().

_ _STDC_ _ - macro for ANSI conformance

Syntax _ _STDC_ _

Description This macro generates the value 1 for a compilation with
SOURCE-PROPERTIES=PARAMETERS(LANGUAGE-STANDARD=ANSI)
and is otherwise undefined.

Notes This macro need not be defined in a header file. Its name is recognized and replaced by the
compiler.

_ _STDC_VERSION_ _ - Amendment 1 conformity?

Syntax _ _STDC _VERSION_ _

Description Specifies which version of the ANSI standard is supported
This macro expands to the decimal constant 199409L and shows that the implementation
conforms to Amendment 1.

Notes The macro does not have to be defined in a header file. It’s name is recognized by the
compiler and replaced.

Functions and variables in alphabetical order stderr, stdin, stdout

U23711-J-Z125-5-76 859

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

stderr, stdin, stdout - variables for standard I/O streams

Syntax #include <stdio.h>

extern FILE *stderr, *stdin, *stdout;

Description A file with associated buffering is called a stream and is declared to be a pointer to a
defined type FILE. The fopen() function creates certain descriptive data for a stream and
returns a pointer to designate that stream in all further transactions.

There are three data streams which are predefined at program startup and need not be
opened explicitly (see stdio.h):

stdin Standard input, for reading conventional input.

stdout Standard output, for writing conventional output.

stderr Standard error, for the output of diagnostic and error messages.

When opened, the standard error stream is not fully buffered (see setvbuf()); the
standard input and standard output streams are fully buffered if and only if the stream is not
associated with an interactive device.

The following symbolic values in unistd.h define the file descriptors assigned to the data
streams stdin, stdout and stderr when the application is started:

STDIN_FILENO
File descriptor for standard input, stdin. Its value is 0.

STDOUT_FILENO
File descriptor for standard output, stdout. Its value is 1.

STDERR_FILENO
File descriptor for standard error, stderr. Its value is 2.

See also fclose(), feof(), ferror(), fileno(), fopen(), fread(), fseek(), getc(),
gets(), popen(), printf(), putc(), puts(), read(), scanf(), setbuf(),
setvbuf(), tmpfile(), ungetc(), vprintf(), stdio.h, unistd.h.

step / strcasecmp, strncasecmp Functions and variables in alphabetical order

860 U23711-J-Z125-5-76

step - compare regular expressions

Syntax #include <regexp.h>

int step(const char *string, const char *exbuf);

Description See regexp().

Notes This function will not be supported by the X/Open standard in the future.

strcasecmp, strncasecmp - non-case-sensitive string comparison

Syntax #include <strings.h>

int strcasecmp(const char *s1, const char *s2);

int strncasecmp(const char *s1, const char *s2, size_t n);

Description The strcasecmp() function compares the string referenced by s1 with the string refer-
enced by s2. The strings to be compared must be terminated with the null byte. Uppercase
and lowercase are not distinguished. strncasecmp() is used in the same way, except that
no more than n bytes can be compared.

In the POSIX locale, strcasecmp() and strncasecmp() convert uppercase letters into
lowercase letters before they do the comparison. The results are not specified in other
locales.

Return val. Integer On successful execution, strcasecmp() returns an integer which is
greater than, equal to or less than zero, depending on whether the string
identified by s1 is greater than, equal to or less than the string referenced by
s2. No distinction is made between uppercase and lowercase.
strncasecmp() is used in the same way, except that no more than the first
n characters of both strings can be compared.

See also strings.h.

Functions and variables in alphabetical order strcat / strchr

U23711-J-Z125-5-76 861

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

strcat - concatenate two strings

Syntax #include <string.h>

char *strcat(char *s1, const char *s2);

Description strcat() appends a copy of the string s2 to the end of string s1 and returns a pointer to s1.

The terminating null byte (\0) at the end of string s1 is overwritten by the first byte of string
s2.
strcat() terminates the concatenated string with a null byte (\0).

Return val. Pointer to the result string s1.

Notes Strings terminated with the null byte (\0) are expected as arguments.

strcat() does not verify whether s1 has enough space to accommodate the result!

The behavior is undefined if memory areas overlap.

See also strncat(), string.h.

strchr - scan string for characters

Syntax #include <string.h>

char *strchr(const char *s, int c);

Description strchr() searches for the first occurrence of character c in string s and returns a pointer
to the located position in s if successful.

The terminating null byte (\0) is considered to be part of the string.

Return val. Pointer to the position of c in string s if successful.

Null pointer if c is not contained in string s.

Notes strchr() and index() are equivalent.

See also index(), rindex(), strrchr(), string.h.

strcmp Functions and variables in alphabetical order

862 U23711-J-Z125-5-76

strcmp - compare two strings

Syntax #include <string.h>

int strcmp(const char *s1, const char *s2);

Description strcmp() compares strings s1 and s2 lexically, e.g.:

"circle" is lexically less than "circular";
"bustle" is lexically greater than "bus".

Return val. Integer value:

< 0 s1 is lexically less than s2.

= 0 s1 and s2 are lexically equal.

> 0 s1 is lexically greater than s2.

Notes Strings terminated with the null byte (\0) are expected as arguments. If this is not the case,
the result is random.

The collating sequence is based on the EBCDIC character set.

See also strncmp(), string.h.

Functions and variables in alphabetical order strcoll

U23711-J-Z125-5-76 863

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

strcoll - compare strings using collating sequence

Syntax #include <string.h>

int strcoll(const char *s1, const char *s2);

Description strcoll() returns an integer greater than, equal to, or less than 0, depending on whether
string s1 is greater than, equal to, or less than string s2, respectively. The strings are
compared on the basis of the setting for the LC_COLLATE category of the current locale (see
setlocale()).

strcoll() and strxfrm() can be used to sort strings based on the environment.
strcoll() is intended for applications in which the number of comparisons per string
is low. If strings are to be compared frequently, strxfrm() should be used together
with strcmp() in a manner that allows the transformation process to be performed just
once.

Return val. Integer value:

< 0 s1 is lexically less than s2.

= 0 s1 and s2 are lexically equal.

> 0 s1 is lexically greater than s2.

Errors strcoll() will fail if:

EINVAL The s1 or s2 arguments contain characters outside the domain of the
collating sequence.

Notes Strings terminated with the null byte (\0) are expected as arguments.

Since strcoll() has no return value to indicate an error, errors can only be detected as
follows: by setting errno to 0, calling the function, and then checking errno after the
function returns. If errno is not equal to 0, it can be assumed that an error occurred.

See also setlocale(), strcmp(), strxfrm(), string.h.

strcpy / strcspn Functions and variables in alphabetical order

864 U23711-J-Z125-5-76

strcpy - copy string

Syntax #include <string.h>

char *strcpy(char *s1, const char *s2);

Description strcpy() copies the string s2, including the terminating null byte (\0), into the memory
area pointed to by s1. The space pointed to by s1 must be large enough to accommodate
the string s2 as well as the terminating null byte (\0).

Return val. Pointer to the result string s1.

Notes A string terminated with the null byte (\0) is expected as the second argument.
strcpy() does not verify whether s1 is large enough to accommodate the result.
The behavior is undefined if memory areas overlap.

See also strncpy(), string.h.

strcspn - get length of complementary substring

Syntax #include <string.h>

size_t strcspn(const char *s1, const char *s2);

Description Starting at the beginning of string s1, strcspn() calculates the length of the segment that
does not contain a single character from string s2. The terminating null byte (\0) is not
treated as part of string s2.
The function is terminated and the segment length is returned on encountering a character
in s1 that matches a character in s2.
If the first character in s1 already matches a character in s2, the segment length is equal to 0.

Return val. Integer value that indicates the segment length (number of non-matching characters) as of
the beginning of string s1.

Notes Strings terminated with the null byte (\0) are expected as arguments.

See also strspn(), string.h.

Functions and variables in alphabetical order strdup

U23711-J-Z125-5-76 865

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

strdup - duplicate string

Syntax #include <string.h>

char *strdup(const char *s1);

Description strdup() returns a pointer to a new string, which is a duplicate of the string pointed to by
s1. The space for the new string is allocated using malloc(). The returned pointer can be
passed to the free() function. A null pointer is returned if the new string cannot be created.

Return val. If successful, the function returns a pointer to a new string. Otherwise, a null pointer is
returned and errno is set to indicate the error.

Errors strdup() will fail if:

ENOMEM There is not enough memory.

See also malloc(), free(), string.h.

strerror Functions and variables in alphabetical order

866 U23711-J-Z125-5-76

strerror - get message string

Syntax #include <string.h>

char *strerror(int errnum);

Description strerror() maps the error number in errnum to a locale-dependent message string and
returns a pointer to that string (see section “Error handling” on page 161). The returned
string must not be modified by the program, but may be overwritten by a subsequent call to
strerror() or popen().

The contents of the message strings returned by strerror() should be determined by the
setting of the LC_MESSAGES category in the current locale. A complete listing of error
numbers and error messages as well as explanations can be found under the header
errno.h.

Return val. Pointer to a message string
if successful.

Null pointer if an error occurs. errno is set to indicate the error.

Errors strerror() will fail if:

EINVAL The value of errnum is not a valid error number.

Notes Since no return value is reserved to indicate an error, an application wishing to check for
error situations should set errno to 0, then call strerror(), then check errno, and if it is
not equal to 0, assume that an error has occurred.

The message text can also contain inserts:

– If the error number passed in the errnum parameter matches the current error number,
inserts are taken into account and added to the error message text. The current error
number is the one stored in the errno variable.

– Otherwise, a message text is returned without inserts, that matches the error number
passed in errnum.

See also perror(), popen(), errno.h, string.h, section “Error handling” on page 161.

Functions and variables in alphabetical order strfill

U23711-J-Z125-5-76 867

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

strfill - copy substring (BS2000)

Syntax #include <string.h>

char *strfill(char *s1, const char *s2, size_t n);

Description strfill() copies a maximum of n characters from string s2 to the memory area pointed
to by s1.

Copying takes place as described below, depending on the lengths and contents of strings
s1 and s2 and the value specified for n:

1. n characters are always copied to s1 (except in case 5), regardless of the length of string
s1. In other words:
– If s1 contains more than n characters, the remaining characters on the right in s1 are

retained.
– If s1 contains less than n characters, s1 is extended to the length of n. In this case,

s1 is not automatically terminated with a null byte (see Notes).

2. s2 contains less than n characters:

The required number of blanks are added to the copied characters from s2 until a total
of n characters have been written.

3. s2 contains more than n characters:

Only the leading n characters from s2 are copied.

4. s2 is empty:

s1 is filled with n blanks.

5. s2 is passed as a null pointer:

(n - strlen(s1)) blanks are appended to string s1. If this subtraction yields a negative
result or 0, i.e. if the number of characters in s1 is greater than or equal to n, the contents
of s1 remain unchanged.

Return val. Pointer to the result string s1.

Notes Strings terminated with the null byte (\0) are expected as arguments.
strfill() does not verify whether s1 is large enough for the result and does not
automatically terminate the result string with a null byte (\0). To avoid an unpredictable
result, string s1 should be explicitly terminated with the null byte after every call to
strfill().
The behavior is undefined if memory areas overlap.

See also strncpy().

strfmon Functions and variables in alphabetical order

868 U23711-J-Z125-5-76

strfmon - convert monetary value to string

Syntax #include <monetary.h>

ssize_t strfmon(char *s, size_t maxsize, const char *format, ...);

Description strfmon() writes characters of type ’character’ to the field pointed to by s in accordance
with the format specification. No more than maxsize bytes are written to the field.

format is a string containing two types of object: simple characters that are copied into the
output stream, and conversion specifications. Conversion specifications cause arguments
(none, one or more) to be converted and formatted. If there are not enough arguments for
the specified format, the result is undefined. If there are more arguments than allowed for
by the format, the excess arguments are ignored.

A conversion specification consists of the following elements:

1. a % character

2. optional flags

3. an optional field size

4. an optional left-adjusted precision

5. an optional right-adjusted precision

6. a conversion character that determines how the arguments are converted (mandatory)

Flags

To control the conversion, you can specify one or more of the flags listed below:

=f An equals sign followed by a single f. This character is used as a filler for numeric
values. The fill character must be representable in a single byte so that it does not
clash with specifications on the field size and the alignment. The default fill
character is the blank.
This flag does not affect filling due to a field-size specification: the blank is always
used as a filler in this case.
The flag is ignored if no left-adjusted precision is specified.

^ Monetary values are formatted without grouping characters. By default, monetary
values are formatted with the grouping characters that apply for the current locale.

Functions and variables in alphabetical order strfmon

U23711-J-Z125-5-76 869

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

+ or (
Controls how positive and negative monetary values are displayed. Only one of the
two characters + and (can be specified.
If + is specified, the values defined in the current locale for + and - are used (in the
USA, for example, the empty string for positive values and the - sign for negative
values).
If (is specified, negative values are enclosed in brackets.
The default value is +.

! Suppresses the currency symbol in the output.

- Controls the alignment. If this flag is set, values in the fields are left-aligned instead
of right-aligned (i.e. padded to the right).

Field size

w A sequence of decimal digits defining the minimum field size in bytes. The result of
the conversion is right-aligned in the field and, if necessary, padded (the result is
left-aligned if the - flag is set).
The default field size is 0.

Left-adjusted precision

#n A sequence of decimal digits prefixed by the # character. This value specifies the
maximum number of digits expected to the left of the radix character (e.g. the period
in $ **15.20).
This option can be used to align the results of several strfmon calls in columns. It
can also be used to fill up free positions with a special character, e.g. $ ***123.45.
This option causes a monetary value to be formatted as if it had n digits. If more than
n digit positions are required, this conversion specification is ignored. Free digit
positions are filled with the numeric filler character (see flag =f).

If a grouping is defined in the current locale and is not suppressed (flag ^), the
grouping characters are inserted before free positions are padded with filler
characters. Filler characters are not grouped, even if they are numeric.

To guarantee the alignment, all characters like currency symbols or minus signs
before or after the number are positioned before or after the number in the formatted
output using blanks so that their positive and negative formats have the same
lengths.

strfmon Functions and variables in alphabetical order

870 U23711-J-Z125-5-76

Right-adjusted precision

.p A sequence of decimal digits prefixed by the . character. This word specifies how
many digits are to appear to the right of the radix character (e.g. the period in
$ **15.20). If p is 0, the radix character is also omitted. If right-adjusted precision is
not specified, the right-adjusted precision defined in the current locale is used.
The sum to be formatted is rounded to the specified number of digits before the
formatting.

Conversion characters

The following conversion characters are available:

i The argument of type double is formatted according to the international currency
format defined in the locale (e.g. in the USA: USD 1,234.56).

n The argument of type double is formatted according to the national currency format
defined in the locale (e.g. in the USA: $1,234.56).

% Converted to a %., no argument is converted. The complete conversion specifi-
cation must be %%.

Locale information

The behavior of the function is influenced by the LC_MONETARY category of the locale of the
program. This applies particularly to the monetary radix character (which can be different
from the numeric radix character which applies for the LC_NUMERIC category), the grouping
character, the currency symbols and the currency formats. The international currency
symbol should comply with the ISO 4217:1987 standard.

Return val. Number of bytes that was written to the field pointed to by s
(without the terminating null byte) if the total number of bytes written,
including the null byte, is not greater than maxsize.

-1 otherwise. In the event of an error the contents of the field are undefined.
errno is set to indicate the error.

Errors strfmon() will fail if:

E2BIG The conversion was aborted due to lack of space in the buffer.

Functions and variables in alphabetical order strfmon

U23711-J-Z125-5-76 871

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Example The following examples refer to a locale in the USA and the values 123.45, -123.45 and
3456.781:

See also localeconv(), monetary.h.

Conversion specification Result Comment

%n $123.45
 -$123.45
 $3,456.78

Default formatting

%11n $123.45
 -$123.45
 $3,456.78

Right alignment within an
11-character field

%#5n $ 123.45
 -$ 123.45
 $ 3,456.78

Values through 99.999 are aligned in
a column

%= *#5n $***123.45
 -$***123.45
 $*3,456.78

Specification of a filler character for
free positions

%=0#5n $000123.45
 -$000123.45
 $03,456.78

Filler characters are not grouped,
even if the filler character is a digit

%^#5n $ 123.45
 -$ 123.45
 $ 3456.78

Suppress grouping character

%^#5.0n $ 123
 -$ 123
 $ 3456

Round to integer

%^#5.4n $ 123.4500
 -$ 123.4500
 $ 3456.7800

Increase right-adjusted precision

%(#5n $ 123.45
 ($ 123.45)
 $ 3456.78

Alternative representation for
positive/negative values

%!(#5n 123.45
 (123.45)
 3456.78

Suppress currency symbol

strftime Functions and variables in alphabetical order

872 U23711-J-Z125-5-76

strftime - convert date and time to string

Syntax #include <time.h>

size_t strftime(char *s, size_t maxsize, const char *format, const struct tm *timeptr);

Description strftime() formats the date and time as specified in the format string and places them in
the array pointed to by s. The format string consists of zero or more conversion specifica-
tions and ordinary characters. All ordinary characters, including the terminating null byte,
are copied unchanged into the array. If strftime() is used, no more than maxsize bytes are
placed in the array.
If format is equal to (char *)0, the default format "%c" will be used for strftime().

Each conversion specification is replaced by appropriate characters, as described in the
following list. The appropriate characters are determined by the LC_TIME category of the
locale and, in the case of strftime(), by the contents of timeptr:

%% The character %

%a Abbreviated weekday name of the locale

%A Full weekday name of the locale

%b Abbreviated month name of the locale

%B Full month name of the locale

%c Appropriate date and time representation of the locale

%C Century (the year divided by 100, truncated to an integer) (00-99)

%d Day of the month (01-31)

%D Date as %m/%d/%y

%e Day of the month (1-31; single digits are preceded by a space)

%f Date and time represented in accordance with date()

%h Abbreviated month name of the locale

%H Hours (00-23), 24-hour representation

%I Hours (01-12), 12-hour representation

%j Day of the year (001-366)

%m Number of the month (01-12)

%M Minutes (00-59)

%n Equivalent to \n

%p Locale´s equivalent of either AM or PM

%r Time in the form %I:%M:%S [AMŠPM]

%R Time in the form %H:%M

Functions and variables in alphabetical order strftime

U23711-J-Z125-5-76 873

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

The difference between %U and %W is based on which day is considered the first weekday.
Week 01 is the first week in January that begins with a Sunday (for %U) or a Monday (for
%W). Week number 00 includes the days before the first Sunday (%U) or Monday (%W) in
January.

Modified conversion specifiers

Some conversion specifiers can be modified by the characters E or O to indicate that an
alternative format or specification should be used rather than the one normally used by the
unmodified conversion specifier. If the alternative format or specification does not exist for
the current locale, the behavior will be as if the unmodified conversion specification were
used.

%S Seconds (00-61), allows leap seconds

%t Inserts a tab character

%T Time in the form %H:%M:%S

%u Weekday as a number (1-7), Monday = 1

%U Week number of the year (00-53). The first week begins with the first Sunday of the
year. All days before the first Sunday of the year belong to week 0.

%V Week number of the year (01-53), with Monday as the first day of the week/ If the
week containing January 1 has four or more days in the new year, then it is
considered week 1. Otherwise, it is week 53 of the previous year, and the next
week is week 1.

%w Weekday as a number (0-6); Sunday = 0

%W Week number of the year (01-53), with Monday as the first day of week 1. All days
before the first Monday of the year belong to week 0.

%x Appropriate date representation of the locale

%X Appropriate time representation of the locale

%y Year within the century (00-99)

%Y Year in the form ccyy (e.g. 1986)

%Z Timezone name or abbreviation, or no bytes if no timezone exists.

%Ec The locale's alternative date and time representation.

%EC Name of the base year (period) in the locale's alternative representation.

%Ex The locale's alternative date representation.

%EX The locale's alternative time representation.

%Ey Offset from %EC (year only) in the locale's alternative representation.

%EY Alternative representation for the year.

strftime Functions and variables in alphabetical order

874 U23711-J-Z125-5-76

The default language for the output of strftime() is U.S. English. The user can select the
output language for strftime() by using setlocale() to set the LC_TIME category for the
locale.

The timezone is taken from the environment variable TZ (see ctime()).

Return val. Number of bytes copied to s (without the terminating null byte)
if the number of resulting bytes, including the null byte, does not exceed
maxsize.

0 if an error occurs. The contents of s are indeterminate.

See also clock(), ctime(), getenv(), setlocale(), time.h.

%Od Day of the month, using the locale's alternative numeric symbols, padded as
needed with leading zeros if an alternative symbol for zero exists; otherwise, with
leading spaces.

%Oe Day of month, using the locale's alternative numeric symbols, padded as needed
with leading spaces.

%OH The hour (24-hour clock), using the locale's alternative numeric symbols.

%OI The hour (12-hour clock), using the locale's alternative numeric symbols.

%Om The month, using the locale's alternative numeric symbols.

%OM The minutes, using the locale's alternative numeric symbols.

%OS The seconds, using the locale's alternative numeric symbols.

%Ou The weekday as a number in the locale's alternative representation
(Monday = 1).

%OU The week number of the year (Sunday is the first day of the week; rules correspond
to %U) using the locale's alternative numeric symbols.

%OV The week number of the year (Sunday is the first day of the week, rules correspond
to %V) using the locale's alternative numeric symbols.

%Ow Number of the weekday (Sunday = 0), using the locale's alternative numeric
symbols.

%OW The week number of the year (Monday is the first day of the week), using the
locale's alternative numeric symbols.

%Oy The year (offset from %C) in the locale's alternative representation, and using the
locale's alternative symbols.

Functions and variables in alphabetical order strlen / strlower

U23711-J-Z125-5-76 875

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

strlen - get length of string

Syntax #include <string.h>

size_t strlen(const char *s);

Description strlen() determines the length of string s, not including the terminating null byte (\0).

BS2000
Whereas the sizeof operator always returns the defined length, strlen() calculates the
actual number of bytes in a string. The newline (\n) character, if present, is also included. ❑

Return val. Length of the string s
if successful. The terminating null byte is not included in the count.

Notes A string terminated with the null byte (\0) is expected as the argument.

strlower - convert a string to lowercase letters (BS2000)

Syntax #include <string.h>

char *strlower(char *s1, const char *s2);

Description strlower() copies string s2, including the null byte (\0), to the memory area pointed to by
s1, converting uppercase letters to lowercase letters in the process.
If string s2 is passed as a null pointer, the copy operation is not performed, and the
uppercase letters in s1 are converted to lowercase.
s1 is the result string into which s2 is to be copied or in which uppercase letters are to be
converted to lowercase.
If s2 is not passed as a null pointer, s1 must be large enough to accommodate s2, including
the null byte (\0).

Return val. Pointer to the result string s1.

Notes Strings terminated with the null byte (\0) are expected as arguments.
strlower() does not verify whether s1 is large enough to accommodate the result.
The behavior is undefined if memory areas overlap.

See also strupper(), tolower(), toupper().

strncasecmp / strncat Functions and variables in alphabetical order

876 U23711-J-Z125-5-76

strncasecmp - non-case-sensitive string comparisons

Syntax #include <strings.h>

int strncasecmp(const char *s1, const char *s2, size_t n);

Description See strcasecmp().

strncat - concatenate two substrings

Syntax #include <string.h>

char *strncat(char *s1, const char *s2, size_t n);

Description strncat() appends a maximum of n characters from string s2 to the end of string s1 and
returns a pointer to s1.

The null byte (\0) at the end of string s1 is overwritten by the first character of string s2.

If string s2 contains less than n characters, only the characters from s2 are appended to s1.
If string s2 contains more than n characters, only the first n characters from s2 are appended
to s1.

strncat() terminates the string with a null byte (\0).

Return val. Pointer to the result string s1.

Notes Strings terminated with the null byte (\0) are expected as arguments.

strncat() does not verify whether s1 has enough space to accommodate the result!
The behavior is undefined if memory areas overlap.

See also strcat(), string.h.

Functions and variables in alphabetical order strncmp

U23711-J-Z125-5-76 877

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

strncmp - compare two substrings

Syntax #include <string.h>

int strncmp(const char *s1, const char *s2, size_t n);

Description strncmp() compares strings s1 and s2 lexically up to a maximum length of n, e.g.

strncmp("Sie","Siemens",3)

returns 0 (equal), because the first three characters of both arguments match one another.

Return val. Integer value:

< 0 In the first n characters, s1 is lexically less than s2.

= 0 In the first n characters, s1 and s2 are lexically equal.

> 0 In the first n characters, s1 is lexically greater than s2.

Notes Strings terminated with the null byte (\0) are expected as arguments.

The collating sequence is based on the EBCDIC character set.

See also strcmp(), string.h.

strncpy Functions and variables in alphabetical order

878 U23711-J-Z125-5-76

strncpy - copy substring

Syntax #include <string.h>

char *strncpy(char *s1, const char *s2, size_t n);

Description strncpy() copies a maximum of n characters from string s2 to string s1.

If string s2 contains less than n characters, only the length of s2 (strlen + 1) is copied, and
s1 is then padded to the length of n with null bytes.

If string s2 contains n or more characters (excluding the null byte), string s1 is not automat-
ically terminated with the null byte.

If string s1 contains more than n characters and the last character copied from s2 is not the
null byte, any data which may still remain in s1 is retained.

strncpy() does not automatically terminate s1 with the null byte.

Return val. Pointer to the result string s1.

Notes strncpy() does not verify whether s1 has enough space to accommodate the result!

Since strncpy() does not automatically terminate the result string with the null byte, it may
often be necessary to explicitly terminate s1 with a null byte. This is typically the case when
only a part of s2 is being copied, and s2 does not contain a null byte either.

The behavior is undefined if memory areas overlap.

See also strcpy(), strlen(), string.h.

Functions and variables in alphabetical order strnlen / strpbrk

U23711-J-Z125-5-76 879

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

strnlen - determine length of a string up to a maximum length

Syntax #include <string.h>

size_t strnlen(const char *s, size_t maxlen);

Description The strnlen() function calculates the minimum of the two following values:
– Number of bytes of the array to which s points, exclusively to the terminating NULL byte
– Value of the maxlen parameter.

The strnlen() function never checks more than maxlen bytes.

Errors No errors are defined.

Return val. Length of the string s or value of the maxlen
parameter when successful. The terminating null byte is not counted.

strpbrk - get first occurrence of character in string

Syntax #include <string.h>

char *strpbrk(const char *s1, const char *s2);

Description strpbrk() searches string s1 for the first character matching any character in string s2 and
returns a pointer to the located position in s1 if successful. The terminating null byte (\0) is
not considered part of string s2.

Return val. Pointer to the first matching character found in s1
if successful.

Null pointer if not a single match is present.

Notes Strings terminated with the null byte (\0) are expected as arguments.

See also strchr(), strrchr(), string.h.

strptime Functions and variables in alphabetical order

880 U23711-J-Z125-5-76

strptime - convert string to date and time

Syntax #include <time.h>

char *strptime(const char *buf, const char *format, struct tm *tm);

Description In accordance with format, strptime() converts the string pointed to by *buf into individual
values that are stored in the structure pointed to by *tm.

The format string consists of none, one or more conversion statements. Each conversion
statement consists of one of the following elements:
one or more white-space characters (as defined in isspace()),
a regular character (neither % nor white-space characters)
or a conversion specification.

Each conversion specification consists of a % character followed by a conversion character
that specifies the desired conversion. With conversion specifications that expect a numeric
value, the string to be converted may contain not more digits than specified in the format
description. I.e. additional leading zeroes are not allowed. If between two conversion spec-
ifications there is neither a white-space character nor an non-alphanumeric character, the
numbers of digits even must be the same as in the format description.

The following conversion characters are supported:

%% Replaced by %

%a Weekday, whereby the name from the locale is used. Either the full
name or the abbreviated name can be specified

%A Same meaning as %a

%b Month, whereby the name from the locale is used. Either the full
name or the abbreviated name can be specified

%B Same meaning as %b

%c Date and time representation according to the definition in the
locale

%C Century (the year divided by 100, truncated to an integer) (00-99)

%d Day of the month (01-31)

%D Date as %m/%d/%y

%e Same meaning as %d

%h Same meaning as %b

%H Hours (00-23), 24-hour representation

%I Hours (01-12), 12-hour representation

Functions and variables in alphabetical order strptime

U23711-J-Z125-5-76 881

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Modified conversion specifications

Some conversion specifications can be modified by the characters E or O to indicate that
an alternative format or specification should be used rather than the one normally used by
the unmodified conversion specification. If the alternative format or specification does not
exist for the current locale, the behavior will be as if the unmodified conversion specification
were used.

%j Day of the year (001-366)

%m Number of the month (01-12)

%M Minutes (00-59)

%n Replaced by a white-space character

%p Locale’s equivalent of AM or PM

%r Time in the form %I:%M:%S%p

%R Time in the form %H:%M

%S Seconds (00-61), allows leap seconds

%t Replaced by a white-space character

%T Time in the form %H:%M:%S

%U Week number of the year (00-53). The first week begins with the
first Sunday of the year. All days before the first Sunday of the
year belong to week 0.

%w Weekday as a number (0-6), Sunday = 0

%W Week number of the year (00-53), with Monday as the first day of
week 1. All days before the first Monday of the year belong to
week 1.

%x Date representation of the locale

%X Time representation of the locale

%y Year within the century (00-99)

%Y Year in the form ccyy (e.g. 1986)

%Ec The locale's alternative date and time representation.

%EC Name of the base year (period) in the locale's alternative representation.

%Ex The locale's alternative date representation.

%EX The locale's alternative time representation.

%Ey Offset from %EC (year only) in the locale's alternative representation.

%EY Alternative representation for the year.

strptime Functions and variables in alphabetical order

882 U23711-J-Z125-5-76

A conversion specification consisting of white-space characters is executed by the input
being read up to the first character that is not a white-space character (this character
remains unread), or until there are no more characters left.

A conversion specification comprising a regular character is executed by the next character
from the buffer being read. If the character read from the buffer does not match the
character of the conversion specification, the latter fails and the deviating character plus all
characters that follow it remain unread.

A sequence of conversion specifications consisting of %n, %t, white-space characters and
combinations of all these is executed by being read up to the first character that is not a
white-space character (this character remains unread), or until there are no more
characters left.

All other conversion specifications are executed by characters being read in until a
character which matches the next conversion specification is read (it remains in the buffer)
or until there are no more characters left. The read characters are then compared with the
values in the locale that correspond to the conversion specification. If the matching value is
found in the locale, the corresponding structure elements of the tm structure are set to the
values that correspond to this information.
The search is not case-sensitive if it is a comparison of elements such as weekdays and

%Od Day of the month, using the locale's alternative numeric symbols, padded as
needed with leading zeros if an alternative symbol for zero exists; otherwise, with
leading spaces.

%Oe Same meaning as %Od

%OH The hour (24-hour clock), using the locale's alternative numeric symbols.

%OI The hour (12-hour clock), using the locale's alternative numeric symbols.

%Om The month, using the locale's alternative numeric symbols.

%OM The minutes, using the locale's alternative numeric symbols.

%OS The seconds, using the locale's alternative numeric symbols.

%OU The week number of the year (Sunday is the first day of the week; rules correspond
to %U) using the locale's alternative numeric symbols.

%OV The week number of the year (Sunday is the first day of the week, rules correspond
to %V) using the locale's alternative numeric symbols.

%Ow Number of the weekday (Sunday = 0), using the locale's alternative numeric
symbols.

%OW The week number of the year (Monday is the first day of the week), using the
locale's alternative numeric symbols.

%Oy The year (offset from %C) in the locale's alternative representation, and using the
locale's alternative symbols.

Functions and variables in alphabetical order strptime

U23711-J-Z125-5-76 883

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

month names.
If no matching value is found in the locale, strptime() fails and no more characters are
read.

Return val. Pointer to the character after the last character read
if successful.

Null pointer otherwise.

Notes The special handling of white-space characters and many “same formats” is designed to
simplify the use of identical format strings with strftime() and strptime().

The structure to which tm points is not initialized with zeros when strptime() is executed.
The values set by the user remain intact as long as they are not modified by conversion
statements or implicit calculations. The structure element tm_isdst is never changed. Date
adjustment may be carried out implicitly, i.e. if the date entry is incomplete, the missing
structure elements are added and a plausibility check is made between the structure
elements.

However, this is only made if a week number was specified via %U, %W, %OU or %OW. In this
case, the year entry (tm_year) and weekday (tm_wday) are used to calculate and reassign
the day in the year (tm_yday), the day of the month (tm_mday) and the month of the year
(tm_mon). The weekday is assigned the value 0 if it was not explicitly specified with %w, %a,
%A or %Ow.

See also scanf(), strftime(), time(), time.h.

strrchr Functions and variables in alphabetical order

884 U23711-J-Z125-5-76

strrchr - get last occurrence of character in string

Syntax #include <string.h>

char *strrchr(const char *s, int c);

Description strrchr() searches for the last occurrence of character c in string s and returns a pointer
to the located position in s if successful.

The terminating null byte (\0) is also considered as a character.

Return val. Pointer to the position of c in string s
if successful.

Null pointer if c is not contained in string s.

Notes The functions strrchr() and rindex() are equivalent.

See also index(), rindex(), strchr(), string.h.

Functions and variables in alphabetical order strspn / strstr

U23711-J-Z125-5-76 885

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

strspn - get length of substring

Syntax #include <string.h>

size_t strspn(const char *s1, const char *s2);

Description Starting at the beginning of string s1, strspn() computes the length of the segment that
contains only characters from string s2.
The function is terminated, and the segment length is returned on encountering the first
character in s1 that does not match any character in s2.
If the first character in s1 matches none of the characters in s2, the segment length is equal
to 0.

Return val. Integer value
that indicates the segment length (number of matching characters), starting
at the beginning of string s1.

Notes Strings terminated with the null byte (\0) are expected as arguments.

See also strcspn(), string.h.

strstr - find substring in string

Syntax #include <string.h>

char *strstr(const char *s1, const char *s2);

Description strstr() searches for the first occurrence of string s2 (without the terminating null byte) in
string s1.

Return val. Pointer to the start of the string found in s1.

Null pointer if s2 is not contained in s1.

Pointer to the start of s1, if s2 has a length of 0.

Notes Strings terminated with the null byte (\0) are expected as arguments.

See also strchr(), string.h.

strtod Functions and variables in alphabetical order

886 U23711-J-Z125-5-76

strtod - convert string to double-precision number

Syntax #include <stdlib.h>

double strtod(const char *s, char **endptr);

Description strtod() converts the string to which s points into a floating-point number of type double.
The string to be converted may be structured as follows:

[...][][digit...][.][digit...][[]digit...]

Any white-space character may be used for tab (see definition under isspace()).

strtod() also recognizes strings that start with a digit but end with some other character.
In such cases, strtod() first truncates the numeric part and converts it to a floating-point
value.

strtod() returns a pointer (*endptr) to the first non-convertible character in string s via the
second argument endptr of type char **, but only if endptr is not passed as a null pointer.

If endptr is a null pointer, strtod() is executed like the atof() function:

atof(s) is equivalent to strtod(s, (char **)NULL) and strtod(s, NULL).

If endptr is not a null pointer, a pointer (*endptr) to the first character in s that completes the
conversion is returned.
If absolutely no conversion is possible, *endptr will be set to the start address of string s.

Return val. Floating-point number of type double
for strings which are structured as described above and represent a
numeric value within the permissible floating-point range.

0 for strings that do not conform to the syntax described above or do not begin
with convertible characters.

HUGE_VAL for strings whose numeric value lies outside the permissible floating-point
range.
errno is set to indicate the error.

Errors strtod() will fail if:

ERANGE The return value causes an overflow or underflow

EINVAL No conversion could be performed.

tab

+

-

E

e

+

-

Functions and variables in alphabetical order strtod

U23711-J-Z125-5-76 887

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Notes The radix character in the string to be converted is determined by LC_NUMERIC category of
the locale. The default is a period.

See also atof(), atoi(), atol(), isspace(), strtol(), strtoul(), stdlib.h.

strtok Functions and variables in alphabetical order

888 U23711-J-Z125-5-76

strtok - split string into tokens

Syntax #include <string.h>

char * strtok(char *s1, const char *s2);

Description strtok() can be used to split a complete string s1 into substrings called "tokens", e.g. a
sentence into individual words, or a source program statement into its smallest syntactical
units. The pointer to s1 may only be passed in the first call to strtok(); subsequent calls
must be specified with a null pointer.

The start and end criterion for each token are separator characters (delimiters), which must
be specified in a second string s2. Tokens may be delimited by one or more such separators
or by the beginning and end of the entire string s1. Blanks, colons, commas, etc., are typical
separators between the words of a sentence.

strtok() processes exactly one token per call. The first call returns a pointer to the
beginning of the first token found. Each subsequent call returns a pointer to the beginning
of the next token. strtok() terminates each token with the null byte (\0).

A different delimiter string s2 may be specified in each call.

strtok() is not thread-safe. Use the reentrant function strtok_r() when needed.

Return val. Pointer to the start of a token.
A pointer to the first token is returned at the first call; a pointer to the next
token at the next call, and so on. strtok() terminates each token in s1 with
a null byte (\0) by overwriting the first found delimiter in each case with \0.

Null pointer, if no token, or no further token was found.

See also string.h., strtok_r().

Functions and variables in alphabetical order strtok_r

U23711-J-Z125-5-76 889

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

strtok_r - split string into tokens (thread-safe)

Syntax #include <string.h>

char *strtok_r(char *s, const char *sep, char **lasts);

Description The function strtok_r() is the thread-safe version of strtok().

The function strtok_r() can be used to split a complete string s terminated by a null into
0 or more substrings called "tokens". Tokens may be delimited by one or more separators
that are specified in the sep string. The lasts argument points to a pointer provided by the
user that strtok_r() uses to obtain the information necessary to continue processing this
string.

The first time strtok_r() is called, s points to a string terminated with a null byte, and sep
points to a string terminated with a null byte with delimiters. The value pointed to by lasts is
ignored. The function strtok_r() returns a pointer to the beginning of the first token
found, overwrites the first delimiter found with the NULL character (\0) and updates the
pointer pointed to by lasts.

To get additional tokens, a null pointer is specified for s and the value from the last call is
specified for lasts in the subsequent call. This can be continued until there are no more
tokens. In this case a null pointer is returned.

A different delimiter string sep may be specified in each call.

The function strtok_r() returns a pointer to the token. If no token was found, a null
pointer is returned.

Return val. Pointer to the token found
if successful.

Null pointer if no token is found.

See also strtok(), string().

strtol Functions and variables in alphabetical order

890 U23711-J-Z125-5-76

strtol - convert string to long integer

Syntax #include <stdlib.h>

long int strtol(const char *s, char **endptr, int base);

Description strtol() converts the string to which s points into an integer of type long int. The string
to be converted may be structured as follows:

[...][][]digit...

Any white-space character may be used for tab (see definition under isspace()).

Depending on the base (see base), the digits 0 to 9 and the letters a (or A) to z (or Z) may
be used for digit.

strtol() also recognizes strings that begin with convertible digits (including octal and
hexadecimal digits) but end with some other characters. In such cases, strtol()
truncates the numeric part before converting it.

strtol() returns a pointer to the first non-convertible character in string s via the second
argument endptr of type char **, but only if endptr is not passed as a null pointer.

If no conversion is possible at all, *endptr is set to the start address of string s.

A third argument, base, defines the base (e.g. decimal, octal or hexadecimal) for the
conversion.

base may be any integer from 0 to 36. For base 11 to base 36, the letters a (or A) to z (or Z)
in the string to be converted are assumed to be digits, with corresponding values from 10
(a/A) to 35 (z/Z).

If base is equal to 0, the base will be determined from the structure of string s as shown
below:

leading 0 base 8

leading 0X or 0x base 16

otherwise base 10

If the parameter base = 16 is used for calculations, the characters 0X or 0x, which may
optionally follow the sign in string s, if present, will be ignored.

tab

+

-

0

0X

Functions and variables in alphabetical order strtol

U23711-J-Z125-5-76 891

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Return val. Integer value of type long int
for strings that have a structure as described above and which represent a
numeric value.

0 for strings that do not conform to the syntax described above.

LONG_MAX or LONG_MIN
if the result overflows, depending on the sign.

Errors strtol() will fail if:

ERANGE The return value causes an overflow.

EINVAL The value of base is not supported.

Notes If endptr is a null pointer and base is equal to 10, strtol())is executed like the atol()
function:

atol(s) is equivalent to strtol(s, NULL, 10).

See also atol(), atoi(), isalpha(), strtod(), strtoul(), stdlib.h.

strtoll Functions and variables in alphabetical order

892 U23711-J-Z125-5-76

strtoll - convert string to long long integer

Syntax #include <stdlib.h>

long long int strtoll(const char restrict *s, char ** restrict endptr, int base);

Description strtoll() converts the EBCDIC string to which s points into an integer of type long long
int. The string to be converted may be structured as follows:

[...][][]digit...

Any white-space character may be used for tab (see definition under isspace()).

Depending on the base (see base), the digits 0 to 9 and the letters a (or A) to z (or Z) may
be used for digit.

strtoll() also recognizes strings that begin with convertible digits (including octal and
hexadecimal digits) but end with some other characters. In such cases, strtoll()
truncates the numeric part before converting it.

strtoll() also returns a pointer to the first non-convertible character in string s via the
second argument endptr of type char **, but only if endptr is not passed as a null pointer.

If no conversion is possible at all, *endptr is set to the start address of string s.

A third argument, base, defines the base (e.g. decimal, octal or hexadecimal) for the
conversion.

