
Edition November 2015

©
 S

ie
m

e
ns

 N
ix

d
or

f I
nf

or
m

at
io

n
ss

ys
te

m
e

 A
G

 1
99

5

P
fa

d:
 P

:\F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
3

4B
\D

o
cs

\1
4

04
6

03
_A

ID
_P

o
si

x\
en

\a
id

p
os

_e
.v

or

English

AID V3.4B
Debugging under POSIX

FUJITSU Software BS2000

Supplement

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2015 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

U25054-J-Z125-2-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. N
ov

em
be

r
20

15
 S

ta
nd

 0
8:

56
.5

2
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

34
B

\D
oc

s\
1

40
46

0
3_

A
ID

_P
os

ix
\e

n\
ai

dp
o

s_
e.

iv
z

Contents

1 Preface . 5

1.1 Structure of the AID documentation . 5

1.2 Summary of contents . 6

1.3 Changes since the last edition of this manual . 8

1.4 Notational conventions . 8

2 Notational conventions . 9

3 Prerequisites for debugging . 11

3.1 Compiling, linking and loading in BS2000 . 12

3.2 Compiling, linking and loading under POSIX . 14

3.3 Dynamic loading of the LSD . 15

4 Enhanced AID commands . 17

4.1 %AID . 17

4.2 %SHOW . 20

4.3 %STOP . 21

Contents

 U25054-J-Z125-2-76

5 The POSIX debug command . 23

6 Special debugging aspects . 27

6.1 Inheriting the debugging context . 27

6.2 Debugging strategies . 27

6.3 Inputs/Outputs . 29
6.3.1 Possible inputs . 29
6.3.2 Associating I/O with tasks . 31
6.3.3 Erratic behavior . 31

6.4 Dump processing . 32

6.5 Application example . 32
6.5.1 Source files . 33
6.5.2 Debugging run . 34

Glossary . 39

Related publications . 41

Index . 43

U25054-J-Z125-2-76 5

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
N

o
ve

m
be

r
20

15

S
ta

nd
 0

8:
56

.2
9

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

1
40

4
60

3_
A

ID
_

P
os

ix
\e

n
\a

id
po

s_
e.

k0
1

1 Preface

The interactive debugger AID can be used to test not only pure BS2000 programs, but also
mixed-mode programs. Pure POSIX programs are executed entirely in the POSIX shell.
Mixed-mode programs, by contrast, are BS2000 programs that use POSIX interfaces.
AID can be used to debug pure BS2000 programs.

1.1 Structure of the AID documentation

The AID documentation consists of an AID Core Manual, the language-specific manuals for
symbolic debugging, and the manual for debugging on machine code level. For experi-
enced AID users, there is also a Ready Reference (see page 42), which shows the syntax
of all commands and operands together with brief explanatory notes. It also includes the
%SET tables and a comparison of AID and IDA. The manual for debugging on machine
code level can either be used as a substitute for or as a supplement to any of the language-
specific manuals (see page 41).

AID Core Manual

The core manual provides an overview of AID and deals with the topics and operands that
are common to all programming languages. The AID overview describes the BS2000
environment, explains basic concepts and presents the AID command set. The other
chapters discuss preparations for testing; command input; the operands subcmd, compl-
memref and medium-a-quantity; AID literals and keywords. The manual also includes
messages, the BS2000 commands that are invalid in command sequences, and a
comparison of AID and IDA.

AID User Guides

The User Guides deal with the commands in alphabetical order and describe all simple
memory references. Apart from the manual,
AID - Debugging of C and C++ programs,
the available User Guides are:

Summary of contents Preface

6 U25054-J-Z125-2-76

AID - Debugging of COBOL Programs
AID - Debugging of FORTRAN Programs
AID - Debugging of PL/I Programs
AID - Debugging of ASSEMBH Programs
AID - Debugging on Machine Code Level

In the language-specific manuals, the description of operands has been customized to each
respective programming language. It is assumed that the user is familiar with the scope of
the language involved and the operation of the relevant compiler.

The manual for debugging on machine code level can be used for programs for which no
LSD records exist or for which the information obtained from symbolic debugging is not
sufficient for error diagnostics. Debugging on machine code level means that you can issue
AID commands regardless of the language in which the program was written.

1.2 Summary of contents

This supplement describes the use of the advanced interactive debugger AID under
POSIX. It provides, together with the core manual and the manual “Debugging of C/C++
Programs”, all the information that you will need to debug any C or C++ program in the
POSIX environment. Each section in this supplement begins with a list of the manuals and
the sections that are affected by the changes described therein.

Following the preface, this supplement contains the sections listed below:

Metasyntax
Contains a list of notational conventions used in this manual.

Prerequisites for debugging
Describes the operands that are needed when compiling, linking and loading in order
to pass the LSD to the loaded program and the operands and options that enable the
program to be executed under POSIX.

Extended AID commands
Describes the extensions to the AID commands %AID, %SHOW and %STOP.

The POSIX debug command
Describes how programs that are loaded and started in the POSIX shell can be
debugged.

Special debugging aspects
This section contains basic information on inheriting the debugging context and on
processing dumps together with some notes on specific strategies that are effective
when debugging fork tasks and programs loaded with exec() calls. It also includes an
application example.

Preface Summary of contents

U25054-J-Z125-2-76 7

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
N

o
ve

m
be

r
20

15

S
ta

nd
 0

8:
56

.2
9

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

1
40

4
60

3_
A

ID
_

P
os

ix
\e

n
\a

id
po

s_
e.

k0
1

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Changes since the last edition of this manual Preface

8 U25054-J-Z125-2-76

1.3 Changes since the last edition of this manual

The Readme files for AID V3.0 and AID V3.4A have been incorporated in the manual:

● Information on debugging COBOL programs under POSIX.

1.4 Notational conventions

italics Within the text, operands are shown in italic lowercase.

i This symbol marks points in the text to which particular attention should be paid.

U25054-J-Z125-2-76 9

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
N

o
ve

m
be

r
20

15

S
ta

nd
 0

8:
56

.2
8

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

1
40

4
60

3_
A

ID
_

P
os

ix
\e

n
\a

id
po

s_
e.

k0
2

2 Notational conventions

The following notational conventions are used in this manual to represent commands. The
individual symbols and their meanings are listed below.

UPPERCASE
String that must be accepted exactly as shown when selecting a function.

boldprint
Lowercase letters and special characters to be entered exactly as shown. Boldprint
is also used to indicate user inputs in examples.

lowercase letters
String that identifies a variable, which must be replaced by one of the permitted
operand values.

⎧ alternative ⎫
⎨ ... ⎬
⎩ alternative ⎭

{alternative 3 ... 3 alternative}

A list of alternatives, from which one must be selected. The above two formats are
equivalent.

[optional]

Entries enclosed within square brackets are optional and may be dropped.
In the case of AID command names, the part shown in square brackets may only
be dropped in its entirety; other abbreviations will result in a syntax error.

[...] Indicates that an optional syntax unit may be repeated. In cases where each
repetition must be preceded by a delimiter (such as a comma), the appropriate
delimiter is shown before the ellipses.

{...} Indicates that a syntax unit, which must be specified once, may be repeated. In cases
where each repetition must be preceded by a delimiter (such as a comma), the
appropriate delimiter is shown before the ellipses.

Underlining
The default values used by AID in cases where no values are specified for operands
are shown underlined.

Notational conventions

10 U25054-J-Z125-2-76

Notational conventions used in explanatory text

Italics In the body of the text, operands are shown in lowercase italics.

i This symbol is used to mark text locations with important information that
must be carefully observed.

U25054-J-Z125-2-76 11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
N

o
ve

m
be

r
20

15

S
ta

nd
 0

8:
56

.2
9

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

1
40

4
60

3_
A

ID
_

P
os

ix
\e

n
\a

id
po

s_
e.

k0
3

3 Prerequisites for debugging

Supplements the chapter of the same name in the manual
“AID - Debugging of C/C++ Programs“ (see page 41).

For symbolic debugging, AID requires a "List for Symbolic Debugging" (LSD) which
contains the symbolic names defined in a program. This LSD information is generated by
the compiler and can be taken over at the time of linkage and also be loaded.
The control statements required for the C/C++ compiler to generate the LSD on BS2000
and POSIX levels are described in the first two sections of this chapter. General information
on LSD records, linking, loading, and starting can be found in the chapter on “Prerequisites
for debugging with AID” in the AID Core Manual.
The sections that follow also list the operands that must be specified when compiling,
linking and loading in order to generate and execute a POSIX- capable program.

