
Edition August 2015

©
 S

ie
m

en
s

N
ix

d
or

f
In

fo
rm

a
tio

ns
sy

st
em

e
A

G
 1

9
95

P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\B

e
an

C
on

ne
ct

_V
3

0B
\1

50
25

00
_

M
an

ua
l\e

n
\b

ea
nc

on
n

_e
.v

or

English

BeanConnect V3.0B

FUJITSU Software

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2015 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

OracleTM Oracle SolarisTM, J2EETM and JavaTM are trademarks or registered trademarks of Oracle Corporation,
Redwood Shores, USA.

WindowsTM is a trademark or registered trademark of Microsoft Incorporation, Redmont, USA

IBMTM, CICSTM and z/OSTM are trademarks or registered trademarks of International Business Machines
Incorporation, USA.

Linux® is a registered trademark of Linus Torvalds.

SunTM. SolarisTM, and Sun MicrosystemsTM are trademarks or registered trademarks of Sun Microsystems, USA.

SNAP-IX® is a registered trademark of Metaswitch Networks Corporation, San Francisco, USA.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

BeanConnect V3.0B

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

nd
 1

0:
35

.0
7

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

nC
on

n
ec

t_
V

30
B

\1
50

2
50

0_
M

a
nu

al
\e

n\
be

an
co

nn
_

e.
iv

z

Contents

1 Preface . 19

1.1 Target group . 20

1.2 Structure of the BeanConnect documentation 20

1.3 Structure of this manual . 21

1.4 Changes compared to the predecessor version 23

1.5 Notes on third-party products and literature . 25

1.6 Notational conventions . 26

2 JCA adapter integration overview . 27

2.1 JCA adapter versions . 27
2.1.1 JCA adapter integration . 28
2.1.2 JCA 1.6 contracts . 28
2.1.3 SOA architecture . 30
2.1.4 JCA adapter integration in Oracle WebLogic Server 30

2.2 BeanConnect architecture . 32
2.2.1 BeanConnect components . 32
2.2.1.1 BeanConnect resource adapter . 34
2.2.1.2 BeanConnect proxy . 34
2.2.1.3 BeanConnect Management Console . 36
2.2.1.4 BeanConnect tools . 37
2.2.2 Standard operation with one resource adapter and one proxy 38
2.2.3 Multiple resource adapter mode . 38

2.3 BeanConnect as a JCA-compliant resource adapter 40
2.3.1 Outbound and inbound communication . 40
2.3.1.1 Outbound communication . 41
2.3.1.2 Inbound communication . 41
2.3.2 Dialog and asynchronous communication . 43
2.3.2.1 Dialog communication . 43

Contents

 BeanConnect V3.0B

2.3.2.2 Asynchronous communication . 43
2.3.3 Transactional and non-transactional communication 43
2.3.3.1 Transactional communication . 43
2.3.3.2 Non-transactional communication . 44
2.3.4 Interfaces . 44

2.4 BeanConnect in cluster operation . 46

3 Installing BeanConnect . 47

3.1 Installing BeanConnect under Solaris systems 49
3.1.1 Master installation . 49
3.1.1.1 Installing the BeanConnect product files . 50
3.1.1.2 Installing PCMX . 50
3.1.1.3 Installing openUTM . 51
3.1.1.4 Installing the openUTM-LU62 Gateway (for CICS partners) 51
3.1.1.5 Silent installation . 51
3.1.2 Installing the BeanConnect proxy container and the Management Console 52

3.2 Installing BeanConnect under Linux systems . 57
3.2.1 Master installation . 57
3.2.1.1 Installing PCMX . 58
3.2.1.2 Installing the openUTM-LU62 Gateway (for CICS partners) 58
3.2.1.3 Installing openUTM . 59
3.2.1.4 Installing the BeanConnect product files . 59
3.2.1.5 Silent installation . 59
3.2.2 Installing the BeanConnect proxy container and the Management Console 60

3.3 Installing BeanConnect under Windows systems 65
3.3.1 Master installation . 65
3.3.1.1 Installing PCMX . 65
3.3.1.2 Installing openUTM . 66
3.3.1.3 Installing BeanConnect . 66
3.3.1.4 Installing the openUTM-LU62 Gateway (for CICS partners) 71
3.3.2 Installing the BeanConnect proxy container via the command line 72

3.4 Installing a BeanConnect resource adapter . 74

3.5 Installing the BeanConnect tools . 76

3.6 Update installation for the BeanConnect proxy container and Management
Console . 77

3.6.1 Update installation under Solaris systems . 77
3.6.2 Update installation under Linux systems . 79
3.6.3 Update installation under Windows systems . 81

Contents

BeanConnect V3.0B

©
 S

ie
m

e
ns

 N
ix

d
or

f I
nf

or
m

at
io

n
ss

ys
te

m
e

 A
G

 1
99

5

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\B
e

an
C

o
nn

e
ct

_
V

3
0B

\1
5

02
5

00
_M

an
ua

l\e
n\

be
a

nc
on

n_
e

.iv
z

3.7 Uninstalling BeanConnect . 83
3.7.1 Uninstalling BeanConnect under Solaris systems 83
3.7.2 Uninstalling BeanConnect under Linux . 84
3.7.3 Uninstalling BeanConnect under Windows systems 85

3.8 Uninstalling the BeanConnect resource adapter 87

3.9 Uninstalling the BeanConnect tools . 87

4 Configuration in the application server . 89

4.1 Overview . 90
4.1.1 Configuration files in the application server . 90
4.1.2 Configuration steps for outbound and inbound communication 91

4.2 Configuring general properties for the resource adapter 93
4.2.1 Defining general properties in ra.xml . 93
4.2.2 Defining the general properties of the resource adapter in weblogic-ra.xml 99
4.2.3 Deploying and undeploying the resource adapter 100
4.2.3.1 Deploying the resource adapter . 100
4.2.3.2 Update deployment of the resource adapter . 101
4.2.3.3 Undeploying the resource adapter . 101
4.2.4 Example of an ra.xml File . 102
4.2.5 Example of an weblogic-ra.xml file . 104

4.3 Setting configuration properties for outbound communication via
OSI-TP / LU6.2 . 106

4.3.1 Defining general and connection-specific properties for OSI-TP / LU6.2 in
weblogic-ra.xml . 107

4.3.1.1 Defining the resource for OSI-TP / LU6.2 . 107
4.3.1.2 Defining the JNDI name for OSI TP / LU6.2 . 108
4.3.1.3 Defining configuration properties for OSI-TP / LU6.2 108
4.3.1.4 Adapting connection pooling for OSI-TP / LU6.2 114
4.3.1.5 Defining security settings (managing sign-on) 115
4.3.1.6 Example: weblogic-ra.xml . 117
4.3.2 Deploying an Enterprise JavaBean for OSI-TP / LU6.2 120

4.4 Configuring outbound communication via UPIC 123
4.4.1 Defining general connection-specific properties for UPIC in weblogic-ra.xml 124
4.4.1.1 Defining a resource for UPIC . 124
4.4.1.2 Defining the JNDI name for UPIC . 125
4.4.1.3 Setting the configuration properties for UPIC 125
4.4.1.4 Adapting connection pooling for UPIC . 130
4.4.1.5 Defining transaction support for UPIC . 130
4.4.1.6 Example: weblogic-ra.xml (UPIC) . 131

Contents

 BeanConnect V3.0B

4.4.2 Deploying an Enterprise JavaBean for UPIC . 134

4.5 Setting configuration properties for inbound communication 137
4.5.1 Configuration properties in the ejb-jar.xml . 138
4.5.2 Defining configuration properties for inbound communication in weblogic-ejb-jar.xml 141
4.5.3 Examples for ejb-jar.xml and weblogic-ejb-jar.xml 142

4.6 Preparing resource adapter logging . 146

4.7 Special characteristics of multiple resource adapter mode 147

4.8 Special characteristics in cluster operation . 149

5 BeanConnect Management Console . 153

5.1 Starting and shutting down the Management Console 155
5.1.1 Starting the Management Console . 155
5.1.2 Starting the Management Console's online Help system 155
5.1.3 Shutting down the Management Console . 156

5.2 User interface - Management Console window 157
5.2.1 Navigation area in the Management Console . 158
5.2.2 Managed objects . 159
5.2.3 Additional functions and information . 161

5.3 Functions of the BeanConnect Management Console 162
5.3.1 Configuration functions . 162
5.3.2 Configuration wizards . 163
5.3.3 Starting and stopping proxies . 165
5.3.4 Checking the availability of BeanConnect components and EIS partners 166
5.3.5 Diagnosis support . 167
5.3.6 Todo topics . 167
5.3.7 MC-CLI recording: Recording Management Console actions 168
5.3.8 Cluster support . 170
5.3.9 Management Console as a JMX client . 172

5.4 Administrative data of the Management Console 174

6 Configuration of BeanConnect . 175

6.1 Configuration steps . 176

6.2 Adding a BeanConnect proxy to the Management Console 178
6.2.1 Adding a new proxy . 178
6.2.2 Removing a proxy . 180

Contents

BeanConnect V3.0B

©
 S

ie
m

e
ns

 N
ix

d
or

f I
nf

or
m

at
io

n
ss

ys
te

m
e

 A
G

 1
99

5

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\B
e

an
C

o
nn

e
ct

_
V

3
0B

\1
5

02
5

00
_M

an
ua

l\e
n\

be
a

nc
on

n_
e

.iv
z

6.3 Configuring the BeanConnect proxy . 181
6.3.1 General information on the proxy . 182
6.3.2 Proxy Components: CICS partners . 185
6.3.3 Modifying the administration password . 190
6.3.4 Configuration options in expert mode . 191
6.3.4.1 Timer Settings . 191
6.3.4.2 Performance Settings . 191
6.3.4.3 Application Program Interface Mode (API Mode) 192
6.3.4.4 Container Application Process Title . 192

6.4 Configuring a BeanConnect proxy cluster . 193
6.4.1 Generating a proxy cluster . 194
6.4.2 Adding a proxy to the proxy cluster . 195
6.4.3 Removing a proxy from a cluster / removing a proxy cluster 196

6.5 Configuring the BeanConnect resource adapter 197
6.5.1 Adding a resource adapter (no cluster operation) 197
6.5.2 Adding a resource adapter in cluster operation . 201
6.5.3 Resource adapter configuration file . 204

6.6 Configuring the EIS partners . 206
6.6.1 Configuring EIS partners of type openUTM . 207
6.6.1.1 Adding EIS partners of the type UTM . 207
6.6.1.2 Configuration files for EIS partners of type openUTM 217
6.6.2 Configuring EIS partners of type CICS . 218
6.6.2.1 Adding EIS partners of the type CICS . 218
6.6.2.2 Configuration files for the EIS partners of the type CICS 226
6.6.3 Configuring EIS partners of type XATMI . 228
6.6.4 Removing an EIS partner . 228

6.7 Configuring outbound communication . 229
6.7.1 Configuring outbound services . 229
6.7.2 Configuring outbound communication endpoints . 232

6.8 Configuring inbound communication . 234
6.8.1 Configuring inbound message endpoints . 234
6.8.2 Configuring inbound services . 239
6.8.3 Setting up users for access to inbound message endpoints 241
6.8.4 Configuring the error message prefix for inbound communication 242

6.9 Saving and activating the configuration of the BeanConnect proxy 243

6.10 Configuring the Management Console command handler (MC-CmdHandler) . . 245
6.10.1 Security and privileges . 246
6.10.2 Administering the MC-CmdHandler . 247
6.10.2.1 Starting the MC-CmdHandler . 247
6.10.2.2 Shutting down the MC-CmdHandler . 248

Contents

 BeanConnect V3.0B

6.10.2.3 Configuring an MC-CmdHandler as a service 248

6.11 Configuring the Management Console as a JMX client 250
6.11.1 Defined resource adapter MBeans . 250
6.11.2 Setting up the JMX client in the Management Console 253
6.11.2.1 Setting up a JMX client . 253
6.11.2.2 Establishing and clearing a connection to the JMX server 256
6.11.2.3 Removing a JMX client . 256

7 Adapting the configuration in the EIS partner 257

7.1 Adapting the configuration in EIS partners of type openUTM 258
7.1.1 Defining connections between BeanConnect and openUTM 258
7.1.1.1 Defining an OSI-TP connection between BeanConnect and openUTM 258
7.1.1.2 Defining a UPIC connection for outbound communication between the openUTM

partner and BeanConnect . 259
7.1.1.3 Defining a socket connection between the openUTM partner and BeanConnect 260
7.1.1.4 Defining a BCMAP entry (only for BS2000 partners) 260
7.1.1.5 Mapping of long host names for openUTM partners on open platforms 260
7.1.1.6 Mapping of long host names for UTM partners on BS2000 platforms 261
7.1.2 Defining connections between BeanConnect and other EIS partners 261

7.2 Adapting the configuration in EIS partners of type CICS 262
7.2.1 Configuration in the CICS . 262
7.2.2 Configuration of VTAM on an IBM mainframe . 263

8 Administering BeanConnect . 265

8.1 Administering a BeanConnect proxy via the Management Console 266
8.1.1 Starting a proxy . 267
8.1.2 Restarting a proxy . 269
8.1.3 Stopping a proxy . 269
8.1.4 Special characteristics in cluster operation . 269

8.2 Administering a BeanConnect proxy container on command level 271
8.2.1 Starting a proxy container . 271
8.2.1.1 Starting via a script . 271
8.2.1.2 Starting using the proxy container program group under Windows 271
8.2.1.3 Starting as a Windows service . 272
8.2.1.4 Starting after abnormal termination of a proxy container run 272
8.2.2 Restarting a proxy container . 273
8.2.2.1 Restarting using a script . 273
8.2.2.2 Restarting using the proxy container program group under Windows 273

Contents

BeanConnect V3.0B

©
 S

ie
m

e
ns

 N
ix

d
or

f I
nf

or
m

at
io

n
ss

ys
te

m
e

 A
G

 1
99

5

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\B
e

an
C

o
nn

e
ct

_
V

3
0B

\1
5

02
5

00
_M

an
ua

l\e
n\

be
a

nc
on

n_
e

.iv
z

8.2.3 Stopping a proxy container . 274
8.2.3.1 Stopping using a local script . 274
8.2.3.2 Stopping using the proxy container program group under Windows 274
8.2.3.3 Stopping as a Windows service . 274

8.3 Starting an MC-CmdHandler as a service on Windows systems 275

8.4 Administering the openUTM-LU62 Gateway . 276
8.4.1 Starting the openUTM-LU62 Gateway . 276
8.4.2 Stopping the openUTM-LU62 Gateway . 276
8.4.3 Displaying status information on the openUTM-LU62 277

8.5 Administering the communication service . 278
8.5.1 Starting and stopping the SNA daemon (Linux and Solaris systems) 278
8.5.2 Starting and stopping a communication service in a command line (Linux and Solaris

systems) . 278

8.6 Checking the availability of BeanConnect proxies 280
8.6.1 Checking the availability of a proxy . 280
8.6.2 Checking the availability of a BeanConnect resource adapter 282
8.6.3 Checking the availability of an openUTM-LU62 Gateway and a communication

service . 284
8.6.4 Checking the availability of an MC-CmdHandler . 285
8.6.4.1 Checking the availability of the MC-CmdHandler with the Management Console . 285
8.6.4.2 Checking the availability of the MC-CmdHandler in the command line 285
8.6.5 Checking the availability of an EIS partner . 287

8.7 Monitoring the resource adapter with the Management Console 288
8.7.1 Establishing a connection to the MBean server . 289
8.7.2 Displaying MBean object names . 290
8.7.3 Displaying and modifying MBean attributes . 291
8.7.3.1 Displaying MBean attributes . 291
8.7.3.2 Modifying MBean attribute values . 292
8.7.4 Collecting and displaying diagnostic values . 293
8.7.4.1 Configuring, displaying and modifying statistics collectors 293
8.7.4.2 Displaying statistical values . 293
8.7.5 Subscribing to and displaying MBean notifications 294
8.7.5.1 Subscribing to MBean notifications . 295
8.7.5.2 Displaying MBean notifications . 296
8.7.6 Displaying and executing MBean operations . 297

Contents

 BeanConnect V3.0B

9 Command Line Interface of the BeanConnect Management Console (MC-CLI) . 299

9.1 Overview of MC-CLI . 300

9.2 Creating and calling MC-CLI user scripts . 303
9.2.1 Prerequisites when calling an MC-CLI user script 303
9.2.2 Preparing the configuration . 304
9.2.3 Structure of the user script . 305
9.2.4 Specifying call parameters . 306

9.3 Java classes . 308
9.3.1 Class: BcDef . 308
9.3.2 Class: BcObjectType . 308
9.3.3 Class: BcObject . 309
9.3.3.1 getName() . 309
9.3.3.2 getObjectType() . 309
9.3.4 Exceptions . 310
9.3.4.1 Class: BcObjectException . 310
9.3.4.2 Class: BcParameterException . 311
9.3.4.3 Class: BcToolException . 312

9.4 Functions . 313
9.4.1 General . 313
9.4.1.1 Parameter . 313
9.4.1.2 Properties . 313
9.4.1.3 Messages . 314
9.4.1.4 Returns . 315
9.4.2 BcAdminAction . 316
9.4.2.1 getCheckResults() – Show results of check actions 317
9.4.2.2 getResults() – Show results of all subactions of an action 318
9.4.2.3 isFinishedSuccessfully() – Show success/failure of an action 320
9.4.3 BcAdminCommunicationService . 321
9.4.3.1 create() – Add communication service to the configuration 322
9.4.3.2 getObject() – Read communication service object from the configuration 322
9.4.3.3 getProperties() – Read properties of a communication service 323
9.4.3.4 getProxies() – Read the proxies assigned to the communication service 324
9.4.3.5 modifyProperties() – Modify properties of an communication service 324
9.4.3.6 perform() – Start administrative actions . 325
9.4.3.7 remove() – Remove communication service 326
9.4.3.8 Properties of a communication service . 326
9.4.4 BcAdminEisPartner . 329
9.4.4.1 create() – Add EIS partner to the configuration 330
9.4.4.2 getGatewayPorts() - Read openUTM-LU62 Gateway listener ports of the EIS

partner object . 331
9.4.4.3 getLuNames() - Read logical unit names of the EIS partner object 331

Contents

BeanConnect V3.0B

©
 S

ie
m

e
ns

 N
ix

d
or

f I
nf

or
m

at
io

n
ss

ys
te

m
e

 A
G

 1
99

5

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\B
e

an
C

o
nn

e
ct

_
V

3
0B

\1
5

02
5

00
_M

an
ua

l\e
n\

be
a

nc
on

n_
e

.iv
z

9.4.4.4 getObject() – Read EIS partner object from the configuration 332
9.4.4.5 getProperties() – Read properties of an EIS partner 333
9.4.4.6 modifyGatewayPorts() - Modify openUTM-LU62 Gateway listener ports of the

EIS partner object . 333
9.4.4.7 modifyLuNames() - Modify logical unit names of the EIS partner object 334
9.4.4.8 modifyProperties() – Modify properties of an EIS partner 335
9.4.4.9 perform() – Start administrative actions . 335
9.4.4.10 remove() – Remove EIS partner . 336
9.4.4.11 Properties of an EIS partner . 337
9.4.5 BcAdminInboundMsgEndpoint . 341
9.4.5.1 create() – Add inbound message endpoint to the configuration 342
9.4.5.2 getObject() – Read inbound message endpoint object from the configuration . . . 343
9.4.5.3 getProperties() – Read properties of an inbound message endpoint 344
9.4.5.4 modifyProperties() – Modify properties of an inbound message endpoint 344
9.4.5.5 remove() – Remove inbound message endpoint 345
9.4.5.6 Properties of an inbound message endpoint . 346
9.4.6 BcAdminInboundService . 347
9.4.6.1 getObject() – Read inbound service object from the configuration 347
9.4.6.2 getProperties() – Read properties of an inbound service 348
9.4.6.3 modifyProperties() – Modify properties of an inbound service 349
9.4.6.4 Properties of an inbound service . 350
9.4.7 BcAdminInboundUser . 351
9.4.7.1 create() – Add inbound user to the configuration 352
9.4.7.2 getObject() – Read inbound user object from the configuration 353
9.4.7.3 getProperties() – Read properties of an inbound user 354
9.4.7.4 modifyProperties() – Modify properties of an inbound user 355
9.4.7.5 remove() – Remove inbound user . 355
9.4.7.6 Properties of an inbound user . 356
9.4.8 BcAdminLu62Gateway . 357
9.4.8.1 create() – Add openUTM-LU62 Gateway to the configuration 357
9.4.8.2 getObject() – Read openUTM-LU62 Gateway object from the configuration . . . 358
9.4.8.3 getProperties() – Read properties of an openUTM-LU62 Gateway 358
9.4.8.4 getProxies() – Read the proxies assigned to the openUTM-LU62 Gateway . . . 359
9.4.8.5 modifyProperties() – Modify the properties of an openUTM-LU62 Gateway . . . 360
9.4.8.6 perform() – Start administrative actions . 361
9.4.8.7 Remove -remove openUTM-LU62 Gateway... 362
9.4.8.8 Properties of an openUTM-LU62 Gateway . 363
9.4.9 BcAdminMain . 365
9.4.9.1 close() – Close Management Console session 365
9.4.9.2 getList() – Output list of all configured objects of an object type 366
9.4.9.3 getVersion() – Read Management Console version 367
9.4.9.4 init() – Start Management Console session for MC-CLI 367
9.4.10 BcAdminOutboundCommEndpoint . 369
9.4.10.1 create() – Add outbound communication endpoint to the configuration 370

Contents

 BeanConnect V3.0B

9.4.10.2 getObject() –
Read outbound communication endpoint object from the configuration 371

9.4.10.3 getProperties() – Read properties of an outbound communication endpoint . . 372
9.4.10.4 modifyProperties() –

Modify properties of an outbound communication endpoint 373
9.4.10.5 remove() – Remove outbound communication endpoint 374
9.4.10.6 Properties of an outbound communication endpoint 374
9.4.11 BcAdminOutboundService . 375
9.4.11.1 create() – Add outbound service to the configuration 376
9.4.11.2 getObject() – Read outbound service object from the configuration 377
9.4.11.3 getProperties() – Read properties of an outbound service 378
9.4.11.4 modifyProperties() – Modify properties of an outbound service 379
9.4.11.5 remove() – Remove outbound service . 379
9.4.11.6 Properties of an outbound service . 380
9.4.12 BcAdminProxy . 381
9.4.12.1 authenticate() – Authenticate for proxy . 382
9.4.12.2 getAssignment() - Read the openUTM-LU62 Gateway or communication service

assigned to the proxy . 383
9.4.12.3 getList() – List all objects of an object type present in a proxy 384
9.4.12.4 getObject() – Read proxy object from the configuration 385
9.4.12.5 getProperties() – Read properties of a proxy 385
9.4.12.6 modifyProperties() – Modify properties of a proxy 386
9.4.12.7 perform() – Start administrative actions for a proxy 386
9.4.12.8 getObject() – Remove proxy object from the configuration 388
9.4.12.9 setAssignment() - Assign an openUTM-LU62 Gateway or a communication

service to the proxy . 389
9.4.12.10 Properties of a proxy . 390
9.4.13 BcAdminProxyCluster . 393
9.4.13.1 addProxy() – Add proxy to the proxy cluster 394
9.4.13.2 authenticate() – Authenticate at proxy cluster 395
9.4.13.3 create() – Add proxy cluster to the configuration 396
9.4.13.4 getAssignment() - Read the openUTM-LU62 Gateway or communication service

assigned to the proxy cluster . 397
9.4.13.5 getList() – List all objects of a type in the proxy cluster 398
9.4.13.6 getMasterProxy() – Read master proxy of a proxy cluster 399
9.4.13.7 getObject() – Read proxy cluster object from the configuration 399
9.4.13.8 getProperties() – Read properties of a proxy cluster 400
9.4.13.9 modifyProperties() – Modify properties of a proxy cluster 400
9.4.13.10 perform() – Start administrative actions . 401
9.4.13.11 remove() – Remove proxy cluster . 403
9.4.13.12 removeProxy() – Remove proxy from proxy cluster 403
9.4.13.13 setAssignment() - Assign an openUTM-LU62 Gateway or a communication

service to the proxy cluster . 404
9.4.13.14 setMasterProxy() – Change master proxy of a proxy cluster 405

Contents

BeanConnect V3.0B

©
 S

ie
m

e
ns

 N
ix

d
or

f I
nf

or
m

at
io

n
ss

ys
te

m
e

 A
G

 1
99

5

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\B
e

an
C

o
nn

e
ct

_
V

3
0B

\1
5

02
5

00
_M

an
ua

l\e
n\

be
a

nc
on

n_
e

.iv
z

9.4.13.15 Properties of a proxy cluster . 406
9.4.14 BcAdminRA . 408
9.4.14.1 create() – Add resource adapter to the configuration 409
9.4.14.2 getObject() – Read resource adapter object from the configuration 410
9.4.14.3 getProperties() – Read properties of a resource adapter 411
9.4.14.4 modifyProperties() – Modify properties of a resource adapter 412
9.4.14.5 perform() – Start administrative actions . 413
9.4.14.6 remove() – Remove resource adapter . 414
9.4.14.7 Properties of a resource adapter . 414
9.4.15 BcAdminTodo . 416
9.4.15.1 getProperties() – Read properties of a todo topic 417
9.4.15.2 remove() – Delete todo topic . 417
9.4.15.3 Properties of a todo topic . 418

9.5 Application scenarios (examples) . 419
9.5.1 Configuring outbound communication with an openUTM application 419
9.5.2 Configuring inbound communication with an openUTM application 421
9.5.3 Administer proxies . 422
9.5.4 Jython sample scripts . 423
9.5.5 Creating Jython scripts from MC-CLI recordings . 427

10 Interfaces and programming . 429

10.1 BeanConnect-specific interfaces and Common Client Interface (CCI) 430

10.2 Programming outbound communication . 432
10.2.1 BeanConnect-specific interfaces for outbound communication 432
10.2.1.1 Connection factory interfaces . 432
10.2.1.2 Connection interfaces (overview) . 433
10.2.1.3 Communication using the connection interfaces 436
10.2.2 Common Client Interface (CCI) for outbound communication 444
10.2.3 Programming information on outbound communication 445
10.2.3.1 Addressing an EIS application . 445
10.2.3.2 Placing BeanConnect calls in an EJB . 445
10.2.3.3 Authentication (user ID and password) . 446
10.2.3.4 Querying information on the conversation with the EIS application 447
10.2.3.5 Programming hints with respect to CICS applications 447
10.2.3.6 Support of DPL (Distributed Program Link) programs 448
10.2.4 Program framework for outbound communication 449
10.2.4.1 Program framework for BeanConnect-specific interfaces 449
10.2.4.2 Program framework for Common Client Interface (CCI) 450
10.2.5 Outbound communication with XATMI partners . 454
10.2.6 Code samples for outbound communication . 455

Contents

 BeanConnect V3.0B

10.3 Programming inbound communication . 459
10.3.1 OLTP message-driven beans . 459
10.3.2 Inbound communication with openUTM partners 460
10.3.3 Inbound communication with CICS applications 461
10.3.4 Inbound communication with other EIS partners (openUTM) 462
10.3.5 Inbound communication with XATMI partners . 463
10.3.6 BeanConnect-specific interfaces for inbound communication 464
10.3.6.1 Programming information on OLTP message-driven beans 464
10.3.6.2 Determining sender contexts in the OLTP message-driven bean 466
10.3.6.3 Program framework using the interfaces AsyncOltpMessageListener and

OltpMessageListener . 468
10.3.7 Common Client Interface (CCI) for inbound communication 470
10.3.7.1 Programming information on OLTP message-driven beans (CCI) 470
10.3.7.2 Program framework using the interface javax.resource.cci.MessageListener . . 470
10.3.8 Code samples for inbound communication . 473

11 Encoding and national language support . 479

11.1 Encoding . 479
11.1.1 Standard conversion between EBCDIC code and Unicode for EIS partners of type

openUTM . 480
11.1.2 Standard conversion between EBCDIC code and Unicode for EIS partners of type

CICS . 482
11.1.3 Using other predefined code tables . 483
11.1.4 Using custom charsets . 491
11.1.4.1 Custom Charset Provider . 491
11.1.4.2 Creating and using legacy code tables . 491

11.2 National language support for message output 492

12 High availability and scalability . 495

12.1 Shared memory of the proxy container . 495
12.1.1 Adapting the shared memory . 496

12.2 Number of proxy container processes . 497
12.2.1 Displaying the workload of processes . 497
12.2.2 Setting the number of processes . 498

12.3 Page pool area and cache of the proxy container 499

12.4 Number of parallel connections to the EIS partner 500

Contents

BeanConnect V3.0B

©
 S

ie
m

e
ns

 N
ix

d
or

f I
nf

or
m

at
io

n
ss

ys
te

m
e

 A
G

 1
99

5

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\B
e

an
C

o
nn

e
ct

_
V

3
0B

\1
5

02
5

00
_M

an
ua

l\e
n\

be
a

nc
on

n_
e

.iv
z

12.5 Asynchronous processing in the proxy container 501
12.5.1 Duration of asynchronous requests . 501
12.5.2 Inbound communication . 502

12.6 OSI-SCRATCH-AREA in the proxy container . 503

12.7 Number of semaphores in the proxy container 504

13 Logging, diagnostics and troubleshooting . 505

13.1 Logging with Log4j . 506
13.1.1 Basic principles of Log4j . 506
13.1.1.1 Loggers . 506
13.1.1.2 Appenders . 508
13.1.1.3 How the rolling file appender works . 508

13.2 Logging with JDK logging . 510

13.3 Configuring logging with Log4j . 511
13.3.1 Configuring logging for BeanConnect resource adapter and proxy 511
13.3.1.1 Configuring loggers . 512
13.3.1.2 Configuring appenders . 513
13.3.2 Editing the Log4j configuration file using the BeanConnect Management Console . . 514
13.3.3 Configuring the BeanConnect Management Console as a Log4j socket reader 515
13.3.4 Displaying the logging events in the BeanConnect Management Console 516
13.3.5 Display the Log4j logging file using the BeanConnect Management Console 519

13.4 LogWriter for connection factories . 520

13.5 Diagnosis of the BeanConnect resource adapter 524
13.5.1 Overview of logging in the BeanConnect resource adapter 524
13.5.2 Predefined logging configuration of a resource adapter 526
13.5.3 Logging of user interface calls . 531

13.6 Diagnosis of the BeanConnect proxy container 532
13.6.1 Predefined logging configuration of a proxy . 532
13.6.2 Log files of the BeanConnect proxy container . 535
13.6.2.1 stdout/stderr log . 535
13.6.2.2 System log file SYSLOG . 536
13.6.2.3 Dumps and diagnostic dumps . 537
13.6.2.4 Application log under Windows . 537
13.6.3 Traces of the BeanConnect proxy container . 538
13.6.3.1 OSS trace . 538
13.6.3.2 BCAM trace . 539
13.6.3.3 CMX trace . 540

Contents

 BeanConnect V3.0B

13.7 Diagnosis of the BeanConnect Management Console 542

13.8 Diagnosing the BeanConnect tools . 543

13.9 Diagnosis of the openUTM-LU62 Gateway . 544
13.9.1 Traces and logs of the openUTM-LU62 Gateway 544
13.9.1.1 Activate/deactivate traces . 544
13.9.1.2 Evaluating traces and logs . 545
13.9.2 Diagnosis information for the openUTM-LU62 Gateway 547

13.10 Diagnosis of SNAP-IX for Solaris systems . 549
13.10.1 Diagnosis with the Management Console . 549

13.11 Diagnosis of the IBM Communications Server for Linux 551
13.11.1 Diagnosis with the Management Console . 551

13.12 Diagnosis of the IBM Communications Server for Windows systems 553
13.12.1 Diagnosis with the Management Console . 553

13.13 Collecting diagnostic information . 554

13.14 Error messages of the BeanConnect proxy container 555
13.14.1 Configuration error messages . 555
13.14.2 Runtime error messages . 556
13.14.2.1 Types of messages . 556
13.14.2.2 K messages . 558
13.14.2.3 P messages . 576
13.14.2.4 U messages . 581

13.15 Error messages of the openUTM-LU62 Gateway 585
13.15.1 openUTM-LU62 Gateway error messages on start-up 585
13.15.2 openUTM-LU62 Gateway error messages at runtime 586
13.15.3 openUTM-LU62 Gateway error messages on status queries 595
13.15.4 openUTM-LU62 Gateway error messages during administration 596
13.15.5 openUTM-LU62 Gateway error messages during configuration 597

13.16 Error codes . 598
13.16.1 Error codes during file processing (DMS error codes) 598
13.16.2 System error codes . 599

14 Cobol2Java . 601

14.1 Mapping COBOL data types to Java classes 601
14.1.1 System requirements . 603
14.1.2 Installation . 603

Contents

BeanConnect V3.0B

©
 S

ie
m

e
ns

 N
ix

d
or

f I
nf

or
m

at
io

n
ss

ys
te

m
e

 A
G

 1
99

5

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\B
e

an
C

o
nn

e
ct

_
V

3
0B

\1
5

02
5

00
_M

an
ua

l\e
n\

be
a

nc
on

n_
e

.iv
z

14.2 Converting COBOL data types . 605
14.2.1 Creating an XML description for a COBOL program in a BS2000 system 605
14.2.1.1 Transferring the LMS library to a BS2000 system 605
14.2.1.2 Converting the data structures . 606
14.2.1.3 D.XMLPROG . 606
14.2.1.4 D.XMLCOPY . 607
14.2.1.5 Example call . 608
14.2.1.6 Generated files . 608
14.2.2 Generating Java classes on Unix, Linux or Windows systems 609
14.2.2.1 Generating Java classes with Ant . 609
14.2.2.2 Generating Java classes without Ant . 612

14.3 Programming reference . 614
14.3.1 Type assignment . 614
14.3.2 Naming conventions . 615
14.3.3 Accessing COBOL fields . 617
14.3.3.1 Writing a data field . 617
14.3.3.2 Reading a data field . 618
14.3.3.3 Replacement data type PicU . 618
14.3.3.4 Setting and reading the data for the entire structure (for sending and receiving) . 618
14.3.4 Java/EBCDIC conversion . 620
14.3.5 Formatted mode support . 620

14.4 Example . 621
14.4.1 COBOL example program . 621
14.4.2 Creating the XML description . 621
14.4.3 Generating the Java classes . 622
14.4.4 Use of the generated classes . 623

14.5 Error messages and error handling . 626

Glossary . 627

Related publications . 645

Index . 647

Contents

 BeanConnect V3.0B

BeanConnect V3.0B 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
14

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
1

1 Preface

The BeanConnectTM adapter is part of the openSEAS product range (open Suite for Enter-
prise Application Server). BeanConnect implements the link between classical transaction
monitors and modern application servers, thus allowing legacy applications to be efficiently
integrated into modern Java applications.

This manual describes the product BeanConnect. BeanConnect provides a JCA 1.6
compliant adapter connecting openUTM and CICSTM applications to applications based on
JavaTM EE (Java Platform, Enterprise Edition), e.g. the OracleTM WebLogic Server. In this
document, the EIS (Enterprise Information System) is understood to be the openUTM or
CICS application. The term openUTM application (UTM application for short) is used to
refer to both standalone UTM applications and UTM cluster applications.

BeanConnect supports different communication directions and models. BeanConnect
allows outbound and inbound communication, transactional and non-transactional commu-
nication as well as dialog and asynchronous communication.

BeanConnect components

BeanConnect consists of the following components:

● The BeanConnect resource adapter implements the JCA 1.6 interfaces. Being a
compliant JCA adapter, it is deployed in the application server and hence runs within
the application server.

● The BeanConnect proxy provides the functionality of a protocol converter as well as
functions for transaction control and transaction processing. It can be seen as an
intelligent gateway. It communicates with the resource adapter running within the
application server on the one hand and with the EIS on the other hand.

● The BeanConnect Management Console (MC) is a Java GUI used for configuration
and administration of BeanConnect proxies. It can manage multiple proxies running on
the same system or on other systems.

● The Management Console Command Line Interface (abbreviated to MC-CLI in the
following) provides a set of Jython functions which allow you to start BeanConnect
Management Console functions from a Jython script.

● The BeanConnect tools are tools which you require in many BeanConnect applica-
tions. They include Cobol2Java and the MC-CmdHandler.

Target group Preface

20 BeanConnect V3.0B

1.1 Target group

This manual is intended for the following target groups:

● BeanConnect administrators

● Administrators of an application server, such as Oracle WebLogic Server

● Deployers

● Developers of Enterprise Java Beans (EJB)

● openUTM and CICS administrators

It is assumed that you are familiar with Java and with the JCA V1.6 specification.

1.2 Structure of the BeanConnect documentation

The documentation for BeanConnect comprises the following components:

● The BeanConnect manual (this document).

● The Help System for the Management Console, which provides quick and context-
sensitive support on screen when configuring and administering BeanConnect proxies.

● The JavaDoc of BeanConnect, which is supplied with the resource adapter JAR file
BC30B00_RA.jar and is available after the installation of the resource adapter.

● The JavaDoc of the BeanConnect Management Console Command Line Interface.
This documentation is available following installation of the BeanConnect Management
Console.

i For detailed information on the Oracle WebLogic Server and other software
products mentioned in this manual, please refer to the relevant documents.

Preface Structure of this manual

BeanConnect V3.0B 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
14

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
1

1.3 Structure of this manual

The chapter “JCA adapter integration overview” on page 27 provides an overview of the
Oracle concept for the integration of adapters. It describes the features of BeanConnect
and shows how this product is embedded in the Oracle WebLogic Server environment.

The chapter “Installing BeanConnect” on page 47 describes how to install, update and
uninstall BeanConnect.

The chapter “Configuration in the application server” on page 89 provides information for
configuring outbound and inbound communication via the OSI-TP / LU6.2 protocol and
outbound communication via the UPIC protocol. It describes deployment of the resource
adapter, deployment of an OLTP message-driven bean and deployment of Enterprise Java
Beans.

The chapter “BeanConnect Management Console” on page 153 gives an overview of the
BeanConnect Management Console.The Management Console is used to configure and
administer one or more BeanConnect proxies.

The chapter “Configuration of BeanConnect” on page 175 describes the steps you must
perform to configure a BeanConnect proxy and its components using the Management
Console.

The chapter “Adapting the configuration in the EIS partner” on page 257 describes the
configuration activities that are necessary in the EIS (Enterprise Information System) to
establish communication between the application server and the EIS.

The chapter “Administering BeanConnect” on page 265 describes the administration tasks
involved in operating the BeanConnect proxies.

The chapter “Command Line Interface of the BeanConnect Management Console (MC-
CLI)” on page 299 describes the Management Console Command Line Interface which you
can use to start BeanConnect Management Console functions via Jython scripts.

The chapter “Interfaces and programming” on page 429 describes how to program commu-
nication between the application server and the EIS.

The chapter “Encoding and national language support” on page 479 describes code
conversion between the encoding used in the EIS partner and Unicode. Additionally, this
chapter provides information on national language support for message output.

The chapter “Encoding and national language support” on page 494 describes the modifi-
cations which could be necessary in the configuration of BeanConnect for heavy load
operations.

The chapter “High availability and scalability” on page 504 describes the variety of
diagnosis utilities and trace functions.

Structure of this manual Preface

22 BeanConnect V3.0B

The chapter “Cobol2Java” on page 601 describes the integration of COBOL applications in
BS2000 systems and BeanConnect clients using Cobol2Java for mapping and converting
COBOL data types to Java classes.

Preface Changes compared to the predecessor version

BeanConnect V3.0B 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
14

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
1

1.4 Changes compared to the predecessor version

The most important changes in BeanConnect V3.0A and V3.0B compared to BeanConnect
V2.1A are listed below. For a complete description – in particular concerning the software
configuration – please refer to the Release Notice:

New functions in V3.0A

● The BeanConnect resource adapter supports the JCA 1.6 specification and therefore
the new generic work context and security work context contracts.

● BeanConnect V3.0 can work together with application servers that support the JCA 1.5
or JCA 1.6 specifications.

For BeanConnect V3.0, the Oracle WebLogic Server was used as the standard appli-
cation server. All the examples in this manual are based on this application server.

● Management Console Command Line Interface for the script-based administration and
configuration of the BeanConnect components.

BeanConnect provides a command line interface based on the Jython script language.
It can be used to start the following administration functions from within a Jython script:

– All proxy functions and all proxy cluster functions, i.e. the configuration and admin-
istration of resource adapters, EIS partners, inbound services, outbound services,
inbound communication endpoints and outbound communication endpoints.

You can create the objects listed here, read and modify the properties of the objects,
and remove objects from the configuration. You can also perform administration
functions such as checking availability or starting and stopping a BeanConnect
proxy.

– Processing of todo topics

You can read the properties of the todo topics and delete todo topics.

● Extensions to the Management Console functionality

– BeanConnect supports UTM cluster applications during outbound communication
by making it possible to configure and address the node applications individually.

– You can now modify the EIS partner directly in an outbound communication
endpoint's properties sheet.

Changes compared to the predecessor version Preface

24 BeanConnect V3.0B

New functions in V3.0B

● Support for long host names

BeanConnect supports host name mapping for host names that are longer than 8
characters. This capability is available both for the host names of proxies and the host
names of EIS partners.

The mapping for a proxy is specified when the proxy is installed and the mapping for an
EIS partner is specified when a new EIS partner is entered.

● MC-CLI recording

All Management Console actions for which there are functions in the MC-CLI are
recorded in internal buffers in the Management Console. These recordings can be
viewed in an internal editor or output to a file. The recordings can be used for logging
purposes or as templates for MC-CLI scripts.

● Extensions to the MC-CLI

– Communication with CICS partners:
The MC-CLI provides new modules and functions that can be used for communica-
tions with CICS partners.

– The output of asynchronous messages can be set using Init().

– The supplied Jython script examples have been extended and are therefore easier
to use.

Other changes

● The Management Console processes management jobs from the BeanConnect proxy
before processing outbound or inbound jobs.