The function has the following parameters:

const char *s
Pointer to the EBCDIC string to be converted.

char **endptr
If endptr is not a null pointer, a pointer (*endptr) to the first character in s is returned that
terminates the conversion.
If no conversion is possible, *endptr is set to the start address of the string s.

int base
Integer from 0 to 36 that is to be used as the base for the calculation.

For base 11 to base 36, the letters a (or A) to z (or Z) in the string to be converted are
assumed to be digits, with corresponding values from 10 (a/A) to 35 (z/Z).

tab

+

-

0

0X

Functions and variables in alphabetical order strtoll

U23711-J-Z125-5-76 893

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

If base is equal to 0, the base will be determined from the structure of string s as shown
below:

If the parameter base = 16 is used for calculations, the characters 0X or 0x, which may
optionally follow the sign in string s, if present, will be ignored.

Return val. Integer value of type long long int
for strings that have a structure as described above and which represent a
numeric value.

0 for strings that do not conform to the syntax described above. The
conversion is not executed. If the value of base is not supported, errno is
set to EINVAL.

LLONG_MAX or LLONG_MIN
if the result overflows, depending on the sign

ULLONG_MAX
if the result overflows. errno is set to ERANGE.

Notes If endptr is a null pointer and base is equal to 10, strtoll() differs from the atoll()
function only in the error handling:

atoll(s) is equivalent to strtoll(s, (char **)NULL, 10).

See also atol(), atoll(), atoi(), strtol(), stroul(), stroull(), wcstol(),
wcstoll(), wcstoul(), wcstoull()

leading 0 base 8

leading 0X or 0x base 16

otherwise base 10

strtoul Functions and variables in alphabetical order

894 U23711-J-Z125-5-76

strtoul - convert string to unsigned long integer

Syntax #include <stdlib.h>

unsigned long int strtoul(const char *s, char **endptr, int base);

Description strtoul() converts the string to which s points into an integer of type unsigned long int.
The string to be converted may be structured as follows:

[...][]digit...

Any white-space character may be used for tab (see definition under isspace()).

Depending on the base (see base), the digits 0 to 9 and the letters a (or A) to z (or Z) may
be used for digit.

strtoul() also recognizes strings that begin with convertible digits (including octal and
hexadecimal digits) but end with some other characters. In such cases, strtoul()
truncates the numeric part before converting it.

strtoul() returns a pointer to the first non-convertible character in string s via the second
argument endptr of type char **, but only if endptr is not passed as a null pointer.

If no conversion is possible at all, *endptr is set to the start address of string s.

A third argument, base, defines the base (e.g. decimal, octal or hexadecimal) for the
conversion. base may be any integer from 0 to 36.

For base 11 to base 36, the letters a (or A) to z (or Z) in the string to be converted are
assumed to be digits, with corresponding values from 10 (a/A) to 35 (z/Z).

If base is equal to 0, the base will be determined from the structure of string s as shown
below:

leading 0 base 8

leading 0X or 0x base 16

otherwise base 10

If the parameter base = 16 is used for calculations, the characters 0X or 0x, which may
optionally follow the sign in string s, if present, will be ignored.

tab

0

0X

Functions and variables in alphabetical order strtoul

U23711-J-Z125-5-76 895

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Return val. Integer value of type unsigned long
for strings that have a structure as described above and which represent a
numeric value.

0 for strings that do not conform to the syntax described above.

Largest possible value of type unsigned long if an overflow occurs;
errno is set to indicate the error.

Errors strtoul() will fail if:

EINVAL The value of base is not supported.

ERANGE The return value causes an overflow.

EINVAL The conversion could not be performed.

See also atol(), atoi(), isalpha(), strtol(), stdlib.h.

strtoull Functions and variables in alphabetical order

896 U23711-J-Z125-5-76

strtoull - convert string to unsigned long long

Syntax #include <stdlib.h>

unsigned long long int strtoull(const char restrict *s, char **restrict entptr, int base);

Description strtoull() converts the string to which s points into an integer of type unsigned long
long int. The string to be converted may be structured as follows:

 ⎧tab⎫ ⎧0 ⎫
 [⎨ ⎬...][⎨ ⎬]digit...
 ⎩ Ë ⎭ ⎩0X⎭

Any white-space character may be used for tab (see definition under isspace()).

Depending on the base (see base), the digits 0 to 9 and the letters a (or A) to z (or Z) may
be used for digit.

strtoull() also recognizes strings that begin with convertible digits (including octal and
hexadecimal digits) but end with some other characters. In such cases, strtoull()
truncates the numeric part before converting it.

strtoul() also returns a pointer to the first non-convertible character in string s via the
second argument endptr of type char **, but only if endptr is not passed as a null pointer.

If no conversion is possible at all, *endptr is set to the start address of string s.

A third argument, base, defines the base (e.g. decimal, octal or hexadecimal) for the
conversion.

The function has the following parameters:

const char *s
Pointer to the EBCDIC string to be converted.

char **endptr
If endptr is not a null pointer, a pointer (*endptr) to the first character in s is returned that
terminates the conversion.
If no conversion is possible, *endptr is set to the start address of the string s.

int base
Integer from 0 to 36 that is to be used as the base for the calculation.

For base 11 to base 36, the letters a (or A) to z (or Z) in the string to be converted are
assumed to be digits, with corresponding values from 10 (a/A) to 35 (z/Z).

Functions and variables in alphabetical order strtoull

U23711-J-Z125-5-76 897

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

If base is equal to 0, the base will be determined from the structure of string s as shown
below:

If the parameter base = 16 is used for calculations, the characters 0X or 0x, which may
optionally follow the sign in string s, if present, will be ignored.

Return val. Integer value of type unsigned long long int
for strings that have a structure as described above and which represent a
numeric value.

0 for strings that do not conform to the syntax described above. No
conversion is performed. If the value of base is not supported, errno is set
to EINVAL.

LLONG_MAX or LLONG_MIN
depending on the sign

ULLONG_MAX
if the result overflows. errno is set to ERANGE.

See also atol(), atoll(), atoi(), strtol(), strtoll(), stroul(), wcstol(),
wcstoll(), wcstoul(), wcstoull()

leading 0 base 8

leading 0X or 0x base 16

otherwise base 10

strupper Functions and variables in alphabetical order

898 U23711-J-Z125-5-76

strupper - convert string to uppercase letters (BS2000)

Syntax #include <string.h>

char *strupper(char *s1, const char *s2);

Description strupper() copies string s2, including the null byte (\0), to the memory area pointed to by
s1, converting lowercase letters to uppercase in the process.

If string s2 is passed as a null pointer, the copy operation is not performed, and the
lowercase letters in s1 are converted to uppercase.

If s2 is not passed as a null pointer, s1 must be large enough to accommodate s2, including
the null byte (\0).

Return val. Pointer to the result string s1.

Notes Strings terminated with the null byte (\0) are expected as arguments.

strupper() does not verify whether s1 is large enough to accommodate the result.

The behavior is undefined if memory areas overlap.

See also strlower(), tolower(), toupper().

Functions and variables in alphabetical order strxfrm

U23711-J-Z125-5-76 899

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

strxfrm - string transformation based on LC_COLLATE

Syntax #include <string.h>

size_t strxfrm(char *s1, const char *s2, size_t n);

Description strxfrm() transforms the string s2 and places the resulting string into the array s1. The
transformation is such that if strcmp() were applied to two transformed strings, it would
return a value corresponding to the result of strcoll() applied to the same two original
strings. The transformation is based on the collating sequence defined by the local setting
of the program´s LC_COLLATE category (see setlocale()).

A maximum of n bytes are placed into the resulting array pointed to by s1, including the
terminating null byte. If n is 0, s1 is permitted to be a null pointer. If copying takes place
between objects that overlap, the behavior is undefined.

Return val. Length of the transformed string (excluding the terminating null byte) if successful.

Value ≥ n The contents of the array s1 are indeterminate.

Since no return value is reserved to indicate an error, errors can only be detected as follows:
by setting errno to 0, calling the strxfrm() function, and then checking errno after the
function returns. If errno is non-zero, it may be assumed that an error occurred.

Errors strxfrm() will fail if:

EINVAL The s2 argument contains characters outside the domain of the collating
sequence.

Notes A string terminated with the null byte (\0) is expected as argument s2.

String s2 is not modified by strxfrm(). The transformation is performed in a work area.

If the return value is greater than or equal to n, the contents of string s1 will be indeterminate,
since no null byte was written.

If the hexadecimal value 0 has been assigned to one of the characters in string s2 in the
current locale, the transformed string will be terminated using that character as the null
byte.

See also setlocale(), strcoll(), strcmp(), string.h.

swab / swapcontext / swprintf / swscanf Functions and variables in alphabetical order

900 U23711-J-Z125-5-76

swab - swap bytes

Syntax #include <unistd.h>

void swab(const void *src, void *dest, ssize_t nbytes);

Description swab() copies nbytes bytes, which are pointed to by src, to the object pointed to by dest,
exchanging adjacent bytes. The nbytes argument should be even and not negative. If nbytes
is odd and positive, swab() copies and exchanges nbytes-1 bytes, and the disposition of the
last byte is unspecified. If nbytes is negative, swab() does nothing. If arguments overlap,
the behavior of swab is undefined.

See also unistd.h.

swapcontext - swap user context

Syntax #include <ucontext.h>

int swapcontext (ucontext_t *oucp, const ucontext_t *ucp);

Description See makecontext().

swprintf - output formatted wide characters

Syntax #include <wchar.h>

int swprintf(wchar_t *s, size_t n, const wchar_t *format [, arglist]);

Description See fwprintf().

swscanf - formatted read

Syntax #include <wchar.h>

int swscanf(const wchar_t *s, const wchar_t *format [, arglist]);

Description See fwscanf().

Functions and variables in alphabetical order symlink, symlinkat

U23711-J-Z125-5-76 901

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

symlink, symlinkat - make symbolic link to file

Syntax #include <unistd.h>

int symlink(const char *path1,, const char *path2);
int symlinkat(const char *path1, int fd, const char *path2);

Description symlink() creates a symbolic link. Its name is the pathname referenced by path2. This
pathname must not be the same as the name of an existing file or a symbolic link. The
content of the symbolic link is the string referenced by path1. A symbolic link can refer to
another file system. The file identified by path1 need not be present.

The file to which the symbolic link points is used when an open() operation is performed
on the link. A stat() on a symbolic link returns the referenced file, whereas an lstat()
returns information about the link itself. This can lead to surprising results when a symbolic
link is made to a directory. To avoid undesirable side effects in programs, the readlink()
call can be used to read the contents of a symbolic link.

The symlinkat() function is equivalent to the symlink() function except when the path2
parameter specifies a relative path. In this case the symbolic link is not created in the cur-
rent directory, but in the directory connected with the file descriptor fd. If the file descriptor
was opened without O_SEARCH, the function checks whether a search is permitted in the
connected file descriptor with the authorizations applicable for the directory. If the file de-
scriptor was opened with O_SEARCH, the check is not performed.

When the value AT_FDCWD is transferred to the symlinkat() function for the fd parameter,
the current directory is used.

Return val. 0 if successful.

-1 if an error occurs; errno is set to indicate the error.

Errors symlink() and symlinkat() will fail if:

EACCES Search permission is denied for the directory in which the symbolic link was
created. Search permission is denied for a component of the path prefix of
path2.

EEXIST The file or symbolic link specified using path2 already exists.

ENOTDIR A component of the path prefix of path2 is not a directory.

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in resolving path2.

symlink, symlinkat Functions and variables in alphabetical order

902 U23711-J-Z125-5-76

ENAMETOOLONG
The length of the path1 or path2 argument exceeds {PATH_MAX} or a
component of path1 or path2 is longer than {NAME_MAX}.
symlink() could also fail if the resolving of a symbolic link produces a result
whose length exceeds {PATH_MAX}.

ENOENT A component of the pathname prefix of path2 does not exist or path2 is an
empty string.

ENOSPC The directory in which the entry for the new symbolic link is to be created
cannot be extended because there is no space left on the file system
containing the directory.

The new symbolic link cannot be created because there is no space left on
the file system which will contain the link.

There are no free inodes on the file system on which the file is to be created.

EROFS The new symbolic link would reside on a read-only file system.

Extension

EDQUOT The directory in which the entry for the new symbolic link is to be placed
cannot be extended because the maximum number of disk blocks allocated
to the user (i.e. the user’s quota) on the file system was exceeded.

The new symbolic link cannot be created because the user's quota of disk
blocks on the file system that is to contain the link was exceeded.

The user's quota of inodes on the file system on which the file is to be
created was exceeded.

EFAULT path1 or path2 points outside the allocated address space for the process.

ENOSYS The file system does not support symbolic links. ❑

In addition, symlinkat() fails if the following applies:

EACCES The file descriptor fd was not opened with O_SEARCH, and the authorizations
applicable for the directory do not permit the directory to be searched.

EBADF The path2 parameter does not specify an absolute pathname, and the fd pa-
rameter does not have the value AT_FDCWD, nor does it contain a valid file
descriptor opened for reading or searching.

ENOTDIR The path2 parameter does not specify an absolute pathname, and the file
descriptor fd is not connected with a directory.

Functions and variables in alphabetical order symlink, symlinkat

U23711-J-Z125-5-76 903

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Notes symlink() and symlinkat() are executed for POSIX files only

See also lchown(), link(), lstat(), open(), readlink(), fcntl.h, unistd.h, and the
command cp in the manual "POSIX Commands".

sync Functions and variables in alphabetical order

904 U23711-J-Z125-5-76

sync - update superblock

Syntax #include <unistd.h>

void sync(void);

Description sync() causes all information in memory that updates file systems to be scheduled for
writing out to all file systems. This includes modified superblocks, modified inodes and
delayed block-special I/O files.

sync() should be used by programs which check a file system, for example fsck() or
df(). sync is mandatory before a new system is loaded.

When sync() returns, the writing is not necessarily finished. The system call fsync()
finishes writing before it returns.

Return val. The function does not return any values.

See also fsync(), unistd.h.

Functions and variables in alphabetical order sysconf

U23711-J-Z125-5-76 905

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

sysconf - get numeric value of configurable system variable

Syntax #include <unistd.h>

long int sysconf(int name);

Description sysconf() can be used to determine the current value of a configurable system variable
specified by name. These values represent the configurable limits of the operating system.

The table below lists the system variables from the headers limits.h, unistd.h or
time.h for which values can be queried using sysconf(). The symbolic constants
containing the corresponding values used for name are defined in unistd.h:

System variable Value of name (constant)

ARG_MAX _SC_ARG_MAX

AIO_LISTIO_MAX _SC_AIO_LISTIO_MAX

AIO_MAX _SC_AIO_MAX

AIO_PRIO_DELTA_MAX _SC_AIO_PRIO_DELTA_MAX

BC_BASE_MAX _SC_BC_BASE_MAX

BC_DIM_MAX _SC_BC_DIM_MAX

BC_SCALE_MAX _SC_BC_SCALE_MAX

BC_STRING_MAX _SC_BC_STRING_MAX

CHILD_MAX _SC_CHILD_MAX

CLK_TCK _SC_CLK_TCK

COLL_WEIGHTS_MAX _SC_COLL_WEIGHTS_MAX

DELAYTIMER_MAX _SC_DELAYTIMER_MAX

EXPR_NEST_MAX _SC_EXPR_NEST_MAX

LINE_MAX _SC_LINE_MAX

LOGIN_NAME_MAX _SC_LOGIN_NAME_MAX

NGROUPS_MAX _SC_NGROUPS_MAX

MQ_OPEN_MAX _SC_MQ_OPEN_MAX

MQ_PRIO_MAX _SC_MQ_PRIO_MAX

OPEN_MAX _SC_OPEN_MAX

POSIX_ASYNCHRONOUS_IO _SC_ASYNCHRONOUS_IO

_POSIX_FSYNC _SC_FSYNC

_POSIX_MAPPED_FILES _SC_MAPPED_FILES

_POSIX_MEMLOCK _SC_MEMLOCK

sysconf Functions and variables in alphabetical order

906 U23711-J-Z125-5-76

_POSIX_MEMLOCK_RANGE _SC_MEMLOCK_RANGE

_POSIX_MEMORY_PROTECTION _SC_MEMORY_PROTECTION

_POSIX_MESSAGE_PASSING _SC_MESSAGE_PASSING

_POSIX_PRIORITIZED_IO _SC_PRIORITIZED_IO

_POSIX_PRIORITY_SCHEDULING _SC_PRIORITY_SCHEDULING

_POSIX_REALTIME_SIGNALS _SC_REALTIME_SIGNALS

_POSIX_SEMAPHORES _SC_SEMAPHORES

_POSIX_SHARED_MEMORY_OBJECTS _SC_SHARED_MEMORY_OBJECTS

_POSIX_SYNCHRONIZED_IO _SC_SYNCHRONIZED_IO

_POSIX_THREADS _SC_THREADS

_POSIX_THREAD_ATTR_STACKADDR _SC_THREAD_ATTR_STACKADDR

_POSIX_THREAD_ATTR_STACKSIZE _SC_THREAD_ATTR_STACKSIZE

_POSIX_THREAD_PRIORITY_SCHEDULING _SC_THREAD_PRIORITY_SCHEDULING

_POSIX_THREAD_PRIO_INHERIT _SC_THREAD_PRIO_INHERIT

_POSIX_THREAD_PRIO_PROTECT _SC_THREAD_PRIO_PROTECT

_POSIX_THREAD_PROCESS_SHARED _SC_THREAD_PROCESS_SHARED

_POSIX_THREAD_SAFE_FUNCTIONS _SC_THREAD_SAFE_FUNCTIONS

_POSIX_TIMERS _SC_TIMERS

_POSIX2_C_BIND _SC_2_C_BIND

_POSIX2_C_DEV _SC_2_C_DEV

_POSIX2_C_VERSION _SC_2_C_VERSION

_POSIX2_CHAR_TERM _SC_2_CHAR_TERM

_POSIX2_FORT_DEV _SC_2_FORT_DEV

_POSIX2_FORT_RUN _SC_2_FORT_RUN

_POSIX2_LOCALEDEF _SC_2_LOCALEDEF

_POSIX2_SW_DEV _SC_2_SW_DEV

_POSIX2_UPE _SC_2_UPE

_POSIX2_VERSION _SC_2_VERSION

_POSIX_JOB_CONTROL _SC_JOB_CONTROL

_POSIX_SAVED_IDS _SC_SAVED_IDS

_POSIX_VERSION _SC_VERSION

PTHREAD_DESTRUCTOR_ITERATIONS _SC_THREAD_DESTRUCTOR_ITERATIONS

System variable Value of name (constant)

Functions and variables in alphabetical order sysconf

U23711-J-Z125-5-76 907

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Return val. Current numeric value of name
if successful.
The returned value will not be lower than the corresponding value in the
application if it were compiled with the implementation´s limits.h or
unistd.h. The value will not change during the lifetime of the calling
process.

-1 if name is an invalid value.
errno is set to indicate the error.

if name does not have a defined value.
In this case, the value of errno is not changed.

PTHREAD_KEYS_MAX _SC_THREAD_KEYS_MAX

PTHREAD_STACK_MIN _SC_THREAD_STACK_MIN

PTHREAD_THREADS_MAX _SC_THREAD_THREADS_MAX

PTHREAD_DESTRUCTOR_ITERATIONS _SC_THREAD_DESTRUCTOR_ITERATIONS

PTHREAD_KEYS_MAX _SC_THREAD_KEYS_MAX

PTHREAD_STACK_MIN _SC_THREAD_STACK_MIN

PTHREAD_THREADS_MAX _SC_THREAD_THREADS_MAX

RE_DUP_MAX _SC_RE_DUP_MAX

RTSIG_MAX _SC_RTSIG_MAX

SEM_NSEMS_MAX _SC_SEM_NSEMS_MAX

SEM_VALUE_MAX _SC_SEM_VALUE_MAX

STREAM_MAX _SC_STREAM_MAX

SIGQUEUE_MAX _SC_SIGQUEUE_MAX

TIMER_MAX _SC_TIMER_MAX

TTY_NAME_MAX _SC_TTY_NAME_MAX

TZNAME_MAX _SC_TZNAME_MAX

Maximal size of the data buffer of
the functions getgrgid_r() and
getgrnam_r()

_SC_GETGR_R_SIZE_MAX

Maximal size of the data buffer of
the functions getpwnam_r() and
getpwuid_r()

_SC_GETPW_R_SIZE_MAX

System variable Value of name (constant)

sysconf Functions and variables in alphabetical order

908 U23711-J-Z125-5-76

Errors sysconf() will fail if:

EINVAL The value of the name argument is invalid.

Notes Since all return values are permitted in a successful situation, applications wishing to check
for error situations should set errno to 0, then call sysconf(), and if it returns -1, check to
see if errno is non-zero.

If the value of sysconf(_SC_2_VERSION) is not equal to the value of the symbolic constant
_POSIX2_VERSION, the commands available via system() or popen() might not behave
in conformance with XPG4. The interfaces described in this manual will, however, continue
to operate in conformance with XPG4 even if sysconf(_SC_2_VERSION) reports that the
commands no longer perform as defined in the standard.

See also pathconf(), limits.h, time.h, unistd.h.

Functions and variables in alphabetical order sysfs

U23711-J-Z125-5-76 909

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

sysfs - get information on file system type (extension)

Syntax #include <sys/fstyp.h>
#include <sys/fsid.h>

int sysfs(int opcode[, const char *fsname]| [, int fs_index, char *buf]);

Description sysfs() returns information on the file system types configured in the system. The number
of arguments accepted by sysfs() depends on the value of opcode.

The following values for opcode are accepted in the C runtime system:

GETFSIND Translates fsname, a null-terminated file-system identifier, into a
file-system type index.

GETFSTYP Translates fs_index, a file-system type index, into a null-terminated
file-system identifier and writes it into the buffer pointed to by buf. This buffer
must be at least of size FSTYPSZ (see sys/fstyp.h).

GETNFSTYP Returns the total number of file system types configured in the system.

Return val. File system type index
if opcode is GETFSIND; upon successful completion.

0 if opcode is GETFSTYP; upon successful completion.

Number of file system types configured
if opcode is GETNFSTYP; upon successful completion.

-1 if unsuccessful. errno is set to indicate the error.

Errors sysfs() will fail if:

EINVAL fsname points to an invalid file-system identifier; fs_index is zero or invalid, or
opcode is invalid, or
an attempt was made to access a BS2000 file.

EFAULT buf or fsname points outside the allocated address space for the process.

Notes sysfs() is executed only for POSIX files

See also sys/fstyp.h, sys/fsid.h.

syslog Functions and variables in alphabetical order

910 U23711-J-Z125-5-76

syslog - log message

Syntax #include <syslog.h>

void syslog(int priority, const char *message, .../ * argument */);

Description See closelog().

Functions and variables in alphabetical order system

U23711-J-Z125-5-76 911

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

system - execute system command

Syntax #include <stdlib.h>

int system(const char *command);

Description system() passes the system command given in the string command to a command inter-
preter for execution. Depending on which functionality is selected, command is interpreted
as a POSIX or BS2000 command (see section “Scope of the supported C library” on
page 49).

If command is a POSIX command, the environment of the executed command will be as if a
child process were created using fork(), and the child process invoked the sh command
using execl() as follows:

execl(shell_path, "sh", "-c", command, (char *)0);

where shell_path must be replaced by the pathname of the sh command.

system() will not return until the child process has terminated and will not affect its
termination status.

BS2000
If command is a BS2000 command, it will be executed in the same task in which the program
that invokes system() is running. Note that if programs or procedures are started in the
system call, the calling program will be unloaded (see "Notes"). ❑

Return val. Exit status of the command interpreter
if command is not a null pointer and the command was successfully
executed. The exit status of the command interpreter is returned in the
format specified by waitpid(). It corresponds to the exit status of the sh
command, except that if some error prevents the command interpreter from
executing after the child process is created, the return value from system()
will be as if the command interpreter had terminated using exit(127) or
_exit(127).

≠ 0 if command is a null pointer and a command interpreter exists.

-1 if a child process cannot be created, or
if the command interpreter has no exit status.
errno is set to indicate the error.

system Functions and variables in alphabetical order

912 U23711-J-Z125-5-76

BS2000
0 if command was executed successfully (return value of the BS2000

command: 0)

-1 if the BS2000 command was not executed successfully (return value of the
command: error code ≠ 0)

undefined if control is not returned to the program following the BS2000 command
(see "Notes"). ❑

Errors system() will fail if:

EAGAIN The system does not have the resources required to create a further
process or the system-specific limit for the maximum number of simultane-
ously executing processes for the system or an individual user ID
{CHILD_MAX} would be exceeded.

Extension
EINTR system() was interrupted by a signal.

ENOMEM Not enough memory is available.

Notes If the return value of system() is not -1, its value can be decoded by using the macros that
are defined in both sys/wait.h as well as stdlib.h.

The following function can be used to determine whether or not an XPG4-conformant
environment is present: sysconf(_SC_2_VERSION).

Note that, while system() must ignore SIGINT and SIGQUIT and block SIGCHLD while
waiting for the child to terminate, the handling of signals in the executed command is as
specified by fork() and exec. For example, if SIGINT is being caught or is set to SIG_DFL
when system() is called, then the child will be started with SIGINT handling set to
SIG_DFL.

Ignoring SIGINT and SIGQUIT in the parent process prevents coordination problems (two
processes reading from the same terminal, for example) when the executed command
ignores or catches one of the signals. It is also usually the correct action when the user has
given a command to the application to be executed synchronously (as in the "!" command
in many interactive applications). In either case, the signal should be delivered only to the
child process, not to the application itself. There is one situation where ignoring the signals
might have less than the desired effect. This is when the application uses system() to
perform some task invisible to the user. If the user typed the interrupt character (^C, for
example) while system() is being used in this way, one would expect the application to be
killed, but only the executed command will be killed. Applications that use system() in this
way should carefully check the return status from system() to see if the executed
command was successful, and should take appropriate action when the command fails.

Functions and variables in alphabetical order system

U23711-J-Z125-5-76 913

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Blocking SIGCHLD while waiting for the child to terminate prevents the application from
catching the signal and obtaining status from system()´s child process before system()
can get the status itself.

The context in which the command is ultimately executed may differ from that in which
system() was called. For example, when file descriptors that have the FD_CLOEXEC flag
set are closed, the process ID and parent process ID of system() and the command will
be different. Furthermore, if the executed command changes its environment variables or
its current working directory, that change will not be reflected in the caller´s context.

sh may not be available following a call to chroot.

There is no defined way for an application to find the specific path for the shell. However,
confstr() can provide a value for PATH that is guaranteed to find the sh command.

BS2000
The BS2000 command must not exceed a maximum length of 2048 characters and need
not be specified with the system slash (/).

In the case of some BS2000 commands (e.g. START-PROG, LOAD-PROG, CALL-
PROCEDURE, DO, HELP-SDF), control is not returned to the calling program after they are
called. Programs that permit premature terminations should therefore flush all buffers
(fflush()) and/or close files before the system call.

system() passes the command string as input to the BS2000 command processor MCLP
without any changes (see also the manual "Executive Macros" [10]). No conversion to
uppercase is performed.

See also bs2system(), exec, fork(), pipe(), sysconf(), wait(), limits.h, signal.h,
stdio.h, and the command sh in the manual "POSIX Commands" [2].

tan / tanh Functions and variables in alphabetical order

914 U23711-J-Z125-5-76

t... tan - compute tangent

Syntax #include <math.h>

double tan(double x);

Description tan() computes the trigonometric function tangent of a floating-point number x (within the
permissible range of floating-point numbers).

x is the floating-point number, specified in radians.

Return val. tan(x) Tangent of x if successful.

+/-HUGE_VAL If an overflow occurs.
errno is set to indicate the error.

Errors tan() will fail if:

ERANGE The value of x causes an overflow.

See also atan(), cos(), sin(), tanh(), math.h.

tanh - compute hyperbolic tangent

Syntax #include <math.h>

double tanh(double x);

Description tanh() computes the hyperbolic tangent of a floating-point number x (within the permissible
range of floating-point numbers).

Return val. tanh(x) Hyperbolic tangent of x if successful.

See also atan(), cos(), cosh(), sin(), sinh(), tan(), math.h.

Functions and variables in alphabetical order tcdrain

U23711-J-Z125-5-76 915

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

tcdrain - wait for transmission of output

Syntax #include <termios.h>

int tcdrain (int fildes);

Description tcdrain() waits until all output written to the object specified by fildes is transmitted. The
fildes argument is an open file descriptor associated with a terminal.

Any attempts to use tcdrain() from a process which is a member of a background
process group on a fildes associated with its controlling terminal, will cause the process
group to be sent a SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU
signals, the process is allowed to perform the operation, and no signal is sent.

Return val. 0 if successful.

-1 If an error occurs. errno is set to indicate the error.

Errors tcdrain() will fail if:

EBADF fildes is not a valid file descriptor.

EINTR A signal was caught during the tcdrain() system call.

Extension
EINVAL An attempt was made to access a BS2000 file. ❑

EIO The process group of the writing process is orphaned, and the writing
process is not ignoring or blocking SIGTTOU.

ENOTTY The file associated with fildes is not a terminal.

Notes tcdrain() has no effect on block-mode terminals.

See also tcflush(), termios.h, unistd.h, section “General terminal interface” on page 129.

tcflow Functions and variables in alphabetical order

916 U23711-J-Z125-5-76

tcflow - suspend or restart data transmission

Syntax #include <termios.h>

int tcflow(int fildes, int action);

Description tcflow() suspends transmission or reception of data on the object referred to by fildes,
depending on the value of action. The fildes argument is a file descriptor associated with a
terminal.

If action is TCOOFF, output is suspended. If action is TCOON, suspended output is restarted.
If action is TCIOFF, input is stopped by transmitting a STOP character, and if action is TCION,
input is restarted by transmitting a START character.

The default on the opening of a terminal file is that neither its input nor its output are
suspended.

Attempts to use tcflow() from a process which is a member of a background process
group on a fildes associated with its controlling terminal, will cause the process group to be
sent a SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the
process is allowed to perform the operation, and no SIGTTOU signal is sent.

Extension
All values are supported for connections with a remote processor. ❑

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors tcflow() will fail if:

EBADF fildes is not a valid file descriptor.

EINVAL action is not a supported value.

Extension
EINVAL An attempt was made to access a BS2000 file. ❑

EIO The process group of the writing process is orphaned, and the writing
process is not ignoring or blocking SIGTTOU.

ENOTTY The file associated with fildes is not a terminal.

Notes tcflow() has no effect on block-mode terminals.

See also tcsendbreak(), termios.h, unistd.h, section “General terminal interface” on
page 129.

Functions and variables in alphabetical order tcflush

U23711-J-Z125-5-76 917

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

tcflush - discard non-transmitted data

Syntax #include <termios.h>

int tcflush(int fildes, int queue_selector);

Description fildes is a file descriptor associated with a terminal. Upon successful completion,
tcflush() discards data that was written to the object referred to by fildes but not trans-
mitted, or data that was received but not read, depending on the value of queue_selector:

If queue_selector is TCIFLUSH, data that was received but not read is flushed; if
queue_selector is TCOFLUSH, data that was written but not transmitted is flushed, and if
queue_selector is TCIOFLUSH, both the data that was received but not read and the data that
was written but not transmitted are flushed.

Attempts to use tcflush() from a process which is a member of a background process
group on a fildes associated with its controlling terminal, will cause the process group to be
sent a SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the
process is allowed to perform the operation, and no SIGTTOU signal is sent.

Extension
All values are supported for connections with a remote processor. ❑

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors tcflush() will fail if:

EBADF fildes is not a valid file descriptor.

EINVAL queue_selector is not a supported value.

Extension
EINVAL An attempt was made to access a BS2000 file. ❑

EIO The process group of the writing process is orphaned, and the writing
process is not ignoring or blocking SIGTTOU.

ENOTTY The file associated with fildes is not a terminal.

Notes tcflush() has no effect on block-mode terminals.

See also tcdrain(), termios.h, unistd.h, section “General terminal interface” on page 129.

tcgetattr Functions and variables in alphabetical order

918 U23711-J-Z125-5-76

tcgetattr - get parameters associated with terminal

Syntax #include <termios.h>

int tcgetattr(int fildes, struct termios *termios_p);

Description tcgetattr() reads the parameters of the terminal associated with fildes and writes them
into the termios structure pointed to by termios_p.

fildes is a file descriptor associated with a terminal.

termios_p is a pointer to a termios structure.

tcgetattr() may be executed from any process.

tcgetattr() can be called from a background process, and the terminal attributes can
then be modified from a foreground process.

Extension
The output baud rate always corresponds to the input baud rate and is equal to 38400 (see
tcsetattr() for details). ❑

If the terminal device does not support split baud rates, the input baud rate stored in the
termios structure will be 0.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors tcgetattr() will fail if:

EBADF fildes is not a valid file descriptor.

Extension
EINVAL An attempt was made to access a BS2000 file. ❑

ENOTTY The file associated with fildes is not a terminal.

See also tcsetattr(), termios.h, section “General terminal interface” on page 129.

Functions and variables in alphabetical order tcgetpgrp

U23711-J-Z125-5-76 919

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

tcgetpgrp - get foreground process group ID

Syntax #include <unistd.h>

Optional
#include <sys/types.h> ❑

pid_t tcgetpgrp(int fildes);

Description tcgetpgrp() returns the value of the foreground process group ID associated with the
terminal.

If there is no foreground process group, tcgetpgrp() returns a value greater than 1 that
does not match the process group ID of any existing process group.

tcgetpgrp() is allowed from a process that is a member of a background process group;
however, the information may be subsequently changed by a process that is a member of
a foreground process group.

Return val. Value of the foreground process group ID associated with the terminal
if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors tcgetpgrp() will fail if:

EBADF fildes is not a valid file descriptor.

Extension
EINVAL An attempt was made to access a BS2000 file. ❑

ENOTTY The calling process does not have a controlling terminal, or the file is not the
controlling terminal.

See also setsid(), setpgid(), tcsetpgrp(), sys/types.h, unistd.h.

tcgetsid Functions and variables in alphabetical order

920 U23711-J-Z125-5-76

tcgetsid - get session ID of specified terminal

Syntax #include <termios.h>

pid_t tcgetsid(int fildes);

Description tcgetsid() returns the process group ID of the session that is controlled by the terminal
specified in fildes.

Return val. Process group ID of the session associated with the specified terminal
if successful.

(pid_t)-1 otherwise. errno is set to indicate the error.

Errors tcgetsid() will fail if:

EACCES No controlling terminal is assigned to the fildes argument.

EBADF The fildes argument is not a valid file descriptor.

ENOTTY The file fildes is not a terminal.

See also termios.h.

Functions and variables in alphabetical order tcsendbreak

U23711-J-Z125-5-76 921

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

tcsendbreak - interrupt serial data transmission

Syntax #include <termios.h>

int tcsendbreak(int fildes, int duration);

Description

Extension
In non-conformance with XPG4, this function has no effect and returns without performing
any action. ❑

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors tcsendbreak() will fail if:

EBADF fildes is not a valid file descriptor.

Extension
EINVAL An attempt was made to access a BS2000 file. ❑

EIO The process group of the writing process is orphaned, and the writing
process is not ignoring or blocking SIGTTOU.

ENOTTY The file associated with fildes is not a terminal.

See also termios.h, unistd.h, section “General terminal interface” on page 129.

tcsetattr Functions and variables in alphabetical order

922 U23711-J-Z125-5-76

tcsetattr - set parameters associated with terminal

Syntax #include <termios.h>

int tcsetattr(int fildes, int optional_actions, const struct termios *termios_p);

Description The tcsetattr() function sets the parameters associated with the terminal referred to by
the file descriptor fildes and stores them in the termios structure pointed to by termios_p as
follows:

If optional_actions is TCSANOW, the change will occur immediately.
If optional_actions is TCSADRAIN, the change will occur after all output written to fildes is
transmitted. This function should be used when changing parameters that affect output.
If optional_actions is TCSAFLUSH, the change will occur after all output written to fildes is
transmitted, and all input so far received but not read will be discarded before the change
is made.

If the output baud rate stored in the termios structure pointed to by termios_p is 0, a call to
tcsetattr() will disconnect the line.

If this value is non-zero, all related values in the termios structure will have no effect. If the
other values in the termios structure are also without effect, -1 is returned, and errno is
set to EINVAL.

If the input baud rate stored in the termios structure pointed to by termios_p is 0, the input
baud rate set in the hardware will be the same as the output baud rate stored in the
termios structure.

The tcsetattr() function will return successfully if it was able to perform any of the
requested actions, even if some of the requested actions could not be performed. It will set
all the attributes that implementation supports as requested and leave all the attributes not
supported by the implementation unchanged. If none of the requested actions can be
performed, it will return -1 and set errno to EINVAL. If the input and output baud rates differ
and are a combination that is not supported by the hardware, neither baud rate is changed.
A subsequent call to tcgetattr() will return the actual state of the terminal device
(reflecting both the changes made and the values that could not be changed in the previous
tcsetattr() call). The tcsetattr() function will not change the values in the termios
structure, regardless of whether or not it actually accepts them.

No action other than a call to tcsetattr() or a close of the last file descriptor in the system
associated with the terminal can cause any of the terminal attributes defined in this manual
to change.

Attempts to use tcsetattr() from a process which is a member of a background process
group on a fildes associated with its controlling terminal, will cause the process group to be
sent a SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the
process is allowed to perform the operation, and no SIGTTOU signal is sent.

Functions and variables in alphabetical order tcsetattr

U23711-J-Z125-5-76 923

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors tcsetattr() will fail if:

EBADF fildes is not a valid file descriptor.

EINVAL optional_actions is not a supported value.

Extension
EINVAL An attempt was made to access a BS2000 file. ❑

EIO The process group of the writing process is orphaned, and the writing
process is not ignoring or blocking SIGTTOU.

ENOTTY The file associated with fildes is not a terminal.

Notes When trying to change baud rates, applications should first call tcsetattr() and then call
tcgetattr() in order to determine what baud rates were actually selected.

See also cfgetispeed(), tcgetattr(), termios.h, unistd.h, section “General terminal
interface” on page 129.

tcsetpgrp / tdelete Functions and variables in alphabetical order

924 U23711-J-Z125-5-76

tcsetpgrp - set foreground process group ID

Syntax #include <unistd.h>

Optional
#include <sys/types.h> ❑

int tcsetpgrp(int fildes, pid_t pgid_id);

Description If the process has a controlling terminal, tcsetpgrp() will set the foreground process
group ID associated with the terminal to the value pgid_id. The file of the terminal specified
by fildes must be the controlling terminal of the calling process, and the controlling terminal
must be currently associated with the session of the calling process. The value of pgid_id
must match a process group ID of a process in the same session as the calling process.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors tcsetpgrp() will fail if:

EBADF fildes is not a valid file descriptor.

EINVAL pgid_id is not a valid process group ID.

Extension
EINVAL An attempt was made to access a BS2000 file. ❑

ENOTTY The calling process does not have a controlling terminal, or the controlling
terminal is no longer associated with the session of the calling process.

EPERM The value of pgid_id does not match the process group ID of a process in
the same session as the calling process.

See also tcgetpgrp(), sys/types.h, unistd.h.

tdelete - delete node from binary search tree

Syntax #include <search.h>

void *tdelete (const void *key, void **rootp, int (*compar) (const void *, const void *));

Description See tsearch().

Functions and variables in alphabetical order tell

U23711-J-Z125-5-76 925

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

tell - get current value of file position indicator (BS2000)

Syntax #include <stdio.h>

long tell(int fildes);

Description tell() returns the current value of the file position indicator for the file associated with file
descriptor fildes. tell() may be used for binary files (PAM, INCORE) as well as text files
(SAM, ISAM). SAM files are always processed as text files with elementary functions.

fildes is the file descriptor of the file for which the current value of the file-position indicator
is to be determined.

Return val. For binary files, current value of the file position indicator
i.e. the number of bytes that offsets the file position indicator from the
beginning of the file, if successful.

For text files, absolute position
of the file position indicator if successful.

-1 if an error occurs; errno is set to indicate the error (e.g. tell() not
permitted; number of blocks or records too large).

Notes The calls tell(fildes) and lseek(fildes, 0L, SEEK_CUR) are equivalent.
tell() cannot be applied on system files (SYSDTA, SYSLST, SYSOUT).

Since information on the file position is stored in a field that is 4 bytes long, the following
restrictions apply to the size of SAM and ISAM files when processing them with
tell()/lseek():

SAM file

ISAM file

See also lseek(), fseek(), ftell(), stdio.h.

Record length ≤ 2048 bytes

Number of records/block ≤ 256

Number of blocks ≤ 2048

Record length ≤ 32 Kbytes

Number of records ≤ 32 K

telldir Functions and variables in alphabetical order

926 U23711-J-Z125-5-76

telldir - get current location of named directory stream

Syntax #include <dirent.h>

long int telldir(DIR *dirp);

Description telldir() returns the current location associated with the specified directory stream.

If seekdir() was the last operation on the directoy stream, then telldir() returns the
position specified in the loc argument of the seekdir() call.

Return val. Current location
if successful

Extension
-1 if an error occurs. errno is set to indicate the error. ❑

Errors telldir() will fail if:

Extension
EBADF The file descriptor associated with the directory is no longer valid. This error

will occur if the directory was closed. ❑

Notes telldir() is executed only for POSIX files

See also readdir(), seekdir(), dirent.h.

Functions and variables in alphabetical order tempnam

U23711-J-Z125-5-76 927

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

tempnam - create pathname for temporary file

Syntax #include <stdio.h>

char *tempnam(const char *dir, const char *pfx);

Description tempnam() generates a pathname that may be used for a temporary file.

tempnam() allows the user to control the choice of a directory.

dir points to the name of the directory in which the file is to be created. If the environment
variable TMPDIR is set, the directory specified there is used; otherwise, the one named
under *dir. If dir is a null pointer and the directory {P_tmpdir} does not name an acces-
sible directory, the file names are generated with the directory name /tmp. If this is not
accessible either, 0 is returned.

