
Edition June 2018

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d:
 P

:\F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

du
kt

io
n\

18
0

08
00

_
A

ID
_A

S
S

E
M

B
H

\e
n

\a
id

a
ss

he
.v

or

English

AID V3.4B
Debugging of ASSEMBH Programs

FUJITSU Software BS2000

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Documentation creation
according to DIN EN ISO 9001:2015
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2015.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2018 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

U6199-J-Z125-5-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

i 2
0

18
 S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

0
80

0_
A

ID
_A

S
S

E
M

B
H

\e
n\

ai
d

as
sh

e.
iv

z

Contents

1 Preface . 5

1.1 Objectives and target groups of the AID documentation 5

1.2 Structure of the AID documentation . 6

1.3 Changes since the last edition of this manual . 7

1.4 Notational conventions . 8

2 Prerequisites for symbolic debugging . 9

2.1 Assembly . 9

2.2 Linking, loading and starting . 10

3 ASSEMBH-specific addressing . 11

4 Metasyntax . 19

5 AID commands . 21

%AID . 21
%BASE . 27
%CONTINUE . 29
%CONTROLn . 30
%DISASSEMBLE . 35
%DISPLAY . 41
%DUMPFILE . 51
%FIND . 53
%HELP . 58

Contents

 U6199-J-Z125-5-76

%INSERT . 60
%MOVE . 67
%ON . 74
%OUT . 78
%OUTFILE . 81
%QUALIFY . 83
%REMOVE . 85
%RESUME . 88
%SDUMP . 89
%SET . 103
%STOP . 112
%SYMLIB . 113
%TITLE . 115
%TRACE . 116

6 Sample application . 123

6.1 Assembler program . 123

6.2 Test run . 125

Glossary . 131

Related publications . 141

Index . 143

U6199-J-Z125-5-76 5

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
1

1 Preface

AID, the Advanced Interactive Debugger in BS2000, provides users with a powerful
debugging tool. Thanks to AID, error diagnostics, debugging and short-term error recovery
of all programs generated in BS2000 are considerably more rapid and more straightforward
than other approaches, such as inserting debugging aid statements into a program, for
example. AID is permanently available and is extremely adaptable to the particular
programming language. Any program debugged using AID does not have to be recompiled
but can be used in a production run immediately. The range of functions of AID and its
debugging language (using AID commands) are primarily tailored to interactive applica-
tions. AID can, however, also be used in batch mode. AID provides the user with a wide
range of options for monitoring and controlling execution, effecting output and modification
of memory contents; furthermore it provides help information on program execution as well
as information on the AID program itself.

With AID, the user can debug both on the symbolic level of the relevant programming
language as well as on machine code level. If LSD records are generated, data, statement
labels and control sections can be addressed for debugging purposes by using names the
user has assigned in the course of programming. Statements can be addressed via the
numbers or names created by the compiler. If no LSD records have been generated for a
program or module, the user can address data and statements by using virtual addresses,
CSECT names and keywords.
The BS2000 commands occurring in the AID documentation are described in the EXPERT
form of the SDF (System Dialog Facility) format. SDF is the dialog interface to BS2000. The
SDF command language supersedes the previous (ISP) command language.

1.1 Objectives and target groups of the AID documentation

AID is targeted to all software developers working in BS2000 with the programming
languages COBOL, FORTRAN, C, PL/I or ASSEMBH or those who wish to debug or correct
programs on machine code level.

Structure of the AID documentation Preface

6 U6199-J-Z125-5-76

1.2 Structure of the AID documentation

AID documentation is comprised of the AID Core Manual, the language-specific manuals
for symbolic debugging, and the manual for debugging on machine code level. All the infor-
mation the user requires for debugging can be found by referring to the manual for the
particular language required and the core manual. The manual for debugging on machine
code level can either be used as a substitute for or as a supplement to any of the language-
specific manuals.

AID Core Manual [1]

This basic reference manual contains an overview of AID and a description of the contents
and operands which are common to all the programming languages. As part of the
overview, the BS2000 environment is described; basic concepts are explained and the AID
repertoire of commands is presented. The other chapters describe prerequisites for
debugging; command input; the operands subcmd, compl-memref and medium-a-quantity; AID
literals and keywords. The manual also includes the BS2000 commands not permitted in
command sequences.

AID - Debugging on Machine Code Level [2]

AID - Debugging of COBOL Programs [3]

AID - Debugging of FORTRAN Programs [4]

AID - Debugging of ASSEMBH Programs

AID - Debugging under POSIX [5]

AID - Debugging of C/C++ Programs [6]

The manuals for the specific languages and the manual for debugging on machine code
level list the commands in alphabetical order. All simple memory references are contained
there.

In the language-specific manuals, the description of the operands is tailored to fit the
programming language in question. A prerequisite for this is that the user knows the
particular language scope and operation of the relevant compiler or Assembler.

The manual for debugging on machine code level can be used for programs for which no
LSD records exist or for which the information from symbolic testing does not suffice for
error diagnosis. Debugging on machine code level means the user can issue AID
commands regardless of the language in which the program was written.

Preface Changes since the last edition of this manual

U6199-J-Z125-5-76 7

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
1

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

1.3 Changes since the last edition of this manual

AID V3.4B30 offers the following new functions compared to version V3.4B10:

● Extension of the%AID command: new LEV operand. This operand can expand the
output of the AID command %SDUMP %NEST by the levels within the call hierarchy.

● New qualification NESTLEV in the %DISPLAY, %MOVE, %SDUMP and %SET
commands designated to qualify all instances of recursive data.

● Enhancement of the %FIND command that enables searching the find area for
characters from a coded character set (CCS) supported by XHCS.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Notational conventions Preface

8 U6199-J-Z125-5-76

1.4 Notational conventions

italics In the body of the text, operands are shown in lowercase italics.

i This symbol marks points to be specially noted.

U6199-J-Z125-5-76 9

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
2

2 Prerequisites for symbolic debugging

The user can control generation of the LSD records AID requires for symbolic debugging
by specifying the operands described below; these operands must be specified for
compiling, linking and loading operations. A more detailed description of these operands is
given in the "ASSEMBH User Guide" [9].

2.1 Assembly

The ASSEMBH Assembler can be controlled in two ways:

– via SDF options or

– via COMOPT statements.

Whether ASSEMBH is to generate LSD records can thus be specified as described below,
depending on the control option selected.

SDF control

/START-ASSEMBH,TEST-SUPPORT =

NO No LSD records are generated. AID can only be used to debug the program on
machine code level.

YES ASSEMBH generates LSD records. The program can be symbolically debugged
using AID.

COMOPT control

/START-ASSEMBHC
*...

*COMOPT =

NOISD No LSD records are generated.

NO

YES

NOISD

ISD

Linking, loading and starting Prerequisites for symbolic debugging

10 U6199-J-Z125-5-76

ISD ASSEMBH generates LSD records. The program can be symbolically debugged
using AID.

Example

 /START-ASSEMBH
 //COMPILE SOURCE = SOURCE.TEST,
 TEST-SUPPORT = YES,
 MODULE-LIBRARY = PROGRAMLIB

An object module is to be generated when compiling the source program SOURCE-
TEST. The object module is written directly in the PLAM-library PROGRAMLIB.

If COMOPT control is used, the example reads as follows:

 /DELETE-SYSTEM-FILE FILE-NAME = OMF
 /START-ASSEMBHC
 **COMOPT SOURCE=SOURCE.TEST
 **COMOPT ISD
 **COMOPT MODULE=PROGRAMLIB
 **END HALT

2.2 Linking, loading and starting

During the debugging phase, loading of the program via the LOAD-PROGRAM command
is recommended so that the user can enter the AID commands required for debugging.
START-PROGRAM is used to link, load and start the program. Both SDF commands are
described in the AID Core Manual, they are same for all programming languages.

The LSD information generated by Assembler ASSEMBH must be forwarded to the
dynamic binder loader DBL to permit symbolic debugging.

You link, load and start ASSEMBH programs with the SDF commands described in chapter
3 of the AID Core Manual which are valid for all languages.

U6199-J-Z125-5-76 11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
3

3 ASSEMBH-specific addressing

This chapter describes the memory references used for symbolic debugging of ASSEMBH
programs. For a general description of addressing methods please refer to the AID Core
Manual.

Qualifications

Qualifications must always be specified in the order described below. They are delimited by
periods. Likewise a period must be inserted between the final qualification and the following
operand.

E={VM|Dn}

The base qualification specifies whether the AID work area is to be located in a loaded
program (E=VM) or in a dump file (E=Dn). The base qualification is used in the same
way both for symbolic debugging and for machine-oriented debugging, as described in
the AID Core Manual, and under the %BASE command. A base qualification can be
immediately followed by a data name, statement name, source reference, keyword or
complex memory reference.

PROG=program-name

In ASSEMBH, the user can employ the PROG qualification as the area qualification,
where program-name designates a program unit from an ASSEMBH program.
program-name is the name specified in a START or CSECT statement in the source
program.
Operands specifying an address area (%CONTROL, %TRACE) or a name range
(%SDUMP) can end with the PROG qualification. The address range or name range
then encompasses the entire program unit.

PROG=program-name•program-name

If the name of a program unit is repeated directly after a PROG qualification, the user
is thus designating the address of the first program unit statement which can be
executed.
This specification can be used in %DISASSEMBLE and %INSERT.

ASSEMBH-specific addressing

12 U6199-J-Z125-5-76

NESTLEV=level-number
The NESTLEV qualification defines a level number.

Like the qualification S=srcname.PROC=function, the qualification NESTLEV=level-
number is designed to manipulate data names that users declare in the source units.
The environment qualification E={VM|Dn} is the only one NESTLEV=level-number
can be combined with.

The qualification NESTLEV accepts a level number, in other words, a reference to
the current call hierarchy. Based on this reference, AID identifies a complete list of
available data names defined at the specified level.

Normally, you have to display and analyze the call hierarchy before using the
NESTLEV qualification. The following AID commands output the current call
hierarchy augmented with the levels:

%AID LEV=ON
%SDUMP %NEST

The NESTLEV qualification can be used in the commands %DISPLAY, %MOVE,
%SDUMP and %SET. In these commands, the qualification NESTLEV=level-number
can equally (with the same result) replace the qualification
S=srcname.PROC=function, if level-number is correct.

For an example for the usage of the NESTLEVqualification, see AID Core Manual,
section “Area qualifications“[1].

ASSEMBH-specific addressing

U6199-J-Z125-5-76 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
3

Memory references

Memory references may include all data names and statement labels from the program
which are contained in the LSD records, as well as the statement numbers generated by
the Assembler, and may be subjected to all the operations described in the AID Core
Manual.
In all operands in which compl-memref is possible, the user can arbitrarily switch between
the memory references as described in this manual and those for debugging on machine
code level (see [2]).

dataname

is the name of constants, data fields, predefined general registers, control sections,
dummy sections, external dummy sections, dummy registers and common control
sections defined in the source program.

Data defined in the source program via a dummy section, an external dummy section
or a dummy register (see DSECT, XDSEC and DXD statements in the ASSEMBH
Reference Manual [10]) can only be referenced by means of a pointer operation when
symbolic debugging takes place.

dataname is the name entry of a DC, DS, EQU, CSECT, DSECT, XDSEC, DXD or COM
Assembler statement (see ASSEMBH Reference Manual [10]).

dataname can be specified in all commands for displaying and modifying data, i.e.
%DISPLAY, %MOVE, %SDUMP and %SET, and in the %FIND command (find a
character string).

dataname -

- -

name
_Rn

->

com-name
[com-name•.]name

_Rn

c-name

dsect-name
[dsect-name•.]name
xdsec-d-name
[xdsec-d-name•.]name
xdsec-r-name
[xdsec-r-name•.]name
dxd-name

ASSEMBH-specific addressing

14 U6199-J-Z125-5-76

name

is the name entry of a DC, DS, EQU or CSECT statement.

– Names of DC or DS statements are used to reference the relevant memory contents.
AID specifies the memory contents in the data type and length as defined in the
source program.

– Names of EQU statements are used to reference either the allocated value or the
memory contents at the relevant address. Output is effected in acordance with the
length attribute of the EQU name as efined by the length attribute.

– Names of CSECT statements are used to reference the start address or continuation
address of a control section.

_Rn

Predefined name for a general register. If this name is specified, AID outputs the
contents of the related register. _Rn corresponds to the AID keyword %n.
n is a number in the range 0 ≤ n ≤ 15

Dummy section (DSECT statement)

->

_Rn

specifies the base address register of the dummy section.

If the dummy section was referenced via a Q constant, _Rn defines the start address
of the dummy register vector (see the ASSEMBH Reference Manual [10]).

c-name

is the name of an A, Y or V constant whose contents represent the base address of
the dummy section.
If the dummy section was referenced via a Q constant, c-name defines the start
address of the dummy register vector (see the ASSEMBH Reference Manual [10]).

dsect-name

is the name of the dummy section.

This addresses all named fields of the dummy section in accordance with their type
and sorted by addresses in ascending order.

[dsect-name.]name

dsect-name is the name of the dummy section.

_Rn

c-name

dsect-name

[dsect-name•.]name

ASSEMBH-specific addressing

U6199-J-Z125-5-76 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
3

name

is the name of an individual field within the dummy section.

Aid interprets the field according to the type and length attributes.

Definition of an external dummy section (XDSEC D)

->

_Rn

specifies the base address register of the external dummy section.

c-name

is the name of an A, Y or V constant whose contents represent the base address of
the external dummy section (see the ASSEMBH Reference Manual [10]).

xdsec-d-name

is the name of the external dummy section.

This addresses all named fields of the dummy section in accordance with their type
and sorted by addresses in ascending order.

[xdsec-d-name•]name

xdsec-d-name is the name of the external dummy section.

name

is the name of an individual field within the external dummy section.
AID interprets the field according to the type and length attributes.

Reference to an external dummy section (XDSEC R)

->

_Rn

specifies the base address register of the external dummy section.

c-name

is the name of an A, Y or V constant whose contents represent the base address of
the external dummy section (see the ASSEMBH Reference Manual [10]).

_Rn

c-name

xdsec-d-name

[xdsec-d-name•.]name

_Rn

c-name

xdsec-r-name

[xdsec-r-name•.]name

ASSEMBH-specific addressing

16 U6199-J-Z125-5-76

xdsec-r-name

is the name of the external dummy section.

This addresses only those fields of the dummy section (in any order) that were
referenced in the program.

[xdsec-r-name•]name

xdsec-d-name is the name of the external dummy section.

name

is the name of an individual field within the external dummy section. Only fields
referenced in the program can be accessed. Output is effected according to the
type and length attribute.

Dummy register (DXD)

->

_Rn

specifies the register which is loaded with the start address of the dummy register
vector.

c-name

is the name of an A, Y or V constant whose contents represent the start address of
the dummy register vector (see the ASSEMBH Reference Manual [10]).

dxd-name

is the name of the dummy register.

com-name

is the name of a common control section (see COM statement in the ASSEMBH
Reference Manual [10]).

This addresses all named fields of the common control section.

You need only specify a base qualification (not a PROG qualification) ahead of com-
name if com-name is not located in the current AID work area.

[com-name•]name

com-name is the name of the common control section.

name

_Rn

c-name
dxd-name

ASSEMBH-specific addressing

U6199-J-Z125-5-76 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
3

This addresses the name of an individual field within the common control section.

L’name’

is a statement name, designating the address of an executable Assembler instruction
or a call of a predefined macro (@ macro; see the ASSEMBH Reference Manual [10]).

name is the name of an Assembler instruction (in the source program) which can be up
to 64 characters in length, or a call of a predefined macro (@ macro).
name is abbreviated to 32 characters by AID.

L’name’ may be specified in all operands either designating an address in the
executable part of the program (%DISASSEMBLE, %FIND, %INSERT) or serving for
the output and modification of memory locations (%DISPLAY, %MOVE, %SET).

S’stmt-no’

is a source reference via which a named Assembler instruction or the call of a
predefined macro (@ macro) can be referenced.
stmt-no is the statement number; it is assigned by the Assembler and can be found in
column STMNT of the assembly listing.

stmt-no is an integer between 1 and 231-1.

S’stmt-no’ may be specified in all operands either designating an area (%CONTROLn,
%TRACE) or address (%DISASSEMBLE, %FIND, %INSERT) in the executable part of
the program or serving for the output and modification of memory locations (%DISPLAY,
%MOVE, %SET).

ASSEMBH-specific addressing

18 U6199-J-Z125-5-76

U6199-J-Z125-5-76 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
4

4 Metasyntax

The metasyntax shown below is the notational convention used to represent commands.
The symbols used and their meanings are as follows:

UPPERCASE LETTERS

Mandatory string which the user must employ to select a particular function.

lowercase letters

String identifying a variable, in the place of which the user can insert any of the permis-
sible operand values.

⎧ alternative ⎫
⎨ ... ⎬
⎩ alternative ⎭

{ alternative | ... | alternative }

Alternatives; one of these alternatives must be picked. The two formats have the same
meaning.

[optional]

Specifications enclosed in square brackets indicate optional entries. In the case of AID
command names, only the entire part in square brackets can be omitted; any other
abbreviations cause a syntactical error.

[...]

Reproducibility of an optional syntactical unit. If a delimiter, e.g. a comma, must be
inserted before any repeated unit, it is shown before the periods.

{...}

Reproducibility of a syntactical unit which must be specified at least once. If a delimiter,
e.g. a comma, must be inserted, it is shown before the periods.

Metasyntax

20 U6199-J-Z125-5-76

Underscoring

Underscoring designates the default value which AID inserts if the user does not specify
a value for the operand.

•

A bullet (period in bold print) delimits qualifications, stands for a prequalification (see
also the %QUALIFY statement), is the operator for a byte offset or part of the execution
counter or subcommand name. The bullet is entered from the keyboard using the key
for a normal period. It is actually a normal period, but here it is shown in bold to make
it stand out better.

U6199-J-Z125-5-76 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

5 AID commands

%AID

The %AID command can be used to declare global settings or to revoke the settings valid
up until then.

– With the CCS operand, you specify a CCS for interpreting characters if no CCS is
explicitly indicated in the %DISPLAY command. Unicode character sets are not
allowed.

– By means of the CHECK operand you define whether an update dialog is to be initiated
prior to execution of the %MOVE or %SET commands.

– By means of the REP operand you define whether memory updates of a %MOVE
command are to be stored as REPs.

– By means of the SYMCHARS operand you define whether AID is to interpret a "-" in
program, data and statement names as a hyphen or as a minus sign. If "-" should
always be interpreted as a minus sign (in accordance with Assembler conventions),
SYMCHARS=NOSTD must be specified.

– By means of the OV operand you direct AID to take the overlay structure of a program
into account.

– By means of the LOW operand you direct AID to convert lowercase letters of character
literals and names to uppercase, or to interpret them as lowercase. The default value
is OFF.

– By means of the DELIM operand you define the delimiters for AID output of alphanu-
meric data. The vertical bar is the default delimiter.

– By means of the LANG operand you define whether AID is to output %HELP information
in English or German.

– With the LEV operand, you can activate the output of levels within the call hierarchy pro-
duced by the %SDUMP %NEST AID command.

%AID AID commands

22 U6199-J-Z125-5-76

DDD
Command Operand
DDD

 ⎧ CCS = {<coded-character-set> | *USRDEF} ⎫
 3 3
 3 CHECK [= {ALL|NO}] 3
 3 3
 3 REP [= {YES|NO}] 3
 3 3
 3 SYMCHARS [= {STD|NOSTD}] 3
 3 3

3 OV [= {YES|NO}] 3
%AID m }

3 LOW [= {ON|OFF|ALL}] 3
 3 3
 3 ⎧C'x'|'x'C|'x'⎫ 3
 3 DELIM [= ⎨ ⎬] 3
 3 ⎩'|' ⎭ 3
 3 - 3
 o LANG [= {D | E}] o
 o o

⎩ LEV [= {ON|OFF}] ⎭
DDD

Declarations made using %AID remain valid until superseded by a new %AID command or
until /LOGOFF.

%AID can only be issued as an individual command, it must never be part of a command
sequence or a subcommand.

The %AID command does not alter the program state.

CCS

<coded-character-set>
Name of the CCS (<name 1..8>) for interpreting AID data. XHCS must know the
indicated character set. Otherwise, AID rejects the statement with the message
AID0555.

*USRDEF
CCSNAME of the character set, that is assigned to the user ID. *USRDEF is the
default value of CCS.

If you specify the CCS operand in a %AID command, AID checks if the CCSNAME is
permitted by XHCS. If XHCS doesn‘t know the CCSNAME, the command is rejected and
the current CCS value is kept.

The following AID command enables you to display a complete list of CCSNAMEs, that are
supported by XHCS:

AID commands %AID

U6199-J-Z125-5-76 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%SHOW %CCSN

CHECK

ALL

Prior to execution of a %MOVE or %SET command, AID conducts the following
update dialog:

 OLD CONTENT:
 AAAAAAAA
 NEW CONTENT:
 BBBBBBBB
 % IDA0129 CHANGE? (Y = YES; N = NO) ?

 N

 I342 NOTHING CHANGED

If Y is entered, the old contents of the array are overwritten and no further message
is issued.
In procedures in batch mode, AID is not able to conduct a dialog and always
assumes Y.

NO

%MOVE and %SET commands are executed without an update dialog.

If the CHECK operand is entered without specification of a value, AID assumes the default
value (NO).

REP

YES

In the event of a memory update caused by a %MOVE command, LMS UPDR
records (REPs) are created. If an object structure list is not available, AID does not
create any REPs and issues an error message to this effect.

AID stores the corrections with the requisite LMS UPDR statements in a file with the
link name F6, from which they can be fetched as a complete package. Care should
therefore be taken that no other outputs are written to the file with link name F6. If
no file with link name F6 is registered (cf. %OUTFILE), the REP record is stored in
the file created by AID (AID.OUTFILE.F6).

User-specific REP files must be created with FCBTYPE=SAM. REP files created by
AID are likewise defined with FCBTYPE=SAM, RECFORM=V and
OPEN=EXTEND.
The file remains open until it is closed via %OUTFILE or until /LOGOFF.

%AID AID commands

24 U6199-J-Z125-5-76

NO

No REPs are generated.

If the REP operand is entered without a value specification, AID inserts the default (NO).
The REP operand of the %MOVE command can supersede the declaration made with
%AID, but only for this particular %MOVE command. For subsequent %MOVE commands
without a REP operand, the declaration made with the %AID command is valid again.

SYMCHARS

STD

A hyphen "-" is interpreted as an alphanumeric character and can, as such, be used
in program, data and statement names. A hyphen is only interpreted as a minus
sign if a blank precedes it.

NOSTD

A hyphen "-" is always interpreted as a minus sign and cannot be used as a part of
names.

If the SYMCHARS operand is entered without a value specification, AID inserts the default
value (STD).
SYMCHARS=NOSTD must be set if the "-" character, in accordance with the Assembler
conventions, is always to be interpreted as a minus sign.

OV

YES

Mandatory specification if the user is debugging a program with an overlay
structure. AID checks each time whether the program unit which has been
addressed originates from a dynamically loaded segment.

NO

AID assumes that the program to be debugged has been linked without an overlay
structure. AID does not check whether the CSECT information or LSD records
belong to the program unit which has been addressed.

If the OV operand is entered without a value specification, AID assumes the default (NO).

AID commands %AID

U6199-J-Z125-5-76 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

LOW

ON

Lowercase letters in character literals and in program, data and statement names
are not converted to uppercase.