If the program was loaded without the LSD, AID allows you to load the LSD dynamically if
required. As a prerequisite, the LSD and the associated program must be placed in a PLAM
library. This may have been done directly by the compiler at compilation. If not, you may
also copy the entire program with the LSD from the POSIX file system to a PLAM library by
using the POSIX command bs2cp. A description of how the LSD can be loaded dynami-
cally with the AID command %SYMLIB and a brief explanation of the bs2cp command can
be found in the last section of this chapter.

Information on debugging COBOL programs under POSIX

AID enables you to debug a COBOL Program compiled in the POSIX environment using
the POSIX COBOL command in exactly the same way as described for C/C++ Programs in
the "Debugging under POSIX" supplement.

You cannot use the %TRACE 1 command specified in the section "Commands at the start of
a debugging session" of the manual "Debugging COBOL Programs" to position the
program to the first executable statement of the main program after loading it in the POSIX
environment. The following command sequence must be used instead

%INSERT 'prog-id'; %RESUME

 For 'prog-id', enter the name of the main program.

Compiling, linking and loading in BS2000 Prerequisites for debugging

12 U25054-J-Z125-2-76

3.1 Compiling, linking and loading in BS2000

Compiling

The generation of LSD information can be controlled with the START command for the
C/C++ compiler by means of the following option:

//MODIFY-TEST-PROPERTIES TEST-SUPPORT = {*NO | *YES}

NO No LSD information is generated by the compiler with the default setting NO.
It is possible to retrace the call hierarchy (%SDUMP %NEST) even without this LSD
information, but only on machine code level.

YES The compiler generates LSD information.

LSD information can be generated only for unoptimized programs. If optimization has been
turned on in any case (cf. MODIFY-OPTIMIZATION-PROPERTIES statement), the
compiler will reset the optimization level to LOW and issue a corresponding message.
The generation of LSD information also has an effect on inlining in C++ programs, i.e. inline
functions are generated as “outline” functions.

The following two options must be specified to enable the use of POSIX interfaces by the
program:

– The _OSD_POSIX define must be set before the first #include statement in the pro-
gram. The easiest way to achieve this is to specify the following option at
compilation.
//MODIFY-SOURCE-PROPERTIES DEFINE=_OSD_POSIX

– To enable the search for standard headers, the library containing the standard include
elements for POSIX functions, i.e. SYSLIB.POSIX-HEADER , must be specified at com-
pilation in addition to the CRTE library SYSLNK.CRTE. This can be done by using the
option:
//MODIFY-INCLUDE-LIBRARIES STD-INCLUDE-LIBRARY=
(*STANDARD-LIBRARY,$.SYSLIB.POSIX-HEADER)

If parameters for the main function are to be read by the program (as is usual in UNIX), the
following option must be set at compilation:

//MODIFY-RUNTIME-PROPERTIES PARAMETER-PROMPTING=*YES

This causes the program to halt immediately after it is started and to wait for the input of
parameters for the main function or for redirections of stdin/stdout or stderr. If the
program was started in the POSIX shell, entering this option will have no effect, since
parameters and redirections are specified directly on the command line as in UNIX.

Prerequisites for debugging Compiling, linking and loading in BS2000

U25054-J-Z125-2-76 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
N

o
ve

m
be

r
20

15

S
ta

nd
 0

8:
56

.2
9

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

1
40

4
60

3_
A

ID
_

P
os

ix
\e

n
\a

id
po

s_
e.

k0
3

A detailed description of the operands that control compilation can be found in the C and
C++ User Guide (see page 42).

Linking, loading and starting

Compiled programs can be linked, loaded and started by using the SDF commands which
apply to all languages that are described in the chapter on “Prerequisites for debugging with
AID” in the AID Core Manual. The same manual also describes the respective parameters
that instruct the compiler to pass the LSD information which it generates to the linkage
editor (BINDER), the dynamic binder loader DBL or the static starter (ELDE) so that you
can perform symbolic debugging.

If you wish to use the POSIX functions of the C runtime system, you must specify the
“linkage option” library SYSLNK.CRTE.POSIX at link time. The module contained in it must
be given precedence over the modules of other CRTE libraries to be linked. The library
SYSLNK.CRTE.POSIX must therefore be assigned a lower link name BLSLIBnn than any
other CRTE libraries that follow if it is to be used for dynamic linkage with DBL.

Example

FILE $.SYSLNK.CRTE.POSIX,LINK=BLSLIB00
FILE $.SYSLNK.CRTE.PARTIAL-BIND,LINK=BLSLIB01
LOAD-PROGRAM ...

If you are using BINDER for static linkage and link the SYSLNK.CRTE.POSIX library by
means of an INCLUDE-MODULES or INCLUDE statement, the module from the “linkage
option” library is guaranteed to be linked before the modules of the runtime system.

– BINDER statement:

INCLUDE-MODULES LIB=$.SYSLNK.CRTE.POSIX,ELEM=*ALL.

More information on the common runtime environment CRTE can be found in the manual
“CRTE - Common RunTime Environment” (see page 42).

Compiling, linking and loading under POSIX Prerequisites for debugging

14 U25054-J-Z125-2-76

3.2 Compiling, linking and loading under POSIX

Compiling and linking

The following POSIX commands are available in the POSIX shell for compiling and linking
C/C++ programs:

cc-Xt Invokes the compiler in Kernighan-Ritchie mode

c89 Invokes the compiler in ANSI/ISO mode

CC Invokes the compiler in C++ mode

The C/C++ compiler generates LSD information if you specify the -g option:

If -g is not specified, you will not be able to debug the program symbolically. However, it
may still be debugged on machine code level.

If the -O or -F option has been set to turn on optimization, the generated program can be
debugged only to a restricted extent, i.e.:

– Breakpoints can be set only at function entry points.

– It is only at these breakpoints that function parameters and global data can be definitely
displayed.

A detailed description of the commands cc, c89 and CC can be found in the manual “POSIX
Commands of the C and C++ Compilers” (see page 42).

Loading and starting

The POSIX command debug, which is described in detail in chapter 5, can be used to load
the program together with the associated LSD information. When loading has completed,
AID issues the message AID0348, from which you can obtain the process ID (pid) of the
generated process, and the debugging mode prompt. You may then enter AID commands
for debugging and start the program with %RESUME.

If you load and start the program in the POSIX shell directly, i.e. without using the debug
command, the program will be unloaded if it aborts with an error. In contrast to the BS2000
level, you will then have no chance to immediately examine the error environment and the
cause of the error and to potentially recover from the error and continue with the program.

Prerequisites for debugging LSD:dynamic loading

U25054-J-Z125-2-76 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
N

o
ve

m
be

r
20

15

S
ta

nd
 0

8:
56

.2
9

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

1
40

4
60

3_
A

ID
_

P
os

ix
\e

n
\a

id
po

s_
e.

k0
3

3.3 Dynamic loading of the LSD

Programs which are already in productive use are usually loaded without the LSD. This is
also advisable for large programs in which only a few individual modules are to be
debugged symbolically. In such cases, AID can access the associated LSD dynamically at
a later stage if the module was stored together with the LSD in a PLAM library. To enable
this, you must specify the PLAM library containing the program with the LSD information in
the %SYMLIB command. This PLAM library will be subsequently opened by AID to search
for the required information whenever you address a symbolic memory reference in an AID
command. The same approach can also be used if the program is running in the POSIX
shell. Since %SYMLIB does not support access to UFS files, the program with the LSD
must be stored in a BS2000 PLAM library in this case as well. If the program was compiled
in the POSIX shell, you will need to copy the generated object to BS2000 with the POSIX
command bs2cp and store it there as a type-L member in a PLAM library.

The LSD cannot be loaded together with programs that are loaded with exec(). The
procedure described above must therefore always be used here to enable symbolic
debugging.

A detailed description of the AID command %SYMLIB can be found in the manual
“AID - Debugging of C/C++ Programs” (see page 41).