P_tmpdir is defined in stdio.h as "/var/tmp" as the directory in which temporary files
are created.

Many applications prefer their temporary files to have specific initial letter sequences in their
names. The pfx argument should be used for this. This argument may be a null pointer or
point to a string of up to five bytes to be used as the first bytes in the name of the temporary
file.

The name component generated by tempnam() is made up of two parts: the first comprises
three uppercase letters (AAA, BAA, ..., ZAA, ZBA, ..., ZZZ); the second consists of a letter
and the last five characters of the process ID. If the process ID consists of less than five
characters, it is padded to five characters with leading zeros. For example, a complete
name produced would be: /var/tmp/AAAa00123.

tempnam() uses malloc() to obtain space for the generated file name and returns a
pointer to that area. Thus, any pointer value returned by tempnam() can serve as an
argument to free() (see malloc()). If tempnam() cannot return the expected result for
some reason, e.g. because malloc() failed or no appropriate directory could be found, a
null pointer is returned.

tempnam() will fail if not enough memory is available.

Return val. Pointer to a string containing the generated pathname if successful.

Null pointer if an error occurs; errno is set to indicate the error.

0 if /tmp is not accessible, or
if the PROGRAM-ENVIRONMENT variable is not set to SHELL.

tempnam Functions and variables in alphabetical order

928 U23711-J-Z125-5-76

Errors tempnam() will fail if:

ENOMEM There is not enough memory available for the new pathname.

Extension
EINVAL An attempt was made to access a BS2000 file. ❑

Notes tempnam() is executed only for POSIX files.

tempnam() generates a different pathname at each call.

Files created using tempnam() and either fopen() or creat() are temporary only in the
sense that they reside in a directory intended for temporary use, and their names are
unique. It is the user's responsibility to remove a file when it is no longer needed. If this
function is called more than {TMP_MAX} (defined in stdio.h) times in a single process, the
names created earlier will be reused.

Between the time a pathname is created and the file is opened, it is possible for some other
process to create a file with the same name. However, this will not occur if the other process
is using tempnam() or mktemp() and if the pathname is chosen so as to render duplication
by other means unlikely.

See also fopen(), free(), open(), tmpfile(), tmpnam(), unlink(), stdio.h.

Functions and variables in alphabetical order tfind / _ _TIME_ _

U23711-J-Z125-5-76 929

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

tfind - find node in binary search tree

Syntax #include <search.h>

void *tfind(const void *key, void *const *rootp, int (*compar) (const void *, const void *));

Description See tsearch().

_ _TIME_ _ - macro for compilation time

Syntax _ _TIME_ _

Description This macro generates the time of compilation of a source file as a string in the form:

"hh:mm:ss\0"

where:

hh Hours

mm Minutes

ss Seconds

Notes The format of the time information corresponds to the asctime() function.

This macro need not be defined in a header file. Its name is recognized and replaced by the
compiler.

See also asctime(), __DATE__.

time, time64 Functions and variables in alphabetical order

930 U23711-J-Z125-5-76

time, time64 - get time since the Epoch

Syntax #include <sys/types.h>
#include <time.h>

time_t time(time_t *tloc);
time64_t time64(time64_t *tloc);

Description time() returns the current time (local time) as the number of seconds that have elapsed
since 00:00:00 UTC (Universal Time Coordinated, January 1, 1970).

If tloc is non-zero, the result is also stored in the location to which tloc points.

As of 19.1.2038 03:14:08 hrs UTC time outputs the message CCM0014 and terminates the
program.

The time64() function behaves like time with the difference that it also returns correct re-
sults after 19.1.2038 03:14:07 hrs.

BS2000
time() returns the current time (local time) as the number of seconds that have elapsed
since January 1, 1970, 00:00:00 local time. ❑

(time_t)-1
(time64_t)-1

if an error occurs.
errno is set to indicate the error.

Notes time() fails and its actions are undefined if tloc points to an illegal address.

See also ctime(), time.h.

Functions and variables in alphabetical order times

U23711-J-Z125-5-76 931

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

times - get process times

Syntax #include <sys/times.h>

clock_t times(struct tms *buffer) ;

Description times() fills the tms structure pointed to by buffer with information on execution times (see
sys/times.h).

All time specifications are defined in terms of the number of clock ticks used.

The execution times of a terminated child process are included in the tms_cutime and
tms_cstime components of the parent process when the wait() function returns the
process ID of the terminated child process. If a child process does not wait for its children,
their times are not included.

– The tms_utime structure member is the CPU time used for the execution of user
instructions of the calling process.

– The tms_stime structure member is the CPU time used for the execution of system
statements on behalf of the calling process.

– The tms_cutime structure member is the sum of the tms_utime and tms_cutime
times of the child processes.

– The tms_cstime structure member is the sum of the tms_stime and tms_cstime
times of the child processes.

Return val. Elapsed real time, in clock ticks, since a particular point in time
(e.g. since the system was activated). This point in time does not change
from one times() function call within a process to another. The value
returned may exceed the possible value range of type clock_t (overflow).

(clock_t)-1 if an error occurs. errno is set to indicate the error.

Notes Portable applications should use the function sysconf(_SC_CLK_TCLK) to determine the
number of clock ticks per second, since this value may vary from system to system.

See also exec, fork(), sysconf(), time(), wait(), sys/times.h.

timezone Functions and variables in alphabetical order

932 U23711-J-Z125-5-76

timezone - variable for difference between local time and UTC

Syntax #include <time.h>

extern long int timezone;

Description The external variable timezone contains the difference, in seconds, between Coordinated
Universal Time (UTC) and the local standard time. The default for timezone is 0 (UTC).

The environment-specific date and time information is contained in the file
/usr/lib/locale/ language/LC_TIME.

Notes Setting the time during the interval of switching from timezone to altzone or vice versa
can produce unpredictable results.
The system administrator must change the start and end date for daylight savings time
annually if the Julian calendar format is used.

See also altzone, asctime(), ctime(), daylight, environ, gmtime(), localtime(),
mktime(), strftime(), tzname, tzset().

Functions and variables in alphabetical order tmpfile

U23711-J-Z125-5-76 933

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

tmpfile - create temporary file

Syntax #include <stdio.h>

FILE *tmpfile(void);

Description tmpfile() creates a temporary file and opens an associated data stream.

BS2000
tmpfile() creates a binary SAM file with default attributes. ❑

The file is automatically deleted when all links to the file are closed. The file is opened as
in fopen() for update (w+).

The directory in which the temporary file will be created, {P_tmpdir}, is defined in
stdio.h as /var/tmp.

Return val. Pointer to the stream for the created file
if successful.

Null pointer if an error occurs. errno is set to indicate the error.

Errors tmpfile() will fail if:

EINTR A signal was caught when executing the tmpfile() function.

EMFILE {OPEN_MAX} streams are currently open in the calling process.
{FOPEN_MAX} streams are currently open in the calling process.

ENFILE The maximum number of files allowed is currently open in the system.

ENOSPC The directory or file system which would contain the new file cannot be
expanded.

Notes The program environment determines whether tmpfile() is executed for a BS2000 or
POSIX file.

Temporary files are not deleted when a program terminates abnormally with abort() or
_exit(-1).

See also fopen(), tmpnam(), unlink(), stdio.h.

tmpnam Functions and variables in alphabetical order

934 U23711-J-Z125-5-76

tmpnam - create base name for temporary file

Syntax #include <stdio.h>

char *tmpnam(char *s)

Description tmpnam() generates a string that is a valid and unique file name.

tmpnam() generates a different string each time it is called from the same process, up to
{TMP_MAX} times. If the function is called more than {TMP_MAX} times, previously created
names are reused.

The implementation behaves as if no library functions call the tmpnam() function.

The directory in which temporary files are created, P_tmpdir, is defined in stdio.h as
/var/tmp.

Return val. Pointer to a string
upon successful completion.

Null pointer if tmpnam() was called more than {TMP_MAX} times.

If the argument s is a null pointer, tmpnam() places its result in an internal static area and
returns a pointer to that area. Subsequent calls to tmpnam() may modify the same area.

If the argument s is not a null pointer, it is presumed to point to an array of type char with a
minimum length of {L_tmpnam}; tmpnam() writes its result in that array and returns the
argument as its return value.

Notes If the tmpnam() function is called more than {TMP_MAX}times a single process, the names
created earlier will be reused.

It is the user’s responsibility to delete the file pointed to by *s when it is no longer needed.

Between the time a pathname is created and the file is opened, it is possible for some other
process to create a file with the same name. It may therefore be more practical to use the
tmpfile() function.

Note that this cannot occur if the other process is using tempnam() or mktemp() and if the
pathname is chosen so as to render duplication by other means unlikely.

Files created using tmpnam() and either fopen() or creat() are temporary only in the
sense that they reside in a directory intended for temporary use and have unique names.

The program environment determines tmpnam() is executed for a BS2000 or POSIX file.

See also fopen(), open(), tempnam(), tmpfile(), unlink(), stdio.h.

Functions and variables in alphabetical order toascii

U23711-J-Z125-5-76 935

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

toascii - convert integer to legal value

Syntax #include <ctype.h>

int toascii(int i);

Description toascii() uses the bitwise AND operator (i & 0XFF) to set the first 3 bytes of an integer
variable i to 0 and returns the value of the least significant byte.

toascii() is a synonym for toebcdic(). On EBCDIC computers, toascii() returns a
legal value from the EBCDIC character set. If portability to ASCII computers is essential,
toascii() should be used.

i is an integer variable whose least-significant byte is to be returned.

Return val. Value of the least-significant byte of the variable i if successful.

Notes toascii() does not convert values from other character sets (e.g. ASCII on EBCDIC
computers).

See also isacii(), toebcdic(), ctype.h.

toebcdic / _tolower Functions and variables in alphabetical order

936 U23711-J-Z125-5-76

toebcdic - convert integer to legal value (BS2000)

Syntax #include <ctype.h>

int toebcdic(int i);

Description toebcdic() uses the bitwise AND operator (i & 0XFF) to set the first 3 bytes of an integer
variable i to 0 and returns the value of the least significant byte.

i is an integer variable whose least-significant byte is to be returned.

Return val. Least-significant byte of the variable i if successful.

Notes toebcdic() is implemented both as a macro and as a function.

toebcdic() does not convert values from other character sets (e.g. ASCII).

toebcdic() is a synonym for toascii(). If portability to ASCII computers is essential,
toascii() should be used instead of toebcdic().

See also isascii(), toascii(), ctype.h.

_tolower - convert uppercase letters to lowercase

Syntax #include <ctype.h>

int _tolower(int c);

Description _tolower() converts the uppercase letter c to the corresponding lowercase letter.

c must be an uppercase letter.

Return val. Lowercase of c, if c is an uppercase letter.

Notes _tolower() is implemented only as a macro.

See also tolower(), isupper(), ctype.h.

Functions and variables in alphabetical order tolower / _toupper / toupper

U23711-J-Z125-5-76 937

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

tolower - convert characters to lowercase

Syntax #include <ctype.h>

int tolower(int c);

Description tolower() converts the uppercase letter c to the corresponding lowercase letter.

Return val. Lowercase of c if c is an uppercase letter.

See also strlower(), strupper(), toupper(), setlocale(), ctype.h.

_toupper - convert lowercase letters to uppercase

Syntax #include <ctype.h>

int _toupper(int c);

Description _toupper() converts the lowercase letter c to the corresponding uppercase letter.

c must be a lowercase letter.

Return val. Uppercase of c if c is a lowercase letter.

Notes _toupper() is implemented only as a macro .

See also toupper(), islower(), ctype.h.

toupper - convert characters to uppercase

Syntax #include <ctype.h>

int toupper(int c);

Description toupper() converts the lowercase letter c to the corresponding uppercase letter.

Return val. Uppercase of c if c is a lowercase letter.

See also strupper(), strlower(), tolower(), setlocale(), ctype.h.

towctrans / towlower Functions and variables in alphabetical order

938 U23711-J-Z125-5-76

towctrans - map wide characters

Syntax #include <wctype.h>

wint_t towctrans(wint_t wc, wctrans_t desc);

Description towctrans() transforms the wide character wc according to the specification desc. The
current value of the category LC_CTYPE must be the same as the one valid for the
towctrans() call that returned the value desc.

The two following calls to towctrans() have the same affect as the calls for converting to
small or capital letters shown in the corresponding comments:

towctrans(wc, wctrans("tolower")) /* towlower(wc) */
towctrans(wc, wctrans("toupper")) /* towupper(wc) */

Return val. transformed wide character
if successful.

Notes In this version of the C runtime system, only 1 byte characters are supported as wide
characters.

See also tolower(), toupper(), towlower(), towupper(), wctrans()

towlower - convert wide characters to lowercase

Syntax #include <wchar.h>

wint_t towlower(wint_t wc);

Description towlower() converts the wide character wc to the corresponding lowercase letter if wc is
an uppercase wide-character code.

Return val. Lowercase of wc if wc is an uppercase letter.

Notes Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also towupper(), setlocale(), wchar.h.

Functions and variables in alphabetical order towupper / truncate

U23711-J-Z125-5-76 939

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

towupper - convert wide characters to uppercase

Syntax #include <wchar.h>

wint_t towupper(wint_t wc);

Description towupper() converts the wide character wc to the corresponding uppercase letter if wc is
a lowercase wide-character code.

Return val. Uppercase of wc if wc is a lowercase letter.

Notes Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also towlower(), setlocale(), wchar.h.

truncate - set file to specified length

Name truncate, truncate64

Syntax #include <unistd.h>

int truncate (const char *path, off_t length);
int truncate64 (const char *path, off64_t length);

Description See ftruncate().

truncate() truncates the file specified in path to length bytes.

tsearch, tfind, tdelete, twalk Functions and variables in alphabetical order

940 U23711-J-Z125-5-76

tsearch, tfind, tdelete, twalk - process binary search trees

Syntax #include <search.h>

void *tsearch (const void *key, void **rootp, int (*compar) (const void *, const void *));
void *tfind (const void *key, void * const *rootp, int (*compar) (const void *, const void *));
void *tdelete (const void *key, void **rootp, int (*compar) (const void *, const void *));
void twalk (const void *root, void(*action) (const void *, VISIT, int));

Description tsearch(), tfind(), tdelete() and twalk() manipulate binary search trees. Compar-
isons are made with a user-supplied compar function. This function is called with two
arguments, the pointers to the elements being compared. It returns an integer less than,
equal to or greater than 0, depending on whether the first argument is less than, equal to
or greater than the second argument. The comparison function need not compare every
byte, so arbitrary data may be contained in the elements in addition to the values being
compared.

tsearch() is used to build and access the tree. The key argument is a pointer to an element
to be accessed or stored. If there is an entry in the tree that is equal to *key (the value
pointed to by the key), a pointer to this found entry is returned. Otherwise, *key is inserted,
and a pointer to it is returned. Only pointers are copied, so the calling routine must store the
data. The rootp argument points to a variable that points to the root of the tree. A null pointer
value for the variable pointed to by rootp denotes an empty tree; in this case, the variable is
set to point to the entry that appears at the root of the new tree.

Like tsearch(), the tfind() function searches for an entry in the tree and returns a pointer
to it if found. If the entry is not found, the tfind() function returns a null pointer. The
arguments for tfind() are the same as for tsearch().

tdelete() deletes a node from a binary search tree. The arguments are the same as for
tsearch(). The variable to which rootp points is changed if the deleted node was the root
of the tree. The tdelete() function returns a pointer to the parent of the deleted node, or
a null pointer if the node is not found.

twalk() traverses a binary search tree. The root argument is a pointer to the root of the tree
to be traversed. Any node in a tree may be used as the root for a walk below that node.
action is the name of a function to be invoked at each node. This function is called with three
arguments. The first argument is the address of the node being visited. The structure
pointed to by this argument is unspecified and must not be modified; however, the value of
type "pointer-to-node" can be converted to the type "pointer-to-pointer-to-element" to
access the element stored in the node.

Functions and variables in alphabetical order tsearch, tfind, tdelete, twalk

U23711-J-Z125-5-76 941

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

The second argument is a value from the enumeration data type typedef enum { preorder,
postorder, endorder, leaf } VISIT; (defined in the header search.h), depending on whether this
is the first, second or third time that the node is visited (during a depth-first, left-to-right
traversal of the tree), or whether the node is a leaf. The third argument is the level of the
node in the tree, with the root being level 0.

Return val. *key tsearch() and tfind() : if successful
tsearch() : pointer to the inserted item.

Null pointer tsearch() : if there is not enough space available to create a new node.
tsearch(), tfind() and tdelete (): if rootp is a null pointer on entry.
tfind(): if *key was not found.

Pointer to the parent of the deleted node
tdelete() if successful.

Notes The root argument to twalk() is one level of indirection less than the rootp arguments to
tsearch() and tdelete().

There are two nomenclatures used to refer to the order in which tree nodes are visited. The
tsearch() function uses preorder, postorder and endorder to refer, respectively, to visiting
a node before any of its children, visiting it after its left child and before its right, and visiting
a node after both its children. The alternative nomenclature uses preorder, inorder and
postorder to refer to the same visits, which could result in some confusion over the meaning
of postorder.

If the calling function alters the pointer to the root, the results are unpredictable.

See also bsearch(), hsearch(), lsearch(), search.h.

ttyname Functions and variables in alphabetical order

942 U23711-J-Z125-5-76

ttyname - find pathname of terminal

Syntax #include <unistd.h>

char *ttyname(int fildes);

Description ttyname() returns a pointer to a string containing a null-terminated pathname of the
terminal associated with file descriptor fildes. The return value may point to a static area that
is overwritten at each call.

The controlling terminal may have the following names:

/dev/term/0000, ..., /dev/term/4096 (for block-mode terminals)

/dev/pts/0, ..., /dev/pts/4096 (for rlogin access)

Return val. Pointer to a string
if successful.

Null pointer if an error occurs. errno is set to indicate the error.

Errors ttyname() will fail if:

EBADF fildes is not a valid file descriptor.

ENOTTY fildes does not point to a terminal.

Notes ttyname() is executed only for POSIX files

ttyname() is not thread-safe. Use the reentrant function ttyname_r() when needed.

See also isatty(), ttyname_r(), unistd.h.

Functions and variables in alphabetical order ttyname_r

U23711-J-Z125-5-76 943

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

ttyname_r - find pathname of terminal (thread-safe)

Syntax #include <unistd.h>

int ttyname_r(int fildes, char * name, size_t namesize);

Description The function ttyname_r() stores the null-terminated pathname of the terminal associated
with file descriptor fildes in the data area pointed to by name. The data area is namesize
characters long and should provide enough storage space for the name and the terminating
null. The maximum length of the terminal name is {TTY_NAME_MAX}.

Return val. 0 if successful.

Otherwise the error number.

Errors ttyname_r() fails if:

EBADF fildes is not a valid file descriptor.

ENOTTY fildes does not point to a terminal.

ERANGE the value of namesize is smaller than the length of the string returned includ-
ing the terminating null byte.

See also ttyname(), isatty(), unistd.h.

ttyslot Functions and variables in alphabetical order

944 U23711-J-Z125-5-76

ttyslot - find entry of current user in utmp file

Syntax #include <stdlib.h>

int ttyslot (void);

Description ttyslot() returns the index of the current user’s entry in the/var/adm/utmp file.
The entry for the current user is an entry for which the utline structure element matches
the name of a terminal in/dev that is linked to the standard input, standard output or error
output (0, 1 or 2).

The returned index is an integer which represents the record number of the entry in the
/var/adm/utmp file. The index 0 is returned for the first record.

ttyslot() is not thread-safe.

Return val. Index of the entry
if successful.

-1 if an error occurred during the search for the terminal name, or if none of the
file descriptors 0, 1 or 2 was assigned to a terminal.

Notes ttyslot() will not be supported in the next version of the X/Open standard.

See also endutxent(), ttyname(), stdlib.h.

Functions and variables in alphabetical order twalk / tzname

U23711-J-Z125-5-76 945

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

twalk - traverse binary search tree

Syntax #include <search.h>

void twalk(const void *root, void (*action) (const void *, VISIT, int *));

Description See tsearch().

tzname - array variable for timezone strings

Syntax #include <time.h>

extern char *tzname[2];

Description The external variable tzname contains the names of time zones. tzname is set by default as
follows:

char *tzname[2] = { "GMT", "" };

See also altzone, asctime(), ctime(), daylight, gmtime(), localtime(), timezone, tzset().

tzset Functions and variables in alphabetical order

946 U23711-J-Z125-5-76

tzset - set timezone conversion information

Syntax #include <time.h>

void tzset(void);

Description tzset() uses the contents of the environment variable TZ to override the value of the
different external variables. The tzset() function is called by asctime() and may also be
called by the user.

tzset() scans the contents of the environment variable and assigns the different fields to
the respective variable. For example, the complete setting for New Jersey in 1986 would
be:

EST5EDT4,116/2:00:00,298/2:00:00 or simply: EST5EDT

A typical example of a southern hemisphere setting such as the Cook Islands would be:

KDT9:30KST10:00,63/5:00,302/20:00

In the longer version of the New Jersey example of TZ, tzname[0] is EST; timezone will be
set to 5 *60 *60; tzname[1] is EDT; altzone will be set to 4 *60 *60; the starting date for
daylight savings time is the 117th day at 2 a.m.; the ending date is the 299th day at 2 a.m.
(using the Julian calendar), and daylight will be set to a positive value. The starting and
ending times are relative to the daylight savings time. If the starting and ending dates for
daylight savings time are not provided, the days applicable to the United States for that year
will be used, and the time will be 2 a.m. If only the starting and ending times are not
available, the time will be set to 2 a.m.
tzset() thus effectively changes the values of the external variables timezone, altzone,
daylight, and tzname. The ctime(), localtime(), mktime(), and strftime() functions
will also update these external variables as if they had called tzset() at the time specified
by the time_t or struct-tm value that they are converting.

The environment-specific date and time information is contained in the file
/usr/lib/locale/ language/LC_TIME.

tzset() sets the external variable daylight to 0 if no daylight saving conversion is to be
processed for the specified time zone. Otherwise daylight is set to a value ≠ 0. The
external variable timezone is set to the difference, in seconds, between Coordinated
Universal Time (UTC) and the local standard time.

Notes If the TZ variable is absent from the environment, the applicable values for CET (Central
European Time) are used.

See also altzone, asctime(), ctime(), daylight, environ, gmtime(), localtime(), mktime(),
strftime(), timezone, tzname().

Functions and variables in alphabetical order ualarm

U23711-J-Z125-5-76 947

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

u... ualarm - set interval timer

Syntax #include <unistd.h>

useconds_t ualarm(useconds_t useconds, useconds_t interval)

Description ualarm() sends the SIGALRM signal to the calling process after useconds microseconds.
Unless it is ignored or caught, the signal terminates the process.

If the interval argument is not zero, the SIGALRM signal will be sent to the process every
interval microseconds after expiry of the timer (e.g. after useconds microseconds have
elapsed).

Because of delays in the scheduling, the resumption of execution after the signal is caught
can be delayed. The longest delay time that can be specified is 2.147.483.647 micro-
seconds.

Return val. The return value is the time remaining until the alarm signal is output.

Notes ualarm() is a simplified interface for setitimer().

See also alarm(), setitimer(), sleep (), unistd.h.

ulimit Functions and variables in alphabetical order

948 U23711-J-Z125-5-76

ulimit - get and set process limits

Syntax #include <ulimit.h>

long int ulimit (int cmd, ...);

Description ulimit() provides for control over process limits. The possible values for cmd, which are
defined in ulimit.h, include:

UL_GETFSIZE Returns the file size limit for the process. The limit is specified in 512-byte
blocks and is inherited by child processes. Files of any size can be read.

UL_SETFSIZE Sets the file size limit for output operations of the process to the value of the
second argument, which is interpreted as a long int. Any process may
lower its own limit, but only a process with appropriate privileges may
increase the limit. The return value is the new file size limit.

Return val. Value of the requested limit
if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors ulimit() will fail and the limit will not be changed if:

EINVAL The argument cmd is invalid.

EPERM A process without appropriate privileges is attempting to increase the file
size limit.

Notes Since any return value is permitted if the function is successful, an application wishing to
check for error conditions should set errno to 0 before calling ulimit(). If the return value
after the function returns is -1 and errno is set, an error has occurred.

See also write(), ulimit.h.

Functions and variables in alphabetical order umask

U23711-J-Z125-5-76 949

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

umask - get and set file mode creation mask

Syntax #include <sys/stat.h>

Optional
#include <sys/types.h> ❑

mode_t umask (mode_t cmask);

Description umask() sets the file mode creation mask of the process to cmask and returns the previous
value of the mask. Only the file permission bits of cmask (see sys/stat.h) are used; the
other bits are ignored.

The file mode creation mask of the process is used by the functions open(), creat(),
mkdir() and mkfifo() to remove access permissions in mode. Bit positions that are set
in cmask are cleared in the access permissions of the created file.

The state of the mask before the first call to umask(), including all other bits, can be
restored by a subsequent call to umask() with the return value of the first call as the
argument.

Return val. If the user ID is 0, the default value is 022 (octal); otherwise, 066. Previous value of the file
mode creation mask
if successful. The other bits are ignored. A subsequent call to umask() with
the return value of the preceding call as cmask will reset the mask to the
same state as before the first call.

Notes umask() is executed only for POSIX files

See also creat(), mkdir(), mkfifo(), open(), sys/stat.h, sys/types.h.

umount Functions and variables in alphabetical order

950 U23711-J-Z125-5-76

umount - unmount file system (extension)

Syntax #include <sys/mount.h>

int umount(const char *path);

Description umount() can be used to unmount a file system that was mounted earlier with mount()
under the directory pointed to by path (mount point). The path argument may point to a
block-special file or a directory. After unmounting the file system, the directory in which the
file system was mounted reverts to its ordinary interpretation.

Return val. 0 upon successful completion.

-1 if an error occurs. errno is set to indicate the error.

Errors umount() will fail if:

EBUSY A file in path is being used.

EFAULT path points to an invalid address.

EINVAL path does not exist, or
path has not been mounted.

ELOOP Too many symbolic links were encountered when resolving the path pointed
to by path.

ENAMETOOLONG
path is longer than {PATH_MAX}, or the length of a path component exceeds
{NAME_MAX}.

ENOTBLK path is not a block-special file.

EPERM The effective user ID is not that of a process with appropriate privileges.

EREMOTE path points to a remote pathname.

Notes umount() may only be called under the effective user ID of a process with appropriate
privileges.

umount() is executed only for POSIX files.

See also mount(), sys/mount.h.

Functions and variables in alphabetical order uname

U23711-J-Z125-5-76 951

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

uname - get basic data on current operating system

Syntax #include <sys/utsname.h>

int uname(struct utsname *name);

Description uname() obtains basic information on the current operating system and stores it in the
structure pointed to by name.

uname() uses the utsname structure defined in sys/utsname.h. The members of the
structure are the char arrays sysname, nodename, release, version and machine. The
name of the current operating system is entered in the array sysname. Similarly, nodename
contains the name that the system is known by on a communications network. The arrays
release and version contain the release number and release date of the operating
system, and the array machine contains a name that identifies the hardware on which the
system is running.

Return val. Non-negative value
if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors uname() will fail if:

Extension
EFAULT name is an invalid address. ❑

Notes The inclusion of the nodename member in this structure does not mean that this information
is sufficient for addressing communications networks.

See also sys/utsname.h.

ungetc Functions and variables in alphabetical order

952 U23711-J-Z125-5-76

ungetc - push byte back onto input stream

Syntax #include <stdio.h>

int ungetc(int c, FILE *stream);

Description ungetc() converts the previously read byte c to type unsigned char and pushes it back
onto the input stream pointed to by stream. The pushed-back bytes will be returned by
subsequent reads on that stream in reverse order. A successful intervening call to a file-
positioning function (fseek(), fsetpos() or rewind()) for the same data stream will
delete any pushed-back bytes for the stream. The external storage associated with the
stream remains unchanged.

BS2000
A call to one of the following functions cancels the effects of the ungetc call (e.g. backward
positioning): fseek(), fsetpos(), lseek(), rewind(), fflush(). ❑

One byte of pushback is guaranteed. If ungetc() is called too many times on the same
stream without an intervening read or file-positioning operation on that stream, the
pushback operation may fail. A maximum of {BUFSIZE} bytes can be pushed back in the
C runtime system (see stdio.h).

If the value of c is equal to the macro EOF, the operation will fail and the input stream will
remain unchanged.

A successful call to ungetc() clears the end-of-file indicator for the stream. The value of
the file-position indicator for the stream after reading or discarding all pushed-back bytes
will be the same as it was before the bytes were pushed back. The file-position indicator is
decremented by each successful call to ungetc(); if its value was 0 before a call, its value
will be indeterminate after the call.

Return val. Byte pushed back
upon successful completion.

EOF if c is equal to EOF or if an error occurs.

Functions and variables in alphabetical order ungetc

U23711-J-Z125-5-76 953

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Notes At least one byte must always have been read from the file before the first ungetc() call.

The program environment determines ungetc() is executed for a BS2000 or POSIX file.

BS2000
If a byte other than the one just read is pushed back onto the buffer when accessing
BS2000 files, the behavior will depend on whether KR or ANSI functionality is set:

– KR functionality (only available with C/C++ versions lower than V3): when the buffer
contents are written to the external file, the original data is not changed.

– ANSI functionality: when the buffer contents are written to the external file, the original
data is not changed, i.e. the original data prior to the ungetc() call is always written to
the external file. ❑

See also fseek(), getc(), fsetpos(), read(), rewind(), setbuf(), stdio.h.

ungetwc Functions and variables in alphabetical order

954 U23711-J-Z125-5-76

ungetwc - push wide character back onto input stream

Syntax #include <wchar.h>

Optional
#include <stdio.h> ❑

wint_t ungetwc(wint_t wc, FILE *stream);

Description ungetwc() pushes the character corresponding to the wide character code wc back onto
the input stream pointed to by stream. The pushed-back characters will be returned by
subsequent reads on that stream in reverse order. A successful intervening call to a file-
positioning function (fseek(), fsetpos() or rewind()) for the same data stream deletes
the pushed-back characters for the stream. The external storage associated with the data
stream remains unchanged.

One byte of pushback is guaranteed. If ungetwc() is called too many times on the same
stream without an intervening read or file-positioning operation on that stream, the
pushback operation may fail.

If the value of wc is equal to the macro WEOF, the operation will fail and the input stream will
remain unchanged.

A successful call to ungetwc() clears the end-of-file indicator for the stream. The value of
the file-position indicator for the stream after reading or discarding all pushed-back bytes
will be the same as it was before the bytes were pushed back. The file-position indicator is
decremented by each successful call to ungetwc(); if its value was 0 before a call, its value
will be indeterminate after the call.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

Return val. Pushed back wide character
upon successful completion.

WEOF if the wide character could not be pushed back. errno is set to indicate the
error.

Errors ungetwc() will fail if:

Extension
EINVAL An attempt was made to access a BS2000 file.

See also fseek(), fsetpos(), read(), rewind(), setbuf(), stdio.h, wchar.h.

Functions and variables in alphabetical order unlink, unlinkat

U23711-J-Z125-5-76 955

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

unlink, unlinkat - remove link

Syntax #include <unistd.h>

int unlink(const char *path);
int unlinkat(int fd, const char *path,int flag);

Description unlink() removes the directory entry specified by the pathname pointed to by path, and
decrements the link count of the file referenced by the directory entry. When all links to a
file have been removed and no process has the file open, the space occupied by the file is
freed, and the file is no longer be accessible. If one or more processes have the file open
when the last link is removed, the space occupied by the file is not released until all refer-
ences to the file have been closed. If path is a symbolic link, the symbolic link is removed.

path should not name a directory unless the process has appropriate privileges. Applica-
tions should use rmdir() to remove directories.

Upon successful completion, unlink() marks the st_ctime and st_mtime structure
components of the parent directory for update. If the file´s link count is not 0, the st_ctime
structure component of the file is also marked for update.

BS2000
unlink() continues to be supported for compatibility reasons; it has the same effect as
remove(), i.e. deletes the file (see remove()). ❑

The unlinkat() function is equivalent to the unlink() or rmdir() function except when
the path parameter specifies a relative path. In this case the directory entry to be deleted is
not searched for in the current directly, but in the directory connected with the file descriptor
fd. If the file descriptor was opened without O_SEARCH, the function checks whether a
search is permitted in the connected file descriptor with the authorizations applicable for the
directory. If the file descriptor was opened with O_SEARCH, the check is not performed.

In the flag parameter, the value AT_REMOVEDIR, which is defined in the fnctl.h header,
can be transferred. In this case fd and path should be used to specify a directory and not a
normal file.

When the value AT_FDCWD is transferred to the unlinkat() function for the fd parameter,
the current directory is used.

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error. The file named by path
is not changed.

unlink, unlinkat Functions and variables in alphabetical order

956 U23711-J-Z125-5-76

Errors unlink() and unlinkat() will fail if:

EACCES Search permission is denied for a component of the path prefix, or write
permission is denied on the directory containing the directory entry to be
removed.

EBUSY The entry to be removed is the mount point for a mounted file system.

Extension
EFAULT path points outside the allocated address space of the process.

EINTR A signal was caught during the unlink() system call.

ELOOP Too many symbolic links were encountered in resolving path. ❑

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX} or a component of
path is longer than {NAME_MAX}.

ENOENT The named file does not exist or is an empty string. The user is not a system
administrator.

ENOTDIR A component of path is not a directory.

EPERM The file named by path is a directory, and the calling process does not have
appropriate privileges.

EROFS The directory entry to be unlinked is part of a read-only file system.

In addition, unlinkat() fails if the following applies:

EACCES The fd parameter was not opened with O_SEARCH, and the authorizations
applicable for the directory do not permit the directory to be searched.

EBADF The path parameter does not specify an absolute pathname, and the fd pa-
rameter does not have the value AT_FDCWD, nor does it contain a valid file
descriptor opened for reading or searching.

ENOTDIR The path parameter does not specify an absolute pathname, and the file de-
scriptor fd is not connected with a directory,
or
the flag parameter has the value AT_REMOVEDIR, and path does not specify
a directory.

EEXIST or ENOTEMPTY
The flag parameter has the value AT_REMOVEDIR and path specifies an un-
readable directory, or hard links to the directory which differ from dot exist
or more than one entry exists in dot-dot.

EINVAL The value of the flag parameter is invalid.

Functions and variables in alphabetical order unlink, unlinkat

U23711-J-Z125-5-76 957

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Notes rmdir() is used to delete a directory.

The program environment determines whether unlink() or unlinkat() is executed for a
BS2000 or POSIX file.

See also close(), link(), remove(), rmdir(), fcntl.h, unistd.h.

unlockpt Functions and variables in alphabetical order

958 U23711-J-Z125-5-76

unlockpt - remove lock from master/slave pseudoterminal pair

Syntax #include <stdlib.h>

int unlockpt (int fildes);

Description The unlockpt() function unlocks the slave pseudoterminal associated with the master
pseudoterminal specified in fildes.

Portable applications must call unlockpt() before they open the slave side of a
pseudoterminal device.

Return val. 0 if successful.

-1 otherwise. errno is set to indicate the error.

Errors unlockpt() will fail if:

EBADF The fildes argument is not a file descriptor open for writing.

EINVAL The fildes argument is not assigned to a master pseudoterminal.

See also grantpt(), open(), ptsname(), stdlib.h.

Functions and variables in alphabetical order unsetenv

U23711-J-Z125-5-76 959

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

unsetenv - remove an environment variable

Syntax #include <stdlib.h>

int unsetenv (const char *name);

Description The unsetenv() function removes an environment variable from the environment of the
calling process.

The name argument points to a string, which is the name of the variable to be removed. This
string shall not contain an '=' character. If the named variable does not exist in the current
environment, the environment remains unchanged and the function is considered to have
completed successfully.

If the application modifies environ or the pointers to which it points, the behavior of
unsetenv is undefined. The unsetenv function updates the list of pointers to which environ
points.

unsetenv() is not thread-save.

Return val. 0 if successful.

-1 otherwise. errno is set to indicate the error. The environment remains un-
changed.

Errors unsetenv() will fail if:

EINVAL The name argument is a null pointer, points to an empty string, or points to
a string containing an '=' character.

See also environ, exec, getenv(), malloc(), putenv(), setenv(), stdlib.h, section
“Environment variables” on page 104.

usleep Functions and variables in alphabetical order

960 U23711-J-Z125-5-76

usleep - suspend process for defined interval

Syntax #include <unistd.h>

int usleep(useconds_t useconds);

Description Suspends the current process for useconds microseconds. The actual length of time for
which the process is suspended can be longer than useconds microseconds due to other
activities in the system or because of the time required for processing the call.

useconds must be < 1 000 000. If useconds = 0, then usleep() has no effect.

The routine is implemented by setting the interval timer of the process and then waiting until
it expires. The previous status of the timer is saved and restored. If the wait time or ’sleep
time’ exceeds the period until expiry of the previous timer, the process is only suspended
until the signal would have occurred, and the signal is sent shortly before this sleep time
expires.

If threads are used, then the function affects the process or a thread in the following
manner: usleep() causes the current thread to be suspended until a specified time expires
or a signal is sent to the thread.

Return val. 0 if successful.

-1 otherwise.

Notes usleep() is supported for historical reasons. setitimer() should be used instead.

See also alarm(), getitimer(), sigaction(), sleep(), unistd.h.

Functions and variables in alphabetical order utime

U23711-J-Z125-5-76 961

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

utime - set file access and modification times

Syntax #include <utime.h>

Optional
#include <sys/types.h> ❑

int utime(const char *path, const struct utimbuf *times);

Description utime() sets the access and modification times of the file specified by the path argument.

If times is a null pointer, the access and modification times of the file are set to the current
time. The effective user ID of the process must match the owner of the file, or the process
must have write permission to the file or have appropriate privileges to use utime() in this
manner.

If times is not a null pointer, then times is interpreted as a pointer to a utimbuf structure, and
the access and modification times are set to the values contained in this structure. Only a
process with an effective user ID that matches the file´s owner or a process with appropriate
privileges may use utime() this way.

The times in the structure utimbuf are measured in seconds since
00:00:00 GMT, January 1, 1970 (see utime.h).

Upon successful completion, utime() marks the time of the last change to the file,
st_ctime, for update (see sys/stat.h).

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors utime() will fail if:

EACCES Search permission is denied for a component of the path; or the effective
user ID does not match that of a system administrator or the owner of the
file, times is a null pointer, and write access is denied.

Extension
EFAULT times is not null and points outside the allocated space of the process, or

path points outside the allocated space of the process.

EINTR A signal was caught during the system call utime().

EINVAL An attempt was made to access a BS2000 file.

ELOOP Too many symbolic links were encountered in resolving path. ❑

ENAMETOOLONG
The length of path exceeds {PATH_MAX} or the length of a component of
path exceeds{NAME_MAX}.

utime Functions and variables in alphabetical order

962 U23711-J-Z125-5-76

ENOENT The named file does not exist.

ENOTDIR A component of the path is not a directory.

EPERM The effective user ID does not match that of a system administrator or the
owner of the file and times is a null pointer.

EROFS The file system containing the file is mounted as a read-only file system.

Notes utime() is executed only for POSIX files

See also stat(), sys/types.h, utime.h.

Functions and variables in alphabetical order utimes

U23711-J-Z125-5-76 963

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

utimes - set file access time and file modification time

Syntax #include <sys/time.h>

int utimes(const char *path, const struct timeval times[2]);

Description utimes() sets the access and modification times of the file pointed to by path to the values
specified in times.
The function allows time specifications accurate to the microsecond.

The times argument is an array consisting of two structures of type timeval. The access
time is set to the value of the first element and the modification time to the value of the
second element. The times in the timeval structure are measured in seconds and micro-
seconds since 00:00:00 GMT, January 1, 1970 (see utime.h).

If times is the null pointer, the access and modification times are set to the current time. If
utimes() is to be used in this way, the process must be the owner of the file, must have
write permission for the file or must be a process with special permissions.

On successful completion, utimes() marks the st_ctime field for update
(see sys/stat.h).

Return val. 0 if successful.

-1 if an error occurs. errno is set to indicate the error.

Errors utimes() will fail if:

EACCES Search permission is denied for a component of the path, or times is a null
pointer and the effective user ID is not that of the system administrator or
the owner of the file, and write access is refused.

Extension
EFAULT times is non-zero and points outside the allocated address space, or path

points outside the allocated address space of the process.

EINTR A signal was caught during the utime() system call.

EINVAL An attempt was made to access a BS2000 file.

ELOOP Too many symbolic links were encountered in resolving path. ❑

ENAMETOOLONG
The length of path exceeds {PATH_MAX} or the length of a component of path
exceeds{NAME_MAX}.

utimes Functions and variables in alphabetical order

964 U23711-J-Z125-5-76

ENOENT The named file does not exist.

ENOTDIR A component of the path is not a directory.

EPERM The effective user ID is not that of the system administrator or the user of
the file, and times is not zero.

EROFS The file system containing the file is mounted as a read-only file system.

See also sys/time.h.

Functions and variables in alphabetical order utimensat

U23711-J-Z125-5-76 965

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

utimensat - Setting file access and update times

Syntax #include <sys/stat.h>

int utimensat(int fd, const char *path, const struct timespec times[2], int flag);

Description The utimensat() function sets the access and update times of a file to the values
specified in times. The times of the file are changed to which the path parameter points
relative to the directory connected with the file descriptor fd. The function permits time
specifications which are accurate to the nanosecond.