OFF

All lowercase letters from user entries are converted to uppercase.

ALL Entry of all BLS names is case sensitive. In addition, upper and lower case entries
in character literals and in program, data and instruction names are retained, as
when %AID LOW=ON is specified.

The following BLS names are used by AID:
– Context names of the CTX qualification
– Load unit names of the L qualification
– Link module names of the O qualification
– CSECT names of the C qualification
– COMMON names of the COM qualification
– Names of compilation units of the S qualification

If no LOW operand has been entered in a debugging session, OFF applies.

If the LOW operand is input without a value specification, AID assumes the default (ON). In
this case LOW=OFF must be entered if conversion to uppercase is to be reactivated.

DELIM

C’x’|’x’C|’x’

With this operand the user defines a character as the left-hand and right-hand
delimiter for AID output of symbolic data of type ’character’ (%DISPLAY and
%SDUMP commands).

|

-

The standard delimiter is the vertical bar.

If the DELIM operand is entered without value specification, AID inserts the default value (|).

%AID AID commands

26 U6199-J-Z125-5-76

LANG

D

AID outputs information requested with %HELP in German.

E

AID outputs information requested with %HELP in English.

If the LANG operand is entered without a value specification, AID inserts the default (D).

LEV

ON Enable level output.

When level output is enabled, %SDUMP %NEST additionally outputs two kinds of
levels for each procedure (function or block in C/C++) in the call hierarchy:

– A general level (counter) with a backward numeration, i.e. from the current
procedure to the main procedure. This level number is applicable in the new
qualification NESTLEV.

– A recursive level (RLEV) or an individual counter for each procedure with a
backward numeration starting from 0. The recursive level serves as informative
element.

OFF Disable level output.

AID commands %BASE

U6199-J-Z125-5-76 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%BASE

The %BASE command is used to specify the base qualification. All subsequently entered
memory references without their own base qualification assume the value declared via
%BASE. The %BASE command also defines the AID work area.

– With the base operand the user designates either the virtual memory area of the
program which has been loaded or a dump in a dump file.

Command Operand

%BASE [base]

When debugging Assembler programs, the AID work area corresponds to the area which
the current program unit occupies in virtual memory or in a dump file. If the user fails to enter
a %BASE command during a debugging session or enters %BASE without any operands,
the base qualification E=VM applies by default and the AID work area corresponds to that
program unit in virtual memory which contains the current interrupt point (AID standard
work area).

A %BASE command is valid until the next %BASE command is given, until /LOGOFF or
until the dump file declared as the base qualification is closed (see %DUMPFILE).

Memory references within a subcommand are supplemented with current qualifications
during input, i.e. a %BASE command has no effect on subcommands specified previously.

%BASE can only be entered as an individual command, it must never be part of a command
sequence or subcommand.

%BASE does not alter the program state.

base

defines the base qualification. All subsequently entered memory references without a
separate base qualification assume the value declared with the %BASE command.

base-OPERAND -

E =

- -

VM

Dn

%BASE AID commands

28 U6199-J-Z125-5-76

E=VM

The virtual memory area of the program which has been loaded is declared as the
base qualification. VM is the default value.

E=Dn

A dump in a dump file with the link name Dn is declared as the base qualification.
n is a number with a value 0 ≤ n ≤ 7.

Before declaring a dump file as the base qualification, the user must assign the
corresponding dump file a link name and open it, using the %DUMPFILE command.

AID commands %CONTINUE

U6199-J-Z125-5-76 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%CONTINUE

The %CONTINUE command is used to start the program which has been loaded or to
continue it at the interrupt point.
As opposed to %RESUME, an interrupted but still active %TRACE command is not termi-
nated by %CONTINUE, rather it is continued depending on the declarations which have
been made.

Command Operand

%CONT[INUE]

In the following cases a %TRACE command is regarded as interrupted and is resumed by
any %CONTINUE command:

1. When a subcommand has been executed as the result of a monitoring condition from
a %CONTROLn, %INSERT or %ON command having been satisfied, and the
subcommand contained a %STOP.

2. When an %INSERT command terminates with a program interrupt because the control
operand is K or S.

3. When the K2 key has been pressed.

4. The program has been halted by the BKPT macro.

A subcommand containing only the %CONTINUE command merely increments the
execution counter.

If the %CONTINUE command is given in a command sequence or subcommand, any
subsequent commands are not executed.

%CONTINUE alters the program state.

%CONTROLn AID commands

30 U6199-J-Z125-5-76

%CONTROLn

By means of the %CONTROLn command you may declare up to seven monitoring
functions one after the other, which then go into effect simultaneously. The seven
commands are %CONTROL1 through %CONTROL7.

%CONTROL can only be used for structured Assembler programs with calls of predefined
macros and no more than one control section (CSECT). Assembler programs written
without predefined macros and/or containing more than one control section cannot be
debugged with %CONTROL. For such programs, the #<gt>%CONTROL command must
be entered on machine code level (see AID, Debugging on Machine Code Level [2]).

– By means of the criterion operand you may select different types of Assembler instruc-
tions. If an instruction of the selected type is waiting to be executed, AID interrupts the
program and processes subcmd.

– By means of the control-area operand you may define the program area in which
criterion is to be taken into consideration.

– By means of the subcmd operand you declare a command or a command sequence and
possibly a condition (see AID Core Manual, "Subcommands"). subcmd is executed if
criterion is satisfied and any specified condition has been met.

Command Operand

%C[ONTROL]n [criterion][,...] [IN control-area] [<subcmd>]

Several %CONTROLn commands with different numbers do not affect one another.
Therefore you may activate several commands with the same criterion for different areas,
or with different criteria for the same area. If several %CONTROLn commands occur in one
statement, the associated subcommands are executed successively, starting with %C1 and
working through %C7.

The individual value of an operand for %CONTROLn is valid until overwritten by a new
specification in a later %CONTROLn command with the same number, until the
%CONTROLn command is deleted or until the end of the program.
A %REMOVE command can be used to delete either an individual or all active
%CONTROL declarations.

%CONTROLn can only be used in a loaded program, i.e. the base qualification E=VM must
have been set via %BASE or must be specified explicitly.

%CONTROLn does not alter the program state.

AID commands %CONTROLn

U6199-J-Z125-5-76 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

criterion

is the keyword defining the type of the Assembler instructions prior to whose execution AID
is to process subcmd.
You can specify several keywords at the same time, which are then valid at the same time.
Any two keywords must be separated by a comma.
If no criterion is declared, AID works with the default value %STMT, unless a criterion
declared in an earlier %CONTROLn command is still valid.

 --
 | criterion | subcmd is executed prior to |
 --
 | %CALL | the predefined macro @PASS (Assembler procedure call) |
 --
 | %COND | the predefined macros for selection structure blocks |
 | | @IF, @THEN, @ELSE, @CASE, @BEGI, @CAS2, @OF, @OFRE |
 --
 | %GOTO | the predefined macros @BREA and @EXIT |
 --
 | %PROC | the predefined macro @ENTR (Assembler procedure start) |
 --
 | %STMT | every predefined macro that is executed. |
 --

control-area

specifies the program area in which the monitoring function will be valid. If the user exits
from the specified program, the monitoring function becomes inactive until another
Assembler instruction within the program area to be monitored is executed. The default
value is the current program area.

A control-area definition is valid until the next %CONTROLn command with the same
number is issued with a new definition, until the corresponding %REMOVE command is
issued, or until the end of the program is reached. %CONTROLn without a control-area
operand of its own results in a valid area definition being taken over. To be valid, such a
control-area operand must be defined in a %CONTROLn command with the same number,
and the current interrupt point must be within this area. If no valid area definition exists, the
control-area comprises the current program unit by default.

%CONTROLn AID commands

32 U6199-J-Z125-5-76

control-area-OPERAND -

IN [•][E=VM•]

- -

•

If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

E=VM

As control-area can only be in the virtual memory of the loaded program, E=VM need
only be specified if a dump file has been declared as the current base qualification
(see %BASE command).

PROG=program-name

program-name is the name of a program unit.

This program unit must have been loaded at the time the %CONTROL command
or the subcommand containing %CONTROLn is entered.

A PROG qualification is required only if a load module was created from several
source modules and the %CONTROLn command does not refer to the current
program unit, or if a previously valid control-area declaration is to be overwritten.

If control-area ends with a PROG qualification, the area covers the entire program
unit specified.

(S’stmt-no’ : S’stmt-no’)

is a source reference via which every call of a predefined macro (@ macro) can be
referenced.
stmt-no is the statement number from the assembly listing; see STMNT column.

control-area is defined by specifying a start stmt-no and an end stmt-no and thus
comprises a particular segment of the source program.

The start stmt-no must be less than the end stmt-no.

If control-area is to comprise only one line, the start stmt-no and end stmt-no must be
identical.

PROG=program-name

[PROG=program-name•](S'stmt-nr' : S'stmt-nr')

AID commands %CONTROLn

U6199-J-Z125-5-76 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

subcmd

subcmd is processed whenever an Assembler instruction that satisfies the criterion is
awaiting execution in the control-area. subcmd is processed before execution of the criterion
instruction.

If subcmd is not specified, AID inserts <%STOP> for %CONTROLn.

For a complete description of subcmd see the AID Core Manual, chapter 5.

subcmd-OPERAND -

<[subcmdname:] [(condition):] [{;...}]>

- -

A subcommand may contain a name, a condition and a command part. Every subcommand
has its own execution counter. The command portion can consist of an individual command
or a command sequence; it may contain AID commands, BS2000 commands and
comments.

If the subcommand consists of a name or a condition, but the command part is missing, AID
merely increments the execution counter when a statement of type criterion has been
reached.

In addition to the commands which are not permitted in any subcommand, the subcmd of a
%CONTROLn must not contain the AID commands %CONTROLn, %INSERT, %JUMP or
%ON.

The commands in subcmd are executed consecutively, after which the program is continued.
The commands for runtime control also immediately change the program state when they
are part of a subcommand. They abort subcmd and start the program (%CONTINUE,
%RESUME, %TRACE) or halt it (%STOP). In practice, they are only useful as the last
command in subcmd, since any subsequent commands of the subcmd will not be executed.
Likewise, deletion of the current subcommand via %REMOVE is only expedient as the last
command in subcmd.

AID-command

BS2000-command

%CONTROLn AID commands

34 U6199-J-Z125-5-76

Examples

1. %CONTROL1 %CALL, %PROC IN(S'123':S'250') <%DISPLAY COUNTER;%STOP>
 %C1 %CALL,%PROC IN(S'123':S'250') <%D COUNTER;%STOP>

The two AID commands differ only in their notation.

The first example is written in full and contains a varying number of blanks at the
permissible positions; the second example is abbreviated.

The %CONTROL1 command is valid for the criteria %CALL and %PROC and is to be
effective between lines 123 and 250 (inclusive).

If one of the Assembler instructions identified via the criteria %CALL and %PROC
occurs during program execution, the %DISPLAY command from subcmd is executed
for the variable COUNTER. Then the program run is interrupted by means of %STOP,
and AID or BS2000 commands may be entered.

2. %CONTROL1 %CALL <%DISPLAY 'CALL' T=MAX; %STOP>

Prior to the execution of every procedure call (@ PASS), AID executes the %DISPLAY
command from subcmd and then interrupts the program by executing the %STOP
command.

3. %CONTROL2 %IO <%SDUMP %NEST P=MAX; %REMOVE C1>

Prior to the execution of an @BREA or @EXIT macro, AID outputs the current call
hierarchy to the system file SYSLST and then executes the %REMOVE command,
which deletes the declarations of %CONTROL1. Program execution continues.

4. %C3 %PROC <%STOP>

The %C3 command declares that AID is to execute a %STOP command before the first
instruction of an Assembler procedure (@ENTR) is executed.

AID commands %DISASSEMBLE

U6199-J-Z125-5-76 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%DISASSEMBLE

%DISASSEMBLE enables memory contents to be "retranslated" into symbolic Assembler
notation and displayed accordingly.

– The output-quantity operand defines the amount of memory contents that are to be
disassembled and output.

– The start operand enables you to determine the address where AID is to begin disas-
sembling.

Command Operand

 [output-quantity] [FROM start]

Disassembly of the memory contents starts with the first byte. For memory contents which
cannot be interpreted as an instruction, an output line is generated which contains the
hexadecimal representation of the memory contents and the message INVALID OPCODE.
The search for a valid operation code then proceeds in steps of 2 bytes each.

%DISASSEMBLE without a start operand permits the user to continue a previously issued
%DISASSEMBLE command until the test object is switched or a new operand value is
defined by means of a BS2000 or AID command (LOAD-EXECUTABLE-PROGRAM,
START-EXECUTABLE-PROGRAM, %BASE). AID continues disassembly at the memory
address following the address last processed by the previous %DISASSEMBLE command.
If output-quantity is not specified either, AID generates the same amount of output lines as
declared before.

If the user has not entered a %DISASSEMBLE command during a test session or has
changed the test object and does not specify current values for one or both operands in the
%DISASSEMBLE command, AID works with the default value 10 for output-quantity and
V’0’ for start.

The %OUT command can be used to control how processed memory information is to be
represented and to which output medium it is to be transferred. The format of the output
lines is explained after the description of the start operand.

The %DISASSEMBLE command does not alter the program state.

%DISASSEMBLE

%DA

%DISASSEMBLE AID commands

36 U6199-J-Z125-5-76

output-quantity

Specifies the amount of the memory contents that are to be disassembled and output. If you
don‘t specify output-quantity, AID inserts the default value 10 in the first %DISASSEMBLE
after loading the program.

For each further %DISASSEMBLE command the last specified output-quantity is used.

output-quantity-OPERAND -

- -

number

Specifies, how many Assembler instructions are to be disassembled and output.

is an integer with the value:
1 ≤ number ≤ 231-1

length

Specifies the size of the memory content that is to be interpreted and output within
a single, prompted %DISASSEMBLE command.

is a hexadecimal number #’f..f’ with the value:
1 ≤ length ≤ 231-1

ALL Specifies that the Assembler instructions are to be disassembled and output until
the end of the CSECT, in which the start value is located. If start is not specified, the
current %DA position determines the CSECT.

If the start value is not located within a CSECT, the command is rejected with an
error message.

number
length
ALL

AID commands %DISASSEMBLE

U6199-J-Z125-5-76 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

start

defines the address at which disassembly of memory contents into Assembler instructions
is to begin. If the start value is not specified, AID assumes the default value V’0’ for the first
%DISASSEMBLE; on every further %DISASSEMBLE, AID continues after the Assembler
instruction last disassembled.

start-OPERAND -

FROM [•][qua•]

- -

•

If the period is in the leading position it denotes a prequalification, which must have
been defined by a previous %QUALIFY command. Consecutive qualifications must
be delimited by a period. In addition, there must be a period between the final quali-
fication and the following operand part.

qua

Specify one or more qualifications only if the start value is not within the current AID
work area.

E={VM | Dn}

Only required if the current base qualification is not to apply for start (see %BASE
command).

PROG=program-name

Only required if start is not located in the current program unit (see chapter 3).

program-name

This specification is only possible following an explicit PROG qualification:
PROG=program-name•program-name
By repeating the program-name entry, start is set to the initial address of the desig-
nated program unit.

program-name
L'name'
S'stmt-no'

compl-memref

%DISASSEMBLE AID commands

38 U6199-J-Z125-5-76

L’name’

is a statement name, designating the address of an executable Assembler
instruction or a call of a predefined macro.
name is the name entry of an Assembler instruction or a call of a predefined macro
(@ macro).

With this specification you set start to the machine code generated for an Assembler
instruction.

name can also be specified without L’...’ since it is not possible to confuse it with a
data name in this command.

S’stmt-no’

is a source reference via which you can reference every executable Assembler
instruction with a name and every call of a predefined macro.
stmt-no is the statement number from the assembly listing; see the STMNT column.

With this specification you set start to the machine code generated for an Assembler
instruction.

compl-memref

designates an address which is to be computed. It should be the start address of a
machine instruction, otherwise the disassembly obtained will be meaningless.
compl-memref may contain the following operations (see AID Core Manual):

– byte offset (•)

– indirect addressing (->)

– type modification (%A)

– length modification (%Ln)

– address selection (%@(...))

A statement name L’name’ or a source reference S’stmt-no’ can be used within
compl-memref, but only in connection with the pointer operator, e.g. L’name’ ->.4
A type modification makes sense only if the contents of a data element can be used
as an address or if the address is taken from a register, e.g. %3G.2
%AL2 ->

Output of the %DISASSEMBLE log

By default, the %DISASSEMBLE log is output with additional information to SYSOUT
(T=MAX). With %OUT the user can select the output media and specify whether or not
additional information is to be output by AID.

AID commands %DISASSEMBLE

U6199-J-Z125-5-76 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

AID does not take into account XMAX and XFLAT modes for outputting the
%DISASSEMBLE log. Instead, it generates the default value (T=MAX).

The following is contained in a %DA output line if the default value T=MAX is set:

– CSECT-relative memory address

– memory contents retranslated into symbolic Assembler notation, displacements being
represented as hexadecimal numbers (as opposed to Assembler format)

– for memory contents which do not begin with a valid operation code: Assembler
statement DC in hexadecimal format and with a length of 2 bytes, followed by the note
INVALID OPCODE

– hexadecimal representation of the memory contents (machine code).

Example of line format with T=MAX

/LOAD-PROG FROM-FILE=*MOD(LIB=*OMF),TEST-OPT=AID
 % BLS0001 DLL VER 823
 % BLS0517 MODULE 'B1' LOADED
/%DISASSEMBLE 10 FROM PROG=SORT.S'22'
 SORT+90 L R15,1B0(R0,R13) 58 F0 D1B0
 SORT+94 A R15,B0(R0,R12) 5A F0 C0B0
 SORT+98 ST R15,1B0(R0,R13) 50 F0 D1B0
 SORT+9C BC B'1111',76(R0,R11) 47 F0 B076
 SORT+A0 DC X'0000' INVALID OPCODE 00 00
 SORT+A2 BCR B'1100',R8 07 C8
 SORT+A4 DC X'0000' INVALID OPCODE 00 00
 SORT+A6 ISK R3,R8 09 38
 SORT+A8 L R15,1B4(R0,R13) 58 F0 D1B4
 SORT+AC MH R15,EE(R0,R12) 4C F0 C0EE

The %OUT operand value T=MIN causes AID to create shortened output lines in which the
CSECT-relative address is replaced by the virtual address and the hexadecimal respresen-
tation of the memory contents is omitted.

Example of line format with T=MIN

/%OUT %DA T=MIN
/%DISASSEMBLE 1O FROM PROG=SORT.S'22'
 000005F8 L R15,1B0(R0,R13)
 000005FC A R15,B0(R0,R12)
 00000600 ST R15,1B0(R0,R13)
 00000604 BC B'1111',76(R0,R11)
 00000608 DC X'0000' INVALID OPCODE
 0000060A BCR B'1100',R8
 0000060C DC X'0000' INVALID OPCODE
 0000060E ISK R3,R8
 00000610 L R15,1B4(R0,R13)
 00000614 MH R15,EE(R0,R12)

%DISASSEMBLE AID commands

40 U6199-J-Z125-5-76

Examples

1. %DISASSEMBLE 20 FROM AID_DISPLAY

This command causes 20 instructions to be disassembled, starting at the address
of the first executable instruction after the name entry: AID_DISPLAY.

2. %DA 2 FROM E=D1.PROG=BEISPIEL.BEISPIEL

Two instructions are to be disassembled in the dump file with the link name D1
beginning at the start address of program unit BEISPIEL.

3. %DA FROM S'123'

As no value was specified for ausgabe-menge, AID assumes either the default value
10 (if this is the first %DISASSEMBLE for this program) or accepts the value of the
preceding %DISASSEMBLE.
Disassembly begins at the first instruction generated for the instruction with the
statement number 123.

AID commands %DISPLAY

U6199-J-Z125-5-76 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%DISPLAY

The %DISPLAY command is used to output memory contents, addresses, lengths, system
information and AID literals and to control feed to SYSLST. AID edits the data in accordance
with the definition in the source program, unless you select another type of output by means
of type modification.

Output is via SYSOUT, SYSLST or to a cataloged file.

– By means of the data operand you specify data fields, their addresses or lengths, state-
ments, registers, execution counters of subcommands, and system information. Here
you also define AID literals or you control feed to SYSLST.

– By means of the medium-a-quantity operand you specify the output medium AID uses
and whether or not additional information is to be output. This operand disables a decla-
ration made via the %OUT command, but only for the current %DISPLAY command.

Command Operand

%D[ISPLAY] data {,...} [medium-a-quantity][,...]

A %DISPLAY command which does not have a qualification for data addresses data of the
current program unit.

If you do specify a qualification, you can access data in a dump file or in any other program
unit which has been loaded, provided this program unit is part of the current call hierarchy.

If the medium-a-quantity operand is not specified, AID outputs the data in accordance with
the declarations in the %OUT command or, by default, to SYSOUT, together with additional
information (cf. AID Core Manual).

Immediate entry of the command right after loading the program is not recommended, as
data and statements cannot be addressed without an explicit qualification until the program
encounters the first executable statement. The first executable statement is reached by
entering the command sequence:
%INSERT PROG=program-name.program-name
%RESUME

%DISPLAY %SORTEDMAP will produce a list of all program CSECTs, sorted by names
and addresses.

In addition to the operand values described here, you can also use the operand values
described for debugging on machine code level (see [2]).

This command can be used both in the loaded program and in a dump file.

%DISPLAY does not alter the program state.

%DISPLAY AID commands

42 U6199-J-Z125-5-76

AID as of version 3.4B10 supports also the output of data in different EBCDIC character
sets and ASCII character sets. As BS2000 terminals only support selected EBCDIC
character sets directly, the following character sets must be distinguished:

● Character set of the data: Character set, in which the data is available or interpreted

● Character set of the output: Character set, with which the data is displayed

AID interprets the data using the character set that is specified with the %DISPLAY
command. If no character set is specified there, the character set specified by the CCS
operand of the %AID command is used.

First of all you must specify the character set of the output with the MODIFY-TERMINAL-
OPTIONS command. It must be an EBCDIC character set that is supported by the terminal.
UTFE is not allowed. Furthermore the character set of the output must be in the same group
as the character set of the data. If, for example, the character set of the data is ISO88592,
first of all specify the corresponding character set of the output with /MOD-TERM-OPT
CODE=EDF042 (see the XHCS manual).

%DISPLAY <data-start> { %C|%X }[Lddd] ['<coded-character-set>']

If you prompt the %DISPLAY command with the %C or %X storage type, AID outputs the
characters in accordance with the explicitly specified character set <coded-character-
set>, or in accordance with the current character set CCS if '<coded-character-set>'
is not specified.%C and %X define different output layouts.

%DISPLAY <char-variable> ['<coded-character-set>']

If char variables are to be output, AID outputs them in accordance with the explicitly
specified character set <coded-character-set>, or in accordance with the current
character set CCS. The output layout differs from the layouts that are determined by %C or
%X.

To display the current character set CCS use the following AID command:
%SHOW %AID

To modify the current character set use the following AID command:
%AID CCS = {<coded-character-set>|*USRDEF}

AID commands %DISPLAY

U6199-J-Z125-5-76 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

data

This operand defines the information AID is to output. You may output the contents,
address and length of constants and data fields, plus the address of Assembler instructions
or calls of predefined macros. The contents of registers and execution counters and the
system information relevant to your program can be addressed via keywords. Registers can
also be addressed via names predefined in the source program. AID literals can be defined
to improve the readability of debugging logs, and feed to SYSLST can be controlled for the
same purpose.