Preface Notes on third-party products and literature

BeanConnect V3.0B 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
14

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
1

1.5 Notes on third-party products and literature

This manual refers to the following and other third-party products which can be used in
combination with BeanConnect:

● Oracle WebLogic Server

● IBMTM Communications Server for Windows systems and IBM Communications Server
for Linux systems

● SNAP-IXTM from Metaswitch Networks Ltd. for Solaris systems

● IBM's CICSTM (Customer Information Control System)

In some cases, this manual makes concrete reference to parameters which have to be
specified in the Oracle WebLogic Server. Oracle WebLogic Server 12 is a prerequisite for
the current description, i.e. the specifications apply to precisely this version. If another
version is used then different specifications may be required. For details, refer to the
relevant Oracle documentation.

Notational conventions Preface

26 BeanConnect V3.0B

1.6 Notational conventions

This documentation uses the following notational conventions:

i This symbol indicates important notes and further information.

v This symbol indicates a warning.

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted.

boldface text Boldface type in text indicates all user interface items (menu items,
field names, options, etc.).

typewriter font Typewriter font indicates input for the system, system output and file
names.

< > Angle brackets enclose names which the user must supply.
Angle brackets indicate XML statements in the examples with XML.

[] Square brackets enclose optional clauses from which you can choose
one or none.

{ } Braces enclose alternative clauses from which you must choose
exactly one.

| A vertical line separates the alternatives or optional clauses.

BeanConnect V3.0B 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
16

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
2

2 JCA adapter integration overview

This document describes the product BeanConnect. BeanConnect provides a JCA 1.6
compliant adapter connecting openUTM applications (Universal Transaction Monitor) and
CICS applications (Customer Information Control System) to applications based on
Java EE, for example the Oracle WebLogicServer.

This chapter provides an overview of JCA adapter integration in a Java EE application
server environment. The Java EE Connector Architecture (JCA) is a software architecture
that permits the integration of heterogeneous applications in the Java EE platform.

The chapter describes the features of BeanConnect and shows how this product is
embedded in the Oracle WebLogicServer Servers environment. In detail this chapter
contains the following information:

● JCA adapter versions

● BeanConnect architecture

● BeanConnect as a JCA-compliant resource adapter

● BeanConnect in cluster operation

2.1 JCA adapter versions

Java Specification Requests (JSRs) are developed within the Java Community Process
(JCP) and are then agreed on in a formal, generally accessible process. The JSR
documents are identified via a number and describe specifications and technologies that
can be added to the Java platform. For example, the document "JSR 322: Java EE
Connector Architecture 1.6" defines standard Java interfaces for the simple integration of
applications for communication with an EIS. In this document, compliance with this specifi-
cation is referred to simply as " JCA 1.6 conformity". It was preceded by the document "JSR
112: J2EETM Connector Architecture 1.5". Compliance with this document is referred to as
"JCA 1.5 conformity".

JCA adapter versions JCA adapter integration overview

28 BeanConnect V3.0B

2.1.1 JCA adapter integration

A resource adapter is specific to the Enterprise Information System (EIS) for which it was
developed. It provides the system-level operations needed to communicate and operate
with the EIS. A resource adapter which supports the JCA interfaces can be used with any
application server which also supports these interfaces. The resource adapter reveals its
capabilities to the application server through a JCA-defined API. Using the defined API, the
application server can effectively incorporate the services of the resource adapter into its
operations while isolating the applications themselves from the underlying implementation
of the EIS. Important requirements for effective and scalable integration with EIS systems
are services such as.

● connection management and pooling

● transaction management to support global transactions, i.e. transactions which involve
both the application server and EIS.

● logging and tracing

● and a security framework enabling both container-managed and bean-managed sign-
on.

2.1.2 JCA 1.6 contracts

All contracts of the JCA 1.6 specification are supported:

● Connection management contract

The connection management contract enables application components to connect to
an EIS and to exploit any connection pooling provided by the application server.

● Transaction management contract

The transaction management contract enables an application server to use a trans-
action manager to manage transactions across multiple resource managers.

● Security contract

The security management contract provides authentication, authorization, and secure
communication between the Java EE server and the EIS.

● Lifecycle management contract

The lifecycle management contract enables the application server to manage the
lifecycle, i.e. the startup and shutdown functionality, of the resource adapter.

JCA adapter integration overview JCA adapter versions

BeanConnect V3.0B 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
16

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
2

● Work management contract

The work management contract enables the resource adapter to carry out work by
submitting it to an application server for execution. Since the application server does
the work for the resource adapter, the resource adapter need not worry about thread
management. Instead, the application server manages this aspect efficiently and can
use thread pooling if necessary. Although the work management contract is not
required (the resource adapter can choose to manage its own thread for work), it is
definitely recommended.

● Message inflow contract

The message inflow contract allows a resource adapter to synchronously or asynchro-
nously deliver messages to endpoints in the application server, irrespective of message
style, semantics, and infrastructure.

● Generic work context contract

The generic work context contract enables a resource adapter to pass on, during
inbound communication, context information that it has received from EIS to a work
instance it has instructed the application server to execute.

● Transaction inflow contract

The transaction inflow contract allows a resource adapter to propagate an imported
transaction to an application server. It also makes it possible to transfer the termination
of a transaction as well as calls initiated by an EIS.

● Security work context

The security work context contract enables a resource adapter to pass on security infor-
mation that it has received from EIS to a work instance it has instructed the application
server to execute. This functionality is referred to as "security inflow".

● Common Client Interface (CCI)

The CCI describes a standard API client and is primarily intended to meet the require-
ments relating to the development of tools for application development and EAI frame-
works (Enterprise Application Integration). The CCI possesses limited functionality
compared to the BeanConnect-specific API

You can also find more detailed information in the JCA 1.6 specification.

JCA adapter versions JCA adapter integration overview

30 BeanConnect V3.0B

2.1.3 SOA architecture

The JCA adapter supports the SOA concept (Service-Oriented Architecture).

SOA is a concept for a system architecture in which functions are implemented in the form
of reusable, technically independent, loosely coupled services. Services can be called
independently of the underlying implementations via interfaces whose specifications may
be public and therefore reliable. Service interaction is performed via a specially provided
communication infrastructure.

Using BeanConnect, it is possible to make components of openUTM and CICS applications
available as services. At the same time, openUTM and CICS applications are able to
address services in the application server.

i Further information can be found, for example, at
http://en.wikipedia.org/wiki/Service-oriented_architecture

2.1.4 JCA adapter integration in Oracle WebLogic Server

Oracle WebLogic Server 12 is an implementation of the Java EE 6 specification and
provides standardized APIs which make it possible, for example, to also use connections
to remote Enterprise Information Systems (EIS). As a component of Java EE 6, the Oracle
WebLogic Server supports the Java EE Connector Architecture 1.6 in accordance with the
JSR322 specification. As a result, it is a simple task to deploy the BeanConnect JCA 1.6
resource adapter in the Oracle WebLogic Server 12.

Figure 1: Oracle WebLogic Server – Java EE Connection Architecture

The application components and the resource adapter are deployed using deployment
descriptors which make it possible to integrate the resource adapter and the application
components in the application server:

● Standard deployment descriptor ejb-jar.xml for application component in accordance
with the Java EE specification.

● Standard deployment descriptor ra.xml for the resource adapter.

Oracle WebLogic Server

Enterprise
Information

System

Resource
Adapter

Application

Contract

System Contracts

(Quality of Service)

Network

Java EE application

component

JCA adapter integration overview JCA adapter versions

BeanConnect V3.0B 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
16

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
2

● Application server-specific deployment descriptors weblogic-ra.xml for the resource
adapter and weblogic-ejb-jar.xml for the application component.

For a detailed description of these deployment descriptors, see section “Configuration files
in the application server” on page 90.

BeanConnect architecture JCA adapter integration overview

32 BeanConnect V3.0B

2.2 BeanConnect architecture

BeanConnect makes it possible to communicate with both openUTM and CICS Enterprise
Information Systems (abbreviated to EIS partners). This chapter describes the components
that are required for these partners as well as the functions that these components possess.

2.2.1 BeanConnect components

BeanConnect consists of the following components:

● The BeanConnect resource adapter implements the JCA 1.6 interfaces. Being a
compliant JCA adapter, it is deployed in the application server and runs within the
application server.

To make it possible to continue to work with older application servers which do not yet
support JCA 1.6, a JCA 1.5-compatible resource adapter providing only JCA 1.5
functionality is also supplied.

● The BeanConnect proxy provides the functionality of a protocol converter as well as
functions for transaction control. It can be seen as an intelligent gateway. It communi-
cates with the resource adapter running within the application server on the one hand
and with the EIS on the other hand. It can be located on the same machine as the
resource adapter or on a different one.

● The BeanConnect Management Console is a Java -based GUI used, for example,
for the configuration and administration of proxies. The Management Console also
provides a command line interface (MC-CLI).

It can manage multiple proxies running on the same host as the Management Console
or on remote hosts. The Management Console is not required for the configuration of
outbound connections using the UPIC protocol

● The BeanConnect tools can be installed and used independently of the proxy
container. These tools include the Management Console Command Handler (MC-
CmdHandler) and Cobol2Java.

JCA adapter integration overview BeanConnect architecture

BeanConnect V3.0B 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
16

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
2

Figure 2: BeanConnect components

The BeanConnect proxy uses the appropriate protocol depending on the type of EIS
partner, i.e. OSI-TP for openUTM partners or LU6.2 for CICS partners.

Figure 3: BeanConnect components for outbound communication with openUTM partners via UPIC protocol

In more complex scenarios it may be necessary to connect one or more application servers
with several EISs. In this case, notice the following rules:

● BeanConnect may only be deployed once in an application server instance

● One resource adapter communicates with exactly one proxy.

● A proxy can communicate either with a single resource adapter (section “Standard
operation with one resource adapter and one proxy” on page 38) or with multiple
resource adapters (section “Multiple resource adapter mode” on page 38 or section
“BeanConnect in cluster operation” on page 46)

● One proxy can communicate with multiple EIS partners.

resource adapter

Enterprise
Information SystemBeanConnect proxy

BeanConnect Management Console

(CICS / UTM)

Application server

BeanConnect
OSI-TP

LU6.2

resource adapter

Enterprise
Information System

(UTM)

Application server

BeanConnect
UPIC protocol

BeanConnect architecture JCA adapter integration overview

34 BeanConnect V3.0B

● One Management Console can handle multiple proxies (configuration and adminis-
tration).

In addition, when BeanConnect is used in a cluster configuration, it can be operated with
multiple resource adapters and multiple proxies, see section “BeanConnect in cluster
operation” on page 46.

2.2.1.1 BeanConnect resource adapter

BeanConnect is a connector resource adapter in compliance with the JCA 1.6 specification
from Sun MicrosystemsTM. It supplies standardized connectivity of openUTM and CICS
applications to applications running in an application server based on the Java EE archi-
tecture and plays a fundamental role in the integration and connectivity between an EIS and
an application server. It serves as the point of contact between application components,
application servers and Enterprise Information Systems.

The resource adapter is provided as a RAR archive. This archive must be deployed in the
application server by means of the application server.
Detailed information how to configure the resource adapter can be found in chapter “Config-
uration in the application server” on page 89.

2.2.1.2 BeanConnect proxy

The proxy is the connecting link between the resource adapter on one side and the EIS on
the other side.

It serves as container for configuration properties of the communication partners and holds
all information on services, communication endpoints and message endpoints.

The proxy is responsible for transporting the messages and ensures that they are assigned
to the corresponding partners and services. It provides functions for transactional security
and for verification of access rights (user ID and password) on requests to and from
openUTM or CICS applications. The proxy stores asynchronous messages (inbound and
outbound) until they are sent to the EIS partner or the message endpoint application.

The bulk of the BeanConnect configuration is done by configuring the proxy.

The proxy contains the proxy container which is based on the openUTM transaction monitor
openUTM V6.3.

You can use the Management Console to configure the proxy in three different ways

● As an openUTM proxy which communicates exclusively with EIS partners of type
openUTM.

An openUTM proxy consists only of the proxy container.

JCA adapter integration overview BeanConnect architecture

BeanConnect V3.0B 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
16

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
2

● As a CICS proxy which communicates exclusively with EIS partners of type CICS.

A CICS proxy requires additional components to communicate with CICS applications.
A separate license is required for CICS communication.

● As a combined proxy

A combined proxy communicates both with EIS partners of type openUTM and with EIS
partners of type CICS. A further, separate license is required for CICS communication.

Components of a CICS proxy

For communications with CICS applications, the proxy additionally consists of the following
internal components:

● the openUTM-LU62 Gateway, implementing the LU6.2 protocol stack for intercon-
nection with EIS partners supporting the SNA protocol LU6.2. Both transactional and
non-transactional connections with CICS applications are supported.

● Communication service:
This is a third-party product that implements the SNA stack

This is SNAP-IX for Solaris Systems from Metaswitch Networks Ltd or IBM's Commu-
nications Server for Linux and Windows. These products are not included in the
BeanConnect scope of delivery.

The following figure shows the components of the proxy for communications with CICS
applications:

Figure 4: BeanConnect proxy components of a CICS proxy

BeanConnect proxy

SNAP-IX

Communi-

Server

Linux, Windows

Solaris systems
openUTM

LU62

cations

Gateway
container

Proxy

Communication
Service

systems

BeanConnect architecture JCA adapter integration overview

36 BeanConnect V3.0B

The proxy and all the proxy components are managed and administered using the
Management Console. The openUTM-LU62 Gateway and communication service proxy
components may run either on the same computer as the proxy container or together on a
separate computer as required.

If a component that is to be administered (proxy, gateway, communication service) runs on
a different host from the Management Console, then an MCCmdHandler must be installed
on this separate host, see also section “BeanConnect tools” on page 37.

Please note that the communication service must be installed under a user ID which has
SNA authorization.

i The BeanConnect proxy is used for outbound communication via the OSI-TP and
LU6.2 protocols as well as for inbound communication.

In the case of outbound communication with EIS partners of type openUTM via the
UPIC protocol, the proxy is not used.

2.2.1.3 BeanConnect Management Console

The Management Console supports configuration and administration of the proxy and
proxy components. It offers a Java GUI that facilitates the necessary configuration steps.

The Management Console is able to work with more than one proxy, local or remote.

● Local means that the proxy is located on the same computer as the Management
Console and that the proxy is installed under the same user ID, or that the access rights
to the user ID under which the proxy is installed have been set accordingly.

● Remote means that the proxy is installed on a different computer from the Management
Console or that the proxy is installed on the same computer but under a different user
ID which the Management Console is not able to access.

Remote access is carried out with the Management Console Command Handler (MC-
CmdHandler). The MC-CmdHandler is a stand-alone Java program which allows the
Management Console to manage remote proxies.

The administrator uses the Management Console to define all necessary information for the
proxy configuration. The following information can be specified:

● General information on the proxy or the proxy cluster

● Management of the properties of resource adapters and access to the resource
adapters' deployment descriptors

● Description of the EIS partners

● The services and the communication endpoints for outbound communication (see
section “Outbound communication” on page 41)

JCA adapter integration overview BeanConnect architecture

BeanConnect V3.0B 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
16

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
2

● The Services and the message endpoints for inbound communication (see section
“Inbound communication” on page 41)

● Connection to the JMX server for access to MBeans and the information and functions
which these provide

Additionally for CICS partners:

● Connection to the openUTM-LU62 Gateway

● Connection between the Communication Service and the EIS partner

The configuration data is stored by the Management Console so that it is available in subse-
quent Management Console sessions and can be modified or completed. The Management
Console creates the configuration files to be used by the proxy, the proxy components and
the EIS.

You can also use the command line interface (MC-CLI) to read the configuration data of the
BeanConnect configuration, see chapter “Command Line Interface of the BeanConnect
Management Console (MC-CLI)” on page 299.

2.2.1.4 BeanConnect tools

BeanConnect provides certain components in the form of tools which can be installed and
used independently of the proxy container. These tools are not dependent on the type of
EIS communication partner.

BeanConnect provides the following tools:

● MC-CmdHandler (Management Console Command Handler)

Using separately installed MC-CmdHandlers, it is possible, for example, to administer
remote resource adapters or the proxy components required for CICS partners via the
Management Console without having to install the proxy container.

● Cobol2Java

Cobol2Java permits the object-oriented mapping of COBOL data structures to Java
classes.

BeanConnect architecture JCA adapter integration overview

38 BeanConnect V3.0B

2.2.2 Standard operation with one resource adapter and one proxy

During standard operation, one proxy works together with precisely one resource adapter.
However, it is possible to address multiple EIS partners.

Figure 5: Relationships between the BeanConnect components in standard operation and without a cluster

The BeanConnect resource adapter cannot be deployed more than once in the same appli-
cation server instance.

2.2.3 Multiple resource adapter mode

In multiple resource adapter mode, one proxy works together with multiple resource
adapters which act independently of one another and run on different application server
instances. One and the same BeanConnect resource adapter cannot run multiple times on
the same application server instance.

i Cluster operation and multiple resource adapter mode are mutually exclusive.

Resource
Enterprise

Information
BeanConnect

BeanConnect Management Console

Systemproxy

Application
server

adapter

BeanConnect

1:n

1:1

1:1

1:1

instance

JCA adapter integration overview BeanConnect architecture

BeanConnect V3.0B 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
16

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
2

Figure 6: BeanConnect components in multiple resource adapter mode with 2 resource adapters and one proxy

A proxy can handle up to 32 resource adapters on different application server instances.
Like standard operation, multiple resource adapter mode is configured and administered
via the Management Console.

Enterprise
Information

BeanConnect

BeanConnect Management Console

Systemproxy

1:n

Resource
Adapter 2

BeanConnect

Resource
Adapter 1

BeanConnect

Application
server

instance B

Application
server

instance A

BeanConnect as a JCA-compliant resource adapter JCA adapter integration overview

40 BeanConnect V3.0B

2.3 BeanConnect as a JCA-compliant resource adapter

BeanConnect supports different communication directions and models. BeanConnect
allows outbound and inbound communication, dialog and asynchronous communication as
well as transactional and non-transactional communication.

2.3.1 Outbound and inbound communication

During outbound communication, an EJB deployed in the application server communi-
cates with a partner application on the EIS side of the connection.

During inbound communication, an EIS sends messages to a message-driven bean in a
Java EE application server.

With openUTM partners BeanConnect supports the following communication variants:

● bidirectional (outbound and inbound) and transactional or non-transactional communi-
cation to OLTP applications (On-Line Transaction Processing) via the OSI-TP protocol.

● unidirectional (outbound only) and non-transactional access to openUTM applications
via the UPIC protocol. This access is performed without the involvement of proxies.

● Non-transactional, asynchronous inbound communication via openUTM-Socket and
the RFC1006 protocol (see section “Inbound communication” on page 41).

With CICS partners BeanConnect supports the following communication variant:

● bidirectional (outbound and inbound) and transactional or non-transactional access
to/from OLTP (On-Line Transaction Processing) applications via the LU6.2 protocol.
LU6.2 is a Systems Network Architecture (SNA) protocol that supports both system-to-
system communication and system-to-device communication.

In addition, BeanConnect supports non-transactional inbound communication via the proxy
with any application which supports one of the protocols: UPIC, openUTM-Socket or
RFC1006 (see section “Inbound communication” on page 41).

JCA adapter integration overview BeanConnect as a JCA-compliant resource adapter

BeanConnect V3.0B 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
16

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
2

2.3.1.1 Outbound communication

With outbound communication, an EJB deployed in the application server initiates commu-
nication with a partner application on EIS side. Outbound communication can take place as
both dialog and asynchronous communication.

Figure 7: Outbound communication for openUTM partners

Figure 8: Outbound communication for CICS partners

2.3.1.2 Inbound communication

With inbound communication, an EIS sends messages to a message-driven bean
application in a Java EE application server. The message-driven bean must implement a
resource-adapter-specific message listener interface. BeanConnect supports the Service
Endpoint Message Listener interface which forms part of the CCI (Common Client
Interface) defined in the JCA specification and, additionally, its own message listener
interface for dialog and asynchronous communication (see section “Interfaces” on page 44.

Application server

openUTM
application

EJB

EJB
UPIC

connection

BeanConnect
Resource
Adapter

BeanConnect
proxy

OSI-TP

connection

openUTM
application

CICS
application

BeanConnect
proxy

LU6.2

connection

Application Server

EJB

EJB
BeanConnect

Resource
Adapter

BeanConnect as a JCA-compliant resource adapter JCA adapter integration overview

42 BeanConnect V3.0B

BeanConnect supports the following communication types for inbound communication:

● EIS is an openUTM application

– transactional and non-transactional communication via the OSI-TP protocol
(dialog and asynchronous)

– non-transactional communication via the openUTM socket protocol or RFC1006
protocol (only asynchronous)

● EIS is a CICS application

– transactional and non-transactional communication via the LU6.2 protocol
(asynchronous and dialog communication)

● EIS is another application

– UPIC application: non-transactional communication via the UPIC protocol (dialog)

– openUTM socket client or RFC1006 application: non-transactional communication
via the openUTM socket protocol or RFC1006 protocol (dialog and asynchronous)

Figure 9: Inbound communication for openUTM partners

Figure 10: Inbound communication for CICS partners

open UTM socket/

openUTM
application

Application server

MDB
BeanConnect

Resource
Adapter

MDB

OSI-TPBeanConnect
proxy

UPIC client

RFC1006 client

Socket

UPIC

connection

CICS
application

Application server

BeanConnect
proxy

MDB

MDB

LU6.2

connection

BeanConnect
Resource
Adapter

JCA adapter integration overview BeanConnect as a JCA-compliant resource adapter

BeanConnect V3.0B 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
16

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
2

2.3.2 Dialog and asynchronous communication

BeanConnect supports dialog as well as asynchronous communication for both inbound
and outbound communication.

2.3.2.1 Dialog communication

In the case of dialog communication, one communication partner waits for a response from
the other partner before continuing processing, i.e.:

● In the case of outbound dialog communication, the application (EJB) in the application
server waits for the response from the EIS partner.

● In the case of inbound dialog communication, the EIS partner waits for the response
from the message-driven bean application.

2.3.2.2 Asynchronous communication

In the case of asynchronous communication, a communication partner does not wait for a
response from the other partner, i.e.:

● In the case of outbound asynchronous communication, the application (EJB) in the
application server sends a message to the EIS partner without expecting a response,

● In the case of inbound asynchronous communication, the EIS partner sends a message
to the message-driven bean application without expecting a response.

2.3.3 Transactional and non-transactional communication

BeanConnect supports transactional and non-transactional communication.

Transactional communication is only possible for communication with OLTP applications
via the OSI-TP and the LU6.2 protocol.

2.3.3.1 Transactional communication

In the case of dialog communication, the processing in the remote application is included
in the global transaction. This ensures that the distributed resources are consistent at all
times, even across applications.

In the case of asynchronous communication, only transmission of the message is included
in the transaction. Asynchronous jobs are transmitted exactly once in the case of trans-
actional communication. This means that even in the event of network malfunctions or
failure of an application, the asynchronous job is not lost, neither is the message duplicated.

BeanConnect as a JCA-compliant resource adapter JCA adapter integration overview

44 BeanConnect V3.0B

2.3.3.2 Non-transactional communication

In the case of non-transactional communication, the processing in the remote application is
independent of the local transaction. When two independent transactions interoperate,
each application commits or rolls back its own transaction independently. In the event of
communication failure, for instance, this can lead to inconsistent data in the different appli-
cations. This kind of communication does not ensure that asynchronous jobs are trans-
mitted only once.

2.3.4 Interfaces

BeanConnect supports both BeanConnect-specific interfaces and standard interfaces in
accordance with the JCA specification. This section presents an overview of the interfaces
for outbound and inbound communication

Detailed information on the programming interfaces can be found in chapter “Interfaces and
programming” on page 429.

Interfaces for outbound communication

 During outbound communication, an EJB deployed in the application server communicates
with a partner application in the EIS system. This EJB can communicate with EIS partners
via interfaces in the following packages.

● net.fsc.jca.communication

The interfaces combined in the package net.fsc.jca.communication define propri-
etary BeanConnect-specific communication interfaces. These support different
programming modes (like send/receive and call) and provide access to the functions
supported by the underlying communication protocol.

● net.fsc.jca.communication.cci

The Common Client Interface (CCI) is defined in the JCA specification. It describes a
standard client API and primarily addresses the requirements of developing application
development tools and EAI frameworks (Enterprise Application Integration). Compared
with the BeanConnect-specific API, the CCI provides a restricted functional range.

JCA adapter integration overview BeanConnect as a JCA-compliant resource adapter

BeanConnect V3.0B 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
16

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
2

Interfaces for inbound communication

With inbound communication, an EIS can send messages to a message-driven bean appli-
cation in a Java EE application server.

The message-driven bean must implement a resource-adapter-specific message listener
interface.

BeanConnect supports the following message listener interfaces:

● net.fsc.jca.communication.AsyncOltpMessageListener

BeanConnect-specific interface for asynchronous communication

● net.fsc.jca.communication.OltpMessageListener

BeanConnect-specific interface for dialog communication

● javax.resource.cci.MessageListener

Common Client Interface (CCI) for dialog communication

A message-driven bean which implements one of the first two message listener interfaces
is called an OLTP message-driven bean.

BeanConnect in cluster operation JCA adapter integration overview

46 BeanConnect V3.0B

2.4 BeanConnect in cluster operation

BeanConnect supports both clusters in the application server and proxy clusters. This
means that n instances of the resource adapter can be assigned to m proxy instances.

Cluster operation is designed to increase reliability and balance the load between the
instances.

Figure 11: BeanConnect components in cluster operation

In the case of outbound communication, a resource adapter instance is always assigned to
precisely one proxy cluster instance at any one time. If this instance fails, the resource
adapter instance searches for a new proxy cluster instance. Load balancing is performed
using the mechanisms present in the application server.

In the case of inbound communication, all the application server instances are always
assigned to a single proxy instance. The proxy container is responsible for load balancing.

The proxy cluster is configured using the Management Console. One of the proxy instances
is identified as the master instance and is used to synchronize the other proxy instances,
for example when changes are made to the configuration data.

Enterprise
Information

BeanConnect Management Console

System

1:n

BeanConnect
proxyresource

adapter instance

BeanConnectApplication
server

instance instance

Proxy clusterApplication server cluster

BeanConnect V3.0B 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

3 Installing BeanConnect

This chapter describes how to install, update and uninstall BeanConnect.

● Installing BeanConnect under Solaris systems

● Installing BeanConnect under Linux systems

● Installing BeanConnect under Windows systems

● Installing a BeanConnect resource adapter

● Installing the BeanConnect tools

● Update installation for the BeanConnect proxy container and Management Console

● Uninstalling BeanConnect

● Uninstalling the BeanConnect resource adapter

● Uninstalling the BeanConnect tools

Installation directories

In the present manual, the various installation directories are designated as follows:

<BC_inst_dir>
Installation directory for the BeanConnect product files.

Default setting on Unix and Linux systems: opt/lib/bc30b00.

<BC_home>
Installation directory for the BeanConnect files and directories.

<MC_home>
Installation directory for the BeanConnect Management Console. By default,
<MC_home> is a subdirectory of <BC_home>.

<Proxy_home>
Installation directory for the BeanConnect proxy container. By default,
<Proxy_home> is a subdirectory of <BC_home>.

Installing BeanConnect

48 BeanConnect V3.0B

Note for Unix and Linux platforms

If the BeanConnect resource adapter or BeanConnect tools are to be installed via a
graphical user interface on a Unix or Linux platform, then the environment variable
DISPLAY must be set.

If automated installation (i.e. without a graphical user interface) is to be performed, then this
must be configured via the corresponding auto-xml file.

Installing BeanConnect Installing BeanConnect under Solaris systems

BeanConnect V3.0B 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

3.1 Installing BeanConnect under Solaris systems

BeanConnect supports the SunTM Solaris operating system (SPARC).

BeanConnect contains the following product files:

● BeanConnect proxy

● openUTM

● openUTM-LU62 gateway (only for CICS partners)

● PCMX

Installing BeanConnect involves the following steps:

1. Master installation

2. Installing the BeanConnect proxy container and the Management Console

3.1.1 Master installation

Master installation must be performed under the root user ID.

You start master installation with the following command:

pkgadd -d MASTER_BC30B00.pkg

Master installation allows you to install the following packages:

● PCMX (Communications Manager UNIX OS)

● openUTM

● BeanConnect

● openUTM-LU62 gateway (for CICS partners)

Select the package(s) that you wish to install.

i To use BeanConnect, you must have installed all the packages of the master instal-
lation, but you should install only those packages that are not yet installed on your
system. Please make sure that the versions of the package are identical.

If you want to install multiple packages, you do not always have to restart the master instal-
lation package. When you start the master package, the individual packages that you can
install are listed in numerical order.

Installing BeanConnect under Solaris systems Installing BeanConnect

50 BeanConnect V3.0B

Example 1 Installing multiple packages

You want to install the BeanConnect (package 1), PCMX (package 2) and openUTM
(package 4) product files.

The following packages are available:
1 BC30B00 FUJITSU Software BeanConnect V3.0

(sparc) 3.0B00
2 SMAWpcmx Communications Manager UNIX OS

(sparc) 6.0B00
3 SMAWutm6s openUTM-LU62: openUTM LU6.2 comm. (using SNAP-IX)

(sparc) 5.1A40
4 UTM63A00 FUJITSU Software openUTM Enterprise Edition V6.3

(sparc) 6.3A00

Select package(s) you wish to process (or 'all' to process all packages).
(default: all) [?,??,q]: 1 2 4

Packages 1, 2 and 4 will be installed one after the other.

3.1.1.1 Installing the BeanConnect product files

i Before you can install the BeanConnect container and/or the BeanConnect
Management Console, you must first install the BeanConnect product files.

Proceed as follows:

1. Select the BeanConnect package from the master installation.

2. Specify the BeanConnect installation directory in which the BeanConnect product files
are to be installed. Default: /opt/lib

3.1.1.2 Installing PCMX

The PCMX software must already be installed before a BeanConnect proxy can be installed
on this host. If only the BeanConnect Management Console or other BeanConnect tools are
installed on this host then it is not necessary to install PCMX.

1. Select the PCMX (Communications Manager UNIX OS) package from the master
installation.

2. PCMX (Communications Manager UNIX OS) is installed automatically.

Installing BeanConnect Installing BeanConnect under Solaris systems

BeanConnect V3.0B 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

3.1.1.3 Installing openUTM

You must install openUTM before installing the BeanConnect proxy container. This means
that it is not necessary to install openUTM if you only want to run the BeanConnect
Management Console or other BeanConnect tools on this host.

1. Select the openUTM package from the master installation.

2. Specify the home directory in which openUTM is to be installed. Default: /opt/lib

3. Specify the base directory <basedir>. To do this, you must once again select the
directory which you specified in step two.

3.1.1.4 Installing the openUTM-LU62 Gateway (for CICS partners)

1. Select the openUTM-LU62 gateway package from the master installation.

2. The openUTM-LU62 gateway is installed automatically.

3.1.1.5 Silent installation

In the case of the openUTM and BeanConnect subpackages, you need a so-called
<response-file> in order to respond to the questions concerning location, owner and group.
In addition, for both products you need a modified
<installation-administration-file>, in order to deactivate the security query for root
authorization.

The default file default is located under /var/sadm/install/admin.

1. Copy the default file.

2. Specify action= nocheck.

3. Specify the file as the <installation-administration-file>

On Solaris systems, you call silent installation as follows:

pkgadd -r <response-file> -a <installation-administration-file>
-d MASTER_BC30B00.pkg
<<EOF
<Space-separated subpackage number>
EOF

Example for <response-file>:

LOC="/opt/lib"
OWNER="root"
GROUP="root"

Installing BeanConnect under Solaris systems Installing BeanConnect

52 BeanConnect V3.0B

3.1.2 Installing the BeanConnect proxy container and the Management
Console

i Before you can install BeanConnect components, you must first install JDK, PCMX,
openUTM, openUTM-LU62 gateway (for CICS partners) and the BeanConnect
product files from the master installation.

The BeanConnect installation program can perform the following operations:

● Installing the BeanConnect proxy container and the MC-CmdHandler

● Installing the BeanConnect Management Console including the command line interface
(MC-CLI)

Starting the installation procedure

After you have installed the product files, the second step is to perform a user-specific
installation of the BeanConnect components.

Log in to the system using the user ID under which BeanConnect is to run. Root or admin-
istration authorization is not required for installation.

1. Switch to the directory in which you want to install the proxy container / Management
Console.

Example:

Switch to the directory <home1/lib> if you want to install the proxy container in
<home1/lib>/<proxy_cont_name> and the Management Console in
<home1/lib>/<console_name>.

2. Start the installation using the following command:

<BC_inst_dir>/shsc/install.BeanConnect

3. The procedure displays a menu containing the components you can install.

– 1 BeanConnect Proxy Container

This installs a BeanConnect proxy container and the MC-CmdHandler.

– 2 Management Console (Administration Tool)

This installs the BeanConnect Management Console including the command line
interface (MC-CLI).

Specify the number of the component(s) that you want to install. If you want to install
both components, enter 1 2. If you enter q, the installation procedure is terminated.

Installing BeanConnect Installing BeanConnect under Solaris systems

BeanConnect V3.0B 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

Installing the BeanConnect proxy container

The installation procedure <BC_inst_dir>/shsc/install.BeanConnect requires the
following input:

1. User base directory in which the BeanConnect proxy is to be installed

The installation procedure sets the current directory (from which the procedure was
started) as the BeanConnect user base directory <BC_home> in which the proxy
container is to be installed.

If you accept this directory with y, the installation procedure continues.
If you specify n, the installation procedure is aborted.

To install the proxy container in another directory, switch to this directory and start the
installation again.

2. Name of the proxy container

Specify the name of the proxy container.

The name must be unique in your system.
The name can have a maximum length of eight characters.
The following characters are permitted: A,...,Z, a,...,z, 0,...,9
Lowercase letters are converted to uppercase letters.

The default is BCCONT.

i A subdirectory with the name of the proxy container is created in the
BeanConnect user base directory. The files are installed in this subdirectory.
The proxy container home directory is therefore <BC_home>/<proxy_cont_name>
(e.g. /opt/lib/bc30b00/BCCONT).

If you specify the name of a proxy container that is already installed and is located under
<BC_home>, you are asked whether you want to overwrite the proxy container (new
installation) or perform an update installation (see section “Update installation for the
BeanConnect proxy container and Management Console” on page 77).

3. Convert Long Host Name

If the computer has a long host name (> 8 characters), then you must specify a
"mapped host name" of no more than 8 characters in length here.
Default setting: The last 8 characters of the host name.

4. openUTM home directory

Specify the openUTM home directory. The installation procedure also searches for
appropriate openUTM versions that are installed on the computer and displays a list of
the installed UTM versions as of a minimum version. You can select the desired home
directory from this list.

Installing BeanConnect under Solaris systems Installing BeanConnect

54 BeanConnect V3.0B

If openUTM is not installed in the specified directory, the following error message is
displayed:
openUTM not found!
In this case, check the specified home directory or the installation of openUTM (see
section “Installing openUTM” on page 51).

5. JAVA home directory

Prerequisite: JDK must already be installed on your system before you can install the
proxy.

The installation procedure asks for the name of the JAVA home directory. You have to
specify the directory explicitly. No name is suggested. You have to specify a fully
qualified directory name. The procedure then checks your input.

If JDK is not installed in the specified directory, the following error message is displayed:
JDK not found!
Check the specified home directory or install JDK first.

6. Acceptance

The installation procedure displays the name of the archive from which the proxy is
installed. Installation must be performed from the archive
<BC_inst_dir>/32/CPIO.BCCont and <BC_inst_dir>/64/CPIO.BCCont, respectively.

Accept this archive.

7. Port number of the proxy container

BeanConnect needs a range of one hundred port numbers. You are asked to enter the
port number which specifies the beginning of this range.

The range of port numbers must not be used by other proxy containers or other appli-
cations. You have to specify a different port number here.

Start Value of the Port Number Range for BeanConnect

Specify the start value of the port number range. The next hundred port numbers are
reserved for BeanConnect. Values between 1025 and 32667 are permitted for the port
number. Default: 31000.

8. Password for administration of the proxy container

Specify the password. Default: admin

9. The proxy container is installed once this dialog has been completed.

i You can repeat the installation procedure several times if you want to install multiple
proxy containers.

Installing BeanConnect Installing BeanConnect under Solaris systems

BeanConnect V3.0B 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

Installing the Management Console

The installation procedure requires you to make the following entries:

1. User base directory in which the Management Console is to be installed
(omitted if you have chosen steps 1 and 2, i.e. you have already installed the proxy)

The installation procedure sets the current directory (from which the procedure was
started) as the BeanConnect user base directory <BC_home> in which the Management
Console is to be installed.

If you accept the directory with y, the installation procedure continues. If you specify n,
the installation procedure is aborted.

2. Directory for the Management Console configuration files

The configuration files are stored in a subdirectory of the BeanConnect user base
directory <BC_home>.

Specify the subdirectory <console_name>. Default: console

The Management Console home directory is consequently
 <BC_home>/<console_name>.

If you specify the name of a Management Console that is already installed in
<BC_home>, you are asked whether you want to overwrite the Management Console
(new installation) or perform an update installation (see section “Update installation for
the BeanConnect proxy container and Management Console” on page 77).

3. JAVA home directory

Prerequisite: JDK must already be installed on your system before you can install the
Management Console.

The installation procedure asks for the name of the JAVA home directory. You have to
specify a fully qualified directory name. The procedure then checks your input.

If JDK is not installed in the specified directory, the following error message is displayed:
JDK not found!
Check the specified Java home directory or install JDK first.

4. Select the bit architecture

The installation procedure asks you to specify the bit architecture under which the
Management Console is to run. This allows you to force the Management Console to
run under a different bit architecture from the JDK that you have specified in the Java
home directory.

Installing BeanConnect under Solaris systems Installing BeanConnect

56 BeanConnect V3.0B

5. Oracle WebLogic Server configuration

The following query is issued:

Configuration for Oracle WebLogic Server?([y]|n)

If you enter n, continue at point 6.

If you enter y, you will see the prompt:

Please enter product installation directory of WebLogic Server or enter
<RETURN> for remote machine

If you enter <RETURN>, you will see the message:

Please copy "wlclient.jar" and "wljmxclient.jar" to "<console-Installa-
tionsverzeichnis>/bin/weblogic" after this installation

6. Acceptance

The installation procedure displays the name of the archive from which the
Management Console is installed. Installation must be performed from the archive
<BC_inst_dir>/CPIO.console.

Accept this archive.

Installing BeanConnect Installing BeanConnect under Linux systems

BeanConnect V3.0B 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

3.2 Installing BeanConnect under Linux systems

BeanConnect supports the Linux operating system.

BeanConnect contains the following product files:

● BeanConnect proxy

● openUTM

● openUTM-LU62 gateway (for CICS partners)

● CMX

Installation of BeanConnect involves the following steps:

1. Master installation

2. Installing the BeanConnect proxy container and the Management Console

3.2.1 Master installation

Master installation must be performed under the root user ID.

You start master installation with the following command:

rpm -i MASTER_BC30B00.rpm --ignorearch --prefix=<BC_install>

Specify the desired BeanConnect installation directory for prefix=<BC_install>. If prefix
is not specified, the default BeanConnect installation directory /opt/lib/ is used.

Master installation allows you to install the following packages:

● PCMX (Communications Manager UNIX OS)

● openUTM-LU62 gateway (for CICS partners)

● openUTM

● BeanConnect

Select the package(s) that you wish to install.

i To use BeanConnect, you must have installed all the packages of the master instal-
lation necessary for the desired functions. However, you should install only those
packages that are not yet installed on your system. Please make sure that the
versions of the package are identical.

If you want to install multiple packages, you do not always have to restart the master instal-
lation package. When you start the master package, the individual packages that you can
install are listed in numerical order.

Installing BeanConnect under Linux systems Installing BeanConnect

58 BeanConnect V3.0B

Example 2 Installing multiple packages

You want to install the PCMX (package 1), openUTM (package 3) and BeanConnect
(package 4) product files:
The following packages are available:
 1 PCMX Communications Manager LINUX
 6.0B00
 2 UTMLU62 openUTM-LU62: openUTM LU6.2 communication
 5.1A40
 3 UTM63A00 FUJITSU Software openUTM Enterprise Edition V6.3
 6.3A00
 4 BC30B00 FUJITSU Software BeanConnect V3.0
 3.0B00

Select package(s) you wish to process (or 'all' to process all packages).
(default: all) [?,??,q]: 1 3 4

Packages 1, 3 and 4 will be installed one after the other.

i The installation operation itself runs in the background. You must therefore wait for
a short time for the termination messages after the shell prompt has been output to
determine whether installation has been performed successfully. You should
therefore start by logging off once the messages have been output.

3.2.1.1 Installing PCMX

The PCMX software must already be installed before a BeanConnect proxy can be installed
on this host. If only the BeanConnect Management Console or other BeanConnect tools are
installed on this host then it is not necessary to install PCMX.

1. Select the PCMX (Communications Manager UNIX OS) package from the master
installation.

2. PCMX is installed automatically in the directory /opt/lib/.

3.2.1.2 Installing the openUTM-LU62 Gateway (for CICS partners)

1. Select the openUTM-LU62 gateway package from the master installation.

2. openUTM-LU62 gateway is installed automatically in the directory /opt/lib/.

Installing BeanConnect Installing BeanConnect under Linux systems

BeanConnect V3.0B 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

3.2.1.3 Installing openUTM

You must install openUTM before installing the BeanConnect proxy container. This means
that it is not necessary to install openUTM if you only want to run the BeanConnect
Management Console or other BeanConnect tools on this host.

1. Select the openUTM package from the master installation.

2. openUTM is installed automatically in the directory which you specified in prefix.

3.2.1.4 Installing the BeanConnect product files

i Before you can install the BeanConnect container and/or the BeanConnect
Management Console, you must first install the BeanConnect product files.

Porceed as follows:

1. Select the BeanConnect package from the master installation.

2. The product files are installed automatically in the directory which you specified in
prefix.

3.2.1.5 Silent installation

You call silent installation on Linux systems in exactly the same way as the master instal-
lation. In addition, you must enter the numbers of the subpackages – separated by spaces
– in the file /response.

Please note the following:
If you do not enter anything in the/response then all the subpackages are installed.