The times parameter is an array consisting of two structures of the type timespec. The access
time is set to the value of the first element, and the update time to the value of the second
element. The times in the timespec structure are specified in seconds and nanoseconds
since the epoch.

If the tv_nsec field of a timespec structure has the special value UTIME_NOW, the correspond-
ing timestamp of the file is set to the current time. If the tv_nsec field of a timespec structure
has the special value UTIME_OMIT, the corresponding timestamp of the file should not be
updated. In both cases the content of the tv_sec field is ignored.

When times is the null pointer, the access and update times are set to the current time. If the
file descriptor was opened without O_SEARCH, the function checks whether a search is per-
mitted in the connected file descriptor with the authorizations applicable for the directory. If
the file descriptor was opened with O_SEARCH, the check is not performed.

A process may call utimensat() with the null pointer for times set or with both tv_nesc fields
set to UTIME_NOW only if it has one of the following properties:
– owner of the file,
– write authorization for the file, or
– special rights.

A process may call utimensat() with a pointer other than NULL for times in which both
tv_nesc fields are not set to UTIME_NOW or UTIME_OMIT only if it is the owner of the file or a
process with special rights.

When both tv_nesc fields are set to UTIME_OMIT, the access authorization is not checked.
However, other errors can occur.

When the value AT_FDCWD is transferred to the utimensat() function for the fd parameter,
the current directory is used.

In the flag parameter, the value AT_SYMLINK_NOFOLLOW, which is defined in the fnctl.h
header, can be transferred. If path specifies a symbolic link, the timestamps of the symbolic
link are updated.

utimensat Functions and variables in alphabetical order

966 U23711-J-Z125-5-76

Return val. 0 in the case of success,

-1 in the case of an error errno is set to display the error.

Errors utimensat() fails when the following applies:

EACCES A component of the path may not be searched, or times is a null pointer and
the effective user number is not that of the system administrator and not that
of the owner of the file, and write access is rejected
or
the fd parameter was not opened with O_SEARCH, and the authorizations ap-
plicable for the directory do not permit the directory to be searched.

EBADF The path parameter does not specify an absolute pathname, and the fd pa-
rameter does not have the value AT_FDCWD, nor does it contain a valid file
descriptor opened for reading or searching.

Extension
EFAULT times is not equal to zero and points beyond the process's assigned address

space, or path points beyond the process's assigned address space.

EINTR A signal was intercepted during the system call utimensat().

EINVAL An attempt was made to access a BS2000 file or the value of the flag pa-
rameter is invalid.

ELOOP During the compilation of path too many symbolic links occurred to ❑.

ENAMETOOLONG
The length of path exceeds {PATH_MAX} or the length of a component of
path exceeds {NAME_MAX}.

ENOENT The specified file does not exist.

ENOTDIR A component of the path is not a directory, or the path parameter does not
specify an absolute pathname, and the file descriptor fd is not connected
with a directory.

EPERM The effective user number if not that of the system administrator and not
that of the owner of the file, and times is not equal to zero.

EROFS The file system containing the file has been mounted write-protected.

See also fcntl.h, sys/stat.h.

Functions and variables in alphabetical order va_arg

U23711-J-Z125-5-76 967

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

v... va_arg - process variable argument list

Syntax #include <stdarg.h>

Optional
#include <varargs.h> ❑

type va_arg(va_list ap, type);

Description The va_arg, va_start and va_end macros allow portable procedures that accept variable
argument lists, as defined in stdarg.h, to be written. They are used to process a list of
arguments which may vary in number and type at each function call.

va_arg returns the data type and value of the next argument in a variable argument list ap,
starting with the first argument. Technically speaking, the macro expands into an
expression of the data type and value of the argument.

The variable argument list to which ap points must be initialized with va_start before the
first call to va_arg. Each invocation of va_arg modifies ap so that the value of the next
argument in turn is returned.

ap is a pointer to the argument list initialized with va_start before va_arg is called for the
first time.

type is a type name matching the type of the current argument. Any C data type, for which
a pointer to an object of the specified type is defined by simply appending an * to type, is
allowed. Array and function types, for example, are invalid.

If there is no next argument or if type does not match the current argument, the behavior is
undefined.

Return val. Value of the first argument
when va_arg() is called for the first time after va_start. This argument
comes after the last "named" argument parmN in the formal parameter list
(see also va_start()). Subsequent calls return the remaining argument
values in succession.

Notes Compatibility of argument types is supported by the C runtime system to the extent that
similar types are stored in the same way in the parameter list, i.e.: all unsigned types
(including char) are represented as unsigned int (right-justified in a word), and all other
integer types are represented as int (right-justified in a word). float is represented as
double (right-justified in a doubleword).
The va_end macro must be called before returning from a function whose argument list was
processed with va_arg.

See also va_start(), va_end(), stdarg.h, varargs.h.

va_end Functions and variables in alphabetical order

968 U23711-J-Z125-5-76

va_end - end variable argument list

Syntax #include <stdarg.h>

Optional
#include <varargs.h> ❑

void va_end(va_list ap);

Description The va_end, va_start and va_arg macros allow portable procedures that accept variable
argument lists, as defined in stdarg.h, to be written. They are used to process a list of
arguments which may vary in number and type at each function call.

va_end performs cleanup activities on the variable argument list ap. This macro must be
called before returning from a function whose argument list has been processed with
va_start and va_arg.

ap is the argument list that was processed. If it is to be used again, the argument list must
be re-initialized with va_start, as va_end changes the argument list ap.

See also va_arg(), va_start(), stdarg.h, varargs.h.

Functions and variables in alphabetical order va_start

U23711-J-Z125-5-76 969

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

va_start - initialize variable argument list

Syntax #include <stdarg.h>

Optional
#include <varargs.h> ❑

void va_start(va_list ap, parmN);

Description The va_start, va_arg and va_end macros allow portable procedures that accept variable
argument lists, as defined in stdarg.h, to be written. They are used to process a list of
arguments which may vary in number and type at each function call.

va_start initializes the variable argument list ap for subsequent calls to va_arg and
va_end.

ap is a pointer to the argument list.

parmN is the name of the last argument of the variable argument list. Functions which
process variable argument lists must define at least one argument.

Return val. Number of output characters
if successful.

0 if an error occurs.

Notes If parmN has an invalid data type or its type does not match the current argument, the
behavior is undefined.

Compatibility of argument types is supported by the C runtime system to the extent that
similar types are stored in the same way in the parameter list, i.e.: all unsigned types
(including char) are represented as unsigned int (right-justified in a word), and all other
integer types are represented as int (right-justified in a word). float is represented as
double (right-justified in a doubleword).

See also va_arg(), va_end(), stdarg.h, varargs.h.

valloc Functions and variables in alphabetical order

970 U23711-J-Z125-5-76

valloc - request memory aligned with page boundary

Syntax #include <stdlib.h>

void *valloc (size_t size);

Description valloc() has the same effect as malloc(), except that the allocated memory area is
aligned with the page border, i.e. an integer multiple of the return value of
sysconf(_SC_PAGESIZE).

If size = 0, valloc() returns a null pointer. errno is not set in this case.

Return val. Pointer to the allocated memory area
if successful.

Null pointer otherwise. errno is set to indicate the error.

Errors valloc() will fail if

ENOMEM There is not enough memory available.

Notes Instead of valloc(), applications should use malloc() or mmap(). In systems with a
large page size, it may not be possible to call valloc() successfully.

valloc() will no longer be supported in the next version of the X/Open standard.

See also malloc(), sysconf(), stdlib.h.

Functions and variables in alphabetical order vfork

U23711-J-Z125-5-76 971

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

vfork - generate new process in virtual memory

Syntax #include <unistd.h>

pid_t vfork (void);

Description vfork() is mapped to fork(). See the relevant section for a description.

Return val. 0 or PID if successful. 0 is returned to the child process, and the process ID of the
child process is returned to the parent process.

-1 to the parent process if an error occurs. No child process is generated.
errno is set to indicate the error.

Errors vfork() will fail if.

EAGAIN The system-dependent limit to the maximum number of processes possible
throughout the system or per user was exceeded.
These limits are defined when the system is generated.

ENOMEM The swap area is not large enough for the new process.

See also exec(), exit(), fork(), wait(), unistd.h.

vfprintf, vprintf, vsprintf Functions and variables in alphabetical order

972 U23711-J-Z125-5-76

vfprintf, vprintf, vsprintf - formatted output of variable argument list

Syntax #include <stdarg.h>
#include <stdio.h>

int vprintf(const char *format, va_list ap);
int vfprintf(FILE *stream, const char *format, va_list ap);
int vsprintf(char *s, const char *format, va_list ap);

Description vfprintf(), vprintf() and vsprintf() correspond to the functions fprintf(),
printf() and sprintf(), respectively, except that instead of being called with a variable
number of arguments, they are called with an argument list as defined by stdarg.h. The
number of arguments in the argument list and their types are not known at the time of
compilation.

Since the vprint functions invoke the va_arg macro, but not the va_end macro, the value
of ap after the return is indeterminate.

Return val. See fprintf().

Errors See fprintf().

Notes The macro va_end(ap) should be called after using these functions in order to reset the
pointer ap to a defined value so that any subsequent calls to these functions will have the
correct initial values.

vfprint() always starts with the first argument in the variable argument list. It is possible
to start output from any particular argument by issuing the appropriate number of va_arg
calls before calling the vfprintf() function. Each va_arg call advances the position in
the argument list by one argument.

The program environment determines whether vprintf() is executed for a BS2000 or
POSIX file.

BS2000
The ANSI syntax of the format string applies both in KR mode (only available with C/C++
versions lower than V3) and in ANSI modes (as defined by the LANGUAGE-STANDARD
operands of the SOURCE-PROPERTIES option).

Functions and variables in alphabetical order vfwprintf

U23711-J-Z125-5-76 973

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
split=no was entered for fopen(), records which are longer than the maximum record
length are truncated to the maximum record length when they are written. By default or with
the specification split=yes, these records are split into multiple records. If a record has
precisely the maximum record length, a record of the length zero is written after it. ❑

See also fprintf(), stdarg.h, stdio.h, varargs.h.

vfwprintf - formatted output of wide characters

Syntax #include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vfwprintf(FILE *dz, const wchar_t *format, va_list arg);

Description A detailed description can be found under fwprintf().

vprintf Functions and variables in alphabetical order

974 U23711-J-Z125-5-76

vprintf - formatted output to standard out

Syntax #include <stdio.h>

int vprintf(const char *format, va_list arg);

Description vprintf() is the same as the printf() function. In contrast to printf(), vprintf()
allows for the output of arguments whose number and data type are not known at the time
of compilation.
vprintf() is used in functions that can be passed a different format string as well as
different arguments for output from the caller. The format string format stands for the formal
parameter list of the function definition and a variable argument list ", ...".
format is a format string just like for printf() with ANSI functionality (see printf()).

vprintf() processes an argument list arg with successive internal va_arg calls and writes
the arguments to the standard output stdout according to the format string format. The
variable argument list arg must be initialized before calling vprintf() using the va_start
macro.

Return val. Number of characters to be output
if successful.

Integer< 0 if an error occurs

Notes vprintf() always starts with the first argument in the variable argument list. It is possible
to start output from any particular argument by issuing the appropriate number of va_arg
calls before calling the vprintf() function. Each va_arg call advances the position in the
argument list by one argument.

vprintf() does not call the va_end macro. Since vprintf() uses the va_arg macro,
the value of arg is undefined upon returning.

BS2000

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the specification
split=no was entered for fopen(), records which are longer than the maximum record
length are truncated to the maximum record length when they are written. By default or with
the specification split=yes, these records are split into multiple records. If a record has
precisely the maximum record length, a record of the length zero is written after it. ❑

See also vfprintf(), vsprintf()

Functions and variables in alphabetical order vsnprintf

U23711-J-Z125-5-76 975

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

vsnprintf - formatted output to a string

Syntax #include <stdarg.h>
#include <stdio.h>

int vsnprintf(char *s, size_t n, const char *format, va_list arg);

vsnprintf() formats data (characters, strings, numerical values)according to the specifi-
cation in the format string and writes the data to the area to which s points.

vsnprintf() is similar to the vsprintf() function. In contrast to vsprintf(),
vsnprintf() only outputs up to the buffer limit specified by the n parameter. This prevents
buffer overrun. n must not exceed INT_MAX in size.

vsnprintf() outputs a maximum of n-1 characters and adds a NULL character (\0) at the
end of the output. If n=0, nothing is output.

vsnprintf() exists, analogous to vsprintf() , as an ASCII, IEEE and ASCII/IEEE func-
tion (cf. sections “IEEE floating-point arithmetic” on page 37 und “ASCII encoding” on
page 42).

Parameters See fprintf().

Return val. < 0 n > INT_MAX or output error.

= 0 .. n-1 It was possible to edit the output completely. The return value specifies the
length of the output without the terminating NULL character

> n It was not possible to edit the output completely. The return value specifies
the length of the output without the terminating NULL character which a com-
plete output would require.

vsprintf Functions and variables in alphabetical order

976 U23711-J-Z125-5-76

vsprintf - formatted output to a string

Syntax #include <stdio.h>

int vsprintf(char *s, const char *format, va_list arg);

Description vsprintf() is the same as the sprintf() function. In contrast to sprintf(),
vsprintf() allows for the output of arguments whose number and data type are not
known at the time of compilation.
vsprintf() is used in functions that can be passed a different format string as well as
different arguments for output from the caller. The format string format stands for the formal
parameter list of the function definition and a variable argument list ", ...".

vsprintf() processes an argument list arg with successive internal va_arg calls and
writes the arguments to the string s according to the format string format. The variable
argument list arg must be initialized before calling vsprintf() using the va_start macro.
The function has the following parameters:

char *s
Pointer to the resulting string. vsprintf() terminates the string with the null byte (\0).

const char *format
Format string like for printf() with ANSI functionality (see printf() for a
description).

The following difference exists with respect to white space characters (\n, \t, etc.):
vsprintf() enters the EBCDIC value of the control character in the resulting string. Only
when it is output to a text file will the control characters be converted to their appropriate
effect in accordance with the type of text file (see page 117).

va_list arg
Pointer to the variable argument list that was initialized with va_start.

Return val. Number of characters stored in s. The terminating null byte (\0) generated by vsprintf()
is not counted.

Notes vsprintf() always starts with the first argument in the variable argument list. It is possible
to start output from any particular argument by issuing the appropriate number of va_arg
calls before calling the vsprintf() function. Each va_arg call advances the position in
the argument list by one argument.

vsprintf() does not call the va_end macro. Since vsprintf() uses the va_arg macro,
the value of arg is undefined upon returning.
The behavior is undefined for overlapping memory areas.

See also vfprintf(), vprintf()

Functions and variables in alphabetical order vswprintf / vwprintf

U23711-J-Z125-5-76 977

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

vswprintf - formatted output of wide characters

Syntax #include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vswprintf(wchar_t *s, size_t n, const wchar_t *format, va_list arg);

Description A detailed description can be found under fwprintf().

vwprintf - formatted output of wide characters

Syntax #include <stdarg.h>
#include <wchar.h>

int vwprintf(const wchar_t *format, va_list arg);

Description A detailed description can be found under fwprintf().

wait, waitpid Functions and variables in alphabetical order

978 U23711-J-Z125-5-76

w... wait, waitpid - wait for child process to stop or terminate

Syntax #include <sys/wait.h>

Optional
#include <sys/types.h> ❑

pid_t wait (int *stat_loc);
pid_t waitpid (pid_t pid, int *stat_loc, int options);

Description wait() and waitpid() allow the calling process to obtain status information on one of its
child processes. If status information is available for two or more child processes, the order
in which their status is reported is unspecified.

wait() suspends execution of the calling process until the exit status for one of its child
processes is available, or until delivery of a signal whose action is either to execute a signal-
handling function or SIG_DFL. If the status information is available before the call to
wait(), the function will return immediately.

waitpid() behaves identically to the wait() function if the value of pid is (pid_t)-1 and
the value of options is 0. Otherwise, its behavior is modified by the values of the pid and
options arguments.

pid specifies a set of child processes for which status is requested. waitpid() will only
return the status of a child process from this set:

– If pid is equal to (pid_t)-1, the status is requested for any child process. In this
respect, waitpid() is then equivalent to wait().

– If pid is greater than 0, it specifies the process ID of a single child process for which the
status is requested.

– If pid is 0, the status is requested for any child process whose process group ID is equal
to that of the calling process.

– If pid is less than (pid_t)-1, the status is requested for any child process whose
process group ID is equal to the absolute value of pid.

options is constructed from the bitwise-inclusive OR of zero or more of the following flags,
which are defined in the header sys/wait.h.

WCONTINUED waitpid() determines the status of a child process specified by pid which
is continued and whose status has not been queried since being resumed
after a job control stop.

WNOHANG waitpid() will not suspend execution of the calling process if the status is
not immediately available for one of the child processes specified by pid.

Functions and variables in alphabetical order wait, waitpid

U23711-J-Z125-5-76 979

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

WUNTRACED The status of any child processes specified by pid that are stopped, and
whose status has not yet been returned since they stopped, will also be
reported to the calling process.

If wait() or waitpid() returns because the status of a child process is available, the
return value of these functions will be the process ID of the child process. In this case, if the
value of stat_loc is not a null pointer, the status information will be stored in the location
pointed to by stat_loc.

If the status returned is from a terminated child process that returned the value 0 from
main() or passed 0 as the status argument to _exit() or exit(), the value stored at the
address pointed to by stat_loc will be 0. Regardless of its value, this information may be
interpreted using the following macros, which are defined in sys/wait.h and evaluate to
integral expressions; the stat_val argument is the integer value pointed to by stat_loc.

WIFEXITED(stat_val)
Evaluates to a non-zero value (true in C) if the status was returned for a
child process that terminated normally.

WEXITSTATUS(stat_val)
If the value of WIFEXITED(stat_val) is non-zero, this macro evaluates to the
low-order 8 bits of the exit status that the child process passed to _exit()
or exit(), or the value the child process returned from main().

WIFSIGNALED(stat_val)
Evaluates to non-zero value if the status was returned for a child process
that terminated due to the receipt of a signal that was not caught (see also
signal.h).

WTERMSIG(stat_val)
If the value of WIFSIGNALED(stat_val) is non-zero, this macro evaluates to
the number of the signal that caused the termination of the child process.

WIFSTOPPED(stat_val)
Evaluates to a non-zero value if the status was returned for a child process
that is currently stopped.

WSTOPSIG(stat_val)
If the value of WIFSTOPPED(stat_val) is non-zero, this macro evaluates to
the number of the signal that caused the child process to stop.

WIFCONTINUED(stat_val)
Calculates a non-zero value if the status for a child process that was
resumed after a job control stop is returned.

wait, waitpid Functions and variables in alphabetical order

980 U23711-J-Z125-5-76

If the status stored at the location stat_loc was stored there by a waitpid() call which:

– specified the flag WUNTRACED but not the flag WCONTINUED:
then precisely one of the macros WIFEXITED(*stat_loc), WIFSIGNALED(*stat_loc) or
WIFSTOPPED(*stat_loc) returns a non-zero value.

– specified the flags WUNTRACED and WCONTINUED:
then precisely one of the macros WIFEXITED(*stat_loc), WIFSIGNALED(*stat_loc) and
FSTOPPED(*stat_loc) or WIFCONTINUED(*stat_loc) returns a non-zero value.

– specified neither the flag WUNTRACED nor the flag WCONTINUED,
or was stored by a call of the wait() function:
then precisely one of the macros WIFEXITED(*stat_loc) or WIFSIGNALED(*stat_loc)
returns a non-zero value.

– specified the flag WCONTINUED but not the flag WUNTRACED,
or was stored by a call of the wait() function:
precisely one of the macros WIFEXITED(*stat_loc), WIFSIGNALED(*stat_loc) or
WIFCONTINUED(*stat_loc) returns a non-zero value.

If a parent process terminates without waiting for all of its child processes to terminate, the
remaining child processes will be assigned a new parent process ID, namely that of the
system process init.

If threads are used, the wait() and waitpid() functions affect the process or a thread in the
following manner: The calling thread is suspended until the status information is available.

Return val. Process ID of the child process
if wait() or waitpid() returns because the status of a child process is
available.

-1 if the wait() or waitpid() returns because a signal is delivered. errno is
set to EINTR.

0 if waitpid() was invoked with the flag WNOHANG set in the options argument
and the function has at least one child process specified by pid.

(pid_t)-1 if an error occurs. errno is set to indicate the error.

Functions and variables in alphabetical order wait, waitpid

U23711-J-Z125-5-76 981

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Errors wait() will fail if:

ECHILD The calling process has no existing unwaited-for child processes.

EINTR The function was interrupted by a signal. The value of the object pointed to
by stat_loc is undefined in this case.

waitpid() will fail if:

ECHILD The process specified with pid or the process group does not exist,
or is not a child process of the calling process.

EINTR The function was interrupted by a signal. The value of the object pointed to
by stat_loc is undefined in this case.

EINVAL options is not valid.

See also exec, exit(), fork(), sys/types.h, sys/wait.h.

wait3 Functions and variables in alphabetical order

982 U23711-J-Z125-5-76

wait3 - wait for status change of child processes

Syntax #include <sys/wait.h>

pid_t wait3(int *stat_loc, int options, struct rusage *resource_usage);

Description wait3() returns status information on the specified child process to the calling process.

The call

wait3(stat_loc, options, resource_usage);

is equivalent to the call

waitpid((pid_t)-1, stat_loc, options);

except that on successful execution in the specified rusage structure resource_usage, the
status information for the child process identified by the return value is entered.

wait3() is not thread-safe.

If threads are used, the wait() and waitpid() functions affect the process or a thread in the
following manner: wait3() returns status information on the specified child process to the
calling thread.

Return val. see waitpid().

In addition to the errors specified for waitpid(), wait3() will fail if:

ECHILD For the calling process there are no child processes which are not waited
for, or
the group of processes specified by the pid argument can never acquire the
status specified by options.

Notes If a parent process is terminated without waiting for its child processes, the initialization
process (process ID = 1) takes over the child processes.

See also exec, exit(), fork(), pause(), sys/wait.h.

Functions and variables in alphabetical order waitid

U23711-J-Z125-5-76 983

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

waitid - wait for status change of child processes

Syntax #include <wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

Description The calling process is suspended by waitid() until one of the child processes changes its
status. The current status of the relevant child process is entered in the structure pointed to
by infop. If a child process has changed its status before the waitid() call, waitid()
returns immediately.

The idtype and id arguments indicate which child processes waitid() is to wait for.

– If idtype is P_PID, then waitid() waits for the child process with the process ID
(pid_t) id.

– If idtype is P_PGID, then waitid() waits for one of the child processes with the process
group ID (pid_t)id.

– If idtype is P_ALL, then waitid() waits for any child process and id is ignored.

The options argument is used to specify which status changes waitid() is to wait for. The
status changes are specified via bitwise ORing of the following flags:

WEXITED waits for processes to exit.

WTRAPPED waits for traced processes to be interrupted or reach a breakpoint (see
ptrace()).

WSTOPPED waits and returns the process status of a child process which stopped after
a signal was received.

WCONTINUED returns the status of a child process that was suspended and then resumed.

WNOHANG returns immediately if there are no child processes to be waited for.

WNOWAIT keeps the process whose status was returned in infop in a wait state. The
status of this process is not affected. This process can be waited for again
when the call is completed.

infop must point to a siginfo_t structure, as it is defined in siginfo(). If waitid() returns
because it has found a child process which fulfils the conditions specified in idtype and
options, the system enters the status of this process in siginfo_t. The structure element
si_signo always has the value SIGCHILD.

If threads are used, the wait() and waitpid() functions affect the process or a thread in the
following manner: The calling thread is suspended until the status of one of the child
processes changes.

waitid Functions and variables in alphabetical order

984 U23711-J-Z125-5-76

Return val. 0 if waitid() returns because of a status change of a child process

-1 otherwise. errno is set to indicate the error.

Errors waitid() will fail if at least one of the following occurs:

ECHILD For the calling process there are no child processes which are not being
waited for.

EINTR waitid() was interrupted because the calling process has received a
signal.

EINVAL An invalid value was passed for options, or
idtype and id indicate an invalid number of process set.

EFAULT infop points to an invalid address.

See also exec, exit(), wait(), sys/wait.h

Functions and variables in alphabetical order wcrtomb

U23711-J-Z125-5-76 985

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

wcrtomb - convert wide characters to multi-byte characters

Syntax #include <wchar.h>

size_t wcrtomb(char *s, wchar_t wc, mbstate_t *ps);

Description If s is a null pointer, wcrtomb() corresponds to the call
wcrtomb(buf, L'\0', ps)
where buf designates an internal buffer.

If s is not a null pointer, wcrtomb() determines how many bytes are required to represent
the multi-byte character corresponding to wc. Any Shift sequences are also taken into
account. The resulting bytes are written to the array whose first element is pointed to by s.
A maximum of {MB_CUR_MAX} bytes are written.
If wc is the null character, a null byte is written that can preceded a Shift sequence that
restores the initial conversion state.

The final state corresponds to the “initial conversion” state.

Return val. (size_t)-1 if wc does not represent a valid wide character. The value of the EILSEQ
macro is written to errno. The conversion status is undefined.

Otherwise the number of bytes written to the array *s.

Notes This version of the C runtime system only supports 1-byte characters as wide character
codes.

See also mblen(), mbtowc(), wcstombs(), wctomb()

wcscat Functions and variables in alphabetical order

986 U23711-J-Z125-5-76

wcscat - concatenate two wide character strings

Syntax #include <wchar.h>

wchar_t *wcscat(wchar_t *ws1, const wchar_t *ws2);

Description wcscat() appends a copy of the wide character string ws2 to the end of the wide character
string ws1 and returns a pointer to ws1.

The null wide character (\0) at the end of the wide character string ws1 is overwritten by the
first character of the wide character string ws2.
wcscat() terminates the wide character string with a null byte (\0).

Return val. Pointer to the resulting wide character string ws1.

Notes Wide character strings terminated with the null wide character (\0) are expected as
arguments.
wcscat() does not verify whether ws1 has enough space to accommodate the result!

The behavior is undefined if memory areas overlap.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wcsncat(), wchar.h.

Functions and variables in alphabetical order wcschr

U23711-J-Z125-5-76 987

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

wcschr - scan wide character string for wide characters

Syntax #include <wchar.h>

wchar_t *wcschr(const wchar_t *ws, wint_t wc);

Description wcschr() searches for the first occurrence of the wide character wc in the wide character
string ws and returns a pointer to the located position in ws if successful. The value of wc
must be a character representable as a type wchar_t and must be a wide-character code
corresponding to a valid character in the current locale.

The terminating null wide-character code (\0) is considered part of the wide character
string.

Return val. Pointer to the position of wc in the wide character string ws if successful.

Null pointer if wc is not contained in the wide character string ws.

Notes Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wcsrchr(), wchar.h.

wcscmp Functions and variables in alphabetical order

988 U23711-J-Z125-5-76

wcscmp - compare two wide character strings

Syntax #include <wchar.h>

int wcscmp(const wchar_t *ws1, const wchar_t *ws2);

Description wcscmp() compares wide character strings ws1 and ws2 lexically, e.g.:

"circle" is lexically less than "circular";
"bustle" is lexically greater than "bus".

Return val. Integer value, i.e.:

Notes Wide character strings terminated with the null wide character code (\0) are expected as
arguments.
The collating sequence is based on the EBCDIC character set.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wcsncmp(), wchar.h.

< 0 ws1 is lexically less than ws2.

= 0 ws1 and ws2 are lexically equal.

> 0 ws1 is lexically greater than ws2.

Functions and variables in alphabetical order wcscoll

U23711-J-Z125-5-76 989

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

wcscoll - compare two wide character strings according to
LC_COLLATE

Syntax #include <wchar.h>

int wcscoll(const wchar_t *ws1, const wchar_t *ws2);

Description wcscoll() lexically compares two wide character strings ws1 and ws2, in accordance with
the collation sequence defined for the locale in LC_COLLATE.

Return val. Integer value, where the following applies:

< 0 ws1 is less than ws2 with regard to the defined collation sequence.
= 0 ws1 and ws2 are equal with regard to the defined collation sequence.
> 0 ws1 is greater than ws2 with regard to the defined collation sequence.

Errors wcscoll() will fail if:

EINVAL One of the two wide character strings cannot be converted into a multi-byte
string.

Notes Because there is no default value defined for if an error occurs, it is advisable to set errno
to 0, then call wcscoll() and after the call check errno. If errno is not 0, assume that an
error has occurred.

For sorting long lists, the wcsxfmr() and wcscmp() functions should be used.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wcsncmp(), wcsxfrm(), wchar.h.

wcscpy Functions and variables in alphabetical order

990 U23711-J-Z125-5-76

wcscpy - copy wide character string

Syntax #include <wchar.h>

wchar_t *wcscpy(wchar_t *ws1, const wchar_t *ws2);

Description wcscpy() copies the wide character string ws2, including the terminating null wide
character code (\0), into the memory area pointed to by ws1. The space pointed to by ws1
must be large enough to accommodate the wide character string ws2 as well as the termi-
nating null wide character code (\0).

Return val. Pointer to the resulting wide character string ws1.

Notes Wide character strings terminated with the null wide character code (\0) are expected as
arguments.
wcscpy() does not verify whether ws1 is large enough to accommodate the result.
The behavior is undefined if memory areas overlap.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wcsncpy(), wchar.h.

Functions and variables in alphabetical order wcscspn

U23711-J-Z125-5-76 991

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

wcscspn - get length of complementary wide character substring

Syntax #include <wchar.h>

size_t wcscspn(const wchar_t *ws1, const wchar_t *ws2);

Description Starting at the beginning of the wide character string ws1, wcscspn() calculates the length
of the segment that does not contain a single character from the wide character string ws2.
The terminating null byte (\0) is not treated as part of the wide character string ws2.

The function is terminated and the segment length is returned on encountering a character
in ws1 that matches a character in ws2.

If the first character in ws1 already matches a character in ws2, the segment length is equal
to 0.

Return val. Integer that indicates the segment length (number of non-matching characters),
starting at the beginning of wide character string ws1.

Notes Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wcsspn(), wchar.h.

wcsftime Functions and variables in alphabetical order

992 U23711-J-Z125-5-76

wcsftime - convert date and time to wide character string

Syntax #include <wchar.h>

size_t wcsftime(wchar_t *wcs, size_t maxsize, const wchar_t *format,
 const struct tm *timptr);

Description wcsftime() writes wide character codes to the field pointed to by wss in accordance with
the string specified in format.

The function behaves as if a string generated by strftime() had been passed to
mbtowcs() as an argument and mbtowcs() in turn passes the result to wcsftime() as
a wide character string with maximum maxsize wide character codes.

If copying is between overlapping objects, the result is undefined.

Return val. Integer which indicates the number of wide character codes written to the field
(without a terminating null) if the number of wide character codes including
the terminating null is less than or equal to maxsize.

0 otherwise. In this case the field content is undefined.

Errors wcsftime() will fail if:

ENOMEM There is not enough memory available for the internal management data.

See also strftime(), mbtowcs(), wchar.h.

Functions and variables in alphabetical order wcslen

U23711-J-Z125-5-76 993

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

wcslen - get length of wide character string

Syntax #include <wchar.h>

size_t wcslen(const wchar_t *ws);

Description wcslen() determines the length of the wide character string ws, excluding the terminating
null wide character code (\0).

Return val. Length of the wide character string ws. The terminating null wide character code
(\0) is not included in the count.

Notes A wide character string terminated with the null wide character code (\0) is expected as the
argument.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wchar.h.

wcsncat Functions and variables in alphabetical order

994 U23711-J-Z125-5-76

wcsncat - concatenate two wide character strings

Syntax #include <wchar.h>

wchar_t *wcsncat(wchar_t *ws1, const wchar_t *ws2, size_t n);

Description wcsncat() appends a maximum of n characters of the wide character string ws2 to the end
of the wide character string ws1 and returns a pointer to ws1.

The terminating null wide character code (\0) at the end of the wide character string ws1 is
overwritten by the first byte of the wide character string ws2.

If the wide character string ws2 contains less than n characters, only the characters in ws2
will be appended to ws1, and if ws2 contains more than n characters, then only the leading
n characters of ws2 will be appended to ws1.

wcsncat() terminates the wide character string with a null wide character code (\0).

Return val. Pointer to the resulting wide character string ws1.

Notes Wide character strings terminated with a null wide character code (\0) are expected as
arguments.

wcsncat() does not verify whether ws1 has enough space to accommodate the result.
The behavior is undefined if memory areas overlap.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wcscat(), wchar.h.

Functions and variables in alphabetical order wcsncmp

U23711-J-Z125-5-76 995

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

wcsncmp - compare two wide character substrings

Syntax #include <wchar.h>

int wcsncmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);

Description wcsncmp() compares the wide character strings ws1 and ws2 lexically up to a maximum
length of n. For example:

wcsncmp("Sie","Siemens",3)

returns 0 (equal), because the first three characters of both arguments match one another.

Return val. Integer value:

< 0 In the first n characters, ws1 is lexically less than ws2.

0 In the first n characters, ws1 and ws2 are lexically equal.

> 0 In the first n characters, ws1 is lexically greater than ws2.

Notes Wide character strings terminated with a null wide character code (\0) are expected as
arguments.

The collating sequence is based on the EBCDIC character set.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wcscmp(), wchar.h.

wcsncpy Functions and variables in alphabetical order

996 U23711-J-Z125-5-76

wcsncpy - copy wide character substring

Syntax #include <wchar.h>

wchar_t *wcsncpy(wchar_t *ws1, const wchar_t *ws2, size_t n);

Description wcsncpy() copies a maximum of n characters from the wide character string ws2 to the
memory area pointed to by ws1.

If the wide character string ws2 contains less than n characters, only the length of ws2
(wcslen + 1) is copied, and ws1 is then padded to the length of n with null wide character
codes.

If the wide character string ws2 contains n or more characters (excluding the null wide
character code), the wide character string ws1 is not automatically terminated with a null
wide character code.

If the wide character string ws1 contains more than n characters and the last character
copied from ws2 is not a null wide character code, any data which may still remain in ws1
will be retained.

wcsncpy() does not automatically terminate ws1 with a null wide character code.

Return val. Pointer to the resulting wide character string ws1.

Notes wcsncpy() does not verify whether ws1 has enough space to accommodate the result!

Since wcsncpy() does not automatically terminate the resulting wide character string with
a null wide character code, it may often be necessary to explicitly terminate ws1 with a null
wide character code. This is typically the case when only a part of ws2 is being copied, and
ws2 does not contain a null wide character code either.

The behavior is undefined if memory areas overlap.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wcscpy(), wchar.h.

Functions and variables in alphabetical order wcspbrk

U23711-J-Z125-5-76 997

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

wcspbrk - get first occurrence of wide character in wide character
string

Syntax #include <wchar.h>

wchar_t *wcspbrk(const wchar_t *ws1, const wchar_t *ws2);

Description wcspbrk() searches the wide character string ws1 for the first character that matches any
character in the wide character string ws2. The terminating null wide character code (\0) is
not considered part of the wide character string ws2.

Return val. Pointer to the first matching character found in ws1.

Null pointer if not a single match is present.

Notes Wide character strings terminated with a null wide character code (\0) are expected as
arguments.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wcschr(), wcsrchr(), wchar.h.

wcsrchr Functions and variables in alphabetical order

998 U23711-J-Z125-5-76

wcsrchr - get last occurrence of wide character in wide character
string

Syntax #include <wchar.h>

wchar_t *wcsrchr(const wchar_t *ws, wint_t wc);

Description wcsrchr() searches for the last occurrence of character wc in the wide character string ws
and returns a pointer to the located position in ws if successful.

The terminating null wide character code (\0) is considered to be part of the wide character
string.

Return val. Pointer to the position of wc in the wide character string ws.

Null pointer if wc is not contained in the wide character string ws.

Notes Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wcschr(), wchar.h.

Functions and variables in alphabetical order wcsrtombs

U23711-J-Z125-5-76 999

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

wcsrtombs - convert wide character string to multi-byte string

Syntax #include <wchar.h>

size_t wcsrtombs(char *dst, const wchar_t **src, size_t len, mbstate_t *ps);

Description wcsrtombs() converts a sequence of wide characters in the array indirectly pointed to by
src to multi-byte characters. wcsrtombs() starts the conversion with the conversion state
described in *ps. The converted characters are written to the array pointed to by dst as long
as dst is not a null pointer. Every character is converted as if wcrtomb() was called.

The conversion terminates when a terminating null character is encountered. The null
character is also converted and written into the array.

The conversion is terminated abnormally if

– a sequence of bytes is found that does not represent a valid multi-byte character or

– dst is not a null pointer and the next multi-byte character would exceed the entire length
len of characters to be written into the array.

If dst is not a null pointer, the pointer object pointed to by src is assigned one of the following
two values:

– a null pointer if the conversion terminated when it reached a null character

– the address directly after the last multi-byte character converted

If dst is not a null pointer and the conversion terminated when it reached a null character,
then the final state is the same as the “initial conversion” state.

Return val. (size_t)-1 if a conversion error occurred, i.e. a sequence of bytes that does not
represent a valid multi-byte character was found. The value of the EILSEQ
macro is written in errno. The conversion status is undefined.

Otherwise the number of successfully converted multi-byte characters.
The terminating null character (if present) is not counted.

See also mblen(), mbtowc(), wcstombs(), wctomb()

wcsspn Functions and variables in alphabetical order

1000 U23711-J-Z125-5-76

wcsspn - get length of wide character substring

Syntax #include <wchar.h>

size_t wcsspn(const wchar_t *ws1, const wchar_t *ws2);

Description Starting at the beginning of the wide character string ws1, wcsspn() computes the length
of the segment that contains only characters from the wide character string ws2.

The function is terminated, and the segment length is returned on encountering the first
character in ws1 that does not match any character in ws2.

If the first character in ws1 matches none of the characters in ws2, the segment length is
equal to 0.

Return val. Integer value
that indicates the segment length (number of matching characters), starting
at the beginning of string ws1.

Notes Wide character strings terminated with a null wide character code (\0) are expected as
arguments.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wcscspn(), wchar.h.

Functions and variables in alphabetical order wcsstr

U23711-J-Z125-5-76 1001

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

wcsstr - search for first occurrence of a wide character string

Syntax #include <wchar.h>

wchar_t *wcsstr(const wchar_t *ws1, const wchar_t *ws2);

Description wcsstr() searches for the first occurrence of the wide character string ws2 (not including
the terminating null) in the wide character string ws1.

Return val. Pointer to the start of the string found
if ws2 is found in ws1.

Null pointer if ws2 is not found in ws1.

ws1 if ws2 is a null pointer.

Notes The following two function prototypes of the function wcsstr() are valid for C++:
const wchar_t* wcsstr(const wchar_t *ws1, const wchar_t *ws2);
 wchar_t* wcsstr(wchar_t *ws1, const wchar_t *ws2);

See also strstr(), wmemcmp(), wmemcpy(), wmemchr()

wcstod Functions and variables in alphabetical order

1002 U23711-J-Z125-5-76

wcstod - convert wide character string to double-precision number

Syntax #include <wchar.h>

double wcstod(const wchar_t *nptr, wchar_t **endptr);

Description wcstod() converts the initial portion of the wide character string pointed to by nptr to a
double-precision representation. The input wide character string is first decomposed into
three parts:

– an initial, possibly empty, sequence of white-space wide character codes (as specified
by iswspace()),

– a subject sequence interpreted as a floating-point constant,

– and a final wide character string of one or more unrecognized wide character codes,
including the terminating null wide character code of the input wide character string.

wcstod() then attempts to convert the subject sequence to a floating-point number, and
returns the result.

The expected form of the subject sequence is an optional + or - sign, then a non-empty
sequence of digits optionally containing a radix, then an optional exponent part. An
exponent part consists of the character e or E, followed by an optional sign, followed by one
or more decimal digits. The subject sequence is defined as the longest initial subsequence
of the input wide character string, starting with the first non-white-space wide character
code, that is of the expected form. The subject sequence contains no wide character codes
if the input wide character string is empty or consists entirely of white-space wide character
codes, or if the first wide character code that is not white space is other than a sign, a digit
or a radix.

If the subject sequence has the expected form, the sequence of wide character codes
starting with the first digit or the radix (whichever occurs first) is interpreted as a floating
constant as defined in the C language, except that the radix is used in place of a period,
and that if neither an exponent part nor a radix appears, a radix is assumed to follow the
last digit in the wide character string. If the subject sequence begins with a minus sign, the
value resulting from the conversion is negated. A pointer to the final wide character string
is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

The radix is defined in the program´s locale (category LC_NUMERIC). In the POSIX locale, or
in a locale where the radix is not defined, the radix defaults to a period (.).

In a locale other than the POSIX locale, other implementation-dependent subject sequence
forms may be accepted. If the subject sequence is empty or does not have the expected
form, no conversion is performed; the value of nptr is stored in the object pointed to by
endptr, provided that endptr is not a null pointer.

Functions and variables in alphabetical order wcstod

U23711-J-Z125-5-76 1003

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Return val. Converted value if successful.

0 if no conversion could be performed.

HUGE_VAL If the correct value is outside the range of representable values, (according
to the sign of the value).
errno is set to indicate the error.

Errors wcstod() will fail if:

ERANGE he value to be returned would cause overflow or underflow.