AID edits data in accordance with the definitions in the source program, provided that you
have not defined another type of output using a type modification (see also AID Core
Manual). If the contents do not match the defined storage type, output is rejected and an
error message is issued. Nevertheless the contents of the data field can be viewed, for
instance by employing the type modification %X to edit the contents in hexadecimal form.
Modification of the output type via the operand AS {BIN/CHAR/DEC/DUMP/HEX} is
supported for the last time in this version (see AID Core Manual, appendix).

If you enter more than one data operand in a %DISPLAY command, you may switch from
one operand to another between the symbolic entries described here and the non-symbolic
entries described in the manual for debugging on machine code level (see [2]). Symbolic
and machine-oriented specifications can also be combined within a complex memory
reference.

For names which are not contained in the LSD records, AID issues an error message; the
other data of the same command will be processed in the normal way.

%DISPLAY AID commands

44 U6199-J-Z125-5-76

data-OPERAND -

⎧ ⎧dataname ⎫ ⎫
3 3 3 3
3 3L'name' 3 3
3 3 3 3
3 [•][qua•][...] ⎨S'stmt-no' ⎬ 3
3 3 3 3
3 3keyword 3 3
3 3 3 3
3 ⎩compl-memref ⎭ 3
⎨ ⎬
3 ⎧%@ ⎫ ⎧dataname ⎫ 3
3 ⎨ ⎬ ([•][qua•] ⎨ ⎬) 3
3 3%L 3 ⎩compl-memref ⎭ 3
3 ⎩ ⎭ 3
3 3
3 3
3 %L=(expression) 3
3 3
3 AID-literal 3
3 3
⎩ feed-control ⎭

- -

•

If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

qua

One or more qualifications need only be specified for memory objects not located
within the current AID work area.

E={VM | Dn}

Specified only if the current base qualification (see %BASE) is not to apply for a
data/statement name, source reference or keyword.

PROG=program-name

Specified only if a data/statement name or source reference not contained in the
current program unit is to be addressed (see chapter “ASSEMBH-specific
addressing” on page 11).

AID commands %DISPLAY

U6199-J-Z125-5-76 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

NESTLEV= level-number

level-number has to be followed by dataname.
The syntax indicates that the %DISPLAY command is to output the data item
dataname defined at the level level-number of the current call hierarchy.

dataname

specifies the name of constants, data fields, predefined general registers, control
sections, dummy sections, external dummy sections, dummy registers and and
common control sections as defined in the source program.

dataname is the name entry of a DC, DS, EQU, CSECT, DSECT, XDSEC, DXD or
COM statement (see chapter “ASSEMBH-specific addressing” on page 11).

L’name’

is a statement name, designating the address of an executable Assembler
instruction or a call of a predefined macro.
name is the name entry of an Assembler instruction or a call of a predefined macro
(@ macro).

If L’name’ is entered without a pointer operator, the corresponding address is output
in hexadecimal representation. With a pointer operator, i.e. with %DISPLAY
L’name’->, AID outputs 4 bytes of the machine code contained at the relevant
address.

S’stmt-no’

is a source reference via which every named executable Assembler instruction and
every call of a predefined macro can be referenced.
stmt-no is the statement number from the assembly listing; see the STMNT column.

If S’stmt-no’ is entered without a pointer operator, the corresponding address is
output in hexadecimal representation. With a pointer operator, i.e. with %DISPLAY
S’stmt-no’->, AID outputs 4 bytes of the machine code contained at the relevant
address.

keyword

Here you may specify all the keywords for program registers, AID registers, system
tables and the one for the execution counter or the symbolic localization information
(see AID Core Manual).
keyword can only be preceded by a base qualification.

 %n General register, 0 Î n Î 15
 %nD|E Floating-point register, n = 0,2,4,6
 %nQ Floating-point register, n = 0,4

level-number A level number in the current call hierarchy

%DISPLAY AID commands

46 U6199-J-Z125-5-76

 %nG AID general register, 0 Î n Î 15
 %nDG AID floating-point register n = 0,2,4,6
 %MR All 16 general registers in tabular form
 %FR All 4 floating-point registers with double precision
 edited in tabular form

 %PC Program counter
 %CC Condition code
 %PCB Process control block
 %PCBLST List of all process control blocks
 %SORTEDMAP List of all CSECTs of the user program
 (sorted by name and address)
 %IFR Interrupt flag register
 %IMR Interrupt mask register
 %ISR Interrupt status register
 %PM Program mask
 %AMODE Addressing mode of the test object
 %AUD1 P1 audit table, plus the SAVE table (if any)

 %•subcmdname Execution counter
 %• Execution counter of the currently active subcommand

 %HLLOC(memref) Localization information on the symbolic level for a
 memory reference in the executable part of the
 program (high-level location)
 %LOC(memref) Localization information on machine code level for a
 memory reference in the executable part of the
 program (low-level location)

compl-memref

The following operations may occur in a compl-memref (see AID Core Manual):

– byte offset (•)

– indirect addressing (->)

– type modification (%T(dataname), %X, %C, %E, %P, %D, %F, %A)

– length modification (%L(...), %L=(expression), %Ln)

– address selection (%@(...))

Following byte offset or indirect addressing, AID outputs the memory contents at the
calculated address in dump format with a length of 4 (%XL4, default).
Using the type modification, data may be edited in any form, provided its contents
match the specified storage type. %X can always be used to output a data element
in hexadecimal format, regardless of its contents and definition in the source
program.
With the length modification you can define the output length yourself, e.g. if you
wish to output only parts of a data element or display a data element using the
length of another data element.

AID commands %DISPLAY

U6199-J-Z125-5-76 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%@(...)

With the address selector you can output the address of a data element or of compl-
memref.
The address selector cannot be used for symbolic constants (including the
statement names L’name’ and the source references S’stmt-no’).

Example

%DISPLAY %@(AFIELD)

The address of AFIELD will be output.

%L(...)

With the length selector you can output the length of a data element.

Example

%DISPLAY %L(AFIELD)

The length of AFIELD will be output.

%L=(expression)

With the length function you can have a value calculated, see AID Core manual.

expression is formed from memory references and arithmetic operators.

Example

%DISPLAY %L=(AFIELD)

If AFIELD is of type ’integer’, its contents will be output. Otherwise AID issues an
error message.

AID-literal

All AID literals described in the AID Core Manual may be specified:

{C'x...x' | 'x...x'C | 'x...x'} Character literal
{X'f...f' | 'f...f'X} Hexadecimal literal
{B'b...b' | 'b...b'B} Binary literal

 [{±}]n Integer
#f...f'Hexadecimalnumber'

 [{±}]n.m Fixed-point number
 [{±}]mantissaE[{±}]exponent Floating-point number

%DISPLAY AID commands

48 U6199-J-Z125-5-76

feed-control

For output to SYSLST, print editing can be controlled by the following two keywords,
where:

%NP results in a page feed

%NL[(n)] results in a line feed by n blank lines.

1 ≤ n ≤ 255. The default for n is 1.

medium-a-quantity

Defines the medium or media via which output is to take place, and whether additional infor-
mation is to be output by AID. If this operand is omitted and no declaration has been made
using the %OUT command, AID uses the presetting T = MAX.

medium-a-quantity-OPERAND -

⎧
3

 =
3Fn3 ⎩
⎩P ⎭

- -

medium-a-quantity is described in full detail in the AID Core Manual.

T Terminal output

H Hardcopy output

Fn File output

P Output to SYSLST

MAX Output with additional information

MIN Output without additional information

XMAX In the %DISPLAY command the operand value XMAX is not taken into ac-
count, as a result of which the behavior is identical to the default value MAX.

XFLAT In the %DISPLAY command the operand value XFLAT is not taken into ac-
count, as a result of which the behavior is identical to the default value MAX.

T

H

Fn

P

MIN
MAX
XMAX
XFLAT

AID commands %DISPLAY

U6199-J-Z125-5-76 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

Examples

1. /%DISPLAY M2,INPUT,PACK,_R5

SRC_REF: 212 SOURCE: SUM PROC: SUM

M2 = |SUM:|
INPUT = 00060000 F9F9
I375 SYMBOL PACK NOT FOUND
_R5 = 0000000B

The default value for medium-a-quantity is T=MAX.

Every output has an AID header identifying the source line at which the program has
stopped at the time of output. A typing error causes error message I375 to be output,
after which AID processes the last name _R5.

The definitions in the Assembler source are as follows:

 M2 DC C'SUM:'
 INPUT DC XL6'00'
 PACK DC PL2'0'

2. /%DISPLAY E=D1.INPUT,'LAST VALUE'

** D1: DUMP.NAME.2069.00001

INPUT = 00060000 F2F9
LAST VALUE

3. /%DISPLAY _R10 -> DS

 DS
 DS1 = |ABCDE|
 DS3 = 1234
 DS4 = -.1300000 E+003

For this example, the following Assembler source was used:

CS START
USING *,15
LA 10,DAT1
TERM

DAT1 DC CL5'ABCDE'
 DC CL6'XXXXXX'
 DC FL4'1234'
 DC EL4'-1.3E2'

%DISPLAY AID commands

50 U6199-J-Z125-5-76

DS DSECT
DS1 DS CL5
 DS CL6
DS3 DS FL4
DS4 DS EL4
 END

AID commands %DUMPFILE

U6199-J-Z125-5-76 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%DUMPFILE

With %DUMPFILE you assign a dump file to a link name and cause AID to open or close
this file.

– With link you select the link name for the dump file to be opened or closed.

– With file you designate the dump file to be opened.

Command Operand

[link [=file]]

If you omit the file operand AID will close the file assigned to the specified link name.

With a %DUMPFILE command without operands, you cause AID to close all open dump
files. If the AID work area was, up until this point, contained in a dump file now closed, the
AID standard work area then reapplies (see also %BASE command).

%DUMPFILE may only be specified as an individual command, i.e. it may not be

part of a command sequence and may not be included in a subcommand.

%DUMPFILE does not alter the program state.

link

Designates one of the AID link names for input files and has the format Dn, where n is a
number with a value 0 ≤ n ≤ 7.

file

Specifies the fully-qualified file name under which the dump file AID is to open is cataloged.
If this operand is omitted, the dump file with the link name link is closed.
An open dump file must first be closed with a separate %DUMPFILE command before
another file can be assigned the same link name.

%DUMPFILE

%DF

%DUMPFILE AID commands

52 U6199-J-Z125-5-76

Examples

1. %DUMPFILE D3=DUMP.1234.00001

The file DUMP.1234.00001 with link name D3 is opened.

2. %DF D3

The file assigned to link name D3 is closed.

3. %DF

All open dump files are closed.

AID commands %FIND

U6199-J-Z125-5-76 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%FIND

With %FIND you can search for a literal in a data element or in the executable part of a
program, and output hits to the terminal (via SYSOUT). In addition, the address of the hit
and the continuation address are stored in AID registers %0G and %1G. %FIND can be
used to search both virtual memory and a dump file.

– search-criterion is the character literal or hexadecimal literal to be searched.

– With find-area you specify which data element or which section of the executable part
of the program AID is to search for search-criterion. AID can search the virtual address
space of the task as well as dump files. If the find-area value is omitted, AID searches
the entire memory area in accordance with the base qualification currently set (see
%BASE).

– With alignment you specify whether the search for search-criterion is to be effected at a
doubleword, word, halfword or byte boundary. When a value for alignment is not given,
searching takes place at the byte boundary.

– With ALL you specify that the search is not to be terminated after output of the first hit,
rather the entire find-area is to be searched and all hits are to be output. The search can
only be aborted by pressing the K2 key.

 Command Operands

 %F[IND] [[ALL] search-criterion [IN find-area] [alignment]]

If the ALL operand is omitted from a %FIND command, the user may continue after the
address of the last hit and up to the end of the find-area by specifying a new %FIND
command without any operand values.

A %FIND command with a separate search-criterion and without any further operands takes
declarations for find-area and alignment from a preceding %FIND command. If there has not
been any preceding %FIND command, AID inserts the default values.

Output of hits is always in dump format (hexadecimal and character representation) with a
length of 12 bytes to the terminal (SYSOUT). In addition to the hit itself, its address and
(insofar as possible) the name of the program unit in which the hit was found, and the
relative address of the hit with respect to the beginning of the program unit, are output.

In the event of a hit, the hit address is stored in AID register %0G and the continuation
address (hit address + search string length) in AID register %1G. With the ALL specification,
the address of the last hit is stored in %OG and the continuation address of the last hit is
stored in %1G. If the search-criterion has not been found, AID sets %0G to -1; %1G remains

%FIND AID commands

54 U6199-J-Z125-5-76

unchanged.
The two register contents permit you to use the %FIND command in procedures as well as
in subcommands and to further process the results.

The %FIND command does not alter the program state.

search-criterion

is a character literal or hexadecimal literal. search-criterion may contain wildcard symbols.
These symbols are always hits. They are represented by ’%’.

search-criterion-OPERAND -

- -

{C'x...x' | 'x...x'C | 'x...x'}

Character literal with a maximum length of 80 characters. Lowercase letters can
only be located as character literals after specifying %AID LOW[=ON].

x can be any representable character, in particular the wildcard symbol ’%’, which
always represents a hit. The character ’%’ itself cannot be located when it is in this
form, since C’%’ in a character literal must always result in a hit. For this reason it
must be represented as the hexadecimal literal X’6C’.

Please note that in order to properly locate character data, the CCS of find-area has
to agree with the CCS of the input media (SYSCMD). Be sure to specify the CCS
of find-area before looking for some character data in find-area:

%AID CCS= CCS-name

A complete list of CCS-name supported by XHCS and the current CCS of SYSCMD
can be displayed with the following AID command:

%SHOW %CCSN

The CCS of SYSCMD can be changed with the following SDF command:

MODIFY-TERMINAL-OPTION CODED-CHARACTER-SET= {EBCDIC-CCS-name | UTFE}

The current CCS of find-area can be displayed with the following AID command:

%SHOW %AID

Be aware that since V3.4B11 the %DISPLAY command refers to the CCS value of
%AID as to the default (implicit) CCS of character data to be displayed:

%D char-data ['CCS-name']

C'x...x' | 'x...x'C | 'x...x'
X'f...f' | 'f...f'X

AID commands %FIND

U6199-J-Z125-5-76 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

See the section “Character literal” in the AID Core Manual [1] for an example on
how to search for character literals in different coded character sets.

{X'f...f' | 'f...f'X}

Hexadecimal literal with a maximum length of 80 hexadecimal digits or 40
characters. A literal with an odd number of digits is padded with X’0’ on the right.

f can assume any value between 0 and F, as well as the wildcard symbol X’%’. The
wildcard symbol represents a hit for every hexadecimal digit between 0 and F.

find-area

defines the memory area to be searched for search-criterion. find-area can be a data element
or a section of the executable part of the loaded program or of a dump file. find-area must
not exceed 65535 bytes in length.

If no find-area has been specified, AID inserts the default value %CLASS6 (see AID Core
Manual), i.e. the class 6 memory for the currently set base qualification is searched (see
%BASE).

find-area-OPERAND -

IN [•][qua•]

- -

•

If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

qua

One or more qualifications need be specified only if find-area is not within the current
AID work area.

E={VM | Dn}

Need only be specified if the current base qualification is not to apply for find-area
(see also %BASE command).

dataname
L'name'->
S'stmt-no'->

compl-memref

%FIND AID commands

56 U6199-J-Z125-5-76

PROG=program-name

Need only be specified if find-area is not within the current program unit (see chapter
“ASSEMBH-specific addressing” on page 11).

dataname

specifies the name of constants, data fields, predefined macros, predefined general
registers, control sections, dummy sections, external dummy sections, dummy
registers and common control sections as defined in the source program.

dataname is the name entry of a DC, DS, EQU, CSECT, DSECT, XDSEC, DXD or
COM statement (see chapter “ASSEMBH-specific addressing” on page 11).

L’name’

designates the address of an executable Assembler instruction or a call of a
predefined macro.
name is the name entry of an Assembler instruction or a call of a predefined macro
(@ macro).

If no length modification value is specified, 4 bytes are searched, starting with the
address stored in the address constant L’name’.

S’stmt-no’

designates the memory location via which every named executable Assembler
instruction and every call of a predefined macro can be referenced.
stmt-no is the statement number from the assembly listing; see the STMNT column.

If no length modification value is specified, 4 bytes are searched, starting with the
address stored in the address constant S’stmt-no’.

compl-memref

designates an area of 4 bytes, starting with the calculated address. If a different
number of bytes is to be searched, compl-memref must terminate with the appro-
priate length modification. When modifying the length of data elements, you must
pay attention to area boundaries or switch to machine code level using
%@(dataname)->.
The following operations may occur in compl-memref (see also AID Core Manual):

– byte offset (•)

– indirect addressing (->)

– type modification (%A)

– length modification (%L(...), %L=(expression), %Ln)

AID commands %FIND

U6199-J-Z125-5-76 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

– address selection (%@(...))

alignment

defines that the search for search-criterion is to be effected at certain aligned addresses
only.

alignment-OPERAND -

ALIGN [=]

- -

search-criterion is searched for at:

1 byte boundary (default)

2 halfword boundary

4 word boundary

8 doubleword boundary

Examples

1. %FIND X'F0' IN DATA

The hexadecimal literal X’F0’ is searched for in the variable DATA. Any hit is output
to SYSOUT.

2. %F X'D2' IN S'12'->%L=(S'13'-S'12') ALIGN=2

The hexadecimal literal X’D2’ is searched for at a halfword boundary in the machine
code generated for statement 12.

3. %F

The search is continued with the parameters of the last %FIND command behind
the last hit.

1
2

4
8

%HELP AID commands

58 U6199-J-Z125-5-76

%HELP

By means of %HELP you can request information on the operation of AID. The following
information is output to the selected medium: either all the AID commands or the selected
command and its operands, or the selected error message with its meaning and possible
responses.

– By means of the info-target operand you specify the command on which you need
further information or the AID message for which you want an explanation of its
meaning and actions to be taken.

– By means of the medium-a-quantity operand you specify to which output media AID is to
output the required information. By means of this operand you temporarily disable a
declaration made via %OUT.

Command Operand

%H[ELP] [info-target] [medium-a-quantity][,...]

%HELP provides information on all the operands of the selected command, i.e. all
language-specific operands for symbolic debugging as well as all operands for machine-
oriented debugging. Refer to the relevant manual to see what is permitted for the language
in which your program is written.

Messages from AIDSYS have the message code format IDA0n and are queried using
/HELP.

%HELP can only be entered as an individual command, i.e. it must not be contained in a
command sequence or subcommand.

The %HELP command does not alter the program state.

info-target

designates a command or a message number about which information is to be output.
If the info-target operand is omitted, the command initiates output of an overview of the AID
commands with a brief description of each command, and of the AID message number
range.

AID responds to a %HELP command containing an invalid info-target operand by issuing an
error message. This is followed by the same overview as for a %HELP command without
info-target. This overview can also be requested via the %?, %H? or %H %? entries.

AID commands %HELP

U6199-J-Z125-5-76 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

info-target-OPERAND -

- -

The AID command names may be abbreviated as shown above.

In

designates the message number for which the meaning and possible responses
are to be output.
n is a 3-digit message number.

medium-a-quantity

defines the media via which information on the info-target is to be output. The specification
{ MIN | MAX | XMAX | XFLAT} has no effect with %HELP, but the syntax requires one of
these two specifications.

If this operand is omitted and no declaration has been made using the %OUT command,
AID works with the default value T=MAX.

medium-a-quantity-OPERAND -

⎧
3

 =
3Fn3 ⎩
⎩P ⎭

- -

medium-a-quantity is described in detail in the AID Core Manual.

T Terminal output

H Hardcopy output

Fn File output

P Output to SYSLST

%AID | %AINT | %BASE | %CONT[INUE] | %C[ONTROL]
%DISASSEMBLE | %DA | %D[ISPLAY] | %DUMPFILE | %DF
%F[IND] | %H[ELP] | %IN[SERT] | %JUMP | %M[OVE]
%ON | %OUT | %OUTFILE | %Q[UALIFY]
%REM[OVE] | %R[ESUME] | %SD[UMP]
%S[ET] | %STOP | %SYMLIB | %TITLE | %T[RACE]

In

T

H

Fn

P

MIN
MAX
XMAX
XFLAT

%INSERT AID commands

60 U6199-J-Z125-5-76

%INSERT

By means of %INSERT you can specify a test point and define a subcommand. Once the
program sequence reaches the test point, AID processes the associated subcommand. In
addition, the user can also specify whether AID is to delete the test point once a specific
number of executions has been counted and halt the program afterwards.

– By means of the test-point operand you may define the address of a command in the
program prior to whose execution AID interrupts the program run and to process
subcmd.

– By means of the subcmd operand you may define a command or a command sequence
and perhaps a condition. Once test-point has been reached and the condition has been
satisfied, subcmd is executed.

– By means of the control operand, you can declare whether test-point is to be deleted
after a specified number of passes and whether the program is then to be halted.

Command Operand

%IN[SERT] test-point [<subcmd>] [control]

A test-point is deleted in the following cases:

1. When the end of the program is reached.

2. When the number of passes specified via control has been reached and deletion of test-
point has been specified.

3. If a %REMOVE command deleting the test-point has been issued.

If no subcmd operand is specified, AID inserts the subcmd <%STOP>.

The subcmd in an %INSERT command for a test-point which has already been set does not
overwrite the existing subcmd; instead, the new subcmd is prefixed to the existing one. The
chained subcommands are thus processed according to the LIFO principle (last in, first
out).

%REMOVE can be used to delete a subcommand, a test point or all test points entered.

test-point can only be an address in the program which has been loaded, therefore the base
qualification E=VM must have been set (see %BASE) or must be specified explicitly.

%INSERT does not alter the program state.

AID commands %INSERT

U6199-J-Z125-5-76 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

test-point

must be the address of an executable machine instruction generated for an Assembler
instruction. test-point is immediately entered by targeted overwriting of the memory position
addressed and must therefore be loaded in virtual memory at the time the %INSERT
command is input. Since, by entering test-point, the program code is modified, a test point
which has been incorrectly set may lead to errors in program execution (e.g.
data/addressing errors).

When the program reaches the test-point, AID interrupts the program and starts the subcmd.

test-point-OPERAND -

 [•][qua•]

- -

•

If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

qua

One or more qualifications are only required if test-point is not located in the current
AID work area.

E=VM

Since test-point can only be entered in the virtual memory of the program which has
been loaded, specify E=VM only if a dump file has been declared as the current
base qualification (see %BASE command).

PROG=program-name

is specified only if test-point is not in the current program unit (see chapter
“ASSEMBH-specific addressing” on page 11).

program-name
L'name'
S'stmt-no'

compl-memref

%INSERT AID commands

62 U6199-J-Z125-5-76

program-name

This specification is only possible after an explicit PROG qualification:

PROG=program-name•program-name

By repeating program-name you set test-point to the first statement of the designated
program unit.

L’name’

is a statement name, designating the address of an executable Assembler
instruction or a call of a predefined macro.
name is the name entry of an Assembler instruction or a call of a predefined macro
(@ macro).

With this specification you set test-point to the machine code generated for an
Assembler instruction.

name may not be located within a dummy section or dummy register (see DSECT,
XDSEC and DXD statements in the ASSEMBH Reference Manual [10]).

name can also be specified without L’...’ since it is not possible to confuse it with a
data name in this command.