Installing BeanConnect under Linux systems Installing BeanConnect

60 BeanConnect V3.0B

3.2.2 Installing the BeanConnect proxy container and the Management
Console

i Before you can install BeanConnect, you must first install JDK, PCMX, openUTM,
openUTM-LU62 gateway (for CICS partners) and the BeanConnect product files
from the master installation.

The BeanConnect installation program can perform the following functions:

● Installing the BeanConnect proxy container and the MC-CmdHandler

● Installing the BeanConnect Management Console (including the command line
interface MC-CLI)

Starting the installation procedure

After you have installed the product files, the second step is to perform a user-specific
installation of the BeanConnect components.

i The Korn shell (ksh) must be used for installation.

Log in to the system using the user ID under which BeanConnect is to run. Root or admin-
istration authorization is not required for installation.

1. Switch to the directory in which you want to install the proxy container / Management
Console.

Example:

Switch to the directory <home2/lib> if you want to install the proxy container in
<home2/lib>/<proxy_cont_name> and the Management Console in
<home2/lib>/<console_name>.

2. Start the installation using the following command:

<BC_inst_dir>/shsc/install.BeanConnect

3. The procedure displays a menu containing the components you can install.

● 1 BeanConnect Proxy Container

This installs a BeanConnect proxy container and the MC-CmdHandler.

● 2 Management Console (Administration Tool)

This installs the BeanConnect Management Console including the MC-CLI.

Specify the number of the component(s) that you want to install. If you want to install
both components, enter 1 2. If you enter q, the installation procedure is terminated.

Installing BeanConnect Installing BeanConnect under Linux systems

BeanConnect V3.0B 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

Installing the BeanConnect proxy container

The installation procedure <BC_inst_dir>/shsc/install.BeanConnect requires the
following input:

1. User base directory in which the BeanConnect proxy is to be installed

The installation procedure sets the current directory (from which the procedure was
started) as the BeanConnect user base directory <BC_home> in which the proxy
container is to be installed.

If you accept this directory with y, the installation procedure continues.
If you specify n, the installation procedure is aborted.

To install the proxy container in another directory, switch to this directory and start the
installation again.

2. Name of the proxy container

Specify the name of the proxy container.

The name must be unique in your system.
The name can have a maximum length of eight characters.
The following characters are permitted: A,...,Z, a,...,z, 0,...,9
Lowercase letters are converted to uppercase letters.

The default is BCCONT.

i A subdirectory with the name of the proxy container is created in the
BeanConnect user base directory. The files are installed in this subdirectory.
The proxy container home directory is therefore
<BC_home>/<proxy_cont_name>
(e.g. /opt/lib/bc30b00/BCCONT).

If you specify the name of a proxy container that is already installed and located under
<BC_home>, you are asked whether you want to overwrite the proxy container (new
installation) or perform an update installation (see section “Update installation for the
BeanConnect proxy container and Management Console” on page 77).

3. Convert Long Host Name

If the computer has a long host name (> 8 characters), then you must specify a
"mapped host name" of no more than 8 characters in length here.
Default setting: The last 8 characters of the host name.

4. openUTM home directory

Specify the openUTM home directory. The installation procedure also searches for
appropriate openUTM versions that are installed on the computer and displays a list of
the installed UTM versions as of a minimum version. You can select the desired home
directory from this list.

Installing BeanConnect under Linux systems Installing BeanConnect

62 BeanConnect V3.0B

If openUTM is not installed in the specified directory, the following error message is
displayed:
openUTM not found!
In this case, check the specified home directory or the installation of openUTM (see
section “Installing openUTM” on page 51).

5. Java home directory

Prerequisite: JDK must already be installed on your system before you can install the
proxy.

The installation procedure asks for the name of the JAVA home directory. You have to
specify the directory explicitly. No name is suggested. You have to specify a fully
qualified directory name. The procedure then checks your input.

If JDK is not installed in the specified directory, the following error message is displayed:
JDK not found!
In this case, check the specified home directory or install JDK first.

Please note that on Linux systems, JDK must have the same bit characteristics as the
proxy!

6. Acceptance

The installation procedure displays the name of the archive from which the proxy is
installed. Installation must be performed from the archive
<BC_inst_dir>/32/CPIO.BCCont and <BC_inst_dir>/64/CPIO.BCCont, respectively.

Accept this archive.

7. Port number of the proxy container

BeanConnect needs a range of one hundred port numbers. You are asked to enter the
port number which specifies the beginning of this range.

The range of port numbers must not be used by other proxy containers or other appli-
cations.

Start Value of the Port Number Range for BeanConnect

Specify the start value of the port number range. The next hundred port numbers are
reserved for BeanConnect. Values between 1025 and 32667 are permitted for the port
number. Default: 31000.

8. Password for the administration of the proxy container

Specify the password. Default: admin

9. The proxy container is installed once this dialog has been completed.

i You can repeat the installation procedure several times if you want to install multiple
proxy containers.

Installing BeanConnect Installing BeanConnect under Linux systems

BeanConnect V3.0B 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

Installing the Management Console

The installation procedure requires you to make the following entries:

1. User base directory in which the Management Console is to be installed
(omitted if you have chosen steps 1 and 2, i.e. you have already installed the proxy)

The installation procedure sets the current directory (from which the procedure was
started) as the BeanConnect user base directory <BC_home> in which the Management
Console is to be installed.

If you accept the directory with y, the installation procedure continues. If you specify n,
the installation procedure is aborted.

2. Directory for the Management Console configuration files

The configuration files are stored in a subdirectory of the BeanConnect user base
directory <BC_home>.

Specify the subdirectory <console_name>. Default: console

The Management Console home directory is consequently
 <BC_home>/<console_name>.

If you specify the name of a Management Console that is already installed, you are
asked whether you want to overwrite the Management Console (new installation) or
perform an update installation (see section “Update installation for the BeanConnect
proxy container and Management Console” on page 77).

3. JAVA home directory

Prerequisite: JDK must already be installed on your system before you can install the
Management Console.

The installation procedure asks for the name of the JAVA home directory. You have to
specify a fully qualified directory name. The procedure then checks your input.

If JDK is not installed in the specified directory, the following error message is displayed:
JDK not found!
Check the specified Java home directory or install JDK first.

4. Oracle WebLogic Server configuration

The following query is issued:

Configuration for Oracle WebLogic Server?([y]|n)

If you enter n, continue with point 5.

If you enter y, you will see the prompt:

Please enter product installation directory of WebLogic Server or enter
<RETURN> for remote machine

Installing BeanConnect under Linux systems Installing BeanConnect

64 BeanConnect V3.0B

If you enter <RETURN>, you will see the message:

Please copy "wlclient.jar" and "wljmxclient.jar" to "<Console-Installa-
tionsverzeichnis>/bin/weblogic" after this installation

5. Acceptance

The installation procedure displays the name of the archive from which the
Management Console is installed. Installation must be performed from the archive
<BC_inst_dir>/CPIO.console.

Accept this archive.

Installing BeanConnect Installing BeanConnect under Windows systems

BeanConnect V3.0B 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

3.3 Installing BeanConnect under Windows systems

BeanConnect supports the Microsoft Windows operating system.

3.3.1 Master installation

You need administration authorization to perform installation.

The BeanConnect DVD contains the following packages:

● PCMX32 V5.0A80

● openUTM V6.3A00

● BeanConnect V3.0B00

● openUTM-LU62 gateway V5.1A41 (for CICS partners)

All the packages required for the functions you want to use must be installed before you can
use BeanConnect. However, you should only install the packages that are not yet present
on your system. You must also make sure that the versions of the packages match.

3.3.1.1 Installing PCMX

You must install PCMX before installing openUTM and BeanConnect.

1. Open the DOS command prompt with administrative permissions and enter the
following command:

msiexec /i <pcmx-verzeichnis>\pcmx-32.msi

2. In the PCMX-32 Installation window, click Next > to open the following sequence of
dialog boxes:

Ê In the Information dialog box, click Readme to open the readme file which contains
detailed information. Click License to display the license agreement.

Ê In the ... choose your preferred Installation method dialog box, check the
Standard Installation box (default) and click Next >.

Ê The Ready to install dialog box then lists the installation directories. Click Next >
to continue.

Ê In the Installation completed dialog box, click Finish.

Installing BeanConnect under Windows systems Installing BeanConnect

66 BeanConnect V3.0B

3.3.1.2 Installing openUTM

You must install openUTM before installing BeanConnect.

1. Open the DOS command prompt with administrative permissions and enter the
following command:

msiexec /i <openutm-verzeichnis>\utm.msi

2. Follow the installation program instructions and select the appropriate options.

openUTM checks the system requirements and makes sure that sufficient disk space
is available. If the system fails to meet the requirements, installation is rejected.

If an older version of openUTM exists on your PC and you decide to install openUTM
in the same directory, the older version is automatically overwritten.

If an older version of openUTM exists on your PC and you decide to install openUTM
in another directory, the valid version is the one that was most recently installed.

3. Reboot the system if you are requested to do so by the installation routine.

3.3.1.3 Installing BeanConnect

i Before you can install BeanConnect, you must first install JDK, PCMX and
openUTM.

The BeanConnect installation program performs the following tasks:

● It installs the BeanConnect proxy container and the MC-CmdHandler

● It installs the BeanConnect Management Console including the command line interface
MC-CLI

i If you want to update an existing installation, you find detailed information in section
section “Update installation for the BeanConnect proxy container and Management
Console” on page 77.

Installation procedure

To install BeanConnect, perform the steps described below:

1. Start the installation program <beanconnect-directory>\setup.exe. with adminis-
trative permissions.

The Installation dialog opens. You can navigate through the sequence of dialog boxes
that are now displayed by clicking Next > and < Back.

2. Welcome screen
Click Next to start the installation.

Installing BeanConnect Installing BeanConnect under Windows systems

BeanConnect V3.0B 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

3. Information dialog box
Click Readme to view the BeanConnect readme file.

4. Choose Language dialog box
Select the language for the Management Console online help system.

5. Common Resources dialog box
Decide whether or not you want to install the common resources. These include
archives, libraries and documents etc. When performing a new installation, you must
always also install the common resources, see section “Installing common resources”
on page 68.

If you do not want to install the common resources, the Common Resources Directory
dialog box asks you to specify the directory containing the common resources that you
intend to use.

In the case of an update installation, you must ensure that the current common
resources are installed.

6. Installation Option dialog box
Select Normal installation to perform a new installation.

Select Update installation to update an existing BeanConnect installation. For infor-
mation on update installations, see section “Update installation for the BeanConnect
proxy container and Management Console” on page 77.

Select the entry Update installation without deinstallation to update an existing
BeanConnect installation without uninstalling the existing installation. For information
on update installations, see section “Update installation for the BeanConnect proxy
container and Management Console” on page 77.

7. Proxy Components dialog box
Check the appropriate box(es) to specify the component(s) which you want to install.

You can select one or both of the components. The subsequent installation process
depends on the components that you have selected for installation.

– BeanConnect Proxy Container

Installs and initiates a BeanConnect proxy container and the MC-CmdHandler.

It first opens the dialog box openUTM Directory and then the dialog box Java
Directory.

openUTM Directory dialog box
Specify the openUTM home directory which contains the ex\libwork.dll file.

JAVA Directory dialog box
Specify the JAVA home directory. This is the directory on your system that contains
the JDK lib\tools.jar and bin\java.exe files.

Installing BeanConnect under Windows systems Installing BeanConnect

68 BeanConnect V3.0B

– Management Console (Administration Tool)

Installs the BeanConnect Management Console with which you can configure and
administer BeanConnect proxies.

If you only activate the option Management Console (Administration Tool) then
the dialog box Java Directory is opened.

JAVA Directory dialog box
Specify the JAVA home directory. This is the directory on your system that contains
the JDK lib\tools.jar and bin\java.exe files.

Installing common resources

If you have chosen to install the common resources in the Common Resources dialog box
then the following dialog boxes are displayed

1. Target BeanConnect Common Resources Directory to install dialog box

Enter the home directory in which the BeanConnect common resources are to be
installed. Default: C:\BeanConnect\BC30B00.

2. BeanConnect Common Resources Program Group dialog box

Select the program group in which you want the installation program to save the
BeanConnect icons for the common resources. You can either select an existing
program group or create a new one.

By default, the installation program creates the following program group:

FUJITSU Software BeanConnect V3.0B00

Installing the BeanConnect proxy container

i If a proxy container of the same name already exists then this must be shut down
correctly before you perform this installation.

If you select BeanConnect Proxy Container in the Proxy Components dialog box, the
following installation program dialog opens:

1. Proxy Container Options dialog box
Specify the name, the port number and the password of the proxy.

– Name for Proxy Container

Name of the proxy container. Default: BCCont

The name must be unique in your system.
The name can have a maximum length of eight characters.
The following characters are permitted: A,...,Z, a,...,z, 0,...,9

Installing BeanConnect Installing BeanConnect under Windows systems

BeanConnect V3.0B 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

– Begin of port interval for Proxy Container

BeanConnect needs a range of 100 port numbers. You are asked to enter the port
number which specifies the beginning of this range.

The range of port numbers must not be used by other proxy containers or other
applications.

Start Value of the Port Number Range for BeanConnect

Specify the start value of the port number range. The next hundred port numbers
are reserved for BeanConnect. Values between 1025 and 32667 are permitted for
the port number. Default: 31000.

– Password for Proxy Container

Specify the admin password. Default: admin

2. Target Proxy Container Directory to install dialog box
Specify the proxy container home directory in which the proxy container is to be
installed.

By default, the proxy container is installed in the BeanConnect home directory
<BC_home>\<proxy_cont_name>.

Click the Browse button to select a different directory.

3. Proxy Container Program Group dialog box
Select the program group in which you want the installation program to save the
BeanConnect icons for the proxy container. You can either select a program group that
is already present or create a new program group.

By default, the installation program creates the program group:

FUJITSU Software BeanConnect V3.0B00\<proxy_cont_name>

4. Convert Long Host Name dialog box

If the computer has a long host name (> 8 characters), then you must specify a
"mapped host name" of no more than 8 characters in length here.
Default setting: The last 8 characters of the host name.

5. Permit ports through the windows firewall dialog box

Yes (default value) causes the installation program to enable the ports used to operate
the Management Console command handler (MC-CmdHandler) for the use of the
firewall.

Installing BeanConnect under Windows systems Installing BeanConnect

70 BeanConnect V3.0B

Installing the BeanConnect Management Console

If you select Management Console (Administration Tool) in the Proxy Components
dialog box, the following installation program dialog opens:

1. Target BeanConnect Management Console Directory to install dialog box
Specify the Management Console home directory in which the Management Console is
to be installed.

By default, the Management Console is installed in the Management Console home
directory <BC_home>\Console.

Click the Browse button to select a different directory.

2. BeanConnect Management Console Program Group dialog box
Select the program group in which you want the installation program to save the
BeanConnect icons for the Management Console. You can either select a program
group that is already present or create a new program group.

By default, the installation program creates the program group:

FUJITSU Software BeanConnect V3.0B00\Management Console

Installing the BeanConnect proxy container and Management Console

If you select both BeanConnect Proxy Container and Management Console
(Administration Tool) in the Proxy Components dialog box, the proxy container and the
Management Console are installed in a single step.

See above for a detailed description of the dialog boxes.

In this case, the following dialog boxes are displayed only once:

● JAVA Directory

● Target BeanConnect Common Resources Directory to install

● BeanConnect Proxy Program Group

Concluding the installation

You have now made all the entries and settings required for installation.

1. Ready to Install! dialog box
Click the Install button to start the installation.

2. Installation Completed! dialog box
Click Finish to conclude installation.

Installing BeanConnect Installing BeanConnect under Windows systems

BeanConnect V3.0B 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

Depending on the selected option(s), the installation program creates a proxy container
including the "internal" MC-CmdHandler and/or the Management Console.

i The BeanConnect product files are installed automatically during the installation
process.

3.3.1.4 Installing the openUTM-LU62 Gateway (for CICS partners)

To install the openUTM-LU62 gateway:

1. Select openUTM-LU62 gateway installation in the Choose Products dialog box which
is described above.

2. Follow the installation program instructions and select the appropriate options.

3. Select the home directory in which openUTM-LU62 gateway is to be installed.

4. In the Installation completed dialog box, click Finish.

Installing BeanConnect under Windows systems Installing BeanConnect

72 BeanConnect V3.0B

3.3.2 Installing the BeanConnect proxy container via the command line

The BeanConnect installation program setup.exe also has a command line interface which
is described below.

To install the product via the command line, open a DOS prompt window. Switch to the
following directory:

<DVD_drive>\BEANCONNECT-PROXY\Windows

Then enter the following command:

Setup.exe [/S /M=paramfile] [/E=errorfile]

The /S option specifies that installation is to be performed without a GUI (Graphical User
Interface). In this case, you must also specify the /M=paramfile parameter. The installation
parameters are then taken from the file paramfile in which you can set the installation
parameters and directories yourself. The file paramfile must have the format described
below. If you want to use a parameter file, you should specify all the parameters in the file.
In this case, there is no guarantee that the default values will be used.

If /S is not specified, installation is started via the GUI.

With /E=errorfile, you can specify a log file which records the parameters used, the
progress of the installation process, and any error messages that occur. If you specify the
/S option, you are also advised to use the /E option.
If you do not specify /E, any error messages that occur may be lost. If it does not already
exist, the file errorfile is created by the installation program. If it does exist, the file is
overwritten.

Format of the parameter file

An example of a parameter file is shown below. This file
(BeanConnect_Install.ini) is provided. You can adapt it to suit your requirements.

;Online Help Language;
A: English;
B: German

OHELP_CFG=A Language for the online help system

;Installation Option
UPDATEINSTALL=N

Update installation?

;BeanConnect Proxy directory to update UPDBEANCONNECTDIR=

INST_PROXY=Y Create proxy container

INST_CONSOLE=Y Create Management Console

Installing BeanConnect Installing BeanConnect under Windows systems

BeanConnect V3.0B 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

; openUTM Directory
UTMPATH=c:\openUTM-Server

openUTM home directory

; JAVA Home Directory Java home directory

JAVA_HOME=C:\jdk1.7

; BeanConnect Common Resources Directory
ROOTDIR=C:\BeanConnect

BeanConnect home directory

; --
; Proxy parameters. Only evaluated if INST_PROXY=Y and
UPDATEINSTALL=N
; ---

PROXY_NAME=BCCont Name of the proxy container

PORT_BEGIN=31000 Port for communication with the
BeanConnect proxy container

PROXY_PASSWORD=admin Administration password of the proxy
container

; Target Proxy Directory

PROXYDIR=C:\BeanConnect\BCCont Directory for installation of the proxy
container

; --
;Management Console. Only evaluated if INST_CONSOLE=Y
; --

; Only for Update installation.
; Existing Console directory to update

UPDCONSOLEDIR=C:\BeanConnect\Console Directory of the existing Management
Console

; Target Console directory
CONSOLEDIR=C:\BeanConnect\Console

Directory for the installation of the
Management Console

Installing a BeanConnect resource adapter Installing BeanConnect

74 BeanConnect V3.0B

3.4 Installing a BeanConnect resource adapter

You install the BeanConnect resource adapter using the JAR file BC30B00_RA.jar.

This file contains the resources listed below:

● the RAR file BC30B00_RA.rar containing the resource adapter classes for JCA 1.6.
For information on using the RAR file see section “Overview” on page 90.

● the RAR file BC30B004JCA15.rar which contains the resource adapter classes for JCA
1.5. For more information on using the RAR file, see section “Overview” on page 90.

● the file BeanConnectDev.jar for compiling the EJBs

● The file BeanConnectVerifyer.jar, which must be appended to the BeanConnect RAR
file if you want to use the Sun JEE Verifier (part of the Sun Glassfish V2 JEE5 Appli-
cation Server).

● The directory config: log4j configuration files for resource adapter logging

● The directory Docs: Documents

● The directory encoding: Encoding example

● The directory JavaDoc: JavaDoc for the user API.

● The directory scid: Diagnostic tool

Installing a resource adapter in systems with a graphical user interface

In systems with a graphical user interface, proceed as follows:

1. In the relevant system, open a window for command entry, e.g. Shell or DOS prompt

2. Switch to the directory in which the JAR file is located

3. Unpack the JAR file using the command
java -jar BC30B00_RA.jar

4. Follow the instructions output by the graphical installation program and define the
installation directory for the resource adapter

Installing a resource adapter in systems without a graphical user interface

The file RA-auto.xml is supplied to permit installation on systems without a graphical user
interface. Proceed as follows:

1. Open the file RA-auto.xml with a text editor and enter the required installation path for
the resource adapter in the <installpath> tag

2. In the relevant system, open a window for command entry, e.g. Shell or DOS prompt.

Installing BeanConnect Installing a BeanConnect resource adapter

BeanConnect V3.0B 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

3. Switch to the directory in which the JAR file is located

4. Unpack the JAR file using the command
java -jar BC30B00_RA.jar RA-auto.xml

This installs the resource adapter automatically. The files are unpacked in the current
directory without modifying RA-auto.xml.

Installing the BeanConnect tools Installing BeanConnect

76 BeanConnect V3.0B

3.5 Installing the BeanConnect tools

BeanConnect provides a number of tools in addition to the proxy and the resource adapter.
These tools can be installed separately and are present in the form of JAR archives. The
tools are available in the following archives:

Installing the BeanConnect tools in systems with a graphical user interface

In systems with a graphical user interface, proceed as follows:

1. In the relevant system, open a window for command entry, e.g. Shell or DOS prompt.

2. Switch to the directory in which the JAR file is located.

3. Unpack the JAR file using the following command java -jar <jar-archive>

<jar-archive> is the name of the relevant JAR archive displayed at the top of the list.

4. Follow the instructions output by the graphical installation program and define the instal-
lation directory for the tool, possibly together with additional parameters.

Installing the BeanConnect tools in systems without a graphical user interface

An Auto.xml file is supplied for each tool to permit installation on systems without a
graphical user interface. This file has the name <tool>-auto.xml, where <tool> is the
name of the tool to be installed MC-CmdHandler, Cobol2Java).

Proceed as follows:

1. Open the Auto-xml- file with a text editor and enter the required installation path for the
tool in the <installpath> tag. In the case of some tools, you must also enter configu-
ration data such as port number or password for additional tags that have been
commented out.

2. In the relevant system, open a window for command entry, e.g. Shell or DOS prompt.

3. Switch to the directory in which the JAR file is located.

4. Unpack the JAR file using the following command
java -jar <jar-archive> <tool>-auto.xml

This installs the tool automatically.

5. In the case of the tool MC-CmdHandler, you must enter the path to JDK in the file
javaenv.cmd (Windows systems) or javaenv.sh (Linux, Solaris systems). You do this
by editing the file with a text editor.

MC-CmdHandler BC30B00_MCCmdHandler.jar

Cobol2Java BC30B00_Cobol2Java.jar

Installing BeanConnect Update installation

BeanConnect V3.0B 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

3.6 Update installation for the BeanConnect proxy container and
Management Console

BeanConnect allows you to perform update installations. An update installation enables you
to install a new BeanConnect version or a new patch while retaining the configuration data
of the installed proxy container and Management Console.

This section provides an overview of:

● Update installation under Solaris systems

● Update installation under Linux systems

● Update installation under Windows systems

3.6.1 Update installation under Solaris systems

This section describes how you can update the proxy container and Management Console
installation under Solaris systems. If you obtain new software, then start the master instal-
lation and install the new products (see section “Installing BeanConnect under Solaris
systems” on page 49).

Starting the update installation

The update installation is performed in the same way as a new installation.

Switch to the required installation directory and start the installation procedure with the
following command:

<BC_inst_dir/shsc/install.BeanConnect

As in a new installation, the procedure displays a menu listing the two components that can
be installed. You select the components for which you want to install an update:

Configuration Options

1 BeanConnect Proxy Container
2 Management Console (Administration Tool)

The installation procedure recognizes when you are in directory that already contains one
of the components and checks whether the version is updatable. If it is, you are asked
whether you want to perform an update installation or overwrite the existing version (new
installation).

An update installation is performed for the selected BeanConnect components.

Update installation Installing BeanConnect

78 BeanConnect V3.0B

BeanConnect proxy container

1. The proxy container home directory is copied and saved in the directory
<BC_home>/<proxy_cont_name>.save. This directory is not changed by the update
installation. All the old configuration data is retained.

2. If required, the existing proxy container can be uninstalled. The following applies
depending on whether or not the old and new directories are identical:

– If the old and new directories are identical then the old proxy container is renamed,
a new proxy container is installed and the data is transferred from the old proxy
container.

– If the old and new directories are different then a new proxy container is installed.
The data is then transferred from the old proxy container.

3. The old configuration is moved to the new proxy container.

Management Console

1. The Management Console home directory is copied and saved in the directory
 <BC_home>/<console_name>.save. This directory is not changed by the update instal-
lation. All the old configuration data is retained.

2. The following applies depending on whether or not the old and new directories are
identical:

– If the old and new directories are identical then the old Management Console is
renamed, a new Management Console is installed and the data is transferred from
the old Management Console.

– If the old and new directories are different then a new Management Console is
installed. The data is then transferred from the old Management Console.

3. The old configuration files are read from <console_name>.save and copied to the new
Management Console home directory.

Installing BeanConnect Update installation

BeanConnect V3.0B 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

3.6.2 Update installation under Linux systems

This section describes how you can update the proxy container and Management Console
installation under Linux. If you obtain new software then start the master installation and
install the new products (see section “Installing BeanConnect under Linux systems” on
page 57).

Starting the update installation

The update installation is performed in the same way as a new installation.

Switch to the required installation directory and start the installation procedure with the
following command:

<BC_inst_dir>/shsc/install.BeanConnect

As in a new installation, the procedure displays a menu listing the two components that can
be installed. You select the components for which you want to install an update:

Configuration Options

1 BeanConnect Proxy Container
2 Management Console (Administration Tool)

The installation procedure recognizes when you specify a home directory that already
contains one of the components and checks whether the version is updatable. If it is, you
are asked whether you want to perform an update installation or overwrite the existing
version (new installation).

An update installation is performed for the selected BeanConnect components.

BeanConnect proxy container

1. The proxy container home directory is copied and saved in the directory
<BC_home>/<proxy_cont_name>.save. This directory is not changed by the update
installation. All the old configuration data is retained.

2. If required, the existing proxy container can be uninstalled. The following applies
depending on whether or not the old and new directories are identical:

– If the old and new directories are identical then the old proxy container is renamed,
a new proxy container is installed and the data is transferred from the old proxy
container.

– If the old and new directories are different then a new proxy container is installed.
The data is then transferred from the old proxy container.

3. The old configuration is moved to the new proxy container.

Update installation Installing BeanConnect

80 BeanConnect V3.0B

Management Console

1. The Management Console home directory is copied and saved in the directory
 <BC_home>/<console_name>.save. This directory is not changed by the update instal-
lation. All the old configuration data is retained.

2. The following applies depending on whether or not the old and new directories are
identical:

– If the old and new directories are identical then the old Management Console is
renamed, a new Management Console is installed and the data is transferred from
the old Management Console.

– If the old and new directories are different then a new Management Console is
installed. The data is then transferred from the old Management Console.

3. The new Management Console is installed in the Management Console home directory

4. The old configuration files are read from <console_name>.save and copied to the new
Management Console home directory.

Installing BeanConnect Update installation

BeanConnect V3.0B 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

3.6.3 Update installation under Windows systems

This section describes how you can update the proxy container and Management Console
installation under Windows. If you obtain new software then start the master installation and
install the new products (see section “Installing BeanConnect under Windows systems” on
page 65).

Starting the update installation

You start the installation in the usual way (see section “Installing BeanConnect under
Windows systems” on page 65). You should then click the BeanConnect Proxy item in the
setup menu.

Only the dialog boxes that differ from those displayed during a new installation are
described here. You work with all the other dialog boxes in the same way as for a new
installation (see section “Installing BeanConnect under Windows systems” on page 65).

● Installation Option dialog box

If you want to update an existing BeanConnect installation, select the option Update
installation.

If you want to update an existing BeanConnect installation without uninstalling the
existing installation, select Update installation without deinstallation.

● Existing Proxy Container Directory to update dialog box

Specify the proxy coantainer home directory that is to be updated.

● Existing BeanConnect Management Console directory to update dialog box

Specify the Management Console home directory that is to be updated.

For the subsequent procedure, see section “Installing BeanConnect” on page 66.

The update installation is performed for the BeanConnect components selected in the
Configuration Options dialog box (see “Installation procedure” on page 66).

BeanConnect proxy container update installation

1. The proxy container home directory is copied and saved in the directory
<BC_home>\<proxy_cont_name>.save. This directory is not changed by the update
installation. All the old configuration data is retained.

2. The existing proxy container is uninstalled on demand.

3. A new proxy container is installed in the proxy container home directory.

4. The old configuration is moved to the new proxy container.

Update installation Installing BeanConnect

82 BeanConnect V3.0B

Management Console update installation

1. The Management Console home directory is copied and saved in the directory
 <BC_home>\<console_name>.save. This directory is not changed by the update instal-
lation. All the old configuration data is retained.

2. The existing Management Console is uninstalled on demand.

3. The new Management Console is installed in the Management Console home directory.

4. The old configuration files are read from <console_name>.save and copied to the new
Management Console home directory.

Installing BeanConnect Uninstalling BeanConnect

BeanConnect V3.0B 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

3.7 Uninstalling BeanConnect

This section describes how to uninstall BeanConnect:

● Uninstalling BeanConnect under Solaris systems

● Uninstalling BeanConnect under Linux

● Uninstalling BeanConnect under Windows systems

3.7.1 Uninstalling BeanConnect under Solaris systems

This section describes how to uninstall BeanConnect under Solaris systems.

Uninstalling the BeanConnect proxy container

To uninstall the proxy container you simply have to delete the home directory of the proxy
container.

Uninstalling the BeanConnect Management Console

To uninstall the Management Console you simply have to delete the home directory of the
Management Console.

Uninstalling the BeanConnect product files

You use the following command to uninstall the BeanConnect product files: pkgrm BC30B00

Uninstalling PCMX

You use the following command to uninstall the supplied PCMX: pkgrm SMAWpcmx

Uninstalling openUTM

You use the following command to uninstall openUTM: pkgrm UTM<version>

Uninstalling openUTM-LU62 Gateway (for CICS partners)

You use the following command to uninstall the openUTM-LU62 gateway: pkgrm SMAWutm6s

Uninstalling BeanConnect Installing BeanConnect

84 BeanConnect V3.0B

3.7.2 Uninstalling BeanConnect under Linux

This section describes how to uninstall BeanConnect under Linux.

Uninstalling the BeanConnect proxy container

To uninstall the proxy container you simply have to delete the home directory of the proxy
container.

Uninstalling the BeanConnect Management Console

To uninstall the Management Console you simply have to delete the home directory of the
Management Console.

Uninstalling the BeanConnect product files

You use the following command to uninstall the BeanConnect product files:

rpm -e BC30B00

Uninstalling PCMX

You use the following command to uninstall PCMX:

rpm -e --nodeps PCMX-<version>

To obtain the exact package name, enter rpm -qa | grep PCMX .

Uninstalling openUTM

You use the following command to uninstall openUTM:

rpm -e UTM<version>

Uninstalling openUTM-LU62 Gateway

You use the following command to uninstall the openUTM-LU62 gateway:

rpm -e UTMLU62-<version>

Installing BeanConnect Uninstalling BeanConnect

BeanConnect V3.0B 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

3.7.3 Uninstalling BeanConnect under Windows systems

This section describes how to uninstall BeanConnect under Windows.

Uninstalling the BeanConnect proxy container

To uninstall the proxy container select:

Start - Programs - FUJITSU Software BeanConnect V3.0B00 - Proxy
<proxy_cont_name> - Uninstall

Alternatively, you can use the following commands:

1. Start the uninstall program by clicking Start - Settings - Control Panel - Software.

2. Select FUJITSU Software BeanConnect V3.0B00 <proxy_cont_name> and click the
Remove button.

The uninstallation of the proxy container comprises:

● Deletion of the directories: <BC_home>\<proxy_cont_name>,
<BC_home>\<proxy_cont_name>.SAVE

● Deletion of <BC_home>\MCINFO if the directory is empty

● The product files will not be deleted (<BC_home>\lib, <BC_home>\Docs)

Uninstalling the BeanConnect Management Console

To uninstall the Management Console select:

Start - Programs - FUJITSU Software BeanConnect V3.0B00 - Management Console
- Uninstall

Alternatively, you can use the following commands:

1. Start the uninstall program by clicking Start - Settings - Control Panel - Software.

2. Select FUJITSU Software BeanConnect V3.0B00 Management Console and click
the Remove button.

The uninstallation of the Management Console comprises:

● Deletion of the directories: <BC_home>\<console_name>,
<BC_home>\<console_name>.SAVE

● The product files will not be deleted (<BC_home>\lib, <BC_home>\Docs)

Uninstalling BeanConnect Installing BeanConnect

86 BeanConnect V3.0B

Uninstalling the BeanConnect common resources

To uninstall the BeanConnect common resources, select:

Start - Programs - FUJITSU Software BeanConnect V3.0B00 - Uninstall Common
Resources

Alternatively, you can use the following commands:

1. Start the uninstall program by clicking Start - Settings - Control Panel - Software.

2. Select FUJITSU Software BeanConnect V3.0B00 Common Resources and click the
Remove button.

The uninstallation of the product files comprises:

● Deletion of the directories: <BC_home>\lib, <BC_home>\Docs

● Deletion of <BC_home>\MCINFO if the directory is empty

Uninstalling PCMX

1. Start the uninstall program by clicking Start - Settings - Control Panel - Software.

2. Select PCMX-32 <version> and click the Remove button.

Uninstalling openUTM

To uninstall openUTM, select:

Start - Programs - FUJITSU Software openUTM-Server - Uninstall openUTM-Server

Alternatively, you can use the following commands:

1. Start the uninstall program by clicking Start - Settings - Control Panel - Software.

2. Select FUJITSU Software openUTM-Server <version> and click the Remove button.

 If you uninstall the BeanConnect common resources, the proxy
container and the Management Console that are installed in the
same <BC_home> directory will no longer function.

Installing BeanConnect Uninstalling the BeanConnect resource adpater and tools

BeanConnect V3.0B 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
17

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
3

Uninstalling openUTM-LU62 Gateway (for CICS partners)

To uninstall the openUTM-LU62 gateway, select:

Start - Programs - openUTM-LU62 - Uninstall openUTM-LU62

Alternatively, you can use the following commands:

1. Start the uninstall program by clicking Start - Settings - Control Panel - Software.

2. Select openUTM-LU62 <version> and click the Remove button.

3.8 Uninstalling the BeanConnect resource adapter

To uninstall the resource adapter you simply have to delete the copied or extracted files and
directories that you unpacked from the JAR file when installing the resource adapter.

3.9 Uninstalling the BeanConnect tools

You uninstall a BeanConnect tool by deleting the tool's installation directory.

The only special case is the MC-CmdHandler tool. If the MC-CmdHandler is configured as
a service (see section “Configuring an MC-CmdHandler as a service” on page 248), then
you must remove this first. To do this, proceed as follows:

● Windows systems:

Call the script MCCmdHandler_UnInstSrv.cmd.

● Linux and Solaris systems

If you want to uninstall an individual service, delete the corresponding line from the file
/etc/init.d/bcmccmdhandler.dat.

If you want to uninstall the entire service, then you must delete the files
/etc/init.d/bcmccmdhandler.sh (incl. symbolic links) and
/etc/init.d/bcmccmdhandler.dat.

You need system administrator authorizations to perform these activities. You may
therefore need to ask the system administrator to perform this task.

Uninstalling the BeanConnect resource adpater and tools Installing BeanConnect

88 BeanConnect V3.0B

BeanConnect V3.0B 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

4 Configuration in the application server

It is necessary to configure settings for BeanConnect both when deploying the
BeanConnect resource adapter in the application server and when deploying Enterprise
Java Beans (EJB) in the application server.

This chapter contains information on configuring outbound communication via the various
protocols (OSI-TP for openUTM partners, LU6.2 protocol for CICS partners, UPIC protocol
for openUTM partners) as well as on configuring inbound communication.

This chapter also describes how you prepare logging in the resource adapter and the issues
that you have to take into account when operating in multiple resource adapter or cluster
mode.

It contains information on the following topics:

● Deploying and undeploying the resource adapter

● Configuring general properties for the resource adapter

● Deploying an Enterprise JavaBean for OSI-TP / LU6.2

● Configuring outbound communication via UPIC

● Setting configuration properties for inbound communication

● Preparing resource adapter logging

● Special characteristics of multiple resource adapter mode

● Special characteristics in cluster operation

Overview Configuration in the application server

90 BeanConnect V3.0B

4.1 Overview

The resource adapter is supplied as a so-called BeanConnect RAR archive.

v Only one BeanConnect resource adapter may be deployed per instance in the
application server.

The deployment of more than one resource adapter may result in unpredictable
errors.

The BeanConnect RAR archive for JCA 1.6 is named BC30B00.rar, the BeanConnect
RAR archive for JCA 1.5 is named BC30B004JCA15.rar. Both archives contain various items
including the deployment descriptor ra.xml.

4.1.1 Configuration files in the application server

The resource adapter and EJB configuration properties are defined in the following files:

● ra.xml

Default deployment descriptor for the resource adapter.

This file is present in the BeanConnect RAR archive and defines the resource adapter's
general properties.

● weblogic-ra.xml

WebLogic-specific deployment descriptor for the resource adapter.

This file describes the WebLogic-specific settings for the resource adapter. Some of the
entries in weblogic-ra.xml refer to entries in ra.xml.

● ejb-jar.xml

Default deployment descriptor for EJBs.

This file describes various items including the EJB properties that are relevant for
communications. The entries refer to entries in weblogic-ra-jar.xml and weblogic-
ejb-jar.xml.

● weblogic-ejb-jar.xml

WebLogic-specific deployment descriptor for EJBs.

 You need this file during inbound communication in order to assign a message-driven
bean to a resource adapter and during outbound communication in order to assign a
JNDI name (JNDI = Java Naming and Directory Interface) to the employed connection
factories.

The entries refer to entries in weblogic-ra.xml.

Configuration in the application server Overview

BeanConnect V3.0B 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

i Some of the properties of the EJBs can be described in annotations instead of in
deployment descriptor files. Below, only the description of the properties of the
EJBs with deployment descriptor is presented.

The section below describes the procedure you may adopt dueing configuration.

4.1.2 Configuration steps for outbound and inbound communication

The procedure depends on whether you want to operate outbound communication via OSI-
TP/ LU6.2, outbound communication via UPIC, and/or inbound communication. Each of
these possibilities is presented separately below. However, different rules apply for multiple
resource adapter and cluster operation.

In the case of outbound communication (OSI-TP / LU6.2 and UPIC), you must define
resource references in ejb-jar.xml.

Procedure for outbound communication via OSI-TP / LU6.2

If you want to use BeanConnect for outbound communication via OSI-TP / LU6.2 in default
mode (one proxy, one resource adapter, no cluster) then you must perform the following
activities:

● Defining general properties in ra.xml

● Defining the general properties of the resource adapter in weblogic-ra.xml
and
Defining general and connection-specific properties for OSI-TP / LU6.2 in weblogic-
ra.xml.

● Pack the file weblogic-ra.xml under the META-INF subdirectory of the BeanConnect
RAR archive before deployment.

● Deploying the resource adapter

● Deploying an Enterprise JavaBean for OSI-TP / LU6.2

● Preparing resource adapter logging

Overview Configuration in the application server

92 BeanConnect V3.0B

Procedure for outbound communication via UPIC

If you want to use BeanConnect for communications via UPIC then you must perform the
following activities:

● Defining the general properties of the resource adapter in weblogic-ra.xml
and
Defining general and connection-specific properties for OSI-TP / LU6.2 in weblogic-
ra.xml.

● Before deployment, insert the file weblogic-ra.xml in the subdirectory META-INF of the
BeanConnect RAR archive.

● Deploying the resource adapter

● Deploying an Enterprise JavaBean for UPIC

● Preparing resource adapter logging

Procedure for inbound communication

If you want to use BeanConnect for inbound communication in default mode (one proxy,
one resource adapter, no cluster) then you must perform the following activities:

● Defining general properties in ra.xml

● Defining the general properties of the resource adapter in weblogic-ra.xml

● Before deployment, insert the file weblogic-ra.xml in the subdirectory META-INF of
the BeanConnect RAR archive

● Deploying the resource adapter

● Configuration steps for outbound and inbound communication

● Preparing resource adapter logging

Procedure with multiple resource adapters and in cluster operation

When working with multiple resource adapters or in cluster operation, additional settings
must be made in the file ra.xml. For further details, see:

● Special characteristics of multiple resource adapter mode

● Special characteristics in cluster operation

Configuration in the application server Global properties (ra.xml)

BeanConnect V3.0B 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

4.2 Configuring general properties for the resource adapter

The general properties are described in the standard deployment descriptor ra.xml and in
the WebLogic-specific deployment descriptor weblogic-ra.xml. The resource adapter's
standard deployment descriptor ra.xml is present in the BeanConnect RAR archive. The
file ra.xml contains:

● The general configuration properties for the connection between the resource adapter
and the proxy

● The definition of the connection factories supported by BeanConnect

● The properties supported by these connection factories together with their default
values

It can be thought of as a template for configuring the connection.

The file weblogic-ra.xml contains:

● the WebLogic-specific configuration properties for the resource adapter

● the WebLogic-specific configuration properties for the connection factories

Before you deploy the BeanConnect RAR archive, you must adapt the general configu-
ration properrties in the files ra.xml and weblogic-ra.xml as required.

4.2.1 Defining general properties in ra.xml

The general configuration properties are relevant for outbound communication via OSI-TP
/ LU6.2 and for inbound communication.

Alternatively you can deploy the resource adapter with the predefined settings. Then
specify the values by using the application server's GUI. These settings can be lost while
undeploying.

Adapting the ra.xml file

You can adapt ra.xml in two ways

● with the BeanConnect Management Console provided that the BeanConnect RAR
archive and the Management Console are located on the same host, or an MC-
CmdHandler is installed on the same computer as the BeanConnect RAR archive and
is configured in the Management Console.