Brief description of bs2cp

bs2cp copies files from the POSIX file system to BS2000 and vice versa. Such BS2000
files may be DMS files or members of BS2000 PLAM libraries. A detailed description of
bs2cp can be found in the manual “POSIX Commands“ (see page 42).

Syntax- -

bs2cp[-k][-h][-f] [bs2:]file [bs2:]filecopy

- -

-k The file contents are converted on copying:

– from ASCII to EBCDIC if file is a file from the POSIX file system.

– from EBCDIC to ASCII if file is a BS2000 file.

This option is required only when copying files from UNIX systems. Programs that
are compiled in the POSIX shell are saved by the compiler in EBCDIC.

-h Shows the command syntax with an explanation of the options.

-f If a file or library member named filecopy already exists in BS2000, it is overwritten
without confirmation.

LSD:dynamic loading Prerequisites for debugging

16 U25054-J-Z125-2-76

bs2: Indicates that the following file or filecopy is a BS2000 file.

A DMS file is addressed by name.

A library member is identified as follows:
'lib(elem[,type[,vers]])'

lib Name of the PLAM library in BS2000

elem Name of the library member

type Type of member. The default value is S.

vers Version of the member. The default value is *HIGH.

file Name of the file to be copied.

filecopy

Filename of the copy

Only one of the files (file or filecopy) must be a BS2000 file.

Example

$bs2cp prog1 bs2:'test.lib(prog1,l)'
$debug sym_test prog1
% AID0348 Program stopped due to EXEC event (PID=0000000224)
%0000000224/...
...
%0000000224/%resume
% AID0348 Program stopped due to EXEC event (PID=0000000224)
%0000000224/%symlib test.lib
...

The object module prog1 is copied from the POSIX file system to BS2000 and entered
there as an LLM named PROG1 in the library TEST.LIB. The POSIX debug command loads
the program sym_test, which in turn includes an exec() call to load the program prog1.
Following the successful exec(), the library containing the LSD for prog1 is reported with
%SYMLIB, which means that prog1 can now also be debugged symbolically.

U25054-J-Z125-2-76 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
N

o
ve

m
be

r
20

15

S
ta

nd
 0

8:
56

.2
9

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

1
40

4
60

3_
A

ID
_

P
os

ix
\e

n
\a

id
po

s_
e.

k0
4

4 Enhanced AID commands

4.1 %AID

Supplements the “Administration functions” section in the Core Manual and the “AID
commands” chapters in the language-specific manuals, the manual for debugging on
machine code level, and the Ready Reference (see page 41).

The LOW operand in the %AID command can now assume the additional value ALL, which
prevents lowercase letters from being converted to uppercase even in the S qualification
Two new operands, which enable the debugging of fork tasks and programs loaded by
exec(), were introduced.

– LOW defines whether or not lowercase letters of AID from character literals and names
are to be converted into uppercase.

– FORK defines whether a task generated by fork() is to be interrupted immediately
after its creation and placed in debugging mode.

– EXEC defines whether debugging mode is activated after loading with exec().

DDD
 Command Operand
DDD
 ⎧ LOW [= {ON | OFF | ALL}] ⎫
 o o
 %AID ⎨ FORK [= {OFF| NEXT| ALL}] ⎬
 o o
 ⎩ EXEC [= {OFF| ON}] ⎭
DDD

The following applies with respect to the scope and validity period of declarations made
with %AID:

– Settings made with %AID remain valid in the LOGON task until they are modified by a
new %AID command or until /LOGOFF.

– All settings that were made with %AID in the parent task are reset in the fork task The
only exception is FORK=ALL.

– exec() calls do not affect declarations made with %AID.

%AID Enhanced AID commands

18 U25054-J-Z125-2-76

– In the POSIX shell, all declarations made with %AID except for FORK=ALL are reset
after loading with debug progname (see page 23). If FORK=ALL was set in the LOGON
task, it will remain in effect. EXEC=ON is set (i.e. turned on) whenever a program is
loaded with debug progname.

%AID may be entered only as a single command; it must not appear in a command
sequence or a subcommand.

ON Lowercase letters in character literals and in program, data, and statement names
are not converted into uppercase. If you are debugging C/C++ programs, you
should enter %AID LOW at the start of each debugging session. It is only then that
a distinction between uppercase and lowercase can be made by AID in C/C++. AID
does not distinguish between uppercase and lowercase only for the S qualification.
Entries in the S qualification are always converted into uppercase letters.

OFF All lowercase letters from user inputs are converted to uppercase.

ALL In addition to all inputs that are affected by the LOW=ON setting, LOW=ALL causes
even the lowercase/uppercase notation in an S qualification to be retained. This
setting is needed if the program to be debugged was compiled in the POSIX shell
and if the source file associated with it includes lowercase letters in its name.

i Note that the preset and default values for the LOW operand do not match. If no
LOW operand has been specified in a debugging session as yet, the preset value

is OFF. However, if the LOW operand is entered without a value, the default value is ON. If
you want to reactivate the conversion to uppercase letters, you will have to enter the
complete command %AID LOW=OFF.

OFF Fork tasks are not interrupted after being created and are not placed in debugging
mode. This is the default value. If %AID FORK has not yet been set for a task, the
%SHOW %AID command will indicate the value NOT_USED for FORK.

NEXT All fork tasks of the first generation are interrupted immediately after they are
created and automatically placed in debugging mode. Note, however, that
FORK=OFF is set in these tasks, which means that tasks of the second and higher
generations created by fork() cannot be debugged without additional measures.
In this case, you can place such a fork task of a higher generation in debugging
mode only by interrupting it from the POSIX shell with debug -p pid (see page 23)
or by sending a %STOP command to it with the appropriate TSN or pid (see
page 21) from another task of the same task family.

LOW

FORK

Enhanced AID commands %AID

U25054-J-Z125-2-76 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
N

o
ve

m
be

r
20

15

S
ta

nd
 0

8:
56

.2
9

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

1
40

4
60

3_
A

ID
_

P
os

ix
\e

n
\a

id
po

s_
e.

k0
4

ALL All fork tasks of any generation that originate from the current task are interrupted
after creation and placed in debugging mode. FORK=ALL is set in all such fork
tasks. This setting is the only declaration made with %AID that is inherited.

Changing this option will only affect tasks which are created after the change in direct
lineage from the task in which the option was set.

%AID FORK without a value is equivalent to %AID FORK=OFF (the default).

OFF Programs that are loaded with an exec() call are not interrupted after loading and
not placed in debugging mode.

ON The program is interrupted immediately after it is loaded with exec() and is placed
in debugging mode. All earlier settings made with %AID are retained.

%AID EXEC without a value is equivalent to %AID EXEC=OFF (the default).

EXEC

%SHOW Enhanced AID commands

20 U25054-J-Z125-2-76

4.2 %SHOW

Supplements the “AID commands” chapters in the language-specific manuals, the manual
for debugging on machine code level, and the Ready Reference (see page 41).

The new AID options were added to the output of the %SHOW %AID command.

This command can be used in command sequences and subcommands.

Example

$debug examp
% AID0348 Program stopped due to EXEC event (PID=0000000891)
%0000000891/%aid low=all
%0000000891/%show %aid
A I D V03.4B OF 2015-02-25
Copyright (C) 2015 Fujitsu Technology Solutions
All Rights Reserved

E=VM : %AINT = %MODE31

%AID CHECK = NO
%AID REP = NO
%AID SYMCHARS = STD
%AID OV = NO
%AID LOW = ALL
%AID DELIM = ’|’
%AID LANG = D
%AID FORK = NOT_USED
%AID EXEC = ON
%AID C = NO
%AID EBCDIC = EDF03IRV

After the program is loaded with debug, all conversions from lowercase to uppercase letters
are initially suppressed, even for entries in the S qualification. The currently applicable
settings for %AID are then requested with %SHOW %AID. The output of the %SHOW
command lists the preset values for all operand values of %AID, except for %AID LOW and
%AID EXEC. LOW was explicitly set to ALL, and EXEC is always turned on in the POSIX
shell on loading a program with debug. In the case of %AID FORK, the entry NOT_USED
corresponds to the OFF setting; NOT_USED merely indicates that the FORK option was
not yet set in this task.