S’stmt-no’

is a source reference via which every named executable Assembler instruction and
every call of a predefined macro can be referenced.
stmt-no is the statement number from the assembly listing; see the STMNT column.

With this specification you set test-point to the machine code generated for an
Assembler instruction.

compl-memref

The result of compl-memref must be the start address of an executable machine
instruction.
compl-memref may contain the following operations (see AID Core Manual):

– byte offset (•)

– indirect addressing (->)

– type modification (%A)

– length modification (%Ln)

– address selection (%@(...))

AID commands %INSERT

U6199-J-Z125-5-76 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

A statement name L’name’ or a source reference S’stmt-no’ can be used within
compl-memref, but only in connection with the pointer operator (e.g. L’name’ ->.4).
Type modification makes sense only if the contents of a data element can be used
as an address or if you take the address from a register, e.g. %3G.2 %AL2 ->.

subcmd

subcmd is processed whenever program execution reaches the address designated by test-
point.
If the subcmd operand is omitted, AID inserts a <%STOP>.

A complete description of subcmd can be found in the AID Core Manual, chapter 5.

subcmd-OPERAND -

<[subcmdname:] [(condition):] [{;...}]>

- -

A subcommand may contain a name, a condition and a command part. Every subcommand
has its own execution counter. The command portion can comprise a single command or a
command sequence and may contain AID and BS2000 commands as well as comments.

If the subcommand consists of a name or a condition but the command part is missing, AID
merely increments the execution counter when the test point is reached.

subcmd does not overwrite an existing subcommand for the same test-point, rather the new
subcommand is prefixed to the existing one. subcmd may contain the commands
%CONTROLn, %INSERT and %ON. Nesting over a maximum of 5 levels is possible.

The commands in a subcmd are executed one after the other; program execution is then
continued. The commands for runtime control immediately alter the program state, even in
a subcommand. They abort the subcmd and start the program (%CONTINUE, %RESUME,
%TRACE) or halt it (%STOP). They are thus only effective as the last command in a subcmd,
since any subsequent commands in the subcmd would fail to be executed. Likewise,
deletion of the current subcommand via %REMOVE makes sense as the last command in
subcmd only.

AID-command

BS2000-command

%INSERT AID commands

64 U6199-J-Z125-5-76

control

specifies whether test-point is to be deleted after the n-th pass and whether the program is
to be halted with the purpose of inserting new commands.
If no control operand has been specified, AID assumes the defaults 231-1 (for n) and K.

control-OPERAND -

ONLY n []

- -

n is a number with the value 1 ≤ n ≤ 65535, specifying after how many test-point
passes the further declarations for this control operand are to go into effect.

K test-point is not deleted (KEEP).

Program execution is interrupted, and AID expects input of commands.

S test-point is deleted (STOP).

Program execution is interrupted, and AID expects input of commands.

C test-point is deleted (CONTINUE).

No interruption of the program.

Examples

1. %IN S'118'

test-point is specified with an stmt-no. This designates the Assembler instruction 118
in the assembly listing.

2. %IN PROG=PRO2.PRO2 <%DISPLAY NO> ONLY 10 S

test-point is set to the start of module PRO2, i.e. deleted. Whenever the program
sequence arrives at the first instruction in module PRO2, the #<gt>%DISPLAY
command from subcmd is executed.

When test-point is reached for the 10th time, AID sets the program to STOP and deletes
the test point, at which time you may enter new commands.

K
C
S

AID commands %INSERT

U6199-J-Z125-5-76 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

3. %IN ST2 <%DISPLAY TEXTDAT, 'ST2'>
 %IN ST3 <%DISPLAY 'INSERT1', TEXTDAT; %IN OUUTPUT <%D 'INSERT2', -
 I,J,K, NUMBER; %IN S'172' <%D 'INSERT3' ,I,J; %REMOVE OUTPUT>>>

With the first %INSERT command, the test-point set is the Assembler instruction with
the name ST2. If, after the end of command input, the program execution reaches ST2,
the subcommand is executed. It consists of a %DISPLAY command (for field
TEXTDAT) and the AID literal ST2. Afterwards the program is continued.

By means of the second %INSERT command, test-point ST3 is declared. This
%INSERT command contains two other nested %INSERT commands. Their test-point
values are still inactive for AID. They do not become active until the test-point of the
%INSERT command in whose subcmd they are defined is reached.

When program execution reaches Assembler instruction ST3, the corresponding
subcmd is executed, i.e. the %DISPLAY command for the AID literal ’INSERT1’ and the
field TEXTDAT is executed and the test-point OUTPUT is set.
The subcmd for test-point OUTPUT is still inactive. Thus, in the program to be tested, the
following three test-points have been set at this stage in the program run: ST2, ST3 and
OUTPUT.

As the subcmd for test-point ST3 does not contain any %STOP command, the program
is continued after execution of subcmd. If program execution is not interrupted for some
other reason, e.g. an error or the occurrence of an event declared by %ON, and finally
reaches the symbolic address OUTPUT, then the %D command ’INSERT2’, I, J, K,
NUMBER is executed. Furthermore, subcmd contains a further %INSERT command,
whose test-point this time is specified via stmt-no S’172’.

If the position marked S’172’ is reached during further program execution, AID executes
the %DISPLAY command for the literal ’INSERT3’ and the contents of fields I and J.

By way of the second command in this subcmd, the %REMOVE OUTPUT command,
test-point OUTPUT is deleted. This is necessary, for instance, if a test-point is located in
a loop and this would lead to an undesirable chaining of nested subcommands. Without
the %REMOVE command, the following subcmd would be created for test-point S’172’
during the second pass of OUTPUT:

<%D 'INSERT3', I,J; %D 'INSERT3',I,J>

%INSERT AID commands

66 U6199-J-Z125-5-76

4. %IN ST4 <%D TEXTDAT>
 .
 .
 .
 %IN ST4

These two commands show how chaining in conjunction with the default value inserted
by AID affects subcmd.

For the missing subcmd in the second %INSERT, AID inserts the following subcmd:
<%STOP>
Since the second %INSERT denotes the same test-point, chaining is performed and
the subcmd
<%STOP; %DISPLAY TEXTDAT>
is produced. A subcmd is aborted by any %STOP, %RESUME or %TRACE.
The two consecutive %INSERT commands therefore yield the same results as if
you had deleted the first %INSERT by means of
%REMOVE ST4
and then written %INSERT ST4 or just entered %INSERT ST4.

AID commands %MOVE

U6199-J-Z125-5-76 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%MOVE

With the %MOVE command you transfer memory contents or AID literals to memory
positions within the program which has been loaded. Transfer is effected without checking
and without matching of sender and receiver storage types.

– With the sender operand you designate a data field, a statement name, a source
reference, a length, an address, an execution counter, a register or an AID literal. sender
can be located in virtual memory of the loaded program or in a dump file.

– With the receiver operand you designate a data field, an execution counter or or a
register which is to be overwritten. receiver can only be located in virtual memory of the
loaded program.

– With the REP operand you specify whether AID is to generate a REP record in
conjunction with a modification which has taken place. This operand has a higher
priority than a default specified in the %AID command but affects only the current
%MOVE.

Command Operand

%M[OVE] sender INTO receiver [REP]

In contrast to the %SET command, AID does not check for compatibility between the
storage types sender and receiver when the %MOVE command is involved, and does not
match these two storage types.

AID passes the information left-justified, with the length of sender. If the length of sender is
greater than that of receiver, AID rejects the attempt to transfer and issues an error
message.

In addition to the operand values described here, the values described in the manual for
debugging on machine code level can also be employed.

Using %AID CHECK=ALL you can also activate an update dialog, which first provides you
with a display of the old and new contents of receiver and offers you the option of aborting
the %MOVE command.

The %MOVE command does not alter the program state.

---------- ------------
| sender | INTO | receiver |
---------- ------------

For sender or receiver you can specify a data field or a complex memory reference, or an
execution counter or a register. Statement names, source references, addresses and
lengths of data fields as well as AID literals can only be employed as sender.

%MOVE AID commands

68 U6199-J-Z125-5-76

sender may be either in the virtual memory area of the program which has been loaded or
in a dump file; receiver, on the other hand, can only be within the virtual memory of the
loaded program.

No more than 3900 bytes can be transferred with a %MOVE command. If the area to be
transferred is larger, you must issue multiple %MOVE commands.

sender-OPERAND - - - - - - - - - - - - - - receiver-OPERAND - - - - - - - - -

⎧ ⎧dataname ⎫ ⎫
3 3 3 3
3 3L'name' 3 3
3[•][qua•] ⎨ ⎬ 3
3 3S'stmt-no' 3 3
3 3keyword 3 3 ⎧dataname ⎫
3 ⎩compl-memref ⎭ 3 3 3
⎨ ⎬ INTO [•][qua•] ⎨ ⎬
3⎧%@⎫ ⎧dataname ⎫ 3 3keyword 3
3⎨ ⎬([•][qua•]⎨ ⎬)3 ⎩compl-memref ⎭
3⎩%L⎭ ⎩compl-memref ⎭ 3
3 3
3%L=(expression) 3
3 3
⎩AID-literal ⎭

- -

•

If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

qua

One or more qualifications are necessary only for memory objects not within the
current AID work area.

E={VM | Dn} for sender

E=VM for receiver

You specify a base qualification only if the current base qualification is not to apply
for a data/statement name, source reference or keyword (see %BASE).
sender may be either in virtual memory or in a dump file; receiver, on the other hand,
can only be in virtual memory.

PROG=program-name

is to be specified only if you address a data/statement name or source reference
that is not in the current program unit (see chapter “ASSEMBH-specific addressing”
on page 11).

AID commands %MOVE

U6199-J-Z125-5-76 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

NESTLEV= level-number

level-nummer has to be followed by dataname.
Specify NESTLEV= level-number when you want to address a data name on a
certain level in the current call hierarchy. This qualification can only be com-
bined with E=, and not with any other qualification.

dataname

specifies the name of constants, data fields, predefined general registers, control
sections, dummy sections, external dummy sections, dummy registers and and
common control sections as defined in the source program.

dataname is the name entry of a DC, DS, EQU, CSECT, DSECT, XDSEC, DXD or
COM statement (seechapter “ASSEMBH-specific addressing” on page 11).

L’name’

is a statement name, designating the address of an executable Assembler
instruction or a call of a predefined macro.
name is the name entry of an Assembler instruction or a call of a predefined macro
(@ macro).

S’stmt-no’

is a source reference via which every named executable Assembler instruction and
every call of a predefined macro can be referenced.
stmt-no is the statement number from the assembly listing; see the STMNT column.

Statement names and source references are address constants and can therefore
only be specified for sender. The address designated using L’name’ or S’stmt-no’ is
then transferred.

Example

%MOVE S'5' INTO %0G

The address of the statement number 5 is written to AID register %0G.

With L’name’-> or S’stmt-no’-> you designate 4 bytes of the machine code at the
corresponding address (see AID Core Manual).
%DISASSEMBLE can be used to output the machine instructions in order to
perform any length modification.
In the case of receiver, you may use statement names and source references only
in connection with the pointer operator (->).

level-number A level number in the current call hierarchy

%MOVE AID commands

70 U6199-J-Z125-5-76

Example

%MOVE S'12'->%L=(S'13'-S'12') INTO S'24'->

By means of this %MOVE command you modify the code of your program. The
machine code for stmt-no 24 is overwritten by that of stmt-no 12. The specification
%L=(S’13’-S’12’) yields the length of the machine code generated for stmt-no 12.

keyword

specifies an execution counter, the program counter, or a register. keyword may only
be preceded by a base qualification.

 %•subcmdname Execution counter
 %• Execution counter of the current subcommand
 %PC Program counter
 %n General register, 0 Î n Î 15
 %nD|E Floating-point register, n = 0,2,4,6
 %nQ Floating-point register, n = 0,4
 %nG AID general register, 0 Î n Î 15
 %nDG AID floating-point register, n = 0,2,4,6

compl-memref

may contain the following operations (see AID Core Manual):

– byte offset (•)

– indirect addressing (->)

– type modification %E

– length modification (%L(...), %L=(expression), %Ln)

– address selection (%@(...))

A subsequent type modification for compl-memref is pointless, since transfer is
always in binary form, regardless of the storage type of sender and receiver.
However, a type modification may be necessary before a pointer operation (->).

Example

%0G.2%AL2->

The last two bytes of AID register %0G are to be used as the address.

After byte offset (•) or pointer operation (->), the implicit storage type and implicit
length of the original address are lost. At the calculated address, storage type %X
with length 4 applies, if no value for type and length has been explicitly specified by
the user.

AID commands %MOVE

U6199-J-Z125-5-76 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

For each operand in a complex memory reference the assigned memory area must
not be exceeded as the result of byte offset or length modification, otherwise AID
does not execute the command and issues an error message. By combining the
address selection (%@) with the pointer operator (->) you can exit from the
symbolic level. You may then use the address of a data element without having to
take note of its area boundaries.

Example

The data fields CFIELD and CFIELD1 each occupy 5 bytes. The last 2 bytes of
CFIELD as well as the 3 following bytes are to be transferred to CFIELD1.
AID would reject the following command as a violation of the CFIELD area:
%MOVE CFIELD.3%L5 INTO CFIELD1

The correct command reads:

%MOVE %@(CFIELD)->.3%L5 INTO CFIELD1

%@(...)

With the address selector you can use the address of a data field or complex
memory reference as sender (see AID Core Manual). The address selector
produces an address constant as a result.

%L(...)

With the length selector you can use the length of a data field or complex memory
reference as sender (see AID Core Manual). The length selector produces an
integer as a result.

Example

%MOVE %L(FIELD1) INTO %0G

The length of FIELD1 will be transferred.

%L=(expression)

With the length function you can calculate the value of expression and have it stored
in receiver (see AID Core Manual). In expression you may combine the contents of
memory references, constants of type ’integer’ and integers with the arithmetic
operators (+,–,*,/). The length function produces an integer as a result.

Example

%MOVE %L=(FIELD1) INTO %0G

The contents of FIELD1 are transferred.

%MOVE AID commands

72 U6199-J-Z125-5-76

AID literal

The following AID literals (see AID Core Manual) can be transferred using %MOVE:

{C'x...x' | 'x...x'C | 'x...x'} Character literal
{X'f...f' | 'f...f'X} Hexadecimal literal
{B'b...b' | 'b...b'B} Binary literal

 [{±}]n Integer
#f...f'Hexadecimalnumber'

REP

Specifies whether AID is to generate a REP record after a modification has been
performed. With REP you temporarily deactivate a declaration made with the %AID
command. If REP is not specified and there is no valid declaration in the %AID command,
no REP record is created.

REP-OPERAND -

REP = {Y[ES] | NO}

- -

REP=Y[ES]

LMS UPDR records (REPs) are created for the update caused by the current
%MOVE. If the object structure list is not available, no REP records are generated
and AID will output an error message.
Also, if receiver is not located completely within one CSECT, AID will output an error
message and not write a REP record. To obtain REP records despite this, the user
may distribute transfer operations over several %MOVE commands in which the
CSECT limits are observed.

AID stores the REPs with the requisite LMS UPDR statements in a file with the link
name F6, from which they can be fetched as a complete package. Therefore no
other output should be written to the file with link name F6.

If no file with link name F6 is registered (see %OUTFILE), the REP is stored in the
file AID.OUTFILE.F6 created by AID.

REP=NO

No REPs are created for the current %MOVE command.

AID commands %MOVE

U6199-J-Z125-5-76 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

Examples

The following constants and fields are defined in a program:

IFIELD DC F'123,456'
 DS 0F
JFIELD DS 10F
CVAR DC X'F0F0F0F0'

1. %MOVE IFIELD INTO JFIELD

AID transfers the contents of IFIELD to the symbolic address JFIELD in
hexadecimal format and left-justified.

2. %MOVE 20 INTO JFIELD(2)

AID writes a word containing an integer with the value 20 to the field JFIELD.

3. %MOVE X'58F0C160' INTO CVAR REP=YES

The contents of the CVAR constant are overwritten with the hexadecimal literal
X’58F0C160’. A REP record is created for the correction and is stored in the file
AID.OUTFILE.F6 or the file assigned to link name F6.

%ON AID commands

74 U6199-J-Z125-5-76

%ON

With the %ON command you define events and subcommands. When a selected event
occurs, AID processes the associated subcmd.

– With event you define normal or abnormal program termination, a supervisor call (SVC),
a program error or any event for which AID is to interrupt the program in order to
process the subcmd.

– With subcmd you define a command or a command sequence and perhaps a condition.
When event occurs and this condition is satisfied, subcmd is executed.

Command Operand

%ON event [<subcmd>]

If an event is not deleted, it remains valid until the program ends.

If the subcmd operand is omitted, AID inserts the subcmd <%STOP>.

The subcmd of an %ON command for an event which has already been defined does not
overwrite the existing subcmd, rather the new subcmd is prefixed to the existing
subcommand. This means that chained subcommands are processed in accordance with
the LIFO principle.

The base qualification E=VM must apply for %ON (see %BASE).

The %ON command does not alter the program state.

event

A keyword is used to specify an event (program error, abnormal termination of the program,
supervisor call, etc.) upon which AID is to process the subcmd specified.

If several %ON commands with different event declarations are simultaneously active and
satisfied, AID processes the associated subcommands in the order in which the keywords
are listed in the table below. If various %TERM events are applicable, the associated
subcommands are processed in the opposite order in which the %TERM events have been
declared (LIFO rule as for chaining of subcommands).
For selection of the SVC numbers see the "Executive Macros" manual [7].

AID commands %ON

U6199-J-Z125-5-76 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

--
| event | subcmd is processed: |
--
%ERRFLG (zzz)	after the occurrence of an error with error weight
	zzz and
	before abortion of the program
--
%INSTCHK	after the occurrence of an addressing error, an
	impermissible supervisor call (SVC), an
	operation code which cannot be decoded,
	a paging error or a privileged operation and
	before abortion of the program
--
%ARTHCHK	after the occurrence of a data error, divide
	error, exponent overflow or a zero mantissa
	and
	before abortion of the program
--
| %ABNORM |after the occurrence of one of the errors |
| | covered by the previously described events |
--
| %ERRFLG |after the occurrence of an error with any error |
| | weight |
--
| %SVC(zzz) |before execution of the supervisor call (SVC) with |
| | the specified number |
--
%LPOV(xxxxxxxx)	after loading of the segment with the specified
	name xxxxxxxx (up to 8 alphanumeric chars.)
%LPOV	after loading of any arbitrary segment
--
%TERM(N[ORMAL])	before normal termination of a program
%TERM(A[BNORMAL])	before abnormal termination of a program, but
	after output of a memory dump
%TERM	before termination of a program by any of the %TERM
	events described above
--
| %ANY |before termination of a program with %TERM |
--
| %SVC |before execution of any supervisor call |
--

zzz may be specified in one of two formats:

n unsigned decimal number of up to three digits

#’ff’ two-digit hexadecimal number

The following applies for the value zzz: 1 ≤ zzz ≤ 255

No check is made whether the specified number of the error weight or the SVC
number is meaningful or permissible.

%ON AID commands

76 U6199-J-Z125-5-76

subcmd

is processed whenever the specified event occurs in the course of program execution. If the
subcmd operand is omitted, AID inserts a <%STOP>.

For a complete description of subcmd refer to the AID Core Manual, chapter 5.

subcmd-OPERAND -

<[subcmdname:] [(condition):] [{;...}]>

- -

A subcommand may comprise a name, a condition and a command part. Every
subcommand has its own execution counter. The command portion can consist of either an
individual command or a command sequence; it may contain AID and BS2000 commands
as well as comments.

If the subcommand contains a name or condition but no command part, AID merely incre-
ments the execution counter when the declared event occurs.

subcmd does not overwrite an existing subcommand for the same event. Instead, the new
subcommand is prefixed to the existing one. The %CONTROLn, %INSERT, %JUMP and
%ON commands are permitted in subcmd. The user can form up to 5 nesting levels. An
example can be found under the description of the %INSERT command.

The commands in a subcmd are executed one after the other; then the program is continued.
The commands for runtime control immediately alter the program state, even in a
subcommand. They abort subcmd and continue the program (%CONTINUE, %RESUME,
%TRACE) or halt it (%STOP). They should only be placed as the last command in a subcmd,
since any subsequent commands of the subcmd will not be executed. Likewise, deletion of
the current subcommand via %REMOVE makes sense only as the last command in subcmd.

Examples

1. %ON %LPOV (MON12) <%D '%LPOV (MON12)'; %STOP>

After MON12 has been loaded, AID outputs the literal ’%LPOV (MON12)’ and inter-
rupts the program.

2. %ON %ERRFLG (108)
%ON %ERRFLG (#'6C')

Both specifications designate the same program error (mantissa equals zero).

3. %ON %ERRFLG (107) <%D 'ERROR'>

This error weight does not exist, therefore the subcmd defined for this event will never
be started.

AID-command

BS2000-command

AID commands %ON

U6199-J-Z125-5-76 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

4. %ON %ARTHCHK < %SD AMOUNT,MATRIX; %STOP >

If a data error, division error, exponent overflow or "mantissa equals zero" occurs,
the data fields AMOUNT and MATRIX are output via %SDUMP. The %STOP
command interrupts the program and you can proceed to a detailed check of the
error situation by means of further commands.

5. %ON %LPOV (MON12) <%D INDEX, GRAND-TOTAL> ONLY 37 S

After every loading of segment MON12, AID outputs the data fields INDEX and
GRAND-TOTAL as a result of %D. After the 37th occurrence of the event %LPOV
(MON12) and subsequent output, the event is deleted and the program interrupted.

%OUT AID commands

78 U6199-J-Z125-5-76

%OUT

With %OUT you define the media via which data is to be output and whether output is to
contain additional information, in conjunction with the output commands %DISASSEMBLE,
%DISPLAY, %HELP, %SDUMP and %TRACE.

– With target-cmd you specify the output command for which you want to define medium-
a-quantity.

– With medium-a-quantity you specify which output media are to be used and whether or
not additional information is to be output.

Command Operand

%OUT [target-cmd [medium-a-quantity][,...]]

In the case of %DISPLAY, %HELP and %SDUMP commands, you may specify a medium-
a-quantity operand which for these commands temporarily deactivates the declarations of
the %OUT command. %DISASSEMBLE and %TRACE include no medium-a-quantity
operand of their own; their output can only be controlled with the aid of the %OUT
command.

Before selecting a file as the output medium via %OUT, you must issue the %OUTFILE
command to assign the file to a link name and open it; otherwise AID creates a default
output file with the name AID.OUTFILE.Fn.

The declarations made with the %OUT command are valid until overwritten by a new
%OUT command, or until /LOGOFF.

An %OUT command without operands assumes the default value T=MAX for all target-
commands.

%OUT may only be specified as an individual command, i.e. it may not be part of a
command sequence or subcommand.

%OUT does not alter the program state.

AID commands %OUT

U6199-J-Z125-5-76 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

target-cmd

designates the command for which the declarations are to apply. Any of the commands list-
ed below may be specified.

medium-a-quantity

In conjunction with target-cmd this specifies the medium or media via which output is to take
place, as well as whether or not AID is to output additional information pertaining to the AID
work area, the current interrupt point and the data to be output.

If the medium-a-quantity operand has been omitted, the default value T=MAX applies for
target-cmd.

medium-a-quantity-OPERAND -

⎧
3

 =
3Fn3 ⎩
⎩P ⎭

- -

medium-a-quantity is described in detail in the AID Core Manual.