When you do this, the deployment descriptor is modified directly in the RAR archive.
You can either edit the values of the properties (Edit ra.xml of BeanConnect
Resource Adapter RAR… command) or update them on the basis of the values that

Global properties (ra.xml) Configuration in the application server

94 BeanConnect V3.0B

have been configured for a defined proxy (Update ra.xml of BeanConnect Resource
Adapter RAR command). Updating has the advantage that the Management Console
determines the correct value for the property proxyURL.

For more information, see section “Configuring the BeanConnect resource adapter” on
page 197).

● Manually using a text editor.

1. Extract the file ra.xml from the BeanConnect RAR archive:

jar xf BC30B00.rar META-INF/ra.xml

2. Use a text editor of your choice to modify the following general configuration
properties in the file ra.xml:

proxyURL (outbound and availability check of the proxy)

transactionLogging (outbound only)

transactionLogDir (outbound only)

inboundListenerPort (inbound and availability check of the resource adapter)

RevisionNumber

3. Insert the file ra.xml in the BeanConnect RAR archive in the subdirectory META-INF
again:

jar uf BC30B00.rar META-INF/ra.xml

In multiple resource adapter mode or in cluster operation, it is necessary to make additional
settings, see section “Special characteristics of multiple resource adapter mode” on
page 147 and section “Special characteristics in cluster operation” on page 149.

proxyURL

The proxyURL defines the way the resource adapter assigns the proxy.

proxyURL is defined globally for all connections.

Definition: oltp://<host>:<port>/<name>

Explanation: <host> Host on which the proxy container is installed
<host> can be specified as a symbolic name or as an IPv4 address.

<port> Port number of the proxy container + 4

<name> Application name of the proxy container (BCU<port>)

Default: oltp://localhost:31004/BCU31004

Configuration in the application server Global properties (ra.xml)

BeanConnect V3.0B 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

If you use the Management Console function Update ra.xml of BeanConnect Resource
Adapter RAR then the correct values are set for proxyURL.

If you edit ra.xml, you must determine the value for <port> from the value specified during
the installation of the proxy (port +4). You must enter a value for <name> that consists of the
prefix BCU and <port>.

The Management Console displays the proxy URL to be used in the properties dialog of the
resource adapter. The proxy URL cannot be modified after installation.

For information on configuration for cluster operation, see section “Special characteristics
in cluster operation” on page 149.

transactionLogging

This attribute defines whether or not BeanConnect is to write persistent transaction logs for
transactions with EIS partners during outbound communication.

Example: <config-property>
<description>BeanConnect Proxy URL for OLTP outbound

communication</description>
<config-property-name>proxyURL</config-property-name>
<config-property-type>java.lang.String
</config-property-type>
<config-property-value>oltp://proxyhost:31004/BCU31004
</config-property-value>

</config-property>

Definition: [NONE | FILE]

Explanation: Activates or deactivates persistent transaction logging

NONE: No persistent transaction logs are written.

FILE: Persistent transaction logs are written. The directory to which the logs
are written is specified in the attribute transactionLogDir.

Default: NONE

Example: <config-property>
 <description>BeanConnect transaction logging:
 possible values are NONE | FILE
 </description>
 <config-property-name>transactionLogging
 </config-property-name>
 <config-property-type>java.lang.String
 </config-property-type>
 <config-property-value>FILE
 </config-property-value>
</config-property>

Global properties (ra.xml) Configuration in the application server

96 BeanConnect V3.0B

During transaction recovery operations following a program or system crash, persistent
transaction logs make it possible for BeanConnect to provide information about the status
of the transactions that were being processed at the time of the crash. Activating this option
has an impact on performance since two file access operations are required for every trans-
action which is terminated with two-phase commit.

If FILE is specified then it is also necessary to enter a value for the attribute
transactionLogDir.

If transaction logging is configured then the resource adapter writes a separate transaction
log for each transaction. The file name consists of the prefix tx. and a number.

A transaction log file is written on Prepare and deleted on Commit or Rollback, i.e. it is
normally temporary. However, situations exist in which it is retained:

● If the resource adapter is terminated between Prepare and Rollback or Commit. This
type of log file is retained until the recovery has been completed for this transaction.

● If a heuristic decision has been made for a transaction. This type of log file is retained
for an indefinite period.

All the transaction log files are read in when the resource adapter is started. New trans-
action log files are written for transactions which have the status Prepared after start-up or
for which a heuristic decision has been made.

i For transactions associated with heuristic decisions, the transaction log files are
retained for an indefinite period. They should therefore be deleted from time to time.
The creation time of the log files may serve as a criterion when deciding which log
files are to be deleted. Files whose creation date and time correspond to the last
resource adapter start-up contain heuristic logs and the application server has not
called forget() for these transactions; these files can be deleted. To identify the
application start time, BeanConnect writes a file during the start phase after
processing the transaction log files. This file has the name tx.startup-
complete.<date>.<time> and is written in the transaction log directory.

BeanConnect deletes old startup-complete files on the next start-up.

Configuration in the application server Global properties (ra.xml)

BeanConnect V3.0B 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

transactionLogDir

This attribute defines the directory to which BeanConnect is to write the persistent trans-
action logs. A value must be specified for this attribute if the attribute transactionLogging
has been assigned the value FILE.

The directory can be specified with an absolute or relative path name. Any relative path
specification is understood to be relative to the application server's home directory.

If the directory specified for transactionLogDir does not exist, BeanConnect creates it.

inboundListenerPort

For inbound communication, the resource adapter listens at a socket port for connection
requests initiated by the proxy. You must specify the port number of this socket port with the
global configuration property inboundListenerPort. This value must be adapted before
deploying the resource adapter.

Definition: Name of a directory

Default: persistence\BeanConnect

Example: <config-property>
 <description>Directory where transaction log files are to be
 stored (only needed if transactionLogging=FILE)
 </description>
 <config-property-name>transactionLogDir
 </config-property-name>
 <config-property-type>java.lang.String
 </config-property-type>
 <config-property-value>persistence/BeanConnect
 </config-property-value>
</config-property>

Definition: <port number>

Explanation: Port number of the socket port on which the resource adapter listens for inbound
communication requests.
0 means that no inbound communication is possible.

Default: 31099

Global properties (ra.xml) Configuration in the application server

98 BeanConnect V3.0B

Even if no inbound functionality is used, you should specify a value here if you want to
check the availability of the resource adapter as seen by the proxy (e.g. using the
Management Console). You should only enter the value 0 if you also do not require this
functionality.

The port number that is defined with inboundListenerPort must match the listener port
number that you specified via the Management Console when adding the resource adapter
to a proxy.

RevisionNumber

This attribute indicates the revision level of the file ra.xml. You should increase the value
of the attribute revisionNumber every time you modify the ra.xml file in order to make it
easier to identify possible inconsistencies in the configuration.

Example: <config-property>
<description>Resource Adapter Listener Port for Inbound

Communication
</description>
<config-property-name>inboundListenerPort
</config-property-name>
<config-property-type>java.lang.String
</config-property-type>
<config-property-value>31099
</config-property-value>

</config-property>

Example: <config-property>
<description>Revision number of the ra.xml. This number
should be incremented with each change of the resource
adapter properties.

</description>
<config-property-name>revisionNumber
</config-property-name>
<config-property-type>java.lang.String
</config-property-type>
<config-property-value>2
</config-property-value>

</config-property>

Configuration in the application server Global properties (ra.xml)

BeanConnect V3.0B 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

4.2.2 Defining the general properties of the resource adapter in weblogic-
ra.xml

The WebLogic-specific properties of the resource adapter are described in the deployment
descriptor file weblogic-ra.xml.

The following general configuration properties are relevant:

● The JNDI name of the resource adapter is defined in the element <jndi-name> in the
form in which it must be specified during inbound communication in the element
resource-adapter-jndi-name of the file <weblogic-ejb-jar.xml> for each OLTP
message-driven bean.

● The property <enable-global-access-to-classes> must be set to true in order to
prevent errors during the deployment of the applications.

● In the element <connector-work-manager>, the tag <max-concurrent-long-running-
requests> specifies the number of long-running work instances. The default value is 10.

Set this number to one higher than the number of work processes for the BeanConnect
proxy container. Note that in a cluster configuration, you must take account of the work
processes of all the proxy containers in the cluster.

● In the <security-work-context> element of the <security> block, you can use the tag
<inbound-mapping-required> to specify whether you want to use case 1 or case 2 of
the security inflow types described in the JCA specification. .

The default value is false and stands for case 1. In this case, each user ID that is to be
propagated by EIS in the application server must also be configured in the application
server. The passwords that have to be defined for the user IDs in the application server
are not validated for inbound communication.

In case 2, you must configure a mapping of the EIS user ID to a user ID in the appli-
cation server in the element <security-work-context>.

See also “Configurations- properties in the weblogic-ra.xml file” on page 104.

Deploying and undeploying the resource adapter Configuration in the application server

100 BeanConnect V3.0B

4.2.3 Deploying and undeploying the resource adapter

Prerequisite

You should not deploy the resource adapter until you have entered the general configu-
ration settings in the file ra.xml and the WebLogic-specific configuration settings in the file
weblogic-ra.xml. See also
– section “Defining general properties in ra.xml” on page 93,
– section “Defining the general properties of the resource adapter in weblogic-ra.xml” on

page 99,
– section “Defining general and connection-specific properties for OSI-TP / LU6.2 in

weblogic-ra.xml” on page 107 and
– section “Defining general connection-specific properties for UPIC in weblogic-ra.xml”

on page 124.

4.2.3.1 Deploying the resource adapter

When deploying applications under Oracle WebLogic Server, you can use the following
methods depending on the server startup mode:

● Production mode as startup mode

Automatic deployment is globally inactive.

The following three deployment possibilities are available:

– Deployment in the browser using the WebLogic Server Administration Console

– Deployment using the weblogic.Deployer tool

– Deployment with the Oracle WebLogic Scripting Tool

● Development mode as startup mode

The WebLogic Server instances can deploy and update applications automatically if
these files are present in the directory domain_name/autodeploy. Oracle recommends
only using this method for applications in "single-server" configurations.

This method is not generally recommended for the BeanConnect resource adapter.

i For the BeanConnect resource adapter, it is advisable to use one of the deployment
methods that are also possible in production mode in development mode, see
below.

Configuration in the application server Deploying and undeploying the resource adapter

BeanConnect V3.0B 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

Example:

Proceed as follows to deploy the resource adapter in the browser using the WebLogic
Server Administration Console:

1. Create the file weblogic-ra.xml.

2. Add weblogic-ra.xmlto the META-INF subdirectory of the BeanConnect RAR archive:
jar uf BC30B00.rar META-INF/ weblogic-ra.xml

3. Start the web browser, log in at the WebLogic Server Administration Console and
perform the following steps:

Navigate to <domainName>>Deployments and click install Navigate to the directory
containing the BeanConnect RAR archive, select the archive and click <Next>. The

WebLogic Server Administration Console now performs other operations.

Recommendation: Choose a value less than 100 (default value) for the deployment order,
e.g. 98.
This means that applications that are dependent on the resource adapter can be added
subsequently via autodeployment.

i For the other two deployment methods (weblogic.Deployer tool and WebLogic
Scripting Tool), please note the comments in the documentation for
Oracle WebLogic Server under "Deploying Applications and Modules with
weblogic.Deployer" or "Oracle WebLogic Scripting Tool". ol".

4.2.3.2 Update deployment of the resource adapter

Before perming an update deployment or new deployment, all the OLTP message-driven
bean applications that reference the resource adapter must be stopped.

● To perform the update deployment, navigate to <domainName>>Deployments in the
WebLogic Server Administration Console, select the installed BeanConnect resource
adapter and click <update>.

● Once the update deployment is complete, you can start the OLTP message-driven bean
applications again.

4.2.3.3 Undeploying the resource adapter

Before an undeployment, it is necessary to stop all the OLTP message-driven bean appli-
cations that reference the resource adapter.

To perform the undeployment, navigate to <domainName>>Deployments in the WebLogic
Server Administration Console, select the installed BeanConnect resource adapter and
click <delete>.

Deploying and undeploying the resource adapter Configuration in the application server

102 BeanConnect V3.0B

4.2.4 Example of an ra.xml File

Example 3 shows the definition of the general configuration properties in the file ra.xml.

Example 3 Configuration properties in the file ra.xml

The section with the general configuration properties in the file ra.xml has the following
layout:

...
<resourceadapter>

<resourceadapter-class>
net.fsc.jca.BeanConnect.ResourceAdapterJBImpl

</resourceadapter-class>
<config-property>
<description>Resource Adapter Listener Port for Inbound Communication
</description>
<config-property-name>inboundListenerPort
</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>31099</config-property-value>

</config-property>
<config-property>
<description>BeanConnect Proxy URL for OLTP Outbound
Communication</description>
<config-property-name>proxyURL</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>oltp://localhost:31004/BCU31004</config-property-

value>
</config-property>
<config-property>
 <description>BeanConnect transaction logging: possible values are NONE |
FILE</description>
<!-- If NONE is set, no persistent transaction logging will be performed.
If FILE is set, transaction log files will be written to the directory
specified in property
transactionLogDir. -->
<config-property-name>transactionLogging</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>FILE</config-property-value>
</config-property>
<config-property>
<description>Directory where transaction log files are to be stored (only
needed if
transactionLogging=FILE)</description>
<!-- The path name of the dircetory may be specified as absolute or relative
path.

Configuration in the application server Deploying and undeploying the resource adapter

BeanConnect V3.0B 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

A relative path is relative to the home directory of the application server.
-->
<config-property-name>transactionLogDir</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>persistence/BeanConnect</config-property-value>
</config-property>
<config-property>
<description>Revision number of the ra.xml. This number should be

incremented with each change of the resource adapter properties.
</description>
<config-property-name>revisionNumber
</config-property-name>
<config-property-type>java.lang.String
</config-property-type>
<config-property-value>2
</config-property-value>

</config-property>

Deploying and undeploying the resource adapter Configuration in the application server

104 BeanConnect V3.0B

4.2.5 Example of an weblogic-ra.xml file

Example 4 shows the definition of the general configuration properties in the fileweblogic-
ra.xml.

Example 4 Configurations- properties in the weblogic-ra.xml file

The section containing the general configuration properties in the file weblogic-ra.xml has
the following structure:

<weblogic-connector
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-connector
 http://www.oracle.com/technology/weblogic/weblogic-connector/1.3/
 weblogic-connector.xsd">
 <jndi-name>BeanConnect</jndi-name>
 <enable-global-access-to-classes>true</enable-global-access-to-classes> (1)
 <work-manager>
 <name>BeanConnect_WorkManager</name>
 </work-manager>
 <connector-work-manager>
 <!-- For inbound communication the BeanConnect resource adapter starts a
long-running
 work instance, which listens at the inbound listener port.
 Each BeanConnect proxy work process establishs a
 connection to the BeanConnect resource adapter. For each
 connection the BeanConnect resource adapter starts a long-running
 work instance.
 The maximum number of concurrent long-running Work instances will
 be specified with the following property.

 Default value: 10
 -->
 <max-concurrent-long-running-requests>12
 </max-concurrent-long-running-requests>
 </connector-work-manager>
<security>
 <security-work-context>
 <!-- Two choices related to establishing the caller identity for a
 work instance are described in
 JSR 322: Java EE Connector Architecture 1.6
 The default value is false, which means Case 1.
 All caller-principal-mapping and group-principal-mapping
 subelements are ignored.
 If set to true, it means Case 2.
 All caller-principal-mapping and group-principal-mapping
 elements are used to determine the correct mapping from the
 EIS security domain to the WebLogic domain.

Configuration in the application server Deploying and undeploying the resource adapter

BeanConnect V3.0B 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

 -->
 <inbound-mapping-required>false</inbound-mapping-required>
 <caller-principal-default-mapped>
 <!-- Used for Inbound Message Endpoint invocation if inbound mapping
 required and a user is inflowed who has no explicit mapped
 caller principal -->
 <!--
 <use-anonymous-identity>true</use-anonymous-identity>
 -->
 <principal-name>BcDefaultMappedPrincipal1</principal-name>
 </caller-principal-default-mapped>
 <caller-principal-mapping>
 <eis-caller-principal>EISUSER1</eis-caller-principal>
 <mapped-caller-principal>
 <!--
 <use-anonymous-identity>true</use-anonymous-identity>
 -->
 <principal-name>AsPrincipal1</principal-name>
 </mapped-caller-principal>
 </caller-principal-mapping>

 <caller-principal-mapping>
 <eis-caller-principal>EISUSER2</eis-caller-principal>
 <mapped-caller-principal>
 <principal-name>AsPrincipal2</principal-name>
 </mapped-caller-principal>
 </caller-principal-mapping>
 <caller-principal-mapping>
 <eis-caller-principal>EISUSER3</eis-caller-principal>
 <mapped-caller-principal>
 <principal-name>AsPrincipal3</principal-name>
 </mapped-caller-principal>
 </caller-principal-mapping>
 <caller-principal-mapping>
 <eis-caller-principal>EISUSER4</eis-caller-principal>
 <mapped-caller-principal>
 <principal-name>AsPrincipal4</principal-name>
 </mapped-caller-principal>
 </caller-principal-mapping>
 </security-work-context>
</security>
</weblogic-connector>

(1) This property is absolutely essential for correct operation!

Outbound communication via OSI-TP / LU6.2 Configuration in the application server

106 BeanConnect V3.0B

4.3 Setting configuration properties for outbound
communication via OSI-TP / LU6.2

The following configuration properties must be set for outbound communication:

● The general configuration properties in the file ra.xml (see page 93) uand the file
weblogic-ra.xml (see page 99).

● The connecttion-specific properties for OSI TP / LU6.2 in the file weblogic-ra.xml (see
page 99).

Connection factories

Outbound communication is performed via so-called connection factories.

You must configure at least one connection factory for each EIS partner. However, you may
also configure multiple connection factories with different properties for one and the same
EIS partner.

You make the following specifications for each connection factory:

● JNDI name: This name is also required when deploying the EJB and makes it possible
to address the connection factory in the EJB.

● Configuration properties: These are the parameters that apply to the connection to the
EIS partners.

● Connection pooling: Connection pooling is an application server functionality. It helps
improve performance on frequently used connections.

● Security settings: This is the data required when signing on at the EIS partner, e.g. user
ID and password. If this data is encoded directly in the EJB then the corresponding entry
can be omitted in the deployment descriptor.

● In the Management Console, an outbound communication endpoint is assigned to
every connection factory.

Configuration in the application server Outbound communication via OSI-TP / LU6.2

BeanConnect V3.0B 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

4.3.1 Defining general and connection-specific properties for OSI-TP / LU6.2
in weblogic-ra.xml

The file weblogic-ra.xml is the WebLogic-specific deployment descriptor for the resource
adapter. This deployment descriptor specifies the settings that are required for outbound
communication with EIS partners. The communications are conducted via so-called
connection factories.

General settings for outbound communication

● The settings for outbound communication are defined in the element <outbound-
resource-adapter>.

● The properties for connection factories can be deterùmined using the sub-
elements<default-connection-properties> and <connection-definition-group>.

● For each <connection-definition> that is present in the ra.xml, a <connection-
definition-group> must be defined in the weblogic-ra.xml.

● Default settings that are to apply to all connection factories can be defined in the sub-
element <default-connection-properties> of the element <outbound-resource-
adapter>.

● Default settings that are to apply to the connection factories for a <connection-
definition-group> can be defined in the sub-element <default-connection-
properties> of the element <connection-definition-group>.

● For each connection factory that is to be used by the EJB, a <connection-instance>
must be defined in the corresponding <connection-definition-group>.

4.3.1.1 Defining the resource for OSI-TP / LU6.2

The resource type of a connection factory is defined in the tag <connection-factory-
interface>.

Communication via OSI-TP / LU6.2 involves the following resource types:

● net.fsc.jca.communication.cci.BCOltpConnectionFactory

● net.fsc.jca.communication.EISOltpConnectionFactory

Precisely this type must be specified for the EJB which uses this connection factory in the
deployment descriptor ejb-jar.xml, see section “Deploying an Enterprise JavaBean for
OSI-TP / LU6.2” on page 120.

You will find an example of the file weblogic-ra.xml in section “Example: weblogic-ra.xml”
on page 117.

Outbound communication via OSI-TP / LU6.2 Configuration in the application server

108 BeanConnect V3.0B

4.3.1.2 Defining the JNDI name for OSI TP / LU6.2

The connection factory's JNDI name is defined in the <connector-factory> tag by means
of the location attribute.

An Enterprise Java Bean (EJB) in the application server addresses a connection factory via
JNDI. The connection factory assigns the configured properties to the connection.

You will find an example in section “Example: weblogic-ra.xml” on page 117.

4.3.1.3 Defining configuration properties for OSI-TP / LU6.2

For outbound communication, BeanConnect supports the following connection-specific
configuration properties:

● bufferedIO

● connectionURL

● displayName

● encoding

● encodingActive

● logLevel

● timeout

● transactional

The connection which you obtain with a ConnectionFactory.getConnection() call is prein-
itialized with these configuration properties.

Configuration in the application server Outbound communication via OSI-TP / LU6.2

BeanConnect V3.0B 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

bufferedIO

The bufferedIO configuration property is used to define whether I/O buffering is carried out
between the resource adapter and the proxy. If set, interaction between resource adapter
and proxy is minimized. To reach maximum performance within a production environment
you should set this property to true. During deployment or operation, you can set this value
to false by means of the connection factory MBean to detect user errors as early as
possible during the test.

connectionURL

For communication via OSI-TP or LU6.2, the connectionURL configuration property
specifies the name of the outbound communication endpoint which stands for a connection
to an EIS partner and was defined in the proxy using the Management Console. The name
begins with a prefix which describes the type of EIS partner, e.g. utm or cics. The name
used in BeanConnect V2.0 and earlier - oltp - continues to be supported for reasons of
compatibility and is used as a synonym for utm.

The name of the outbound communication endpoints is a freely definable string. It must be
the same as the corresponding name of the outbound communication endpoint configured
in the proxy, see section “Configuring outbound communication” on page 229.

Definition: [true | false]

Explanation: Switches IO buffering between resource adapter and proxy on or off.

true: IO buffering is used.

false: IO buffering is not used.

Default: true

Example: <property>
<name>bufferedIO</name>
<value>true</value>

</property>

Definition: <type>://<name>

Explanation: <type> Type of the EIS partner, possible values:

utm The EIS partner is of type openUTM.

cics The EIS partner is of type CICS.

xatmi-rr The EIS partner is of type XATMI and communication is
conducted using the Request/Reply paradigm.

xatmi-cv The EIS partner is of type XATMI and communication is
conducted using the Conversational paradigm.

Outbound communication via OSI-TP / LU6.2 Configuration in the application server

110 BeanConnect V3.0B

displayName

This attribute allows you to define a name for a managed connection factory. This name is
then used by BeanConnect when outputting information about this managed connection
factory, e.g. during the output of MBeans and LogWriter records.

encoding

The encoding configuration property defines a code table for converting byte code (for
example EBCDIC) to Unicode. These code tables are used for converting byte streams to
strings and vice versa. These conversions are always called implicitly when interactions
(sndString(), rcvString() for example) are executed which contain strings as I/O param-
eters.

The code table that is defined with the encoding configuration property is used as default
for the corresponding connection. The bean programmer may determine that a different
code table is to be used for the connection by explicitly calling the setEncoding(Encoding)
method of the EISConnection interface or of the OltpMessageContext interface (see section
“Encoding” on page 479).

Code conversion using this code table is only carried out if encodingActive is actually
activated. You can select this with the encodingActive configuration property or by calling
the method setEncodingActive(true).

There are different definitions for openUTM-P partners and CICS partners.

<name> Name of an outbound communication endpoint as it was defined using
the Management Console

Default: utm://outboundCommunicationEndpoint

Example: <property>
<name>connectionURL</name>
<value>utm://HELLO</value>

</property>

Definition: [<name>]

Explanation: Freely definable name of a managed connection factory as it is to be used, for
example in MBean and LogWriter output.

Default: No default value.
If you do not specify a name then the internal name of the managed connection
factory is used. This consists of the prefix "MCF" and a 5-digit number.

Example: <property>
<name>displayName</name>
<value>sample application/test</value>

</property>

Configuration in the application server Outbound communication via OSI-TP / LU6.2

BeanConnect V3.0B 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

For UTM partners apply:

For CICS partners apply:

Definition: [<builtin_encoding_table> |
builtin:<builtin_encoding_table> |
jdk:<jdk_encoding_table> |
custom:<encoding_table>]

Explanation: Name of a code table to be used for code conversion.
If no prefix is specified or if the prefix builtin: is specified, you must specify the
name of a built-in code table provided by BeanConnect.
The following built-in code tables are provided:
OSD_EBCDIC_DF03_IRV, OSD_EBCDIC_DF04_1, OSD_EBCDIC_DF04_15,
OSD_EBCDIC_DF04_DRV
Use the prefix jdk: to specify a code table contained in the JDK.
Use the prefix custom: to assign your own code table. Here you must specify the
fully qualified class name of the code table. For further details on using your own
code tables, refer to the JavaDoc for BeanConnect.

Default: For openUTM partners, this value is set to "OSD_EBCDIC_DF04_DRV".

Example: <property>
<name>encoding</name>
<value>OSD_EBCDIC_DF03_IRV</value>

</property>

Definition: [jdk:<jdk_encoding_table> |
custom:<encoding_table>]

Explanation: Name of a code table to be used for code conversion.
Use the prefix jdk: to specify a code table contained in the JDK.
Use the prefix custom: to assign your own code table. Here you must specify the
fully qualified class name of the code table. For further details on using your own
code tables, refer to the JavaDoc for BeanConnect.

Default: jdk:Cp1047

Example: <property>
<name>encoding</name>
<value>jdk:Cp1250</value>

</property>

Outbound communication via OSI-TP / LU6.2 Configuration in the application server

112 BeanConnect V3.0B

encodingActive

The encodingActive configuration property specifies whether code conversion is to be
activated.

The deployment settings can be overwritten using the setEncodingActive() method
defined in the EISConnection interface.

logLevel

This attribute can be used to set the level for the output of log records to a LogWriter for a
connection factory. LogWriters for connection factories are configured in different ways
depending on the employed application server. For more detailed information on LogWriter
configuration and output, see section “LogWriter for connection factories” on page 520.

Definition: [true | false]

Explanation: Flag specifying whether code conversion is to be activated.

true: Code conversion according to the settings of the encoding configu-
ration property is activated.

false: The default code table of the JDK is used to convert byte streams to
strings.

Default: false

Example: <property>
<name>encodingActive</name>
<value>true</value>

</property>

Definition: [NONE | ERROR | INFO | ALL]

Explanation: NONE No output is written to the LogWriter.

ERROR Only information relating to exceptions and transaction rollbacks is
written to the LogWriter.

INFO In addition to the information listed for ERROR, all transaction-related
events are logged, e.g. the beginning or committing of transactions.

ALL In addition to the information listed for INFO, all events relating to
connection lifecycles are logged. These include, for example, the
requesting or releasing of connection handles by the application or
events which affect pooling.

Default: NONE

Configuration in the application server Outbound communication via OSI-TP / LU6.2

BeanConnect V3.0B 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

timeout

The timeout configuration property specifies the maximum time the resource adapter waits
for the proxy to answer.

The value specified here must be greater than the maximum time that the EIS system
needs to process a call. If the timer expires, an exception is thrown to the application and
the connection between the resource adapter and the proxy is reinitialized. This generally
causes the transaction to be reset at the EIS partner

transactional

The transactional configuration property specifies whether the communication between
the application server and the EIS should be transactional. In this case the transaction of
the EIS is included in the transaction of the application server.

Example: <property>
<name>logLevel</name>
<value>INFO</value>

</property>

Definition: Time in millisecods.

Explanation: :> 0 Maximum time in milliseconds the resource adapter waits.

:0 The resource adapter waits indefinitely.

Default: 300000 (corresponds to 5 minutes)

Example: <property>
<name>timeout</name>
<value>30000</value>

</property>

Definition: [true | false]

Explanation: true: Participation in the application server transaction is activated.

false: Participation in the application server transaction is deactivated.

Default: false

Example: <property>
<name>transactional</name>
<value>true</value>

</property>

Outbound communication via OSI-TP / LU6.2 Configuration in the application server

114 BeanConnect V3.0B

4.3.1.4 Adapting connection pooling for OSI-TP / LU6.2

For each connection factory in the file weblogic-ra.xml, you can specify how connection
pooling is carried out.

Connection pooling is activated in order to increase the performance. Connections which
are used frequently and by many clients should be defined with large values for max-
capacity. For rarely used connections you need not define connection pooling at all. For
more information on connection pooling, refer to the application server documentation.

A connection factory definition with sample settings is shown in Example 5:

Example 5 Connection pooling

<connection-instance>
<jndi-name>eis/my_EIS</jndi-name>
<connection-properties>

<pool-params>
<initial-capacity>2</initial-capacity>
<max-capacity>10</max-capacity>

</pool-params>
...

</connection-properties>
</connection-instance>

Refer to the schema description for the file weblogic-ra.xml for further pool parameters.

Configuration in the application server Outbound communication via OSI-TP / LU6.2

BeanConnect V3.0B 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

4.3.1.5 Defining security settings (managing sign-on)

If an EJB requests a connection to the EIS with a ConnectionFactory.getConnection()
call, this connection is set up in the security context of BeanConnect. In particular, the
authentication data (user name and password) required for the EJB to access the EIS is
assigned when the connection is set up.

EJBs can authenticate themselves to the EIS in two ways:

● Application-managed authentication

● Container-managed authentication

It is recommended that container-managed authentication is used.

The basic procedure for application- and container-managed authentication is explained
below.

Application-managed authentication

In this case, the authentication data must be provided in the program code of the EJB (see
chapter “Interfaces and programming” on page 429). For EJBs which perform authenti-
cation themselves, the <res-auth> tag of the associated EJB deployment descriptor must
be specified as follows:

<res-auth>Application</res-auth>

Example of setting by EJB:

getConnection(new PasswordCredential(user, password));

Container-managed authentication

In this case, the application server regulates the transfer of authentication data. For EJBs
which allow the application server to perform authentication, the <res-auth> tag of the
associated EJB deployment descriptor must be specified as follows:

<res-auth>Container</res-auth>

The configuration for container-managed authentication is specific to the different type of
application server.

The following applies to Oracle WebLogic Server:

● The container-managed sign-on procedure in Oracle WebLogic Server is based on
outbound credential mapping during which the WebLogic credentials (normally the
user name and password) are mapped to the user name and password of the
EIS partner.

● In general terms, it is important to note that Oracle WebLogic Server only supports
outbound credential mapping for the default security realm (normally "myrealm").

Outbound communication via OSI-TP / LU6.2 Configuration in the application server

116 BeanConnect V3.0B

● In this case, a WebLogic user name can be mapped to the user name of the EIS system
either specifically for an individual managed connection factory or for the entire
resource adapter.

● Oracle WebLogic Server also makes it possible to define a default mapping for user
names for which no explicit mapping has been specified and to define a user name for
non-authenticated users (anonymous mapping).

During outbound credential mapping, Oracle WebLogic Server checks the following items
in the specified order:

1. Has a mapping been defined for the current managed connection factory for the user
name or, in the case of a non-authenticated user, has an anonymous mapping been
defined?

2. Has a mapping been defined for the resource adapter for the user name or, in the case
of a non-authenticated user, has an anonymous mapping been defined?

3. Has a default mapping been defined for the current managed connection factory?

4. Has a default mapping been defined for the resource adapter?

The user name is mapped as defined for the first condition that is satisfied.

If none of the conditions is satisfied, Oracle WebLogic Server does not pass any authenti-
cation data to the resource adapter. In this case, BeanConnect performs application-
managed authentication.

Under Oracle WebLogic Server, you use the WebLogic Server Administration Console to
perform outbound credential mapping as follows:

1. On the left side of the WebLogic Server Administration Console output screen, choose
the option Deployments.

2. In the Deploymentspage click the name of the resource adapter.

3. In the resource adapter’s Settings page, choose the Security and Outbound
Credential Mapping tabs one after the other.

4. Perform the required mappings.

For details on outbound credential mapping in Oracle WebLogic Server , refer to the section
"Outbound Credential Mappings" in the application server documentation.

Configuration in the application server Outbound communication via OSI-TP / LU6.2

BeanConnect V3.0B 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

4.3.1.6 Example: weblogic-ra.xml

Example 6 shows the definition of the connection-specific configuration properties in
weblogic-ra.xml.

Example 6 Configuration properties in the file weblogic-ra.xml

The section with the connection-specific configuration properties in the file weblogic-
ra.xml has the following layout:

<weblogic-connector
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-connector
http://www.oracle.com/technology/weblogic/weblogic-connector/1.3/weblogic-
connector.xsd"> …
 <outbound-resource-adapter>
 <default-connection-properties>
 <pool-params>
 <initial-capacity>0</initial-capacity>
 <max-capacity>10</max-capacity>
 </pool-params>
 <transaction-support>XATransaction</transaction-support>
 </default-connection-properties>
 <connection-definition-group>
 <connection-factory-
interface>net.fsc.jca.communication.EISOltpConnectionFactory
 </connection-factory-interface>
 <default-connection-properties>
 <pool-params>
 <initial-capacity> 1

 </initial-capacity>
 <max-capacity>20</max-capacity>
 </pool-params>
 </default-connection-properties>
 <connection-instance>
 <jndi-name>eis/my_BC_Factory1</jndi-name>
 <connection-properties>
 <pool-params>
 <initial-capacity>2</initial-capacity>
 </pool-params>
 <properties>
 <property>
 <name>ConnectionURL</name>
 <value>utm://accountEIS</value> 1

 </property>

1 For CICS partners: <value>cics://accountEIS</value>

Outbound communication via OSI-TP / LU6.2 Configuration in the application server

118 BeanConnect V3.0B

 <property>
 <name>encoding</name>
 <value>OSD_EBCDIC_DF04_DRV</value> 1

 </property>
 <property>
 <name>encodingActive</name>
 <value>true</value>
 </property>
 <property>
 <name>transactional</name>
 <value>true</value>
 </property>
 <property>
 <name>timeout</name>
 <value>30000</value>
 </property>
 <property>
 <name>bufferedIO</name>
 <value>true</value>
 </property>
 <property>
 <name>logLevel</name>
 <value>ALL</value>
 </property>
 <property>
 <name>displayName</name>
 <value>accountEIS</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>
 </connection-definition-group>
 <connection-definition-group>
 <connection-factory-interface>
 net.fsc.jca.communication.cci.BCOltpConnectionFactory
 </connection-factory-interface>
 <connection-instance>
 <jndi-name>eis/my_CCI_factory</jndi-name>
 <connection-properties>
 <pool-params>
 <initial-capacity>3</initial-capacity>
 </pool-params>
 <properties>
 <property>
 <name>ConnectionURL</name>
 <value>utm://accountEIS"</value> 1

1 For CICS partners: <value>jdk:Cp1047</value>

Configuration in the application server Outbound communication via OSI-TP / LU6.2

BeanConnect V3.0B 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

 </property>
 <property>
 <name>encoding</name>
 <value>OSD_EBCDIC_DF04_DRV</value> 2

 </property>
 <property>
 <name>encodingActive</name>
 <value>true</value>
 </property>
 <property>
 <name>transactional</name>
 <value>true</value>
 </property>
 <property>
 <name>timeout</name>
 <value>30000</value>
 </property>
 <property>
 <name>bufferedIO</name>
 <value>true</value>
 </property>
 <property>
 <name>logLevel</name>
 <value>NONE</value>
 </property>
 <property>
 <name>displayName</name>
 <value>cci/accountEIS</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>
 </connection-definition-group>
 </outbound-resource-adapter>
 </weblogic-connector>

Deploying an Enterprise JavaBean (EJB) Configuration in the application server

120 BeanConnect V3.0B

4.3.2 Deploying an Enterprise JavaBean for OSI-TP / LU6.2

When deploying an EJB which is designed to use BeanConnect for outbound communi-
cation, you must link the EJB to the BeanConnect deployment. The following files are
relevant for deploying an EJB:

● Code file of the EJB (.java or .class file)

● Standardized deployment descriptor of the EJB (ejb-jar.xml) or Java annotations

● Application server-specific deployment descriptor of the EJB
(with Oracle WebLogic Server: weblogic-ejb-jar.xml)

● Application server-specific deployment descriptor for the resource adapter
(with Oracle WebLogic Server: weblogic-ra.xml)

When an EJB is deployed, the resource reference used by the Bean developer is made
known to the application server in the deployment descriptor of the EJB. In addition, a
resource type is assigned to the resource reference.

BeanConnect supports the following resource types, which represent the different types of
connections that can be used:

● For OSI-TP or LU6.2 communication using the BeanConnect interface:

net.fsc.jca.communication.EISOltpConnectionFactory

● For OSI-TP or LU6.2 communication using the CCI interface:

net.fsc.jca.communication.cci.BCOltpConnectionFactory

You must specify the resource type in the following files:

● ejb-ra.xml with the <res-type> tag

● weblogic-jar.xml with the <connectionfactory-interface> tag

The sections of the code file of the EJB as well as of the files ejb-jar.xml, weblogic-ejb-
jar.xml and weblogic-ra.xml that are relevant for the deployment of the EJB are
described in detail below. The bold (partial) path names indicate the relationships between
the individual files.

● Code file of the EJB (.java or .class file)

The JNDI lookup for the ConnectionFactory object via a resource reference (coded
name) takes place here. In the following example, the resource reference used is
eis/Part1Dial.

...
cf=(EISConnectionFactory)

ic.lookup("java:comp/env/eis/Part1Dial")
...

Configuration in the application server Deploying an Enterprise JavaBean (EJB)

BeanConnect V3.0B 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

● Deployment descriptor of the EJB (ejb-jar.xml)

Here the resource reference (ConnectionFactory object) which the EJB accesses is
specified. In addition, a resource type is assigned to the resource reference. In the
following example net.fsc.jca.communication.EISOltpConnectionFactory
is used as the resource type.

<session>
<ejb-name>SimpleBeanConnect</ejb-name>
...
<resource-ref>
<res-ref-name>eis/Part1Dial</res-ref-name>
<res-type>
net.fsc.jca.communication.EISOltpConnectionFactory

</res-type>
<res-sharing-scope>Unshareable</res-sharing-scope>
...
</resource-ref>

</session>

i Please note that for <res-sharing-scope> you must always specify Unshareable.

● Application server-specific deployment descriptor of the EJB (with Oracle WebLogic
Server: weblogic-ejb-jar.xml):

Here, application server JNDI names are assigned to the EJB name and the resource
references that are defined in the file ejb-jar.xml.

<weblogic-enterprise-bean>
 <ejb-name>SimpleBeanConnect</ejb-name>
 <jndi-name>ejb/SimpleBeanConnect</jndi-name>
 <resource-description>
 <res-ref-name>comp/env/eis/Part1Dial</res-ref-name>
 <jndi-name>java:comp/env/eis/Part1Dial</jndi-name>
 </resource-description>
 </weblogic-enterprise-bean>

● Deployment descriptor for the resource adapter (with Oracle WebLogic Server:
weblogic-ejb-jar.xml):

Here the connection factory is configured for deployment in the application server
instance is configured and linked to the resource reference via the JNDI name (here:
partner1Dial). Via the configuration of the connection factory in the application server
instance, the resource adapter receives the URL of the service (in the following code
fragment: utm://echo and of the EIS partner.

Deploying an Enterprise JavaBean (EJB) Configuration in the application server

122 BeanConnect V3.0B

<outbound-resource-adapter>
 <connection-definition-group>
 <connection-factory-interface>
 net.fsc.jca.communication.EISOltpConnectionFactory
 </connection-factory-interface>
 <connection-instance>
 <jndi-name>eis/partner1Dial</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>ConnectionURL</name>
 <value>utm://echo</value> 1
 </property>
 ...
 </connection-properties>
 </connection-factory-interface>
 </connection-definition-group>
</outbound-resource-adapter>

The value specified in <connectionfactory-interface> must be identical to the value
that is specified with the <res-type> tag in the file ejb-jar.xml.

An additional configuration step is required on the proxy. For each outbound communi-
cation endpoint name that is specified in a connectionURL configuration property in the
file weblogic-ra.xml, you must configure a corresponding outbound communication
endpoint of the same name in the proxy. The outbound communication endpoint
definition maps the symbolic service name onto a real service name in the EIS partner
application. You can carry out configuration of an outbound communication endpoint
using the Management Console (see section “Configuring outbound communication
endpoints” on page 232).

1 For CICS partners: <value>cics://echo</value>

Configuration in the application server Outbound communication via UPIC

BeanConnect V3.0B 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

4.4 Configuring outbound communication via UPIC

When communications are performed via UPIC, you simply need to define the connection-
specific properties in the file weblogic-ra.xml. In this case, the file ra.xml is not relevant.

Connection factories

Outbound communication is performed via so-called connection factories.

You must configure at least one connection factory for each EIS partner. However, you may
also configure multiple connection factories with different properties for one and the same
EIS partner.

You make the following specifications for each connection factory:

● JNDI name: This name is also required when deploying the EJB and makes it possible
to address the connection factory in the EJB.

● Configuration properties: These are the parameters that apply to the connection to the
EIS partners.

● Connection pooling: Connection pooling is an application server functionality. It helps
improve performance on frequently used connections.

● Security settings: This is the data required when signing on at the EIS partner, e.g. user
ID and password. If this data is encoded directly in the EJB then the corresponding entry
can be omitted in the deployment descriptor.

Outbound communication via UPIC Configuration in the application server

124 BeanConnect V3.0B

4.4.1 Defining general connection-specific properties for UPIC in weblogic-
ra.xml

The file weblogic-ra.xml is the WebLogic-specific deployment descriptor for the resource
adapter. This deployment descriptor specifies the settings that are required for outbound
communication with EIS partners. The communications are conducted via so-called
connection factories.

General settings for outbound communication

The settings for outbound communication are defined in the element <outbound-resource-
adapter>. Here:

● You specify the properties for connection factories in the subelements <default-
connection-properties> and <connection-definition-group>.

● You specify default settings that are to apply for all the connection factories in the
subelement <default-connection-properties> of the element <outbound-resource-
adapter>.

● You specify default settings that are to apply for all the connection factories of a
<connection-definition-group> in the subelement <default-connection-
properties> of the element <connection-definition-group>.