Enhanced AID commands %STOP

U25054-J-Z125-2-76 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
N

o
ve

m
be

r
20

15

S
ta

nd
 0

8:
56

.2
9

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

1
40

4
60

3_
A

ID
_

P
os

ix
\e

n
\a

id
po

s_
e.

k0
4

4.3 %STOP

Supplements the “Administration functions” section in the Core Manual and the “AID
commands” chapters in the language-specific manuals, the manual for debugging on
machine code level, and the Ready Reference (see page 41).

The AID command %STOP was extended by adding two new operands: T=tsn (task
sequence number) and PID=pid (process identification), which can be used to interrupt a
task generated by fork(). AID reports the process ID (pid) of the interrupted task. You can
then control its subsequent execution by means of AID commands.

DDD
 Command Operand
DDD
 ⎧ T=tsn ⎫
 %STOP [⎨ ⎬]
 ⎩ PID=pid ⎭
DDD

If %STOP is entered in a command sequence or a subcommand, the commands that follow
will no longer be executed.

When a fork task is interrupted by a %STOP command, the interrupt point may not always
be in the user program; it could also lie in the routines of the runtime system. In order to
avoid having to address the functions and variables of the program with a full qualification
every time, it is advisable to first run the program with %TRACE 1 IN S=srcname until the
next executable statement.

tsn The fork task to be placed in debugging mode is addressed via its TSN (task
sequence number).

pid The fork task to be placed in debugging mode is addressed via its process ID.

T

PID

%STOP Enhanced AID commands

22 U25054-J-Z125-2-76

Example

The program exstop is a C program that contains a fork() call. When the fork task has
been created, the parent task is to be halted with a %STOP command:

$debug exstop
% AID0348 Program stopped due to EXEC event (PID=0000000876)
%0000000876/%aid fork=next
%0000000876/%aid low=all
%0000000876/...
%0000000876/%resume
% AID0348 Program stopped due to FORK event (PID=0000000877)
%0000000877/...
%0000000877/%stop pid=876
% AID0492 %STOP was sent to fork task (PID=0000000876)
%0000000877/
% AID0348 Program stopped due to STOP event (PID=0000000876)
%0000000876/%trace 1 in s=n'exstop.c'
%0000000877/
45 BLOCK END, LOOP END
STOPPED AT SRC_REF: 45, SOURCE: exstop.c , BLK: 39 , END OF TRACE
%0000000876/%display count
%0000000877/
*** TID: 003400D1 *** TSN: 0EUV **********************************
SRC_REF: 45 SOURCE: exstop.c BLK : 39 **************************
count = 933

After the program is loaded with the POSIX command debug, %AID FORK=NEXT is used to
specify that even the fork task created by exstop is to be run in debugging mode. In
addition, %AID LOW=ALL is set, since the name of the source file exstop.c in the S
qualification would be otherwise converted to uppercase letters.
The parent task runs under the pid 876, and the child task is assigned pid 877. The
command %STOP PID=876 is then used to interrupt the parent task. AID responds with
the prompt %0000000876/. The next %TRACE command causes the parent task to halt
before the next executable statement, which means that you can now address the variables
of the parent task without a qualification. However, since both tasks are now competing for
the terminal, you must respond to the prompt of the task that is not needed with
so that the task which you want to debug has a chance to access the terminal.

EM DÜ

EM DÜ

EM DÜ

EM DÜ

U25054-J-Z125-2-76 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
N

o
ve

m
be

r
20

15

S
ta

nd
 0

8:
56

.3
0

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

1
40

4
60

3_
A

ID
_

P
os

ix
\e

n
\a

id
po

s_
e.

k0
5

5 The POSIX debug command

Extension to the manual “AID - Debugging of C/C++ Programs“ (see page 41).

The debug command enables you to debug POSIX programs that were started in the
POSIX shell. You can use debug to load a program together with the LSD in the POSIX
shell or to interrupt a running process and place it in debugging mode.

The use of debug not allowed in POSIX sessions that were opened via rlogin for system
security reasons.

Syntax- -

 ⎧ [-e] progname[argument]... ⎫
debug ⎨ ⎬
 ⎩ -p pid ⎭

- -

debug [-e] progname [argument]...
The program progname is loaded into a task generated by the shell with fork() and
placed in debugging mode; AID responds with a prompt that is constructed from the
process ID (pid) of the task. You can then enter AID commands for debugging. The
-e option controls whether (without -e) or not (with -e) the LSD is to be loaded
for symbolic debugging. The command debug progname in the POSIX shell thus
corresponds to the BS2000 command LOAD-PROGRAM progname with the operand
TEST-OPTIONS=YES in the BS2000 environment if you do not specify -e. If you
specify -e it corresponds to the LOAD-PROGRAM command with TEST-OPTIONS=NO.

-e progname is loaded without the LSD.

progname
Name of the program to be debugged.

argument
Argument for progname.

The POSIX debug command

24 U25054-J-Z125-2-76

debug -p pid
The process with the specified pid is taken over by AID and interrupted if the
process designated by that pid belongs to the same task family as AID. Note that
the POSIX shell is the parent task for all processes started in the shell.
debug -p pid in the POSIX shell corresponds to the AID command %STOP
PID=pid (see page 21), which you can enter in BS2000 command mode or in
debugging mode.

-p The program was taken over via the associated pid.

pid Process ID of the task that is to be taken over by AID and interrupted.

Example

This example illustrates how a running program is taken over by AID:

$ ps -ef ¯¯ (1)
 UID PID PPID C STIME TTY TIME CMD
 D89239 890 824 0 10:22:38 term/003 0:01 [ps]
 D89239 888 824 0 10:22:27 term/003 0:00 [pexec]
 D89239 889 888 0 10:22:28 term/003 0:00 [pexec]
 D89239 830 1 0 09:35:13 term/004 0:04 [sh]
 D89239 824 1 0 09:31:22 term/003 0:06 [sh]
$ debug -p 888
% AID0492 %STOP was sent to fork task (PID=0000000888).
% AID0348 Program stopped due to STOP event (PID=0000000888)
%0000000888/%stop pid=889 ¯¯¯ (2)
% AID0492 %STOP was sent to fork task (PID=0000000889).
%0000000888/%aid low=all ¯¯ (3)
%0000000888/%symlib test.lib
% AID0348 Program stopped due to STOP event (PID=0000000889)
%0000000889/
%0000000888/%trace 1 in s=n’pexec.c’
%0000000889/
%0000000889/
38 BLOCK END, LOOP END
STOPPED AT SRC_REF: 38, SOURCE: pexec.c , PROC: main , END OF TRACE
%0000000889/%aid low=all ¯¯ (4)
%0000000888/
%0000000889/%symlib test.lib
%0000000888/
%0000000889/%trace 1 in s=n’pexec.c’
%0000000888/
27 BLOCK END, LOOP END
STOPPED AT SRC_REF: 27, SOURCE: pexec.c , BLK: 17 , END OF TRACE
%0000000888/...

EM DÜ

EM DÜ

EM DÜ

EM DÜ

EM DÜ

EM DÜ

The POSIX debug command

U25054-J-Z125-2-76 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
N

o
ve

m
be

r
20

15

S
ta

nd
 0

8:
56

.3
0

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

1
40

4
60

3_
A

ID
_

P
os

ix
\e

n
\a

id
po

s_
e.

k0
5

(1) To begin with, a list of all running processes is requested with the POSIX command
ps -ef. You can use this list to obtain the PID of the process to be examined with
AID (888). This process is the parent task for the fork task with PID 889. The
command debug -p 888 interrupts the parent task and places it in debugging
mode.

(2) The child task is also interrupted. Both tasks subsequently report with their prompts.

(3) In the next step, the parent task is to be continued until the next statement following
the breakpoint. To enable AID to process the command %TRACE 1 IN S=srcname,
case sensitivity for the S qualifier must be turned on with %AID LOW=ALL, and the
PLAM library containing the LSD for the program pexec must be reported with
%SYMLIB.
Since the parent and child tasks are executing concurrently, it is advisable in
the interest of clarity to respond to the prompt of the other respective task with

 until the output of the %TRACE command is complete.

(4) The same procedure as described under point (3) is also performed for the child
task.

EM DÜ

U25054-J-Z125-2-76 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
N

o
ve

m
be

r
20

15

S
ta

nd
 0

8:
56

.3
0

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

1
40

4
60

3_
A

ID
_

P
os

ix
\e

n
\a

id
po

s_
e.

k0
6

6 Special debugging aspects

Supplements the manual “AID - Debugging of C/C++ Programs” (see page 41).