T Terminal output

H Hardcopy output

Fn File output

P Output to SYSLST

i AID does not take into account XMAX and XFLAT modes for outputting the %OUT
log. Instead, it generates the default value (T=MAX).

%D[IS]A[SSEMBLE]
%D[ISPLAY]
%H[ELP]
%SD[UMP]
%T[RACE]

T

H

Fn

P

MIN
MAX
XMAX
XFLAT

%OUT AID commands

80 U6199-J-Z125-5-76

Examples

1. %OUT %SDUMP T=MIN,F1=MAX

Data output of the %SDUMP command should be output on the terminal in abbre-
viated form, and in parallel to this also to the file with link name F1, along with
additional information.

2. %OUT %TRACE F1=MAX

The TRACE log with additional information is output only to the file with link name
F1.

3. %OUT %TRACE

For the %TRACE command, this specifies that previous declarations for output of
data are erased, and that the default value T=MAX applies.

MAX Output with additional information

MIN Output without additional information

XMAX Definition of XMAX mode for the corresponding command %DISASSEMBLE,
%DISPLAY, %HELP, %SDUMP or %TRACE.

XFLAT Definition of XFLAT mode for the corresponding command
%DISASSEMBLE, %DISPLAY, %HELP, %SDUMP or %TRACE.

AID commands %OUTFILE

U6199-J-Z125-5-76 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%OUTFILE

%OUTFILE assigns output files to AID link names F0 through F7 or closes output files. You
can write output of the commands %DISASSEMBLE, %DISPLAY, %HELP, %SDUMP and
%TRACE to these files by specifying the corresponding link name in the medium-a-quantity
operand of %OUT, %DISPLAY, %HELP or %SDUMP. If a file does not yet exist, AID will
make an entry for it in the catalog and then open it.

– With link you select a link name for the file to be cataloged and opened or closed.

– With file you assign a file name to the link name.

Command Operand

%OUTFILE [link [= file]]

If you do not specify the file operand, this causes AID to close the file designated using link.
In this way an intermediate status of the file can be printed during debugging.

An %OUTFILE without operands closes all open AID output files. If you have not explicitly
closed an AID output file using the %OUTFILE command, the file will remain open until the
program terminates.

Without %OUTFILE, you have two options of creating and assigning AID output files:

1. Enter an ADD-FILE-LINK command for a link name Fn which has not yet been
reserved. Then AID opens this file when the first output command for this link name is
issued.

2. Leave the creation, assignment and opening of files to AID. AID then uses default file
names with the format AID.OUTFILE.Fn corresponding to link name Fn.

%OUTFILE does not alter the program state.

link

Designates one of the AID link names for output files and has the format Fn, where n is a
number with a value 0 ≤ n ≤ 7.

The REP records for the %MOVE command are written to the output file with link name F6
(see also the %AID and %MOVE commands).

%OUTFILE AID commands

82 U6199-J-Z125-5-76

file

specifies the fully-qualified file name with which AID catalogs and opens the output file. Use
of an %OUTFILE command without the file operand closes the file assigned to link name
Fn.

AID commands %QUALIFY

U6199-J-Z125-5-76 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%QUALIFY

With %QUALIFY you define qualifications. In the address operand of another command
you may refer to these qualifications by prefixing a period.

Use of this abbreviated format for a qualification is practical whenever you want to
repeatedly reference addresses which are not located in the current AID work area.

– By means of the prequalification operand you define qualifications which you would like
to incorporate in other commands by referencing them via a prefixed period.

Command Operand

%Q[UALIFY] [prequalification]

A prequalification specified with the aid of the %QUALIFY command applies until it is
overwritten by a %QUALIFY with a new prequalification or revoked by a %QUALIFY without
operands, or until /LOGOFF.

On input of a %QUALIFY command, only a syntax check is made. Whether the specified
link name has been assigned a dump file or whether the specified program unit has been
loaded or included in the LSD records is not checked until subsequent commands are
executed and the information from prequalification is actually used in addressing.

The declarations of the %QUALIFY command are only used by commands which are input
subsequently. %QUALIFY has no effect on any subcommands in %CONTROL, %INSERT
and %ON commands entered prior to this %QUALIFY command, even if they are executed
after it.

The same %AID LOW={ON|OFF} setting must apply for input of the %QUALIFY and for
replacement in an address operand.

%QUALIFY may only be specified as an individual command, i.e. it may not be part of a
command sequence or subcommand.

The %QUALIFY command does not alter the program state.

prequalification

designates a base qualification or a PROG qualification or both qualifications, which must
then be separated by a period.

The reference to a prequalification defined in the %QUALIFY command is effected by
prefixing a period to the address operands of subsequent AID commands.

%QUALIFY AID commands

84 U6199-J-Z125-5-76

prequalification operand -

- -

E={VM|Dn}

must be specified if you want to use a base qualification which is different from the
current one (see %BASE command).

PROG=program-name

designates a program unit.

Examples

1. %Q E=D1.PROG=INITIAL
 %D .TAB1

Because of the prequalification, the %DISPLAY command has the same effect as
the following %DISPLAY command in full format: %D E=D1.PROG=INITIAL.TAB1

2. %Q PROG=LEADER
 %SET .E_RECD INTO .A_RECD

Because of the prequalification, the %SET command has the same effect as the
following %SET command:
%SET PROG=LEADER.E_RECD INTO PROG=LEADER.A_RECD

[E=][•PROG=program-name]
VM

Dn

AID commands %REMOVE

U6199-J-Z125-5-76 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%REMOVE

With the %REMOVE command you revoke the test declarations for the %CONTROLn,
%INSERT and %ON commands.

– With target you specify whether AID is to revoke all effective declarations for a particular
command or whether only a specific test point or event or a subcommand is to be
deleted.

Command Operand

%REM[OVE] target

If a subcommand contains a %REMOVE which deletes this subcommand or the associated
monitoring condition (test-point, event or criterion), any subsequent subcmd commands will
not be executed. Such an entry is therefore only meaningful as the last command in a
subcommand.

The %REMOVE command does not alter the program state.

target

Designates a command for which all the valid declarations are to be deleted, or a test-point
to be deleted, or an event which is no longer to be monitored, or the subcommand to be
deleted. If target is within a nested subcommand and therefore has not yet been entered, it
cannot be deleted either.

target-OPERAND -

- -

%C[ONTROL]

The declarations for all %CONTROLn commands entered are deleted.

%C[ONTROL]n

The %CONTROLn command with the specified number (1 ≤ n ≤ 7) is deleted.

%C[ONTROL] | %C[ONTROL]n
%IN[SERT] | test-point
%ON | event
%•[subcmdname]

%REMOVE AID commands

86 U6199-J-Z125-5-76

%IN[SERT]

All test points which have been entered are deleted.

test-point

The specified test-point is deleted. test-point is specified as under the %INSERT
command.
Within the current subcommand, test-point can also be deleted with the aid of
%REMOVE %PC->, as the program counter (%PC) contains, at this point in time,
the address of the test-point.

%ON

All events which have been entered are deleted.

event

The specified event is deleted. event is specified with a keyword, as under the %ON
command. The event table with the keywords and explanations of the individual
events can be found under the description of the %ON command.

The following applies for the events %ERRFLG(zzz), %SVC(zzz) and
%LPOV(zzz):

%REMOVE event(zzz) deletes only the event with the specified number. %REMOVE
event without specification of a number deletes all events of the corresponding
group.

%•[subcmdname]

deletes the subcommand with the name subcmdname in a %CONTROLn or
%INSERT command.

%• is the abbreviated form of a subcommand name and can only be used within the
subcommand. %REMOVE %. deletes the current subcommand and is thus only
practical as the last command in a subcommand, since any commands following it
within a subcmd will not be executed.

As %CONTROLn cannot be chained, the associated %CONTROLn will be deleted
as well. Deleting the subcommand therefore has the same effect as deleting the
%CONTROLn by specifying the appropriate number.

On the other hand, several subcommands may be chained at a test-point of the
%INSERT command. With the aid of %REMOVE %.[subcmdname] you can delete
an individual subcommand from the chain, while further subcommands for the
same test-point will still continue to exist (see AID Core Manual). If only the
subcommand designated subcmdname was entered for the test-point, the test-point
will be deleted along with the subcommand.

%REMOVE %.[subcmdname] is not permitted for %ON.

AID commands %REMOVE

U6199-J-Z125-5-76 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

Examples

1. %C1 %CALL <CTL1: %D %.>
 %REM %C1
 %REM %.CTL1

Both %REMOVE commands have the same effect: %C1 is deleted.

2. %IN S'58' <SUB1: %D CHAR, NUMB>

 %IN S'58' <SUB2: %D RESULT; %REM %.>
 %R
 ...
 %REM S'58'

When the test point S’58’ is reached, RESULT is output. Then subcommand SUB2
is deleted, i.e. this subcommand is executed only once. Subsequently CHAR and
NUMB are output, and the program continues. Whenever test point S’58’ is reached
in the program sequence, subcommand SUB1 is executed. %REM S'58' deletes
the test point later on. %REM SUB1 would have the same effect, as this subcommand
is the only remaining entry for test point S’58’.

%RESUME AID commands

88 U6199-J-Z125-5-76

%RESUME

With %RESUME you start the loaded program or continue it at the interrupt point. The
program executes without tracing.

If the program has been halted during execution of a %TRACE command, the %TRACE
command will be aborted. If an interrupted %TRACE is to be continued, the %CONTINUE
command must be issued instead of %RESUME.

Command Operand

%R[ESUME]

If a %RESUME command is contained within a command sequence or subcommand, any
commands which follow it will not be executed.

If the %RESUME command is the only command in a subcommand, the execution counter
is incremented and any active %TRACE deleted.

The %RESUME command alters the program state.

AID commands %SDUMP

U6199-J-Z125-5-76 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%SDUMP

With %SDUMP you can output a symbolic dump: individual data or data areas, all data
areas of the current call hierarchy, or the program names of the current call hierarchy. The
current call hierarchy extends from the subprogram level on which the the program was
interrupted, over the subprograms invoked through to the main program.

– With dump-area you designate the data or data areas which AID is to output, or you
specify that AID is to output the program names of the current call hierarchy.

– With medium-a-quantity you specify which output media AID is to use, and whether or
not additional information is to be output. This operand is used to deactivate a decla-
ration made by the %OUT command, as far as the current %SDUMP command is
concerned.

Command Operand

%SD[UMP] [[dump-area][,...] [medium-a-quantity][,...]]

The following applies for a structured Assembler program:

– %SD %NEST produces a minimal output, i.e. AID lists only the current call hierarchy.

– %SD without operands results in the maximum output, i.e. the named data defined in
the current call hierarchy will be output together with all further Assembler instructions
which have a name in the name entry. Multiply defined data will also be output multiply.
A header line identifies the program unit in which data definition took place.

– If one or more names are explicitly specified in the command, all data with this name
defined in the current call hierarchy will be output. Data with the same name defined in
different modules will be multiply output.

If program units for which there are no LSD records, not even in a PLAM library, are
included in the hierarchy, the user can only issue the %SDUMP command individually for
program units for which LSD records have been loaded or can be loaded from a PLAM
library (see %SYMLIB command).

In unstructured Assembler programs, only the data of the current programming unit can be
referenced:

– %SD without operands causes the entire data area and all further Assembler instruc-
tions with a name to be output.

– If one or more names are explicitly specified in the command, only the corresponding
data of the current program unit will be output.

dump-area can be repeated up to 7 times.

%SDUMP AID commands

90 U6199-J-Z125-5-76

With this command the user can work either in the loaded program or in a dump file.

The %SDUMP command does not alter the program state.

dump-area

describes which information AID is to output.

AID can output the program names of the current call hierarchy, all data of the current call
hierarchy, all data of a program unit or individual data. AID edits the data in accordance with
the definition in the source program. If the contents do not match the defined storage type,
output is rejected and an error message is issued.

If dataname is defined in multiple program units of the current call hierarchy it is also output
repeatedly, unless dump-area has been restricted by a qualification.
If dataname is not contained in the LSD records, AID issues an error message; subsequent
dump-areas of the same command are output, however.

dump-area-OPERAND -

⎧ dataname ⎫
[•][qua[•]][⎨ ⎬]

⎩ %NEST ⎭

- -

•

If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

qua
Specify one or more qualifications if the interrupt point is not within the scope of the
addressed object or if the memory object is not visible at the interrupt point. Only
enter the qualification required for unique addressing.

E ={VM | Dn}
An explicit base qualification is to be entered only if the current base qualifi-
cation is not to apply for the dump-area. If you specify only a base qualification,
all data of the corresponding call hierarchy will be output.

AID commands %SDUMP

U6199-J-Z125-5-76 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

PROG=program-name
A PROG qualification is mandatory if dump-area is to apply only for the specified
program unit. If the definition of dump-area terminates with a PROG qualification,
AID will output all data elements of this program unit.

NESTLEV= level-number

level-number can only be followed by dataname.
The %SDUMP command is to output a symbolic dump of all data defined at the
specified level or to output dataname defined at the specified level of the call
hierarchy.

dataname

is the name of constants, data fields, predefined general registers, control sections,
dummy sections, external dummy sections, dummy registers and common control
sections as defined in the source program.
dataname is the name entry of a DC, DS, EQU, CSECT, DSECT, XDSEC, DXD or
COM statement (see chapter “ASSEMBH-specific addressing” on page 11).

A dataname not identified in the LSD records causes AID to issue an error message.
Subsequent dump-areas of the same command are output normally.

%NEST

Is an AID keyword which effects output of the current call hierarchy.

For the lowest hierarchical level AID outputs the name of the program unit and the
number of the statement where the program was interrupted. For higher hierar-
chical levels AID outputs the name of the calling program and the number of the Call
statement.

medium-a-quantity

Defines the medium or media via which output is to take place and whether or not AID is to
output additional information. If this operand is omitted and no declaration has been made
in the %OUT command, AID assumes the default value T = MAX.

medium-a-quantity-OPERAND -

⎧
3

 =
3Fn3 ⎩
⎩P ⎭

- -

level-number A level number in the current call hierarchy

T

H

Fn

P

MIN
MAX
XMAX
XFLAT

%SDUMP AID commands

92 U6199-J-Z125-5-76

medium-a-quantity is described in detail in the AID Core Manual, chapter 7.

T Terminal output

H Hardcopy output

Fn File output

P Output to SYSLST

Data types

If you have specified the operand value XMAX or XFLAT, AID generates the output as with
MAX, extended by the following type tags:

MAX Output with additional information

MIN Output without additional information

XMAX Output as with MAX, but extended by the type information:
In addition, each data element is preceded by a type tag which defines the
type, size and output format of this data element. Syntax of the type tag:
<data-type(memory-size-in-bytes),output-format>

XFLAT Output as with XMAX, but with the following restrictions:
Only the topmost structure level is output for structured data types. In the
case of long data (e.g. long strings or arrays), the first elements are output.

<INT(size),D>
int-name = int-value

size Storage length in bytes.

int-name Specifies an element of the type integer.

int-value Decimal value (D); value of int-name.

<POINTER(size),X>
pointer-name = pointer-value

size Storage length in bytes.

pointer-name Specifies an element of the type pointer.

pointer-value Hexadecimal number (X); value of pointer-name.

<FLOAT(size),E>
float-name = float-value

size Storage length in bytes.

float-name Specifies an element of the type floating point number.

AID commands %SDUMP

U6199-J-Z125-5-76 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

float-value Floating point number displayed as a decimal fraction with
exponent (E); value of float-name.

<CHARS(size),C>
chars-name = |string|

size Storage length in bytes.

chars-name Specifies an element of the type string, in other words an array
of the type character.

string String of printable characters (C); value of chars-name;
Non-printable characters are displayed as a hexadecimal value.

If string is longer than 80 characters, with XFLAT only the first 72
characters are output, followed by three periods ... in order to
display the incompleteness of the output. See also note 1 at the
end of the list.

<BYTES(size),X>
bytestring-name = bytestring

size Storage length in bytes.

bytestring-name Specifies an element of the type string.

bytestring String of hexadecimal bytes (X); value of bytestring-name.
Four hexadecimal bytes are combined to form a hexadecimal
word and are separated by a blank.

If the output is longer than 80 characters, with XFLAT only the
first 8 hexadecimal words (i.e. 32 hexadecimal bytes) are
output, followed by three periods ... in order to display the
incompleteness of the output. See also note 1 at the end of the
list.

<BITS(size),B>
bits-name = bitstring

size Storage length in bytes.

bits-name Specifies an element of the type bit string.

bitstring Sequence of binary numbers (B); value of bits-name.

If bitstring contains more than 80 digits, with XFLAT only the first
72 hexadecimal bytes (i.e. 8 hexadecimal words) are output
followed by three periods ... in order to display the incom-
pleteness of the output. See also note 1 at the end of the list.

<PACKED(size),D>
packed-name = packed-value

size Storage length in bytes.

packed-name Specifies an element of the type packed decimal.

packed-value Decimal value (D); value of packed-name.

%SDUMP AID commands

94 U6199-J-Z125-5-76

Notes

1. Use the following syntax to query the entire content of a string, structure or array
distributed over several lines:

%SDUMP name {T | H | Fn | P} = {XMAX | MAX}

2. Use the following syntax to query the content of the array elements within the particular
area:

%SDUMP name [from:to] {T | H | Fn | P} = {XMAX | XFLAT | MAX}

Structures with XFLAT

For structures, AID generates various XFLAT data outputs depending on whether or not the
%SDUMP command contains data operands.

● %SDUMP without data operand

<ZONED(size),D>
zoned-name = zoned-value

size Storage length in bytes.

zoned-name Specifies an element of the type zoned decimal (unpacked
decimal number)

zoned-value Decimal value (D); value of zoned-name.

<ADDR(size),X>
addr-name = addr-value

size Storage length in bytes.

addr-name Specifies an element of a relative or absolute storage address.

addr-value Hexadecimal number (X); value of addr-name.

<AREA(size),X>
area-name = area-value

size Storage length in bytes.

area-name Specifies a primary memory area.

area-value Memory dump in dump format, value of area-name. The dump
format consists of a hexadecimal (X) and alphanumeric display,
non-printable characters are displayed in the alphanumeric
display as |.|.

If the output is longer than 80 characters, with XFLAT only the
first 4 hexadecimal words are output (possibly also fewer). The
alphanumeric display contains a maximum of 16 characters
(with UTF16: 8 characters) followed by the string ETC.
See also note 1 at the end of the list.

AID commands %SDUMP

U6199-J-Z125-5-76 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%SDUMP {T | H | Fn | P} = XFLAT

Only the type tag and the name are output (level 01). The output of the structure
elements is omitted.

● %SDUMP with a structure as operand

%SDUMP structure-name {T | H | Fn | P} = XFLAT

The structure name and the structure elements are output (level 02). Elements with
elementary types are normally output, elements with array type with their name, and
elements with structure type only with their name. Each element is preceded by a type
tag. The name is extended by a number, the level of embedding.

● %SDUMP with a substructure as operand

%SDUMP structure-name.substruct-name {T | H | Fn |P} = XFLAT

Also outputs the structure elements of the substructure (level 03)

Further levels of embedding can also be specified by the other substructure names
being chained by a period:

structure-name.substruct1-name.substruct2-name.substruct3-name.

i In order to query the entire content of a structure and of its substructures, use
XMAX instead of XFLAT.

Examples

1. The program SUM from PLAM library PLAMBIB is to be executed.

/START-PROG (PLAMBIB,SUM),TEST-OPTION=AID

% BLS0001 *** DBL VERSION 070 RUNNING ***
% BLS0517 MODULE 'SUM' LOADED

PLEASE ENTER UP TO 10 2-DIGIT NUMBERS. END: 00
*29
*37
*00
*
/

The program branches to the entry although the end criterion ’00’ was specified. A
program error is present. The program is interrupted by pressing the K2 key and a
memory dump requested with %SDUMP. This command requests a symbolic dump of
the entire module. The value for medium-a-quantity is T=MAX. The source program for
this %SDUMP output can be found in chapter 6. The various %SDUMP lines are
followed by explanatory texts.

%SDUMP AID commands

96 U6199-J-Z125-5-76

/%SDUMP

** ITN: ^#000B018F'***TSN:4J60***'
SRC_REF: 60 SOURCE: SUM PROC: SUM

SRC_REF line: this contains the statement number at which the program was inter-
rupted and the module name.

R0 = 0

R1 = 1

R2 = 2

R3 = 3

R4 = 4

R5 = 5

Names of the EQU statements that were assigned a constant value.

SUM = 00000000

START = 4D102022

S0002D = 2363650

S0002S = 0A27

LOOP = 5A50217E !&.=00002A 5A 50 217E 00000180 53
 LOOP A R5,=F'1'

READ = 4D10205E

S0006D = 2363906

S0006S = 0A27

VERGL = D5052129 2142

ADD = F211212B 2129

FROM = F3632139 2144

S0010D = 2363650

S0010S = 0A27

END = 16656

AID commands %SDUMP

U6199-J-Z125-5-76 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

S0014D = 403457

S0014S = 0A09

ERROR = 4D1020E6

S0016D = 2363650

S0016S = 0A27

Assembler instructions with a name; AID outputs the memory contents at the relevant
address in accordance with the length attribute.

MESS1 = 0039

M1 = |PLEASE ENTER UP TO 10 2-DIGIT NUMBERS! END: 00|

INPUT = 00060000 F0F0 00

PACK = +0

MESS2 = 0012

M2 = |SUM:|

RESUL = | |

TEN = 10

NULL = |00|

TOTAL = +66

ZONE = F0

MESS3 = 0034

M3 = |NO MORE THAN 10 NUMBERS CAN BE PROCESSED|

Data area of the module; output comprises the names of the DC and DS statements
with the respective memory contents.

_R0 = 00000000

_R1 = 9F00003C

_R2 = 00000002

%SDUMP AID commands

98 U6199-J-Z125-5-76

_R3 = 00000000

_R4 = 00000000

_R5 = 00000005

_R6 = 00000000

_R7 = 00000000

_R8 = 00000000

_R9 = 00000000

_R10 = 00000000

_R11 = 00000000

_R12 = 00000000

_R13 = 00000000

_R14 = 00000000

_R15 = 00000000

General register; AID outputs the predefined name of the register together with its
contents.

2. Examples for XMAX und XFLAT

The following Assembler program is to be debugged:

HELLO START
BALR BALR 10,0
 USING *,10
* WROUT H,*
 TERM
*
DS 0D
C120 DS 0CL120
X120 DS 0XL120
B200 DS 0BL25
H DC H'25'
 DC X'404001'
M1 DC CL20'HELLO, WORLD!'
*

AID commands %SDUMP

U6199-J-Z125-5-76 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

D DS 0D E DS 0E
Z16 DC ZL16'1234567890123456'
P16 DC PL16'-1234567890123456789012345678901'
F DS 0F
P1 DC PL1'1'
Z1 DC ZL1'-1'
*
Y DC Y(REGS)
A DC A(REGS)
S DC S(REGS)
V DC V(NONE)
Q DC Q(REGS)
*

REGS DS 16F END

After the Assembler program has been loaded, the following AID commands are en-
tered:

%AID LOW=OFF
%INSERT BALR

%RESUME

The two variants below show the effect of XFLAT and XMAX:

XFLAT without data operand

The long strings C120, X120 and B200 are truncated.

/%SD T=XFLAT
SRC_REF: 2 SOURCE: HELLO PROC: HELLO *************
<ADDR(4),X>
HELLO = 00000000

<AREA(2),X>
BALR = 05A0 ..