Notes Since 0 is returned on error and is also a valid return value on success, an application
wishing to check for error situations should perform the following actions: set errno to 0,
call wcstod(), then check errno, and if it is non-zero, assume that an error has occurred.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also iswspace(), localeconv(), scanf(), setlocale(), wcstol(), wchar.h.

wcstok Functions and variables in alphabetical order

1004 U23711-J-Z125-5-76

wcstok - split wide character string into tokens

Syntax #include <wchar.h>

wchar_t *wcstok(wchar_t *ws1, const wchar_t *ws2);

Description wcstok() can be used to split a wide character string ws1 into wide character substrings
called "tokens", e.g. a sentence into individual words, or a source program statement into
its smallest syntactical units. The pointer to ws1 may only be passed in the first call to
wcstok(); subsequent calls must be specified with a null pointer.

The start and end criterion for each token are separator characters (delimiters), which must
be specified in a second wide character string ws2. Tokens may be delimited by one or more
such separators or by the beginning and end of the entire wide character string ws1. Blanks,
colons, commas, etc., are typical separators between the words of a sentence.

wcstok() processes exactly one token per call. The first call returns a pointer to the
beginning of the first wide character token found, and each subsequent call returns a
pointer to the beginning of the next such token. wcstok() terminates each wide character
token with a null wide character code (\0).

A different delimiter string ws2 may be specified in each call.

Return val. Pointer to the start of a wide character token.
A pointer to the first wide character token is returned at the first call; a
pointer to the next wide character token at the next call, and so on.
wcstok() terminates each wide character token in ws1 with a null wide
character code (\0) by overwriting the first found delimiter in each case with
the null wide character code (\0).

Null pointer, if no wide character token, or no further wide character token was found.

Notes Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wchar.h.

Functions and variables in alphabetical order wcstol

U23711-J-Z125-5-76 1005

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

wcstol - convert wide character string to long integer

Syntax #include <wchar.h>

long int wcstol(const wchar_t *nptr, wchar_t **endptr, int base);

Description wcstol() converts the initial portion of the wide character string pointed to by nptr to long
int representation. The input wide character string is first decomposed into three parts:

– an initial, possibly empty, sequence of white-space wide-character codes (as specified
by iswspace()),

– a subject sequence interpreted as an integer represented in some radix determined by
the value of base,

– and a final wide character string of one or more unrecognized wide character codes,
including the terminating null wide character code of the input wide character string.

wcstol() then attempts to convert the subject sequence to an integer, and returns the
result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal
constant, octal constant or hexadecimal constant, any of which may be preceded by a
+ or - sign. A decimal constant begins with a non-zero digit, and consists of a sequence of
decimal digits. An octal constant consists of the prefix 0, optionally followed by a sequence
of the digits 0 to 7 only. A hexadecimal constant consists of the prefix 0x or 0X, followed by
a sequence of the decimal digits and letters a (or A) to f (or F) with values 10 through 15,
respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by base,
optionally preceded by a + or - sign, but not including an integer suffix. The letters from a
(or A) to z (or Z) inclusive are ascribed the values 10 to 35; only letters whose ascribed
values are less than that of base are permitted. If the value of base is 16, the wide character
code representations of 0x or 0X may optionally precede the sequence of letters and digits,
following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide
character string, starting with the first non-white-space wide character code that is of the
expected form. The subject sequence contains no wide character codes if the input wide
character string is empty or consists entirely of white-space wide character codes, or if the
first non-white-space wide character code is other than a sign or a permissible letter or digit.

wcstol Functions and variables in alphabetical order

1006 U23711-J-Z125-5-76

If the subject sequence has the expected form and the value of base is 0, the sequence of
wide character codes starting with the first digit is interpreted as an integer constant. If the
subject sequence has the expected form and the value of base is between 2 and 36, it is
used as the base for conversion, ascribing to each letter its value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is
negated. A pointer to the final wide character string is stored in the object pointed to by
endptr, provided that endptr is not a null pointer.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

Return val. Converted value
if successful.

0 if no conversion could be performed.

LONG_MAX, LONG_MIN
if the correct value is outside the range of representable values (according
to the sign of the value).
errno is set to indicate the error.

Errors wcstol() will fail if:

EINVAL The value of base is not supported.

ERANGE The value to be returned is not representable.

Notes Since 0, LONG_MIN and LONG_MAX are returned on error and are also valid return values on
success, an application wishing to check for error situations should perform the following
actions: set errno to 0, call wcstol(), then check errno, and if it is 0, assume that an error
has occurred.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also iswalpha(), scanf(), wcstod(), wchar.h.

Functions and variables in alphabetical order wcstoll

U23711-J-Z125-5-76 1007

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

wcstoll - convert wide character string to long long integer

Syntax #include <wchar.h>

long long int wcstoll(const wchar_t *restrict nptr, wchar_t **restrict endptr, int base);

Description wcstoll() converts the initial portion of the wide character string pointed to by nptr to long
long int representation. The input wide character string is first decomposed into three
parts:

– an initial, possibly empty, sequence of white-space wide-character codes (as specified
by iswspace()),

– a subject sequence interpreted as an integer represented in some radix determined by
the value of base,

– and a final wide character string of one or more unrecognized wide character codes,
including the terminating null wide character code of the input wide character string.

wcstoll() then attempts to convert the subject sequence to an integer, and returns the
result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal
constant, octal constant or hexadecimal constant, any of which may be preceded
by a + or - sign. A decimal constant begins with a non-zero digit, and consists of a sequence
of decimal digits. An octal constant consists of the prefix 0, optionally followed by a
sequence of the digits 0 to 7 only. A hexadecimal constant consists of the prefix 0x or 0X,
followed by a sequence of the decimal digits and letters a (or A) to f (or F) with values 10
through 15, respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by base,
optionally preceded by a + or - sign, but not including an integer suffix. The letters from a
(or A) to z (or Z) inclusive are ascribed the values 10 to 35; only letters whose ascribed
values are less than that of base are permitted. If the value of base is 16, the wide character
code representations of 0x or 0X may optionally precede the sequence of letters and digits,
following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide
character string, starting with the first non-white-space wide character code that is of the
expected form. The subject sequence contains no wide character codes if the input wide
character string is empty or consists entirely of white-space wide character codes, or if the
first non-white-space wide character code is other than a sign or a permissible letter or digit.

wcstoll Functions and variables in alphabetical order

1008 U23711-J-Z125-5-76

If the subject sequence has the expected form and the value of base is 0, the sequence of
wide character codes starting with the first digit is interpreted as an integer constant. If the
subject sequence has the expected form and the value of base is between 2 and 36, it is
used as the base for conversion, ascribing to each letter its value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is
negated. A pointer to the final wide character string is stored in the object pointed to by
endptr, provided that endptr is not a null pointer.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

Return val. Converted value
if successful.

0 if no conversion could be performed.
errno is set to EINVAL if the value of base is not supported.

LLONG_MAX, LLONG_MIN
depending on the sign of the value.

ULLONG_MAX
if the correct value is outside the range of representable values.
errno is set to ERANGE to indicate an error

Errors Since 0 is returned on error as well as when a valid return can be successfully represented,
an application wishing to check for error situations should perform the following actions: set
errno to 0, call wcstoll(), then check errno, and if it is not equal to 0, assume that an
error has occurred.

Notes This version of the C runtime system only supports 1-byte characters as wide character
codes.

See also iswalpha(), iswspace(), scanf(), strtol(), strtoll(), strtoul(), strtoull(),
wcstod(), wcstol(), wcstoul()

Functions and variables in alphabetical order wcstombs

U23711-J-Z125-5-76 1009

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

wcstombs - convert wide character string to character string

Syntax #include <stdlib.h>

size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

Description wcstombs() converts a sequence of wchar_t values located in pwcs to the appropriate
multi-byte characters and stores them in string s.
n specifies the maximum number of bytes to be stored in s.

No characters consisting of multiple bytes are implemented in this version. Multi-byte
characters always have a length of 1 byte, and wchar_t values are always of type long.
wcstombs() assigns each wchar_t value (of type long) in pwcs to an area of 1-byte length
in string s.

The assignment terminates:

– on encountering the wchar_t value 0 in pwcs,
– when n bytes have been assigned or
– on encountering a wchar_t value that cannot be represented in 1 byte.

Return val. Number of assigned bytes
upon successful conversion.

(size_t)-1
if a wchar_t value cannot be converted to a multi-byte character.

Notes If a wchar_t value in pwcs cannot be converted to a multi-byte character, the wchar_t
values already converted will be stored in s.

The behavior is undefined if memory areas overlap.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also mblen(), mbtowc(), mbstowcs(), wctomb(), stdlib.h.

wcstoul Functions and variables in alphabetical order

1010 U23711-J-Z125-5-76

wcstoul - convert wide character string to unsigned long

Syntax #include <wchar.h>

unsigned long int wcstoul(const wchar_t *nptr, wchar_t **endptr, int base);

Description wcstoul() converts the initial portion of the wide character string pointed to by nptr to
unsigned long int representation. The input wide character string is first decomposed into
three parts:

– an initial, possibly empty, sequence of white-space wide character codes (as specified
by iswspace()),

– a subject sequence interpreted as an integer represented in some radix determined by
the value of base,

– and a final wide-character string of one or more unrecognized wide character codes,
including the terminating null wide-character code of the input wide character string.

wcstoul() then attempts to convert the subject sequence to an unsigned integer, and
returns the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal
constant, octal constant or hexadecimal constant, any of which may be preceded by
a + or - sign. A decimal constant begins with a non-zero digit, and consists of a sequence
of decimal digits. An octal constant consists of the prefix 0 optionally followed by a
sequence of the digits 0 to 7 only. A hexadecimal constant consists of the prefix 0x or 0X
followed by a sequence of the decimal digits and letters a (or A) to f (or F) with values 10
through 15, respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by base,
optionally preceded by a + or - sign, but not including an integer suffix. The letters from a
(or A) to z (or Z) inclusive are ascribed the values 10 to 35; only letters whose ascribed
values are less than that of base are permitted. If the value of base is 16, the wide character
codes 0x or 0X may optionally precede the sequence of letters and digits, following the sign
if present.

The subject sequence is defined as the longest initial subsequence of the input wide
character string, starting with the first wide character code that is not white space and is of
the expected form. The subject sequence contains no wide character codes if the input wide
character string is empty or consists entirely of white-space wide character codes, or if the
first wide character code that is not white space is other than a sign or a permissible letter
or digit.

Functions and variables in alphabetical order wcstoul

U23711-J-Z125-5-76 1011

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

If the subject sequence has the expected form and the value of base is 0, the sequence of
wide character codes starting with the first digit is interpreted as an integer constant. If the
subject sequence has the expected form and the value of base is between 2 and 36, it is
used as the base for conversion, ascribing to each letter its value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is
negated. A pointer to the final wide character string is stored in the object pointed to by
endptr, provided that endptr is not a null pointer.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

Return val. Converted value if successful.

0 if no conversion could be performed.

ULONG_MAX if the correct value is outside the range of representable values (according
to the sign of the value). errno is set to indicate the error.

Errors wcstoul() will fail if:

EINVAL The value of base is not supported.

ERANGE The value to be returned is not representable.

Notes Since 0 and ULONG_MAX are returned on error and 0 is also a valid return value on success,
an application wishing to check for error situations should perform the following actions: set
errno to 0, call wcstoul(), then check errno, and if it is non-zero, assume that an error
has occurred. Unlike wcstod() and wcstol(), wcstoul() must always return a non-
negative number, so using the return value of wcstoul() for out-of-range numbers with
wcstoul() could cause more severe problems than just loss of precision if those numbers
can ever be negative.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also iswalpha(), scanf(), wcstod(), wcstol(), wchar.h.

wcstoull Functions and variables in alphabetical order

1012 U23711-J-Z125-5-76

wcstoull - convert wide character string to unsigned long long

Syntax #include <wchar.h>

unsigned long long int wcstoull(const wchar_t *restrict nptr, wchar_t **restrict endptr,
 int base);

Description wcstoull() converts the initial portion of the wide character string pointed to by nptr to
unsigned long long int representation. The input wide character string is first decom-
posed into three parts:

– an initial, possibly empty, sequence of white-space wide character codes (as specified
by iswspace()),

– a subject sequence interpreted as an integer represented in some radix determined by
the value of base,

– and a final wide-character string of one or more unrecognized wide character codes,
including the terminating null wide-character code of the input wide character string.

wcstoull() then attempts to convert the subject sequence to an integer of type unsigned
long long int, and returns the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal
constant, octal constant or hexadecimal constant, any of which may be preceded
by a + or - sign. A decimal constant begins with a non-zero digit, and consists of a sequence
of decimal digits. An octal constant consists of the prefix 0 optionally followed by a
sequence of the digits 0 to 7 only. A hexadecimal constant consists of the prefix 0x or 0X
followed by a sequence of the decimal digits and letters a (or A) to f (or F) with values 10
through 15, respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by base,
optionally preceded by a + or - sign, but not including an integer suffix. The letters from a
(or A) to z (or Z) inclusive are ascribed the values 10 to 35; only letters whose ascribed
values are less than that of base are permitted. If the value of base is 16, the wide character
codes 0x or 0X may optionally precede the sequence of letters and digits, following the sign
if present.

The subject sequence is defined as the longest initial subsequence of the input wide
character string, starting with the first wide character code that is not white space and is of
the expected form. The subject sequence contains no wide character codes if the input wide
character string is empty or consists entirely of white-space wide character codes, or if the
first wide character code that is not white space is other than a sign or a permissible letter
or digit.

Functions and variables in alphabetical order wcstoull

U23711-J-Z125-5-76 1013

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

If the subject sequence has the expected form and the value of base is 0, the sequence of
wide character codes starting with the first digit is interpreted as an integer constant. If the
subject sequence has the expected form and the value of base is between 2 and 36, it is
used as the base for conversion, ascribing to each letter its value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is
negated. A pointer to the final wide character string is stored in the object pointed to by
endptr, provided that endptr is not a null pointer.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

Return val. Converted value
if successful.

0 if no conversion could be performed.
errno is set to EINVAL if the value of base is not supported.

LLONG_MAX, LLONG_MIN
depending on the sign of the value.

ULLONG_MAX if the correct value is outside the range of representable values.
errno is set to ERANGE to indicate an error

Errors Since 0 is returned on error as well as when a valid return can be successfully represented,
an application wishing to check for error situations should perform the following actions: set
errno to 0, call wcstoull(), then check errno, and if it is not equal to 0, assume that an
error has occurred.

Notes This version of the C runtime system only supports 1-byte characters as wide character
codes.

See also iswalpha(), iswspace(), scanf(), strtoul(), wcstod(), wcstol()

wcswcs Functions and variables in alphabetical order

1014 U23711-J-Z125-5-76

wcswcs - find wide character substring in wide character string

Syntax #include <wchar.h>

wchar_t *wcswcs(const wchar_t *ws1, const wchar_t *ws2);

Description wcswcs() locates the first occurrence of the wide character string ws2 (excluding the termi-
nating null wide character code) in the wide character string ws1.

Return val. Pointer to the start of the wide character string found in ws1.

Null pointer if ws2 is not contained in ws1.

Pointer to the start of ws1 if ws2 has a length of 0.

Notes Wide character strings terminated with a null wide character code (\0) are expected as
arguments.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wcschr(), wchar.h.

Functions and variables in alphabetical order wcswidth

U23711-J-Z125-5-76 1015

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

wcswidth - get number of column positions of wide character string

Syntax #include <wchar.h>

int wcswidth(const wchar_t *pwcs, size_t n);

Description wcswidth() determines the number of column positions required for n characters in the
string pointed to by pwcs. If a null wide character code is encountered before n characters
are exhausted, fewer than n characters are processed.

Return val. Number of column positions for the wide character string pwcs.

0 if pwcs points to a null wide character code.

-1 if pwcs contains a non-printing wide character code.

Notes Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wchar.h.

wcsxfrm Functions and variables in alphabetical order

1016 U23711-J-Z125-5-76

wcsxfrm - transform wide character string

Syntax #include <wchar.h>

size_t wcsxfrm(wchar_t *ws1, const wchar_t *ws2, size_t n);

Description wcsxfrm() transforms the wide character string pointed to by ws2, and writes the result of
the transformation to the field pointed to by ws1. The transformation is performed such that
the wcscmp() function returns the same return value (greater than, equal to or less than
zero) for two transformed wide character strings as the wcscoll() function does for the two
original non-transformed wide character strings.
A maximum of n wide character codes are written to the field (including the terminating null
character).

If n is 0, wc1 can be a null pointer.

If copying is between overlapping objects, the result is undefined.

Return val. Integer value < n
indicating the number of wide character codes written to the field (without
terminating null).

Integer value ≥ n
in this case the content of the ws1 field is undefined.

(size_t) - 1 if an error occurs. errno is set to indicate the error.

Errors wcsxfrm() will fail if:

EINVAL The wide character string pointed to by ws2 contains wide character codes
from outside the value range of the selected collation sequence.

ENOMEM There is not enough memory available for the internal management data.

Notes Transformation is such that two transformed wide character strings are arranged by
wcscmp() in accordance with the collation sequence defined in LC_COLLATE.
The fact that ws1 can be a null pointer if n is 0, is useful if the size of the field is to be deter-
mined before the transformation. Because there is no default value defined for if an error
occurs, it is advisable to set errno to 0, then call wcscoll() and after the call check
errno. If errno is not 0, assume that an error has occurred.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wcscmp(), wcscoll(), wchar.h.

Functions and variables in alphabetical order wctob / wctomb

U23711-J-Z125-5-76 1017

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

wctob - convert wide character to 1-byte multi-byte character

Syntax #include <stdio.h>
#include <wchar.h>

int wctob(wint_t c);

Description wctob() tests if the character c corresponds to an element of the extended character set
whose multi-byte representation consists of one byte in the “initial shift“ state.

Return val. EOF if no corresponding multi-byte character of length one exists in the “initial
shift“ state for c.

Otherwise the multi-byte character of length one that corresponds to c.

See also mblen(), mbtowc(), wcstombs(), wctomb()

wctomb - convert wide character code to character

Syntax #include <stdlib.h>

int wctomb(char *s, wchar_t wchar);

Description wctomb() converts the wchar_t value wchar to the appropriate multi-byte character and
stores it in string s.
No characters consisting of multiple bytes are implemented in this version. Multi-byte
characters always have a length of 1 byte, and wchar_t values are always of type long.
wcstomb() assigns the wchar_t value (of type long) to the area s, of 1-byte length.
No assignment occurs if s is a null pointer or if the wchar_t value cannot be represented
in 1 byte.

Return val. 0 if s is a null pointer.

-1 if the wchar_t value cannot be converted to a multi-byte character.

1 in all other cases.

Notes Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also mblen(), mbstowcs(), mbtowc(), wcstombs(), stdlib.h.

wctrans Functions and variables in alphabetical order

1018 U23711-J-Z125-5-76

wctrans - define wide character mappings

Syntax #include <wctype.h>

wctrans_t wctrans(const char *property);

Description wctrans() constructs a value of type wctrans_t from property that describes a mapping
between wide characters.

The two strings "tolower" and "toupper" are permitted in all locales as a value of the
property argument.

If property identifies a mapping that is valid according to the LC_CTYPE category of the
current locale, wctrans() returns a value not equal to 0 that can be used as a valid second
argument in the function towctrans().

Return val. Value ≠ 0 if property identifies a valid mapping.

0 otherwise.

Notes This version of the C runtime system only supports 1-byte characters as wide character
codes.

See also towctrans()

Functions and variables in alphabetical order wctype

U23711-J-Z125-5-76 1019

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

wctype - define wide character class

Syntax #include <wchar.h>

wctype_t wctype(const char *charclass);

Description wctype() is defined for valid character class names as defined in the current locale. The
charclass is a string identifying a generic character class for which codeset-specific type
information is required. The following character class names are defined in all locales:
"alnum", "alpha", "blank", "cntrl", "digit", "graph", "lower", "print",
"punct", "space", "upper" and "xdigit".

Additional character class names defined in the locale definition file (category LC_CTYPE)
can also be specified.

The function returns a value of type wctype_t, which can be used as the second argument
to subsequent calls of iswctype(). The wctype() function determines values of wctype_t
according to the rules of the coded character set defined by character type information in
the program´s locale (category LC_CTYPE). The values returned by wctype() are valid until
a call to setlocale() that modifies the category LC_CTYPE.

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

Return val. 0 if the character class name is not valid for the current locale (category
LC_CTYPE).

≠ 0 Αν οβϕεχτ οφ τψπε wctype_t τηατ χαν βε υσεδ ιν χαλλσ το iswctype() ισ
ρετυρνεδ.

See also iswctype(), wchar.h.

wcwidth Functions and variables in alphabetical order

1020 U23711-J-Z125-5-76

wcwidth - get number of column positions of wide character code

Syntax #include <wchar.h>

int wcwidth(wint_t wc);

Description wcwidth() determines the number of column positions required for the wide character wc.
The value of wc must be a character representable as a wchar_t, and must be a wide
character code corresponding to a valid character in the current locale.

Return val. -1 if wc does not correspond to a representable wide character code.

0 if wc is a null wide-character code.

1 if wc corresponds to a representable wide character code.

Notes

Restriction
This version of the C runtime system only supports 1-byte characters as wide character
codes. They are of type wchar_t (see stddef.h). ❑

See also wchar.h.

Functions and variables in alphabetical order wmemchr

U23711-J-Z125-5-76 1021

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

wmemchr - search for wide character in a wide character string

Syntax #include <wchar.h>

wchar_t *wmemchr(const wchar_t *ws, wchar_t *wc, size_t n);

Description wmemchr() searches for the first occurrence of the wide character wc in the first n bytes of
the wide character string ws and returns a pointer to the desired position in ws if successful.

Return val. Pointer to the position of wc in ws
if successful,

Null pointer otherwise.

Notes This version of the C runtime system only supports 1-byte characters as wide character
codes.

The following two prototypes are valid in C++ for the function wmemchr():
const wchar_t* wmemchr(const wchar_t *ws, wchar_t *wc, size_t n);
 wchar_t* wmemchr(wchar_t *ws, wchar_t *wc, size_t n);

See also memchr(), wcsstr(), wmemcmp(), wmemcpy()

wmemcmp / wmemcpy Functions and variables in alphabetical order

1022 U23711-J-Z125-5-76

wmemcmp - compare two wide character strings

Syntax #include <wchar.h>

int wmemcmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);

Description wmemcmp() compares the first n bytes of the two wide character strings ws1 and ws2 lexico-
graphically.

Return val. < 0 ws1 is lexicographically smaller than ws2.

= 0 ws1 and ws2 are lexicographically equal.

> 0 ws1 is lexicographically larger than ws2.

Notes This version of the C runtime system only supports 1-byte characters as wide character
codes.

See also memcmp(), wcsstr(), wmemchr(), wmemcpy().

wmemcpy - copy wide character string

Syntax #include <wchar.h>

wchar_t *wmemcpy(wchar_t *ws1, const wchar_t *ws2, size_t n);

Description wmemcpy() copies the first n bytes of the wide character string ws2 to the first n bytes of the
wide character string ws1.

Return val. Pointer to the wide character string ws1.

Notes This version of the C runtime system only supports 1-byte characters as wide character
codes.

See also memcmp(), wmemmove(), wmemset().

Functions and variables in alphabetical order wmemmove / wmemset

U23711-J-Z125-5-76 1023

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

wmemmove - copy wide character string in overlapping area

Syntax #include <wchar.h>

wchar_t *wmemmove(wchar_t *ws1, const wchar_t *ws2, size_t n);

Description wmemmove() copies the first n bytes of the wide character string ws2 to the first n bytes of the
wide character string ws1. The copy is performed as if the n wide characters are first copied
to a temporary array that does not overlap with ws1 or ws2, and are then copied from this
array to ws1.

Return val. Pointer to the wide character string ws1.

Notes This version of the C runtime system only supports 1-byte characters as wide character
codes.

See also memmove(), wmemcpy(), wmemset()

wmemset - set first n wide characters in wide character string

Syntax #include <wchar.h>

wchar_t *wmemset(wchar_t *ws, wchar_t *c, size_t n);

Description wmemset() sets the first n wide characters in the wide character string ws to the value c.

Return val. Pointer to ws.

Notes This version of the C runtime system only supports 1-byte characters as wide character
codes.

See also memset(), wmemcpy(), wmemmove()

wprintf Functions and variables in alphabetical order

1024 U23711-J-Z125-5-76

wprintf - formatted output of wide characters

Syntax #include <wchar.h>

int wprintf(const wchar_t *format [, arglist]);

Description A detailed description can be found under fwprintf().

Functions and variables in alphabetical order write

U23711-J-Z125-5-76 1025

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

write - write bytes to file

Syntax #include <unistd.h>

BS2000
#include <stdio.h> ❑

ssize_t write(int fildes, const void *buf, size_t nbyte);

Description write() attempts to write nbyte bytes from the buffer pointed to by buf to the file associated
with the file descriptor fildes.

BS2000
SAM files are always processed as text files with elementary functions. ❑

On a file that is capable of seeking, the actual write operation proceeds from the position in
the file indicated by the file offset (i.e. the file position indicator) associated with fildes.
Before a successful return from write(), the file offset is incremented by the number of
bytes actually written. On a regular file, if this incremented file offset is greater than the
length of the file, the length of the file will be set to this file offset.

If the O_SYNC flag of the file status flags is set and fildes refers to a regular file, a successful
write() does not return until the data is delivered to the underlying hardware.

On a file not capable of seeking, writing always takes place starting at the current position.
The value of a file offset associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file offset will be set to the end of the
file prior to each write and no intervening file modification operation will occur between
changing the file offset and the beginning of the write() operation.

If a write() requests that more bytes be written than the amount of available space
(because of the ulimit() or the physical end of a medium, for instance), only as many
bytes as can be accommodated will be written. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write of 512 bytes will return 20 in this case,
and the next write with a non-zero number of bytes will return with an error (except in the
cases noted below) and will sent the SIGXFSZ signal to the process.

If write() is interrupted by a signal before it has written the data, -1 is returned and errno
is set to EINTR.
If write() is interrupted by a signal after it successfully writes some data, it will return the
number of bytes written.

write Functions and variables in alphabetical order

1026 U23711-J-Z125-5-76

The following applies following a successful write() to a regular file:

– Any successful read() from each byte position in the file that was modified by that write
will return the data specified by the write() for that position until such byte positions
are again modified.

– Any subsequent successful write() to the same byte position in the file will overwrite
that file data.

Write requests to a pipe or FIFO will be handled the same as a regular file, with the following
exceptions:

– There is no file offset associated with a pipe, so each write request will append to the
end of the pipe.

– Write requests of {PIPE_BUF} bytes or less bytes will not be interleaved with data from
other processes doing writes on the same file. Writes of greater than {PIPE_BUF} bytes
may have data interleaved, on arbitrary boundaries, with writes by other processes,
whether or not the O_NONBLOCK flag in the system file status byte is set.

– If the O_NONBLOCK flag is clear, a write request may cause the process to block, but on
normal completion it will return nbyte.

– If the O_NONBLOCK flag is set, write() requests will be handled differently, in the
following ways:

– write() will not block the process.

– A write request for {PIPE_BUF} or fewer bytes will have the following effects:

a) If there is sufficient space available in the pipe, write() will transfer all the data
and return the number of bytes requested.

b) If there is not enough space available in the pipe, write() will transfer no data
and return -1 with errno set to EAGAIN.

– A write request for more than {PIPE_BUF} bytes will cause one of the following:

a) When at least one byte can be written, write() will transfer as many bytes as
it can and return the number of bytes written. When all data previously written
to the pipe is read, it will transfer at least {PIPE_BUF} bytes.

b) When no data can be written, write() will transfer no data and return -1 with
errno set to EAGAIN.

Functions and variables in alphabetical order write

U23711-J-Z125-5-76 1027

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

If a request is for more than {PIPE_BUF} bytes and all data previously written to the file has
been read, write() will transfer at least {PIPE_BUF} bytes.

The following occurs when attempting to write to a file descriptor (other than a pipe or FIFO)
that supports non-blocking writes:

– If the O_NONBLOCK flag is clear, write() will block until the data can be accepted.

– If the O_NONBLOCK flag is set, write() will not block the process. If some data can be
written without blocking the process, write() will write as many bytes as it can and
return the number of bytes written. Otherwise, it will return -1 and errno will be set to
EAGAIN.

Upon successful completion, where nbyte is greater than 0, write() will mark for update
the st_ctime and st_mtime structure components of the file. The S_ISUID and S_ISGID
bits of the file mode will be cleared if the process does not have appropriate privileges.

If fildes describes a STREAM, the write operation is determined by the minimum and
maximum values for nbyte („packet size“) accepted by the STREAM. These values are
defined by the highest level STREAM module.
If nbyte bytes is the permitted packet size, nbyte bytes are written.
If nbyte is in the permitted range for the packet size and the smallest packet size is equal to
0, write() divides the buffer up into segments of a size equal to the maximum packet size
before the data is sent upstream (the last segment can be smaller).
If nbyte is not in the permitted range for the packet size and the smallest packet size is not
equal to 0, write() fails and sets errno to ERANGE.

If a buffer of length 0 (nbyte = 0) is written to a STREAM, write() sends a message of
length 0 and returns the value 0. However, if a buffer of length 0 is written to a STREAM-
based pipe or a FIFO file, nothing is sent and 0 is returned. The process can use
I_SWROPT ioctl() if messages of length 0 are to be sent through the pipe or FIFO file.

If write() writes to a STREAM, messages with the priority class 0 are generated.
The following rules apply if write() writes to a STREAM that is not a pipe or a FIFO file:

– If the O_NONBLOCK flag is clear and the STREAM does not accept any data (because
the STREAM write queue is full due to internal control flow conditions), write() blocks
until the data is accepted.

– If the O_NONBLOCK flag is set and the STREAM does not accept any data, write() fails,
returns -1 and sets errno to EAGAIN.

– If the O_NONBLOCK flag is set and write() has already written a portion of the buffer
when a condition arises in which the STREAM does not accept any more data, write()
terminates and returns the number of bytes actually written.

write Functions and variables in alphabetical order

1028 U23711-J-Z125-5-76

If threads are used, the function affects the process or a thread in the following manner:

– Write bytes to file

A write request for a pipe or FIFO is handled just like such a request for a normal file
with the following exceptions:

– If the O_NONBLOCK flag is clear, a write request can block the thread, but returns
the result nbyte if it terminates normally.

– If the O_NONBLOCK flag is set, the request from write() is handled differently:

write() does not block the thread.

If an attempt is made to write to a file descriptor that is not a pipe or FIFO and supports
non-blocking writes, the following occurs:

– If the O_NONBLOCK flag is clear, write() blocks the calling thread until the data is
accepted.

– EAGAIN - the O_NONBLOCK flag is set for the file descriptor and the thread would be
stopped by the write operation.

– Furthermore, if an EPIPE error occurs, then SIGPIPE signal is not sent to the process,
but to the calling thread instead.

Return val. Number of bytes actually written
upon successful completion. This number will never be greater than nbyte.

0 if data was to be written to a regular file and nbyte is equal to 0. No data will
be written.

-1 if an error occurs. write() will not have written any data due to one of the
following errors:

– A physical I/O error occurred.

– fildes is not a valid file descriptor.

– The file does not exist.

– No write permission exists for the file.

– The area containing the data was not correctly specified.

errno is set to indicate the error.

Functions and variables in alphabetical order write

U23711-J-Z125-5-76 1029

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

Errors write() fails if the following applies:

EAGAIN The O_NONBLOCK flag is set for the file descriptor and the process would be
delayed in the write() operation.

EBADF fildes is not a valid file descriptor open for writing.

EFBIG An attempt was made to write a file that exceeds the maximum possible file
size or the process file size limit (see getrlimit() and ulimit()).

Extension
EAGAIN The amount of system memory available for raw I/O is temporarily

insufficient, or
an attempt was made to write to a stream that cannot accept data with the
O_NDELAY or O_NONBLOCK flag set, or
an attempt was made to write {PIPE_BUF}or fewer bytes to a pipe or FIFO
and less than nbytes of free space was available. ❑

Extension
EDEADLK The write() function is sleeping and causes a deadlock situation to occur.

EFAULT buf points outside the allocated address space of the process. ❑

EINTR The write operation was terminated by a signal, and no data was
transferred.

Extension
EINVAL An attempt was made to write to a stream associated with a multiplexer. ❑

EIO A physical I/O error has occurred, or the process is in a background process
group and is attempting to read from its controlling terminal, and either the
process is ignoring or blocking the SIGTTIN signal or the process group of
the process is orphaned.

ENOSPC There was no free space remaining on the device containing the file.

Extension
ENOSR An attempt was made to write to a stream for which not enough space is

available. ❑

ENXIO A request was made of a non-existent device, or
the request was outside the capabilities of the device.

EPIPE An attempt was made to access a non-existent device, or
the request was outside the capabilities of the device.
The process gets a SIGPIPE signal.

ERANGE An attempt was made to write to a stream with an mbyte value outside the
prescribed minimum and maximum limits, and the minimum value is
non-zero.

write Functions and variables in alphabetical order

1030 U23711-J-Z125-5-76

EINVAL The stream or multiplexer referred to by fildes is directly or indirectly
connected via a multiplexer downstream.

ENXIO An attempt was made to access a non-existent device,
or the device was not capable of the request.

ENXIO A hang-up occurred during writing to the stream.

write() will also fail if an asynchronous error message appears at the STREAM head
before the call. In this case, the value of errno does not refer to write() but to the previous
STREAM error.

Notes The sizeof() function should be used to ensure that the value specified in nbyte does not
exceed the size of the buffer.

BS2000
The number of bytes actually written should be verified after each call to write():

– If the result is less than the value specified in nbyte, it generally means that an error has
occurred.

– If the result is greater than the nbyte specification, tab characters (\t) were written to a
text file; these tab characters were expanded to the appropriate spaces and included in
the number of bytes returned.

The bytes are not written immediately to the external file but are stored in an internal C
buffer (see section “Buffering streams” on page 110).

Control characters for white space (\n, \t, etc.) are converted to their appropriate effect
when output to text files, depending on the type of text file (see section “White-space
characters” on page 117). ❑

The following applies in the case of text files with SAM access mode and variable record
length for which a maximum record length is also specified: When the O_NOSPLIT speci-
fication was entered for open, records which are longer than the maximum record length
are truncated to the maximum record length when they are written with write. By default
(i.e. without the specification O_NOSPLIT), these records are split into multiple records. If
a record has precisely the maximum record length, a record of the length zero is written af-
ter it. ❑

See also creat(), dup(), fcntl(), lseek(), open(), pipe(), ulimit(), unistd.h.

Functions and variables in alphabetical order writev

U23711-J-Z125-5-76 1031

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

writev - write to file

Syntax #include <sys/uio.h>

ssize_t writev(int fildes, const struct iovec *iov, size_t nbyte);

Description writev() does the same as write(), but collects the output data of the iovcnt buffers that
are defined by the members of the iov fields (iov[0], iov[1], ..., iov[iovcnt-1]). The following
must apply: 0 < iovcnt ≤ IOV_MAX.

For writev() the iovec structure contains the following elements:

 caddr_t iov_base;
 int iov_len;

Each iovec entry specifies the basic address and the length of the memory area from which
the data is to be written. writev() always fills a whole area before proceeding to the next
one.

If fildes identifies a regular file and all elements of the iov field have the value 0, writev()
returns the value 0 and has no other effect.

If the sum of the iov_len values exceeds SSIZE_MAX, writev() fails and no data is
transferred.

For more details, see write().

Return val. Number of bytes actually written
if successful.

-1 otherwise. In this case the file pointer is not changed. errno is set to
indicate the error.

Errors see write(). In addition to the errors specified there, writev() will fail if:

EINVAL iovcnt was less than or equal to 0 or greater than or equal to 16, or one of
the iov_len values in the iov field was negative, or the sum of the iov_len
values in the iov field creates an overflow in the case of a 32-bit integer.

EINVAL fildes is assigned to a BS2000 file.

writev() will also fail if an asynchronous error message appears at the STREAM head
before the call. In this case, the value of errno does not refer to writev(), but to the
previous STREAM error.

See also chmode(), creat(), dup(), fcntl(), getrlimit(), lseek(), open(), pipe(), ulimit(),
limits.h, stropts.h, sys/uio.h, unistd.h.

wscanf Functions and variables in alphabetical order

1032 U23711-J-Z125-5-76

wscanf - formatted read

Syntax #include <wchar.h>

int wscanf(const wchar_t *format [, arglist]);

Description A detailed description can be found under fwscanf().

Functions and variables in alphabetical order y0, y1, yn

U23711-J-Z125-5-76 1033

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

.
M

ar
ch

 2
01

8
 S

ta
n

d
15

:0
3.

05
P

fa
d:

 P
:\F

T
S

-B
S

\C
om

pi
le

r\
C

+
+

\V
3

.2
\M

an
u

al
e

\v
lib

\v
lib

_e
n\

vl
ib

.v
04

\fk
tv

a
r_

2
.fm

y... y0, y1, yn - Bessel functions of the second kind

Syntax #include <math.h>

double y0(double x);
double y1(double x);
double yn(int n, double x);

Description y0(), y1() and yn() compute the Bessel functions of the second kind for real arguments
x (> 0) and the integral orders 0, 1 or n (only for yn).

Return val. Value of the Bessel function of x, if x >0.

-HUGE_VAL for arguments ≤ 0.
errno is set to indicate the error.

Errors y0(), y1() and yn() will fail if:

EDOM The value of x is negative.

See also j0(), j1(), jn(), math.h.

y0, y1, yn Functions and variables in alphabetical order

1034 U23711-J-Z125-5-76

U23711-J-Z125-5-76 1035

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

03
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3

.2
\M

a
nu

al
e\

vl
ib

\v
lib

_e
n

\v
lib

.a
n

h

5 Appendix: KR or ANSI functionality

All details presented in this section apply to the functions marked with xx in the table on
page 51ff (Scope of the supported C library).

 When the C library functions were first introduced with C V1.0, the ANSI-defined C library
scope did not exist. The implementation was therefore based on the "provisional" definition
by Kernighan & Ritchie ("KR") and on the commercially available UNIX implementations.

The alignment of the original C library functions to the ANSI standard (C V2.0) has led to a
few deviations in the execution of some I/O functions as compared with the predecessor
version. In order to meet the requirements of the ANSI standard in full on one hand, while
preserving the runtime behavior of "old-style" programs on the other, the I/O functions
affected by these deviations in C/C++ versions V2.xx are now offered in two variants:
with the new ANSI functionality and with the original "KR" functionality compatible with
C V1.0.

The desired functionality is selected at compile time with the following compiler option:

SOURCE-PROPERTIES=PAR(LIBRARY-SEMANTICS=STD|V1-COMPATIBLE)

KR functionality (V1-COMPATIBLE) can only be selected in the KR and ANSI compilation
modes. In the STRICT-ANSI and CPLUSPLUS compilation modes, the V1-COMPATIBLE
specification is ignored, and STD is automatically assumed.
KR or ANSI functionality applies to the calls of all the library functions of a compilation unit.

Important

If the same file is processed in a number of separately compiled source programs,
these source programs must be compiled with the same LIBRARY-SEMANTICS
parameter!

KR functionality cannot be enabled when programs are developed in the POSIX shell. In
other words, all the I/O functions are always executed with ANSI functionality.

As of C/C++ V3.0 the KR functionality is no longer available.

The differences between KR and ANSI functionality are listed below.

Appendix: KR or ANSI functionality

1036 U23711-J-Z125-5-76

KR functionality

1. Default attributes of text files
When a new text file is created, it is generated as a SAM file with variable record length.

2. Location of the file position indicator in append mode
If the file position indicator of a file opened in append mode was explicitly moved from
the end of the file (with rewind(), fsetpos(), fseek(), or lseek()), it will be
automatically reset to the end of the file only when writing with the elementary function
write().

When a file is opened in append mode and for reading, the file position indicator will be
set to the end of the file when the file is opened. The original contents of existing files
are preserved.

3. ISAM files (flushing of buffers)
If the data of an ISAM file in the buffer does not end with a newline character, writing to
the external file causes a change of record. Subsequent data is written to a new record.

4. ungetc()
When the contents of the buffer are written to the external file, the original data will be
changed if a character other than the last character read was pushed back in the buffer.

5. Interpretation of the tab character (\t)
For output to text files of FCB type SAM or ISAM, the tab character is converted by
default into the appropriate number of blanks.

6. fprintf(), printf(), sprintf(), fscanf(), scanf(), sscanf()
The ANSI extensions of the formatting and conversion characters are not available. The
syntax and semantics of the predecessor version apply.

7. vfprintf(), vprintf(), vsprintf()
The conversion character L cannot be used, since the type long double is not
supported in KR mode.

Appendix: KR or ANSI functionality

U23711-J-Z125-5-76 1037

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

03
.0

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3

.2
\M

a
nu

al
e\

vl
ib

\v
lib

_e
n

\v
lib

.a
n

h

ANSI functionality

1. Default attributes of text files
When a new text file is created, it is generated as a ISAM file with variable record length.

2. Location of the file position indicator in append mode
If the file position indicator of a file opened in append mode was explicitly moved from
the end of the file (with rewind(), fsetpos(), fseek(), or lseek()), the current
position will be ignored for all write functions, and the file position indicator will be
automatically set to the end of the file.

When a file is opened in append mode and for reading, the file position indicator will be
set to the end of the file when the file is opened. The original contents of existing files
are preserved.

3. ISAM files (flushing of buffers)
If the data of an ISAM file in the buffer does not end with a newline character, writing to
the external file does not cause a change of record. Subsequent data extends the
record in the file. In other words, when reading an ISAM file, only the newline characters
explicitly written by the program are read.

If reading from any text file requires a data transfer from the external file to the internal
C buffer, all ISAM file data that still in the buffer will be automatically written out to the
files.