6.1 Inheriting the debugging context

The only setting that is inherited by a task created by fork() is %AID FORK=ALL,
assuming that this was set in the parent task. All other declarations such as:
– settings defined with %AID,
– the set breakpoints,
– events monitored with %ON,
– PLAM libraries reported with %SYMLIB, etc.,
are reset in the fork task.

Programs loaded with exec(), by contrast, inherit the settings and declarations made with
%AID and %SYMLIB, respectively, but all other declarations are also reset as in a fork task.

6.2 Debugging strategies

If you have only a BS2000 terminal or a corresponding emulation available for debugging
fork tasks, you may face a problem when debugging multiple fork tasks that are executed
concurrently, since these tasks will compete for the terminal.

This section contains some tips that will help you establish the best approach to guarantee
quick success when debugging fork tasks and programs loaded via an exec() call.

One suitable strategy is to first test every program section, i.e. the parent task, the task
created by fork(), and the programs loaded by exec() independently of one another and
as thoroughly as possible. This is even more advantageous for programs that are to be
loaded later via exec() calls. When the program is loaded by means of an exec() call, the
LSD cannot be loaded with it and must be explicitly assigned using %SYMLIB. However, if
you load the program with the POSIX command debug, the LSD information can also be
loaded with it.

Debugging strategies Special debugging aspects

28 U25054-J-Z125-2-76

The context of the call should be tested separately. It is only when all program segments
execute without errors and the call context has also been debugged that you should attempt
to test the entire program structure. This is best accomplished by adding fork() and
exec() calls in succession while the respective parent task is sleeping, a state that can be
easily achieved by temporarily inserting a sufficiently long loop or a suitable wait() call.

Every program segment should identify its outputs in the debugging phase so that they can
be correctly associated with their source. More details on the association of inputs/outputs
when debugging multiple fork tasks concurrently can be found in section 6.3.2.

In general, you should first debug the program in the the POSIX shell, since the various fork
tasks are executed here with the same priority, i.e. every fork task has an equal opportunity
to access the terminal in order to request inputs or display outputs. If the program is started
in the LOGON task, by contrast, the BS2000 command mode will have a higher priority than
the debugging mode of the fork tasks. This could result in the parent task blocking the
terminal and thus preventing the fork tasks from completing the required I/O at the terminal.

If you are debugging multiple fork tasks, it is generally useful to create a table in the format
below so that you can record the number of each respective fork task, the associated
process ID and TSN, the source references of the fork() call, and the location of the
current breakpoint::

Note that the program will also be halted in the runtime system immediately after a fork()
or exec(). You can access data, functions and source references from this breakpoint,
but only with full qualifications. Consequently, you can save yourself some typing by first
moving to the next executable statement of the user program by entering the command
%TRACE 1 IN S=srcname.

The K2 key cannot be used under POSIX. To interrupt a POSIX process, you must enter
the string “@@c”. The POSIX shell will then respond with its prompt, which is usually “$”.
A task in debugging mode can be interrupted with the BS2000 command EXIT-JOB or
LOGOFF. Another possibility is to enter the command CANCEL-JOB with the TSN of the
task to be halted. This must be done from some other task (see “BS000 - User
Commands(SDF Format)”).

Fork number pid TSN Source reference

Startup
source code
of the fork

Current
breakpoint

F1 929 0ND1 168

F11 930 0ND2 110 124, 128

...

Table 1: Overview of active fork tasks

Special debugging aspects Inputs/Outputs

U25054-J-Z125-2-76 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
N

o
ve

m
be

r
20

15

S
ta

nd
 0

8:
56

.3
0

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

1
40

4
60

3_
A

ID
_

P
os

ix
\e

n
\a

id
po

s_
e.

k0
6

6.3 Inputs/Outputs

When multiple fork tasks are debugged, the individual tasks compete for the terminal. The
outputs of the various fork tasks are initially placed in a queue and then processed in order.
Consequently, some of the rules that apply to inputs/outputs in debugging mode may
deviate from those used during “normal” debugging in the BS2000 command. The following
sections deal with the possible inputs in debugging mode, problems in associating I/O with
various tasks, and the possibility of erratic behavior.

6.3.1 Possible inputs

All AID commands and most of the BS2000 commands can be entered in debugging mode.
This includes all BS2000 commands that may also be specified in a command sequence
and in subcommands (see the “AID Core Manual”). No guided SDF dialog is possible.

Command sequences consisting of AID and BS2000 commands delimited by a semicolon
(;) may also be entered. This is likewise subject to the restrictions described in the section
“Command sequences and subcommands” in the AID Core Manual (see page 41). The
same restrictions also apply if only BS2000 commands are entered in debugging mode, i.e.
even for individual commands.
As in BS2000 command mode, you may enter only in debugging mode as well.
This “null” input is required in debugging mode to provide the desired task, which may be
one of many in a fork family, with an opportunity to respond at the terminal with its prompt.
You may, of course, have to enter several times, since the tasks respond at the
terminal in the order in which the associated I/O requests were placed on the queue.

Example

$ debug ex1fork DDD (1)
% AID0348 Program stopped due to EXEC event (PID=0000002893)
%0000002893/%on %svc(44) <%trace 1 %instr>
%0000002893/%aid fork=next
%0000002893/%resume DDD (2)
ICXSVCTU+D6AA SVC 44 2 FCT=POSIX IR1=01023A40
STOPPED AT V‘EC10AC‘ = ICXSVCTU + #‘D6AC‘ , END OF TRACE
%0000002893/%r
ICXSVCTU+71B2 SVC 44 1 FCT=POSIX IR1=01023A40
STOPPED AT V‘EBABB4‘ = ICXSVCTU + #‘71B4‘ , END OF TRACE
%0000002893/%r
ICXSVCTU+D2DA SVC 44 0 FCT=POSCONIN IR1=01023A00
 PAR=00E4B401 00000000 00000000
STOPPED AT V‘EC0CDC‘ = ICXSVCTU + #‘D2DC‘ , END OF TRACE
%0000002893/%r
ICXSVCTU+9B9A SVC 44 1 FCT=POSSPEND IR1=01023BC8

EM DÜ

EM DÜ

Inputs/Outputs Special debugging aspects

30 U25054-J-Z125-2-76

 PAR=00E36301 00000000 00000000
STOPPED AT V‘EBD59C‘ = ICXSVCTU + #‘9B9C‘ , END OF TRACE
%0000002893/%r
ICXSVCTU+93FA SVC 44 1 FCT=POSSPMSK IR1=01023BC8
 PAR=00E35F01 00000000 00000000
STOPPED AT V‘EBCDFC‘ = ICXSVCTU + #‘93FC‘ , END OF TRACE
%0000002893/%r
ICXSVCTU+318 SVC 44 1 FCT=POSFORK IR1=01023950
 PAR=00E30201 00000000 00000000
STOPPED AT V‘EB3D1A‘ = ICXSVCTU + #‘31A’ , END OF TRACE
%0000002893/ DD (3)
% AID0348 Program stopped due to FORK event (PID=0000002897)
%0000002893/
%0000002897/%show %base DDD (4)
%0000002893/
%BASE E=VM
TSN: 0J05 TID: 0091017D
%AINT = %MODE31
BS: V12.0 HW: CFCS V3
%0000002897/

(1) The program is first loaded with the POSIX command debug. The program
ex1fork contains a fork() call.
The AID command %ON then activates monitoring of the SVC with number 44. The
associated subcommand causes the SVC to be executed and the program to be
halted immediately thereafter.
The %AID FORK=NEXT command which you enter then activates debugging mode
for fork tasks of the first generation.

(2) The subsequent %RESUME commands execute the program up to the decisive
SVC with the number 44 (FCT=POSFORK). This SVC initiates the creation of the fork
task.

(3) You now respond to the prompt of the parent task with a null input ().
AID issues the message AID0348 and confirms that the fork task was created. You
then respond to the next prompt of the parent task with as well (to force
a change of task). This causes AID to issue the prompt of the fork task and wait for
command input.

(4) To enable information from the %SHOW %BASE command to be output at the
terminal, the prompt of the parent task must be answered again with a null input.