<CHARS(120),C>
C120 =
|.. .HELLO, WORLD!123456789012345F.................J......| ...

<BYTES(120),X>
X120 =
00194040 01C8C5D3 D3D66B40 E6D6D9D3 C45A4040 40404040 40000000 00000000 ...

<BITS(25),B>
B200 =
00000000000110010100000001000000000000011100100011000101110100111101001 ...

<INT(2),D>

%SDUMP AID commands

100 U6199-J-Z125-5-76

H = 25

<CHARS(20),C>
M1 = |HELLO, WORLD! |

<FLOAT(8),E>
D = -.9531502657561182 E+059

<FLOAT(4),E>
E = -.9531502 E+059

<ZONED(16),D>
Z16 = +1234567890123456

<PACKED(16),D>
P16 = -1234567890123456789012345678901

<INT(4),D>
F = 483459188

<PACKED(1),D>
P1 = +1

<ZONED(1),D>
Z1 = -1

<POINTER(2),X>
Y = 0074

<POINTER(4),X>
A = 00000074

<POINTER(2),X>
S = A072

<POINTER(4),X>
V = FFFFFFFF

<POINTER(4),X>
Q = 00000074

<INT(4),D>
REGS = 0

<POINTER(4),X>
_R0 = 00000000

<POINTER(4),X>
_R1 = 00000000

AID commands %SDUMP

U6199-J-Z125-5-76 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

<POINTER(4),X>

_R2 = 00000000

<POINTER(4),X>
_R3 = 00000000

<POINTER(4),X>
_R4 = 00000000

<POINTER(4),X>
_R5 = 00000000

<POINTER(4),X>
_R6 = 00000000

<POINTER(4),X>
_R7 = 00000000

<POINTER(4),X>
_R8 = 00000000

<POINTER(4),X>
_R9 = 00000000

<POINTER(4),X>
_R10 = 00000000

<POINTER(4),X>
_R11 = 00000000

<POINTER(4),X>
_R12 = 00000000

<POINTER(4),X>
_R13 = 00000000

<POINTER(4),X>
_R14 = 00000000

<POINTER(4),X>
_R15 = 00000000

XMAX for long byte string

The string is displayed in full.

/%SDUMP X120 T=XMAX
SRC_REF: 2 SOURCE: HELLO PROC: HELLO ***************************

%SDUMP AID commands

102 U6199-J-Z125-5-76

<BYTES(120),X>
X120 =
00194040 01C8C5D3 D3D66B40 E6D6D9D3 C45A4040 40404040 40000000 00000000
F1F2F3F4 F5F6F7F8 F9F0F1F2 F3F4F5C6 12345678 90123456 78901234 5678901D
1CD10074 00000074 A0720000 FFFFFFFF 00000074 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000

AID commands %SET

U6199-J-Z125-5-76 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%SET

With the %SET command you transfer the memory contents or AID literals to memory
positions in the program which has been loaded. Before transfer, the storage types sender
and receiver are checked for compatibility. The contents of sender are matched to the
storage type of receiver.

– With sender you designate a data field, a statement name, a source reference, a length,
an address, an execution counter, an AID register or an AID literal. sender may be either
within the virtual memory of the loaded program or in a dump file.

– With receiver you designate a data field, an execution counter or a register to be
overwritten. receiver may only be located within the virtual memory of the program which
has been loaded.

Command Operand

%S[ET] sender INTO receiver

In contrast to the %MOVE command, AID checks for the %SET command (prior to transfer)
whether the storage type of receiver is compatible with that of sender and whether the
contents of sender match its storage type. In the event of incompatibility, AID rejects the
transfer and outputs an error message.

If sender is longer than receiver, it is truncated on the left or right, depending on its storage
type, and AID issues a warning message. sender and receiver may overlap. In the case of
numeric transfer, sender is converted to the storage type of receiver if required, and the
contents of sender are stored in receiver with the value being retained. If the value does not
fully fit into receiver, a warning is issued.

Which storage types are compatible and how transfer takes place is shown in the table at
the end of the description of the %SET command.

Entry of the command immediately after loading the program is not advisable, as the user
cannot address data and statements without an explicit qualification until the program
encounters the first executable statement.

In addition to the operand values described here, you can also use those described in the
manual for debugging on machine code level (see [2]).

With %AID CHECK=ALL you can activate an update dialog; this dialog shows you the old and
new contents of receiver prior to transfer and offers the option of aborting the %SET
command.

The %SET command does not alter the program state.

%SET AID commands

104 U6199-J-Z125-5-76

---------- ------------
| sender | INTO | receiver |
---------- ------------

For sender or receiver you may specify data fields, a complex memory reference, an
execution counter or a register. Statement names, source references, addresses, lengths
of data areas and AID literals can only be used as sender.

sender may be located either in the virtual memory area of the loaded program or in a dump
file; receiver, on the other hand, may only be located in the virtual memory area of the loaded
program.

sender-OPERAND - - - - - - - - - - - - - - receiver-OPERAND - - - - - - - - -

 INTO [•][qua•]

- -

•

If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

qua

One or more qualifications need only be specified if a memory object is not within
the current AID work area.

E={VM | Dn} for sender

E=VM for receiver

need only be specified if the current base qualification (see %BASE command)
is not to apply for a data/statement name, source reference or keyword.
sender can be located either in virtual memory or in a dump file, whereas receiver
must be located in virtual memory.

[•][qua•]

 ([•][qua•])

%L=(expression)

AID-literal

dataname
L'name'
S'stmt-no'
keyword
compl-memref

%@

%L

dataname

compl-memref

dataname

kexword
compl-memref

AID commands %SET

U6199-J-Z125-5-76 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

PROG=program-name

Specified only when addressing a data/statement name or source reference
which is not located in the current program unit (see chapter “ASSEMBH-
specific addressing” on page 11).

NESTLEV= level-number

level-nummer has to be followed by dataname.
Specify NESTLEV= level-number when you want to address a data name on a
certain level in the current call hierarchy. This qualification can only be com-
bined with E=, and not with any other qualification.

dataname

specifies the name of constants, data fields, predefined general registers, control
sections, dummy sections, external dummy sections, dummy registers and
common control sections as defined in the source program.
dataname is the name entry of a DC, DS, EQU, CSECT, DSECT, XDSEC, DXD or
COM statement (see chapter “ASSEMBH-specific addressing” on page 11).

L’name’

is a statement name, designating the address of an executable Assembler
instruction or a call of a predefined macro.
name is the name entry of an Assembler instruction or a call of a predefined macro
(@ macro).

S’stmt-no’

is a source reference via which every named executable Assembler instruction and
every call of a predefined macro can be referenced.
stmt-no is the statement number from the assembly listing; see the STMNT column.

Statement names and source references are address constants and can thus only
be specified as sender. The address designated with L’name’ or S’stmt-no’ is trans-
ferred.

Example

%SET S'5' INTO %0G

The address of the statement with number 5 is written to AID register %0G.

By means of L’name’-> or S’stmt-no’-> you designate 4 bytes of machine code at the
corresponding address (see AID Core Manual).
Machine instructions can be output by issuing the %DISASSEMBLE command in

level-number A level number in the current call hierarchy

%SET AID commands

106 U6199-J-Z125-5-76

order to make any length modification that may be required.
With receiver, you may use statement names and source references only in
connection with the pointer operator (->).

keyword

is a an execution counter, the program counter or a register. The AID Core Manual
lists the implicit storage types of the keywords.

keyword may only be preceded by a base qualification.

 %•subcmdname Execution counter
 %• Execution counter of the current subcommand
 %PC Program counter
 %n General register, 0 Î n Î 15
 %nD|E Floating-point register, n = 0,2,4,6
 %nQ Floating-point register, n = 0,4
 %nG AID general register, 0 Î n Î 15
 %nDG AID floating-point register, n = 0,2,4,6

compl-memref

The following operations may occur in compl-memref (see AID Core Manual):

– byte offset (•)

– indirect addressing (->)

– type modification (%T(dataname), %X, %C, %E, %D, %P, %F, %A)

– length modification (%L(...), %L=(expression), %Ln)

– address selection (%@(...))

With an explicit type or length modification you can match the storage type for
sender to that of receiver. Memory contents which are incompatible with the storage
type will nevertheless be rejected by AID even if a type modification is performed
(see also AID Core Manual).
Following a byte offset (•) or pointer operation (->), the implicit storage type and
original address length are lost. At the calculated address, storage type %X with a
length of 4 applies unless the user has made an explicit specification for type and
length.
For each operand in a complex memory reference, the assigned memory area must
not be exceeded by a byte offset or length modification, otherwise AID will reject the
command and issue an error message. By combining address selection (%@) and
pointer operator (->) you may exit from the symbolic level. You can then use the
address of a data field without regarding its area boundaries.

AID commands %SET

U6199-J-Z125-5-76 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

Example

The data fields CFIELD and CFIELD1 are of type ’character’ and occupy 5 bytes
each. The last 2 bytes of CFIELD as well as the next 3 bytes are to be transferred
to CFIELD1.
AID would reject the command shown below, since it represents a violation of the
CFIELD area:
%SET CFIELD.3%CL5 INTO CFIELD1

The correct command reads:

%SET %@(CFIELD)->.3%CL5 INTO CFIELD1

%@(...)

The address selector can be used to specify the address of a data field or complex
memory reference as sender (see also AID Core Manual). The address selector
produces an address constant as a result.

%L(...)

The length selector can be used to specify the length of a data field or complex
memory reference as sender (see also AID Core Manual). The length selector
produces an integer as a result.

Example

%SET %L(FIELD1) INTO %0G

The length of FIELD1 will be transferred.

%L=(expression)

With the aid of the length function, you can direct AID to calculate the value of
expression and store it in receiver (see also AID Core Manual). In expression you can
link memory references and integers via the arithmetic operators (+,–,*,/). The
length function produces an integer as a result.

Example

%SET %L=(FIELD1) INTO %0G

The contents of FIELD1 are transferred. FIELD1 must be of type ’integer’, otherwise
AID issues an error message.

%SET AID commands

108 U6199-J-Z125-5-76

AID literal

All AID literals described in the AID Core Manual may be specified. Note well the
conversion options for matching AID literals to the respective receivers as described
in that chapter:

{C'x...x' | 'x...x'C | 'x...x'} Character literal
{X'f...f' | 'f...f'X} Hexadecimal literal
{B'b...b' | 'b...b'B} Binary literal

 [{±}]n Integer
#f...f'Hexadecimalnumber'

 [{±}]n.m Decimal number
 [{±}]mantissaE[{±}]exponent Floating-point number

AID commands %SET

U6199-J-Z125-5-76 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%SET table

 | Receive field
 | Data type:
 | |Reg.
Send field | A | B | C | D | E | F | H | L | P | Q | S | V | X | Y | Z | Rn

Data type | | | | | | | | | | | | | | | |
A | 2 | - | - | - | - | - | - | - | - | - | - | 2 | - | 2 | - | 2

B | - | 1 | - | - | - | - | - | - | - | 1 | 1 | - | 1 | - | - | -

C | - | - |2a | - | - | - | - | - | - | - | - | - | - | - | - | -

D | - | - | - | 2 | 2 |4a*|4a*| 2 | - | - | - | - | - | - |4c*| -

E | - | - | - | 2 | 2 |4a*|4a*| 2 | - | - | - | - | - | - |4c*| -

F | - | - | - |4b |4b | 1 | 1 |4b | - | - | - | - | - | - |4c | -

H | - | - | - |4b |4b | 1 | 1 |4b | - | - | - | - | - | - |4c | -

L | - | - | - | 2 | 2 |4a*|4a*| 2 | - | - | - | - | - | - |4c*| -

P | - | - | - |4b |4b |4a |4a |4b | - | - | - | - | - | - | - | -

Q | - | 1 | - | - | - | - | - | - | - | 1 | 1 | - | 1 | - | - | -

S | - | 1 | - | - | - | - | - | - | - | 1 | 1 | - | 1 | - | - | -

V | 2 | - | - | - | - | - | - | - | - | - | - | 2 | - | 2 | - | 2

X | - | 1 | - | - | - | - | - | - | - | 1 | 1 | - | 1 | - | - | -

Y | 2 | - | - | - | - | - | - | - | - | - | - | 2 | - | 2 | - | 2

Z | - | - | - |4b |4b |4a |4a |4b | - | - | - | - | - | - | 3 | -

Register: Rn| 2 | - | - | - | - | - | - | - | - | - | - | 2 | - | 2 | - | 2

AID literals| | | | | | | | | | | | | | | |
 alphanum. | - | - |2a | - | - | - | - | - | - | - | - | - | - | - | - | -

 Alphanum. | | | | | | | | | | | | | | | |
 hexadecimal| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2

 Bit | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2

 Numeric | - | - | - |4a | 1 | 1 |4a |4a | - | - | - | - | - | - |4c | -

 Numeric | | | | | | | | | | | | | | | |
 hexadecimal| 1 | - | - |2b |2b | 1 | 1 |2b | - | - | - | 1 | - | 1 | - | 1

 Float. pt. | - | - | - | 2 | 2 |4a*|4a*| 2 | - | - | - | - | - | - |4c | -

%SET AID commands

110 U6199-J-Z125-5-76

The table above provides an overview of permissible combinations of the sender and
receiver types in conjunction with the %SET command (see also the ASSEMBH Reference
Manual [10], "DC and DS statements, Types of constants").

Meaning of 1, 2, 2a, 2b, 3, 4a-c, *, -

1 The receive field is overwritten right-justified with the contents of the send field. If
the lengths differ, padding with X’00’ or truncation occurs on the left.

2 The receive field is overwritten left-justified with the contents of the send field. If the
lengths differ, padding with X’00’ or truncation occurs on the right.

2a The receive field is overwritten left-justified with the contents of the send field. If the
lengths differ, padding with X’40’ or truncation occurs on the right.

2b Refers to the mantissa only: The receive field is overwritten left-justified with the
contents of the send field. If the lengths differ, padding with X’00’ or truncation
occurs on the right.

3 The receive field is overwritten right-justified with the contents of the send field. If
the lengths differ, padding with X’F0’ or truncation occurs on the left.

4 The type of the sender is converted to the internal representation of the receiver
type. If the lengths of the sender and the converted receiver differ,

4a truncation or padding with X’00’ occurs on the left

4b truncation or padding with X’00’ occurs on the right

4c truncation or padding with X’F0’ occurs on the left.

* The types F, H, Z must not be used as receiver if the sender of type E, D or L is not
an integer.

- Transfer not possible

Examples

1. %SET PROG=PRO1.MESS1 INTO PROG=PRO1.MELD2

MESS1 and MELD2 are defined in program unit PRO1. The contents of MESS1 are
transferred to MELD2.

2. %QUALIFY PROG=PRO1

%SET .MESS1 INTO .MELD2

This %SET command initiates the same transfer as in example 1: The prequalifi-
cation defined in %QUALIFY is accepted before the leading period.

AID commands %SET

U6199-J-Z125-5-76 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

3. %SET 'ABCDEF' INTO MESSUNG

Data field MESSUNG is 8 characters long. Following transfer, it contains: ABCDEFËË

4. %SET #'0' INTO _R5

%SET _R5 INTO _R10

The first %SET transfers the hexadecimal number #’0’ to register 5, i.e. register 5
is cleared. The second %SET clears register 10.

%STOP AID commands

112 U6199-J-Z125-5-76

%STOP

With the %STOP command you direct AID to halt the program, to switch to command mode
and to issue a STOP message. This message indicates the statement and the program unit
where the program was interrupted.

If the command is entered at the terminal or from a procedure file, the program state is not
altered, since the program is already in the STOP state. In this case you may employ the
command to obtain localization information on the program interrupt point by referring to the
STOP message.

Command Operand

%STOP

If the %STOP command is contained in a command sequence or subcommand, any
commands following it will not be executed.

If you set a dump file as a basic qualification with %BASE and then enter a %STOP
command, AID outputs a STOP message containing localization information for the
address at which the program was interrupted when the dump file was written.

If the program has been interrupted by pressing the K2 key, the program interrupt point
need not necessarily be within the user program, it may also be located in the runtime
system routines.

The %STOP command alters the program state.

A %STOP in a subcommand always refers to the loaded program.

Example

/%INSERT S'214' <%DISPLAY M2,TOTAL; %STOP>
/%RESUME

M2 = |SUM:|
TOTAL = +.11000000000000000000000000000000 E+002
USTOPPED AT LABEL: ADD , SRC_REF: 214, SOURCE: SUM ,PROC: SUM

%INSERT sets a test point for statement 214. The subcommand comprises the
%DISPLAY and %STOP commands. After M2 and TOTAL have been output, AID halts
the program and writes a STOP message indicating the statement number and
program unit of the current interrupt point.

AID commands %SYMLIB

U6199-J-Z125-5-76 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%SYMLIB

With the %SYMLIB command you direct AID to open or close PLAM libraries. AID accesses
open PLAM libraries if symbolic memory references located in a program unit for which no
LSD records have been loaded are addressed in a command.

– By means of qualification-a-lib you open or close one or more libraries in which object
modules and their associated LSD records are stored. In order to dynamically load LSD
records, any library can be assigned to the current program or to a dump file by speci-
fying the appropriate base qualification.

Command Operand

%SYMLIB [qualification-a-lib][,...]

When this command is executed AID checks only whether the specified library can be
opened; it does not check whether the contents of the library match the program being
processed. Thus it is possible to initially open all libraries which you might need later during
a test run. AID does not check whether the object module of the program which has been
addressed matches that of the PLAM library until the dynamically loaded LSD records are
accessed.

If several libraries have been opened for a base qualification, AID scans them in the order
in which they were specified in the %SYMLIB command.
If the AID search is not successful or if no library is open, you may assign the correct library
by way of a new %SYMLIB command after the corresponding message has been issued.
You then repeat the command for whose execution the LSD records were lacking.

A library remains open until a new %SYMLIB command is issued for the same base quali-
fication or until it is closed by a %SYMLIB command without operand, or until /LOGOFF. If
a new command contains new file names, these libraries are assigned and opened.

The %SYMLIB command does not alter the program state.

qualification-a-lib

is a base qualification and/or the file name of a PLAM library.

– If you enter a base qualification and a file name, AID assigns the specified library for
this base qualification and opens it. Previously assigned libraries for the same base
qualification are closed.

%SYMLIB AID commands

114 U6199-J-Z125-5-76

– If you specify a file name only, AID assigns the library for the base qualification which
is currently applicable (see %BASE command) and opens it. All libraries previously
assigned for the current base qualification will be closed.

– If you specify a base qualification only, all open libraries for this qualification will be
closed.

AID can handle up to 15 library assignments. A library which is concurrently assigned for
several base qualifications is counted as often as it is specified.

qualification-a-lib-OPERAND -

[•][E= •][filename]

- -

•

If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command and can only stand for a base
qualification.

E=VM

%SYMLIB applies for the loaded program (see also %BASE command).

E=Dn

%SYMLIB applies for a memory dump in a dump file with the link name Dn (see
%BASE command).

filename

is the BS2000 catalog name of a PLAM library which is assigned for the base quali-
fication specified with prequalification or entered explicitly. If the qualification is
omitted, the library is assigned for the base qualification which currently applies.

Example

%SYMLIB E=D5.PLAMLIB,ASSOUTPUT

If AID requires LSD records for processing a memory dump in the dump file with the link
name D5, AID attempts to load these records from the PLAMLIB library.
The FOR1OUTPUT library is assigned for the currently set base qualification. If no
%BASE command has been issued, AID uses this library to dynamically load LSD
records for the program being executed.

VM

Dn

AID commands %TITLE

U6199-J-Z125-5-76 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

%TITLE

With the %TITLE command you define the text of your own page header. AID uses this text
when the %DISASSEMBLE, %DISPLAY, %HELP, %SDUMP and %TRACE commands
write to the system file SYSLST.

– By means of the page-header operand you specify the text of the header and direct AID
to set the page counter to 1 and to position SYSLST to the top of the page before the
next line to be printed.

Command Operand

%TITLE [page-header]

With a %TITLE command without a page-header operand you switch back to the AID
standard header. AID resets the page counter to 1 and positions SYSLST to the top of the
page before the next line to be printed.

A page header defined with %TITLE remains valid until a new %TITLE command is issued
or until the program ends.

The %TITLE command does not alter the program state.

page-header

Specifies the variable part of the page title. AID completes this specification by adding the
time, date and page counter.

page-header

is a character literal in the format {C’x...x’ | ’x...x’C | ’x...x’} and may have a maximum
length of 80 characters. A longer literal is rejected with an error message outputting
only the first 52 positions of the literal.

Up to 58 lines are printed on one page, not counting the title of the page.

%TRACE AID commands

116 U6199-J-Z125-5-76

%TRACE

With the %TRACE command you switch on the AID tracing function and start the program
or continue it at the interrupt point.

%TRACE can only be used for structured Assembler programs with calls of predefined
macros. Also, these programs may only contain one control section (CSECT). Assembler
programs not created with predefined macros and/or comprising more than one CSECT
cannot be processed with %TRACE. Such programs can only be traced via a %TRACE
command on machine code level (see AID, Debugging on Machine Code Level [2]).

– By means of the number operand you can specify the maximum number of Assembler
instructions to be traced, i.e. executed and logged.

– By means of the continue operand you control whether the program halts after the
%TRACE terminates (default) or continues running without logging.

– By means of the criterion operand you select different types of Assembler instructions
which AID is to log. Logging takes place prior to execution of the statements selected.

– By means of the trace-area operand you define the program area in which the criterion
is to be taken into consideration.

Command Operand

%T[RACE] [number] [continue] [criterion][,...] [IN trace-area]

A %TRACE command is terminated if any of the following five events occurs during the test
run:

1. The maximum number of instructions to be traced has been reached.

2. A subcommand has been executed because a monitoring condition from a
%CONTROLn, %INSERT or %ON command was satisfied, and this subcommand
contains a %RESUME, %STOP or %TRACE command.

3. An %INSERT command terminates with a program interrupt, as the control operand is
K or S.

4. The K2 key has been used. At the terminal, the SDF option

OVERFLOW-CONTROL = USER-ACKNOWLEDGE

(/MODIFY-TERMINAL-OPTIONS command) must have been set.

5. The program has been halted by calling the BKPT macro.

A %TRACE command which is still active after being interrupted by an event described
under points 2 through 5 above may be continued by issuing the %CONTINUE command.

AID commands %TRACE

U6199-J-Z125-5-76 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

The operand values of a %TRACE command apply until they are overwritten by the entries
in a subsequent %TRACE command, or until the program is terminated. In a new %TRACE
command, AID therefore assumes the value from the previous %TRACE command if an
operand has not been specified. In the case of the trace-area operand, this only happens if
the current interrupt point is within the trace-area to be assumed. If there are no values to
be taken over, AID assumes the default values 10 (for number) and the program unit
containing the current interrupt point (for trace-area).

With the aid of the %OUT command, you can control the information to be contained in a
line of the log and the output medium to which the log is to be written.

If the %TRACE is contained in a command sequence or subcommand, any commands
which follow will not be executed.

trace-area can only be located in the loaded program, therefore the base qualification E=VM
must have been set (see %BASE) or must be specified explicitly.

The %TRACE command alters the program state.

number

specifies the maximum number of Assembler instructions of type criterion which are to be
executed and logged.

number

is an integer 1 ≤ number ≤ 231-1. The default value is 10. If there is no value from a
previous %TRACE command, AID inserts the default value in a %TRACE
command without the number operand.