4. ungetc()
When the contents of the buffer are written to the external file, the original data will not
be changed if a character other than the last character read was pushed back in the
buffer. The original data before the ungetc call is always written to the external file.

5. Interpretation of the tab character (\t)
For output to text files of FCB type SAM or ISAM, the tab character is not converted by
default into the appropriate number of blanks, but is written to the file as a text character
(EBCDIC value).

Appendix: KR or ANSI functionality

1038 U23711-J-Z125-5-76

U23711-J-Z125-5-76 1039

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
05

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.m
ix

Glossary

The most important terms used in the manual are listed and explained here in alpha-
betical order.

8-bit transparency
The ability of a software component to process 8-bit characters without modify-
ing or utilizing any part of the character in a way that is inconsistent with the
rules of the current coded character set.

absolute pathname
A pathname beginning with the root directory of the POSIX file system and
leading to a specific file or directory. Every file and every directory has a unique
absolute pathname (see pathname resolution).

access mode
The method used to access the records of a file.

account number
BS2000:
Designates an account for the associated user ID. Multiple user IDs may be
assigned the same account number. Each user ID can be provided with a max-
imum of 60 account numbers. The account number is evaluated at LOGON and
at the time of an ENTER-JOB.

address
In general, a number used to specify a memory location.

address space
The memory area that can be accessed by a process.

alert
An audible or visual indication at the user´s terminal that an error or some other
event has occurred. When the standard output is directed to a terminal device,
the method for alerting the terminal user is unspecified. When the standard out-
put is not directed to a terminal device, the alert is accomplished by writing the
alert character to standard output.

Glossary

1040 U23711-J-Z125-5-76

alert character
A character that in the output stream should cause a terminal to alert its user
via a visual or audible signal. The alert character is the character designated by
\a in the C language. It is unspecified whether this character is the exact
sequence transmitted to an output device by the system to accomplish the alert
function.

alias name
A word consisting solely of underscores (_) , digits, alphabetic characters from
the portable character set, and the characters !, %, and @. Other implementa-
tions may allow other characters within alias names as an extension.

appropriate privileges
Special privileges needed by some of the function calls and function call options
defined in the this manual. In accordance with the POSIX standard, this term
supersedes the older concept of system administrator privileges.

argument
In the shell, an argument is a parameter that is passed to a utility. This param-
eter is the equivalent of a single string in the argv array created by one of the
exec functions. An argument can be one of the options, option-arguments or
operands following the command name.
In the C language, an argument is a string that passes data to a function. The
arguments of a function are specified within parentheses, which follow the func-
tion name. The number of arguments may also be zero. If two or more argu-
ments are specified, they must be delimited by commas. The definition of a
function includes a description of the number and types of arguments.

authentication
A verification of user entries when logging on at the system. The user attributes
"user ID" and "password" are checked against the entries in the join file (also
called a user catalog).

background
A method of executing a program in which no dialog between the user and com-
puter occurs during program execution. The shell displays its prompt while the
program is executing, so further commands may be invoked at the terminal (see
foreground).

Glossary

U23711-J-Z125-5-76 1041

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
05

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.m
ix

background process
A process which is a member of a background process group and which does
not fully utilize system resources, but allows the simultaneous execution of
other (generally more important) processes. A background process normally
utilizes time gaps in which the processor would be otherwise unoccupied.

background process group
Any process group, other than a foreground process group, that is a member of
a session that has established a connection with a controlling terminal.

backslash
The character \, also known as a reverse solidus.

backspace character
A character that, in the output stream, should cause printing (or displaying) to
occur one column position previous to the position about to be printed. If the
position about to be printed or displayed is at the first column of the current line,
the behavior is unspecified. The backspace is the character designated by \b
in the C language. It is unspecified whether this character is the exact sequence
transmitted to an output device by the system to accomplish the backspace
function.

binary file
An ordered sequence of bytes. The data written by C output functions is trans-
ferred to a binary file on a 1:1 basis. In contrast to text files, control characters
for line feeds and tabs are non converted (see text file), but are mapped as
corresponding EBCDIC values. Data that is read from a binary file thus corre-
sponds precisely to the data that was originally written to the file.
The following files are binary files with stream-oriented I/O: cataloged PAM files,
temporary PAM files (INCORE), and cataloged SAM files that were opened with
fopen() or freopen() in binary mode.
The following files are binary files with record-oriented I/O: cataloged ISAM
files, cataloged SAM files, and cataloged PAM files that were opened with
the function fopen() or freopen() in binary mode and with the option
"type=record".
Binary mode can only be specified with the fopen() and freopen() functions.
The elementary functions open() and creat() always open SAM and ISAM
files as text files.

Glossary

1042 U23711-J-Z125-5-76

block special file
A special file for block-oriented I/O devices. A block special file is normally dis-
tinguished from a character special file by the fact that it provides access to the
device in a manner such that the hardware characteristics of the device are not
visible.

block-mode terminal
A terminal that does not support character-based input and output operations.

buffer
A memory area in which data is temporarily stored.

buffering
For all output functions that write data to text files and binary files with stream-
oriented I/O (printf(), putc(), fwrite() etc.), data is initially stored in a buf-
fer and is not written to the external file until a specific event occurs. This differs
for text and binary files.

carriage-return character
A character that in the output stream indicates that printing should start at the
beginning of the same physical line in which the carriage-return character
occurred. The carriage-return is the character designated by \r in the C lan-
guage. It is unspecified whether this character is the exact sequence transmit-
ted to an output device by the system to accomplish the movement to the begin-
ning of the line.

character
A sequence of one or more bytes representing a single graphic symbol or con-
trol code. This term also applies to multi-byte characters and single-byte char-
acters, where a single-byte character is a special case of a multi-byte character.

character class
A named set of characters sharing an attribute associated with the name of the
class. The classes and the characters contained in the set are dependent on
the value of the LC_CTYPE category in the current locale.

character set
In the international "C" locale, characters are encoded according to the rules of
the 7-bit US ASCII coded character set. Each character of the character set is
assigned various attributes, such as a graphic symbol, possible conversions
into corresponding uppercase or lowercase letters, the character class to which
it belongs, and a position within the codeset collating sequence. Different native
language character sets could be used in internationalized programs.

Glossary

U23711-J-Z125-5-76 1043

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
05

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.m
ix

character special file
A special file for character-oriented I/O devices. One example of a character
special file is a terminal device file.

character string
A contiguous sequence of characters that contains a null byte as the last
element.

child directory
A directory that is under another directory at the next-higher level of the file
system.

child process
See process.

clock tick
The (machine-specific) number of intervals per second is defined by
{CLK_TCK}. It is used to express the value in type clock_t as returned by
time.h.

collating element
The smallest entity used to determine the logical ordering of character or wide-
character strings (see collation sequence). A collating element consists of
either a single character, or two or more characters collating as a single entity.
The value of the LC_COLLATE category in the current locale determines the cur-
rent set of collating elements.

Glossary

1044 U23711-J-Z125-5-76

collating sequence
The relative order of collating elements, as determined by the setting of the
LC_COLLATE category in the current locale.
The character order, as defined for the LC_COLLATE category in the current
locale, defines the relative order of all collating elements, such that each ele-
ment occupies a unique position in the order. This is the order used in ranges
of characters and collating elements in regular expressions and pattern match-
ing. In addition, the definition of the collating weights of characters and collating
elements uses collating elements to represent their respective positions within
the collation sequence.
Multi-level sorting is accomplished by assigning the collating elements one or
more collation weights, up to the limit {COLL_WEIGHTS_MAX} (see the header
file limits.h).
On each level, elements may be given the same weight (at the primary level,
called an equivalence class; see equivalence class) or be omitted from the
sequence. Strings that collate equal using the first assigned weight (primary
ordering) are then compared using the next assigned weight (secondary order-
ing), and so on.

collation order
The logical ordering of character or wide-character strings according to defined
precedence rules. These rules identify a collation sequence between the collat-
ing elements, and such additional rules that can be used to order strings con-
sisting of multiple collating elements.

column position
The distance of a character from the start of a line. It is assumed that each char-
acter in a character set has an intrinsic column width independent of any output
device. Each printable character in the portable character set has a column
width of one. The XPG4 standard utilities, when used as described in this man-
ual, assume that all characters have integral column widths. The column width
of a character is not necessarily related to the internal representation of the
character (numbers of bits or bytes).
The column position of a character in a line is defined as one plus the sum of
the column widths of the preceding characters in the line.

command
A directive to the shell to perform a particular task (see the manual "POSIX
Commands”).

Glossary

U23711-J-Z125-5-76 1045

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
05

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.m
ix

command interpreter
An interface that interprets sequences of text input as commands. It may oper-
ate on an input stream or it may interactively prompt and read commands from
a terminal. It is possible for applications to invoke utilities through a number of
interfaces, which are collectively considered to act as command interpreters.
The most obvious of these are the sh utility and the system() function,
although popen() and the various forms of exec may also be considered to
behave as interpreters.

control character
A character, other than a graphic character, that affects the recording, process-
ing, transmission or interpretation of text.

controlling process
The session leader that established the connection to the controlling terminal.
If the terminal ceases to be a controlling terminal for this session, the session
leader ceases to be the controlling process.

controlling terminal
A terminal that is associated with a session. Each session may have at most
one controlling terminal associated with it, and a controlling terminal is associ-
ated with exactly one session. Certain input sequences from the controlling ter-
minal cause signals to be sent to all processes in the process group associated
with the controlling terminal.

core dump
An image of the memory area occupied by a specific process. If the process is
aborted, the core dump is written to the file core.

current (or working) directory
A directory, associated with a process, that is used in pathname resolution for
pathnames that do not begin with a slash (/).

daemon
A background process that performs its activities silently once started and ter-
minates only when the system is shut off. The best known UNIX example is the
printer daemon, which handles the printing of a file in the background while the
user continues working.

Glossary

1046 U23711-J-Z125-5-76

data set pointer (file pointer)
A data set pointer (also called a file pointer) is a pointer to a structure of type
FILE. It is used to process a file with the standard access functions (see
stdio.h). When a file is opened with fopen(), fdopen(), or freopen(), it is
assigned a file pointer, which serves as a file argument when the file is subse-
quently accessed using fprintf(), fscanf(), fclose(), etc. At program
startup, the standard I/O files are automatically opened with the following file
pointers: stdin (standard input), stdout (standard output), stderr (standard
error).

default
Normal method by which a program is executed when no additional specifica-
tions are made.

device
A computer peripheral or an object that appears to the application as such.

device ID
A non-negative integer used to identify a device.

directory
A file that contains directory entries with unique names (see file name). Direc-
tories are used to organize files and other directories into a hierarchical system.

directory entry (or link)
An object that associates a file name with a file. Several directory entries can
associate names with the same file.

directory stream
A per-process unique value used to reference an open directory.

display (on-screen)
Output to the terminal device file. The output appears on the screen of the
monitor. If the output is not directed to a terminal, the results are undefined.
The terms "display" and "write" are clearly differentiated in the XPG4 standard.
When the term "display" is used, the method of outputting to the terminal is
unspecified; termcap or terminfo is frequently used for this purpose, but this
is not a requirement. The term "write" is reserved for cases when a file descrip-
tor is used and the output can be redirected. However, when the writing is
directly to the terminal (i.e. has not been redirected elsewhere), there is no prac-
tical way for a user or test suite to determine whether a file descriptor is being
used or not. Therefore, the use of a file descriptor is mandated only for the redi-
rection case.

Glossary

U23711-J-Z125-5-76 1047

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
05

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.m
ix

dot
A file name consisting of a single dot character (.); it represents the current
working directory (see pathname resolution).

dot-dot
A file name consisting solely of two dot characters (..); it represents the parent
directory (see pathname resolution).

downshifting
The conversion of uppercase characters to their corresponding lowercase rep-
resentations.

effective group ID
An attribute of a process that is used in determining various permissions, includ-
ing file access permissions (see group ID). This value is subject to change dur-
ing the process lifetime, as described under setgid() and the exec family of
functions.

effective user ID
An attribute of a process that is used in determining various permissions, includ-
ing file access permissions (see user ID). This value is subject to change dur-
ing the process lifetime, as described under setuid() and exec.

elementary functions
BS2000:
Functions that process a file on the basis of file descriptors are referred to as
"elementary". This is in contrast to the standard I/O functions, all of which oper-
ate on the basis of file pointers. In addition, the elementary functions allow SAM
files to be processed only as text files, whereas with the standard functions they
can also be processed as binary files.
In UNIX/POSIX, elementary functions are implemented in the form of system
calls, which differ from standard functions by virtue of improved performance
and greater operating system support. No such distinction is made between a
system call and a function in BS2000.

empty directory
A directory that contains, at most, directory entries for . and .. (see dot and
dot-dot).

empty string
A string whose first byte is a null byte.

empty wide character string
A wide character string whose first element is a null wide-character code.

Glossary

1048 U23711-J-Z125-5-76

epoch
The time zero hours, zero minutes, zero seconds, on January 1, 1970 (Coordi-
nated Universal Time).

BS2000:
The time zero hours, zero minutes, zero seconds, on January 1, 1950 local
time.

equivalence class
A set of collating elements with the same primary collation weight. The following
letters, for example, constitute an equivalence class, since they are all based
on the same base letter and differ only in terms of their accents: á, à, â, ä, ã, å.
The collation order of elements within an equivalence class is determined by the
weights assigned on any subsequent levels after the primary weight.

executable file
A regular file which is accepted as a new process image by the exec family of
functions, which has execute permission, and can thus be called as a command
or utility. The standard utilities described as compilers can produce executable
files, but other unspecified methods of producing executable files can also be
provided. The internal format of an executable file is unspecified, but a conform-
ing application can detect that an executable file is not a text file.

expression
A mathematical or logical symbol or a meaningful combination of such symbols.

extended security controls
The access control (see file access permissions) and privilege (see
appropriate privileges) mechanisms have been defined to allow imple-
mentation-dependent extended security controls. These permit an implementa-
tion to provide security mechanisms that differ from those from those described
in the XPG4 standard. These mechanisms do not alter or override the defined
semantics of any of the functions described in this manual.

feature test macro
A macro used to determine whether a particular set of features will be included
from a header.

FIFO special file
A type of file from which data is read on a first-in-first-out basis. Other properties
of FIFO special files are described under lseek(), open(), read(), and
write().

Glossary

U23711-J-Z125-5-76 1049

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
05

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.m
ix

file
An object that can be written to, or read from, or both. A file is identified in UNIX
by means of an inode has certain attributes, including access permissions and
type. File types include regular file, character special file, block special file,
FIFO special file and directory. A regular file contains text, data, programs or
other information. A special file refers to a device or a part of a physical device
such as a drive or hard disk partition. A directory contains other files.

BS2000:
Records that are related to one another are combined into a named unit (i.e. a
file). Typical files include conventional I/O data of programs, load modules, and
plaintext information that can be created and edited with an editor.

file access permissions
Part of the open file description. The file permission bits are used for file access
control. These bits are set at the time of file creation by functions such as
open(), creat(), mkdir() and mkfifo() and are changed by chmod(). The
bits are read by stat() or fstat().
Applications may provide additional or alternate file access control mecha-
nisms, or both. An alternate file access control mechanism must have the fol-
lowing features:

– It must specify file permission bits for the file owner class, file group class,
and file other class of the file.

– It must be enabled only by explicit user action, on a per-file basis by the file
owner or a user with the appropriate privileges.

– It may be disabled for a file after the file permission bits are changed for that
file with chmod(). The disabling of the alternate mechanism need not dis-
able any additional mechanisms defined by the implementation.

Whenever a process requests file access permission for a read, write, or exe-
cute/search operation, access is determined as described below (provided no
additional mechanism denies access):

If a process has appropriate privileges:

– If read, write or directory search permission is requested, access is granted.

– If execute permission is requested, access is granted if execute permission
is granted to at least one user by the file permission bits or by an alternate
access control mechanism; otherwise, access is denied.

Glossary

1050 U23711-J-Z125-5-76

If a process does not have appropriate privileges:

– The file permission bits of a file contain read, write and execute/search per-
missions for the file owner class, file group class and file other class.

– Access is granted if an alternate access control mechanism is not enabled
and the requested access permission bit is set for the class (file owner
class, file group class, or file other class) to which the process belongs, or
if an alternate access control mechanism is enabled and it allows the re-
quested access; otherwise, access is denied.

file description
An object that contains information on how a process or group of processes are
accessing a file. Each file descriptor refers to exactly one open file description,
but an open file description can be referred to by more than one file descriptor.
A file offset, file status and file access modes are attributes of an open file
description.

file descriptor
A per-process unique, positive integer used to establish a unique association
between a process and an open file for the purpose of file access. The value of
a file descriptor is from zero to {OPEN_MAX}. A process can have no more than
{OPEN_MAX} file descriptors open simultaneously. File descriptors may also be
used to implement message catalog descriptors and directory streams. See
open file description in this Glossary and {OPEN_MAX} in the limits.h
header.

file group class
A process is in the file group class of a file if the process is not in the file owner
class and if the effective group ID or one of the supplementary group IDs of the
process matches the group ID associated with the file. Other conformant imple-
mentations may specify different members for this class.

file hierarchy
Files in the system are organized in a hierarchical tree structure in which all of
the non-terminal nodes (branches) are directories and all of the terminal nodes
(leaves) are any type of file. Multiple directory entries may refer to the same file.

file mode
A combination of attributes that specify the file type and the access permissions
of a file (see the header file sys/stat.h).

Glossary

U23711-J-Z125-5-76 1051

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
05

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.m
ix

file name
A name consisting of 1 to {NAME_MAX} bytes used to name a file. The charac-
ters composing the name may be selected from the set of all character values
excluding the slash character (/) and the null byte (\0). The file names . (dot)
and .. (dot-dot) have special meaning; see pathname resolution. File names
are constructed from the portable file name character set, since the use of other
characters can be confusing or ambiguous in certain contexts. For example, the
use of a colon (:) in a pathname could cause ambiguity if that pathname were
included in a PATH definition (see portable file name character set).

file offset
The file offset specifies the byte position in the file, i.e. the number of bytes from
the start of the file (byte 1 = 1), where the next I/O operation begins. Each open
file description associated with a regular file, block special file or directory has
a file offset. A character special file that does not refer to a terminal device may
have a file offset. There is no file offset specified for a pipe or FIFO.

file other class
The property of a file indicating access permissions for a process related to the
user and group identification of a process. A process is in the file other class of
a file if the process is not in the file owner class or file group class.

file owner class
The property of a file indicating access permissions for a process related to the
user identification of a process.
A process is in the file owner class of a file if the effective user ID of the process
matches the user ID of the file. Other conformant implementations may specify
different members for this class.

file permission bits
Information about a file that is used, along with other information, to determine
if a process has read, write or execute/search permission to a file. The bits are
divided into three parts: owner, group and other. Each part is used with the cor-
responding file class of processes. These bits are contained in the file mode, as
described under sys/stat.h. The detailed usage of the file permission bits in
access decisions is described under file access permissions.

Glossary

1052 U23711-J-Z125-5-76

file position indicator
The file position indicator contains information on the current file position. Data
is read from or written to the file from this current position onwards. The struc-
ture of the information contained in the file position indicator varies in accor-
dance with the type of file.
For text files, it contains information on the current record and the position within
that record.

BS2000:
For binary files with stream I/O, it contains the byte offset, i.e. the number of
bytes calculated from the beginning of the file. The structure differs for SAM and
ISAM files. This information is used internally by the runtime system.
For binary files with record I/O, it contains information on the position after the
last record to be read, written or deleted, or the position reached by an directly
preceding seek operation.
For ISAM files with duplicate keys, it contains the position after the last record
of a group having identical keys if one of these records was read, written or
deleted earlier.

file serial number
A per-file-system unique identifier for a file.

file status
The current status of a file.

file structure
As soon as a file is opened with fopen(), fdopen() or freopen(), it is auto-
matically assigned a specific structure of type FILE. This structure is defined in
stdio.h and includes, among other things, the following information on the file:
pointer to the I/O buffer, buffer size, location of the file position indicator, and the
size of the file.

file system
A collection of files and certain of their attributes. A UNIX file system is orga-
nized in a hierarchical structure (see file hierarchy). A file system provides
a name space for file serial numbers referring to the files in it.

Glossary

U23711-J-Z125-5-76 1053

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
05

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.m
ix

file times update
Each file has three associated time values that are updated when file data has
been accessed, file data has been modified, or file status has been changed,
respectively. These values are returned in the file characteristics structure stat
(see sys/stat.h).
For each function in this manual that reads or writes file data or changes the file
status, the appropriate time-related fields are noted as "marked for update". At
the time of an update, all marked fields are set to the current time, and the
update marks are cleared. Two such update times are when the file is no longer
open by any process and when stat() or fstat() is performed on the file.
Additional update times are unspecified. Updates are not done for files on read-
only file systems.

filter
A command with which data is read from standard input or a list of input files
and written to standard output. Typically, its function is to perform some trans-
formation on the data stream.

foreground
Normal method of executing a command in a shell. When a command is exe-
cuted in the foreground, the shell waits for that command to complete before
prompting the user for further input.

foreground process
A process that is a member of a foreground process group.

foreground process group
A process group whose member processes have certain privileges, denied to
processes in background process groups, when accessing their controlling ter-
minal. Each session that has established a connection with a controlling termi-
nal has exactly one process group of the session as the foreground process
group of that controlling terminal.

foreground process group ID
The process group ID of the foreground process group.

form-feed character
A character that in the output stream indicates that printing should start on the
next page of an output device. The form-feed is the character designated by \f
in the C language. If the form-feed is not the first character of an output line, the
result is unspecified. It is likewise unspecified whether this character is the
exact sequence transmitted to an output device by the system to accomplish
the movement to the next page.

Glossary

1054 U23711-J-Z125-5-76

group database
A system database of implementation-dependent format that contains at least
the following information for each group ID: group name, numerical group ID,
and a list of users allowed in the group. The list of users allowed in the group is
used by the newgrp utility.

group ID
A non-negative integer that is used to identify a group of system users. Each
system user is a member of at least one group. When the identity of a group is
associated with a process, a group ID value is referred to as a real group ID, an
effective group ID, a supplementary group ID or a saved set-group-ID.

group name
A string that is used to identify a group, as described in group database. To be
portable across XSI-conformant systems, the value must be composed of char-
acters from the portable file name character set. The hyphen should not be used
as the first character of a portable group name.

header file (include file)
The file containing data definitions which are copied by the compiler into source
files (see library). Header file names end with the suffix .h. Header files are
included in source files by means of an #include statement. Consequently,
they are also referred to as include files.

home directory
The directory in which a user is automatically placed when connected with
POSIX.

host
A central computer in a network. A host is the system on which programs are
executed, files are stored, and I/O is controlled. Large powerful networks may
often have several hosts.

internationalization
The provision, within a computer program, of the capability of making itself
adaptable to the requirements of different native languages, local customs and
coded character sets.

interrupt
An interruption in the normal processing of a program. Interrupts are caused by
signals which are triggered by a hardware state of a peripheral device to indi-
cate a particular status. If the interrupt is detected by the hardware, an interrupt
service routine is executed. An interrupt character is usually an ASCII character
that generates an interrupt when it is entered from the keyboard.

Glossary

U23711-J-Z125-5-76 1055

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
05

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.m
ix

job control
A facility that allows users selectively to stop (or suspend) the execution of pro-
cesses and continue (or resume) their execution at a later point. The user typi-
cally employs this facility via the interactive interface jointly supplied by the ter-
minal I/O driver and a command interpreter.

job control ID
A handle that is used to refer to a job. The job control job ID can have any of the
following forms:

job variable
BS2000:
Job variables are named memory areas that are used for mutual data
exchanges among jobs and for the exchange of information between jobs and
the operating system. Each job variable has a name and a value (its content).
The content can be used to control jobs and programs. Job variables can be
created, modified, queried and deleted by the user. In addition, users can
instruct the operating system to set a monitoring job variable to reflect changes
in the status of a job or a program.

join file (user catalog)
A file containing the user attributes of all user IDs of a pubset or system.

kernel
The code of the POSIX/UNIX operating system.

library
A collection of statically linked object files or source files that can be linked in
dynamically (shareable library). The individual files of a library contain the pro-
gram text for one or more related functions. When a relevant function is called
in the source code, the corresponding object file must be linked into the pro-
gram (see header file). The name of the library containing it must be speci-
fied at linkage. The file containing the library function used is then copied into
the source code of the application.

Job control job ID Meaning

%% Current job

%+ Current job

%- Previous job

%n Job number n

%string Job whose command begins with string

%?string Job whose command contains string

Glossary

1056 U23711-J-Z125-5-76

link
See directory entry.

link count
The number of directory entries that refer to a file is called the link count of the
file.

local machine
As far as the user is concerned, the local machine is always the one on which
he or she is working. All other computers on the network are remote computers
for that user.

locale
The conventions of a geographic area or territory for date, time, and currency
formats.

locale (country-specific)
The definition of the subset of a user´s environment that depends on language
and cultural conventions.

localization
The process of establishing information within a computer system specific to the
operation of particular native languages, local customs and coded character
sets.

login name
BS2000:
A user name of up to 8 characters that is entered in the join file. The login name
is the basis on which the user is identified on gaining access to the system. All
files and job variables are created under a login name. The names of files and
job variables are stored together with a login name in the file catalog.

mathematical range
The notation [n, m] and [n, m) denotes a mathematical range. The square brack-
ets [and] include the respective limits; the parentheses (and) exclude them.
Thus, if x is in the range [0, 1], it can be from 0 to 1 inclusive, but if x is in [0, 1),
it can be from 0 up to but not including 1.

memory area
A restricted (and defined) area of working memory that can be assigned to spe-
cific programs and arbitrarily subdivided in accordance with program require-
ments.

Glossary

U23711-J-Z125-5-76 1057

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
05

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.m
ix

message catalog
A file or storage area containing program messages, command prompts and
responses to prompts for a particular native language, territory and codeset.

message catalog descriptor
A per-process unique value used to identify an open message catalog.

mode
A collection of attributes that specifies a file´s type and its access permissions
(see file access permissions).

mount point
Either the system root directory or a directory for which the st_dev field of
structure stat (see sys/stat.h) differs from that of its parent directory.

multi-byte character
Characters that consist of multiple bytes, regardless of whether a normal char-
acter or wide character code is involved.

NaN (not a number)
A value that can be stored in a floating type but that is not a valid floating point
number. One example of such a bit pattern is a floating-point number whose
exponent bits are all set to 1.

newline character
A character that in the output stream indicates that printing should start at the
beginning of the next line. The newline is the character designated by \n in the
C language. If the newline is not the first character of an output line, the result
is unspecified. It is likewise unspecified whether this character is the exact
sequence transmitted to an output device by the system to accomplish the
movement to the next line.

null byte
A byte with all bits set to zero.

null pointer
The value that is obtained by converting the number 0 into a pointer; for exam-
ple, (void *) 0. The C language guarantees that this value will not match that
of any legitimate pointer, so many functions that return pointers use it to indicate
an error.

Glossary

1058 U23711-J-Z125-5-76

object file
A file that contains the source code of a program in binary representation. A
relocatable object file contains references that have not been resolved by asso-
ciations with the corresponding definitions; an executable object file is a linked
program.

open file
A file that is currently associated with a file descriptor.

option
An argument to a command that affects the execution of that command. An
option is a type of argument that follows the command name and usually pre-
cedes the other arguments on the command line. Options normally begin with
a minus sign. The number and types of arguments allowed vary for different
commands. If options also take arguments, the arguments are separated by
spaces.

option-argument
A parameter that follows certain options. In some cases, an option-argument is
included within the same argument string as the option; in most cases, it is the
next argument.

orphaned process group
A process group in which the parent of every member is either itself a member
of the group or is not a member of the group´s session.

parent directory
The directory containing a directory entry for the file in question. This concept
does not apply to . and .. (dot and dot-dot).

parent process
See process.

parent process ID
A new process is created by a currently active process. The parent process ID
of a process is the process ID of its creator, for the lifetime of the creator. After
the creator's lifetime has ended, the parent process ID is the process ID of the
init process.

parser
A parser performs a syntactic and lexical analysis of a text.

Glossary

U23711-J-Z125-5-76 1059

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
05

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.m
ix

password
A sequence of characters that must be entered by the user to gain access to a
user ID, a file, a job variable, a network node, or an application.

pathname
A character string that is used to identify a file. A pathname consists of, at most,
{PATH_MAX} bytes, including the terminating null byte. It has an optional begin-
ning slash, followed by zero or more file names separated by slashes. If the
pathname refers to a directory, it may also have one or more trailing slashes.
Multiple successive slashes are considered to be the same as one slash. A
pathname that begins with two successive slashes may be subject to special
interpretation by some compatible implementations, although more than two
leading slashes are treated as a single slash (see pathname resolution).

BS2000:
Every cataloged file in BS2000 can also be uniquely identified by a pathname.
The pathname is composed of the catalog ID (catid), the user ID (userid), and
a fully-qualified file name assigned by the user (e.g.: catid:$userid.filename).

pathname prefix
A pathname that begins with an optional slash and points to a directory.

pathname resolution
Pathname resolution is performed for a process to resolve a pathname to a par-
ticular file in a file hierarchy. There may be multiple pathnames that resolve to
the same file.
Each file name in the pathname is located in the directory specified by its pre-
decessor (for example, in the pathname fragment a/b, file b is located in direc-
tory a). Pathname resolution fails if this cannot be accomplished.
If the pathname begins with a slash, the predecessor of the first file name in the
pathname is taken to be the root directory of the process. Such pathnames are
referred to as absolute pathnames.
If the pathname does not begin with a slash, the predecessor of the first file
name of the pathname is taken to be the current working directory of the pro-
cess. Such pathnames are referred to as relative pathnames.
The interpretation of a pathname component is dependent on the values of
{NAME_MAX} and {_POSIX_NO_TRUNC} associated with the path prefix of that
component. If any pathname component is longer than {NAME_MAX}, and if
{_POSIX_NO_TRUNC} is in effect for the path prefix of that component (see
pathconf()), this is considered an error condition. Otherwise, only the first
{NAME_MAX} bytes of the pathname component are taken into account. The

Glossary

1060 U23711-J-Z125-5-76

special file name . (dot) refers to the directory specified by its predecessor. The
special file name .. (dot-dot) refers to the parent directory of its predecessor. As
a special case, in the root directory, dot-dot may refer to the root directory itself.
A pathname consisting of a single slash resolves to the root directory of the pro-
cess. A null pathname is invalid.

pattern
A sequence of characters used either with regular expression notation or for
pathname expansion as a means of selecting various character strings or path-
names, respectively. The syntaxes of the two patterns are similar, but not iden-
tical. This manual always indicates the type of pattern being referred to in the
immediate context of the use of the term.

pipe
An object accessed by one of the pair of file descriptors created by the pipe()
function. Once created, the file descriptors can be used to manipulate it, and it
behaves identically to a FIFO special file when accessed in this way. It has no
name in the file hierarchy.

portability
The capability of a program to run on different operating systems without
changes. This is achieved by using standardized open programming interfaces
that are offered on a variety of platforms.

portable character set
The collection of characters that are required to be present in all locales sup-
ported by XSI-conformant systems:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 ! # % ^ & * () _ + - = { } []
: "~ ; ´ , `, < > ? , . | \ / @ $

portable file name character set
For a file name to be portable across implementations conforming to the ISO
POSIX-1 standard, it must consist only of the following characters:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . _ -
The last three characters are the period, underscore and hyphen characters,
respectively.
The hyphen must not be used as the first character of a portable file name.
Uppercase and lowercase letters are differentiated by all conforming implemen-
tations.
In the case of a portable pathname, the slash character may also be used.

Glossary

U23711-J-Z125-5-76 1061

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
05

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.m
ix

portable pathname
For a pathname to be portable across compatible systems, it should consist of
at most {PATH_MAX} bytes, including the terminating null byte. It should be a
pathname consisting of an optional leading slash, followed by zero or more por-
table file names separated by slashes.

POSIX file system
A file system in BS2000 with the structure of a UNIX file system (UFS). The
POSIX file system comprises a set of directories and files (POSIX files) that are
organized in a hierarchical tree structure. The root directory (/) is at the root of
the tree, and all other directories are the branches from the root directory. Each
file in the file system can be reached via precisely one absolute path and sev-
eral conceivable relative paths.
The difference between a POSIX file system and a UNIX file system is the
storage location: a UNIX file system is stored on a physical device, whereas a
POSIX file system is stored in a PAM container file.

POSIX shell
A ported UNIX system program that handles communication between the user
and the system. The POSIX shell is a command interpreter. It translates the
entered POSIX commands into a language that can be processed by the sys-
tem.
If the POSIX shell was entered as the "program" attribute of the user, the POSIX
shell will be started automatically when the user logs on at a remote computer
(rlogin).

process
An address space and single thread of control that executes within that address
space, and its required system resources. A process is created by another pro-
cess by a call to the fork() function. The process that calls fork() is known
as the parent process, and the new process created by the fork() is known as
the child process.

process group
A collection of processes that permits the signalling of related processes. Each
process in the system is a member of a process group that is identified by a pro-
cess group ID. This grouping permits signals to be sent to related groups of pro-
cesses. A newly created process joins the process group of its creator.

process group ID
The unique identifier representing a process group during its lifetime. A process
group ID is a positive integer and cannot be reused by the system until the pro-
cess group lifetime ends.

Glossary

1062 U23711-J-Z125-5-76

process group leader
A process whose process ID is the same as its process group ID.

process group lifetime
A period of time that begins when a process group is created and ends when
the last remaining process in the group leaves the group, due either to the end
of the last process lifetime or to the last remaining process calling the setsid()
or setpgid() functions.

process ID
A unique identifier of a process. A process ID is a positive integer that cannot
be reused by the system until the process lifetime ends. In addition, if there
exists a process group whose process group ID is equal to that process ID, the
process ID cannot be reused by the system until the process group lifetime
ends. Only a system process can have a process ID of 1.

process lifetime
The period of time that begins when a process is created and ends when its pro-
cess ID is returned to the system.
After a process is created with a fork() function, it is considered active. Its
thread of control and address space exist until it terminates. It then enters an
inactive state where certain resources may be returned to the system, although
some resources, such as the process ID, are still in use. When another process
executes a wait(), or waitpid() function for an inactive process, the remain-
ing resources are returned to the system. The last resource to be returned to
the system is the process ID. At this time, the lifetime of the process ends.

protocol
A set of rules for the exchange of data between two systems. The protocol
defines the type of electrical connection, the data format, and the sequence of
data.

pthread
A thread is a part of a program which runs concurrently with other parts. Several
threads can run concurrently within a single process. A process must, however,
comprise at least one thread. Unlike processes, all the threads of a program
share a common address space.
In the case of the Pthreads in BS2000, the threads of a single process can be
distributed over several tasks, unlike DCE threads, for instance.

radix character
The character that separates the integer part of a number from the fractional
part.

Glossary

U23711-J-Z125-5-76 1063

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
05

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.m
ix

read-only file system
A file system that has implementation-dependent characteristics restricting
modifications.

real group ID
The attribute of a process that, at the time of process creation, identifies the
group of the user who created the process (see group ID). This value is sub-
ject to change during the process lifetime, as described under setgid().

real user ID
The attribute of a process that, at the time of process creation, identifies the
user who created the process (see user ID). This value is subject to change
during the process lifetime, as described under setuid().

record-oriented I/O
BS2000:
Record-oriented I/O means that the file position indicator of the file can only be
positioned at the start of a record or block. Record-oriented I/O enables efficient
file processing, adapted to the structure of the BS2000 system. The unit for an
I/O function call is always a record or block. Record-oriented processing can be
used for cataloged SAM, ISAM and PAM files. Additional functions are available
for actions such as deleting or inserting records or accessing keys in ISAM files.

regular expression
A pattern constructed according to specific rules (see section "Regular expres-
sions" in the manual "POSIX Commands").

regular file
A file that is a randomly accessible sequence of bytes, with no further structure
imposed by the system.

relative pathname
An access path for a file or directory, starting from the position of the current
directory within the file system. Relative pathnames do not begin with a slash (/
) (see pathname resolution).

remote machine
In a local network, a distinction is made between the local computer and the
remote machines. As far as the user is concerned, all computers in the network
other than the one at which he or she is directly working are remote machines.
The user can communicate with all remote machines on the network.

Glossary

1064 U23711-J-Z125-5-76

root directory
A directory, associated with a process, that is used in pathname resolution for
pathnames that begin with a slash.

saved set-group-ID
An attribute of a process that allows some flexibility in the assignment of the
effective group ID attribute, as described under setgid() and exec.

saved set-user-ID
An attribute of a process that allows some flexibility in the assignment of the
effective user ID attribute, as described under setuid() and exec.

security attributes
BS2000:
The attributes of an object (file, job variable, etc.) which define and control
access to that object and are thus relevant to security.
For example, the following security attributes exist for files: ACCESS/USER-
ACCESS, SERVICE bit, AUDIT attribute, RDPASS, WRPASS, EXPASS,
RETPD, BACL, ACL and GUARD.

session
A collection of process groups established for job control purposes. Each pro-
cess group is a member of a session. A process is considered to be a member
of the session of which its process group is a member. A newly created process
joins the session of its creator. A process can alter its session membership (see
setsid()). Implementations that support setpgid() can have multiple pro-
cess groups in the same session.

session leader
A process that has created a session (see setsid()).

session lifetime
The period between when a session is created and the end of the lifetime of all
the process groups that remain as members of the session.

shell
A system program in UNIX that handles communication between the user and
the system. The shell is a command interpreter. It translates the entered com-
mands into a language that can be processed by the system. A shell is started
for each user as soon as he or she has logged on to the system.

Glossary

U23711-J-Z125-5-76 1065

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
05

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.m
ix

signal
A mechanism by which a process may be notified of, or affected by, an event
occurring in the system. Examples of such events include hardware exceptions
and specific actions by processes. The term signal is also used to refer to the
event itself.

signal mask
The currently defined set of signals for a process that are to be blocked before
the signal is delivered to that process. The signal mask of a process is initialized
by its parent process. The signal mask can be controlled and manipulated with
the sigaction(), sigfprocmask() and sigsuspend() functions.

slash
The term slash is used to represent the literal character /, also known as a sol-
idus.

special character
Characters that are assigned special functions on I/O (see section “General ter-
minal interface” on page 129).

special file
A file, also called a device driver, that serves as the interface to an I/O device
such as a terminal, disk drive, or line printer.

standard error
An output stream used for diagnostic messages.

standard input
A stream associated with a primary input device.

standard output
A stream associated with a primary output device.

standard utilities
The commands described in the manual "POSIX Commands" [2].

stream
A file access object that allows access to an ordered sequence of characters.
Such objects can be created by the fdopen(), fopen() or popen() functions
and are associated with a file descriptor. A stream provides the additional ser-
vices of user-selectable buffering and formatted input and output.

Glossary

1066 U23711-J-Z125-5-76

stream-oriented I/O
Stream-oriented I/O means that the file position indicator can be positioned on
each individual byte in the file. Stream I/O is the conventional processing mode
and is set by default, i.e. without any special qualifiers specified for the open
functions. Text files can be processed exclusively in this I/O mode. In contrast
to record-oriented I/O, the data for output to files with stream I/O is first stored
in an internal buffer and is written to the external file later (see buffering).

supplementary group ID
An attribute of a process used in determining file access permissions.
A process has up to {NGROUPS_MAX} supplementary group IDs in addition to
the effective group ID. The supplementary group IDs of a process are set to the
supplementary group IDs of the parent process when the process is created.
Whether a process´ effective group ID is included in or omitted from its list of
supplementary group IDs is unspecified.

suspended job
A background job that has received a SIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU
signal.

system
The term system is used in this manual to designate an implementation of the
system interface.

system call
Request, from within a program, for a service that is executed by the operating
system kernel.

system process
An object, other than a process executing an application, that is defined by the
system and has a process ID.

system scheduling priority
A number used as advice to the system to alter process scheduling priorities.
Raising the value gives the process additional preference when it is scheduled
to run; lowering the value reduces the preference.

terminal
A character special file (i.e. a special file for a character-oriented device) that
meets the specifications of the general terminal interface (see section “General
terminal interface” on page 129).

Glossary

U23711-J-Z125-5-76 1067

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
05

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.m
ix

text file
BS2000:
Text files are only possible for stream I/O. The following file types are treated as
text files:
– cataloged SAM files (no binary mode on open),
– cataloged ISAM files,
– system files (SYSDTA, SYSOUT, SYSLST, SYSTERM)

A text file is an ordered sequence of bytes that are combined to form lines (or
records). In contrast to binary files, the control characters for white space are
converted to their appropriate effect, depending on the type of text file (see
white space). This means that data read from a text file does not correspond
precisely to the data that was originally written to it. Each written tab (\t) that is
read is expanded to an appropriate number of spaces. The following points also
apply to text files:
– Newline characters not originally written to the file may be read in (see

fflush(), fseek(), fsetpos(), lseek(), rewind()).
– Output to SYSOUT and SYSTERM (for writing)

Each line is started with a blank as a print control character. This produces
a line feed.

– Output to SYSLST
The line starts with a blank as the print control character only if none of the
control characters \f, \v, \r or \b are specified in a line.

UNIX system
An operating system that works in interactive mode. UNIX was developed in
1969 by Bell Laboratories. Since only a central system kernel of this operating
system is hardware-dependent, UNIX is installed on several different systems
by various computer manufacturers. UNIX applications are portable to a large
extent.

upshifting
The conversion of lowercase characters to their corresponding uppercase
representations.

user
A representative of a user ID. The term user is used generically for people,
applications, procedures, etc., that can obtain access to the operating system
via a user ID.

user administration
BS2000:
All privileges that can be assigned with the command /SET-PRIVILEGE as well
as the privileges of the security administrator and the system ID TSOS.