● For each connection factory that is to be used by the EJBs, a <connection-instance>
must be described in the corresponding <connection-definition-group>.

4.4.1.1 Defining a resource for UPIC

The connection factory's resource type is defined in the tag <connection-factory-
interface> of the subelement<connection-definition-group>.

The following resource types are relevant for communication via UPIC:

● net.fsc.jca.communication.cci.BCUpicConnectionFactory

● net.fsc.jca.communication.EISUpicConnectionFactory

For the EJB that uses this connection factory, it is necessary to specify precisely this type
in the deployment descriptors ejb-jar.xml and weblogic-ra.xml, see section “Deploying
an Enterprise JavaBean for UPIC” on page 134. You will find an example in section
“Example: weblogic-ra.xml” on page 117.

Configuration in the application server Outbound communication via UPIC

BeanConnect V3.0B 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

4.4.1.2 Defining the JNDI name for UPIC

The connection factory's JNDI name is defined in the <connection-instance> subelement
of a <connection-definition-group> by means of the tag <jndi-name>.

An Enterprise Java Bean (EJB) in the application server addresses a connection factory via
JNDI (Java Naming and Directory Interface). The connection factory assigns the configured
properties to the connection.

4.4.1.3 Setting the configuration properties for UPIC

The configuration properties of a connection factory are defined via the subelement
<connection-properties> in the element <connection-instance>. You can also make
these changes using the WebLogic Server Administration Console GUI.

BeanConnect supports the following connection-specific configuration properties for
outbound communication:

● connectionURL

● displayName

● encoding

● encodingActive

● logLevel

● timeout

● reconnectThreshold

The connection provided by a ConnectionFactory.getConnection() call is preinitialized
with these configuration properties.

connectionURL

The connectionURL property defines the EIS partner and, if required, the service that is to
be addressed. Only EIS partners of type openUTM are permitted for outbound communi-
cation via UPIC.

In the case of a connection with a UTM cluster application, you can specify a list of URLs
under connectionURL. The individual URLs in this list must be separated by commas.

The getConnection() method of a connection factory supplies a connection with the appro-
priate configuration properties. The getConnection() property can be used by both the
EISConnection or the EISUpicConnection interface.

Definition: upic://<host>[:<port>]/[<local>:]<remote>[/<tac>]
[?tsel[;tsel]]

Outbound communication via UPIC Configuration in the application server

126 BeanConnect V3.0B

displayName

This attribute allows you to define a name for a managed connection factory. This name is
then used by BeanConnect when outputting information about this managed connection
factory, e.g. during the output of MBeans and LogWriter records.

Explanation: host Host on which the openUTM partner application is running.

port Port number of the port at which the openUTM partner application
listens (optional). Default: 102

local Local name of the client (PTERM). Default: JUPIC

remote Name of the openUTM partner application (BCAMAPPL or
APPLINAME).

tac TAC (ServiceName) which is to be called in the openUTM partner
application (optional).
This value can be overwritten by methods which are defined in the
EISConnection interface.

tsel TSEL format definition for the locale address (lt) or remote addresses
(rt) in the form (optional):
[lt={a|e|t}]|[rt={a|e|t}]
a =ASCII, e = EBCDIC, t = TRANSDATA
Default:
lt=t if local does not contain any lowercase characters, a otherwise
rt=t if remote does not contain any lowercase characters a otherwise

Default: upic://<host>:<port>/application/service

Example: EIS partner in a BS2000 system:
<property>
 <name>connectionURL</name>
 <value>upic://BS2HOST/UTMAPP/INFO</value>
</property>
EIS partner on Solaris/Linux/Windows systems:
<property>
 <name>connectionURL</name>
 <value>upic://unixhost:24000/UTMAPP/INFO?rt=a</value>
</property>

Definition: [<name>]

Explanation: Freely definable name of a managed connection factory as it is to be used, for
example, in MBean and LogWriter output.

Default: No default value.
If you do not enter a name then the internal name of the managed connection
factory is used. This consists of the prefix "MCF" and a 5-digit number.

Configuration in the application server Outbound communication via UPIC

BeanConnect V3.0B 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

encoding

The encoding configuration property defines a code table for converting byte code (for
example EBCDIC) to Unicode. These code tables are used for converting byte streams to
strings and vice versa. These conversions are always called implicitly when interactions
(sndString(), rcvString() for example) are executed which contain strings as I/O param-
eters.

The code table that is defined with the encoding configuration property is used as default
for the corresponding connection. The Bean programmer may determine that a different
code table is to be used for the connection by explicitly calling the setEncoding(Encoding)
method of the EISConnection interface (see section “Encoding” on page 479).

Code conversion using this code table is only carried out if encodingActive is actually
activated. You can select this with the encodingActive configuration property or by calling
the method setEncodingActive(true).

Example: <property>
 <name>displayName</name>
 <value>sample application/test</value>
</property>

Definition: [<builtin_encoding_table> |
builtin:<builtin_encoding_table>|
jdk:<jdk_encoding_table>|
custom:<encoding_table>]

Explanation: Name of a code table to be used for code conversion.
If no prefix is specified or if the prefix builtin: is specified, you must specify the
name of a built-in code table provided by BeanConnect.
The following built-in code tables are provided:
OSD_EBCDIC_DF03_IRV, OSD_EBCDIC_DF04_1, OSD_EBCDIC_DF04_15,
OSD_EBCDIC_DF04_DRV
Use the prefix jdk: to specify a code table contained in the JDK.
Use the prefix custom: to assign your own code table. Here you must specify the
fully qualified class name of the code table. For further details on using your own
code tables, refer to the JavaDoc for BeanConnect

Default: OSD_EBCDIC_DF04_DRV

Example: <property>
 <name>encoding</name>
 <value>OSD_EBCDIC_DF03_IRV</value>
</property>

Outbound communication via UPIC Configuration in the application server

128 BeanConnect V3.0B

encodingActive

The encodingActive configuration property specifies whether code conversion is to be
activated. The encodingActive configuration property is mapped directly onto the
setEncodingActive(boolean activate) method of the EISConnection interface.

The deployment settings can be overwritten using the setEncodingActive() method
defined in the EISConnection interface. It is also possible to activate customer-defined
classes for code conversion (setEncoding(Encoding)) at this interface.

logLevel

This attribute can be used to set the level for the output of log records to a LogWriter for a
connection factory. LogWriters for connection factories are configured in different ways
depending on the employed application server. For more detailed information on LogWriter
configuration and output, see section “LogWriter for connection factories” on page 520.

Definition: [true | false]

Explanation: Flag specifying whether code conversion is to be activated.

true Code conversion according to the settings of the encoding configu-
ration property is activated.

false The default code table of the JDK is used to convert byte streams to
strings.

Default: false

Example: <property>
 <name>encodingActive</name>
 <value>true</value>
</property>

Definition: [NONE | ERROR | INFO | ALL]

Explanation: NONE No output is written to the LogWriter.

ERROR Only information relating to exceptions is written to the LogWriter.

INFO Same output as for ERROR.

ALL In addition to the information listed for INFO/ERROR, all events relating
to the connection lifecycle are logged. These include, for example, the
requesting and releasing of connection handles by the application or
events relating to pooling.

Default: NONE

Configuration in the application server Outbound communication via UPIC

BeanConnect V3.0B 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

timeout

The timeout configuration property defines the maximum wait time for receive() or call()
calls. This property is mapped directly onto the socket timeout of the Java socket implemen-
tation.

The value specified here must be greater than the maximum time that the EIS system
needs to process a call. If the timer expires, an exception is thrown to the application and
the connection between the resource adapter and the proxy is reinitialized.

reconnectThreshold

The configuration property reconnectThreshold defines how often a (physical) connection
can be used (number of getConnection() calls) before it is to be disconnected and reestab-
lished by BeanConnect. This type of forced disconnection can be of use if the EIS partner
is a cluster application and it is necessary to redistribute the connections to the cluster
nodes from time to time.

The value 0 means that BeanConnect will not force any disconnections for this connection.

Example: <property>
 <name>logLevel</name>
 <value>INFO</value>
</property>

Definition: Timeout value (in milliseconds)

Default: 30000 (corresponds to 30 seconds)

Example: <property>
 <name>timeout</name>
 <value>30000</value>
</property>

Definition: Upper limit for the number of times a physical connection can be used

Default: 0 I.e. BeanConnect does not force disconnection

Example: <property>
 <name>reconnectThreshold</name>
 <value>10</value>
</property>

Outbound communication via UPIC Configuration in the application server

130 BeanConnect V3.0B

4.4.1.4 Adapting connection pooling for UPIC

Generally for each resource type or for each connection factory in the file weblogic-ra.xml,
you can specify how connection pooling is carried out.

Connection pooling is used in order to increase the performance. max-capacity defines
how many connections can be active for a connection factory at any one time; the default
value is 10. Oracle WebLogic Server rejects connection requests that go beyond the
number defined here with a ResourceAllocationException.
Connections which are used frequently and by many clients should be defined with large
values for max-capacity. For rarely used connections you need not define connection
pooling at all. For the other pool parameters, see the schema description for the file
weblogic-ra.xml.
A connection factory definition with sample settings is listed in Example 7:

Example 7 Connection pooling

<connection-instance>
 <jndi-name>eis/my_EIS</jndi-name>
 <connection-properties>
 <pool-params>
 <initial-capacity>2</initial-capacity>
 <max-capacity>10</max-capacity>
 </pool-params>
 …
 </connection-properties>
</connection-instance>

For the other pool parameters, see the schema description for the file weblogic-ra.xml.

4.4.1.5 Defining transaction support for UPIC

The value XATransaction is set as the transaction support level for the BeanConnect
resource adapter in the file weblogic-ra.xm. Since communication via UPIC connections is
not possible in a distributed transaction, it is advisable, when using Oracle WebLogic Server
as application server, to overwrite this attribute for the connection factories in the file
weblogic-ra.xml.

transaction-support

The transaction support level of a connection factory is described in the subelement
<transaction-support> of a <connection-instance> in the file weblogic-ra.xml. For
UPIC connections, you should specify the value NoTransaction here.

Example: <transaction-support>NoTransaction</transaction-support>

Configuration in the application server Outbound communication via UPIC

BeanConnect V3.0B 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

4.4.1.6 Example: weblogic-ra.xml (UPIC)

Example 8 shows the definition of the configuration properties in the file weblogic-ra.xml.

Example 8 Configuration properties in the file weblogic-ra.xml

The section with the configuration properties in weblogic-ra.xml has the following layout:

<weblogic-connector
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-connector
http://www.oracle.com/technology/weblogic/weblogic-connector/1.3/weblogic-
connector.xsd">
 …
 <outbound-resource-adapter>
 <default-connection-properties>
 <pool-params>
 <initial-capacity>1</initial-capacity
 <max-capacity>15</max-capacity>
 </pool-params>
 <transaction-support>NoTransaction</transaction-support>
 </default-connection-properties>
 <connection-definition-group>
 <connection-factory-interface>
 net.fsc.jca.communication.EISUpicConnectionFactory
 </connection-factory-interface>
 <default-connection-properties>
 <pool-params>
 <initial-capacity>2</initial-capacity>
 <max-capacity>100</max-capacity>
 </pool-params>
 </default-connection-properties>
 <connection-instance>
 <jndi-name>eis/my_BC_factory</jndi-name>
 <connection-properties>
 <pool-params>
 <initial-capacity>5</initial-capacity>
 </pool-params>
 <properties>
 <property>
 <name>ConnectionURL</name>
 <value>value="upic://BS2HOST/UTMAPP/INFO"</value>
 </property>
 <property>
 <name>encoding</name>
 <value>OSD_EBCDIC_DF04_DRV</value>
 </property>

Outbound communication via UPIC Configuration in the application server

132 BeanConnect V3.0B

 <property>
 <name>encodingActive</name>
 <value>true</value>
 </property>
 <property>
 <name>timeout</name>
 <value>30000</value>
 </property>
 <property>
 <name>logLevel</name>
 <value>INFO</value>
 </property>
 <property>
 <name>displayName</name>
 <value>upic/UTMAPP/INFO</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>
 </connection-definition-group>
 <connection-definition-group>
 <connection-factory-interface>
 net.fsc.jca.communication.cci.BCUpicConnectionFactory
 </connection-factory-interface>
 <default-connection-properties>
 <pool-params>
 <initial-capacity>0</initial-capacity>
 </pool-params>
 </default-connection-properties>
 <connection-instance>
 <jndi-name>eis/my_CCI_factory</jndi-name>
 <connection-properties>
 <pool-params>
 <max-capacity>100</max-capacity>
 </pool-params>
 <transaction-support>NoTransaction</transaction-support>
 <properties>
 <property>
 <name>ConnectionURL</name>
 <value>upic://BS2HOST/UTMAPP/INFO</value>
 </property>
 <property>
 <name>encoding</name>
 <value>OSD_EBCDIC_DF04_DRV</value>
 </property>
 <property>
 <name>encodingActive</name>
 <value>true</value>

Configuration in the application server Outbound communication via UPIC

BeanConnect V3.0B 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

 </property>
 <property>
 <name>timeout</name>
 <value>30000</value>
 </property>
 <property>
 <name>logLevel</name>
 <value>ERROR</value>
 </property>
 <property>
 <name>displayName</name>
 <value>upic/cci/UTMAPP/INFO</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>
 </connection-definition-group>
 </outbound-resource-adapter>
 </weblogic-connector>

Outbound communication via UPIC Configuration in the application server

134 BeanConnect V3.0B

4.4.2 Deploying an Enterprise JavaBean for UPIC

When deploying an EJB which is designed to use BeanConnect for outbound communi-
cation, you must link the EJB to the BeanConnect deployment. The following files are
relevant for deploying an EJB:

● Code file of the EJB (.java or .class file)

● Standardized deployment descriptor of the EJB (ejb-jar.xml)

● Application server-specific deployment descriptor of the EJB (with Oracle WebLogic
Server: weblogic-ejb-jar.xml)

● Application server-specific deployment descriptor for the resource adapter
(with Oracle WebLogic Server: weblogic-ra.xml)

When an EJB is deployed, the resource reference used by the Bean developer is made
known to the application server in the deployment descriptor of the EJB. In addition, a
resource type is assigned to the resource reference.

BeanConnect supports the following resource types, which represent the different types of
connections that can be used:

● For UPIC communication using the BeanConnect interface:

net.fsc.jca.communication.EISUpicConnectionFactory

● For UPIC communication using the CCI interface:

net.fsc.jca.communication.cci.BCUpicConnectionFactory

You must specify the resource type in the following files:

● weblogic-ra.xml with the <connection-factory-interface> tag

● ejb-jar.xml with the <res-type> tag

The sections of the code file of the EJB as well as of the files ejb-jar.xml, weblogic-ejb-
jar.xml and weblogic-ra.xml that are relevant for the deployment of the EJB are
described in detail below. The bold (partial) path names indicate the relationships between
the individual files.

● Code file of the EJB (.java or .class file)

The JNDI lookup for the ConnectionFactory object via a resource reference (coded
name) takes place here. In the following example, the resource reference used is
eis/Part1Dial.

...
cf=(EISConnectionFactory)

ic.lookup("java:comp/env/eis/Part1Dial")
...

Configuration in the application server Outbound communication via UPIC

BeanConnect V3.0B 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

● Deployment descriptor of the EJB (ejb-jar.xml)

Here the resource reference (ConnectionFactory object) which the EJB accesses is
specified. In addition, a resource type is assigned to the resource reference. In the
following example net.fsc.jca.communication.EISUpicConnectionFactory
is used as the resource type.

<session>
<ejb-name>SimpleBeanConnect</ejb-name>
...
<resource-ref>
<res-ref-name>eis/Part1Dial</res-ref-name>
<res-type>
net.fsc.jca.communication.EISUpicConnectionFactory

</res-type>
<res-sharing-scope>Unshareable</res-sharing-scope>
...
</resource-ref>

</session>

i Please note that for <res-sharing-scope> you must always specify Unshareable.

● Application server-specific deployment descriptor of the EJB (with Oracle WebLogic
Server: weblogic-ejb-jar.xml)

Here, application server JNDI names are assigned to the EJB names and resource
references defined in the file ejb-jar.xml.

<weblogic-enterprise-bean>
 <ejb-name>SimpleBeanConnect</ejb-name>
 <jndi-name>ejb/SimpleBeanConnect</jndi-name>
 <resource-description>
 <res-ref-name>comp/env/eis/Part1Dial</res-ref-name>
 <jndi-name>java:comp/env/eis/partner1Dial</jndi-name>
 </resource-description>
</weblogic-enterprise-bean>

● Deployment descriptor for the resource adapter (with Oracle WebLogic Server:
weblogic-ra.xml):

Here the connection factory for deployment in the application server
(here: Oracle WebLogic Server) is configured and linked to the resource reference via
the JNDI name (here: partner1Dial). The configuration of the connection factory in the
application server informs the resource adapter of the URL of the service (in the
following code fragment: upic://BS2HOST/UTMAPP/INFO) and the EIS partner.

<outbound-resource-adapter>
 <connection-definition-group>
 <connection-factory-interface>

Outbound communication via UPIC Configuration in the application server

136 BeanConnect V3.0B

 net.fsc.jca.communication.EISUpicConnectionFactory
 </connection-factory-interface>
 <connection-instance>
 <jndi-name>eis/partner1Dial</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>ConnectionURL</name>
 <value>upic://BS2HOST/UTMAPP/INFO</value>
 </property>
 ...
 </connection-properties>
 </connection-factory-interface>
 </connection-definition-group>
 </outbound-resource-adapter

The value specified in <connection-factory-interface> must be identical to the value
that is specified with the <res-type> tag in the file ejb-jar.xml.

Configuration in the application server Inbound communication

BeanConnect V3.0B 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

4.5 Setting configuration properties for inbound
communication

i The configuration of the general properties for ibound communication is described
in section “Defining general properties in ra.xml” on page 93 and section “Defining
the general properties of the resource adapter in weblogic-ra.xml” on page 99.

At least one OLTP message-driven bean has to be deployed when using inbound commu-
nication. The OLTP message-driven bean must implement one of the following message
listener interfaces:

● net.fsc.jca.communication.AsyncOltpMessageListener

● net.fsc.jca.communication.OltpMessageListener

● javax.resource.cci.MessageListener

A deployment descriptor has to be created in the file ejb-jar.xml for deploying the OLTP
message-driven bean. If the file ejb-jar.xml is not created automatically by an IDE
(Integrated Development Enviroment) during the bean development process, you must
create this file manually. Additionally, in most cases, the deployment of an OLTP message-
driven bean requires also an application server-specific deployment descriptor. In the case
of Oracle WebLogic Server, the application server-specific deployment descriptor is stored
in the file weblogic-ejb-jar.xml. Examples of an ejb-jar.xml and an orion-ejb-jar.xml
file for an OLTP message-driven bean are shown in Example 8 and in Example 9.

Inbound communication Configuration in the application server

138 BeanConnect V3.0B

4.5.1 Configuration properties in the ejb-jar.xml

The following properties have to be set in the deployment descriptor (ejb-jar.xml) of the
OLTP message-driven bean:

● The messaging-type property specifies the message listener interface used by the
OLTP message-driven bean.

● The activation-config properties refer to the specified message listener interface.
Each of the properties are specified in a separate activation-config-property
element within the activation-config element of the file ejb-jar.xml.

The following activation-config properties are available:

encoding

encodingActive

messageEndpoint

redeliveryThreshold

The properties for the file ejb-jar.xml are described in detail below.

messaging-type

The messaging-type property specifies the message listener interface used by the OLTP
message-driven bean.

Definition: Message listener interface used by the OLTP message-driven bean

Default: –

Example: <messaging-type>
net.fsc.jca.communication.AsyncOltpMessageListener

</messaging-type>

Configuration in the application server Inbound communication

BeanConnect V3.0B 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

messageEndpoint

The messageEndpoint activation-config property specifies the name of the message
endpoint. Note that the message endpoint name specified here must be identical to the
name of the inbound message endpoint specified when configuring the proxy using the
Management Console (see section “Configuring inbound message endpoints” on
page 234).

encoding

The encoding activation-config property defines a code table for converting EIS-specific
byte code (for example EBCDIC) to Unicode.

The property specified here is overwritten if the message-driven bean is called by an
inbound service to which a Partner Encoding was assigned in the Management Console
during the configuration of the proxy.

Definition: Name of the message endpoint.

Default: –

Example: <activation-config-property>
<activation-config-property-name>messageEndpoint
</activation-config-property-name>
<activation-config-property-value>SampleAsynOltpMdb
</activation-config-property-value>

</activation-config-property>

Definition: [<builtin_encoding_table> |
builtin:<builtin_encoding_table> |
jdk:<jdk_encoding_table> |
custom:<encoding_table>]

Explanation: Name of a code table to be used for code conversion.
If no prefix is specified or if the prefix builtin: is specified, you must specify the
name of a built-in code table provided by BeanConnect.
The following code tables are provided:
OSD_EBCDIC_DF03_IRV, OSD_EBCDIC_DF04_1, OSD_EBCDIC_DF04_15,
OSD_EBCDIC_DF04_DRV
Use the prefix jdk: to specify a code table contained in the JDK.
Use the prefix custom: to assign your own code table. Here you must specify the
fully qualified class name of the code table. For further details on using your own
code tables, refer to the JavaDoc for BeanConnect

Default: OSD_EBCDIC_DF04_DRV

Inbound communication Configuration in the application server

140 BeanConnect V3.0B

encodingActive

The encodingActive activation-config property specifies whether code conversion is to be
activated.

encodingActive is set to true irrespective of the value specified here if the message-driven
bean is called by an inbound service to which a Partner Encoding was assigned in the
Management Console during the configuration of the proxy

Example: for openUTM partners:
<activation-config-property>
<activation-config-property-name>encoding
</activation-config-property-name>
<activation-config-property-value>OSD_EBCDIC_DF04_15
</activation-config-property-value>

</activation-config-property>
for CICS partners:
<activation-config-property>
<activation-config-property-name>encoding
</activation-config-property-name>
<activation-config-property-value>jdk:Cp1047
</activation-config-property-value>

</activation-config-property>

Definition: [true | false]

Explanation: Flag specifying whether code conversion is to be activated.

true: Code conversion according to the settings of the encoding activation-
config property is activated.

false: The default code table of the JDK is used to convert byte streams to
strings.

Default: false

Example: <activation-config-property>
<activation-config-property-name>encodingActive
</activation-config-property-name>
<activation-config-property-value>true
</activation-config-property-value>

</activation-config-property>

Configuration in the application server Inbound communication

BeanConnect V3.0B 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

redeliveryThreshold

The redeliveryThreshold activation-config property defines the number of additional
attempts to deliver the message if the transaction is rolled back. This property can only be
set for asynchronous OLTP message-driven beans, i.e. for OLTP message-driven beans
which implement the message listener interface net.fsc.jca.communication.AsyncO-
ltpMessageListener. The message listener interface is specified in the messaging-type
property.

The property only takes effect if the OLTP message-driven bean has been deployed with
the transaction attribute Required. In this case, the onMessage method is called inside a
transaction which has been started by the proxy (never by the EIS). If this transaction is
reset, the message is delivered again, unless the generated threshold has been exceeded.

4.5.2 Defining configuration properties for inbound communication in
weblogic-ejb-jar.xml

In the application server-specific deployment descriptor weblogic-ejb-jar.xml, the value
of the tag <resource-adapter-jndi-name> in the element <message-driven-descriptor>
must correspond to the name of the resource adapter that was specified in the element
<jndi-name> in the file weblogic-ra.xml.

See also Example 9.

Definition: Number of additional redelivery attempts if an error occurs.
Minimum value = 0
Maximum value = 254

Default: 0, i.e. the message is not delivered again.

Example: <activation-config-property>
<activation-config-property-name>redeliveryThreshold
</activation-config-property-name>
<activation-config-property-value>1
</activation-config-property-value>

</activation-config-property>

Inbound communication Configuration in the application server

142 BeanConnect V3.0B

4.5.3 Examples for ejb-jar.xml and weblogic-ejb-jar.xml

Example 9 ejb-jar.xml file

The following code extract shows a deployment descriptor ejb-jar.xml for a JAR file that
describes three OLTP message-driven beans. The OLTP message-driven beans
implement three different message listener interfaces.

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar id="ejb-jar_ID" metadata-complete="false" version="3.1"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/ejb-
jar_3_1.xsd">
<description xml:lang="en">Code Samples for Inbound

Communication</description>
<display-name xml:lang="en">SampleMessageDrivenBeans</display-name>
<enterprise-beans>
<message-driven>
<description xml:lang="en">

Code Sample for Dialog Inbound Communication
</description>
<ejb-name>SampleDialogOltpMdbBean</ejb-name>
<ejb-class>net.fsc.jca.beanconnect.oltpmdb.SampleDialogOltpMdbBean

</ejb-class>
<messaging-type>net.fsc.jca.communication.OltpMessageListener
</messaging-type>
<transaction-type>Container</transaction-type>
<activation-config>
<activation-config-property>
<activation-config-property-name>messageEndpoint
</activation-config-property-name>
<activation-config-property-value>SampleDialogOltpMdb
</activation-config-property-value>

</activation-config-property>
<activation-config-property>
<activation-config-property-name>encodingActive
</activation-config-property-name>
<activation-config-property-value>true
</activation-config-property-value>

</activation-config-property>
<activation-config-property>
<activation-config-property-name>encoding
</activation-config-property-name>
<activation-config-property-value>OSD_EBCDIC_DF04_15 1

1 For CICS partners: <activation-config-property-value>jdk:Cp1047

Configuration in the application server Inbound communication

BeanConnect V3.0B 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

</activation-config-property-value>
</activation-config-property>

</activation-config>
</message-driven>
<message-driven>
<description xml:lang="en">

Code Sample for Asynchronous Inbound Communication
</description>
<ejb-name>SampleAsynOltpMdbBean</ejb-name>
<ejb-class>net.fsc.jca.beanconnect.oltpmdb.SampleAsynOltpMdbBean

 </ejb-class>
<messaging-type>net.fsc.jca.communication.AsyncOltpMessageListener
</messaging-type>
<transaction-type>Container</transaction-type>
<activation-config>
<activation-config-property>
<activation-config-property-name>messageEndpoint
</activation-config-property-name>
<activation-config-property-value>SampleAsynOltpMdb
</activation-config-property-value>

</activation-config-property>
<activation-config-property>
<activation-config-property-name>encodingActive
</activation-config-property-name>

<activation-config-property-value>true
</activation-config-property-value>

</activation-config-property>
<activation-config-property>
<activation-config-property>
<activation-config-property-name>encoding
</activation-config-property-name>
<activation-config-property-value>OSD_EBCDIC_DF04_15 1

</activation-config-property-value>
</activation-config-property>
<activation-config-property-name>redeliveryThreshold
</activation-config-property-name>
<activation-config-property-value>1</activation-config-property-

value>
</activation-config-property>

</activation-config>
</message-driven>
<message-driven>
<description xml:lang="en">

Code Sample for CCI Inbound Communication</description>
<ejb-name>SampleCciOltpMdbBean</ejb-name>
<ejb-class>net.fsc.jca.beanconnect.oltpmdb.SampleCciOltpMdbBean

 </ejb-class>
<messaging-type>javax.resource.cci.MessageListener</messaging-type>

Inbound communication Configuration in the application server

144 BeanConnect V3.0B

<transaction-type>Bean</transaction-type>
<activation-config>
<activation-config-property>
<activation-config-property-name>messageEndpoint
</activation-config-property-name>

<activation-config-property-value>SampleCciOltpMdbBean
</activation-config-property-value>

</activation-config-property>
</activation-config>

</message-driven>
</enterprise-beans>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>SampleDialogOltpMdbBean</ejb-name>
<method-name>onMessage</method-name>
<method-params>
<method-param>net.fsc.jca.communication.OltpMessage</method-param>

</method-params>
</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>
<method>
<ejb-name>SampleAsynOltpMdbBean</ejb-name>
<method-name>onMessage</method-name>
<method-params>
<method-param>net.fsc.jca.communication.OltpMessage</method-param>

</method-params>
</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>
<method>
<ejb-name>SampleCciOltpMdbBean</ejb-name>
<method-name>onMessage</method-name>
<method-params>
<method-param>net.fsc.jca.communication.OltpMessage</method-param>

</method-params>
</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

Configuration in the application server Inbound communication

BeanConnect V3.0B 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

Example 10 weblogic-ejb-jar.xml file

The fiurst code extract presents the section of the application server-specific deployment
descriptor weblogic-ra.xml for the resource adapter. The name of the resource adapter is
defined in this section. The following application server-specific deployment descriptor
weblogic-ejb-jar.xml then refers to this name:

<?xml version="1.0" encoding="UTF-8" ?>
<weblogic-connector
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-connector
http://www.oracle.com/technology/weblogic/weblogic-connector/1.3/weblogic-
connector.xsd">
 <jndi-name>BeanConnect</jndi-name>

Next comes the code extract from the application server-specific deployment descriptor
weblogic-ejb-jar.xml which refers to the EJB for the three OLTP message-driven beans
from Example 8.

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-ejb-jar xmlns="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.1/weblogic-ejb-jar.xsd">
 <weblogic-enterprise-bean>
 <ejb-name>SampleDialogOltpMdbBean</ejb-name>
 <message-driven-descriptor>
 <resource-adapter-jndi-name>BeanConnect</resource-adapter-jndi-name>
 </message-driven-descriptor>
 </weblogic-enterprise-bean>
 <weblogic-enterprise-bean>
 <ejb-name>SampleAsynOltpMdbBean</ejb-name>
 <message-driven-descriptor>
 <resource-adapter-jndi-name>BeanConnect</resource-adapter-jndi-name>
 </message-driven-descriptor>
 </weblogic-enterprise-bean>
 <weblogic-enterprise-bean>
 <ejb-name>SampleCciOltpMdbBean</ejb-name>
 <message-driven-descriptor>
 <resource-adapter-jndi-name>BeanConnect</resource-adapter-jndi-name>
 </message-driven-descriptor>
 </weblogic-enterprise-bean>
 </weblogic-ejb-jar>

Preparing resource adapter logging Configuration in the application server

146 BeanConnect V3.0B

4.6 Preparing resource adapter logging

After installation, the log4j property files are located in the config subdirectory of the
resource adapter's installation directory.

This directory contains the following files:

1. BeanConnect.log4j.properties.xml

2. BeanConnect.log4j.properties_debug.xml

3. BeanConnect.log4j.properties_default.xml

4. BeanConnect.log4j.properties_error.xml

These files contain settings for resource adapter logging. The content of the first and third
files is identical.

The BeanConnect resource adapter reads the logging settings from the file
BeanConnect.log4j.properties.xml.

Copy this file to the directory <WebLogicServerDomainDirectory>/config (Oracle
WebLogic Server specific).

Normally, you should not change the default settings for logging. If necessary (e.g. for
diagnosis), you can subsequently extend or reduce the scope of logging, see section
“Overview of logging in the BeanConnect resource adapter” on page 524.

Configuration in the application server Multiple resource adapter mode

BeanConnect V3.0B 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

4.7 Special characteristics of multiple resource adapter mode

In a multiple resource adapter configuration, several resource adapters work together with
one proxy instance. A maximum of 32 resource adapter instances are possible for each
proxy instance. A unique index is assigned to each resource adapter instance. This index
must be entered in the file ra.xml, see below.

Multiple resource adapter mode is possible for both outbound communication via OSI-TP /
LU6.2 and for inbound communication.

In multiple resource adapter mode, you must perform the following configuration steps in
the application server for each resource adapter:

● In the file ra.xml, define the index“Adapting the ra.xml file” on page 93 of the resource
adapter using the additional configuration property resourceAdapterIndex. This may
also be possible via the Management Console as in standard operation providing that
certain requirements are fulfilled, see “Adapting the ra.xml file” on page 93.

If you assign the indices manually, you must make sure that each resource adapter is
given a unique index. In the case of inbound communication, you require this unique
index to configure the inbound message endpoints via the Management Console (see
section “Defining the general properties of the resource adapter in weblogic-ra.xml” on
page 99).

● Perform the other configuration steps at the application server in exactly the same way
as in default resource adapter mode, see section “Configuration steps for outbound and
inbound communication” on page 91.

resourceAdapterIndex

resourceAdapterIndex defines the index of the associated resource adapter instance in a
multiple resource adapter configuration.

This property is only of any significance in a multiple resource adapter configuration with
several resource adapter instances and must not be specified at the same time as the
resourceAdapterAddresses property (see section “Special characteristics in cluster
operation” on page 149).

Definition: <index>

Explanation: <index> is a number between 1 and 32. It is defined by the Management Console
if the ra.xml is configured using the Management Console.

Default: No default value

Multiple resource adapter mode Configuration in the application server

148 BeanConnect V3.0B

Example: <config-property>
 <description>Index of this resource adapter instance in a
 multi-resource-adapter configuration.
 </description>
 <config-property-name>resourceAdapterIndex
 </config-property-name>
 <config-property-type>java.lang.String
 </config-property-type>
 <config-property-value>5
 </config-property-value>
</config-property>

Configuration in the application server Cluster operation

BeanConnect V3.0B 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

4.8 Special characteristics in cluster operation

Multiple resource adapter instances may run together with multiple proxy instances in a
cluster environment. The number of proxy instances does not have to be the same as the
number of resource adapter instances. A maximum of 32 resource adapter instances and
a maximum of 32 proxy instances are possible.

All the participating instances have an identical configuration, and in particular each
resource adapter instance is deployed with the same BeanConnect RAR archive and
therefore works with the same configuration values from ra.xml.

Cluster operation is possible for both outbound communication via OSI-TP / LU6.2 and for
inbound communication.

In the case of cluster operation, the following configuration steps are necessary at the appli-
cation server:

● Define the additional parameters and properties for cluster operation in the ra.xml file:

– You must specify the addresses of all the proxy instances in the property proxyURL.

– You must specify the addresses of all the resource adapter instances in the
additional property resourceAdapterAddresses.

– You can modify the parameters for the reallocation of the resource adapters and
proxies in the properties proxyReconnectCount and proxyReconnectInterval.

This is also possible via the Management Console as in standard operation, see
“Adapting the ra.xml file” on page 93. However, you may also adapt the ra.xml file
manually.

● Perform the other configuration steps at the application server in exactly the same way
as when using only one resource adapter, see section “Configuration steps for
outbound and inbound communication” on page 91.

proxyURL

In cluster operation, the proxyURL defines the assignment of the resource adapter instances
to the proxy instances. If you are working with multiple proxy instances then you must
specify the addresses of all the proxies, each separated by a semicolon.

Definition: oltp://<host>:<port>/<name>; ... ;oltp://<host>:<port>/<name>

Explanation: <host> Host on which the associated proxy container is installed.
<host> can be specified as a symbolic name or as an IPv4 address.

<port> Port number of the associated proxy container + 4

Cluster operation Configuration in the application server

150 BeanConnect V3.0B

resourceAdapterAddresses

This property is only of any significance in a cluster configuration with several resource
adapter instances and must not be specified at the same time as the resourceAdapter-
Index property (see section “Special characteristics of multiple resource adapter mode” on
page 147).

This property enables you to specify the addresses of all the computers on which instances
of the BeanConnect resource adapter will be run. You can specify up to 32 semicolon-
delimited addresses.

You specify addresses in the format host[:port]. If you do not specify a port number, the
port number specified under inboundListenerPort is used as the listener port for inbound
communication. This must be greater than 0. If you specify a port number, this is used as
the listener port for inbound communication. The specified value must be greater than 0.

If multiple resource adapter instances are to run under one and the same host address,
then you must specify this host address the corresponding number of times in the list and
assign each address a different port number.

<name> Application name of the associated proxy container (BCU<port>)

 The individual entries must be separated by semicolons.

Default: oltp://localhost:31004/BCU31004

Example: <config-property>
<description>BeanConnect Proxy URLs for OLTP outbound

communication with 2 Proxies</description>
<config-property-name>proxyURL</config-property-name>
<config-property-type>java.lang.String
</config-property-type>
<config-property-value>oltp://proxyhost1:31004/BCU31004;

 oltp://proxyhost2:31004/BCU31004
</config-property-value>

</config-property>

Definition: <host>[:<port>]; ... ;<host>[:<port>]

Explanation: <host> Host on which the associated resource adapter instance is running.
<host> can be specified as a symbolic name or as an IPv4 address.

<port> Port number of the associated resource adapter instance for inbound
communication.

 The individual entries must be separated by semicolons.

Default: There is no default value

Configuration in the application server Cluster operation

BeanConnect V3.0B 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
18

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
4

proxyReconnectCount

This property is only of any significance in a cluster configuration with multiple resource
adapter instances and multiple proxy instances. proxyReconnectCount controls the usage-
driven reassignment of a resource adapter instance to a proxy application. This mechanism
is activated as soon as multiple resource adapter instances are assigned to a proxy appli-
cation.

Example: <config-property>
 <config-property-name>resourceAdapterAddresses
 </config-property-name>
 <config-property-type>java.lang.String
 </config-property-type>
 <config-property-value>
 host1:31099;host2:31099;host3:31099
 </config-property-value>
</config-property>

Definition: <number>

Explanation: <number> specifies the number of connection requests (calls to getCon-
nection()) after which a reassignment between the resource adapter instance
and the proxy application is necessary.
If the value 0 is specified for <number> then usage-driven reassignment is deacti-
vated

Default: 100

Example: <config-property>
 <config-property-name>proxyReconnectCount
 </config-property-name>
 <config-property-type>java.lang.String
 </config-property-type>
 <config-property-value>200
 </config-property-value>
</config-property>

Cluster operation Configuration in the application server

152 BeanConnect V3.0B

proxyReconnectInterval

This property is only of any significance in a cluster configuration with multiple resource
adapter instances and multiple proxy instances. proxyReconnectInterval controls the
time-driven reassignment of a resource adapter instance to a proxy application. This
mechanism is activated as soon as multiple resource adapter instances are assigned to a
proxy application.

i If a cluster configuration is operated with more resource adapter instances than
proxy instances (i.e. there is always at least one proxy instance which is assigned
more than one resource adapter instance), then the usage-driven and time-driven
reassignment should be deactivated or, at the very least, values larger than the
defaults should be set in order to avoid performance losses.

Definition: <minutes>

Explanation: <minutes> specifies the time in minutes after which a reassignment between the
resource adapter instance and the proxy application is necessary
If the value 0 is specified for <minutes> then time-driven reassignment is deacti-
vated.

Default: 10

Example: <config-property>
 <config-property-name>proxyReconnectInterval
 </config-property-name>
 <config-property-type>java.lang.String
 </config-property-type>
 <config-property-value>5
 </config-property-value>
</config-property>

BeanConnect V3.0B 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
19

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
5

5 BeanConnect Management Console

The BeanConnect Management Console is used to configure and administer one or more
BeanConnect proxies. These proxies can run on the same host as the Management
Console (local proxies) or on a remote host (remote proxies).

Local proxies are proxies which run on the same host and under the same user ID as the
Management Console. All other proxies are referred to as remote proxies.

In addition, the Management Console is a JMX client. As a result, it is therefore possible,
for example, to modify the settings in the resource adapter via the BeanConnect MBeans,
query statistical values for connections via the BeanConnect MBeans or access the appli-
cation server's MBeans.

In addition, you can also use the Management Console to set the logging properties in the
application server.

The Management Console is an administration tool with a graphical user interface (GUI).

Command Line Interface (MC-CLI)

In addition to the graphical user interface, the Management Console also possesses a
command line interface with which you can also run the Management Console functions via
script. This Management Console command line interface (MC-CLI) uses the Jython script
language. You can find more detailed information in chapter “Command Line Interface of
the BeanConnect Management Console (MC-CLI)” on page 299.

MC-CLI-Recording

All Management Console actions for which there are functions in the MC-CLI are recorded
in internal buffers in the Management Console. You can view these recordings in an internal
editor or output them to a file. For further information, see section “MC-CLI recording:
Recording Management Console actions” on page 168.

i You can find further detailed information about the Management Console in the
Management Console's online help system.

BeanConnect Management Console

154 BeanConnect V3.0B

This chapter provides an overview of

● Starting and shutting down the Management Console

● User interface - Management Console window

● Functions of the BeanConnect Management Console

● Administrative data of the Management Console

BeanConnect Management Console Starting/shutting down the Management Console

BeanConnect V3.0B 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
19

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
5

5.1 Starting and shutting down the Management Console

This section provides information about:

● Starting the Management Console

● Starting the Management Console's online Help system

● Shutting down the Management Console

5.1.1 Starting the Management Console

Starting the Management Console under Unix and Linux systems

You start the Management Console using the shell script startconsole.sh:

1. Open a shell.

2. Change to the Management Console home directory.

3. Run the shell script startconsole.sh.

Starting the Management Console under Windows

Start the Management Console via the program group:

Start - Programs - FUJITSU Software BeanConnect V3.0B00 - Management Console
- Management Console

5.1.2 Starting the Management Console's online Help system

You can start the Management Console's online help system within the Management
Console window in the following ways:

● Press the F1 key.

● Choose the Content command from the Help menu.

● Click the Help button in a dialog box or a panel in which you require assistance.

Alternatively, you can start the online help system without starting the Management
Console:

Starting/shutting down the Management Console BeanConnect Management Console

156 BeanConnect V3.0B

● On Unix/Linux systems:

1. Open a shell.

2. Change to the Management Console home directory.

3. Call the script starthelp.sh.

● On Windows systems:

Select the MC Help command from the
FUJITSU Software BeanConnect V3.0B00 Management Console program group.

Language of the online Help system

You can change the language of the Management Console's online help system:

● On Unix/Linux systems:

During the installation of the Management Console, both the English and the German
versions of the help system are installed. By default, the Management Console uses the
English version.

To change to the German language, move the file
ConsoleHelp_de.jar to ConsoleHelp.jar
to the lib subdirectory of the BeanConnect installation directory.

● On Windows systems:

You can select the language for the Management Console's online help system during
the installation of BeanConnect (see section “Installing BeanConnect under Windows
systems” on page 65). By default, the English version is selected.

5.1.3 Shutting down the Management Console

To shut down the Management Console, choose Exit from the File menu.

BeanConnect Management Console Management Console window

BeanConnect V3.0B 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
19

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
5

5.2 User interface - Management Console window

The Management Console window contains the components described below:

● A menu bar is located at the top of the Management Console window.
The menu bar contains the File, View, Extras, Window and Help menus.