After the specified number of instructions has been traced, AID outputs a message via
SYSOUT, the program is halted and the user can enter AID or BS2000 commands. The
message tells you at which instruction and in which program unit the program was halted.

continue

Defines whether AID is to halt or continue program execution after the %TRACE termi-
nates. 'continue' applies until a different operand value for it is entered in a new %TRACE
or until the program terminates.

continue-OPERAND -

{S | R}

- -

%TRACE AID commands

118 U6199-J-Z125-5-76

S The program is halted. AID issues a STOP message containing the localization
information about the interrupt point. S is the default value.

R The program is continued without a message being issued.

criterion

is a keyword which defines the type of instructions to be traced during program execution.
Several keywords can be specified at a time; they take effect simultaneously. A comma
must be used to separate any two keywords.
If no criterion is declared, AID uses the default value %STMT unless a criterion declaration
from an earlier %TRACE command is still valid.

 | criterion | Tracing and logging takes place prior to execution of |

 | %CALL | the predefined macro @PASS (Assembler procedure) |

 | %COND | the predefined macros for selection structure blocks |
 | | @IF, @THEN, @ELSE, @CASE, @BEGI, @CAS2, @OF, @OFRE |

 | %GOTO | the predefined macros @BREA and @EXIT |

 | %PROC | the predefined macro @ENTR (Assembler procedure start) |

 | %STMT | each predefined macros that is executed. |

trace-area

defines the program area in which tracing is to take place, i.e. only within this area can
monitoring and logging of the statements selected by means of the criterion operand be
effected. The %TRACE command is inactive outside of this area and is activated again only
on returning to this area.

A trace-area remains effective until a new %TRACE command with its own trace-area
operand is entered, until a %TRACE command is issued outside of this area or until the
program ends. If the trace-area operand has been omitted, the area definition from an earlier
%TRACE command is assumed if the current interrupt point is located in this area.
Otherwise AID uses the default value, i.e. the program unit containing the current interrupt
point.

The continuation address for program execution cannot be influenced by the %TRACE
command.

AID commands %TRACE

U6199-J-Z125-5-76 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

trace-area-OPERAND -

IN [•][E=VM•]

- -

•

If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

E=VM

As trace-area may only be located in the virtual memory of the program which has
been loaded, enter E=VM only if a dump file has been declared as the current base
qualification (see also %BASE command).

PROG=program-name

program-name is the name of a program unit.

This program unit must already be loaded at the time the %TRACE command is
input or at the time the subcommand containing the %TRACE command is
executed.

A PROG qualification is required only if a load module has been created from
several program units and the %TRACE command does not refer to the current
program unit or if a previously applicable trace-area declaration is to be overwritten.

If trace-area ends with a PROG qualification, it covers the entire program unit
specified.

(S’stmt-no’:S’stmt-no’)

stmt-no is the statement number from the assembly listing; see the STMNT column.

trace-area is defined by entering a start stmt-no and an end stmt-no, which together
identify a certain part of the source program.

The start stmt-no must be less than the end stmt-no.

If trace-area is to comprise only one line, the start stmt-no and end stmt-no must be
identical.

PROG=program-name

[PROG=program-name•](S'stmt-no')

%TRACE AID commands

120 U6199-J-Z125-5-76

Output of the %TRACE listing

The %TRACE listing is output in full format via SYSOUT as a standard procedure (%OUT
operand value T=MAX). With the %OUT command, you can define the output media and
the scope of information to be output (see AID Core Manual).

A %TRACE listing with additional information (T=MAX) contains the statement number and
type of Assembler instruction that was executed. If a name entry exists, it will be output as
well.

A %TRACE listing without additional information (T=MIN) does not show the instruction
type.

AID does not take into account XMAX and XFLAT modes for outputting the %TRACE log.
Instead, it generates the default value (T=MAX).

Examples

1. /%OUT %TRACE T=MAX
/%T 3

 7 FRAME EXT.PRO
 1037 TEST1 CALL
 1281 TEST2 JUMP
STOPPED AT LABEL: TEST2 , SRC_REF: 1281, SOURCE: FRAME , PROC: FRAME

With the aid of the %OUT command, output is switched back to the terminal and the
maximum range of information is defined for output.
The %TRACE command is to trace three Assembler instructions. After the third
instruction, the termination message for this %TRACE command follows, to the
effect that program execution was interrupted at instruction TEST2 with statement
number 1281, that instruction TEST2 is in the program unit FRAME and that the
load module has the same name.

2. /%OUT %T T=MIN
/%T 3

 7 FRAME
 1037 TEST1
 1281 TEST2
STOPPED AT SRC_REF: 1281, SOURCE: FRAME, PROC: FRAME

With the %OUT command the range of information for the %TRACE command is
reduced. A subsequently entered %TRACE command outputs the log without
additional information.

AID commands %TRACE

U6199-J-Z125-5-76 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
5

3. %TRACE 5 R %INSTR

5 program commands are executed and logged. After this, the program continues
without logging.

4. %C1 %CALL IN S=TESTPROG <%TRACE 1 R>

All subroutine calls by the TESTPROG module are logged. The program continues after
each respective Call instruction is executed and logged.

%TRACE AID commands

122 U6199-J-Z125-5-76

U6199-J-Z125-5-76 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
6

6 Sample application

This chapter illustrates an AID debugging session for a short Assembler program. This
sample test is intended to help you understand the application and effect of various AID
commands; for the sake of clarity, a relatively uncomplicated approach has been taken. The
Assembler program is shown in section 6.1, the test run in section 6.2. In the examples
below, input is printed in bold for better legibility.

6.1 Assembler program

Objective

The program SUM is to read in up to 10 two-digit numbers and output the resulting total.
Input of the number 00 serves as the end criterion .
If more than 10 numbers are entered, a message is issued together with the calculated
total.

Source program listing

 COMPUTE THE SUM OF N NUMBERS (N <= 10) 11:09:30 91-11-
05
 LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
 000000 1 SUM START
 2 TITLE 'COMPUTE THE SUM OF N NUMBERS (N <= 10)'
 3 PRINT NOGEN
 000000 00000000 4 R0 EQU 0
 000000 00000001 5 R1 EQU 1
 000000 00000002 6 R2 EQU 2
 000000 00000003 7 R3 EQU 3
 000000 00000004 8 R4 EQU 4
 000000 00000005 9 R5 EQU 5
 10 SUM AMODE ANY
 11 SUM RMODE ANY
 12 GPARMOD 31
 14 2 *,VERSION 010
 000000 0D 20 15 BASR R2,R0
 000002 00000002 16 USING *,R2
 17 START WROUT MESS1,END
 24 2 *,FHDR VERSION 105 / 1988-06-13
 48 2 *,@DCEO 952 900503 53531004
 51 1 *,WROUT 005 910215 53121058
 000026 58 50 2176 00000178 52 L R5,=F'1'
 00002A 5A 50 2176 00000178 53 LOOP A R5,=F'1'
 00002E 49 50 2138 0000013A 54 CH R5,ZEHN
 000032 47 20 20BE 000000C0 55 BH ERROR
 56 READ RDATA INPUT, END
 63 2 *,FHDR VERSION 105 / 1988-06-13
 92 2 *,@DCEI 920 881104 53531002
 95 1 *,RDATA 006 910215 53121057
 000062 D5 05 2121213A 00000123 0000013C 96 COMP CLC INPUT+4,NULL
 000068 47 80 207A 0000007C 97 BE FROM

Assembler program Sample application

124 U6199-J-Z125-5-76

 00006C F2 11 21232121 00000125 00000123 98 ADD PACK PACK,INPUT+4(2)
 000072 FA 31 213C2123 0000013E 00000125 99 AP TOTAL,PACK
 000078 47 F0 2028 0000002A 100 B LOOP
 00007C F3 63 2131213C 00000133 0000013E 101 FROM UNPK RESUL,TOTAL
 000082 D3 00 21372140 00000139 00000142 102 MVZ RESUL+6(1),ZONE
 103 WROUT MESS2,END
 109 2 *,FHDR VERSION 105 / 1988-06-13
 133 2 *,@DCEO 952 900503 53531004
 136 1 *,WROUT 005 910215 53121058
 137 END TERM DUMP=Y
 140 2 *,VERSION 010
 152 ERROR WROUT MESS3,END
 159 2 *,FHDR VERSION 105 / 1988-06-13
 183 2 *,@DCEO 952 900503 53531004
 186 1 *,WROUT 005 910215 53121058
 0000E2 47 F0 207A 0000007C 187 B FROM
 188 EJECT
 189 *
 190 * DEFINITIONEN
 191 *
 0000E6 0039 192 MESS1 DC Y(L'M1+5)
 0000E8 404001 193 DC X'404001'
 0000EB C2C9E3E3C540C2C9 194 M1 DC C'PLEASE ENTER UP TO 10 2-DIGIT NUMBERS. END:
00'
 00011F 000000000000 195 INPUT DC XL6'00'
 000125 000C 196 PACK DC PL2'0'
 197 *
 000128 0012 198 MESS2 DC Y(L'M2+L'RESUL+5)
 00012A 404001 199 DC X'404001'
 00012D E2E4D4D4C57A 200 M2 DC C'SUM:'
 000133 40404040404040 201 RESUL DC CL7' '
 202 *
 00013A 000A 203 ZEHN DC H'10'
 00013C F0F0 204 NULL DC C'00'
 00013E 0000000C 205 TOTAL DC PL4'0'
 000142 F0 206 ZONE DC X'F0'
 207 *
 000144 0034 208 MESS3 DC Y(L'M3+5)
 000146 404001 209 DC X'404001'
 000149 C5E240D2D6C5D5D5 210 M3 DC C'NO MORE THAN 10 NUMBERS CAN BE PROCESSED'
 000000 211 END SUM
 000178 00000001 212 =F'1'
 00017C 9101221427002852 213 =X'9101221427002852' CONSISTENCY CONSTANT FOR
AID
 FLAGS IN 00000 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES
 HIGHEST ERROR-WEIGHT : NO ERRORS
 THIS PROGRAM WAS ASSEMBLED BY ASSEMBH V1.0B00 ON 1991-11-05 AT 11:07:54

Sample application Test run

U6199-J-Z125-5-76 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
6

6.2 Test run

Step 1

The Assembler source program SUM in the file SOURCE.TEST is assembled using
ASSEMBH. The input TEST-SUPPORT=YES causes ASSEMBH to create LSD infor-
mation and pass it to the object module. The source program is assembled without errors.

/DEL-SYS-FILE OMF
/START-ASSEMBH

% BLS0500 PROGRAM 'ASSEMBH', VERSION '1.XXXX' OF 'yy-mm-dd' LOADED.
% BLS0552 COPYRIGHT (C) FUJITSU TECHNOLOGY SOLUTIONS 2009. ALL RIGHTS
RESERVED
% ASS6010 V 1.XXXX OF BS2000 ASSEMBH READY

//COMPILE SOURCE=SOURCE.TEST,
 TEST-SUPPORT=YES

% ASS6011 ASSEMBLY TIME: 80 MSEC
% ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES
% ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS
% ASS6006 LISTING GENERATOR TIME: 102 MSEC

//END

% ASS6012 END OF ASSEMBH

Step 2

Program SUM is to be executed.

/START-PROG (*OMF)

% BLS0001 *** DBL VERSION 070 RUNNING ***
% BLS0517 MODULE 'SUM' LOADED

PLEASE ENTER UP TO 10 2-DIGIT NUMBERS. END: 00
*05
*16
*48
*00
*0
*00
*EN
/

Test run Sample application

126 U6199-J-Z125-5-76

The program always branches back to input, therefore a program error must exist. The
program is interrupted by pressing the K2 key.

Step 3

The program is reloaded with TEST-OPTION=AID so that it can be symbolically tested.

/LOAD-PROG (*OMF),TEST-OPTION=AID

% BLS0001 *** DBL VERSION 070 RUNNING ***
% BLS0517 MODULE 'SUM' LOADED

/%IN S'96' <%D INPUT;%STOP>
/%R

The %INSERT command is used to set a test point at the line with the statement number
96, i.e. the CLC instruction. Every time the program reaches this address, the contents of
field INPUT are to be output.
Following output, the program is to be switched to the STOP status so that new commands
can be entered.

The loaded program is started with %RESUME.

PLEASE ENTER UP TO 10 2-DIGIT NUMBERS. END: 00
*05

** ITN: #004B012E'***TSN:2069***'
SRC_REF: 96 SOURCE: SUM PROC: SUM ********************************
INPUT = 00060000 F0F5 05
STOPPED AT LABEL: COMP , SRC_REF: 96, SOURCE: SUM ,PROC: SUM

/%R
*48
INPUT = 00060000 F4F8 48
STOPPED AT LABEL: COMP , SRC_REF: 96, SOURCE: SUM ,PROC: SUM

/%R
*16
INPUT = 00060000 F1F6 16
STOPPED AT LABEL: COMP , SRC_REF: 96, SOURCE: SUM ,PROC: SUM

/%R
*00
INPUT = 00060000 F0F0 00
STOPPED AT LABEL: COMP , SRC_REF: 96, SOURCE: SUM ,PROC: SUM

Sample application Test run

U6199-J-Z125-5-76 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
6

Field INPUT contains the correct value in each case. The program obviously does not
recognize the end criterion.

Step 4

The %DISASSEMBLE command specifies that 5 lines are to be output in "retranslated"
format starting at line 96, i.e. the CLC instruction.

/%DA 5 FROM S'96'

SUM+62 CLC 121(6,R2),13A(R2) D5 05 2121 213A
SUM+68 BC B'1000',7A(R0,R2) 47 80 207A
SUM+6C PACK 123(2,R2),121(2,R2) F2 11 2123 2121
SUM+72 AP 13C(4,R2),123(2,R2) FA 31 213C 2123
SUM+78 BC B'1111',28(R0,R2) 47 F0 2028

This shows that the length field of the CLC instruction contains ’6’ instead of ’2’. This is why
the end criterion is not recognized.

The correct Assembler instruction reads:

COMP CLC INPUT+4(2),NULL

Step 5

This error can be provisionally amended by means of the %SET command. The program
is reloaded for this purpose.

/LOAD-PROG (*OMF),TEST-OPTION=AID

% BLS0001 *** DBL VERSION 070 RUNNING ***
% BLS0517 MODULE 'SUM' LOADED

/%SET X'D5012121213A' INTO COMP
/%DA 1 FROM COMP

SUM+62 CLC 121(2,R2),13A(R2) D5 01 2121 213A

/%R

%SET changes the memory contents at address COMP. An AID literal with the same length
as the CLC instruction and containing the length entry ’01’ instead of ’05’ is transferred. The
CLC instruction is then checked using %DISASSEMBLE and the program restarted with
%RESUME.

Test run Sample application

128 U6199-J-Z125-5-76

PLEASE ENTER UP TO 10 2-DIGIT NUMBERS. END: 00
*05
*16
*48
*12
*10
*15
*17
*19
*29
NO MORE THAN 10 NUMBERS CAN BE PROCESSED
SUM:0000171

% IDA0N51 PROGRAM INTERRUPT AT LOCATION '000000BE (SUM), (CDUMP), EC=90'
% IDA0N45 DUMP DESIRED? REPLY (Y=USER-/AREADUMP;Y,SYSTEM=SYSTEMDUMP;N=NO)?Y
% IDA0N53 DUMP BEING PROCESSED. PLEASE HOLD ON
% IDA0N54 USERDUMP WRITTEN TO FILE 'userid.DUMP.name.2069.00001'
% IDA0N55 TITLE: 'TSN-2069 UID-userid AC#-xxxxxxxx USERDUMP
 PC-0000BE EC=90 VERS-100 DUMP-TIME 11:26:51 91-11-05'

Another program error exists, since the user has entered only 9 numbers. A dump for
further diagnosis is therefore generated on program termination.

Step 6

The %DUMPFILE command opens the dump file and and assigns it the link name D1. The
%BASE command switches the AID work area to the opened dump file. From now on, an
address without its own base qualification will always cause the dump file data to be
accessed.

/%DUMPFILE D1=DUMP.NAME.2069.00001
/%BASE E=D1

/%D INPUT
** D1: DUMP.NAME.2069.00001 ***
INPUT = 00060000 F2F9 29

/%D _R5
_R5 = 0000000B

The last number entered in the INPUT field is to be output. The output and log are identical.

As the number of inputs is counted in register 5, it is now queried.

Register 5 contains the value ’11’, although only 9 numbers were entered. A comparison
with the assembly listing shows that register 5 has the initial value ’1’ and not ’0’.

Sample application Test run

U6199-J-Z125-5-76 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
80

0
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

d
as

sh
e.

k0
6

The correct Assembler instruction reads:

L R5,=F'0'

Step 7

This error can be provisionally amended by means of the %SET command. The program
is reloaded for this purpose.

/LOAD-PROG (*OMF),TEST-OPTION=AID

% BLS0001 *** DBL VERSION 070 RUNNING ***
% BLS0517 MODULE 'SUM' LOADED

/%BASE
/%SET X'D5012121213A' INTO COMP
/%IN LOOP <%SET 0 INTO _R5;%REM%.>

/MOD-TEST-OPT DUMP=NO
/%R

First, %BASE is issued to assign the loaded program as the AID work area.

Reloading the program causes the corrections that have been made to be deleted. To
ensure an errorfree program run, the %SET command from Step 5 is issued again here.

%INSERT sets a test point to the Assembler instruction with the name entry LOOOP. This
means AID is to execute the following subcmd prior to the add instruction.

The %SET command giving register 5 the initial value ’0’ is contained in the subcmd of
%INSERT. This subcmd is deleted with %REM after the first run (as no further subcommand
has has been entered for this test-point, the test-point is also deleted), and the program is
then resumed.

As the TERM macro is defined in the source program with the DUMP=Y operand, a dump
is offered every time the program terminates. This can be prevented before the program is
started (%RESUME) with the following command: /MODIFY-TEST-OPTIONS DUMP=NO

PLEASE ENTER UP TO 10 2-DIGIT NUMBERS. END: 00
*05
*16
*48
*12
*10
*15
*17
*19
*29
*11
NO MORE THAN 10 NUMBERS CAN BE PROCESSED

Test run Sample application

130 U6199-J-Z125-5-76

SUM:0000182

% IDA0N51 PROGRAM INTERRUPT AT LOCATION '000000BE (SUM), (CDUMP), EC=90'
% IDA0N47 DUMP PROHIBITED BY /OPTION COMMAND
/

After this correction the program executes without errors. The errors can now be definitively
eliminated in the source program.

U6199-J-Z125-5-76 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
20

1
8

 S
ta

nd
 1

2:
13

.1
0

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

oc
s_

P
ro

d
uk

tio
n\

18
00

8
00

_A
ID

_A
S

S
E

M
B

H
\e

n\
ai

da
ss

he
.m

ix

Glossary

address operand
This is an operand used to address a memory location or memory area. The
operand may specify virtual addresses, data names, statement names, source
references, keywords, complex memory references or a PROG qualification.
The memory location or area is located either in the program which has been
loaded or in a memory dump in a dump file. To address a data element, state-
ment name or source reference which is not located in the current program unit,
the user must employ a qualification to reference the relevant position in mem-
ory.

AID constant
The AID constants comprise all constants defined in the program, the statement
names, the source references, the results of address selection, length selection
and length function, and the AID literals. They represent a value which cannot
be changed. They have no address attribute.
An address constant represents an address, i.e. statement names, source ref-
erences and the result of an address selection. In conjunction with an operator
pointer (->), they allow you to address the required memory location.

AID input files
AID input files are files which AID requires to execute AID functions, as distin-
guished from input files which the program requires. AID processes disk files
only. AID input files include:

1. Dump files containing memory dumps (%DUMPFILE)

2. PLAM libraries containing object modules. If the library has been
assigned with the aid of the %SYMLIB command, AID is able to load the LSD
records.

Glossary

132 U6199-J-Z125-5-76

AID literals
AID provides the user with both alphanumeric and numeric literals (see AID
Core Manual, chapter 8):

{C'x...x' | 'x...x'C | 'x...x'} Character literal
{X'f...f' | 'f...f'X} Hexadecimal literal
{B'b...b' | 'b...b'B} Binary literal

 [{±}]n Integer
#f...f'Hexadecimalnumber'
[{±}]n.m Decimal number
[{±}]mantissaE[{±}]exponent Floating-point number

AID output files
AID output files are files to which the user can direct output of the %DISASSEM-
BLE, %DISPLAY, %HELP, %SDUMP and %TRACE commands. The files are
addressed via their link names (F0 through F7) in the output commands (see
%OUT and %OUTFILE). The REP records are written to the file assigned to link
name F6 (see %AID REP=YES and %MOVE).
There are three ways of creating an output file, or of assigning an output file:
– %OUTFILE command with link name and file name
– ADD-FILE-LINK command with link name and file name
– For a link name to which no file name has been assigned, AID issues a FILE

macro with the file name AID.OUTFILE.Fn.
An AID output file always has the format FCBTYPE=SAM, RECFORM=V and
is opened with MODE=EXTEND.

AID standard work area
In conjunction with debugging on machine code level, the AID standard work
area is the non-privileged part of virtual memory (in the user task) which is occu-
pied by the program and all its connected subsystems.
In conjunction with symbolic debugging, the AID standard work area is the cur-
rent program unit of the program which has been loaded. If no presetting has
been made with the %BASE command and no base qualification is specified,
the AID standard work area applies by default.

AID work area
The AID work area is the address area in which the user may reference
addresses without having to specify a qualification.
In symbolic debugging, the AID work area is the current program unit. Only the
data/statement names and source references within the current program unit
can be addressed without a qualification. In the case of the loaded program, the
current program unit is the one currently executing. In the case of a memory
dump, the current program unit is the one which was executing when the mem-
ory dump took place.

Glossary

U6199-J-Z125-5-76 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
20

1
8

 S
ta

nd
 1

2:
13

.1
0

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

oc
s_

P
ro

d
uk

tio
n\

18
00

8
00

_A
ID

_A
S

S
E

M
B

H
\e

n\
ai

da
ss

he
.m

ix

You may deviate from the AID work area in a command by specifying a qualifi-
cation in the address operand. Using the %BASE command, you can shift the
AID work area from the loaded program to a memory dump, or vice versa.

area check
In the case of byte offset, length modification and the receiver of a %MOVE, AID
checks whether the area limits of the referenced memory objects are exceeded
and issues a corresponding message if necessary.

area limits
Each memory object is assigned a particular area, which is defined by the
address and length attributes in the case of data names and keywords. For vir-
tual addresses, the area limits are between V’0’ and the last address in virtual
memory (V’7FFFFFFF’). In PROG qualifications, the area limits are determined
by the start and end addresses of the program unit (see AID Core Manual,
chapter 6).

Assembler procedure
This is a program unit in structured programming with an entry and an exit. It
can be called using a name, with current parameters if required. An Assembler
procedure starts and ends with the predefined macros @ENTR (start of proce-
dure) and @END (static end of procedure).

attributes
Each memory object has up to six attributes:
address, name (opt), content, length, storage type, output type.
Selectors can be used to access the address, length and storage type. Via the
name, AID finds all the associated attributes in the LSD records so they can be
processed accordingly.
Address constants and constants from the source program have only up to five
attributes:
name (opt), value, length, storage type, output type.
They have no address. When a constant is referenced, AID does not access a
memory object but merely inserts the value stored for the constant.

base qualification
The base qualification is the qualification the user employs to place the AID
work area in the loaded program or in a memory dump in a dump file. The spec-
ification is made using E={VM | Dn}.
The base qualification can be declared globally with %BASE or specified explic-
itly in the address operand for a single memory reference.