Glossary

1068 U23711-J-Z125-5-76

user attributes
All characteristics of a user ID that are stored in the join file (also called a user
catalog).

user catalog
See join file.

user database
A system database of implementation-dependent format that contains at least
the following information for each user ID:
user name, numerical user ID, initial numerical group ID, initial working direc-
tory, and initial user program.
The initial numerical group ID is used by the newgrp utility. Any other circum-
stances under which the initial values are made effective are implementation-
dependent.

user group
A collection of individual users under a single name (group ID).

user ID
A non-negative integer that is used to identify a system user. When the identity
of a user is associated with a process, a user ID value is referred to as a real
user ID, an effective user ID, or a saved set-user-ID.

user name
A string that is used to identify a user, as described in user database. To be por-
table across XSI-conformant systems, the value must be composed of charac-
ters from the portable file name character set. The hyphen should not be used
as the first character of a portable user name.

user privileges
BS2000:
All attributes assigned to a user ID (login name), which are stored in the join file
and which define the rights of the user.

variable
An object with a value that may change during program execution.

white space
A sequence of one or more characters that belong to the space character class
as defined via the LC_CTYPE category in the current locale. In the POSIX locale,
white space consists of one or more blank characters (space and tabs), newline
characters, carriage-return characters, form-feed characters and horizontal or
vertical tab characters.

Glossary

U23711-J-Z125-5-76 1069

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
05

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.m
ix

wide character code
An integer value corresponding to a single graphic symbol or control code. All
wide character codes of a process consist of the same number of bits. A wide
character code for which all bits are set to zero is called a null wide character
code.

wide character string
A contiguous sequence of wide character codes terminated by and including
the first null wide character code.

zombie process
An inactive process that will be deleted at some later time when its parent pro-
cess executes a wait() or waitpid() function.

Glossary

1070 U23711-J-Z125-5-76

U23711-J-Z125-5-76 1071

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
04

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.li
t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
versions of manuals which are displayed with the order number.

[1] POSIX (BS2000)
POSIX Basics for Users and System Administrators
User Guide

[2] POSIX (BS2000)
Commands
User Guide

[3] C (BS2000)
C Compiler
User Guide

[4] C/C++ (BS2000)
C/C++ Compiler
User Guide

[5] C/C++ (BS2000/OSD)
POSIX Commands of the C/C++ Compiler
User Guide

[6] CRTE
C Library Functions
Reference manual

[7] CRTE
Common RunTime Environment
User Guide

[8] DCE (BS2000)
POSIX Program Interface
User Guide

http://manuals.ts.fujitsu.com

Related publications

1072 U23711-J-Z125-5-76

[9] SDF-P (BS2000)
Programming in the Command Language
User Guide

[10] BS2000 OSD/BC
Executive Macros
User Guide

[11] BS2000 OSD/BC
Introductory Guide to DMS
User Guide

[12] JV (BS2000)
Job Variables
User Guide

[13] XHCS (BS2000)
8-Bit Code and Unicode Processing in BS2000/OSD
User Guide

Related publications

U23711-J-Z125-5-76 1073

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
29

. M
ar

ch
 2

01
8

 S
ta

nd
 1

5
:0

3.
04

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

C
+

+
\V

3.
2\

M
an

ua
le

\v
lib

\v
lib

_e
n\

vl
ib

.li
t

Other publications

X/Open CAE Specification
System Interfaces and Headers, Issue 4

ISBN: 1-872630-47-2
X/Open Document Number: C202

X/Open CAE Specification
System Interface Definitions, Issue 4

ISBN: 1-872630-46-4
X/Open Document Number: C204

X/Open CAE Specification
Commands and Utilities, Issue 4

ISBN: 1-872630-48-0
X/Open Document Number: C203

International Standard ISO/IEC 9899 : 1990,
Programming languages - C

International Standard ISO/IEC 9899 : 1990,
Programming languages - C / Amendment 1

Related publications

1074 U23711-J-Z125-5-76

U23711-J-Z125-5-76 1075

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

15
.5

1
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3.

2
\M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.s
ix

Index

_ _DATE_ _ 279
_ _FILE_ _ 355
_ _LINE_ _ 593
_ _STDC _VERSION_ _ 858
_ _STDC_ _ 858
_ _TIME_ _ 929
_ASCII_SOURCE (preprocessor define) 45
_CS_PATH 262
_edt 293
_exit 316
_FILE _OFFSET_BITS 35
_IEEE 38, 40
_IEEE_SOURCE (preprocessor define) 40
_LARGEFILE64_SOURCE 36
_LITERAL_ENCODING_ASCII 42, 45
_longjmp 615
_PC_CHOWN_RESTRICTED 702
_PC_LINK_MAX 702
_PC_MAX_CANON 702
_PC_MAX_INPUT 702
_PC_NAME_MAX 702
_PC_NO_TRUNC 702
_PC_PATH_MAX 702
_PC_PIPE_BUF 702
_PC_VDISABLE 702
_POSIX_CHOWN_RESTRICTED 702
_POSIX_FSYNC 905
_POSIX_JOB_CONTROL 906
_POSIX_MAPPED_FILES 905
_POSIX_MEMLOCK 905
_POSIX_MEMLOCK_RANGE 906
_POSIX_MEMORY_PROTECTION 906
_POSIX_MESSAGE_PASSING 906
_POSIX_PRIORITIZED_IO 906

_POSIX_PRIORITY_SCHEDULING 906
_POSIX_REALTIME_SIGNALS 906
_POSIX_SAVED_IDS 906
_POSIX_SEMAPHORES 906
_POSIX_SHARED_MEMORY_OBJECTS 906
_POSIX_SYNCHRONIZED_IO 906
_POSIX_THREAD_ATTR_STACKADDR 906
_POSIX_THREAD_ATTR_STACKSIZE 906
_POSIX_THREAD_PRIO_INHERIT 906
_POSIX_THREAD_PRIO_PROTECT 906
_POSIX_THREAD_PRIORITY_SCHEDULING

906
_POSIX_THREAD_PROCESS_SHARED 906
_POSIX_THREAD_SAFE_FUNCTIONS 906
_POSIX_THREADS 906
_POSIX_TIMERS 906
_POSIX_VDISABLE 702
_POSIX_VERSION 906
_POSIX2_C_BIND 906
_POSIX2_C_DEV 906
_POSIX2_C_VERSION 906
_POSIX2_CHAR_TERM 906
_POSIX2_FORT_DEV 906
_POSIX2_FORT_RUN 906
_POSIX2_LOCALEDEF 906
_POSIX2_SW_DEV 906
_POSIX2_UPE 906
_POSIX2_VERSION 906
_setjmp 615
_tolower 936
_toupper 937
. 1047
.. 1047
/var/adm/utmpx 298
#define statement 33

Index

1076 U23711-J-Z125-5-76

#include directive 32

64-bit function 35
64-bit functions

for NFS V3.0 166
7-bit ASCII character

test 558
8-bit transparency 1039

A
a64l 195
abnormal process abort 197
abort 197
abs 198
absolute pathname 1039
absolute value

compute 588
of an integer (long long int) 597

access 199
access mode 1039
access permissions

check 199, 320
access protection for memory mapping 667
access time

set for file 961
access to slave pseudoterminal 528
account number 1039
acos 201
acosh 202
active handle 112
ADD-FILE-LINK command 118
address 1039
address space 1039
advance 203, 755

regexp 756
AID 162
AIO_LISTIO_MAX 905
AIO_MAX 905
AIO_PRIO_DELTA_MAX 905
alarm 204
alert 1039
alert character 1040
algorithms

for encoding strings 270
alias name 1040
allocate

code conversion descriptor 535
allocated memory

free 400
allocation

memory 638
alphabetic character

test 557
alphabetic wide character

test 572
alphanumeric character

test 556
alphanumeric wide character

test 571
altzone 205
Amendment 1 conformity

macro 858
ANSI conformance

macro 858
ANSI functionality 1035
appropriate privileges 1040
arc cosine

compute 201
arc sine

compute 209
arc tangent

compute 210
arc tangent of x/y

compute 211
ARG_MAX 905
argument 1040
argument list

formatted output 972
array

binary search 229
sort 229

array variable
for timezone strings 945

ASCII functions
names 44
overview 44, 47

Index

U23711-J-Z125-5-76 1077

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

15
.5

1
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3.

2
\M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.s
ix

ASCII support 42
ASCII to EBCDIC string

convert 205
ascii_to_ebcdic 205
asctime 206
asctime_r 208
asin 209
asinh 202, 209
assert 210
atan 210
atan2 211
atanh 202, 211
atexit 212
atof 213
atoi 214
atol 215
atoll 216
authentication 1040

B
B0 141
B110 141
B1200 141
B134 141
B150 141
B1800 141
B19200 142
B200 141
B2400 141
B300 141
B38400 142
B4800 142
B50 141
B600 141
B75 141
B9600 142
background 1040
background process 1041
background process group 1041
backslash 1041
backspace character 1041
base name

for temporary file 934
base-independent exponent 776

basename 217
basic data

operating system 951
baud rate

get for input 242
get for output 242
set for input 243
set for output 244

BC_BASE_MAX 905
BC_DIM_MAX 905
BC_SCALE_MAX 905
BC_STRING_MAX 905
Bessel functions

of the first kind 584
of the second kind 1033

binary data
read 398

binary data output 451
binary file 1041
binary search

sorted array 229
binary search tree 940

build 940
find node 929
nomenclature 941
process 940
traverse 945

binary tree
delete node 924

block special file 1042
block-mode terminal 1042
blocked signal 822

change 841
examine 841

blockwise encoding
strings 293

brk 219
BRKINT 137
BS2000

console 145
execute command 227
functionality 75
get file names 226

Index

1078 U23711-J-Z125-5-76

BS2000 command
execute 911

bs2cmd 221
bs2exit 225
bs2fstat 226
bs2system 227
BSDLY 139
bsearch 229
btowc 230
buffer 1042

fflush 345
flushing 110

buffering 1042
assign to a stream 790, 811

build
binary search tree 940

byte
find in memory 640
get from standard input stream 464
get from stream 348, 461
push back onto input stream 952
put on a stream 392
put on standard output stream 716
put on stream 715

bytes
copy in memory 639
read from file 731
swap 900
write to a file 1025

bytes in memory
compare 641
copy 642
with overlapping areas 644

C
C library functions

for ASCII support 43
IEEE floating-point numbers 39
mapping to ASCII variant 45
mapping to IEEE variant 40

C locale 89, 799
c_cc vector 144
cabs 231

calculate absolute value
of a complex number 231

calloc 232
carriage-return character 1042
cataloged disk file 118
catclose 233
catgets 234
catopen 235
cbrt 237
cc_t 137
cdisco 238
ceil 239
ceilf 239
ceill 239
cenaco 240
cfgetispeed 242
cfgetospeed 242
cfsetispeed 243
cfsetospeed 244
change

current directory 323
file group 248, 327, 328
file owner 248, 327, 328
file permission bits 246, 326
mode of file 324
priority of a process 686
root directory 251
working directory 245

character class 1042
character in string

get first occurrence 879
get first occurrence of 536
get last occurrence 771, 884

character set 1042
character special file 1043
character string 1043

regular expressions 756
characters 1042

convert to lowercase 937
convert to uppercase 937
in a line 132
white space 117

chdir 245

Index

U23711-J-Z125-5-76 1079

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

15
.5

1
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3.

2
\M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.s
ix

check
access permissions 199, 320

child directory 1043
child process 375, 1043

wait for process to stop or terminate 978
wait for status change 983

CHILD_MAX 905
chmod 246
chown 248
chroot 251
clear

end-of-file indicator 252
error indicator 252

CLK_TCK 905
CLOCAL 141

opening a terminal device file 129
clock 253
clock tick 1043
clock_gettime 254
close 255

a file 255
destroy handles 112
directory 257
stream 329

closedir 257
code conversion 532
code conversion descriptor

allocate 535
COLL_WEIGHTS_MAX 905
collating element 1043
collating sequence 1044
collation 1044
column position 1044
column positions

of a wide character code 1020
of a wide character string 1015

command 1044
execution in BS2000 227, 911
execution in POSIX subsystem 911

command interpreter 1045
command option parsing 493

command options
syntax analysis 493
variables for 493, 701

command-line parser 493
communication element 148
compare

regular expressions 860
strings 860, 876
wide character strings 989, 1022
with regular expression 203

compilation date
macro 279

compilation time
macro 929

compile 261, 755
regexp 756

compiled regular expression 756
compiler option

MODIFY-MODULE-PROPERTIES 38, 43,
46

MODIFY-SOURCE-PROPERTIES 42
complementary error function

use 309
complementary wide character substring

get length 991
compute

absolute value of floating-point number 320
arc cosine 201
arc sine 209
arc tangent 210
arc tangent of x/y 211
base 10 logarithm 613
cosine 263
difference between two calendar time

values 283
Euclidian distance 531
exponential function 319
hyperbolic cosine 263
hyperbolic sine 848
hyperbolic tangent 914
remainder value of floating-point number 361
sine function 848
square root 852
tangent 914

Index

1080 U23711-J-Z125-5-76

concatenate
strings 861
substrings 876

confstr 262
contingency routine 152

define 240
disconnect 238
free programming 154
implementation using library functions 153
in Assembler 155
in C 154

control 331
control character 1045

test 561
control devices 541
control operations

for messages 669
control STREAMS 541
control wide character

test 573
controlling process 130, 1045
controlling terminal 130, 1045

of session leader 130
conversion functions

/390/IEEE 41
EBCDIC/ASCII 46

conversion, explicit
/390/IEEE 41
EBCDIC/ASCII 46

convert
ASCII string to EBCDIC string 205
date and time to string 208, 277, 608
date and time to user format 470
date and time to UTC 525, 527
date and time to wide character string 992
directory entries 475
EBCDIC string to ASCII 290
local time to time since epoch 657
multi-byte character to wide character 230
multi-byte string to wide-character 633, 635
string to long integer 890
string to long long integer 892
string to unsigned long long integer 896

wide character string to multi-byte string 999
wide character string to unsigned long

long 1012
wide character to 1-byte multi-byte

character 1017
wide character to character 1017
wide characters to multi-byte characters 985

convert to string
date and time 195, 880
monetary value 868

copy
wide character string 1022, 1023

core dump 1045
cos 263
cosh 263
cosine

compute 263
CPU time used

by process 253
by task 264

cputime 264
CR 136
CRDLY 139
CREAD 141
creat 265
creat64 265
create

base name for temporary file 934
file 265
pathname for temporary file 927

create FIFO file 649
crypt 270
CSIZE 141
CSTOPB 141
cstxit 271
ctermid 275
ctime 276
ctime_r 277
cube root 237
current directory 1045

change 323
current time of day 517
cuserid 278

Index

U23711-J-Z125-5-76 1081

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

15
.5

1
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3.

2
\M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.s
ix

D
daemon 1045
data

binary output 451
binary read 398
discard non-transmitted data 917

data segment
modify size 776

data set pointer 1046
data structures (IPC) 149
data transmission

restart 916
serial 921
suspend 916

date and time
convert to local time 606
convert to string 206, 276, 277, 872
convert to user format 470
convert to UTC 525, 527
convert to wide character string 992
get 433

daylight 279
daylight savings time

variable 279
debugging options 162
decimal digit

test 562
decimal digit wide character, test 575
default 1046
default signal action 823
define wide character class 1019
define wide character mappings 1018
define, see preprocessor define
DELAYTIMER_MAX 905
delete

node from binary search tree 924
node from binary tree 924
record in ISAM file 338

delivered signal 822
descriptor

for code conversion 534, 535
descriptor table, size 477
destroy

search table 529

determining
string length 879

device 1046
device ID 1046
device number

get formatted 630
get major component 628
get minor component 646

diagnostic messages
output 210

difference between two calendar time values 283
compute 283

difftime 283
difftime64 283
directory 1046

change 245
close 257
get pathname of 468
make 647, 651
open 343, 699
read 734
read (thread-safe) 736
remove 773

directory entry 1046
directory stream 1046

get current location 926
reset file position indicator 770
set position of 778

dirfd 283
disk file 118

file attributes 118
record-oriented I/O 125
stream-oriented I/O 124

display 1045
display (on-screen) 1046
div 285
DIV (DATA IN VIRTUAL) 124
division of integers (long long int) 598
division remainder 762
DMS 194
dot 1047
dot-dot 1047
downshifting 1047
drand48 286

Index

1082 U23711-J-Z125-5-76

dup 288
create handles 112

dup2 288

E
EBCDIC character

test 563
EBCDIC to ASCII string conversion 290
ebcdic_to_ascii 290
ecvt 291
EDT

call 293
edt 293
effective group ID 1047

get 477
effective user ID 1047

get 479
element in queue 540
elementary functions 1047
empty directory 1047
empty signal set

initialize 832
empty string 1047
empty wide character string 1047
encoding key

set 798
encrypt 293
encryption algorithms 270
end-of-file indicator

clear 252
test 343

endgrent 294
endpwent 296
endutxent 298
entry

in linear search table 592
entry in group file

for group name 482, 483
get for group ID 480, 481

environ 301
environment 301

external variable 301

environment variable
add 717
change 717
get value of 478
LANG 105
LAST_BYTE_POINTER 128, 267, 370, 693

EOF 135, 343
EOL 135
epoch 48, 1048

get time 930
local time conversion 657

epoll instance
control 303
generate 302
wait for events 306

epoll_create 302
epoll_ctl 303
epoll_wait 306
equivalence class 1048
erand48 286, 308
ERASE 134

effect 132
erf 309
erfc 309
errno 161, 310
errno.h 161
ERROR

regexp 756
error code 161
error function

use 309
error indicator

clear 252
test on stream 344

error messages 161
error return values

XSI 310
Euclidian distance

compute 531
eventing 153
events

generating signals 822
exec 311

Index

U23711-J-Z125-5-76 1083

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

15
.5

1
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3.

2
\M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.s
ix

exec functions
destroy handles 112

execl 311
execle 311
execlp 311
executable file 1048
execute

BS2000 command 227, 911
POSIX command 911
system command 911

execv 311
execve 311
execvp 311
exit 316
exp 319
expiration date for time functions 48
explicit conversion

/390/IEEE 41
EBCDIC/ASCII 46

exponent of a floating-point number
load 591

exponential function
compute 319
use 319

EXPR_NEST_MAX 905
expression 1048
extended security controls 1048
external variable

environment 301

F
fabs 320
faccessat 199, 320
FCBTYPE

record-oriented I/O 126
fchdir 323
fchmod 324
fchmodat 246, 326
fchown 327
fchownat 248, 328, 343
fclose 329

destroy handles 112
fcntl 331

create handles 112

fcvt 337
FD_CLR 337
FD_ISSET 337
FD_SET 337
FD_ZERO 337
fdelrec 338
fdopen 341

create handles 112
fdopendir 699
feature test macro 1048
feof 343
ferror 344
FFDLY 140
fflush 345
ffs 347
fgetc 348
fgetpos 350
fgetpos64 350
fgets 351
fgetwc 352
fgetws 354
FIFO special file 1048
file 1049

association with a stream 110
change group 248, 327, 328
change owner 248, 327, 328
close 255
closing 110
control 331
convert EBCDIC to ASCII 290
create 265
create base name 934
creating 110
disassociating from a stream 110
execute 311
get file-position indicator 925
large 35
open 689
opening 110
overwrite 265
read bytes from 731
remove 763
rename 765
set access time 961

Index

1084 U23711-J-Z125-5-76

file (cont.)
set modification time 961
set to specified length 436, 939
symbolic link 901
synchronize changes 430
UFS 34
utmpx 810
write bytes to 1025

file access and modification time
set 963

file access and update times
setting 441, 965

file access permission 1049
change 246, 326

file description 1050
handles for 112
open file 112

file descriptor 1050
creating 112
duplicate 288
get 355

file editor
call 293

file group
change 248, 328

file group class 1050
file hierarchy 1050
file link

create 594
file mode 1050

change 246, 324, 326
file mode bits 324

change 324
file mode creation mask

get and set 949
file name 1051

temporary 655
file name/pathname

output 742
file offset 1051

lseek 622
file other class 1051
file owner

change 248, 327, 328

file owner class 1051
file permission bits 1051

change 246, 326
file position indicator 110, 1052

fseek 416
fsetpos 421
ftell 431
reset to start of directory 770
rewind 769
set in directory stream 778
set in ISAM file 356

file processing
disk files 118
INCORE files 129

file serial number 1052
file status 1052

get 423, 854
query 626

file structure 1052
file system 1052

get type 909
mount 665
unmount 950

file system information 858
read 427

file times update 1053
file tree

traverse 439
file-position indicator

tell 925
fileno 355

create handles 112
filter 1053
find

entry in linear search table 592
node in binary search tree 929

floating-point number
convert to string 291, 337, 460
extract mantissa and exponent 403
load exponent 776
next displayable 682
round off 360
round up 239
split into integer and fractional parts 664

Index

U23711-J-Z125-5-76 1085

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

15
.5

1
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3.

2
\M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.s
ix

flocate 356
flockfile 358
floor 360
floorf 360
floorl 360
flush

/reopen stream 166
non-transmitted data 917

fmod 361
fmtmsg 362
fopen 367

create stream 112
fopen64 367
foreground 1053
foreground process 1053
foreground process group 1053
foreground process group ID 1053

get 919
set 924

foreground process groups
definition 129

fork 375
create handles 112

form-feed character 1053
format

output wide characters 444
formatted device number

get 630
formatted input

read from standard input stream 777
read from string 853

formatted output
of variable argument list 972
of wide characters 1024
to a string 976
to standard output 974
to string 852
write on output stream 378

formatted output of wide characters 973
formatted read 404, 453, 900, 1032

from standard input stream 404
from stream 404
from string 404

formatted wide character output 973
formatted write on standard output stream 714
FP-ARITHMETICS clause 38
fpathconf 377, 702
fprintf 378
fputc 392
fputs 394
fputwc 395
fputws 397
fread 398
free 400
freopen 401
freopen64 401
fscanf 404
fseek 416
fseek64 416
fseeko 416
fseeko64 416
fsetpos 421
fsetpos64 421
fstat 423
fstat64 423
fstatat 423
fstatat64 423
fstatvfs 427
fstatvfs64 427
fsync 430
ftell 431
ftell64 431
ftello 431
ftello64 431
ftime 433
ftime64 433
ftruncate 436
ftrylockfile 358, 438
ftw 439
FTW_DNR 439
FTW_NS 439
full-duplex mode

operation 131
fully buffered stream 110

Index

1086 U23711-J-Z125-5-76

function
64-bit 35
general information 33
reentrant 824, 826
safe 824
unsafe 824

function and macro, differences 33
funlockfile 358, 443
fwide 443
fwprintf 444
fwrite 451
fwscanf 453

G
gamma 459
garbcoll 460
gcvt 460
general terminal interface 129
generate

process in virtual memory 971
pseudo-random number 729

get
BS2000 file names 226
byte from standard input stream 464
byte from stream 348, 461
character in string 536, 771, 884
column positions of a wide character

code 1020
column positions of a wide character

string 1015
entry in group file for group ID 480, 481
file status 854
group file entry for group name 482
login name 488, 489
number of bytes in a multi-byte character 632
number of bytes remaining in a multi-byte

character 632
string from standard input stream 513
string from stream 351
string length 875
substring length 885
user name 505
wide character from standard input

stream 523

wide character from stream 522
wide character in string 998
wide character string from stream 352, 354

get exponent part 536, 614
get file position indicator

fgetpos 350
get process group ID 515
get program name 498
get status (file) 423
GETC

regexp 755
getc 461
getc_unlocked 463
getchar 464
getchar_unlocked 463, 465
getcontext 466
getcwd 468
getdate 470
getdents 475
getdents64 475
getdtablesize 477
getegid 477
getenv 478
geteuid 479
getgid 479
getgrent 294, 479
getgrgid 480
getgrgid_r 481

max. data buffer size 907
getgrnam 482
getgrnam_r 483

max. data buffer size 907
getgroups 484
gethostid 485
gethostname 485
getitimer 486
getlogin 488
getlogin_r 489
getmsg 490
getopt 493
getpass 497
getpgmname 498
getpgrp 499
getpid 499

Index

U23711-J-Z125-5-76 1087

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

15
.5

1
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3.

2
\M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.s
ix

getpmsg 499
getppid 498, 500
getpwent 296, 503
getpwnam 504
getpwnam_r 505

max. data buffer size 907
getpwuid 506
getpwuid_r 507

max. data buffer size 907
getrlimit 508
getrlimit64 508
getrusage 512
gets 513
getsid 515
getsubopt 516
gettimeofday 517
gettsn 518
getuid 518
getutx 298, 519
getutxent 298, 519
getutxid 298, 519
getutxline 298, 519
getw 520
getwc 522
getwchar 523
global pattern matching 524
gmatch 524
gmtime 525
gmtime_r 527
grantpt 528
group database 1054
group file entry

for group ID 480, 481
for group name 482, 483
get 479

group ID 1054
effective 477
for job control 803
of a process 499
of process 793
real 479
set 805

group IDs
supplementary 484

group name 1054
group of file

change 327

H
handles 112

active 112
creating 112
destroy 112
for file description 112

hardware
name 951

hash table
manage 529

hcreate 529
hdestroy 529
header file 1054
hexadecimal digit

test 583
hexadecimal digit wide character

test 582
home directory 1054
host 1054
host, ID of current 485
host, name of current 485
hsearch 529
HUPCL 141
hyperbolic cosine

compute 263
hyperbolic sine

compute 848
hyperbolic tangent

compute 914
hypot 531

I
I/O on terminal 145
I/O, record-oriented 1063
IC@LOCAL 103
iconv 532
iconv_close 534
iconv_open 535
ICRNL 137
ID of current host 485

Index

1088 U23711-J-Z125-5-76

IEEE floating-point arithmetic 37
IEEE floating-point numbers 38

C library functions 39
IEEE functions

names 39
overview 39

IGNBRK 137
IGNCR 137
IGNPAR 137
ilogb 536
INCORE file 129
index 536
index names for special characters 144
information

on file system type 909
INIT

regexp 755
initgroups 537
INLCR 137
inline generation 33
INPCK 137
input baud rate

get 242, 243
input buffer 131

for terminal 131
input line

maximum length 132
input mode

non-canonical 131
standard 131

input processing
types 131

input stream
push back byte 952

insque 540
integer

convert to legal value 935, 936
division 592

integer absolute value
return 198

integers
divide 285

internationalization 1054

interprocess communication 147
data structures 149
status information 150
system identifier 149

interrupt 1054
interrupt behavior, system calls 834
interval timer

set 947
set or read 486

INTR 134
ioctl 541
isalnum 556
isalpha 557
ISAM file 118

delete record 338
K/NK format 123
set file position indicator 356

isascii 558
isatty 560
iscntrl 561
isdigit 562
isebcdic 563
isgraph 564
islower 565
isnan 566
iso646.h, header file 33
isprint 567
ispunct 568
isspace 569
ISTRIP 137
isupper 570
iswalnum 571
iswalpha 572
iswcntrl 573
iswctype 574
iswdigit 575
iswgraph 576
iswlower 577
iswprint 578
iswpunct 579
iswspace 580
iswupper 581
iswxdigit 582
isxdigit 583

Index

U23711-J-Z125-5-76 1089

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

15
.5

1
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3.

2
\M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.s
ix

IUCLC 137
IXANY 137
IXOFF 137
IXON 137

J
j0, j1, jn 584
job control 1055
job control ID 1055
job variable 1055
job-step termination 318
join file 1055
jrand48 286, 584
jump

non-local 616
non-local jump using signal 836
set label for non-local jump 796
set non-local label 795

K
K block format 122
K-ISAM file 123
kernel 1055
KILL 135

effect 132
kill 585
KR functionality 1035

L
l64a 195
label

for non-local jump 795
for non-local jump using a signal 844
set for non-local jump 796

labs 588
LANG 105
large file 35

support 35
Last Byte Pointer 127

creat, creat64 266
open, open64 369, 693

LAST_BYTE_POINTER (environment
variable) 128, 267, 370, 693

LBP 127
creat, creat64 266
open, open64 369, 693

LC_ALL 105, 799
LC_C_GERMANY 92
LC_C_V1CTYPE 91, 92
LC_COLLATE 86, 799, 989
LC_CTYPE 86, 799
LC_MESSAGES 799
LC_MONETARY 87, 799
LC_NUMERIC 87, 799
LC_TIME 799
lcong48 286, 591
ldexp 591
ldiv 592
length

of a string 875
of an input line 132
of complementary substring 864

lfind 592, 621
lgamma 593
libraries for time functions 48
library 1055
limit for resource

get 508
set 508, 807

line buffered stream 110
line feed 145
line number

macro 593
LINE_MAX 905
linear search 621
linear search table 592
linear table

search 621
linear update 621
link 594, 1056

make link to file 901
remove 955

link count 1056
link name, IC@LOCAL 103
link option for time functions 48
link to file

create 594

Index

1090 U23711-J-Z125-5-76

LINK_MAX 702
linkat 594
LITERAL-ENCODING clause 42
llabs 597
lldiv 598
llrint, llrintf, llrintl 599
llround, llroundf, llroundl 600
loc1 601, 755
loc2 601, 755
local machine 1056
local time

convert into time since the Epoch 657
locale 1056

alter 799
change components 602
get values 687
query 799
set 799
user-specific 103

localeconv 602
localization 1056
localtime 606
localtime_r 608
localtime64 606
location

in directory stream 926
lock clients 463, 465
lock file section 609
lock standard input/output 358, 438
lockf 609
lockf64 609
locs 612, 755
log message 910
log priority mask 802
log10 613
logarithm

compute to base 10 613
of gamma function 459, 593

logb 614
login name 1056

get 278, 488, 489
LOGIN_NAME_MAX 905
long division

of integers 592

long integer
compute absolute value 588

longjmp 616
lowercase letter

convert to uppercase 937
test 565

lowercase wide character
test 577

lrand48 286, 618
lrint, lrintf, lrintl 619
lround, lroundf, lroundl 620
lsearch 621
lseek 622
lseek64 622
lstat 626
lstat64 626

M
machine-dependent floating-point arithmetic 776
macro

Amendment 1 conformity 858
for ANSI conformance 858
for compilation date 279
for compilation time 929
for line number 593
for source file names 355
for synchronous multiplexing 337
General information 33

macro and function, differences 33
major 628
major component of device number

get 628
make

directory 647
directory, special file or text file 651
temporary file name 655
unique temporary file name 654

make file name 654
makecontext 629
makedev 630
malloc 631
manage

hash table 529
mathematical range 1056

Index

U23711-J-Z125-5-76 1091

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

15
.5

1
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3.

2
\M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.s
ix

MAX_CANON 132, 702
MAX_INPUT 702
mblen 632
mbrlen 632
mbrtowc 633
mbsinit 634
mbsrtowcs 635
mbstowcs 636
mbtowc 637
memalloc 638
memccpy 639
memchr 640
memcmp 641
memcpy 642
memfree 643
memmove 644
memory

allocate 232
allocator 631
free allocated memory 400
release to system 460
request 970
shared 813, 815
synchronize 677

memory allocation 638
memory area 1056

free 643
initialize 645

memory mapping, access protection 667
memory page mapping

set up 660
memory pages

map 660
unmap 679

memory reallocator 741
memset 645
message 147

get text 866
output formatted 362
read 234
read from STREAMS file 490, 499
receive from queue 673
send to queue 675
send to STREAMS file 718

message catalog 1057
close 233
open 235

message catalog descriptor 1057
message queue 148

get 671
message queue identifier (msqid) 149
messages 147

control operations 669
to standard error 707

minor 646
minor component of device number

get 646
mkdir 647
mkfifo 649
mkfifoat 649
mknod 651
mknodat 651
mkstemp 654
mktemp 655
mktime 657
mktime64 657
mmap 660
mode 1057
modf 664
modification time

set for file 961
modify

size of data segment 776
user context 791

MODIFY- MODULE-PROPERTIES 38
MODIFY-MODULE-PROPERTIES 43, 46
MODIFY-SOURCE-PROPERTIES 42
monetary value

convert to string 868
mount 665
mount point 1057
mprotect 667
MQ_OPEN_MAX 905
MQ_PRIO_MAX 905
mrand48 286, 668
msgctl 669
msgget 671
msgrcv 673

Index

1092 U23711-J-Z125-5-76

msgsnd 675
msync 677
multi-byte character 1057

convert to wide character 230
multi-byte characters

convert to wide characters 637
multi-byte characters, introduction 47
multi-byte string

complete/convert to wide-character
string 633

convert to wide-character string 635, 636
multiplex STREAMS I/O 709
multiplexing 337
munmap 679

N
name 951

current host 485
hardware 951
operating system 951

NAME_MAX 702
names

ASCII functions 44
IEEE functions 39

NaN 566
nanosleep 681
natural logarithm 612
NCCS 137
network name

operating system 951
new process

create 375
new process image file 311
newline 145
newline character 1057
next displayable floating-point number 682
nextafter 682
nftw 683
NGROUPS_MAX 905
nice 686
nice value 686
NK block format 122

NK-ISAM file 123
NL 135
nl_langinfo 687
NLDLY 139
node

delete from binary search tree 924
find in binary search tree 929

nomenclature
binary search trees 941

non-canonical input mode 131
non-local jump

execute 616
execute using signal 836
set label 795, 796
set label using signal 844
without signal mask 615

nrand48 286, 687
null byte 1057
null pointer 1057
number

characters in a line 132
number of bytes in a multi-byte character

get 632
number of bytes remaining in a multi-byte charac-

ter
get 632

O
O_NONBLOCK

buffering of output 134
clear 132

object file 1058
OCRNL 139
OFDEL 139
offset of structure component

from start of structure 688
offsetof 688
OFILL 139
OLCUC 139
ONLCR 139
ONLRET 139
ONOCR 139

Index

U23711-J-Z125-5-76 1093

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

15
.5

1
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3.

2
\M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.s
ix

open 112, 689
a file 689
directory 343, 699
pipe stream 712
stream 367

open file 1058
control 331

OPEN_MAX 905
open64 689
openat 689
openat64 689
opendir 699
operating system

basic data 951
UNIX 1067

OPOST 139
optarg 493, 701
opterr 493, 701
optind 493, 701
option 1058
option-argument 1058
optopt 493, 701
orphaned process group 1058
output

diagnostics 111
wait for transmission of 915
writing 111

output baud rate
get 242
set 244

output file name/pathname 742
overflow block

NK-ISAM file 123
overwrite

file 265

P
PAM file 118

temporary 129
PARENB 141
parent directory 1058
parent process 375, 1058
parent process ID 1058

get 500

PARMRK 137
PARODD 141
parser 1058

for command line 493
parsing

command options 493
password 1059
PATH_MAX 702
pathconf 702
pathname 1059

for temporary file 927
generate for terminal 275
of a terminal 942
of current working directory 468

pathname prefix 1059
pathname resolution 1059
pathname variable

get value 702
get value of 377

pattern 1060
pattern matching 756

global 524
pause 705
pclose 706
PEEKC

regexp 755
pending signal 822

examine 840
perror 707
pipe 112, 708, 1060

create 708
pipe stream to or from a process, open 712
pipe stream, close 706
PIPE_BUF 702
pointer

as result parameter 160
as return value 159

poll 709
popen 712

create stream 112
portability 1060
portable character set 1060
portable file name character set 1060
portable pathname 1061

Index

1094 U23711-J-Z125-5-76

position
of directory stream 778
read/write pointer in ISAM file 356
read/write pointer on directory stream 770
set file position indicator in ISAM file 356
set file position indicator in stream 421

POSIX command
execute 911

POSIX file system 1061
POSIX functionality 73
POSIX link option (for time functions) 48
POSIX locale 89, 799
POSIX shell 1061
POSIX thread functions

for explicitly locking clients 175
for locking and unlocking objects 174
reentrant functions 174
that affect a process or thread 175

POSIX thread support 36
alphabetical order 174

POSIX_ASYNCHRONOUS_IO 905
pow 713
power function 713
preprocessor define

_ASCII_SOURCE 45
_FILE_OFFSET_BITS 35
_IEEE 38, 40
_IEEE_SOURCE 40
_LARGEFILE64_SOURCE 36
LITERAL_ENCODING_ASCII 42, 45

printf 378, 714
printing character

test 567
printing wide character

test 578
process 1061

binary search tree 940
change priority 686
controlling 130
create 375
effective group ID 477
effective user ID 479
generate in virtual memory 971

real group ID 479
real user ID 518
report CPU time used 253
suspend 705, 849, 960
terminate normally 316
wait for a signal 847
zombie 316

process abort 197
abnormal 197

process group 1061
process group ID 793, 1061

for job control 803
get 477, 479, 499, 515
get for foreground process 919
set 804
set for foreground process group 924

process group leader 1062
process group lifetime 1062
process ID 1062

get 499
of parent process 500

process image file
new 311

process lifetime 1062
process limits

get 948
set 948

process nice value 686
process termination

job-step 318
normal 316

process termination function
register 212

process times
get 931

processor 951
processor name 951
program

terminate with MONJV 225
program termination

with MONJV 225
protocol 1062

Index

U23711-J-Z125-5-76 1095

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

15
.5

1
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3.

2
\M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.s
ix

pseudo-random number
generate 286, 591, 618, 668, 729
generate with initialization value 308, 584,

687
generate with seed 852

pseudoterminal pair
unlock 958

pthread 1062
PTHREAD_DESTRUCTOR_ITERATIONS 906,

907
PTHREAD_KEYS_MAX 907
PTHREAD_STACK_MIN 907
PTHREAD_THREADS_MAX 907
punctuation character

test 568
punctuation wide character

test 579
push back

byte onto input stream 952
put

byte on a stream 392
byte on standard output stream 716
byte on stream 715
string on a stream 394
string on standard output stream 722
wide character code on stream 395
wide character on standard output

stream 725
wide character on stream 725
wide character string on a stream 397

putc 715
putc_unlocked 463, 715
putchar 716
putchar_unlocked 463, 716
putenv 717
putmsg 718
putpwent 721
puts 722
pututxline 298, 723
putw 724
putwc 725
putwchar 725

Q
qsort 726
query

file status 626
queue 540

get for messages 671
remove element 764

quicksort algorithm 726
QUIT 134

R
radix character 1062
raise 727
rand 729
rand_r 729
random numbers

generate 668
re_comp 743
RE_DUP_MAX 907
re_exec 743
read 731

array from file 739
binary data 398
bytes from file 731
contents of a symbolic link 737
directory 734
file system information 427
formatted 404, 453, 900, 1032
formatted from file 453
formatted from standard input 453
formatted input from file 444
formatted input from standard input

stream 777
formatted input from string 853
from standard input stream with format 404
from stream with format 404
stream with format 404
string with format 404
string without echo 497
wide character from stream 352
word from stream 520

read (thread-safe)
directory 736

read input 111

Index

1096 U23711-J-Z125-5-76

read-only file system 1063
readdir 734
readdir_r 736
readdir64 734
readlink 737
readlinkat 737
Readme file 26
README files 26
real group ID 1063

get 479
real user ID 1063

get 518
realloc 741
realpath 742
record

delete in ISAM file 338
record-oriented I/O 125, 1063
reentrant functions 824, 826
regcmp 746
regcomp 749
regerror 749
regex 746
regexec 749
regexp 755
regfree 749
register process termination function 212
regular expression 203, 1063
regular expressions 755

compile and execute 743, 746
regular file 1063
relative pathname 1063
release date

operating system 951
release number

operating system 951
remainder 762
remainder from division 762
remainder value

compute for floating-point number 361
remote machine 1063
remove 763

directory 773
files 763
link 955

remque 540, 764
rename 765

file 765
renameat 765
reposition

file position indicator 416
reset file position indicator 794
resource

get limit 508
set limit 508

resource limit
set 807

restart behavior, system calls 834
restrictions, compared with XPG4 Version 2 24
result parameter, pointer 160
RETURN

regexp 755
return integer absolute value 198
return value

pointer 159
void * 159

return values
variable for 310

rewind 769
rewinddir 770
rindex 771
rint, rintf, rintl 772
rmdir 773
root directory 1064

change 251
round off

floating-point number 360
round to nearest integer value 599, 619
round up

floating-point number 239
round up to next integer value 600, 620, 775
round, roundf, roundl 775
RTSIG_MAX 907

S
sa_flags 820
sa_handler 820
sa_mask 820
SA_NOCLDSTOP 820

Index

U23711-J-Z125-5-76 1097

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

15
.5

1
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3.