● The central part of the window is divided into the following areas:

– Navigation area (on the left)
This area displays a tree structure (the navigation tree) containing the administered
proxies together with the resources and settings they contain.

– Work area (in the top right area of the window)
This area displays configuration data associated with the entries you have selected
in the navigation area.

– Protocol (log) window (in the bottom right part of the window)
This area contains the messages of the current Management Console session. The
log window can be permanently displayed or hidden.

● At the bottom of the window you will find the status bar.
The status bar displays the processing status of time-intensive jobs in the form of text
messages.

Figure 12: User interface of the Management Console

Management Console window BeanConnect Management Console

158 BeanConnect V3.0B

5.2.1 Navigation area in the Management Console

The administered BeanConnect proxies are displayed in a tree structure in the navigation
area (in the same way as the drives and directories in Windows Explorer). There is a
separate subtree under the BeanConnect proxies node for every BeanConnect proxy that
is administered via the Management Console (Proxy1 in figure 13). This subtree allows you
to display and edit the configuration data of the BeanConnect proxy. If you click an item in
the subtree, the configuration data associated with this component is displayed in a panel
in the work area. The context menu of the entry in question also contains commands which
allow you to modify the configuration data.

The figure below shows the navigation area of the Management Console:

Figure 13: Navigation area

BeanConnect Management Console Management Console window

BeanConnect V3.0B 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
19

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
5

5.2.2 Managed objects

No proxy container needs to be running in order to administer objects. A distinction is made
between the following objects:

MC-CmdHandler Client Instances

One object for each administered MC-CmdHandler. An MC-CmdHandler enables you to
access the filesystem at the relevant host and execute scripts there.

Communication Services

One object for each administered communication service. A communication service is
required for communications with CICS partners. It can run either locally or on a remote
host.

openUTM-LU62 Gateways

One object for each managed openUTM-LU62 Gateway. An openUTM-LU62 Gateway is
required alongside the communication service for communications with CICS partners. In
each case, it runs on the same host as the associated communication service.

BeanConnect Proxy Clusters

One object for each administered BeanConnect proxy cluster. A proxy cluster consists of
one or more proxies which must be configured beforehand.

BeanConnect Proxies

One object for each administered BeanConnect proxy which is not located in a proxy
cluster.

Only "administrable" BeanConnect proxies can be managed using the Management
Console. A BeanConnect proxy is considered administrable if one of the following applies:

● The proxy is a local proxy.

● The proxy is a remote proxy and the MC-CmdHandler associated with the proxy is
available and can be accessed via the Management Console.

Resource Adapters

One or more resource adapters is assigned to each proxy. A resource adapter runs on an
application server instance.

Management Console window BeanConnect Management Console

160 BeanConnect V3.0B

MBean Clients

An MBean client can be defined for each resource adapter. The Management Console can
use the MBean client to access the MBeans of the relevant JMX server (display attributes
and modify their values, run operations and receive notifications).

It is also possible to define "free" (stand-alone) MBean clients which are not assigned to any
resource adapter. Free MBean clients are displayed on the topmost level of the navigation
tree.

EIS Partners

One object for each administered EIS partner.

Inbound Users

The user information (user name and password) may be passed by the EIS partner on
inbound communication. This user information must be known to the proxy.

Inbound Message Endpoints

An inbound message endpoint represents a communication endpoint for inbound commu-
nication. A proxy can manage several inbound message endpoints.

Inbound Services

An inbound service is a service which an EIS partner addresses during inbound communi-
cation. A service is always assigned to precisely one inbound message endpoint. However,
it is possible to assign multiple services to an inbound message endpoint. You can also
define coding properties for a service.

Outbound Services

An outbound service represents a service (transaction code (TAC) or CICS transaction) that
is provided by the EIS partner.

BeanConnect Management Console Management Console window

BeanConnect V3.0B 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
19

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
5

Outbound Communication Endpoints

For each (symbolic) service that is specified in the connectionURL configuration property in
the application server, you must configure a corresponding outbound communication
endpoint of the same name in the proxy. The outbound communication endpoint definition
maps the symbolic service name onto a real service name in the EIS partner application.

Outbound communication endpoints are specific to the EIS partners. Several outbound
communication endpoints can be assigned to one EIS partner.

For detailed information see section section “Configuring outbound communication
endpoints” on page 232.

5.2.3 Additional functions and information

You can find more functions and information in:

Advanced Functions

The advanced features provide statistical information and diagnosis control. You can find
detailed information in chapter “High availability and scalability” on page 504.

Todo Topics

The Management Console provides a list of todo topics. The todo list contains the most
important activities that need to be performed in order to activate modifications made to the
configuration data of the BeanConnect proxies. You can also use the todo topic list to add
your own todo topics. You will find further details in the section section “Todo topics” on
page 167.

Functions of the Management Console BeanConnect Management Console

162 BeanConnect V3.0B

5.3 Functions of the BeanConnect Management Console

The Management Console supports you in tasks associated with:

● Configuration functions

● Configuration wizards

● Starting and stopping proxies

● Checking the availability of BeanConnect components and EIS partners

● Diagnosis support

● Todo topics

● Management Console as a JMX client

i You should avoid to concurrently configure or administrate a BeanConnect proxy
from multiple Management Console sessions. Otherwise settings of one
Management Console session could be overwritten by another session and data
may be lost.

5.3.1 Configuration functions

Configuration using the Management Console covers the following activities:

● configuring the BeanConnect proxies

● configuring the EIS partners

You can also use the Management Console command line interface to run Management
Console configuration functions via a script. You can find more detailed information in
chapter “Command Line Interface of the BeanConnect Management Console (MC-CLI)” on
page 299.

Configuring the BeanConnect proxies

When you configure a proxy, the following activities can be initiated from the Management
Console GUI:

1. define and modify the configuration

2. save the configuration

3. shut down the proxy

4. update the configuration of the proxy

5. start the proxy

BeanConnect Management Console Functions of the Management Console

BeanConnect V3.0B 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
19

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
5

If you want to integrate an EIS partner in the Management Console or if you want to modify
or remove an EIS partner, you must perform the above steps in the specified order. If you
want to generate, modify or delete an outbound communication endpoint or an inbound
message endpoint, you can update the configuration while the proxy is running. In this case,
only steps 1 and 2 have to be performed. You then have to restart the proxy.

When you configure a proxy, the Management Console assists you by displaying todo
topics (see section “Todo topics” on page 167).

Further details on proxy configuration can be found in section section “Configuring the
BeanConnect proxy” on page 181.

Configuring the EIS partners

The Management Console allows you to create configuration fragments for the generated
EIS partners. These configuration fragments are created and saved in files when the
BeanConnect proxy configuration is saved. However, it is your responsibility to perform the
following tasks:

● Transfer the generated files containing the configuration statements for the EIS partner
applications to the host on which the EIS partner is running.

● Integrate these files into the EIS partner's configuration.

You will find further details in chapter “Adapting the configuration in the EIS partner” on
page 257.

5.3.2 Configuration wizards

The Management Console provides wizards for the configuration of individual proxies and
their components. This means that even less experienced users can create a configuration
without forgetting parameters. You start the configuration wizards via the context menu, for
example by opening the wizard subtree under Configurations Wizards and choosing the
context menu command Start Configuration Wizard for the required wizard.

Functions of the Management Console BeanConnect Management Console

164 BeanConnect V3.0B

Figure 14: Starting the configuration wizard

Alternatively, choose Configuration Wizards from the File menu.

The wizard itself runs in a window which consists of three sections.

Figure 15: Configuration wizard window

The top left section of the wizard (in the example, Configure EIS Partners) provides an
overview of all the individual tasks present in the configuration wizard in the form of a tree
structure.

BeanConnect Management Console Functions of the Management Console

BeanConnect V3.0B 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
19

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
5

The section to the right of this describes the individual task currently selected in the tree
structure.

The lower section provides a detailed description of the current individual task. You may be
able to choose from a selection of options in order to guide the configuration process. You
do this using the buttons at the lower edge of the screen, in this case Select EIS Partner
and Create Further EIS Partner.

The user can exit a configuration wizard at any time by clicking the cross at the top right of
the window to close it.

If configuration with the wizard has not been terminated in full, the user is informed of this
and is able to save the current state of the wizard. This means that it is possible to continue
the commenced configuration at a later date (possibly even in a subsequent program
session).

See the online Help system for further details about the wizard window.

5.3.3 Starting and stopping proxies

You can use the Management Console to start, stop and restart BeanConnect proxies and
proxy components on both local and remote hosts.

Starting and stopping a BeanConnect proxy

Select the command Start Proxy or Stop Proxy from the BeanConnect proxy's context
menu to start or stop the proxy.

In the case of proxies for CICS partners, a proxy consists of multiple components. The
Management Console allows you to start/stop individual proxy components or all the
components of a proxy. A special dialog box is displayed in which you can select the
components that are to be started/stopped. You can select the following components:

● proxy container

● openUTM-LU62 Gateway (for CICS partners)

● SNAP-IX or IBM Communications Server (for CICS partners)

i For CICS partners:
You must not stop the openUTM-LU62 Gateway and SNAP-IX or the IBM Commu-
nications Server as long as other applications that use these components are
running (such as proxy containers, for example).

The Management Console only tries to start the proxy component if the proxy component
in question is not already running.

Functions of the Management Console BeanConnect Management Console

166 BeanConnect V3.0B

Restarting the BeanConnect proxy

Select the command Save/Restart - Restart Proxy from the BeanConnect proxy's context
menu.

In the case of proxies for CICS partners, when you perform a restart then, in the same way
as a normal start/shutdown, a dialog box is displayed in which you can select the compo-
nents that are to be restarted.

When restarting a proxy container the individual processes are stopped one after the other
and are then restarted. The proxy container remains available during the restart.

5.3.4 Checking the availability of BeanConnect components and EIS
partners

You can use the Management Console to check the availability of a proxy and all the
components that are assigned to this proxy. These also include the EIS partners. You can
perform the check for the proxy or individually for certain components.

To do this, choose the Check Availability command from the required object's context
menu. The command is available for the following objects.

● Proxy

Checks the availability of the proxy container and of all the components assigned to the
proxy: All resource adapters, all MC-CmdHandlers on remote hosts if these are used to
administer remote proxies as well as the openUTM-LU62 Gateway and SNAP-IX or
IBM Communications Server if the proxy is configured for CICS partners. The avail-
ability of all assigned EIS partners is also checked.

● Resource adapter

Only checks the availability of a specified resource adapter. The associated proxy
container must be running.

● openUTM-LU62 Gateway / communication service

Checks the availability of an openUTM-LU62 Gateway or a communication service
(SNAP-IX, IBM communications service). The openUTM-LU62 Gateway and
communication services objects can be accessed via the topmost level in the
navigation tree. If the components are installed on a remote host then the associated
MC-CmdHandler must be running.

● EIS partner

Checks the availability of a specified EIS partner. The associated proxy container must
be running.

BeanConnect Management Console Functions of the Management Console

BeanConnect V3.0B 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
19

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
5

For further details, see section “Checking the availability of BeanConnect proxies” on
page 280.

5.3.5 Diagnosis support

The Management Console helps you to diagnose problems that occur in the environment
of a BeanConnect proxy. The Management Console therefore provides a range of functions
that allow you to do the following:

● configure traces and logging

● collect and display traces and logs

For details see chapter “High availability and scalability” on page 504.

5.3.6 Todo topics

The Management Console displays a todo list containing an overview of the activities that
need to be performed (e.g. for update the configuration).

i The todo list represents an overview of the actions that are to be performed. It is
important to note that the list also contains todo topics relating to actions that have
to be performed on remote (application/EIS) servers. Those actions cannot be
started from the local host. They must be started manually on the remote host.

Certain actions cause the Management Console to add todo topics to the list automatically.
Some of these topics refer to actions you can perform using the Management Console. In
such cases, the relevant items are removed from the list automatically once the associated
actions have been completed. You can also perform such actions directly from the topic list.

Todo topics may also involve actions that you cannot perform via the Management Console,
for instance adding the generation statements created by the Management Console to the
configuration of an EIS partner. In such cases, the Management Console cannot identify
whether or not you have performed the action. Consequently, when you have completed an
action of this type you must remove the corresponding topic from the list yourself.

You can also create your own todo topics and add them to the list to avoid having to note
them elsewhere.

Functions of the Management Console BeanConnect Management Console

168 BeanConnect V3.0B

5.3.7 MC-CLI recording: Recording Management Console actions

MC-CLI recording refers to the recording of Management Console actions. The recordings
are saved in the form of MC-CLI functions. In this way, it is possible to record configuration
and management jobs. You can adapt the recorded configuration steps for other proxies or
lower-level objects and then perform the configuration of these objects in Jython scripts.
The recordings can also simply be used to log the performed actions.

MC-CLI recording is always enabled during a Management Console session. The MC-CLI
calls corresponding to all the actions performed in the Management Console are recorded
in the following internal buffers:

● a "Console" buffer for all cross-proxy actions

● a separate buffer for each proxy or proxy cluster

You can view these buffers in the internal Management Console editor and write them to a
file if required. You can configure how the recordings are written to file in the Management
Console.

i Only actions for which there are corresponding calls in MC-CLI are recorded. If
changes made in a properties sheet relate only to properties that are not supported
by MC-CLI recording then the system behaves as if nothing has been modified
when you quit the dialog box. A comment is output informing you that no changes
have been made and no modifyProperties call is recorded.

Manually controlling the output of recordings

You can view recordings relating to proxy actions, proxy cluster actions or console actions
in the Management Console's text window, explicitly write these to a file or delete the
accumulated recordings. You control the output of recordings as follows:

Ê Proxy actions or proxy cluster actions: Command Mccli Recording of Proxy/Proxy
Cluster (followed by Show/Save/Clear ...) in the context menu of the relevant proxy or
proxy cluster.

Ê Console actions: Extra menu, command Show/Save/Clear Mccli Recording of
Console.

Configuring recording output to file

You can specify whether and, if required, when a recording is to be written to file: only when
required (on demand), always at the end of the session (at end) or after every action
(unbuffered). Proceed as follows:

Ê In the Extra menu, choose the command Settings - Logging/Traces and
activate the required mode under Mccli Recording.

BeanConnect Management Console Functions of the Management Console

BeanConnect V3.0B 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
19

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
5

Please note the following:

● When a proxy of proxy cluster is deleted, the corresponding internal MC-CLI recording
is also deleted. If on demand mode is set (default setting) and you want to back up the
recordings, then you must explicitly write them to a file before deleting.

● If you want to log very extensive sessions, you should choose unbuffered mode.
Reason: BeanConnect uses two temporary buffers (current buffer and backup buffer)
with a capacity of approximately 1000 lines each. If the amount of data recorded
exceeds the combined capacity of these two buffers then data may be lost if it is not
backed up to file in the interim.

Name of recording file

A recording file is created in the directory <MC_home>/cli-rec and is named as follows:

<time>.Console.py

for the recording of console actions

<time>.<proxy_id>.py

for the recording of the actions of the proxy with the ID <proxy_id>

<time>.<cluster_id>.py

for the recording of the actions of the proxy cluster with the ID <cluster_id>

Here, <proxy_id> is the unique ID of the proxy, <cluster_id> is the unique ID of the cluster,
and <time> is the current timestamp at the moment of creation of the recording file.

If a file with the name <time>.<id>.py already exists then this is renamed to
<time>.<id>.py.old. Any existing file with the name <time>.<id>.py.old is overwritten
without a warning.

For more information on the format of recording files, see section “Creating Jython scripts
from MC-CLI recordings” on page 427.

i BeanConnect does not delete the recording files. You should therefore regularly
check which files you still need. You must manually delete any recording files that
you no longer need.

Functions of the Management Console BeanConnect Management Console

170 BeanConnect V3.0B

5.3.8 Cluster support

A proxy cluster consists of one or more proxies. You can configure and administer a proxy
cluster via the Management Console. The procedure is similar to that for configuring and
administering an individual proxy.

Many of the menu commands and activities are the same since, in most cases, the proxy
cluster behaves in the same way as an individual proxy.

Configuration wizards are not supported in a proxy cluster.

Configuring a BeanConnect proxy cluster

Perform the steps below to configure a proxy cluster consisting of multiple proxies:

1. Configure an individual proxy which will act as the basis for the proxy cluster.

2. Choose the command Define Proxy Cluster in this proxy's context menu. This defines
the proxy cluster and simultaneously enters the proxy in this cluster. This action
automatically makes this proxy the master proxy in the new cluster.

3. Enter further proxies in the Management Console. You do not have to configure these
since the configuration properties are overwritten when they are included in the cluster
and synchronized with the master proxy.

4. Add the new proxies to the cluster by choosing Add to Proxy Cluster in the context
menu.

5. Save the cluster configuration. This synchronizes the proxies' configuration data.

You can modify the configuration properties of a proxy cluster in the cluster network, e.g.
modify or add EIS partners, inbound services or outbound services.

The Management Console also provides a manual synchronization function for the proxy
cluster (Synchronize Proxy Cluster command in the proxy cluster's context menu). This
function is needed, for example, if a proxy in a cluster could not be administered for a period
(for example because the corresponding host was not running) and the configuration of the
proxy cluster changed during this period. An explicit synchronization then harmonizes the
configuration of this specific proxy in the cluster with the configuration of the proxy cluster
as a whole.

For further information, see section “Configuring a BeanConnect proxy cluster” on
page 193.

BeanConnect Management Console Functions of the Management Console

BeanConnect V3.0B 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
19

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
5

Starting and stopping a BeanConnect proxy cluster

You start, stop and restart a proxy cluster in the same way as when starting, stopping and
restarting an individual proxy. Choose the corresponding command in the proxy cluster's
context menu.

Start Proxy Cluster to start
Stop Proxy Cluster to stop
Save/Restart - Restart Proxy Cluster to restart

Checking availability

You check the availability of a proxy cluster or its components in the same way as for an
individual proxy by choosing the Check Availability command in the associated context
menu.

In a proxy cluster, the command initiates a check of all the proxy containers and all the
associated components, i.e. resource adapters, EIS partners, MC-CmdHandlers on remote
hosts and the openUTM-LU62 Gateway and communication service in the case of connec-
tions to CICS partners.

At the level of the individual components, the command only checks these components.
The openUTM-LU62 Gateway and the communication service are checked at the topmost
level in the same way as for an individual proxy.

Functions of the Management Console BeanConnect Management Console

172 BeanConnect V3.0B

5.3.9 Management Console as a JMX client

The Management Console also contains a JMX client which permits you to monitor a
resource adapter. It is possible to configure multiple JMX clients.

A JMX client can either be assigned to a resource adapter or can be configured as a free
JMX client. To assign it to a resource adapter, you define the JMX client using the Define
MBean Client command in the resource adapter's context menu and then specify its
properties in the dialog which then follows, see section “Setting up the JMX client in the
Management Console” on page 253.

A JMX client communicates with the JMX server. This runs on the application server and
makes the data available via so-called MBeans. The JMX client is therefore also known as
the MBean client. This allows you to monitor the following objects:

● Resource adapters

● Connection factories

● Inbound connections

● Message endpoints

The MBean client can read the data and attributes made available by the MBeans. It also
has write access to certain attributes. The following monitoring functions are provided:

● Display MBeans attributes

The attributes include, for example, the configuration properties or certain statistical
values of the corresponding MBean.

● Read notifications output by the MBeans

Notifications must first be subscribed to via the MBeans.

Notifications are messages which the application server generates when certain events
occur. Notifications are also generated by the resource adapter and by the application
server components which supply the MBeans.

● Collect and display statistical values

Attribute values can be collected at fixed intervals and output in statistical form. These
include, for example, the number of active connections or the number of rolled back
transactions.

● Run operations

Operations are specific functions that are implemented by the MBeans and accessible
via the interface; in the case of connection factories, these are, for example, the
functions cleanupPool and resetStatisticValues.

BeanConnect Management Console Functions of the Management Console

BeanConnect V3.0B 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
19

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
5

You can use the administration facilities to set the monitoring functions you want to use for
each MBean client (notifications, statistics etc.). For this to be possible, there must be a
connection between the Management Console and the JMX server on the application
server. You can also define favorites to permit simple access to frequently used MBeans.

For more detailed information on defining and activating monitoring functions, see section
“Monitoring the resource adapter with the Management Console” on page 288.

Administrative data of the Management Console BeanConnect Management Console

174 BeanConnect V3.0B

5.4 Administrative data of the Management Console

The Management Console uses the files listed below:

● console.properties.xml

● log4j.properties.xml

console.properties.xml

This XML file is located in the Management Console's config subdirectory.
console.properties.xml contains the administrative data of all BeanConnect proxies that
are known to the Management Console. This file is also used to store additional settings for
the Management Console.

The console.properties.xml file is automatically updated or extended as necessary by
the Management Console. It is not necessary to save the updated data explicitly.

log4j.properties.xml

This XML file is located in the Management Console's config subdirectory. The
log4j.properties.xml file is the Log4j configuration file used by the Management
Console. You can update this file in the Management Console's Settings dialog box. Select
Extras - Settings... to open this dialog box.

BeanConnect V3.0B 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

6 Configuration of BeanConnect

The BeanConnect proxy communicates with the BeanConnect resource adapter running
within the application server on the one hand and with the EIS partner on the other hand.
The proxy is not used for outbound communication via UPIC.

To ensure communication between an EJB deployed in the application server and a partner
application, the proxy and the proxy components must be configured properly.

The BeanConnect Management Console allows you to carry out the configuration tasks for
the BeanConnect proxy container and the proxy components. It is also possible to change
the configuration of the proxy clusters, EIS partners, the outbound services, the outbound
communication endpoints and the inbound message endpoints, inbound services and
Management Console command handlers (MC-CmdHandlers). The Management Console
can also be configured as a JMX client for the display of MBeans

You can add new objects and change or delete existing objects.

This chapter provides information on the following topics:

● Adding a BeanConnect proxy to the Management Console

● Configuring the BeanConnect proxy

● Configuring a BeanConnect proxy cluster

● Configuring the BeanConnect resource adapter

● Configuring the EIS partners

● Configuring outbound communication

● Configuring inbound communication

● Saving and activating the configuration of the BeanConnect proxy

● Configuring the Management Console command handler (MC-CmdHandler)

● Configuring the Management Console as a JMX client

Detailed information on using the BeanConnect Management Console can be found in
chapter “BeanConnect Management Console” on page 153 and in the online help system.

Configuration steps Configuration of BeanConnect

176 BeanConnect V3.0B

6.1 Configuration steps

The following steps must be performed to configure a proxy using the Management
Console:

1. Adding the proxy to the configuration data of the Management Console

Before it can be administered, each proxy must be made known to the Management
Console. This procedure is described in section “General information on the proxy” on
page 182.

2. Configuring the proxy and the proxy components

When configuring the proxy and the proxy components, you have to make all the
specifications which allow the partners to communicate with each other. This includes:

– the specifications for identifying the proxy (section “General information on the
proxy” on page 182).

– additionally for CICS partners, the settings for communication with the openUTM-
LU62 Gateway and the communication service, see section “Proxy Components:
CICS partners” on page 185), as well as specifications for the network connections
for CICS partners, see “CICS Partner tab” on page 223.

– the settings for communication with the resource adapter assigned to the proxy
(see section “Configuring the BeanConnect resource adapter” on page 197).

3. Configuring the EIS partners and communication objects

In this step of the configuration process, you define the communication relationships
between the proxy and the EIS partners for inbound and outbound communication. The
following objects must be created:

– EIS parttners (see section “Configuring the EIS partners” on page 206)

– Outbound services and outbound communication endpoints (see section “Config-
uring outbound communication” on page 229)

– Inbound users, inbound services and inbound message endpoints (see section
“Configuring inbound communication” on page 234)

4. Saving and activating the configuration

After all the necessary information has been provided, you have to save the configu-
ration. The properties of the configuration objects are stored by the Management
Console, so that they are available for subsequent Management Console sessions. The
Management Console then generates the configuration files to be used by the proxy,
the components of the proxy and the EIS partners. The last step is to activate the new
configuration.

Configuration of BeanConnect Configuration steps

BeanConnect V3.0B 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

These tasks are described in the section section “Saving and activating the configu-
ration of the BeanConnect proxy” on page 243.

If you want to form a proxy cluster, you will find the relevant information on section
“Configuring a BeanConnect proxy cluster” on page 193.

For information on configuring the Management Console as a JMX client, see section
“Configuring the Management Console as a JMX client” on page 250.

Adding a BeanConnect proxy to the Management Console Configuration of BeanConnect

178 BeanConnect V3.0B

6.2 Adding a BeanConnect proxy to the Management Console

All proxies which are known to the Management Console and are not assigned to a proxy
cluster are shown together with the configured EIS partners and communication objects in
the navigation tree of the Management Console below the BeanConnect Proxies node.

One Management Console can be used to administer multiple proxies.

Figure 16: Proxies within the Management Console

To access the data of a proxy, you have to enter the administration password. By default,
this is admin. You can change the administration password, see section “Modifying the
administration password” on page 190.

6.2.1 Adding a new proxy

To add a new proxy to the navigation tree:

● Choose Add Local Proxy from the context menu of the BeanConnect Proxies node
if the proxy is located on the same host and under the same user ID as the Management
Console. It is not necessary to use the same user ID if the access permissions have
been set in such a way that the Management Console is able to access all the proxy's
required files under the user ID under which the proxy runs.

● Choose Add Remote Proxy from the context menu of the BeanConnect Proxies node
if the proxy is located on another host. You must enter the name of the host the proxy
container is running on.

Configuration of BeanConnect Adding a BeanConnect proxy to the Management Console

BeanConnect V3.0B 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

To add and manage a proxy on a remote host, the proxy's MC-CmdHandler must be
running on the proxy host (see section “Configuring the Management Console
command handler (MC-CmdHandler)” on page 245. The password of the employed
MC-CmdHandler and the administration password of the added proxy must be
identical!

Enter the name of the remote host under Host and the MC-CmdHandlers's listener port
on the remote host under MC-CmdHandler Listener Port.

Figure 17: Adding a new proxy

Adding a BeanConnect proxy to the Management Console Configuration of BeanConnect

180 BeanConnect V3.0B

When adding a local proxy a container selection dialog box is opened. Choose the
container directory by browsing the file system.

Both menu entries can also be found in the File menu and can also be activated from there.

i Adding proxies to the Management Console's configuration data does not install
new proxies. You only can add proxies which have already been installed.

A proxy added to the Management Console can not be fully managed until all the necessary
parameters for the proxy and the proxy components are defined (see section “Configuring
the BeanConnect proxy” on page 181). An appropriate message is created if you try to call
a function which is not available before having finished the necessary configuration.

A proxy, installed beneath the same BeanConnect home directory as the Management
Console, will be detected the next time the Management Console is started and will be
added to the configuration data automatically. This also applies if the proxy is installed on
the system after the Management Console has been installed.

6.2.2 Removing a proxy

To remove a proxy from the configuration data of the Management Console, select Remove
Proxy from the context menu of the proxy.

After you have confirmed the prompt, the proxy is deleted from the configuration data. Apart
from that, the proxy itself will not be changed. In particular, it will not be deinstalled.

Configuration of BeanConnect Configuring the BeanConnect proxy

BeanConnect V3.0B 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

6.3 Configuring the BeanConnect proxy

When you add a new proxy to the Management Console, a property sheet is displayed
automatically to allow you to enter the configuration data for the proxy components. To
change the configuration data of an existing proxy, select the desired proxy in the navigation
tree and choose Edit Properties from the context menu.

The property sheet consists of several pages. These are described below.

Configuring the BeanConnect proxy Configuration of BeanConnect

182 BeanConnect V3.0B

6.3.1 General information on the proxy

The General page contains some general information to allow the Management Console
to identify the proxy and access it.

Figure 18: General information on a proxy

Configuration of BeanConnect Configuring the BeanConnect proxy

BeanConnect V3.0B 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

Name

Proxy Name. This name is only used internally by the Management Console to distinguish
between the managed proxies.

ID

The Management Console assigns an ID to each proxy in the form ProxyID.<number>. This
ID is shown in the dialog box after a proxy is added for the first time and cannot be changed.
The Management Console uses this ID as a name component for the generated configu-
ration files.

Host

Name (up to a maximum 63 characters in length) or IP address of the host on which the
proxy is installed.

Mapped Hostname

Mapped name of the host on which the proxy is located (max. 8 characters).

Container Port / Container Directory

These fields indicate the proxy's port number and home directory. The port number is
specified during installation.

Container Run UserID

User ID under which the proxy container is started. The Management Console compares
the user ID specified here with the user ID under which the MC-CmdHandler used for
administering the proxy container is running. Only if both user IDs are identical does the
Management Console judge that the proxy container can be administered with the MC-
CmdHandler used.

In the case of local proxies, please note that in certain situations, e.g. if the proxy container's
MC-CmdHandler has not been started and this MC-CmdHandler's listener port has not
been assigned to the proxy then the system uses the "internal" MC-CmdHandler which runs
in the Management Console process and operates without communications. In this case,
the user ID specified here must match the user ID under which the Management Console
itself was started.

Configuring the BeanConnect proxy Configuration of BeanConnect

184 BeanConnect V3.0B

Possible EIS Partner Types

Specifies the EIS partner type for which the proxy is configured. If you choose Only UTM
Partners then the proxy can only communicate with openUTM partners. If you choose Only
CICS Partners then the proxy can only communicate with CICS partners. Choosing the
option UTM and CICS Partners enables communications with both partner types. An
additional tab – Proxy Components – is displayed in the case of communication with CICS
partners.

i Separate licenses must be purchased to communicate with the partner types UTM
and CICS.

Management Console Access

Additionally, you must specify the administration password used by the Management
Console to access the proxy container and its MC-CmdHandler in the Admin User
Password field. Instead of specifying a password you can choose the option Prompt. In
this case the password is requested on the first access to any proxy container data within
a Management Console session.
The field MC-CmdHandler Listener Port defines the listener port of the MC-CmdHandler
used to administer the proxy. The default value is the value in Container Port + 2.

Windows Service for Proxy Container

Only if the proxy container is running on a Windows system: Proxies can also be started as
Windows services. To do this, select the option Start as Service. The name to be used to
start the proxy as a service is defined during installation and is shown in the field Service
Name. If the proxy is operated as a Windows service, it cannot be started in debug mode.

Automatic Availability Check

Finally, you can set the time interval for the automatic availability check in the Time Interval
(sec) field. The values you set should not be too small in order to avoid overburdening the
Management Console (and the proxies) with availability checks. Values of 180 seconds and
higher are recommended.

No automatic availability check is performed if you leave the field empty or enter the value 0.

Configuration of BeanConnect Configuring the BeanConnect proxy

BeanConnect V3.0B 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

6.3.2 Proxy Components: CICS partners

In the Proxy Components tab in the property sheet
Edit Properties of Local/Remote Proxy, you define the settings for the proxy
components openUTM-LU62 Gateway and communication service.

These two proxy components are required for communication with CICS partners and must
always run on the same computer. This does not have to be the computer on which the
proxy is running.

The tab illustrated below already contains the necessary entries. When you perform initial
set-up, further dialog boxes are displayed for the entry of the openUTM-LU62 Gateway and
the communication server data.

Figure 19: Description of the proxy components for CICS partners

openUTM-LU62 Gateway/Communication Service Location

Displays the location, the name and the operating system of the computer on which the
proxy components openUTM-LU62-Gateway and communication service are running.
Location: On Proxy Host means: The same computer on which the proxy container is
running.
Location: On Separate Host means: A different computer.

Configuring the BeanConnect proxy Configuration of BeanConnect

186 BeanConnect V3.0B

openUTM-LU62 Gateway

Specifies the computer and the directory in which the openUTM-LU62 Gateway is installed.
To select a gateway, click the ... button to open the following sequence of dialog boxes:

Figure 20: Configuring the openUTM-LU62 Gateway

The gateway instances that have already been configured are displayed in Select an
openUTM-LU62 Gateway Instance. You can select an instance and click OK to assign this
instance. You can click Edit to modify the properties of a selected instance.

Proceed as follows if you want to configure a new instance:

Configuration of BeanConnect Configuring the BeanConnect proxy

BeanConnect V3.0B 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

● Click the Add button.

● In Add openUTM-LU62 Gateway Instance, click the ... button under Select MC-
CmdHandler to open the dialog Properties of MC-CmdHandler.

● In Properties of MC-CmdHandler, enter the properties of the MC handler used to
administer the components and click OK.

● In Add openUTM-LU62 Gateway Instance, enter the installation path of the
openUTM-LU62 Gateway and modify the traced properties if necessary. Click OK.

Communication Service

Specifies the computer, the type and the directory in which the communication service is
installed. To select a communication service, click the ... button to open the following
sequence of dialog boxes: Proceed in the same way as when entering an openUTM-LU62
Gateways:

Configuring the BeanConnect proxy Configuration of BeanConnect

188 BeanConnect V3.0B

Figure 21: Configuring a communication service

The communication service instances that have already been configured are displayed in
Select a Communication Service Instance. You can select an instance and click OK to
assign this instance. You can click Edit to modify the properties of a selected instance.

Proceed as follows if you want to configure a new communication service instance:

Configuration of BeanConnect Configuring the BeanConnect proxy

BeanConnect V3.0B 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

● Click the Add button.

● In Add Communication Service Instance, click the ... button under Select MC-
CmdHandler to open the dialog Properties of MC-CmdHandler.

● In Properties of MC-CmdHandler, enter the properties of the MC handler used to
administer the components and click OK.

● In Add Communication Service Instance, enter the installation path of the
communication service together with the configuration parameters (as described
below) and click OK.

Figure 22: Configuring the properties of a communication service

MAC Address
If LAN is used as the DLC type for at least one EIS partner then you must enter the
MAC address of the computer on which the communication service is running here. For
more detailed information, see section “Adding EIS partners of the type CICS” on
page 218.

Configuring the BeanConnect proxy Configuration of BeanConnect

190 BeanConnect V3.0B

Control Point
The control point refers to a unique node in the SNA network. This name is used to
identify the instance of the communication service. BeanConnect generates a file
containing the necessary VTAM definitions which can then be entered at the z/OSTM
mainframe (see section “Configuration of VTAM on an IBM mainframe” on page 263).
The complete control point name must be unique in the network and consists of the
following two parts:

– Control Point Network Name specifies the network and can be freely defined by
the user. It is, however, recommended that you use the EIS network name.

– Control Point Name specifies the control point in this network. The name must
match the VTAM definition on z/OS.

IDBLK / IDNUM
These values form the XID (node ID) and are incorporated in the PU (physical unit)
definition for the VTAM generation.

– IDBLK specifies the block ID (IDBLK value) for the CICS generation. It must be
specified as a 3-digit hexadecimal number. Alphabetic characters must be entered
in uppercase.

– IDNUM specifies the Physical Unit ID (IDNUM value) for the CICS generation. It
must be specified as a 5-digit hexadecimal number. Alphabetic characters must be
entered in uppercase.

i See the Glossary for an explanation of SNA-specific terms.

6.3.3 Modifying the administration password

You can change the administration password with the menu item Modify Admin Password
in the context menu of the proxy.

This also changes the password of the MC-CmdHandler that is used for proxy adminis-
tration. For this reason, every proxy should have its own MC-CmdHandler rather than a
single MC-CmdHandler being used for a number of different proxies.

You can deposit your password by selecting the option Use for the property Admin User
Password within the property sheet of the proxy so that you don't have to enter it in further
sessions (see section “General information on the proxy” on page 182).

When these actions are performed, the MC-CmdHandler must be started on the proxy host.
If it is not already running, start it first, see section “Starting the MC-CmdHandler” on
page 247.

Configuration of BeanConnect Configuring the BeanConnect proxy

BeanConnect V3.0B 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

6.3.4 Configuration options in expert mode

If you operate the Management Console in expert mode, the Edit Properties of
Local/Remote Proxy property sheet contains two more tabs: Timer Settings and
Performance Settings. These tabs provide several additional configuration options which
affect the proxy behavior.

In expert mode, you are also able to modify the Application Program Interface Mode and
the Container Application Process Title.

To enable expert mode, select the menu item Extras – Settings and from the General tab
in the Management Console Settings property sheet and choose the option Expert
Mode.

6.3.4.1 Timer Settings

The Timer Settings tab contains timers which affect connection surveillance within the
proxy.

6.3.4.2 Performance Settings

The Performance Settings tab allows you to make settings which affect the performance
of the proxy.

The Proxy Container Mode defines the behavior regarding asynchronous jobs when the
proxy is stopped. By default, asynchronous requests which are not yet started will be
deleted when the proxy is stopped (Performance Enhanced (Non-durable
Asynchronous Processing)). This applies both to asynchronous inbound jobs that have
not yet been sent to the application server or which must be redelivered to the application
server and to asynchronous outbound jobs that have not yet been sent to the EIS partner.
In particular, this includes asynchronous outbound jobs whose start time has not been
reached, see also section “Duration of asynchronous requests” on page 501.

If asynchronous requests are to be retained after the proxy has been stopped, you can set
the property Proxy Container Mode to Durable Asynchronous Processing.

In the Number of Proxy Container Processes area, you can set the maximum number of
processes the proxy can handle at the same time for

● all connections (inbound and outbound),

● asynchronous jobs.

Configuring the BeanConnect proxy Configuration of BeanConnect

192 BeanConnect V3.0B

In the Number of Parallel Connections area, you can set the maximum number of parallel
connections for

● inbound connections via the UPIC protocol,

● inbound connections via the openUTM socket protocol, and

● inbound connections via the RFC1006 protocol.

Additionally, you can set the size of specific storage areas of the proxy container.

Please refer to the online help system for detailed information.

6.3.4.3 Application Program Interface Mode (API Mode)

The API Mode field is located on the General tab and is preset to the value Standard.

If you want to configure a new connection to an EIS partner which uses the XATMI program
interface as API then you must set the value XATMI for API Mode.

You can also set the value All. This mode may be necessary during the migration phase,
for example if you change from a standard connection to an XATMI connection and vice
versa.

6.3.4.4 Container Application Process Title

Only displayed if expert mode is active.
Contains the application process title (APT) of the proxy container. The APT is part of the
generation information of an EIS partner and makes it possible for the EIS partner to
establish a connection to the proxy container. You can also modify the APT here. If you
modify the APT, you must then save the proxy and update the generation (Update
Configuration command). This also applies to the proxy's EIS partners (Generate EIS
Partner Configuration command). Corresponding todo actions are generated.

Configuration of BeanConnect Configuring a BeanConnect proxy cluster

BeanConnect V3.0B 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

6.4 Configuring a BeanConnect proxy cluster

One or more instances of the BeanConnect resource adapter and one or more
BeanConnect proxy instances may run in a BeanConnect cluster configuration. All the
instances in the cluster are configured identically. Three different scenarios result from this:

● n:1 relation: Several resource adapter instances in the application server and one proxy
instance.

An n:1 relationship is useful in cases where the applications in an application server
cluster conducts only a low level of communication with EIS partners.

Even in the event of an n:1 relation, you must configure a proxy cluster as otherwise the
system is operating in multi-resource adapter mode which behaves completely diffe-
rently, see section “Multiple resource adapter mode” on page 38. The proxy cluster
ensures, for example, that any change is performed in all the instances of the resource
adapter.

● 1:m relation: One resource adapter instance and several proxy instances
This option makes sense if communication is almost exclusively inbound.

● n:m relation: Several resource adapter instances and several proxy instances

You always configure all the resource adapter instances in the Management Console if
multiple resource adapter instances are running in a cluster in the application server. This
is where you configure the cluster for the application server.

If there is more than one proxy in the proxy cluster then there is one special proxy known
as the master proxy. This proxy is the (first) point of contact for the Management Console
when fetching the configuration data for the cluster. If the currently defined master proxy
cannot be administered then the Management Console demands that another proxy, for
which administration is possible, is defined as the master proxy. The configuration data is
then fetched from this proxy. If any changes are made to the configuration, the Management
Console ensures that the administration data of all the proxies in the proxy cluster is
modified consistently.

Configuring a BeanConnect proxy cluster Configuration of BeanConnect

194 BeanConnect V3.0B

6.4.1 Generating a proxy cluster

Before you can generate a proxy cluster, you must already have configured at least one
proxy, see section “Configuring the BeanConnect proxy” on page 181.

To generate a new proxy cluster, select the required proxy under BeanConnect Proxies
and then choose the Define Proxy Cluster... command in the context menu. The proxy
must not be started when you do this.

Figure 23: Generating a new proxy cluster

Enter the name of the new proxy cluster in the Name field in the Define Proxy Cluster
dialog box. The values for the selected proxy are displayed in all the other fields. You can
change these values if required.

When you exit the dialog with OK, a new node named BeanConnect Proxy Clusters is
generated in the navigation tree. The cluster is entered here with the name defined above.
At the same time, the proxy is removed from the list of BeanConnect Proxies. By default,
the first proxy included in the proxy cluster becomes the master proxy.

Configuration of BeanConnect Configuring a BeanConnect proxy cluster

BeanConnect V3.0B 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

Displaying the proxies in a cluster

To display the proxies in a proxy cluster, you can either click the proxy cluster node or
choose the Show Cluster Proxies command in the context menu. A list of all the proxies
is now displayed. The individual columns describe the properties of the proxies such as
their names and address data. For further details, consult the online Help.

6.4.2 Adding a proxy to the proxy cluster

You can add further proxies to the proxy cluster. A maximum of 32 proxies per cluster is
permitted. The corresponding proxy must be installed and the general proxy data must have
been configured using the Management Console, see section “General information on the
proxy” on page 182.

To add another proxy to the cluster:

● Select the required proxy and choose the Add to Proxy Cluster command in the
context menu. This displays all the configured proxy clusters to which the selected
proxy can be added.

● Click to select the required cluster and confirm the query with Add. The proxy is added
to this cluster and is removed from the list of proxies.

v Caution!
When you add a proxy to a proxy cluster, the configuration of the proxy is lost since
it is overwritten by the configuration of the proxy cluster (the proxy cluster is
synchronized).

If you remove a proxy from an n:1 or n:m cluster then no subsequent inbound
communication is possible in the remote proxy. This is due to the fact that the proxy
is started in multi-RA mode because it possesses more than one resource adapter
but no valid resource adapter is assigned to any message endpoint.