EM DÜ

EM DÜ

EM DÜ

EM DÜ

EM DÜ

Special debugging aspects Associating I/O with tasks

U25054-J-Z125-2-76 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
N

o
ve

m
be

r
20

15

S
ta

nd
 0

8:
56

.3
0

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

1
40

4
60

3_
A

ID
_

P
os

ix
\e

n
\a

id
po

s_
e.

k0
6

6.3.2 Associating I/O with tasks

As already indicated earlier, it is generally advantageous to debug only one task at a time
and to let the other tasks created by the program sleep until that task completes. On some
occasions, however, multiple tasks may execute concurrently and send output to the
terminal. The following applies in such cases:

– Only the inputs can be uniquely assigned, i.e. each input is always assigned to the task
identified by the prompt with which it was sent.

– In general, outputs cannot be associated with the originating task. The only exception
is the logs of the %TRACE command, which can be allocated on the basis of the source
references.
When multiple tasks attempt to send output to the terminal at the same time, the outputs
generally appear in an essentially random order. In other words, if you are waiting for
the output of a task, you should always send off the prompt of any other task with a null
input until the expected output has been fully received (see the example above).

– During the debugging phase, it is advisable to redirect the outputs of programs to a file
or to temporarily identify them with a preceding program code so that a unique associ-
ation is possible.

6.3.3 Erratic behavior

A fork task cannot perform I/O at the terminal in the following cases:

– No program is loaded in the LOGON task.

– The program loaded in the LOGON task is not the same as the one from which the fork
task was (directly or indirectly) created.

– The LOGON task was terminated.

This is also applicable to programs that were started in the POSIX shell.

In all the above cases, the fork task is aborted without a further error message on
attempting to read from or write to the terminal. This also applies if the I/O request has
already been entered in the queue.

The fork task is not aborted so long as the I/O is redirected to files.

Dump processing Special debugging aspects

32 U25054-J-Z125-2-76

6.4 Dump processing

Memory dumps of fork tasks and of programs that were loaded via an exec() call can be
processed as usual. Dumps are always stored in BS2000 even if the program that
generated the dump was started in the POSIX shell. If LSD information is to be loaded
dynamically by AID for a memory dump of a POSIX program via the AID command
%SYMLIB, you should bear in mind that %SYMLIB cannot access POSIX files.
The appropriate file must therefore be first copied to a PLAM library in BS2000 as a member
of type L by using the POSIX command bs2cp and then assigned with %SYMLIB (see also
section “Dynamic loading of the LSD” on page 15).
The %DUMPFILE command, which causes AID to open the dump file, and the %BASE
command, which instructs AID that the memory dump in that dump file is to be then
examined, are both explained in detail in the manual “Debugging of C/C++ Programs”.

In the POSIX shell, a user dump is always written for programs which are aborted due to
an error. The query “IDA0N45 Dump desired?”, which you should know from BS2000, is
suppressed in the POSIX shell, and the program is unloaded.
It is therefore advisable to trap program errors with %ON %ANY when debugging. AID will
then report the address of the breakpoint at which an error occurred as well as the event
that caused the error. The program remains loaded, so you can immediately examine the
error context. If the error can be recovered with AID commands, you can then continue the
program execution with %RESUME. Alternatively, if no continuation of the program is
possible, you can exit the task with EXIT-JOB or LOGOFF in order to analyze the program
error with other tests.

6.5 Application example

The programming example presented below illustrates a simple case in which fork() and
exec() are used. The runtime log reflects an actual test run and thus serves as a concrete
example for the debugging approach under POSIX.
The program exfork first generates a fork task. The parent task waits because of the
wait() call until the child task has completed. The child task is overlaid by another program
(facul) as a result of the execvp() call in line 21. The program name facul must be
passed as a parameter to the main function of exfork on loading the program. facul
calculates the factorial of an integer that is read and outputs the result on the screen.

For the sake of clarity, data and function names are represented in the explanatory text
below with a proportional font. User inputs in runtime logs are shown in boldprint.

Special debugging aspects Application example

U25054-J-Z125-2-76 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
N

o
ve

m
be

r
20

15

S
ta

nd
 0

8:
56

.3
0

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

1
40

4
60

3_
A

ID
_

P
os

ix
\e

n
\a

id
po

s_
e.

k0
6

6.5.1 Source files

exfork.c

 1 #include <stdio.h>
 2 main (int argc, char* argv[])
 3 {
 4 char* my_name = argv[0];
 5 char* prog = argv[1];
 6 int pid;
 7 if (argc < 2)
 8 {
 9 fprintf (stderr,
10 "usage: %s subprogram [options]\n", my_name);
11 exit(1);
12 }
13 pid = fork();
14 if (pid < 0)
15 {
16 fprintf (stderr, "fork failed\n");
17 exit(1);
18 }
19 if (pid == 0) /* child */
20 {
21 execvp (prog, &argv[1]);
22 fprintf (stderr, "execvp failed\n");
23 }
24 else /* parent */
25 {
26 wait ((int*) 0);
27 printf ("\n%s : %s has finished\n",
28 my_name, prog);
29 exit (0);
30 }
31 }

Application example Special debugging aspects

34 U25054-J-Z125-2-76

facul.c

 1 #include <stdio.h>
 2 int facul(int n)
 3 {
 4 return (n>1 ? n * facul(n-1) : 1);
 5 }
 6
 7 int main(void)
 8 {
 9 unsigned n;
10 printf("\nn? : ");
11 scanf("%d",&n);
12 if (n>16) return 0;
13 printf("%d! : %d\n",n,facul(n));
14 return 0;
15 }

6.5.2 Debugging run

Step 1

The programs exfork.c and facul.c are compiled with the C compiler in the POSIX
shell. The -g option causes the compiler to generate LSD information at compilation. Since
facul is to be loaded via execvp(), and since no LSD can be loaded by this method at
the same time, the program is copied to BS2000 with bs2cp. This is required in order to
enable the LSD to be assigned via %SYMLIB at a later stage in the debugging run.

tDDD?
3 $ c89 -g -o exfork exfork.c 3
3 % NMH1102 MESSAGE OUTPUT FILE ':1OST:$TSOS.SYSMES.BINDER.013', ACCESS= 3
3 ISAM, ACTION=ADD 3
3 $ c89 -g -o facul facul.c 3
3 % NMH1102 MESSAGE OUTPUT FILE ':1OST:$TSOS.SYSMES.BINDER.013', ACCESS= 3
3 ISAM, ACTION=ADD 3
3 $ bs2cp facul 'bs2:test.lib(facul,l)' 3
3 % NMH1102 MESSAGE OUTPUT FILE ':1OST:$TSOS.SYSMES.LMS.031', ACCESS=ISAM, 3
3 ACTION=ADD 3
gDDDu

Special debugging aspects Application example

U25054-J-Z125-2-76 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
N

o
ve

m
be

r
20

15

S
ta

nd
 0

8:
56

.3
0

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

1
40

4
60

3_
A

ID
_

P
os

ix
\e

n
\a

id
po

s_
e.

k0
6

Step 2

The program is loaded with the POSIX command debug and placed in debugging mode.
The name of the program that is to overlay the later fork task is passed as a parameter to
exfork. The parent task is assigned the process ID 5421. To ensure that AID stops the fork
task immediately after it is created, the appropriate switch is set with the %AID command.
The parent task is also to be halted before the end of the program, so the command
%INSERT S’28’ is used for this purpose. It is advisable to set this breakpoint now, since the
program will continue in the fork task after the fork(), while the parent task will be waiting
for the fork task to terminate due to the wait() call. You could, of course, regain control
over the parent task by entering a %STOP PID=pid. This would cause the parent task to
immediately respond with its prompt as soon as the child task has completed.
The final %RESUME command starts the program. The parent task is now executed up to
the wait() call, and the child task is halted immediately after it is created. AID issues a
corresponding message and the process ID of the child task.

tDDD?
3 $ debug exfork facul 3
3 % AID0348 Program stopped due to EXEC event (PID=0000005241) 3
3 %0000005241/%aid fork=next 3
3 %0000005241/%insert s'28' 3
3 %0000005241/%resume 3
3 % AID0348 Program stopped due to FORK event (PID=0000005242) 3
gDDDu

Step 3

The currently applicable settings are output in the child task via %SHOW %AID. All operand
values are reset; since %AID FORK=NEXT was set in the parent task, the FORK switch in
the child task is set to NOT_USED. %AID EXEC=ON is entered to enable debugging of the
facul program that is loaded with execvp(). %AID LOW=ALL is required to enable the
use of lowercase letters in the S qualification. An attempt is then made to output the variable
pid. However, pid cannot be addressed without a qualification in this case, since the
breakpoint is located immediately after fork() in the runtime CRTE, as verified with
DISPLAY %LOC(address). The following %TRACE command executes the program up to
the next statement of the child task. pid can be addressed here without a qualification. The
content of pid is 0 in the child task.
%RESUME starts the program again. The execvp() call is executed, and the facul
program that is loaded with it is halted and placed in debugging mode.