2
\M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.s
ix

SA_NOCLDWAIT 821
safe functions 824
SAM file 118
saved set-group-ID 1064
saved set-user-ID 1064
sbrk 219, 776
scalb 776
scanf 404, 777
schedule alarm signal 204
search

binary tree 929, 940
linear 621
linear table 621
sorted array 229
table of data 726

search for first occurrence of a wide character
string 1001

search function
bsearch 229
hsearch 529
lfind 592
lsearch 621
qsort 726
tdelete 940
tfind 929, 940
tsearch 940
twalk 940, 945

search table
destroy 529

search tree
binary 940

security attributes 1064
security controls (extended) 1048
seed for pseudo-random numbers

set 777
seed48 286, 777
seek

first set bit 347
seekdir 778
SEM_NSEMS_MAX 907
SEM_VALUE_MAX 907
semaphore

control operations 781
get ID 784

operations 786
semaphore identifier (semid) 149
semaphores 148
semctl 781
semget 784
semop 786
send

message to STREAM 718
signal 727

serial data transmission
interrupt 921

session 1064
session ID of terminal 920
session leader 1064

controlling terminal 130
session lifetime 1064
set

alternative signal stack 829
file access and modification time 963
file access time 961
file mode creation mask 949
file modification time 961
group ID 805
interval timer 795, 947
process priority 804
seed for pseudo-random number

generator 853
user ID 806

set up, user context 629
set wide characters in wide character string 1023
setbuf 790
setcontext 466, 791
setenv 792
setgid 793
setgrent 294, 794
setgroups 794
setitimer 486, 795
setjmp 796
setkey 798

Index

1098 U23711-J-Z125-5-76

setlocale 799
setlogmask 802
setpgid 803
setpgrp 804
setpwent 296, 804
setregid 805
setreuid 806
setrlimit 508, 807
setrlimit64 508, 807
setsid 808
setting

file access and update times 441, 965
setuid 809
setutxent 298, 810
setvbuf 811
shared memory 147, 148, 151

attach 813
control operations 815
detach 817

shared memory identifier (shmid) 149
shared memory segment

create 818
shell 1064
shmat 813
shmctl 815
shmdt 817
shmget 818
SIG_BLOCK 841
SIG_DFL 823
SIG_IGN 823
SIG_SETMASK 841
SIG_UNBLOCK 841
sigaction

function 820
structure 820

sigaddset 828
sigaltstack 829
sigdelset 831
sigemptyset 832
sigfillset 833
sighold 837
sigignore 837
siginterrupt 834
sigismember 835

siglongjmp 836
signal 837, 1065

add to a signal set 828
alternative stack 829
blocked 822
delete from signal set 831
delivered 821, 822
generated 822
pending 822, 840
send to calling process 727
send to process 585
send to process group 585
sent 822
set alternative stack 846
test for presence in signal set 835
wait for 847

signal action
catch signal 823
default 823
ignore signal 823

signal actions 823
signal handling 153

change 820
examine 820
examine and change 837
modify 843

signal mask 822, 1065
change 841
examine 841

signal processing 146
signal set

add signal to 828
delete signal from 831
initialize and empty 832
initialize and fill 833
test for a specific signal 835

signal-generating event 822
signal.h 146
signals

effects on functions 825
foreground process groups 129

signgam 459, 593, 840
sigpause 837
sigpending 840

Index

U23711-J-Z125-5-76 1099

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

15
.5

1
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3.

2
\M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.s
ix

sigprocmask 841
SIGQUEUE_MAX 907
sigrelse 837
sigset 843
sigsetjmp 844
sigstack 846
sigsuspend 847
SIGTTIN signals

conditions 130
sin 848
sine function

compute 848
sinh 202, 848
slash 1065
sleep 849
sort

array 229
table of data 726

sorted array
binary search 229

source file name
macro 355

special character 1065
special file 1065

make 651
specify file orientation 443
sprintf 378, 852
sqrt 852
square root

compute 852
srand 852
srand48 286, 853
srandom 853
sscanf 404, 853
stack

alternative signal stack 829
set signal stack 846

standard error 111, 1065
write messages 707

standard I/O
lock by clients 463, 465

standard I/O streams 111
variables 859

standard input 111, 1065

standard input mode 131
standard input stream

read with format 404
standard input/output

lock 358, 438
unlock 443

standard output 111, 1065
standard output stream

put a string on 722
standard utilities 1065
START 135
stat 854
stat64 854
status

of open file 423
status change, child process 983
status information 150
statvfs 427, 858
statvfs64 427, 858
stderr 859
STDERR_FILENO 859
stdin 859
STDIN_FILENO 859
stdout 859
STDOUT_FILENO 859
step 755, 860

regexp 756
STOP 135
stop signal 822
strcasecmp 860, 876
strcat 861
strchr 861
strcmp 862
strcoll 863
strcpy 864
strcspn 864
strdup 865
STREAM

multiplex I/O 709
send message 718

Index

1100 U23711-J-Z125-5-76

stream 859, 1065
associate with file descriptor 341
close 329
creating 112
flush 329, 345
flush and reopen 401
fully buffered 110
get byte from 461
get file position indicator 350, 431
get wide character string 354
get wide character string from 352
line buffered 110
open 367
push back byte 952
put byte on 392, 715
put word on 724
read with format 404
reposition a file position indicator 416
reset file position indicator 769
set file position indicator 421
test end-of-file indicator 343
test error indicator 344
unbuffered 110

STREAM_MAX 907
stream-oriented I/O 124, 1066
STREAMS file

read message 490, 499
strerror 866
strfill 867
strfmon 868
strftime 872
string 799

convert to double-precision floating-point
number 886

convert to floating-point number 213
convert to integer 214
convert to long integer 215, 890
convert to long long integer 216, 892
convert to lowercase letters 875
convert to unsigned long 894
convert to unsigned long long integer 896
convert to uppercase letters 898
copy 864
duplicate 865

encode using algorithms 270
formatted output to 852
get from standard input stream 513
get from stream 351
get suboptions 516
put on a stream 394
put on standard output stream 722
read formatted input 853
read with format 404
read without echo 497
scan for characters 861
search function 861
split into tokens 888, 889
transform based on LC_COLLATE 899

string comparison 860
string length

determining 879
get 875

string value
system variable 262

strings
compare 862, 876
compare using collating sequence 863
concatenate 861
convert ASCII to EBCDIC 205
convert to date and time 880
encode blockwise 293

strlen 875
strlower 875
strncasecmp 860
strncat 876
strncmp 877
strncpy 878
strnlen 879
strpbrk 879
strptime 880
strrchr 884
strspn 885
strstr 885
strtod 886
strtok 888
strtok_r 889
strtol 890
strtoll 892

Index

U23711-J-Z125-5-76 1101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

15
.5

1
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3.

2
\M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.s
ix

strtoul 894
strtoull 896
structure

sigaction 820
stxit 271

strupper 898
strxfrm 899
stxit

structure 271
STXIT event classes 153
STXIT routine 152

define 271
free programming 156
implementation using library functions 153
structure 156

stxit.h 271
suboptions from string 516
substring

copy 867
find in string 885

substring length
get 885

substrings
compare 877
concatenate 876

superblock, update 904
supplementary group ID 1066

get 484
support for files > 2 GB 35
SUSP 135
suspend (thread) 681
suspend process 960
suspend thread 681
suspended job 1066
swab 900
swapcontext 629, 900
swprintf 444, 900
swscanf 453, 900
symbolic link

to file 901
symlink 901
symlinkat 901
sync 904
synchronize, memory 677

sysconf 905
SYSDTA 115
sysfs 909
SYSLST 117
SYSOUT 116
system 911, 1066

UNIX 1067
system call 1066
system calls

interrupt behavior 834
system command

execute 911
execution in BS2000 227

system identifier for inter-process
communication 149

system process 1066
system scheduling priority 1066
system variable

string value 262
value of 905

T
TABDLY 139
table of data

sort 726
tabulator 145
tan 914
tangent

compute 914
tanh 914
task

time used (by CPU) 264
tcdrain 915
tcflag_t 137
tcflow 916
tcflush 917
tcgetattr 918
tcgetpgrp 919
tcgetsid 920
tcsendbreak 921
tcsetattr 922
tcsetpgrp 924
tdelete 924, 940
tell 925

Index

1102 U23711-J-Z125-5-76

telldir 926
tempnam 927
temporary file

create 933
create base name 934
create pathname 927

temporary file name
make 655

temporary PAM file 129
terminal 1066

controlling 130
find path name 943
find pathname 942
generate pathname 275
get session ID 920
opening a device file 129

terminal device
test 560

terminal interface (general) 129
terminal parameters

get 918
set 922

termios 137
test

control wide character 573
decimal digit 562
EBCDIC character 563
for „initial conversion“ state 634
for 7-bit ASCII character 558
for a hexadecimal digit wide character 582
for a printing wide character 578
for alphabetic character 557
for alphabetic wide character 572
for alphanumeric character 556
for alphanumeric wide character 571
for control character 561
for decimal digit wide character 575
for hexadecimal digit 583
for printing character 567
for punctuation character 568
for punctuation wide character 579
for terminal device 560
for uppercase wide character 581
for visible character 564

for visible wide character 576
for white-space character 569
for white-space wide character 580
lowercase letter 565
lowercase wide character 577
uppercase letter 570

text file 1067
make 651

tfind 929, 940
time 930
time functions 48
TIME link option 48
time since Epoch

get 930
time used

by process 253
by task 264

time64 930
TIMER_MAX 907
times 931
timezone 932

set conversion information 946
tmpfile 933
tmpnam 934
toascii 935
toebcdic 936
tolower 937
toupper 937
towctrans 938
towlower 938
towupper 939
transmission of data

restart 916
suspend 916
wait for output 915

traverse (walk) file tree 439
traverse binary search tree 945
traverse file tree 683
tree

nomenclature for search tree 941
truncate 436, 939
truncate64 939
tsearch 940

Index

U23711-J-Z125-5-76 1103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

15
.5

1
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3.

2
\M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.s
ix

TSN
get 518

TTY_NAME_MAX 907
ttyname 942
ttyname_r 943
ttyslot 944
twalk 940, 945
tzname 945
TZNAME_MAX 907
tzset 946

U
ualarm 947
UFS file 34
ulimit 948
umount 950
uname 951
unbuffered (stream) 110
UNGETC

regexp 755
ungetc 952
ungetwc 954
UNIX system 1067
unlink 955
unlinkat 955
unlock pseudoterminal pair 958
unlock standard input/output 443
unlockpt 958
unmap memory pages 679
unsafe functions 824
unsetenv 959
update

linear 621
uppercase letter

convert to lowercase 936
test 570

uppercase wide character
test 581

upshifting 1067
user 1067, 1068

enter into user catalog 721
user accounting file 298
user administration 1067
user attributes 1068

user catalog 1068
enter user 721
manage 296
read user data sequentially 503

user context
display or modify 466
modify 791
set up 629
swap 900

user data
read from user catalog 503

user database 1068
user entry

utmp file 944
user group 1068
user ID 1068

effective 479
get 479, 506, 507
real 518
set 806, 809

user ID and group ID 149
user name 1068

get 504, 505
user privileges 1068
USER-ID 1056
user-specific locale 103
usleep 960
USLOCA 103
USLOCC 103
utime 961
utimes 963
utmp file

find user entry 944
utmpx

reset pointer 810
utmpx entry

write 723

V
V1CTYPE 91
va_arg 967
va_end 968
va_start 969
valloc 970

Index

1104 U23711-J-Z125-5-76

value
of environment variable 478
of locale 687
of system variable 905
system variable 262

variable 1068
for command options 493, 701
for difference between local time and

UTC 932
for error return values 310
for standard I/O streams 859
for time zone 205

variable argument list
end 968
formatted output 972
initialize 969
process 967

vector
c_cc 144

vfork 971
vfprintf 972
vfwprintf 444
virtual memory

generate process in 971
visible character

test 564
visible wide character

test 576
void *, return value 159
vprintf 972, 974
vsprintf 972, 976
vswprintf 444, 977
VTDLY 140
vwprintf 444, 977

W
wait 978

for child process to stop or terminate 978
waitid 983
waitpid 978
wcrtomb 985
wcscat 986
wcschr 987
wcscmp 988

wcscoll 989
wcscpy 990
wcscspn 991
wcsftime 992
wcslen 993
wcsncat 994
wcsncmp 995
wcsncpy 996
wcspbrk 997
wcsrchr 998
wcsrtombs 999
wcsspn 1000
wcsstr 1001
wcstod 1002
wcstok 1004
wcstol 1005
wcstoll 1007
wcstombs 1009
wcstoul 1010
wcstoull 1012
wcswcs 1014
wcswidth 1015
wcsxfrm 1016
wctob 1017
wctomb 1017
wctrans 1018
wctype 1019
wcwidth 1020
WEOF 48
white space 1068
white-space character

test 569
white-space characters 117
white-space wide character

test 580
wide character

convert to character 1017
formatted output 1024
from standard input stream 523
get from stream 352, 522
push back onto input stream 954
put on standard output stream 725
put on stream 725
test for specified class 574

Index

U23711-J-Z125-5-76 1105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

9.
 M

a
rc

h
20

18
 S

ta
nd

 1
5:

15
.5

1
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
C

+
+

\V
3.

2
\M

a
nu

a
le

\v
lib

\v
lib

_
en

\v
lib

.s
ix

wide character class
define 1019

wide character code 1069
put on stream 395

wide character in string
get first occurrence 997
get last occurrence 998

wide character string 1069
convert to character string 1009
convert to double-precision floating-point

number 1002
convert to long integer 1005
convert to long long integer 1007
convert to multi-byte character string 999
convert to unsigned long 1010
convert to unsigned long long 1012
copy 990, 1022
copy in overlapping area 1023
get from stream 354
get length 993
put on a stream 397
scan for wide characters 987
search for first occurrence of 1001
search for wide character in 1021
split into tokens 1004
transform 1016

wide character strings
compare 988, 989, 1022
concatenate 986

wide character substring
copy 996
find in wide character string 1014
get length 1000

wide character substrings
compare 995
concatenate 994

wide characters
convert to lowercase 938
convert to multi-byte characters 985
convert to uppercase 939
define mappings 1018
formatted output 444, 900
map 938

wmemchr 1021

wmemcmp 1022
wmemcpy 1022
wmemmove 1023
wmemset 1023
word

read from stream 520
working directory

change 245
wprintf 444, 1024
write 1025

bytes to a file 1025
formatted output on output stream 378
formatted output on standard output

stream 714
formatted output to string 852

write diagnostic output 111
write utmpx entry 723
writev 1031
wscanf 453, 1032

X
X/Open Portability Guide 23
XPG4 Version 2 23

Y
y0, y1, yn 1033

Z
zombie process 316, 1069

Index

1106 U23711-J-Z125-5-76

	Contents
	Preface
	Objectives and target groups of this manual
	Summary of contents
	Organization of the POSIX documentation
	Changes since the last edition of the manual
	Notational conventions

	The C programming interface
	System requirements
	Components of the C library
	Header files
	Functions and macros
	Support for DMS and UFS files > 2 GB
	POSIX thread support in the C runtime library
	IEEE floating-point arithmetic
	Generating IEEE floating-point numbers by means of a compiler option
	C library functions that support IEEE floating-point numbers
	Controlling the mapping of original functions to the associated IEEE variants
	Explicit conversion of floating-point numbers

	ASCII encoding
	Generating ASCII characters and strings by means of a compiler option
	C library functions that support ASCII encoding
	Controlling the mapping of original functions to the associated ASCII variants
	Explicitly switching between EBCDIC and ASCII encoding

	Functions that support IEEE and ASCII encoding
	Wide characters and multi-byte characters
	Time functions
	Setting the time zone for POSIX time functions
	Scope of the supported C library

	Selecting functionality
	Range of functions extended by the POSIX functionality
	BS2000 functionality
	Selecting the file system and the system environment
	Associating the I/O streams
	Setting the PROGRAM_ENVIRONMENT variable
	Syntax in the source program

	Portability
	Name space
	Character sets
	Portable character set
	Character classes

	Locale
	Predefined locales
	Locale files
	POSIX or C locale
	V1CTYPE
	V2CTYPE
	GERMANY
	De.EDF04F and De.EDF04F@euro

	User-specific locales

	Environment variables
	File processing
	Streams
	Buffering streams
	Disassociating a file from a stream
	Standard I/O streams

	Interaction of file descriptors and streams
	Support for file systems in ASCII
	BS2000 file processing
	BS2000 system files
	White-space characters
	Cataloged disk files (SAM, ISAM, PAM)
	Default values and possible modifications for file attributes
	K and NK block formats
	K and NK-ISAM files
	Support for the DIV access method
	Notes on stream-oriented I/O
	Notes on record-oriented I/O

	Last Byte Pointer (LBP)
	Temporary PAM files in virtual memory (INCORE files)

	General terminal interface
	Opening a terminal device file
	Process groups
	The controlling terminal
	Terminal access control
	Input processing and reading data
	Canonical mode input processing
	Non-canonical mode input processing
	Writing data and output processing
	Special characters
	Modem disconnect
	Closing a terminal device file

	Settable parameters
	The termios structure
	Input modes
	Output modes
	Control modes
	Local modes
	Special control characters

	Block terminal support
	Support for BS2000 consoles

	Process control
	Signals
	Interprocess communication
	General description
	Shared memory

	Contingency and STXIT routines
	The C library functions alarm(), raise(), and signal()
	STXIT contingency routines
	Event-driven routines
	Free use of contingency routines
	Free use of STXIT contingency routines

	Thread-safe C runtime library by supporting POSIX threads
	Programming notes
	Return values and result parameters
	Error handling
	Debugging options

	Functions and variables arranged by theme
	File processing
	I/O on terminal
	Processes
	Functions to support POSIX threads
	Memory management and memory operations
	System environment
	Characters and strings
	Conversion of entities
	Regular expressions
	Time functions
	Math functions
	Search and sort procedures
	Terminal interface and data transmissions
	Database functions
	List processing
	POSIX-IO macros

	Functions and variables in alphabetical order
	a...
	l64a - convert string to 32-bit integer
	abort - abort process
	abs - return integer absolute value
	access, faccessat - check access permissions for file
	acos - arc cosine function
	acosh, asinh, atanh - inverse hyperbolic functions
	advance - pattern match given compiled regular expression
	alarm - schedule alarm signal
	altzone - variable for time zone (extension)
	ascii_to_ebcdic - convert ASCII string to EBCDIC string (extension)
	asctime - convert date and time to string
	asctime_r - convert date and time to string (thread-safe)
	asin - arc sine function
	asinh - inverse hyperbolic sine function
	assert - output diagnostic messages
	atan - arc tangent function
	atan2 - arc tangent of x/y
	atanh - inverse hyperbolic tangent function
	atexit - register function to run at process termination
	atof - convert string to double-precision number
	atoi - convert string to integer
	atol - convert string to long integer
	atoll - convert string to long long integer (long long int)

	b...
	basename - return last element of pathname
	bcmp - compare memory areas
	bcopy - copy memory area
	brk, sbrk - modify size of data segment
	- execute BS2000 commands by means of the CMD macro
	- program termination with MONJV (BS2000)
	- get BS2000 file names from catalog (BS2000)
	- execute BS2000 command (extension)
	bsd_signal - simplified signal handling
	bsearch - conduct binary search of sorted array
	btowc - (one byte) convert multi-byte character to wide character
	bzero - initialize memory with X‘00‘

	c...
	cabs - calculate absolute value of complex number (BS2000)
	calloc - allocate memory
	catclose - close message catalog
	catgets - read message
	catopen - open message catalog
	cbrt - cube root
	cdisco - disconnect contingency routine (BS2000)
	ceil, ceilf, ceill - round up floating-point number
	cenaco - define contingency routine (BS2000)
	cfgetispeed - get input baud rate
	cfgetospeed - get output baud rate
	cfsetispeed - set input baud rate
	cfsetospeed - set output baud rate
	chdir - change working directory
	chmod, fchmodat - change mode of file
	chown, fchownat - change owner and group of file
	chroot - change root directory
	clearerr - clear end-of-file and error indicators
	clock - report CPU time used by a process
	clock_gettime, clock_gettime64 - get time of a specified clock
	close - close file
	closedir - close directory
	closelog, openlog, setlogmask, syslog - control system log
	compile - produce compiled regular expression
	confstr - get string value of system variable
	cos - cosine function
	cosh - hyperbolic cosine function
	cputime - calculate CPU time used by current task (BS2000)
	creat - create new file or overwrite existing one
	crypt - encode strings using algorithms
	cstxit - define STXIT routine (BS2000)
	ctermid - generate pathname for controlling terminal
	ctime, ctime64 - convert date and time to string
	ctime_r - thread-safe conversion of date and time to string
	cuserid - get login name

	d...
	_ _DATE_ _ - macro for compilation date
	daylight - daylight savings time variable
	dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_firstkey, dbm_nextkey, dbm_open, dbm_store - functions for managing dbm databases
	difftime, difftime64 - compute difference between two calendar time values
	dirfd - extract file descriptor
	dirname - parent directory of pathname
	div - divide with integers
	drand48 - generate pseudo-random numbers between 0.0 and 1.0
	dup, dup2 - duplicate file descriptor

	e...
	ebcdic_to_ascii - convert EBCDIC string to ASCII string (extension)
	ecvt, fcvt, gcvt - convert floating-point number to string
	_edt - call EDT (BS2000)
	encrypt - encode strings blockwise
	endgrent, getgrent, setgrent - group management
	endpwent, getpwent, setpwent - manage user catalog
	endutxent, getutxent, getutxid, getutxline, pututxline, setutxent - manage utmpx entries
	environ - external variable for environment
	epoll_create - create an epoll instance
	epoll_ctl - control epoll instance
	epoll_wait - wait for events (epoll instance)
	erand48 - generate pseudo-random numbers between 0.0 and 1.0 with initialization value
	erf, erfc - error and complementary error functions
	errno - variable for error return values
	exec: execl, execv, execle, execve, execlp, execvp - execute file
	exit, _exit - terminate process
	exp - use exponential function
	expm1 - compute exponential function

	f...
	faccessat - check access permissions for file
	fabs - compute absolute value of floating-point number
	fattach - assign file descriptor under STREAMS to object in name space of file system
	fchdir - change current directory
	fchmod - change mode of file
	fchmodat - change mode of file
	fchown - change owner or group of file
	fchownat - change owner and group of file
	fclose - close stream
	fcntl - control open file
	fcvt - convert floating-point number to string
	FD_CLR, FD_ISSET, FD_SET, FD_ZERO - macros for synchronous I/O multiplexing
	fdelrec - delete record in ISAM file (BS2000)
	fdetach - cancel assignment to STREAMS file
	fdopen - associate stream with file descriptor
	fdopendir - open directory
	feof - test end-of-file indicator on stream
	ferror - test error indicator on stream
	fflush - flush stream
	ffs - seek first set bit
	fgetc - get byte from stream
	fgetpos - get current value of file position indicator in stream
	fgets - get string from stream
	fgetwc - get wide character string from stream
	fgetws - get wide character string from stream
	_ _FILE_ _ - macro for source file names
	fileno - get file descriptor
	flocate - set file position indicator in ISAM file (BS2000)
	flockfile, ftrylockfile, funlockfile - functions for locking standard input/output
	floor, floorf, floorl- round off floating point number
	fmod - compute floating-point remainder value function
	fmtmsg - output message to stderr and/or system console
	fopen - open stream
	fork - create new process
	fpathconf - get value of pathname variable
	fprintf, printf, sprintf - write formatted output on output stream
	fputc - put byte on stream
	fputs - put string on stream
	fputwc - put wide-character code on stream
	fputws - put wide character string on stream
	fread - read binary data
	free - free allocated memory
	freopen - flush and reopen stream
	frexp - extract mantissa and exponent from double precision number
	fscanf, scanf, sscanf - read formatted input
	fseek - reposition file position indicator in stream
	fsetpos - set file position indicator for stream to current value
	fstat, fstatat - get file status of open file
	fstatvfs, statvfs - read file system information
	fsync - synchronize changes to file
	ftell - get current value of file position indicator for stream
	ftime, ftime64 - get date and time
	ftok - interprocess communication
	ftruncate, truncate - set file to specified length
	ftrylockfile - lock standard input/output
	ftw - traverse (walk) file tree
	futimesat - setting file access and update times
	funlockfile - unlock standard input/output
	fwide - specify file orientation
	fwprintf, swprintf, vfwprintf, vswprintf, vwprintf, wprintf - output formatted wide characters
	fwrite - output binary data
	fwscanf, swscanf, wscanf - formatted read

	g...
	gamma - compute logarithm of gamma function
	garbcoll - release memory space to system (BS2000)
	gcvt - convert floating-point number to string
	getc - get byte from stream
	getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked - standard I/O with explicit lock by the client
	getchar - get byte from standard input stream
	getchar_unlocked - standard input with explicit lock by the client
	getcontext, setcontext - display or modify user context
	getcwd - get pathname of current working directory
	getdate - convert time and date to user format
	getdents - convert directory entries
	getdtablesize - get size of descriptor table
	getegid - get effective group ID of process
	getenv - get value of environment variable
	geteuid - get effective user ID of process
	getgid - get real group ID of process
	getgrent - get group file entry
	getgrgid - get group file entry for group ID
	getgrgid_r - get group file entry for group ID (thread-safe)
	getgrnam - get group file entry for group name
	getgrnam_r - get group file entry for group name (thread-safe)
	getgroups - get supplementary group IDs
	gethostid - get ID of current host
	gethostname - get name of current host
	getitimer, setitimer - read or set
	getlogin - get login name
	getlogin_r - get login name (thread-safe)
	getmsg - get message from STREAMS file
	getopt, optarg, optind, opterr, optopt - command option parsing
	getpagesize - get current page size
	getpass - read string of characters without echo
	getpgid - get process group ID
	getpgmname - get program name (BS2000)
	getpgrp - get process group ID
	getpid - get process ID
	getpmsg - get message from STREAMS file
	getppid - get parent process ID
	getpriority, setpriority - get or set process priority
	getpwent - read user data from user catalog
	getpwnam - get user name
	getpwnam_r - get user name (thread-safe)
	getpwuid - get user ID
	getpwuid_r - get user ID (thread-safe)
	getrlimit, setrlimit - get or set limit for resource
	getrusage - get information on usage of resources
	gets - get string from standard input stream
	getsid - get process group ID
	getsubopt - get suboptions from string
	gettimeofday, gettimeofday64 - read current time of day
	gettsn - get TSN (task sequence number) (BS2000)
	getuid - get real user ID
	getutxent, getutxid, getutxline - get utmpx entry
	getw - read word from stream
	getwc - get wide character from stream
	getwchar - get wide character from standard input stream
	getwd - get pathname of current working directory
	gmatch - global pattern matching (extension)
	gmtime, gmtime64 - convert date and time to UTC
	gmtime_r - convert date and time to UTC (thread-safe)
	grantpt - grant access to the slave pseudoterminal

	h...
	hsearch, hcreate, hdestroy - manage hash tables
	hypot - Euclidean distance function

	i...
	iconv - code conversion function
	iconv_close - deallocate code conversion descriptor
	iconv_open - allocate code conversion descriptor
	ilogb - get exponent part of floating-point number
	index - get first occurrence of character in string
	initgroups - initialize group access lists
	initstate, random, setstate, srandom - generate pseudo-random numbers
	insque, remque - Insert element in queue or remove element from queue
	ioctl - control devices and STREAMS
	isalnum - test for alphanumeric character
	isalpha - test for alphabetic character
	isascii - test for 7-bit ASCII character
	isastream - test file descriptor
	isatty - test for terminal device
	iscntrl - test for control character
	isdigit - test for decimal digit
	isebcdic - test for EBCDIC character (BS2000)
	isgraph - test for visible character
	islower - test for lowercase letter
	isnan - test for NaN (not a number)
	isprint - test for printing character
	ispunct - test for punctuation character
	isspace - test for white-space character
	isupper - test for uppercase letter
	iswalnum - test for alphanumeric wide character
	iswalpha - test for alphabetic wide character
	iswcntrl - test for control wide character
	iswctype - test wide character for class
	iswdigit - test for decimal digit wide character
	iswgraph - test for visible wide character
	iswlower - test for lowercase wide character
	iswprint - test for printing wide character
	iswpunct - test for punctuation wide character
	iswspace - test for white-space wide character
	iswupper - test for uppercase wide character
	iswxdigit - test for hexadecimal digit wide character
	isxdigit - test for hexadecimal digit

	j...
	j0, j1, jn - Bessel functions of first kind
	jrand48 - generate pseudo-random numbers between -231 and 231 with initialization value

	k...
	kill - send signal to process or process group
	killpg - send signal to process group

	l...
	- convert 32-bit integer number to string
	labs - return long integer absolute value
	lchown - change owner/group of file
	lcong48 - pseudo-random number (signed long int) generator
	ldexp - load exponent of floating-point number
	ldiv - long division of integers
	lfind - find entry in linear search table
	lgamma - compute logarithm of gamma function
	_ _LINE_ _ - macro for current source program line number
	link, linkat - create link to file
	llabs - return absolute value of an integer (long long int)
	lldiv - division of integers (long long int)
	llrint, llrintf, llrintl - round to nearest integer value (long long int)
	llround, llroundf, llroundl - round up to next integer value (long long int)
	loc1, loc2 - pointers to characters matched by regular expressions
	localeconv - change components of locale
	localtime, localtime64 - convert date and time to local time
	localtime_r - convert date and time to string (thread-safe)
	lockf - lock file section
	locs - stop regular expression matching in string
	log - natural logarithm function
	log10 - base 10 logarithm function
	log1p - compute natural log
	logb - get exponent part of floating-point number
	_longjmp, _setjmp - non-local jump (without signal mask)
	longjmp - execute non-local jump
	lrand48 - generate pseudo-random numbers between 0 and 231
	lrint, lrintf, lrintl - round to nearest integer value (long int)
	lround, lroundf, lroundl - round up to next integer value (long int)
	lsearch, lfind - linear search and update
	lseek - move read/write file offset
	lstat - query file status

	m...
	major - get major component of device number (extension)
	makecontext, swapcontext - set up user context
	makedev - get formatted device number (extension)
	malloc - memory allocator
	mblen - get number of bytes in multi-byte character
	mbrlen - get number of bytes in multi-byte character
	mbrtowc - complete and convert multi-byte string to wide-character string
	mbsinit - test for “initial conversion” state
	mbsrtowcs - convert multi-byte string to wide-character string
	mbstowcs - convert multi-byte string to wide-character string
	mbtowc - convert multi-byte character to wide character
	memalloc - memory allocator (BS2000)
	memccpy - copy bytes in memory
	memchr - find byte in memory
	memcmp - compare bytes in memory
	memcpy - copy bytes in memory
	memfree - free memory area (BS2000)
	memmove - copy bytes in memory with overlapping areas
	memset - initialize memory area
	minor - get minor component of device number (extension)
	mkdir, mkdirat - make directory
	mkfifo, mkfifoat - create FIFO file
	mknod, mknodat - make directory, special file, or text file
	mkstemp - make unique temporary file name
	mktemp - make unique temporary file name (extension)
	mktime, mktime64 - convert local time into time since the Epoch
	mmap - map memory pages
	modf - split floating-point number into integral and fractional parts
	mount - mount file system (extension)
	mprotect - modify access protection for memory mapping
	mrand48 - generate pseudo-random numbers between -231 and 231
	msgctl - message control operations
	msgget - get message queue
	msgrcv - receive message from queue
	msgsnd - send message to queue
	msync - synchronize memory
	munmap - unmap memory pages

	n...
	nanosleep - suspend current thread
	nextafter - next displayable floating-point number
	nftw - traverse file tree
	nice - change priority of process
	nl_langinfo - get locale values
	nrand48 - generate pseudo-random numbers between 0 and 231 with initialization value

	o...
	offsetof - get offset of structure component from start of structure (BS2000)
	open, openat - open file
	opendir, fdopendir - open directory
	openlog - system logging
	optarg, opterr, optind, optopt - variables for command options

	p...
	pathconf, fpathconf - get value of pathname variable
	pause - suspend process until signal is received
	pclose - close pipe stream
	perror - write error messages to standard error
	pipe - create pipe
	poll - multiplex STREAMs I/O
	popen - initiate pipe stream to or from process
	pow - power function
	printf - write formatted output on standard output stream
	ptsname - name of pseudoterminal
	putc, putc_unlocked - put byte on stream
	putchar - put byte on standard output stream (thread-safe)
	putchar_unlocked - put byte on standard output stream (thread-safe)
	putenv - change or add environment variables
	putmsg, putpmsg - send message to STREAMS file
	putpwent - enter user into user catalog (extension)
	puts - put string on standard output
	pututxline - write utmpx entry
	putw - put word on stream
	putwc - put wide character on stream
	putwchar - put wide character on standard output stream

	q...
	qsort - sort table of data

	r...
	raise - send signal to calling process
	rand - pseudo-random number generator (int)
	rand_r - pseudo-random number generator (int, thread-safe)
	random - create pseudo-random numbers
	read - read bytes from file
	readdir - read directory
	readdir_r - read directory (thread-safe)
	readlink, readlinkat - read contents of symbolic link
	readv - read array from file
	realloc - memory reallocator
	realpath - output real file name/pathname
	re_comp, re_exec - compile and execute regular expressions
	regcmp, regex - compile and execute regular expression
	regcomp, regexec, regerror, regfree - interpret regular expression
	regexp: advance, compile, step, loc1, loc2, locs - compile and match regular expressions
	remainder - remainder from division
	remove - remove files
	remque - remove element from queue
	rename, renameat - rename file
	rewind - reset file position indicator to start of stream
	rewinddir - reset file position indicator to start of directory stream
	rindex - get last occurrence of character in string
	rint, rintf, rintl - round to nearest integer value
	rmdir - remove directory
	round, roundf, roundl - round up to next integer value

	s...
	sbrk - modify size of data segment
	scalb - load exponent of base-independent floating-point number
	scanf - read formatted input from standard input stream
	seed48 - set seed (int) for pseudo-random numbers
	seekdir - set position of directory stream
	select - synchronous I/O multiplexing
	semctl - semaphore control operations
	semget - get semaphore ID
	semop - semaphore operations
	setbuf - assign buffering to stream
	setcontext - modify user context
	setenv - add or change environment variable
	setgid - set group ID of process
	setgrent - reset file position indicator to beginning of group file
	setgroups - write group numbers
	setitimer - set interval timer
	_setjmp - set label for non-local jump (without signal mask)
	setjmp - set label for non-local jump
	setkey - set encoding key
	setlocale - set or query locale
	setlogmask - set log priority mask
	setpgid - set process group ID for job control
	setpgrp - set process group ID
	setpriority - set process priority
	setpwent - delete pointer to search user catalog
	setregid - set real and effective group IDs
	setreuid - set real and effective user IDs
	setrlimit - set resource limit
	setsid - create session and set process group ID
	setstate - pseudo-random numbers
	setuid - set user ID
	setutxent - reset pointer to utmpx file
	setvbuf - assign buffering to stream
	shmat - shared memory attach operation
	shmctl - shared memory control operations
	shmdt - shared memory detach operation
	shmget - create shared memory segment
	sigaction - examine and change signal handling
	sigaddset - add signal to signal set
	sigaltstack - set/read alternative stack of signal
	sigdelset - delete signal from signal set
	sigemptyset - initialize and empty signal set
	sigfillset - initialize and fill signal set
	sighold, sigignore - add signal to signal mask / register SIG_IGN for signal
	siginterrupt - change behavior of system calls in response to interrupts
	sigismember - test for member of signal set
	siglongjmp - execute non-local jump using signal
	signal - examine or change signal handling
	signgam - variable for sign of lgamma
	sigpause - remove signal from signal mask and deactivate process
	sigpending - examine pending signals
	sigprocmask - examine or change blocked signals
	sigrelse - remove signal from signal mask
	sigset - modify signal handling
	sigsetjmp - set label for non-local jump using signal
	sigstack - set or query alternative stack for signal
	sigsuspend - wait for signal
	sin - sine function
	sinh - hyperbolic sine function
	sleep - suspend process for fixed interval of time
	snprintf - formatted output to a string
	sprintf - write formatted output to string
	sqrt - square root function
	srand - generate pseudo-random numbers with seed
	srandom - pseudo-random numbers
	srand48 - seed (double-precision) pseudo-random number generator
	sscanf - read formatted input from string
	stat - get file status
	statvfs - read file system information
	_ _STDC_ _ - macro for ANSI conformance
	_ _STDC_VERSION_ _ - Amendment 1 conformity?
	stderr, stdin, stdout - variables for standard I/O streams
	step - compare regular expressions
	strcasecmp, strncasecmp - non-case-sensitive string comparison
	strcat - concatenate two strings
	strchr - scan string for characters
	strcmp - compare two strings
	strcoll - compare strings using collating sequence
	strcpy - copy string
	strcspn - get length of complementary substring
	strdup - duplicate string
	strerror - get message string
	strfill - copy substring (BS2000)
	strfmon - convert monetary value to string
	strftime - convert date and time to string
	strlen - get length of string
	strlower - convert a string to lowercase letters (BS2000)
	strncasecmp - non-case-sensitive string comparisons
	strncat - concatenate two substrings
	strncmp - compare two substrings
	strncpy - copy substring
	strnlen - determine length of a string up to a maximum length
	strpbrk - get first occurrence of character in string
	strptime - convert string to date and time
	strrchr - get last occurrence of character in string
	strspn - get length of substring
	strstr - find substring in string
	strtod - convert string to double-precision number
	strtok - split string into tokens
	strtok_r - split string into tokens (thread-safe)
	strtol - convert string to long integer
	strtoll - convert string to long long integer
	strtoul - convert string to unsigned long integer
	strtoull - convert string to unsigned long long
	strupper - convert string to uppercase letters (BS2000)
	strxfrm - string transformation based on LC_COLLATE
	swab - swap bytes
	swapcontext - swap user context
	swprintf - output formatted wide characters
	swscanf - formatted read
	symlink, symlinkat - make symbolic link to file
	sync - update superblock
	sysconf - get numeric value of configurable system variable
	sysfs - get information on file system type (extension)
	syslog - log message
	system - execute system command

	t...
	tan - compute tangent
	tanh - compute hyperbolic tangent
	tcdrain - wait for transmission of output
	tcflow - suspend or restart data transmission
	tcflush - discard non-transmitted data
	tcgetattr - get parameters associated with terminal
	tcgetpgrp - get foreground process group ID
	tcgetsid - get session ID of specified terminal
	tcsendbreak - interrupt serial data transmission
	tcsetattr - set parameters associated with terminal
	tcsetpgrp - set foreground process group ID
	tdelete - delete node from binary search tree
	tell - get current value of file position indicator (BS2000)
	telldir - get current location of named directory stream
	tempnam - create pathname for temporary file
	tfind - find node in binary search tree
	_ _TIME_ _ - macro for compilation time
	time, time64 - get time since the Epoch
	times - get process times
	timezone - variable for difference between local time and UTC
	tmpfile - create temporary file
	tmpnam - create base name for temporary file
	toascii - convert integer to legal value
	toebcdic - convert integer to legal value (BS2000)
	_tolower - convert uppercase letters to lowercase
	tolower - convert characters to lowercase
	_toupper - convert lowercase letters to uppercase
	toupper - convert characters to uppercase
	towctrans - map wide characters
	towlower - convert wide characters to lowercase
	towupper - convert wide characters to uppercase
	truncate - set file to specified length
	tsearch, tfind, tdelete, twalk - process binary search trees
	ttyname - find pathname of terminal
	ttyname_r - find pathname of terminal (thread-safe)
	ttyslot - find entry of current user in utmp file
	twalk - traverse binary search tree
	tzname - array variable for timezone strings
	tzset - set timezone conversion information

	u...
	ualarm - set interval timer
	ulimit - get and set process limits
	umask - get and set file mode creation mask
	umount - unmount file system (extension)
	uname - get basic data on current operating system
	ungetc - push byte back onto input stream
	ungetwc - push wide character back onto input stream
	unlink, unlinkat - remove link
	unlockpt - remove lock from master/slave pseudoterminal pair
	unsetenv - remove an environment variable
	usleep - suspend process for defined interval
	utime - set file access and modification times
	utimes - set file access time and file modification time
	utimensat - Setting file access and update times

	v...
	va_arg - process variable argument list
	va_end - end variable argument list
	va_start - initialize variable argument list
	valloc - request memory aligned with page boundary
	vfork - generate new process in virtual memory
	vfprintf, vprintf, vsprintf - formatted output of variable argument list
	vfwprintf - formatted output of wide characters
	vprintf - formatted output to standard out
	vsnprintf - formatted output to a string
	vsprintf - formatted output to a string
	vswprintf - formatted output of wide characters
	vwprintf - formatted output of wide characters

	w...
	wait, waitpid - wait for child process to stop or terminate
	wait3 - wait for status change of child processes
	waitid - wait for status change of child processes
	wcrtomb - convert wide characters to multi-byte characters
	wcscat - concatenate two wide character strings
	wcschr - scan wide character string for wide characters
	wcscmp - compare two wide character strings
	wcscoll - compare two wide character strings according to LC_COLLATE
	wcscpy - copy wide character string
	wcscspn - get length of complementary wide character substring
	wcsftime - convert date and time to wide character string
	wcslen - get length of wide character string
	wcsncat - concatenate two wide character strings
	wcsncmp - compare two wide character substrings
	wcsncpy - copy wide character substring
	wcspbrk - get first occurrence of wide character in wide character string
	wcsrchr - get last occurrence of wide character in wide character string
	wcsrtombs - convert wide character string to multi-byte string
	wcsspn - get length of wide character substring
	wcsstr - search for first occurrence of a wide character string
	wcstod - convert wide character string to double-precision number
	wcstok - split wide character string into tokens
	wcstol - convert wide character string to long integer
	wcstoll - convert wide character string to long long integer
	wcstombs - convert wide character string to character string
	wcstoul - convert wide character string to unsigned long
	wcstoull - convert wide character string to unsigned long long
	wcswcs - find wide character substring in wide character string
	wcswidth - get number of column positions of wide character string
	wcsxfrm - transform wide character string
	wctob - convert wide character to 1-byte multi-byte character
	wctomb - convert wide character code to character
	wctrans - define wide character mappings
	wctype - define wide character class
	wcwidth - get number of column positions of wide character code
	wmemchr - search for wide character in a wide character string
	wmemcmp - compare two wide character strings
	wmemcpy - copy wide character string
	wmemmove - copy wide character string in overlapping area
	wmemset - set first n wide characters in wide character string
	wprintf - formatted output of wide characters
	write - write bytes to file
	writev - write to file
	wscanf - formatted read

	y...
	y0, y1, yn - Bessel functions of the second kind

	Appendix: KR or ANSI functionality
	Glossary
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