Configuring a BeanConnect proxy cluster Configuration of BeanConnect

196 BeanConnect V3.0B

Figure 24: Adding a proxy to a proxy cluster

6.4.3 Removing a proxy from a cluster / removing a proxy cluster

You can remove individual proxies from the proxy cluster or remove the proxy cluster itself.

● To remove a proxy from the proxy cluster, select the required proxy on the list of cluster
proxies and choose the Remove Proxy From Cluster command from the context
menu. After you confirm the prompt, the proxy is removed from the cluster and listed in
the BeanConnect Proxies area again.

● You remove a proxy cluster by choosing the Remove Proxy Cluster command from
the context menu of the proxy cluster. After this action, all the proxies present in the
proxy cluster are listed in the BeanConnect Proxies area again. The proxies are
therefore not uninstalled but are simply removed from the cluster.

 Caution!
When you remove a proxy from a proxy cluster or remove the proxy cluster itself,
the proxy retains the configuration that it had in the cluster. In other words, it does
not return to the state it had before it was added to the proxy cluster.

Configuration of BeanConnect Configuring the BeanConnect resource adapter

BeanConnect V3.0B 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

6.5 Configuring the BeanConnect resource adapter

The configuration data for the BeanConnect resource adapter is described in the resource
adapter's deployment descriptor ra.xml. This deployment descriptor is located in the
BeanConnect RAR archive.

For information on how to adapt the ra.xml file, see section “Configuring general properties
for the resource adapter” on page 93.

Alternatively, you can edit the ra.xml file via the BeanConnect Management Console. To
do this, you must configure the BeanConnect resource adapter in the BeanConnect
Management Console.

The configuration dialog differs depending on whether or not the proxy belongs to a cluster.

6.5.1 Adding a resource adapter (no cluster operation)

To add a resource adapter, open the context menu for the Resource Adapter node in the
navigation tree's proxy subtree and choose Add Resource Adapter... Alternatively, you
can click the required node and then run the Add command in the resource adapter list.
The proxy must not be running when it is added. You may therefore need to stop it, for
example using the Stop Proxy command in the proxy's context menu.

Enter the parameters for the resource adapter in the General tab:

Configuring the BeanConnect resource adapter Configuration of BeanConnect

198 BeanConnect V3.0B

Figure 25: Adding a resource adapter without cluster operation

Name

Freely definable name of the resource adapter. This name is only relevant locally in the
Management Console.

Configuration of BeanConnect Configuring the BeanConnect resource adapter

BeanConnect V3.0B 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

ID / Index

ID is the ID of the resource adapter assigned by the Management Console. This is a
number between 1 and 256.
Index is the index of the resource adapter which is assigned by the Management Console.
The index is only relevant in multiple resource adapter mode This property corresponds to
the resourceAdapterIndex property in the resource adapter's deployment descriptor
ra.xml.

Description

You can enter a freely definable description of the resource adapter here.

Host

Name or IPv4 address of the computer running the application server on which the resource
adapter is deployed.

Listener Port

Number of the listener port of the resource adapter for inbound communication. This
property corresponds to the inboundListenerPort property in the resource adapter's
deployment descriptor ra.xml. If you enter 0 here then neither inbound communication nor
availability checking are possible for this resource adapter.

Proxy URL of OLTP Outbound Communication

URL used for outbound communication in the application server. This URL is defined when
the proxy is configured and cannot be changed. This property corresponds to the proxyURL
property in the resource adapter's deployment descriptor ra.xml.

Transaction Logging

Specifies whether persistent transaction logs are written in the resource adapter in the case
of outbound communication (FILE) or not (NONE). This property corresponds to the
transactionLogging property in the resource adapter's deployment descriptor ra.xml. If
transaction logging is configured then the resource adapter writes a separate log file for
each transaction. The file name consists of the prefix tx. and a number.

Transaction Logging Directory

Directory in which the transaction logs are created in the resource adapter. This property
corresponds to the transactionLogDir property in the resource adapter's deployment
descriptor ra.xml.

Configuring the BeanConnect resource adapter Configuration of BeanConnect

200 BeanConnect V3.0B

MC-CmdHandler of the Resource Adapter

This allows you to define an MC-CmdHandler that is available on the resource adapter
computer and that can be used to administer the resource adapter via the Management
Console. To do this, proceed as follows:

● Click the ... button in Select MC-CmdHandler to display an additional dialog box
Properties of MC-CmdHandler in which you can enter the data for the MC-
CmdHandler (listener port, password):

Figure 26: Configuring the properties of an MC-CmdHandler

If the BeanConnect-RAR archive is also located on this computer, then you can use this
MC-CmdHandler to edit the entries in the resource adapter's deployment descriptor
ra.xml or update these entries in line with the entered parameters. You can do this
using the commands Edit ra.xml of BeanConnect Resource Adapter RAR or Update
ra.xml of BeanConnect Resource Adapter RAR in the resource adapter's context
menu, see section “Resource adapter configuration file” on page 204.

You can also use this MC-CmdHandler to modify the Log4j diagnostic settings.

● You can enter the fully qualified path name of the Log4j configuration file in Log4j
Configuration File Path (optional).

The Log4j configuration file is always located on the computer on which the application
server runs. This does not have to be the computer on which the BeanConnect
resource adapter is located since the resource adapter cannot be uploaded to the appli-
cation server computer before deployment.

If you want to change the resource adapter's logging configuration then an MC-
CmdHandler must be running on the computer on which the application server runs.

Configuration of BeanConnect Configuring the BeanConnect resource adapter

BeanConnect V3.0B 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

6.5.2 Adding a resource adapter in cluster operation

To add a resource adapter in cluster operation, open the context menu for the Resource
Adapter node in the navigation tree's cluster subtree and choose Add Resource
Adapter... Alternatively, you can click the required node and then run the Add command
in the resource adapter list.

Enter the parameters for the resource adapter in the two tabs General and Common
Properties. The parameters specified in Common Properties are the same for all the
resource adapters in a cluster. Any change to these properties therefore affects all the
resource adapters defined in the cluster, whereas the parameters specified in General are
specific to each resource adapter:

Figure 27: Adding a resource adapter in cluster operation

Configuring the BeanConnect resource adapter Configuration of BeanConnect

202 BeanConnect V3.0B

Host (General)

Name or IPv4 address of the computer running the application server on which the resource
adapter is deployed. The host specified here must match the value of <host> in a
<host:port> entry of the resourceAdapterAddresses property of the deployment
descriptor ra.xml for the resource adapter.

Listener Port (General)

Number of the listener port of the resource adapter for inbound communication. The host
specified in Host and the listener port must match a <host:port> entry in the
resourceAdapterAddresses property of the deployment descriptor ra.xml for the resource
adapter. If no port is specified there, the specification must match the value in the
inboundListenerPort property.

i Within a cluster, the Management Console does not permit a value of 0 or no value
to be entered. A port between 1025 and 65535 must be specified even if no inbound
communication is planned.

MC-CmdHandler of the Resource Adapter (General)

These fields allow you to define an MC-CmdHandler that is available on the resource
adapter computer and that can be adapted via the Management Console using the
resource adapter's deployment descriptor ra.xml.

● Click the ... button in Select MC-CmdHandler to display an additional dialog box in
which you can enter the data for the MC-CmdHandler (listener port, password):

If the BeanConnect-RAR archive is also located on this computer, then you can use this
MC-CmdHandler to edit the entries in the resource adapter's deployment descriptor
ra.xml or update these entries in line with the entered parameters. You can do this
using the commands Edit ra.xml of BeanConnect Resource Adapter RAR or Update
ra.xml of BeanConnect Resource Adapter RAR in the resource adapter's context
menu, see section “Resource adapter configuration file” on page 204.
You can also use this MC-CmdHandler to modify the Log4j diagnostic settings.

● You can enter the fully qualified path name of the Log4j configuration file in Log4j
Configuration File Path (optional).

The Log4j configuration file is always located on the computer on which the application
server runs. This does not have to be the computer on which the BeanConnect
resource adapter is located since the resource adapter cannot be uploaded to the
application server computer before deployment.

If you want to change the resource adapter's logging configuration then an MC-
CmdHandler must be running on the computer on which the application server runs.

Configuration of BeanConnect Configuring the BeanConnect resource adapter

BeanConnect V3.0B 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

Transaction Logging (Common Properties)

Specifies whether persistent transaction logs are written in the resource adapter in the case
of outbound communication (FILE) or not (NONE). This property corresponds to the
transactionLogging property in the resource adapter's deployment descriptor ra.xml. If
transaction logging is configured then the resource adapter writes a separate log file for
each transaction. The file name consists of the prefix tx. and a number.

Transaction Logging Directory (Common Properties)

Directory in which transaction logging is stored in the resource adapter. This property corre-
sponds to the transactionLogDir property in the resource adapter's deployment descriptor
ra.xml.

Proxy Reconnect Count (Common Properties)

Specifies the number of connection requests (calls to getConnection()) after which the
assignment between the resource adapter instance and the proxy application must be
made again. This property controls the usage-driven reassignment of a resource adapter
instance to a proxy application. It corresponds to the proxyReconnectCount property in the
resource adapter's deployment descriptor ra.xml.

The default value is 100.

If a cluster is operated with more resource adapter instances than proxy instances then a
larger value or the value 0 should be entered for this parameter. The value 0 deactivates
the reconnect counter.

Proxy Reconnect Interval (min) (Common Properties)

Specifies the time in minutes after which the assignment between the resource adapter
instance and the proxy application must be made again. This property controls the time-
driven reassignment of a resource adapter instance to a proxy application. It corresponds
to the proxyReconnectInterval property of the resource adapter's deployment descriptor
ra.xml.

The default value is 10 minutes.

If a cluster is operated with more resource adapter instances than proxy instances then a
larger value or the value 0 should be entered for this parameter. The value 0 deactivates
the reconnect timer.

Configuring the BeanConnect resource adapter Configuration of BeanConnect

204 BeanConnect V3.0B

6.5.3 Resource adapter configuration file

The resource adapter's general configuration data is defined in the file ra.xml, see section
“Configuring general properties for the resource adapter” on page 93. ra.xml is located in
the BeanConnect-RAR archive. The Management Console can access this file and modify
the configuration properties if one of the following conditions is satisfied:

● The BeanConnect RAR archive is located on the computer on which the Management
Console runs. In this case, it must be located under the user ID under which the
Management Console runs or the file access permissions must be set accordingly.

● The BeanConnect RAR archive is located on a computer on which an MC-
CmdHandler runs. In this case, it must be located under the user ID under which the
MC-CmdHandler runs or the file access permissions must be set accordingly.

Updating the configuration file via the Management Console

To update the configuration file ra.xml, choose the command Update ra.xml of
BeanConnect Resource Adapter RAR from the resource adapter's context menu. In a
proxy cluster, you must open the context menu in the Resource Adapters node and not in
the resource adapter itself.

This overwrites the values in ra.xml with the values specified in the Management Console.

Editing the configuration file via the Management Console

To edit the configuration file ra.xml, choose the command Edit ra.xml of BeanConnect
Resource Adapter RAR from the resource adapter's context menu. In a proxy cluster, you
must open the context menu in the Resource Adapters node and not in the resource
adapter itself.

The dialog box Edit ra.xml of BeanConnect Resource Adapter RAR is now opened.
Here, you can modify all the properties of ra.xml, see also section “Defining general
properties in ra.xml” on page 93 and the online Help.

Configuration of BeanConnect Configuring the BeanConnect resource adapter

BeanConnect V3.0B 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

Figure 28: Editing the configuration file ra.xml

After an update or following direct editing, the modified values do not take effect until the
BeanConnect RAR archive has been deployed (see section “Deploying the resource
adapter” on page 100.

i Please note that you must enter the required changes in the Management Console
of the corresponding resource adapter(s) before using the Update ra.xml...
command.

Configuring the EIS partners Configuration of BeanConnect

206 BeanConnect V3.0B

6.6 Configuring the EIS partners

A proxy or proxy cluster can communicate with multiple EIS partners, i.e. with multiple
openUTM/CICS applications. When you configure the proxy/proxy cluster, you specify the
type of EIS partners it is to communicate with (only openUTM, only CICS, or both).

To allow an EIS partner to be managed, the partner must be added to the Management
Console's configuration data. As far as this operation is concerned, there are only slight
differences between proxies and proxy clusters.

Each partner application known by the Management Console is represented by an EIS
partner object in the navigation tree's proxy subtree beneath the EIS Partners node.

i Here, you only have to configure EIS partners that are either of type openUTM and
are communicated with via the OSI-TP protocol or are of type CICS.

Click on the EIS Partners node to display a list of the managed EIS partners of the proxy.

Figure 29: Displaying and configuring EIS partners

Configuration of BeanConnect Configuring the EIS partners

BeanConnect V3.0B 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

6.6.1 Configuring EIS partners of type openUTM

Before you can configure an EIS partner of type openUTM, the proxy or proxy cluster must
be configured accordingly in the General tab, see figure 18 on page 182.

6.6.1.1 Adding EIS partners of the type UTM

To add a new EIS partner:

1. Click the Add button beneath the list of EIS partners or choose Add EIS Partner from
the context menu of an existing EIS partner object or the EIS Partner node.

If the proxy/proxy cluster is configured for the two partner types (UTM and CICS), then
the dialog box Choose EIS Partner Type is displayed during this operation. Here you
must choose UTM application.

2. Define the properties for the EIS partner. The property sheet is opened automatically
and contains the tabs General, UTM Partner and Availability Check.

The following properties are requested:

Configuring the EIS partners Configuration of BeanConnect

208 BeanConnect V3.0B

General tab (openUTM Partners)

Figure 30: General properties of an EIS partner of Type openUTM

Name / Description

Name is the name of the EIS partner. This must be unique to the proxy. Additionally, you
can enter a Description for the EIS partner. For a created EIS partner, the EIS ID is shown
beneath the name. (cannot be changed).

Type

Displays the type of EIS partner: here UTM, cannot be changed.

Configuration of BeanConnect Configuring the EIS partners

BeanConnect V3.0B 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

Active

The option Active controls whether the EIS partner definition is active or not. Only active
EIS partners will be included in the configuration of the proxy and the EIS partner (Update
Configuration command in the proxy node or proxy cluster node).

Proxy Host Name

Name of the host on which the proxy is located and under which it is known in the openUTM
partner application (max. 63 characters).

In the case of an EIS partner in the proxy cluster, there is an entry field for each cluster proxy
in which you must specify the computer name under which the corresponding proxy is
known to the EIS partner.

By default, this field is set to the computer name entered under General for Host in the Edit
Properties command. If an IP address was specified for the proxy host then this must be
replaced by the name

Proxy Mapped Hostname

Mapped name of the host on which the proxy is located and under which it is known in the
openUTM partner application if the real host name is longer than 8 characters.

In the case of an EIS partner in the proxy cluster, there is, in addition to the Proxy Host
Name field, a field for each cluster in the proxy that contains the mapped host name under
which the corresponding proxy is known to the EIS partner.

You cannot make any changes here. The Proxy Mapped Hostname can only be changed
in the proxy's properties sheet (Edit Properties command in the General tab, Mapped
Hostname field).

Connections

Specifies the maximum number of concurrent connections allowed between proxy and the
EIS partner.

Proxy Contention Winners

Specifies the number of connections for which the proxy should be contention winner. The
number you should specify depends on the favored communication type (outbound or
inbound communication).

Configuring the EIS partners Configuration of BeanConnect

210 BeanConnect V3.0B

The following applies in principle:

● Outbound communication: the proxy should be the contention winner.

● Inbound communication: the EIS partner should be the contention winner.

Proxy Autoconnect

Defines the number of connections to be established when starting the proxy.

Proxy Idletimer (sec)

Specifies the time in seconds after which the BeanConnect proxy container is to clear down
the connection to the EIS partner if no communication has taken place over the connection
during that time.

Possible values: 0 (default) through 32767.
0 means that the timer is not used.

Prefix

The prefix is included as a component in names which are used in configuration statements.
This prefix must be unique for all proxies running on the same host. The prefix must
comprise exactly three characters (uppercase letters or digits). The first character must be
an uppercase letter.

Configuration of BeanConnect Configuring the EIS partners

BeanConnect V3.0B 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

UTM Partner tab

Figure 31: Properties of the openUTM partner

If expert mode is enabled then additional fields are displayed. These are described later on,
see “UTM Partners - Additional Fields in Expert Mode” on page 215.

Host(s)/Mapped Hostname(s)

Name of the host on which the openUTM partner application is located, 1 to a maximum of
63 characters, and possibly also the mapped name of the host (max. 8 characters) if the
host name is longer than 8 characters.

Configuring the EIS partners Configuration of BeanConnect

212 BeanConnect V3.0B

Proceed as follows:

1. Enter the host name in the first field (1-63 characters).

2. If the host name is longer than 8 characters, enter the mapped host name in the second
field (max. 8 characters).

If the partner application is an openUTM cluster application, enter the names of the
computers and, if required, the mapped host names of all the cluster nodes here.

Alternatively, you can click the "..." button to specify the address of the host (instead of its
name).

If the partner is an openUTM cluster, specify the cluster node index of the node application
in the drop-down list to the right of the button.

If the partner is a stand-alone openUTM application, select “-“ in the drop-down list.

The node index of the cluster node is determined by the sequence of CLUSTER-NODE
statements in the KDCDEF input of the cluster partner application. The node that is defined
by the first CLUSTER-NODE statement has the index 1, the node corresponding to the
second CLUSTER-NODE statement has the index 2 and so on.

If the partner is an openUTM cluster, click the button + (plus) to add a further cluster node.
An additional row with the same structure as the first row is now displayed. Click the button
- (minus) to remove a cluster node from the configuration again. You can specify a
maximum of 32 cluster nodes. You cannot remove the last remaining cluster node.

Partner LPAP

Specifies the LPAP name under which the openUTM partner application addresses the
BeanConnect proxy and therefore also the application server during inbound communi-
cation, 1 to a maximum of 8 characters in length. From this name, the Management
Console generates an OSI-LPAP statement for generating the openUTM partner appli-
cation.

Partner Idletimer (sec)

Specifies the time in seconds after which the EIS partner is to clear down the connection to
the BeanConnect proxy container if no communication has taken place over the connection
during that time.

It is recommended that you choose a value for Partner Idletimer that is smaller than the
one specified for Proxy Idletimer.
0 means that the timer is not used.
Possible values: 0 (default) through 32767.

Configuration of BeanConnect Configuring the EIS partners

BeanConnect V3.0B 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

Is BS2000

This option specifies whether or not the openUTM partner application is located on a
BS2000 system. If this option is activated then the Management Console generates
KDCDEF and BCMAP statements for a BS2000 system.

If this option is not enabled then the Management Console generates the KDCDEF state-
ments and the host name file for Unix, Linux and Windows platforms.

Admin Permission

This option specifies whether the proxy, and, implicitly, the application server also, are to
possess administrative permissions in the openUTM partner application during outbound
communication.

Listener Port

Defines the port at which the openUTM partner application waits for requests to establish a
connection. Permitted values: 102 and 1025 through 32767

If you have not enabled Is BS2000 and you select the Use Existing option for Access
Point , you must enter the value generated in the openUTM partner application here
(ACCESS-POINT statement, LISTENER-PORT operand).

Application Entity Qualifier

The Application Entity Qualifier is an address component for the openUTM partner appli-
cation's access point.

If you select the Use Existing option for Access Point , you must enter the value
generated in the openUTM partner application here (ACCESS-POINT statement,
APPLICATION-ENTITY-QUALIFIER operand).

Application Process Title

The Application Process Title is an address component for the openUTM partner
application's UTMD statement.

If you select the Use Existing option for Access Point , you must enter the value
generated in the openUTM partner application (UTMD statement, APPLICATION-
PROCESS-TITLE operand).

If the EIS partner is a UTM cluster application and the specified application process title
(APT) consists of fewer than 10 elements then the Management Console adds the node
index to the APT in order to ensure that the APTs are unique.

Configuring the EIS partners Configuration of BeanConnect

214 BeanConnect V3.0B

Access Point

Defines the properties of the access point used to address the openUTM partner appli-
cation during outbound communication. The access point is generated in the openUTM
partner application using the KDCDEF statement ACCESS-POINT.

The three options Create New (Generic Names), Create New (Own Names) and Use
Existing are used to determine whether the Management Console generates KDCDEF
statements for the access point, or whether an access point that already exists in the
openUTM partner application is to be used.

● Create New (Generic Names)
If you select this option, the Management Console generates an ACCESS-POINT
statement with generic values. The Management Console enters these values in the
Access Point Name, Transport Selector and Transport Selector Format fields.
They cannot be changed.

● Create New (Own Names)
If you select this option, the Management Console generates an ACCESS-POINT
statement with specific values. The Management Console enters these values in the
fields Access Point Name, Transport Selector and Transport Selector Format. You
can modify the values.

● Use Existing
If you select this option, the Management Console does not generate an ACCESS-
POINT statement. This option is designed for circumstances in which you want to use
an existing access point in the openUTM partner application. You must enter the values
for this access point in the Access Point Name, Transport Selector and Transport
Selector Format fields. Furthermore, the values you enter in the Application Entity
Qualifier and Listener Port fields must have been generated in the openUTM partner
application.

● Access Point Name
Name of the access point in the openUTM partner application.

If you select Create New (Generic Names), this contains the generated name (cannot
be changed).

If you select Create New (Own Names), you must enter a freely-definable name here
(1 through 8 characters in length).

If you select Use Existing, you must enter the name generated in the ACCESS-POINT
statement of the openUTM partner application.

Configuration of BeanConnect Configuring the EIS partners

BeanConnect V3.0B 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

● Transport Selector

Transport selector of the access point in the openUTM partner application.

If you select Create New (Generic Names), this contains the generated name (cannot
be changed).

If you select Use Existing, you must enter the name generated with T-SEL= in the
ACCESS-POINT statement of the openUTM partner application.

If you select Create New (Own Names), you must enter a freely-definable name here.
This can be 1 through 8 characters in length, the first character must be an uppercase
alphabetic character, otherwise alphabetic characters, numeric characters and the
special characters #, $ and @ are permitted.

UTM Partners - Additional Fields in Expert Mode

If expert mode is active then the following additional fields are also displayed:

● Application Program Interface Mode of EIS Partner

This field is only relevant for partners that use the XATMI interface, see section “Config-
uring EIS partners of type XATMI” on page 228. In the case of openUTM partner appli-
cations that use the KDCS interface, the value Standard must always be set for API
Mode.

● Transport Selector Format
Format used to encode the transport selector.

If you select Create New (Generic Names), this contains the generated value (cannot
be changed).

If you select Create New (Own Names), you can choose between ASCII, EBCDIC and
TRANSDATA (default). If the EIS partner is running under a BS2000 system,
TRANSDATA must be used as the transport selector format.

If you select Use Existing, you must enter the value generated with TSEL-FORMAT=
in the ACCESS-POINT statement of the openUTM partner application.

Configuring the EIS partners Configuration of BeanConnect

216 BeanConnect V3.0B

Availability Check tab (openUTM partners)

Figure 32: Properties of the EIS partner for the availability check

This dialog box allows you to select a dialog service in the partner application which is
called when checking the availability of an EIS partner. When this is done, the message
defined in Message is passed to the specified service in the EIS partner. As soon as the
response is received, the EIS partner is flagged as available. The response is output in the
Management Console.

You cannot complete this dialog box properly unless you have defined at least one
outbound service for the EIS partner, see section “Configuring outbound services” on
page 229.

Check Service

This lists all the outbound services defined for this partner. Select a suitable service from
the list. The service is always of type Dialog.

Character Code

Character set used by the EIS partner:
Possible values: ASCII or EBCDIC.

Message

Message sent to the EIS partner when checking availability. The maximum length of the
message is 80 characters.

Configuration of BeanConnect Configuring the EIS partners

BeanConnect V3.0B 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

User

User ID if the service is to be called under a specific user ID.

Password

Password for the user ID if a password is required.

Perform Check

This option allows you to temporarily disable the availability check for this EIS partner
without losing the settings, such as the service to be called.

If the option is enabled, the availability check is performed with the specified parameters.

If you disable this option, the availability check for this EIS partner is disabled until the
option is enabled again. Both automatic availability checking and the availability check
performed by issuing a command in the proxy or proxy cluster's context menu are disabled.
If the EIS partner is checked "manually" (using its context menu), the check is performed
irrespective of this setting.

6.6.1.2 Configuration files for EIS partners of type openUTM

The Management Console creates configuration fragments for the EIS partners. The next
time you save the proxy configuration (see section “Saving and activating the configuration
of the BeanConnect proxy” on page 243), the Management Console generates all the
configuration statements for all the EIS partners. Before this is possible, you must have
enabled the Active option on the General tab.

Files with KDCDEF statements are created. In the case of openUTM partner applications
on BS2000 systems, files containing BCMAP statements are also generated.

The configuration files are located in the directory <MC_Home>/genfiles under the following
names:

● Single proxy:

ProxyID.<p-id>.EISPartnerID.<e-id>.UTM.txt (KDCDEF statements)

ProxyID.<p-id>.EISPartnerID.<e-id>.BCMAP.txt (BCMAP statements)

ProxyID.<p-id>.EISPartnerID.<e-id>.HOSTNAME.txt (host name file for the mapping
of long host names, not for BS2000 systems)

Configuring the EIS partners Configuration of BeanConnect

218 BeanConnect V3.0B

● Proxy cluster:

ClusterID.<c-id>.EISPartnerID.<e-id>.UTM.txt (KDCDEF statements)

ClusterID.<c-id>.EISPartnerID.<e-id>.BCMAP.txt (BCMAP statements)

ClusterID.<p-id>.EISPartnerID.<e-id>.HOSTNAME.txt (host name file for the
mapping of long host names, not for BS2000 systems)

<MC_Home> is the directory under which the Management Console is installed.
<p-id>, <e-id> and <c-id> designate the IDs for the proxy, EIS partner and proxy cluster
assigned by the Management Console.

The file containing the BCMAP statements is only generated for openUTM partners in
BS2000 systems (the Is BS2000 option is enabled).

For further details on the configuration tasks in EIS partners, see chapter “Adapting the
configuration in the EIS partner” on page 257.

6.6.2 Configuring EIS partners of type CICS

Before you can configure an EIS partner of type CICS, the proxy or proxy cluster must be
configured accordingly in the General tab, see, for example, “Possible EIS Partner Types”
on page 184.

Generally speaking, an EIS partner in the proxy cluster is configured in exactly the same
way as an individual proxy except for one small difference relating to the configuration of
the communication service.

6.6.2.1 Adding EIS partners of the type CICS

To add a new EIS partner:

1. Click the Add button beneath the list of EIS partners or choose Add EIS Partner from
the context menu of an existing EIS partner object or the EIS Partners node.

If the proxy/proxy cluster has been configured for the two partner types (UTM and
CICS), then the dialog box Choose EIS Partner Type is also displayed. Here, you
should select CICS application.

2. Define the properties for the EIS partner. The property sheet is opened automatically
and contains the tabs General, Communication Service, CICS Partner and
Availability Check.

The following properties are requested:

Configuration of BeanConnect Configuring the EIS partners

BeanConnect V3.0B 219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

General tab (CICS partners)

Figure 33: General properties of an EIS partner of type CICS

Name / Description

The Name of the EIS partner. This must be unique to the proxy. Additionally, you can enter
a Description for the EIS partner. For a created EIS partner, the EIS ID is shown in the ID
field beneath the name (cannot be changed).

Type

Displays the type of EIS partner: here CICS, cannot be changed.

Active

The option Active controls whether the EIS partner definition is active or not. Only active
EIS partners will be included in the configuration of the proxy and the EIS partner. Inactive
EIS partners are struck through to identify them in the navigation tree.

Configuring the EIS partners Configuration of BeanConnect

220 BeanConnect V3.0B

Partner Type

Specifies the type of outbound communication performed with the CICS partner:

● Dialog: Communication over dialog services.

● Asynchronous: Communication over asynchronous services.

In BeanConnect, a CICS partner may be configured either as a dialog partner only or as an
asynchronous partner only. If both communication types are to be permitted for a single real
CICS partner, the real CICS partner must be configured twice using the same address data
and different LU names: Once as a dialog partner and once as an asynchronous partner.

Connections

Specifies the maximum number of concurrent connections allowed between proxy and the
EIS partner.

Prefix

The prefix is included as a component in names which are used in configuration statements.
This prefix must be unique for all proxies running on the same host. The prefix must
comprise exactly three characters (uppercase letters or digits) to ensure that the generated
names are unique. The first character must be an uppercase letter.

DLC Type

Specifies the communication type of the connection between the proxy and the EIS partner.
It can be LAN or IBM-EEDLC

Communication Service tab

This tab has a different layout for proxy clusters containing multiple proxies. Consequently,
both variants are displayed here.

Configuration of BeanConnect Configuring the EIS partners

BeanConnect V3.0B 221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

Figure 34: Communication service properties of a CICS partner (single proxy)

Figure 35: Communication service properties of a CICS partner in a proxy cluster

Configuring the EIS partners Configuration of BeanConnect

222 BeanConnect V3.0B

Mode Name

Specifies the name of an entry in the VTAM MODETAB on the z/OS mainframe. Such
entries describe the properties of sessions between the communication service and VTAM.
You must specify the name of an entry that is suitable for LU6.2 communication with CICS.

openUTM-LU62 Gateway Listener Port

Specifies the partner-specific number of the port where the openUTM-LU62 Gateway is
listening for messages. This number must not be used by another EIS partner communi-
cation service configuration or by another application.

In the case of a proxy cluster, one field is output for each proxy. In these fields, enter the
port number on which the openUTM-LU62 Gateway receives messages for the EIS partner
for each proxy. The port numbers must be different and must be uniquely assigned to an
"EIS partner <-> proxy" pair. In other words, the same port number must not be assigned
for different "EIS partner <-> proxy" pairs.

Logical Unit Name

Specifies the proxy's unique application name in the SNA network.

In the case of a proxy cluster, one field is output for each proxy. Here, you can enter the
application name of the corresponding proxy.

Configuration of BeanConnect Configuring the EIS partners

BeanConnect V3.0B 223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

CICS Partner tab

Figure 36: Properties of the CICS partner on a z/OS mainframe

The layout of this dialog box depends on the DLC type. Many of the fields are only displayed
for a specific setting. All the fields are described below.

EIS Platform

The EIS Platform the CICS partner is running on. Currently only z/OS is possible, cannot
be changed.

Configuring the EIS partners Configuration of BeanConnect

224 BeanConnect V3.0B

Logical Unit

Describes the CICS partner's logical unit.

● Network Name is the NETID in the VTAM start options on the z/OS mainframe.

● Name is the application name of the CICS region as specified in the VTAM statement
APPL at the z/OS mainframe.

● For IP Address, enter the IP address of the z/OS mainframe on which CICS runs.

Control Point

Specifies the VTAM control point on the z/OS mainframe.

● Network Name is the NETID in the VTAM start options on the z/OS mainframe.

● Name is the value specified in the SSCPNAME parameter in the VTAM start options on
the z/OS mainframe.

VTAM

Group Name specifies the VTAM group name. This is the name of the GROUP macro in
the VTAM major node definition for the Enterprise Extender.

MAC Address

MAC address of the z/OS mainframe on which the CICS partner runs if the DLC type is
LAN. Otherwise, this field is not displayed

i Explanations of SNA-specific terms can be found in the glossary.

Configuration of BeanConnect Configuring the EIS partners

BeanConnect V3.0B 225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

Availability Check tab (CICS partners)

Figure 37: Properties of the CICS type EIS partner for the availability check

This dialog box allows you to select a dialog service in the partner application which is
called when checking the availability of an EIS partner. When this is done, the message
defined in Message is passed to the specified service in the EIS partner application. As
soon as the response is received, the EIS partner is flagged as available. The response is
output in the Management Console.

You cannot complete this dialog box properly unless you have defined at least one
outbound service for the EIS partner, see section “Configuring outbound services” on
page 229.

Check Service

This lists all the outbound services defined for this partner. Select a suitable service from
the list. The service is always of type Dialog.

Character Code

Character set used by the EIS partner:
Possible values: ASCII or EBCDIC.

Message

Message sent to the EIS partner when checking availability. The maximum length of the
message is 80 characters.

Configuring the EIS partners Configuration of BeanConnect

226 BeanConnect V3.0B

Users

User ID if the service is to be called under a specific user ID.

Password

Password for the user ID if a password is required.

Perform Check

This option allows you to temporarily disable the availability check for this EIS partner
without losing the settings, such as the service to be called.

If the option is enabled, the availability check is performed with the specified parameters.

If you disable this option, the availability check for this EIS partner is disabled until the
option is enabled again. Both automatic availability checking and the availability check
performed by issuing a command in the proxy or proxy cluster's context menu are disabled.
If the EIS partner is checked "manually" (using its context menu), the check is performed
irrespective of this setting.

6.6.2.2 Configuration files for the EIS partners of the type CICS

The Management Console creates configuration fragments for the defined proxy and EIS
partners. Generation of all configuration files is performed automatically by the
Management Console the next time you save the proxy configuration (see section “Saving
and activating the configuration of the BeanConnect proxy” on page 243). All configuration
statements for the proxy and all defined EIS partners are generated.

The Management Console generates configuration statements for the following compo-
nents:

● BeanConnect proxy container

● openUTM-LU62 Gateway of the proxy

● all partner applications of the BeanConnect proxy

● VTAM (for the connection)

● Communications service, i.e. SNAP-IX or IBM Communications Server (for the proxy
side of the connection)

The configuration files are located in the directory <MC_Home>/genfiles under the following
names:

Configuration of BeanConnect Configuring the EIS partners

BeanConnect V3.0B 227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

● Single proxy:

ProxyID.<p-id>.EISPartnerID.<e-id>.CICS.txt

This file contains generation statements for the CICS partner application.

ProxyID.<p-id>.EISPartnerID.<e-id>.VTAM.txt

This file contains generation statements for the communication component at the EIS
partner's side of the connection (VTAM).

● Proxy cluster:

ClusterID.<c-id>.ProxyID.<p-id>.EISPartnerID.<e-id>.CICS.txt

This file contains generation statements for the CICS partner application.

ClusterID.<c-id>.ProxyID.<p-id>.EISPartnerID.<e-id>.VTAM.txt

This file contains generation statements for the communication component at the EIS
partner's side of the connection (VTAM).

<MC_Home> is the directory under which the Management Console is installed.
<p-id>, <e-id> and <c-id> designate the IDs for the proxy, EIS partner and proxy cluster
assigned by the Management Console.

Information on configuration tasks in the EIS partner can be found in chapter “Adapting the
configuration in the EIS partner” on page 257.

Configuring the EIS partners Configuration of BeanConnect

228 BeanConnect V3.0B

6.6.3 Configuring EIS partners of type XATMI

You must enable expert mode before you can use this function.

If you want to configure an EIS partner of type XATMI, then the proxy must be configured
with API Mode XATMI or ALL, see section “Application Program Interface Mode (API
Mode)” on page 192.

When configuring the proxy, you must specify either Only UTM Partners or UTM and CICS
Partners as the EIS partner type. You always configure an EIS partner of type XATMI in the
same way as a partner of type openUTM.

Proceed as follows to add a new XATMI partner:

1. Click the Add button below the list of EIS partners or open the context menu for an
existing EIS partner object or for the EIS Partners node and choose Add EIS Partner.

2. Define the properties for the EIS partner. The properties sheet opens automatically. It
contains the tabs General, UTM Partner and Availability Check.

Complete these fields in the same way as for an openUTM partner, see section “Adding
EIS partners of the type UTM” on page 207. The only difference compared to an EIS
partner of type openUTM is that, when expert mode is enabled, the value XATMI is
displayed in the API Mode field.

The same configuration data is displayed as for an EIS partner of type openUTM, see also
section “Configuration files for EIS partners of type openUTM” on page 217.

6.6.4 Removing an EIS partner

To remove an EIS partner, choose Remove EIS Partner from the context menu of the EIS
partner. Alternatively, you can select one or more EIS partners in the list and click the
Remove button beneath the list.

Configuration of BeanConnect Configuring outbound communication

BeanConnect V3.0B 229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

6.7 Configuring outbound communication

Outbound communication denotes communication from the application server to the EIS
partner. For outbound communication, you have to configure outbound services and
outbound communication endpoints.

An outbound service represents a service (e.g. transaction code) inside the EIS partner.
Each service of an EIS partner which is to be called from the application server, must be
configured as an outbound service. It can either be used implicitly if it is assigned as a
service to a communication endpoint or can be set explicitly in the EJB via the method
setServiceName.

Each outbound communication endpoint represents a communication endpoint inside the
EIS partner for outbound communication and is therefore EIS-specific. A connection factory
is assigned to a communication endpoint with the configuration property connectionURL
and is thus assigned to a specific EIS partner. An EIS partner can have multiple outbound
communication endpoints.

You can find examples of how to use the BeanConnect programming interfaces for devel-
oping EJBs in the section section “Code samples for outbound communication” on
page 455.

6.7.1 Configuring outbound services

To configure outbound services, click the Services node beneath the Outbound node in
the navigation tree of a proxy.

Configuring outbound communication Configuration of BeanConnect

230 BeanConnect V3.0B

Figure 38: Configuring outbound services

To display a list of the outbound services of a proxy, open the subtree beneath the
Outbound node and then click on Services or alternatively choose Show Outbound
Services from the context menu of the Services node.

To add a new outbound service, click the Add button below the list or choose Add
Outbound Service from the context menu of an existing service or the Services node. The
property sheet is opened.

The following properties have to be specified for an outbound service:

Configuration of BeanConnect Configuring outbound communication

BeanConnect V3.0B 231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

Partner Service Name / Description

Specifies the name of the service inside the EIS partner that is represented by this outbound
service. Additionally you can enter a Description for the outbound service.

Type

Type specifies the communication type of the service. It can be Dialog or Asynchronous.

Reply Timer (sec)

The proxy monitors the responses of an outbound service. If no response is received within
the time defined here, the proxy rolls back the corresponding transaction. This parameter
can only be set or changed for services of the type Dialog.

Removing an outbound service

To remove an outbound service, choose Remove Outbound Service from the context
menu of the service. Alternatively you can select one or more services in the list and click
the Remove button beneath the list.

Configuring outbound communication Configuration of BeanConnect

232 BeanConnect V3.0B

6.7.2 Configuring outbound communication endpoints

To configure outbound communication endpoints, click the Communication Endpoints
node beneath the Outbound node in the navigation tree of a proxy.

Figure 39: Configuring outbound communication endpoints

To display a list of the outbound communication endpoints of a proxy, click on the
Communication Endpoints node or alternatively choose Show Outbound
Communication Endpoints from the context menu of the Communication Endpoints
node.

Configuration of BeanConnect Configuring outbound communication

BeanConnect V3.0B 233

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

To add a new outbound communication endpoint, click the Add button below the table.
Alternatively, you can choose Add Outbound Communication Endpoint from the context
menu of an existing endpoint or the Communication Endpoints node. The property sheet
is opened.

The following properties have to be specified for an outbound communication endpoint:

Name / Description

Name specifies the symbolic name of the outbound communication endpoint. Additionally,
you can enter a Description for the outbound communication endpoint.

The deployer of a bean uses this name when deploying a bean in the application server to
refer to the service inside the EIS partner. For detailed information on this topic please refer
to section section “Setting configuration properties for outbound communication via OSI-TP
/ LU6.2” on page 106.

EIS Partner

Name of the EIS partner the communication endpoint belongs to. The EIS partner must be
specified before.

Partner Service

Specifies the real name of the service inside the EIS partner that is represented by this
outbound communication endpoint. This service must have been defined already as an
outbound service. All the defined services are shown in the drop-down list.

i Each <connector-instance> entry contained in the weblogic-ra.xml file, must
point to a defined outbound communication endpoint (see section “Defining config-
uration properties for OSI-TP / LU6.2” on page 108).

To remove an outbound communication endpoint, choose Remove Outbound
Communication Endpoint from the context menu of the endpoint. Alternatively you can
select one or more endpoints in the list and click the Remove button beneath the list.

Configuring inbound communication Configuration of BeanConnect

234 BeanConnect V3.0B

6.8 Configuring inbound communication

During inbound communication, an EIS partner sends messages to a message endpoint
application in a Java EE application server.

The name of the message endpoint, which is defined in the OLTP message-driven bean's
deployment descriptor, must be known to the proxy. You must therefore configure an
inbound message endpoint in the Management Console. The name of this inbound
message endpoint must match the OLTP message-driven bean's messageEndpoint
property which is defined in the file ejb-jar.xml.

You will find examples on using the BeanConnect programming interfaces for developing
OLTP message-driven beans for inbound communication in the section section “Code
samples for inbound communication” on page 473.

6.8.1 Configuring inbound message endpoints

The inbound message endpoints are accessible from the Message Endpoints node
beneath the Inbound node in the navigation tree's proxy subtree.

Configuration of BeanConnect Configuring inbound communication

BeanConnect V3.0B 235

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

Figure 40: Configuring inbound message endpoints

Configuring inbound communication Configuration of BeanConnect

236 BeanConnect V3.0B

To display the list of the inbound message endpoints of a proxy, click on the Message
Endpoints node or alternatively choose Show Inbound Message Endpoints from the
context menu of the Message Endpoints node.

To add a new inbound message endpoint, click the Add button below the list, choose Add
Inbound Message Endpoint from the context menu of an existing endpoint or from the
context menu of the Message Endpoints node. The property sheet is opened.

The following properties have to be specified for an inbound message endpoint:

Name / Description

Name specifies the symbolic name of the inbound message endpoint. This name must
correspond to the name used in the deployment descriptor of the OLTP message-driven
bean within the application server (property messageEndpoint defined in ejb-jar.xml) (see
section “Setting configuration properties for inbound communication” on page 137).
Additionally, you can enter a Description for the inbound message endpoint.

Type

Type specifies the communication type of the connection. Depending on the message
listener interface implemented by the OLTP message-driven bean, the type can be Dialog
or Asynchronous.