Application example Special debugging aspects

36 U25054-J-Z125-2-76

tDDD?
3 %0000005242/%show %aid 3
3 A I D V03.4B OF 2015-01-30 3
3 Copyright (C) 2015 Fujitsu Technology Solutions 3
3 All Rights Reserved 3
3 3
3 E=VM : %AINT = %MODE31 3
3 %AID CHECK = NO 3
3 %AID REP = NO 3
3 %AID SYMCHARS = STD 3
3 %AID OV = NO 3
3 %AID LOW = OFF 3
3 %AID DELIM = '|' 3
3 %AID LANG = D 3
3 %AID FORK = NOT_USED 3
3 %AID EXEC = OFF 3
3 %AID C = NO 3
3 %AID EBCDIC = EDF03IRV 3
3 %0000005242/%aid exec=on 3
3 %0000005242/%aid low=all 3
3 %0000005242/%display pid 3
3 *** TID: 006F01EE *** TSN: 1A4I **3
3 ABSOLUT: V‘00EB0D1A‘ SOURCE: ICXSVCTU PROC: ICXSVCTU *********************3
3 % AID0378 Symbolic information missing 3
3 %0000005242/%display %loc(%pc->) 3
3 CURRENT PC: 00EB0D1A CSECT: ICXSVCTU ***********************************3
3 V‘00EB0D1A‘ = CONTEXT:$CRTEC@@@02@0@@@ 3
3 LMOD : IC@RTSXS 3
3 OMOD : IC@RTSXS 3
3 CSECT : ICXSVCTU (00EB0A00) + 0000031A 3
3 %0000005242/%trace 1 in s=n'exfork.c' 3
3 14 ?? 3
3 STOPPED AT SRC_REF: 14, SOURCE: exfork.c , PROC: main , END OF TRACE 3
3 %0000005242/%display pid 3
3 SRC_REF: 14 SOURCE: exfork.c PROC: main ***********************************3
3 pid = 0 3
3 %0000005242/%resume 3
3 % AID0348 Program stopped due to EXEC event (PID=0000005242) 3
gDDDu

Step 4

Since the facul program was loaded with the execvp() call, the LSD must be explicitly
assigned via %SYMLIB. %TRACE 1 is then used to proceed to the start of the program
facul. The subcommand %INSERT S’4’ is intended to output the current value n in each
case and the call hierarchy of the associated recursion level. The program is then started
with %RESUME. facul runs up to the end of the program; the printf() call in line 13 of
facul outputs the correct result: the value of 4! is 24.
The breakpoint that was set at S’28’ in the parent task at the start of this example now
becomes active. In order to enable the output of the pid variable of the parent task, case
sensitivity must now also be turned on for the parent task. pid contains the process ID of
the child task, i.e. 5242, in the parent task. The closing %RESUME command causes the
last two statements of the parent task to be executed.

Special debugging aspects Application example

U25054-J-Z125-2-76 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

.
N

o
ve

m
be

r
20

15

S
ta

nd
 0

8:
56

.3
0

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

1
40

4
60

3_
A

ID
_

P
os

ix
\e

n
\a

id
po

s_
e.

k0
6

tDDD?
3 %0000005242/%symlib test.lib 3
3 %0000005242/%trace 1 in s=n'facul.c' 3
3 10 EXT.PROC START , BLOCK START, CALL 3
3 STOPPED AT SRC_REF: 10, SOURCE: facul.c , PROC: main , END OF TRACE 3
3 %0000005242/%insert s’4’ <%display n;%sdump %nest> 3
3 %0000005242/%resume 3
3 n? : 4 3
3 *** TID: 006F01EE *** TSN: 1A4I **3
3 SRC_REF: 4 SOURCE: facul.c PROC: facul ***********************************3
3 n = 4 3
3 SRC_REF: 4 SOURCE: facul.c PROC: facul ***********************************3
3 SRC_REF: 13 SOURCE: facul.c PROC: main ***********************************3
3 ABSOLUT: V‘E60432‘ SOURCE: ICS$MAI@ PROC: _main ***********************3
3 ABSOLUT: V‘1002234‘ SOURCE: IC@MAIN@ PROC: IC@MAIN@ ********************3
3 3
3 n = 3 3
3 SRC_REF: 4 SOURCE: facul.c PROC: facul ***********************************3
3 SRC_REF: 4 SOURCE: facul.c PROC: facul ***********************************3
3 SRC_REF: 13 SOURCE: facul.c PROC: main ***********************************3
3 ABSOLUT: V‘E60432‘ SOURCE: ICS$MAI@ PROC: _main ***********************3
3 ABSOLUT: V‘1002234‘ SOURCE: IC@MAIN@ PROC: IC@MAIN@ ********************3
3 3
3 n = 2 3
3 SRC_REF: 4 SOURCE: facul.c PROC: facul ***********************************3
3 SRC_REF: 4 SOURCE: facul.c PROC: facul ***********************************3
3 SRC_REF: 4 SOURCE: facul.c PROC: facul ***********************************3
3 SRC_REF: 13 SOURCE: facul.c PROC: main ***********************************3
3 ABSOLUT: V‘E60432‘ SOURCE: ICS$MAI@ PROC: _main ***********************3
3 ABSOLUT: V‘1002234‘ SOURCE: IC@MAIN@ PROC: IC@MAIN@ ********************3
3 n = 1 3
3 SRC_REF: 4 SOURCE: facul.c PROC: facul ***********************************3
3 SRC_REF: 4 SOURCE: facul.c PROC: facul ***********************************3
3 SRC_REF: 4 SOURCE: facul.c PROC: facul ***********************************3
3 SRC_REF: 4 SOURCE: facul.c PROC: facul ***********************************3
3 SRC_REF: 13 SOURCE: facul.c PROC: main ***********************************3
3 ABSOLUT: V‘E60432‘ SOURCE: ICS$MAI@ PROC: _main ***********************3
3 ABSOLUT: V‘1002234‘ SOURCE: IC@MAIN@ PROC: IC@MAIN@ ********************3
3 3
3 4! : 24 3
3 3
3 STOPPED AT SRC_REF: 28, SOURCE: exfork.c , BLK: 25 3
3 %0000005241/%aid low 3
3 %0000005241/%display pid 3
3 *** TID: 00EB169E *** TSN: 1A4G **3
3 SRC_REF: 28 SOURCE: exfork.c BLK : 25 ************************************3
3 pid = 5242 3
3 %0000005241/%resume 3
3 exfork: facul has finished 3
gDDDu

Application example Special debugging aspects

38 U25054-J-Z125-2-76

U25054-J-Z125-2-76 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 N

o
ve

m
be

r
20

1
5

 S
ta

nd
 0

8
:5

6.
29

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

14
04

60
3

_A
ID

_
P

os
ix

\e
n

\a
id

po
s_

e
.m

ix

Glossary

child task
Task created by a fork() call.

command mode
More precisely: BS2000 command mode.
In the AID manuals this refers to expert mode of the SDF command language.
In expert mode, the system prompts you with a slash (/) to enter commands.

debugging mode
This denotes the status of a task in which you can enter AID commands for
debugging. In the LOGON task, debugging mode is identical with BS2000 com-
mand mode. In the case of fork tasks, AID handles the dialog between user and
task. AID issues a prompt character formed from the process identification of
the fork task; this prompt requests you to enter commands.
Debugging mode has a lower priority than the command mode of the LOGON
task. In other words, the fork task is not authorized to use the terminal on the
same level as the LOGON task.