Glossary

134 U6199-J-Z125-5-76

command mode
In the AID documentation, the term "command mode" designates the EXPERT
mode of the SDF command language. Users working in a different mode
(GUIDANCE={MAXIMUM|MEDIUM|MINIMUM|NO}) and wishing to enter AID com-
mands should switch to EXPERT mode via MODIFY-SDF-OPTIONS GUID-
ANCE=EXPERT.
AID commands are not supported by SDF syntax:
– Operands are not queried via menus.
– If an error occurs, AID issues an error message but does not offer a correc-

tion dialog.
In EXPERT mode, the system prompt for command input is "/".

command sequence
Several commands are linked to form a sequence via semicolons (;). The
sequence is processed from left to right. A command sequence may contain
both AID and BS2000 commands, like a subcommand. Commands not permit-
ted in a command sequence are the AID commands %AID, %BASE, %DUMP-
FILE, %HELP, %OUT and %QUALIFY as well as the BS2000 commands listed
in the appendix of the AID Core Manual.
If a command sequence contains one of the commands for runtime control, the
command sequence is aborted at that point and the program is started (%CON-
TINUE, %RESUME, %TRACE) or halted (%STOP). As a result, any commands
which follow as part of the command sequence are not executed.

constant
An address constant represents an address. Address constants include state-
ment names, source references and the result of an address selection. They
can be used, in conjunction with a pointer operator (->), to address the corre-
sponding memory location.

CSECT information
is contained in the object structure list.

current call hierarchy
The current call hierarchy represents the status of subprogram nesting at the
interrupt point. It ranges from the subprogram level on which the program was
interrupted, through the exited subprograms and on to the main program. When
symbolic debugging of Assembler programs is performed, the call hierarchy can
only be observed if the program is composed of Assembler procedures, i.e. if a
structured Assembler program is involved.
The hierarchy is output using the %SDUMP %NEST command.

Glossary

U6199-J-Z125-5-76 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
20

1
8

 S
ta

nd
 1

2:
13

.1
0

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

oc
s_

P
ro

d
uk

tio
n\

18
00

8
00

_A
ID

_A
S

S
E

M
B

H
\e

n\
ai

da
ss

he
.m

ix

current program
The current program is the one loaded in the task in which the user enters AID
commands.

current program unit
The program (assembly) unit in which the program was interrupted.
The following should be noted for structured Assembler programs:
If the current program interrupt is the the ASSEMBH runtime module, the cur-
rent program unit is no longer the user’s assembly unit. In this case the appro-
priate PROG qualification must be used in AID commands.
The AID STOP message outputs the name of the program unit.

dataname
This operand stands for all names assigned for data in the source program.
dataname can be used to address constants, data fields, predefined general reg-
isters, control sections, dummy sections, external dummy sections, dummy reg-
isters and common control sections when symbolic debugging is performed
(see chapter 3).

data type
In accordance with the data type declared in the source program, AID assigns
an AID storage type to each data field:
– binary string (ï %X)
– character (ï %C)
– numeric (ï %F, %D)
This storage type determines how the data field is output by %DISPLAY, trans-
ferred or overwritten by %SET, and compared in the condition of a subcom-
mand.

dump file
A disk file containing a program dump.

ESD
The External Symbol Dictionary (ESD) lists the external references of a module.
It is generated by the Assembler and contains, among other items, information
on CSECTs, DSECTs and COMMONs. The linkage editor accesses the ESD
when it creates the object structure list.

global settings
AID offers commands facilitating addressing, saving input efforts and enabling
the behavior of AID to be adapted to individual requirements. The presettings
specified in these commands continue to apply throughout the debugging ses-
sion (see %AID, %AINT, %BASE and %QUALIFY).

Glossary

136 U6199-J-Z125-5-76

input buffer
AID has an internal input buffer. If this buffer is not large enough to accommo-
date a command input, the command is rejected with an error message identi-
fying it as too long. If fewer of the repeatable operands are specified, the com-
mand will be accepted.

interrupt point
The interrupt point is the address at which a program has been interrupted.
From the AID STOP message the user can determine both the address at which
and the program unit in which the interrupt point is located. The program is con-
tinued at this point. A different continuation address can be specified with the
aid of the %JUMP command (FOR1 and COBOL85 only).

LIFO
Stands for the "last in, first out" principle. If statements from different entries
concur at a test point (%INSERT) or upon occurrence of an event (%ON), the
ones entered last are processed first (see AID Core Manual, section 5.4).

localization information
%DISPLAY %HLLOC(memref) for the symbolic level and %DISPLAY
%LOC(memref) for the machine code level cause AID to output the static pro-
gram nesting for a given memory location.
Conversely, %SDUMP %NEST outputs the dynamic program nesting, i.e. the
call hierarchy for the current program interrupt point.

LSD
The List for Symbolic Debugging (LSD) is a list of the data/statement names
defined in the module. It also contains the Assembler-generated source refer-
ences (statement numbers). The LSD records are created by the Assembler.
AID uses them to fetch the information required for symbolic addressing.

memory object
A memory object is formed by a set of contiguous bytes in memory. At program
level, this comprises the program data (if it has been assigned a memory area)
and the instruction code. Other memory objects are all the registers, the pro-
gram counter, and all other areas that can only be addressed via keywords.
Conversely, any constants defined in the program, as well as statement names,
source references, the results of address selection, length selection and length
function, and the AID literals do not constitute memory objects because they
represent a value that cannot be changed.

Glossary

U6199-J-Z125-5-76 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
20

1
8

 S
ta

nd
 1

2:
13

.1
0

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

oc
s_

P
ro

d
uk

tio
n\

18
00

8
00

_A
ID

_A
S

S
E

M
B

H
\e

n\
ai

da
ss

he
.m

ix

memory reference
A memory reference addresses a memory object. Memory references can
either be simple or complex.
Simple memory references include virtual addresses, names whose address
AID fetches from the LSD information, and keywords. Statement names and
source references are allowed as memory references in the AID commands
%CONTROLn, %DISASSEMBLE, %INSERT, %JUMP and %REMOVE
although they are merely address constants.
Complex memory references instruct AID how to calculate a particular address
and which type and length are to apply. The following operations are possible
here: byte offset, indirect addressing, type modification, length modification,
address selection.

monitoring
%CONTROLn, %INSERT and %ON are monitoring commands. When the pro-
gram reaches a statement of the selected group (%CONTROLn) or the defined
program address (%INSERT), or if the declared event occurs (%ON), program
execution is interrupted and AID processes the specified subcommand.

name range
This comprises all data names stored for a program unit in the LSD records.

object structure list
On the basis of the External Symbol Dictionary (ESD), the linkage editor gener-
ates the object structure list, provided the default SYMTEST=MAP applies or
the user has entered SYMTEST=ALL.

output type
This is an attribute of a memory object and determines how AID outputs the
memory contents. Each storage type has its corresponding output type. The
AID Core Manual, chapter 9, lists the AID-specific storage types together with
their output types. This assignment also applies for the data types used in
ASSEMBH. A type modification in %DISPLAY and %SDUMP causes the output
type to be changed as well.

predefined macros
These are used in structured programming with ASSEMBH. The first character
of a predefined macro is always "@".
ASSEMBH provides the user with a set of predefined macros which can be
used for structured programming. ASSEMBH must be notified of the relevant
macro library when assembly runs for Assembler programs containing these
macros take place. The runtime system must be available for running the pro-
grams.

Glossary

138 U6199-J-Z125-5-76

program state
AID makes a distinction between three program states which the program being
tested may assume:

– The program has stopped.

%STOP, the K2 key, the BKPT macro or completion of a %TRACE interrupt-
ed the program. The task is in command mode. The user may enter com-
mands.

– The program is running without tracing.

%RESUME started or continued the program. %CONTINUE does the
same, with the exception that any active %TRACE is continued.

– The program is running with tracing.

%TRACE started or continued the program. The program sequence is
logged in accordance with the declarations made in the %TRACE com-
mand. %CONTINUE has the same effect if a %TRACE is still active.

program unit
This is an assembly unit.
ASSEMBH generates an object module for each assembly unit.
The name of an assembly unit is the name of the first control section named
(START or CSECT statement) or the name of the first Assembler procedure
(@ENTR macro).

qualification
A qualification is used to reference an address which is not in the current AID
work area. The base qualification specifies whether the address is in the loaded
program or in a memory dump. The PROG qualification specifies the program
unit in which the address is situated.
If a qualification is found to be superfluous or contradictory, it will be ignored.
This is the case, for example, if a PROG qualification is specified for a data field
of the current program unit.

source reference
designates a statement number allocated by the Assmebler in the STMNT col-
umn of the assembly listing. Every named executable Assembler instruction
and every predefined macro (@ macro) can be referenced.
The source reference is specified with S’stmt-no’.
stmt-no is an integer between 1 and 231-1.

Glossary

U6199-J-Z125-5-76 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
20

1
8

 S
ta

nd
 1

2:
13

.1
0

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

oc
s_

P
ro

d
uk

tio
n\

18
00

8
00

_A
ID

_A
S

S
E

M
B

H
\e

n\
ai

da
ss

he
.m

ix

statement name
designates the address of an executable Assembler instruction or of a call of a
predefined macro (@ makro).
The statement name is specified with L’name’.
name is the name entry of an Assembler instruction or of a call of a predefined
macro (@ macro) and can be up to 64 characters in length.
name is shortened to 32 characters by AID.
name can also be entered without L’...’ if it cannot be confused with a data name
in a command.

statement number
In the Assembler source program, each instruction and each comment is
regarded as a statement and is given a statement number in the assembly list-
ing. If an Assembler instruction extends over more than one line in the listing,
the entire instruction still has only one statement number. The statement num-
ber of Assembler instructions generated by macros can be seen in the assem-
bly listing if PRINT GEN was used for assembly.
During symbolic debugging, the statement number can be used to reference all
Assembler instructions with a name in the name entry and all predefined mac-
ros (@ macros).

storage type
This is either the data type defined in the source program or the one selected
by way of type modification. AID knows the storage types %X, %C, %P, %E,
%D, %F and %A (see %SET and AID Core Manual, chapters 6 and 9).

structured Assembler programs
Structured Assembler programs comply with the rules for structured program-
ming with ASSEMBH. They are programmed with the aid of predefined macros
and are composed of Assembler procedures.

subcommand
A subcommand is an operand of the monitoring commands %CONTROLn,
%INSERT or %ON. A subcommand can contain a name, a condition and a
command part. The latter may comprise a single command or a command
sequence. It may contain both AID and BS2000 commands. Each subcom-
mand has an execution counter. Refer to the AID Core Manual, chapter 5, for
information on how an execution condition is formulated, how the names and
execution counters are assigned and addressed, and which commands are not
permitted within subcommands.
The command part of the subcommand is executed if the monitoring condition
(criterion, test-point, event) of the corresponding command is satisfied and any
execution condition defined has been met.

Glossary

140 U6199-J-Z125-5-76

tracing
%TRACE is a tracing command, i.e. it can be used to define the type and num-
ber of statements to be logged. Program execution can be viewed on the screen
as a standard procedure.

update dialog
The update dialog is initiated by means of the %AID CHECK=ALL command. It
goes into effect when the %MOVE or %SET command is executed. During the
dialog, AID queries whether updating of the memory contents really is to take
place. If N is entered in response, no modification is carried out; if Y is entered,
AID will execute the transfer.

user area
This is the area in virtual memory which is occupied by the loaded program and
all its connected subsystems. It corresponds to the area represented by the
keyword %CLASS6 (or %CLASS6ABOVE and %CLASS6BELOW).

U6199-J-Z125-5-76 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
20

18

S
ta

nd
 1

2:
13

.1
0

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
8

00
_A

ID
_

A
S

S
E

M
B

H
\e

n\
ai

da
ss

he
.li

t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

[1] AID (BS2000)
Advanced Interactive Debugger
Core Manual
User Guide

[2] AID (BS2000)
Advanced Interactive Debugger
Debugging on Machine Code Level
User Guide

[3] AID (BS2000)
Advanced Interactive Debugger
Debugging of COBOL Programs
User Guide

[4] AID (BS2000)
Advanced Interactive Debugger
Debugging of FORTRAN Programs
User Guide

[5] AID (BS2000)
Advanced Interactive Debugger
Debugging under POSIX
User Guide

[6] AID (BS2000)
Advanced Interactive Debugger
Debugging of C/C++ Programs
User Guide

[7] BS2000 OSD/BC
Executive Macros
User Guide

http://manuals.ts.fujitsu.com

Related publications

142 U6199-J-Z125-5-76

[8] BS2000 OSD/BC
Programmiersystem*
Technische Beschreibung
(Programming System, Technical Description)

[9] ASSEMBH (BS2000)
User Guide

[10] ASSEMBH (BS2000)
Reference Manual

[11] XHCS
8-Bit Code and Unicode Processing in BS2000
User Guide

U6199-J-Z125-5-76 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

0
80

0_
A

ID
_A

S
S

E
M

B
H

\e
n\

ai
d

as
sh

e.
si

x

Index

%? 58
%.subcmdname 46, 70, 85, 106
%.subcmdname, delete 86
%0G 53
%1G 53
%AID 21, 67, 72, 103
%AID command, update dialog 21
%AID REP 21, 67
%AID update dialog 67, 103
%AMODE 45
%AUD1 45
%BASE 35, 53, 55
%CALL 31, 118
%CC 45
%CLASS6 55
%COND 31, 118
%CONTINUE 29, 88, 116
%CONTROLn 30, 85
%DISASSEMBLE 35, 78, 81, 115
%DISASSEMBLE log 38
%DISPLAY 41, 78, 81, 115
%DUMPFILE 27, 51
%ERRFLG 86
%FIND 53
%FR 45
%GOTO 31, 118
%H %? 58
%H? 58
%HELP 58, 78, 81, 115
%IFR 45
%IMR 45
%INSERT 60, 85
%ISR 45
%L=(expression) 107

%LPOV 86
%MOVE 67
%MOVE command, REPs 21
%MOVE command, update dialog 21
%MR 45
%n 45, 70, 106
%nD 45, 70, 106
%nDG 45, 70, 106
%nE 45, 70, 106
%NEST 91
%nG 45, 70
%nQ 45, 70, 106
%ON 74, 85
%OUT 35, 41, 48, 59, 78, 91, 117
%OUTFILE 72, 81
%OUTFILE command 23
%PC 45, 70, 86
%PCB 45
%PCBLST 45
%PM 45
%PROC 31, 118
%QUALIFY 83
%REMOVE 30, 85
%RESUME 88
%SDUMP 78, 81, 89, 115
%SET 103
%SET command, update dialog 21
%SORTEDMAP 41, 45
%STMT 31, 118
%STOP 60, 74, 112
%STOP within a subcommand 112
%SVC 86
%SYMLIB 89, 113
%TITLE 115
%TRACE 78, 81, 115, 116

Index

144 U6199-J-Z125-5-76

%TRACE listing 120

A
additional information 78, 79, 91
address operand 83
address selection 38, 46, 57, 62, 70, 106
address selector 47, 71, 107
addressing mode 45
AID commands, help texts 58
AID literal 41, 47, 67, 72, 104, 108
AID message number range 58
AID output 35, 41, 48, 59, 92, 120
AID output, delimiter 21
AID register 45, 53, 70, 106
AID standard work area 27
AID work area 51, 79, 83
AIDSYS messages 58
alignment 53, 57
ALL 36, 53
alter program state 29
area qualification 11
Assembler instruction 17, 61, 139
Assembler procedure 133
assembly listing 17, 138
assign AID output file 81
assign PLAM library 113

B
base 27
base qualification 11, 28, 32, 37, 44, 55, 61, 68,

70, 83, 90, 104, 106, 113, 119
BKPT macro 29, 116
brief description of %HELP command 58
BS2000 catalog name of a PLAM library 114
byte boundary, search at 57
byte offset 38, 46, 56, 62, 70, 106

C
call of a predefined macro 17
CALL statement 89
calling a predefined macro 139
cataloging the output file 81
CCS 21, 22
chaining of subcommands 60

char-variables
ouput character set 42

character literal 53, 54, 115
character set

data 42
ouput of char variables 42
ouput of data 42
output 42

character sets
data output 42

CHECK 21
checking the storage types 103
close AID output file 81
close PLAM library 113
closing a dump file 51
command mode 112
command sequence 33, 76
compl-memref 38, 46, 62
complex memory reference 11
condition code 45
constant 13
continuation address, %FIND 53
continue 116
continue program 29
control 29, 60
control of the output file 78, 115
control-area 30, 31
creating an AID output file 81
criterion 30, 31, 116
CSECT 41, 72
CSECT list 45
current call hierarchy 41
current interrupt point 31, 79, 112, 117, 118
current program unit 31, 41

D
data

character set 42
data field 13, 41, 67, 104
data name 11
data output 41, 78
data types 92
dataname 13, 45, 56, 69, 91, 105
declare global settings 21

Index

U6199-J-Z125-5-76 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

0
80

0_
A

ID
_A

S
S

E
M

B
H

\e
n\

ai
d

as
sh

e.
si

x

define page header for SYSLST 115
definition in the source program 43
delete %CONTROLn 85
delete all events of a group 86
delete event 86
delete test declarations 85
delete test-point 64
delete, test-point 86
DELIM 21
delimiter of AID output fields 21
display lengths 41
display memory contents 41
doubleword boundary, search at 57
dump area 89
dump file, close 51
dump file, open 51
dynamic loading of LSD records 113

E
error message 58
event 74, 75
event table 75
execution condition 63, 76
execution control 33, 76, 88, 112, 116
execution counter 33, 41, 45, 63, 67, 70, 76, 88,

104, 106

F
F6 81
feed to SYSLST 41
feed-control 48
file 51, 81, 82
file output 92
filename 114
find-area 53, 55

G
global declaration, define 83

H
halfword boundary, search at 57
hardcopy output 92
help texts 58
help texts, output 58

hexadecimal literal 53, 54
hit address 53
hold the program 112

I
In message number 59
indirect addressing 38, 46, 56, 62, 70, 106
individual command 51, 58, 83
info-target 58
information on error messages 58
information on the operation of AID 58
input file 51
instruction, disassembled 35
interpretation of the hyphen 21
interrupt flag register 45
interrupt mask register 45
interrupt status register 45
interrupting the program 64
interrupting the program run 112
INVALID OPCODE. 35

K
K2 key 112
keyword 11, 45, 70, 74, 106

L
L'name' 38, 45, 56, 62, 69, 105
length 36
length function 47, 71, 107
length modification 38, 46, 56, 62, 70, 106
length selector 47, 71, 107
LEV 21
level number 12
LIFO principle 60, 74
line feed 48
link 81
link name F6 72
link name, assign 51, 81
link#l 51
list of CSECTs 45
literal, find 53
LMS UPDR record 72
localization information, symbolic 45
LOW 21

Index

146 U6199-J-Z125-5-76

lowercase/uppercase 21
LSD records 13, 89, 113
LSD records, dynamic loading 113

M
machine code level 41, 43, 67, 103
matching numeric values 103
medium-a-quantity 41, 58, 78, 89
memory area 55
memory contents, modify 103
memory contents, modifying 67
memory references 11
message number, IDA0n 58
metasyntax 19
modifying memory contents 67, 103
monitor program addresses 60
monitoring function 30, 31
monitoring statements 30

N
name 14
NESTLEV qualification 12, 45, 69, 91, 105
number 36, 116
number of lines per print page 115
numeric receiver 103
numeric transfer 103

O
object structure list 72
open AID output file 81
open PLAM library 113
output

character set 42
output %DISASSEMBLE log 38
output %TRACE listing 120
output commands, %DISASSEMBLE 35, 78
output commands, %DISPLAY 41, 78
output commands, %HELP 78
output commands, %SDUMP 78
output commands, %TRACE 78, 116
output current call hierarchy 89
output data areas 89
output file, assign 81
output file, catalog 82

output file, close 81
output file, open 81, 82
output literal 53
output medium 35, 41, 48, 58, 59, 78, 91, 117
output of hits 53
output of hits, %FIND 53
output type 43, 46
output-quantity 35, 36
output, file 48, 80
output, hardcopy 48, 80
output, terminal 48, 80
OV 21
overlay 21

P
P1 audit table 45
page counter for SYSLST 115
page feed 48
page-header 115
period 32, 37, 44, 55, 61, 68, 83, 90, 104, 114,

119
permissible combinations for %SET 110
PLAM library 10, 89
PLAM library, assign 113
PLAM library, close 113
PLAM library, open 113
predefined macros 137
prequalification 32, 37, 44, 55, 61, 68, 83, 90,

104, 114, 119
prequalification, define 83
process control block 45
PROG qualification 11, 32, 37, 44, 56, 61, 68, 83,

91, 105, 119
program

area to be monitored 117
program area to be monitored 31, 118
program counter 45, 70, 106
program error 74
program mask 45
program name, output 91
program register 45
program state, alter 88
program status, alter 112
program termination 74

Index

U6199-J-Z125-5-76 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

13
.1

0
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

0
80

0_
A

ID
_A

S
S

E
M

B
H

\e
n\

ai
d

as
sh

e.
si

x

program termination, abnormal 74
program termination, normal 74
program unit, current 27
program, continue 29, 76, 88, 116
program, start 29, 88, 116
programs with overlay structure 21

Q
qualification-a-lib 113

R
Readme file 7
receiver 67, 103, 104
register 41, 67, 104, 106
REP 21, 67, 72
REP file 72
REP record 72
retranslate memory contents 35
runtime control 63
runtime system 112

S
S'stmt-no' 32, 38, 45, 56, 62, 69, 105, 119
search string 53
search string length 53
search-criterion#l 53
sender 67, 103, 104
source reference 11, 67, 104
start 37
start %TRACE 116
start program 29
statement 41
statement name 11, 17, 67, 104, 139
statement number 139
STOP message 112
storage type 43, 46, 90
storage types, checking 67
structured Assembler programs 139
subcmd 30, 60, 74, 76
subcommand 29, 33, 54, 63, 74, 76, 83, 88, 112,

116, 139
subcommand chaining 63, 76
subcommand condition 33
subcommand name 33, 76

subcommand nesting 63, 76
subprogram nesting 89
supervisor call (SVC) 74
SYMCHARS 21
SYSLST 48, 80, 92, 115
SYSOUT 53
system information 41
system table 45

T
target 85
target-cmd 78
terminal output 92
terminate %TRACE 116
test-point 60
trace-area 116, 117
tracing 88, 116
tracing, continue 29
transfer while retaining values 103
type modification 38, 41, 46, 56, 62, 70, 106

U
update dialog 21, 67
uppercase/lowercase 21

W
wildcard symbol 54
word boundary, search at 57

Index

148 U6199-J-Z125-5-76

	Contents
	Preface
	Objectives and target groups of the AID documentation
	Structure of the AID documentation
	Changes since the last edition of this manual
	Notational conventions

	Prerequisites for symbolic debugging
	Assembly
	Linking, loading and starting

	ASSEMBH-specific addressing
	Metasyntax
	AID commands
	%AID
	%BASE
	%CONTINUE
	%CONTROLn
	%DISASSEMBLE
	%DISPLAY
	%DUMPFILE
	%FIND
	%HELP
	%INSERT
	%MOVE
	%ON
	%OUT
	%OUTFILE
	%QUALIFY
	%REMOVE
	%RESUME
	%SDUMP
	%SET
	%STOP
	%SYMLIB
	%TITLE
	%TRACE

	Sample application
	Assembler program
	Test run

	Glossary
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