DMS file
File of the BS2000 Data Management System.
This may be either individual files or modules which are stored in PLAM librar-
ies. Files can be copied between POSIX and BS2000 with the aid of the POSIX
command bs2cp (see UFS file).

exec()
This identifies a function group which includes the following functions: execl(),
execv(), execle(), execve(), execlp(), execvp().
An exec() call causes the program specified in the call to be loaded on top of
the calling program.

fork()
System call that creates a copy of the process containing the fork() call. After
completion of fork() the system contains an additional identical process.

fork task
Task created by a fork() call.

Glossary

40 U25054-J-Z125-2-76

LOGON task
Task started by means of the SDF command SET-LOGON-PARAMETERS.
The command mode of the LOGON task has a higher priority than the debug-
ging mode of a task created by fork(), and this may lead to problems in con-
junction with the simultaneous debugging of the parent and child tasks.

parent task
First task in the hierarchy of a task family.

POSIX shell
A ported UNIX system program that handles communication between the user
and the system. The POSIX shell is a command interpreter; it compiles the
entered POSIX commands into a language which the system can work with.

process
Term from the UNIX world which is also used under POSIX. A process corre-
sponds to a task on the BS2000 level. It is also used to refer to the address
space and the program executed therein, as well as to the required system
resources.
A process is created by another process by calling the fork() function. The
function that calls fork() is known as the parent process (or parent task in
BS2000); the new process created by fork() is known as the child process (or
child task in BS2000).

process identification (pid)
A number assigned by the system in order to identify the system unambigu-
ously. On the basis of the process identification (pid), AID constructs the prompt
output by a fork task to request input.

task family
All tasks produced by a single task, regardless of the generations, by means of
fork().

UFS file
File of the UNIX file system.
In the same way as with UNIX, files in POSIX are stored in hierarchically orga-
nized directories. The C/C++ compiler can process both UFS files and DMS
files (q.v.). The %AID command %SYMLIB, on the other hand, can only be used
in conjunction with PLAM libraries in BS2000.

U25054-J-Z125-2-76 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

0.
 N

o
ve

m
be

r
20

1
5

 S
ta

nd
 0

8
:5

6.
27

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
\D

oc
s\

14
04

60
3

_A
ID

_
P

os
ix

\e
n

\a
id

po
s_

e
.li

t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

AID

AID (BS2000)
Advanced Interactive Debugger
Core Manual
User Guide

AID (BS2000)
Advanced Interactive Debugger
Debugging of C/C++ Programs
User Guide

AID (BS2000)
Advanced Interactive Debugger
Debugging of COBOL Programs
User Guide

AID (BS2000)
Advanced Interactive Debugger
Debugging of FORTRAN Programs
User Guide

AID (BS2000)
Advanced Interactive Debugger
Debugging of ASSEMBH Programs
User Guide

AID (BS2000)
Debugging on Machine Code Level
User Guide

http://manuals.ts.fujitsu.com

Related publications

42 U25054-J-Z125-2-76

AID (BS2000)
Advanced Interactive Debugger
Ready Reference
User Guide

C/C++

C (BS2000)
C Compiler
User Guide

C++ (BS2000)
C++ Compiler
User Guide

POSIX

POSIX (BS2000)
POSIX Basics for Users and System Administrators
User Guide

POSIX (BS2000)
Commands
User Guide

C/C++ (BS2000)
POSIX Commands of the C and C++ Compiler
User Guide

BS2000

CRTE (BS2000)
Common RunTime Environment
User Guide

BS2000 OSD/BC
Commands
User Guide

U25054-J-Z125-2-76 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. N
ov

em
be

r
20

15
 S

ta
nd

 0
8:

56
.5

2
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

34
B

\D
oc

s\
1

40
46

0
3_

A
ID

_P
os

ix
\e

n\
ai

dp
o

s_
e.

si
x

Index

_OSD_POSIX define 12
@@c 28
#include statement 12
%AID 17
%AID LOW[=ON] 18
%AID LOW=ALL 35
%BASE 32
%DUMPFILE 32
%ON 27
%ON %ANY 32
%SDUMP %NEST 12
%SHOW 20
%SHOW %AID 35
%SHOW %BASE 30
%STOP 21
%SYMLIB 15, 27, 32, 34, 36

A
abort a fork task 31
access to a UFS file 15

B
BINDER 13
breakpoint 27, 35
breakpoints

set with optimization 14
BS2000 command

permitted in debugging mode 29
BS2000 command mode 39
bs2cp 34

C
C/C++ compiler call 14
c89, POSIX command 14

call context 28
call hierarchy 12
calling the C/C++ compiler 14
CANCEL-JOB 28
cause of error 14
CC, POSIX command 14
cc, POSIX command 14
character literal 17, 18
child task 39
command mode 39
command sequence 29
compiling under POSIX 14
CRTE 35
CRTE libraries

SYSLNK.CRTE 12
SYSLNK.CRTE.POSIX 13

D
DBL 13
debugging mode 19, 21, 39

priority 28
DMS file 15, 39
dump file

open 32
dump processing 32
dumps 32
dynamic binder loader 13

E
EBCDIC 15
ELDE 13
events 27
EXEC

operand of %AID 17, 19
exec() 17, 19, 27, 39

Index

44 U25054-J-Z125-2-76

execvp() 32
EXIT-JOB 28, 32
expert mode 39

F
FORK

operand of %AID 17, 18
fork task 17, 21, 27, 39

abort 31
fork() 39
full qualification 21

I
I/O redirection to file 31
inherited settings 19
inheriting the debugging context 27
inline functions 12
input <DÜ> 29

K
K2 key 28

L
L member 32
library member

specify for bs2cp 16
linkage option library

SYSLNK.CRTE.POSIX 13
linking under POSIX 14
loading under POSIX 14
LOGOFF 28, 32
LOGON task 17, 28, 31, 40
LOW

operand of %AID 17, 18
lowercase/uppercase 17, 18, 22, 35
LSD 32

dynamic loading 36
dynamic loading after an exec() call 15
List for Symbolic Debugging 11
pass through, linker, loader, starter 13

M
main function

read parameters 12

member of type L 15
mixed-mode programs 5

N
NOT_USED 18, 20, 35
null input 29, 30

O
optimization 12

P
parameters

read for main function 12
parent task 40
pid 21, 23, 24, 40
PLAM library 11, 15, 27, 39
POSIX command

bs2cp 15
c89 14
CC 14
cc 14
debug 14, 23

POSIX shell 28, 40
priority of debugging mode 28
process 40

abort 28
interrupting 24

process ID 21, 23, 24, 36
process identification 40
program

loading with the LSD 23
program error 14, 32
program interrupt

in runtime system 35

Q
queue, I/O 29

R
Readme file 7
retracing the call hierarchy 12
rlogin 23
runtime system 21, 28, 35

Index

U25054-J-Z125-2-76 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
10

. N
ov

em
be

r
20

15
 S

ta
nd

 0
8:

56
.5

2
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

34
B

\D
oc

s\
1

40
46

0
3_

A
ID

_P
os

ix
\e

n\
ai

dp
o

s_
e.

si
x

S
S qualification 18, 22, 35
samle programs

exfork.c 33
sample programs

facul.c 34
scope and validity 17
standard headers 12
starting under POSIX 14
static loader 13
subcommand 29
symbolic memory reference 15

T
task

exit 32
interrupted 28

task family 40
task sequence number 21
TSN 21

U
UFS file 15, 40
unloading after program abort 14
uppercase/lowercase 17, 22, 35
user dump 32

W
wait() call 28, 32, 35

Index

46 U25054-J-Z125-2-76

	Contents
	Preface
	Structure of the AID documentation
	Summary of contents
	Changes since the last edition of this manual
	Notational conventions

	Notational conventions
	Prerequisites for debugging
	Compiling, linking and loading in BS2000
	Compiling, linking and loading under POSIX
	Dynamic loading of the LSD

	Enhanced AID commands
	%AID
	%SHOW
	%STOP

	The POSIX debug command
	Special debugging aspects
	Inheriting the debugging context
	Debugging strategies
	Inputs/Outputs
	Possible inputs
	Associating I/O with tasks
	Erratic behavior

	Dump processing
	Application example
	Source files
	Debugging run

	Glossary
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