BeanConnect supports the following message listener interfaces (defined as messaging-
type in the ejb-jar.xml file):

● net.fsc.jca.communication.AsyncOltpMessageListener (asynchronous communi-
cation)

● net.fsc.jca.communication.OltpMessageListener (dialog communication)

● javax.resource.cci.MessageListener (dialog communication)

Service Names

Defines one or more inbound services that are assigned to the inbound message endpoint;
a service name may be up to eight characters in length. If you specify multiple services then
they must be separated by commas. However, exactly one inbound message endpoint
must be assigned to an inbound service.

In the case of inbound communication with an openUTM partner over OSI-TP, each of these
names must be explicitly generated in the EIS partner. To this end, the name is specified as
the value of the RTAC parameter in an LTAC statement.

In a CICS program, the service name is used to address the inbound message endpoint.

Configuration of BeanConnect Configuring inbound communication

BeanConnect V3.0B 237

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

You can modify the properties of an inbound service, see section “Configuring inbound
services” on page 239.

Resource Adapter

In multiple resource adapter mode, you select the resource adapter assigned to the
inbound message endpoint here. If only one resource adapter has been defined then this
is displayed (cannot be changed). This field is not output in cluster operation.

Reply Timer (sec)

Monitors the response time of the resource adapters on calling the OLTP message-driven
bean.

If no response has been received from the resource adapter after this time has elapsed, the
proxy container clears the connection to the resource adapter and rolls back the transaction
if necessary.

If you specify 0, no monitoring is performed.

Transaction Timer (sec)

Monitors the transaction duration in the application server if a transaction is propagated to
the application server. If you specify 0, no monitoring is performed.

A transaction is propagated to the application server

● if the onMessage() method of the OLTP message-driven bean was deployed with the
transaction attribute Required and Asynchronous was selected as the Type or

● if the onMessage() method of the OLTP message-driven bean was deployed with the
transaction attribute Required and Dialog was selected as the Type and a transaction
was propagated from EIS to the proxy.

If the transaction is not completed in the specified period, it is rolled back.

Make sure you take account of the time the EIS partner requires for processing, e.g. for
accessing a database. Do not set this value too low.

If you activate both timers (both values > 0), you should set a value for the Transaction
Timer that is at least as great as that of the Reply Timer.

Configuring inbound communication Configuration of BeanConnect

238 BeanConnect V3.0B

State

Displays the state of the inbound message endpoint. The inbound message endpoint can
have the state Unknown, Available or Not Available.

● Unknown means that the state has not yet been checked.

● Available means that an inbound message endpoint with this name exists in the
resource adapter. The proxy container must be available to obtain the state of an
inbound message endpoint.

● Not Available means that an inbound message endpoint with this name does not exist
in the resource adapter.

You can update the state by clicking the Update State button beneath the list or by choosing
Update State from the context menu of the endpoint. Additionally, the names of other
inbound message endpoints available in the resource adapter which you have not defined
in the Management Console are displayed.

Waiting Messages

This field is only displayed in expert mode. The value specifies the number of messages
addressed to the services indicated in Service Names that are currently waiting in the
proxy container.

Unknown means that the status has not yet been checked. Values > 0 are only possible if
the type is Asynchronous.

Dead Letter Queue Messages

This field is only displayed in expert mode. The value specifies how many messages were
originally sent to this message endpoint and are currently in the dead letter queue of the
proxy container.

Unknown means that the status has not yet been checked. Values > 0 are only possible if
the type is Asynchronous.

If the proxy is not running at the time the inbound message endpoint is added then the
configuration must be updated before the proxy is started again (Update Configuration,
see section “Saving and activating the configuration of the BeanConnect proxy” on
page 243).

To remove an inbound message endpoint, choose the Remove Inbound Message
Endpoint command in the endpoint's context menu. Alternatively, you select one or more
endpoints in the list and then click the Remove button below the list.

Configuration of BeanConnect Configuring inbound communication

BeanConnect V3.0B 239

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

6.8.2 Configuring inbound services

An inbound service is a service which an EIS partner addresses during inbound communi-
cation. You specify the name of the service when configuring an inbound message
endpoint. You can also specify multiple service names for an inbound message endpoint.
However, exactly one inbound message endpoint must be assigned to any given service
name.

You can modify the coding properties of an inbound service. To do this, proceed as follows:

● Click the Services node in the Inbound node and then click Show Inbound Services.
A list of all the inbound services is now displayed.

● Select the required inbound service in the list and click the Edit button (alternatively:
double-click the service).

● Configure the inbound service in the dialog box
Edit Properties of Inbound Service... .

Figure 41: Configuring an inbound service

The following inbound service properties are displayed or can be defined.

Service Name

Name of the inbound service as specified in the assigned message endpoint, cannot be
changed. This is the name used by the EIS partner to address the service.

Configuring inbound communication Configuration of BeanConnect

240 BeanConnect V3.0B

Description

You can enter a description here.

Inbound Message Endpoint

Name of the inbound communication message endpoint, cannot be changed.

Type

Type of the inbound service (Dialog or Asynchronous cannot be changed).

Partner Character Code

Specifies the type of character set used in the EIS partner (possible choices: ASCII or
EBCDIC). This setting is used to send a correctly encoded message to the EIS partner if
an error occurs before the inbound message endpoint is called.

Partner Encoding

Name of a code table for converting byte code (e.g. EBCDIC) to Java Unicode. If you
specify a code table here, the following values are overwritten in the deployment descriptor
of the message-driven bean:

● encoding is replaced by the value specified here

● encodingActive is set to true

The value <set by activation config property "encoding"> (default) or a blank entry
causes the setting in the deployment descriptor to be used.

i If the proxy is configured with API Mode: All then the XATMI option is also
displayed in expert mode. You must enable this option if the service is to be used
by an XATMI partner.

Configuration of BeanConnect Configuring inbound communication

BeanConnect V3.0B 241

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

6.8.3 Setting up users for access to inbound message endpoints

If the EIS partner uses user IDs for inbound communication then you must define these in
the proxy as otherwise the job will be rejected. if the user ID needs a password then you
must also define this.

If you want to use the JCA 1.6 security inflow functionality then the EIS partner must use
user IDs for inbound communication.

Otherwise, this operation is optional.

You access the user entries via the Users node which is located below the Inbound node
in the proxy subtree.

To display the list of users, click the Users node. Alternatively, open the context menu for
the Users node and choose Show Inbound Users.

Figure 42: Configuring users for inbound communication

Configuring inbound communication Configuration of BeanConnect

242 BeanConnect V3.0B

To add a new user, click the Add button below the list or choose Add Inbound User from
the context menu of an existing user or the Users node.

Enter the Name. Additionally, you optionally can enter a Description and a Password for
the inbound user.

To remove a user from the Management Console, choose Remove Inbound User from the
context menu of the user. Alternatively you can select one or more users in the list and click
the Remove button beneath the list.

6.8.4 Configuring the error message prefix for inbound communication

If errors occur during inbound communication then an error message may be sent to the
affected EIS partner. By default, these error messages have the prefix BCSYSEX.

You can activate and deactivate this prefix as follows:

● In the context menu of the Inbound node, choose the command Configure Inbound
Error Prefix... .

Figure 43: Configuring the inbound error prefix

● Select the appropriate options in the dialog box:

Don't use an inbound error prefix (deactivate prefix)

Use the inbound error prefix "BCSYSEX" (activate the prefix)

The affected proxy must not be running when you do this. The change takes effect when
you save the proxy.

Configuration of BeanConnect Saving and activating the proxy configuration

BeanConnect V3.0B 243

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

6.9 Saving and activating the configuration of the BeanConnect
proxy

After adding a new proxy or changing the configuration of an existing proxy in the
Management Console, you must save and activate the configuration to bring the configu-
ration into effect. To obtain information on outstanding activities you can use the todo topics
feature (see section “Todo topics” on page 167).

i The following description also applies if you are running the BeanConnect proxy in
a cluster.

The necessary steps depend on the changes you have made.

If data such as the LU name or control point name has been modified for the openUTM-
LU62 Gateway and the communication service then the configuration must be saved and
the components must be restarted. Only then do the changes take effect.

The configuration must be saved and the proxy container must be restarted to bring the
changes into effect if you have

● changed the settings for communication with the resource adapter (see section “Config-
uring the BeanConnect resource adapter” on page 197).

● created, modified or deleted an inbound user, an inbound message endpoint, an
outbound service or an outbound communication endpoint.

Select one of the following commands from the context menu of the proxy:

● If the proxy is running: Save/Restart – Save & Restart Proxy

● If the proxy is not running: Save/Restart – Save and then start the proxy with Start
Proxy.

The steps listed below are necessary and sufficient if you have added or deleted an EIS
partner or changed its configuration. Activation of the new configuration cannot be carried
out while the proxy is running. Therefore, proceed as follows after you have finished the
configuration activities:

1. Select Save/Restart – Save from the context menu of the proxy.

The newly defined configuration is saved and new configuration files are generated for
all EIS partners of the proxy.

2. If the proxy is running, stop it by selecting Stop Proxy from the context menu of the
proxy. All proxy components are stopped.

3. Select Update Configuration from the context menu of the proxy to activate the new
configuration.

Saving and activating the proxy configuration Configuration of BeanConnect

244 BeanConnect V3.0B

4. Start the proxy by selecting Start Proxy from the context menu of the proxy. The proxy
and proxy components are started with the changed configuration.

5. It may be necessary to enter the new configuration data for the EIS partner in the EIS
partner

Configuration of BeanConnect Configuring the MC-CmdHandler

BeanConnect V3.0B 245

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

6.10 Configuring the Management Console command handler
(MC-CmdHandler)

The Management Console Command Handler (MC-CmdHandler) is a stand-alone Java
application that enables the Management Console to administer remote proxies, proxy
components, resource adapters or the Log4j configuration.

An MC-CmdHandler is installed for each BeanConnect proxy. In addition, you can also
install the MC-CmdHandler separately on computers other than the proxy computer. This
is necessary in the following cases:

● If it is not possible to access required files such as the deployment descriptor ra.xml in
the BeanConnect RAR archive or the resource adapter's Log4j configuration because
they are present on different computers and/or under different IDs.

● If it is not possible to access components such as openUTM-LU62 or communication
services because they are present on different computers and/or under different IDs.

The MC-CmdHandler is a socket listener that waits at a listener port for orders given by the
Management Console. The MC-CmdHandler is able to perform basic file transfer tasks
such as listing directories, supplying information about files, fetching and updating files.
Beyond this, it is also possible to execute scripts on a remote system.

The following conditions must be met before the above-mentioned components can be
administered on remote hosts:

● The MC-CmdHandler must be started on the host on which the proxy or the compo-
nents to be administered are running (resource adapter, openUTM-LU62 and commu-
nication service).

● The Management Console must be able to access the MC-CmdHandler.

Configuring the MC-CmdHandler Configuration of BeanConnect

246 BeanConnect V3.0B

6.10.1 Security and privileges

The MC-CmdHandler checks user authorizations. This prevents unauthorized individuals
from using the MC-CmdHandler to manipulate file systems on remote hosts. Requests are
accepted only if the (encrypted) password that accompanies the request matches the
password of the MC-CmdHandler.

The privileges of the MC-CmdHandler are the same as the privileges of the system user ID
under which the MC-CmdHandler was started. This is relevant when the MC-CmdHandler
accesses files or executes scripts. It is therefore necessary to start each MC-CmdHandler
under the same user ID as the component(s) to be administered.

Notes on using the MC-CmdHandler

The following points must be noted if an MC-CmdHandler is to be used to administer a
proxy:

● When the proxy is entered in the Management Console's administration data, the
password of the employed MC-CmdHandler must correspond to the administration
password of the proxy that is to be included.

● If the administration password for a proxy changes then the password of the MC-
CmdHandler that is used to administer the relevant proxy also changes.

Therefore, if several proxies are installed on a computer, a separate MC-CmdHandler
should be used for each proxy.

Configuration of BeanConnect Configuring the MC-CmdHandler

BeanConnect V3.0B 247

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

6.10.2 Administering the MC-CmdHandler

You will find scripts for starting, checking and shutting down the MC-CmdHandler
undershsc in the proxy container's home directory or under shsc in the MC-CmdHandler's
installation directory if the MC-CmdHandler is installed separately.

6.10.2.1 Starting the MC-CmdHandler

Starting the MC-CmdHandler on Unix and Linux systems

You start the MC-CmdHandler using the following script in the proxy container's home
directory or in the MC-CmdHandlers' installation directory

● shsc/startmccmdhandler.sh

i If you do not want the MC-CmdHandler to be shut down automatically on the next
logoff, you must either start it as a service (see section “Configuring an MC-
CmdHandler as a service” on page 248) or start it using the following command:

nohup shsc/startmccmdhandler.sh &

Starting the MC-CmdHandler on Windows systems

You start the MC-CmdHandler using the following script in the proxy container's home
directory or in the MC-CmdHandlers' installation directory:

● shsc\startmccmdhandler.cmd

If the MC-CmdHandler is located in the proxy container's home directory, you can also start
it via the program group. To do this, choose

Start - Programs - FUJITSU Software BeanConnect V3.0B00 - Proxy <container> -
MC-CmdHandler - MC-CmdHandler Startup

Configuring the MC-CmdHandler Configuration of BeanConnect

248 BeanConnect V3.0B

6.10.2.2 Shutting down the MC-CmdHandler

Shutting down the MC-CmdHandler in Unix and Linux systems

You shut down the MC-CmdHandler with the following script in the proxy container's home
directory or in the MC-CmdHandler's installation directory:

● shsc/shutmccmdhandler.sh

Shutting down the MC-CmdHandler in Windows systems

You shut down the MC-CmdHandler with the following script in the proxy container's home
directory or in the MC-CmdHandler's installation directory:

● shsc\shutmccmdhandler.cmd

If the MC-CmdHandler is located in the proxy container's home directory, you can also shut
it down it via the program group. To do this, choose

Start - Programs - FUJITSU Software BeanConnect V3.0B00 - Proxy <container> -
MC-CmdHandler - MC-CmdHandler Shutdown

6.10.2.3 Configuring an MC-CmdHandler as a service

Configuring an MC-CmdHandler as a service on Unix and Linux systems

If the MC-CmdHandler is to be started as a service then it must be configured. To do this,
enter a line in the file /etc/init.d/bcmccmdhandler.dat for every service that is to be
started. This line contains the user ID under which the service is to be started as well as the
directory under which the MC-CmdHandler was installed, e.g.:

● proxyuser /home2/proxyuser/BCCONT

To start/stop the MC-CmdHandler as a service, call the following script:

● /etc/init.d/bcmccmdhandler.sh start | stop

Alternatively, you may also call the script with the options restart or reload. restart
and reload are identical and each contain stop and start.

To remove a service from the Unix or Linux system again, delete the corresponding line in
the above-mentioned configuration file.

To enter and delete the service and to call the script /etc/init.d/bcmccmdhandler.sh, you
require system administrator permissions. For further information on deleting a service, see
section “Uninstalling the BeanConnect tools” on page 87.

Configuration of BeanConnect Configuring the MC-CmdHandler

BeanConnect V3.0B 249

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

Configuring an MC-CmdHandler as a service on Windows systems

If the MC-CmdHandler is installed without a BeanConnect container, then the MC-
CmdHandler is entered as a service at installation time under the name
BeanConnect MC-CmdHandler <port-number> with autostart type Manual.

If the MC-CmdHandler is installed together with the BeanConnect container, then you must
subsequently explicitly enter the MC-CmdHandler as a service. You do this using the script
shsc/MCCmdHandler_InstallSrv.cmd in the container's home directory. Call the script with
administration authorization:

● <Proxy_home>/shsc/MCCmdHandler_InstallSrv.cmd

This script enters the service with autostart type Manual.

If you want to use the MC-CmdHandler to administer a proxy container that is installed on
a remote host then it can be necessary under certain circumstances to run the service
under the corresponding user account and not under the system account (default value on
the installation of the MC-CmdHandler). You change the user account setting via the
Windows Control Panel (Control Panel/Administrative Tools/Services).

You can use the script shsc/MCCmdHandler_UnInstSrv.cmd (called with administrative
permissions) to remove the service again.

Configuring the Management Console as a JMX client Configuration of BeanConnect

250 BeanConnect V3.0B

6.11 Configuring the Management Console as a JMX client

The Management Console contains a JMX client This allows the Management Console to
read current statistical and administrative data for the running resource adapter and to
modify certain attribute values, see section “Monitoring the resource adapter with the
Management Console” on page 288.

The data is made available using MBeans. The JMX client is therefore also referred to as
the MBean client.

i As JMX client, the Management Console can access all the MBeans of the relevant
application server instance. However, this section describes only the MBeans which
affect the resource adapter.

6.11.1 Defined resource adapter MBeans

The BeanConnect resource adapterprovides a number of types of MBeans. The following
types of data are provided for each MBean:

● Attributes

These are values, e.g. configuration values or statistical counters. Most of the attributes
of the MBeans are read-only. Some of them can also be modified via the MBean
interface.

● Operations

These are operations (methods) that can be executed using MBeans, for example
resetting counters.

● Notifications

Notifications sent to the MBean client when certain events occur (e.g. when a trans-
action is rolled back). Before it is possible to send notifications, the MBean client must
have explicitly subscribed to them.

The following MBeans are available:

● ResourceAdapter MBean

MBean description:

Administration interface of the BeanConnect Resource Adapter

This MBean indicates the resource adapter configuration settings as defined in the file
ra.xml. There is one MBean of this type for each resource adapter.

Configuration of BeanConnect Configuring the Management Console as a JMX client

BeanConnect V3.0B 251

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

Operations:

– checkProxyApplication
Checks whether the proxy application is available

– selectProxyApplication
Starts the selection of a new application if necessary.

● ManagedConnectionFactory MBean

There are three variants of the ManagedConnectionFactory MBean:

– OltpMBean for non-transactional OSI TP/LU6.2-connections:

MBean description:

Administration interface of a non-transactional BeanConnect
OltpManagedConnectionFactory

– OltpTaMBean for transactional OSI TP/LU6.2-connections:

MBean description:

Administration interface of a transactional BeanConnect
OltpManagedConnectionFactory

– UPICMBean for UPIC connections:

MBean description:

Administration interface of a BeanConnect UpicManagedConnectionFactory

These MBeans indicate the configuration properties of the individual managed
connection factories (deployment data) and provide information about connection
usage (statistical data). The three variants of this MBean differ at the level of the
attributes that are displayed.

Each managed connection factory has a corresponding MBean.

Operations:

– cleanupPool
Remove Manged Connections from the pool

– resetStatisticValues
Reset statistics

Configuring the Management Console as a JMX client Configuration of BeanConnect

252 BeanConnect V3.0B

● Inbound MBean

MBean description:

Statistic data of inbound connections

This MBean indicates the statistical data for all the inbound activities that cannot be
assigned to a message endpoint. There is only one MBean of this type.

Operations:

– resetStatisticValues
Rest statistics

● MessageEndpoint MBean

MBean description:

Administration interface of a BeanConnect Message Endpoint

These MBeans indicate the configuration properties of the individual message
endpoints (deployment data) and provide information about message endpoints usage
(statistical data). Each message endpoint has a corresponding MBean.

Operations:

– resetStatisticValues
Reset statistics

● Logging MBean

MBean description:

Administration interface of the BeanConnect logging

This MBean indicates the Log4j configuration settings. All the Log4j Loggers are
displayed together with their log levels. There is only one MBean of this type.

Operations:

– getLogLevel
Show the LogLevel of a Log4j logger

– setLogLevel
Modify the LogLevel of a Log4j logger

For further details on the data supplied by the MBeans and the options available via the
administration functions, see section “Monitoring the resource adapter with the
Management Console” on page 288.

Configuration of BeanConnect Configuring the Management Console as a JMX client

BeanConnect V3.0B 253

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

6.11.2 Setting up the JMX client in the Management Console

The JMX client requires the following additional Java libraries to communicate with the
Oracle WebLogic Server:

either wljmxclient.jar and wlclient.jar
or
wlfullclient.jar.

If the Management Console runs on a different computer from the application server then
you must download these libraries from Oracle's official download page and make them
available.

In all cases, you must declare these additional Java libraries. To do this, it is necessary to
extend the Management Console's classpath. The scripts mc.cmd (Windows systems) and
mc.sh (Solaris, Linux systems) for starting the Management Console contain the lwlfull-
client.jar library under Enable WebLogic JMX client. To use these statements, you must
start the scripts using the –weblogicjmx option. Otherwise, the statements under Enable
WebLogic JMX client will not execute.

In Windows systems, the script mc.cmd is located under <MC_home>/bin
where <MC_home> is the Management Console's installation directory.

In Solaris/Linux systems, the script mc.sh is located in the installed BeanConnect's
Console/bin directory. You must adapt the script mc.sh for the JMX client. However, the
Management Console is started with the script startconsole.sh which is located in the
Management Console's installation directory.

6.11.2.1 Setting up a JMX client

A JMX client is usually assigned to a resource adapter. However, you can also set up a free
"stand-alone" JMX client, see section “Setting up free JMX clients” on page 255.

Setting up a JMX client for resource adapters

To set up a JMX client for a resource adapter, choose the Define MBean Client command
in the resource adapter's context menu and define the properties of the MBean client in the
MBean Client Properties dialog box

Configuring the Management Console as a JMX client Configuration of BeanConnect

254 BeanConnect V3.0B

Figure 44: Setting up a JMX client for resource adapters

Name

Name of the resource adapter, cannot be changed.

Server Type

Select the type of application server.

Configuration of BeanConnect Configuring the Management Console as a JMX client

BeanConnect V3.0B 255

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
21

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
6

Server URL

Specifies the URL that is to be used to establish the connection to the JMX server. The
format of the URL depends on the type of application server. The Management Console
proposes a default URL which you may need to modify. The default URL has the following
format:

service:jmx:iiop://<server-host>:7001/jndi/
weblogic.management.mbeanservers.runtime
(Oracle WebLogic Server)

<server-host> is the name of the JMX server. This is followed by the port number of the
relevant server. Here, the Management Console enters the name of the computer on which
the resource adapter is running and proposes a default port number for the JMX server. You
may need to adapt the port number.

Login

User ID required for login at the application server. The user ID usually possesses admin-
istration permissions.

Password

Password for the specified user ID.

The newly set up MBean client is represented by a separate node below the resource
adapter.

Setting up free JMX clients

A free JMX client is a client that is not assigned to any resource adapter. To set up this type
of client, open the File menu and choose the command Add MBean Client. Enter the
properties in the dialog box MBean Client Properties. You proceed in the same way as for
a client with a fixed resource adapter except that you must assign the name of the JMX
client and that the name of the JMX client computer is not predefined. The MBean clients
defined in this way are listed at the topmost level under the MBean Clients node. This node
only exists if you have set up at least one free MBean client.

Configuring the Management Console as a JMX client Configuration of BeanConnect

256 BeanConnect V3.0B

6.11.2.2 Establishing and clearing a connection to the JMX server

You must explicitly establish and clear the connection between the Management Console
and the JMX server.

Establishing a connection to the JMX server

In the MBean context menu, choose Connect to MBean Server. If it has been possible to
establish the connection, the icon for the MBean node changes and all the available MBean
domains are displayed below the MBean node. If the connection is not established, an error
message is output. This may provide information about the cause of the error.

Clearing a connection to the JMX server

To clear a connection to the JMX server, choose the command Disconnect From MBean
Server in the MBean client's context menu. When the connection is cleared, the contents
of the MBean domain nodes are removed from the navigation tree.

6.11.2.3 Removing a JMX client

To remove a JMX client, choose the command Remove MBean Client from the MBean
client's context menu and confirm the query. The Management Console removes the node
from the navigation tree, closes any windows that are open and deletes the configuration
data from its administration files

BeanConnect V3.0B 257

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
22

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
7

7 Adapting the configuration in the EIS partner

In order to enable communication between the application server and an EIS partner, it is
not sufficient to configure the application server, the resource adapter and the proxy. Some
additional configuration activities are necessary in the EIS itself and on the platform that
hosts the EIS.

This chapter contains information on

● Defining connections between BeanConnect and openUTM

● Mapping of long host names for openUTM partners on open platforms

For detailed information on configuring openUTM applications, please refer to the
openUTM documentation.

Adapting the configuration in openUTM partners Adapting the configuration in EIS partners

258 BeanConnect V3.0B

7.1 Adapting the configuration in EIS partners of type openUTM

An EIS partner of type openUTM is usually an openUTM application which communicates
with the application server via outbound or inbound communications. However, it is also
possible for an application from the openUTM environment, for example a UPIC appli-
cation, to perform inbound access to the application server.

7.1.1 Defining connections between BeanConnect and openUTM

openUTM partners can be connected to BeanConnect via the

● OSI-TP protocol

● UPIC protocol

● Socket or RFC1006 protocol

The following sections indicate the parameters that have to be configured in the EIS partner.

In the case of connections to an openUTM partner running on a BS2000 system, you may
also need to create BMAP entries.

7.1.1.1 Defining an OSI-TP connection between BeanConnect and openUTM

An OSI-TP connection can be used for both outbound communication and inbound commu-
nication. An OSI-TP connection enables both transactional and non-transactional commu-
nication.

An OSI-TP connection between BeanConnect and openUTM requires an OSI-LPAP and an
OSI-CON statement within the EIS partner's openUTM generation (KDCDEF).

On the proxy side the generation is processed as described in section “Configuring the EIS
partners” on page 206. On the EIS partner side the BeanConnect Management Console
generates these statements in a text file in the directory <MC_Home>/genfiles.

In the case of a single proxy, the name of the generated input file is:

ProxyID.<p-id>.EisPartnerID.<e-id>.UTM.txt

In the case of a proxy cluster, the name of the generated input file is:

ClusterID.<c-id>.EisPartnerID.<e-id>.UTM.txt

<p-id>, <e-id> and <c-id> designate the IDs for the proxy, EIS partner and proxy cluster
assigned by the Management Console.

Adapting the configuration in EIS partners Adapting the configuration in openUTM partners

BeanConnect V3.0B 259

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
22

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
7

BeanConnect does not transfer this configuration file to the EIS platform. The generated
input file has to be transferred to the EIS partner host using common file transfer mecha-
nisms. After that, the openUTM administrator can use the file to carry out the configuration
activities.

7.1.1.2 Defining a UPIC connection for outbound communication between the openUTM
partner and BeanConnect

From the openUTM partner point of view, the BeanConnect resource adapter is seen as a
UPIC client.

A UPIC connection from BeanConnect to an openUTM partner requires a TPOOL statement
within the KDCDEF generation of openUTM partner application. The Management Console
does not generate this statement.

The configuration enables non-transactional UPIC outbound communication.

The openUTM connection is configured as follows:

BCAMAPPL UTMSERV
,T-PROT=RFC1006
[,LISTENER-PORT = 11111] // only required for Unix/Linux/Windows systems
[,TSEL-FORMAT=T|A|E] // only required for Unix/Linux/Windows systems

TPOOL NUMBER=99
,PTYPE=UPIC-R
,LTERM=UPIC#R
,BCAMAPPL=UTMSERV
,PRONAM=*ANY
,Connect-Mode=MULTI

Please note the following:

● TSEL-FORMAT must match the configuration property connectionURL, parameter TSEL,
attribute rt (see “connectionURL” on page 109).

● UTMSERV and the port number must match the values which are specified in the config-
uration property connectionURL parameters remote and port or in the program.

Example 11 Example of an URL

The openUTM partner application configured above can be addressed as follows with the
configuration property connectionURL:

<config-property name="connectionURL"
value="upic://host:11111/UTMSERV?rt=t"/>

(for Unix/Linux/Windows systems)

Adapting the configuration in openUTM partners Adapting the configuration in EIS partners

260 BeanConnect V3.0B

7.1.1.3 Defining a socket connection between the openUTM partner and BeanConnect

A socket connection or RFC1006 connection from an openUTM partner to BeanConnect
requires a pair of PTERM/LTERM statements within the openUTM partner application's
KDCDEF generation either with PTYPE=SOCKET for the openUTM socket protocol or with
PTYPE=APPLI for the RFC1006 protocol. The Management Console does not generate
these statements.

The configuration enables non-transactional asynchronous inbound communication.

7.1.1.4 Defining a BCMAP entry (only for BS2000 partners)

An additional configuration step has to be carried out on the BS2000 partner system in
BCAM if a communication port number other than port 102 is used.

To assign another port than the default port 102 to the OSI-CON, PTERM or TPOOL statements
in the openUTM configuration, you have to define a BCMAP entry.

When configuring a BS2000 EIS partner with the Management Console the following text
file with the according BCMAP entry is generated in the directory
<MC_Home>/genfiles.

In the case of a single proxy, the name of the generated input file is:

ProxyID.<p-id>.EisPartnerID.<e-id>.BCMAP.txt

In the case of a proxy cluster, the name of the generated input file is:

ClusterID.<c-id>.EisPartnerID.<e-id>.BCMAP.txt

<p-id>, <e-id> and <c-id> designate the IDs for the proxy, EIS partner and proxy cluster
assigned by the Management Console.

BeanConnect does not transfer this configuration file to the EIS platform. The generated
input file has to be transferred to the EIS partner host using common file transfer mecha-
nisms and can be used by the BCAM administrator to carry out the configuration activities.

For detailed information on configuring BCMAP entries, please refer to the BCAM
documentation.

7.1.1.5 Mapping of long host names for openUTM partners on open platforms

openUTM partners on Unix, Linux and Windows systems use host name mapping to map
long real host names (> 8 characters) to short names. Mapping is handled via entries in the
host name file of the UTM application.

If the proxy host name is longer than 8 characters, then a mapping of a short (mapped host
name) to the real host name of the proxy must be defined for the openUTM partner in the
host name file.

Adapting the configuration in EIS partners Adapting the configuration in openUTM partners

BeanConnect V3.0B 261

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
22

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
7

When a Unix, Linux or Windows EIS partner is configured at the BeanConnect
Management Console, a text file containing the corresponding entry is generated in the
directory <MC_home>/genfiles.

In the case of a single proxy, the name of the generated host name file is:

ProxyID.<p-id>.EisPartnerID.<e-id>.HOSTNAME.txt

In the case of a proxy cluster, the name of the generated host name file is:

ClusterID.<c-id>.EisPartnerID.<e-id>.HOSTNAME.txt

<p-id>, <e-id> and <c-id> are the IDs for the proxy, EIS partner and proxy cluster assigned
by the Management Console.

BeanConnect does not automatically transfer this host name file to the EIS platform. The
generated file must be transferred to the host containing the openUTM partner using normal
file transfer methods. If a host name file already exists there then the entries for the
proxy/proxy cluster must be inserted in this file. If no host name file already exists there then
the transferred file must be activated in the UTM application. For details on configuring and
activating host name files in openUTM, see openUTM manual „Generating Applications“,
section "Using mapped host names ...".

7.1.1.6 Mapping of long host names for UTM partners on BS2000 platforms

In BS2000 systems, there is no UTM-specific mechanism for mapping long host names.
Mapping must be performed using BS2000 resources, e.g. by means of an entry in the
FQDN file. The specifications of the real host name and mapped host name in
BeanConnect must correspond to the configuration in the BS2000 system.

7.1.2 Defining connections between BeanConnect and other EIS partners

Each UPIC application and each application using transport-level protocols like RFC1006
or the openUTM socket protocol can be used as an EIS partner for non-transactional
inbound communication. A UPIC application may only use dialog communication.

For detailed information on communication between UPIC applications or applications
using transport-level protocols like RFC1006 or openUTM socket protocol and
BeanConnect please refer to the openUTM documentation.

Adapting the configuration in CICS partners Adapting the configuration in EIS partners

262 BeanConnect V3.0B

7.2 Adapting the configuration in EIS partners of type CICS

An EIS partner of type CICS is a CICS application which runs on an IBM mainframe.

7.2.1 Configuration in the CICS

The following configuration activities have to be carried out in the CICS itself:

● Definition of a connection, used to specify the connection parameters. This definition
contains the name of the logical unit (NETNAME parameter) of the CICS partner appli-
cation.

● Definition of a session, used to specify the session parameters. This definition contains
the name of the connection (CONNECTION parameter) and the name of the session mode
(MODE parameter). The properties of a session are then defined via the mode.

The BeanConnect Management Console generates a text file that contains the definitions
of CONNECTION and SESSION (see section “Configuring EIS partners of type CICS” on
page 218).

In the case of a single proxy, the name of the generated input file is:

ProxyID.<p-id>.EisPartnerID.<e-id>.CICS.txt

In the case of a proxy in a cluster, the name of the generated input file is:

ClusterID.<c-id>.ProxyID.<p-id>.EisPartnerID.<e-id>.CICS.txt

<p-id>, <e-id> and <c-id> designate the IDs for the proxy, EIS partner and proxy cluster
assigned by the Management Console.

BeanConnect does not transfer the file to the EIS platform. This file has to be transferred to
the EIS partner host using common file transfer mechanisms and can be used by the CICS
administrator to carry out the configuration activities.

Adapting the configuration in EIS partners Adapting the configuration in CICS partners

BeanConnect V3.0B 263

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
22

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
7

7.2.2 Configuration of VTAM on an IBM mainframe

The VTAM (Virtual Telecommunications Access Method) component has to be configured
for CICS partners running on the IBM mainframe (z/OS system). VTAM is an IBM product
that runs on the mainframe and enables access to a CICS region on that mainframe.
Requests from the proxy are passed to VTAM and then to CICS. Therefore, some VTAM
definitions are needed.

VTAM definitions are coded using macros. The Management Console generates an input
file for the VTAM configuration during the configuration run (see section section “Config-
uring EIS partners of type CICS” on page 218). This input file contains definitions for the
Physical Unit (PU) in VTAM.

In the case of a single proxy, the name of the generated input file is:

ProxyID.<p-id>.EisPartnerID.<e-id>.VTAM.txt

In the case of a proxy in a cluster, the name of the generated input file is:

ClusterID.<c-id>.ProxyID.<p-id>.EisPartnerID.<e-id>.VTAM.txt

<p-id>, <e-id> and <c-id> designate the IDs for the proxy, EIS partner and proxy cluster
assigned by the Management Console.

BeanConnect does not transfer the VTAM configuration file to the EIS platform. The
generated input file has to be transferred to the EIS partner host using common file transfer
mechanisms. After that, the VTAM administrator can use the file to carry out the configu-
ration activities. Note that the VTAM administrator has to adapt some VTAM definitions to
the needs of the partner application. BeanConnect cannot guarantee the uniqueness of the
definitions when generating the file because it has no access to the complete VTAM defini-
tions. Therefore, the configuration file contains some question marks which must be
replaced with the proper values.

Adapting the configuration in CICS partners Adapting the configuration in EIS partners

264 BeanConnect V3.0B

BeanConnect V3.0B 265

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
23

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
8

8 Administering BeanConnect

This chapter describes the administration tasks involved in operating BeanConnect.

You can carry out all the necessary operations using the BeanConnect Management
Console. These operations include:

● Starting and stopping the proxy container and the proxy components

● Checking the availability of the proxy

To start and stop the proxy container there are also scripts available. On Windows systems,
these are available in the proxy container program group.

In addition, the Management Console provides a command line interface (MC-CLI) for the
script-based automation of administration functions. You can find more detailed information
in chapter “Command Line Interface of the BeanConnect Management Console (MC-CLI)”
on page 299.

Administration of proxies running on a remote system is only possible using the
Management Console.

This chapter deals with the following topics:

● Administering a BeanConnect proxy via the Management Console

● Administering a BeanConnect proxy container on command level

● Starting an MC-CmdHandler as a service on Windows systems

● Checking the availability of a proxy

● Administering the openUTM-LU62 Gateway

● Administering the communication service

● Monitoring the resource adapter with the Management Console

Administering via the Management Console Administering BeanConnect

266 BeanConnect V3.0B

8.1 Administering a BeanConnect proxy via the Management
Console

The Management Console is able to administer a number of installed proxies. These
proxies can be installed either on the same computer as the Management Console, in which
case they are referred to as local proxies, or they can be installed on a different computer,
in which case they are referred to as remote proxies.

Proxies can be administered via the Management Console if one of the following conditions
is met:

● The proxy is local from the point of view of the Management Console. and runs under
the same user ID as the Management Console.

● The proxy is a (possibly) remote proxy whose associated MC-CmdHandler is available
and can be accessed via the Management Console.

The Management Console offers the necessary administration functions in the context
menu of a proxy node.

Figure 45: Proxy context menu

Administering BeanConnect Administering via the Management Console

BeanConnect V3.0B 267

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
23

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
8

8.1.1 Starting a proxy

The proxy container or proxy component must be configured before you can start it
successfully.

You start a proxy by selecting the menu item Start Proxy in the context menu of the relevant
proxy node in the navigation tree.

If the proxy is only configured for partners of type openUTM then it is started immediately.

If the proxy is (also) configured for partners of type CICS, a selection dialog box then
appears which allows you to select those components of the proxy which you want to be
started:

● Proxy container

● openUTM-LU62 Gateway

● Communication Service

i Before you start openUTM-LU62 and the communication service, the associated
MC-CmdHandler must already be started.

If you are starting the openUTM-LU62 Gateway (CICS) you can also select the option Cold
Start. All restart information is lost during a cold start.

Before starting a proxy, the Management Console first checks whether the proxy container
or the proxy component is already available.

The proxy container or the proxy component must be configured before it can be started
successfully.

The openUTM-LU62 Gateway and the Communication Service cannot be started until at
least one EIS partner of type CICS has been defined for the proxy. For more information,
refer to the section section “Configuring the BeanConnect proxy” on page 181.

i For CICS partners:
To administer the Communication Service the administration user must be member
of the predefined SNA administrator group sna. The user group sna is present after
the installation of the communication service. The administrator is the user under
whose user ID, the MC-CmdHandler was started.

The Management Console issues appropriate messages in an action dialog box in which
you can monitor the actions and results. You can

● identify what actions have already been carried out and control the results of the
completed actions,

● display detailed information on the results if an error occurs,

Administering via the Management Console Administering BeanConnect

268 BeanConnect V3.0B

● if necessary, cancel the entire operation. In this case, only the execution of the subac-
tions that have not yet been performed is canceled. Subactions that have already been
executed are not undone.

If an availability check has been performed, the status icons in front of the relevant node in
the navigation tree are colored depending on result (green if the proxy container or, in the
case of CICS partners, the proxy component is running or red if not running). In the case of
openUTM proxies, the icon consists of one part and describes the status of the proxy
container. In the case of CICS proxies, the icon consists of three parts.

The individual icons stand for the following components:

An availability check is performed automatically at predefined time intervals or can be
started manually (see section “Checking the availability of BeanConnect proxies” on
page 280).

i To permit communication between the application server and the EIS partner, all the
proxy components must be active (green).In the case of CICS partners, this is not
always sufficient, i.e. the communication may not function properly even though the
icons are green. In such cases, you must also check the established connections
and opened sessions, see section “Diagnosis information for the openUTM-LU62
Gateway” on page 547

Starting the proxy container as a Windows service

On Windows systems, you can also start a proxy container as a Windows service using the
Management Console:

1. Select the proxy in the navigation area of the Management Console.

2. From the context menu, select the entry Edit Properties, open the General tab and
select the option Start as Service.

3. Save the configuration with Save/Restart - Save. The next time the proxy is started, it
is started as a Windows service. If the proxy is already running then this change does
not take effect with the proposed restart. Instead, it only becomes effective when the
proxy is shut down and then restarted

Further information can be found in section section “Starting as a Windows service” on
page 272.

Left Proxy container

Middle openUTM-LU62 Gateway

Right Communication Service

Administering BeanConnect Administering via the Management Console

BeanConnect V3.0B 269

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
23

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
8

8.1.2 Restarting a proxy

Restarting the proxy involves a combination of stopping (if necessary) and starting the
proxy or individual proxy components. This is necessary after certain configuration activities
(see section “Saving and activating the configuration of the BeanConnect proxy” on
page 243).

Restart a proxy by selecting the menu item Save/Restart – Restart Proxy in the context
menu of the relevant proxy node in the navigation tree.

In the case of a proxy that is configured for CICS partners, a dialog box is displayed where
you can select the proxy components to be restarted. Again, the action dialog box is
available for monitoring the actions and results.

The proxy container is reloaded, i.e. the individual processes are stopped and restarted in
sequence. The proxy container as a whole remains available.

In the case of a proxy that is configured for CICS partners, the openUTM-LU62 Gateway
and communication service are first stopped and then restarted.

8.1.3 Stopping a proxy

Stop a proxy by selecting the menu item Stop Proxy in the context menu of the relevant
proxy node in the navigation tree.

In the case of a proxy that is configured for CICS partners, here again, in the same way as
when starting the proxy, you can select single proxy components. The Management
Console displays an action dialog box dialog box in which you can monitor the actions and
results.

8.1.4 Special characteristics in cluster operation

The administration of a proxy cluster resembles that of an individual proxy. The
Management Console provides the necessary administration functions via the proxy
cluster's context menu. You can use the Show Cluster Proxies command to display all the
proxies in the cluster.

Administering via the Management Console Administering BeanConnect

270 BeanConnect V3.0B

Figure 46: Administering a BeanConnect proxy cluster

Start, stop and save operations always apply to all the proxies in the proxy cluster.

If you want to start or stop an individual proxy, select it in the Cluster Proxies panel and
choose the corresponding command from the context menu.

You should use MBeans if you want to switch a running resource adapter to a different
proxy, see “Switching a resource adapter in the cluster to another proxy” on page 297.

The administration of a proxy cluster differs from that of an individual proxy in the following
ways:

● If the proxy cluster is made up of a number of proxies, one proxy is always the master
proxy. This is indicated accordingly in the Master column of the Cluster Proxies list.
This proxy is the (first) point of contact for the Management Console when fetching the
configuration data for the cluster. If there are any changes, the Management Console
ensures that these are made in all the proxies.

● If it is not possible to administer one of the proxies for a period then it is possible that
this proxies data will not be consistent. In such cases, you can then use the
Synchronize Proxy Cluster command in the proxy cluster's context menu to
synchronize such proxies. When you do this, the other proxies take over the data from
the master proxy.

Administering BeanConnect Administering on command level

BeanConnect V3.0B 271

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
23

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
8

8.2 Administering a BeanConnect proxy container on command
level

BeanConnect provides some scripts and programs for administering the proxy container
which you can use on command level or via the proxy container program group on Windows
systems.

8.2.1 Starting a proxy container

You can start a local proxy container using a script.

On Windows systems you can also use the proxy container program group or start the
proxy container as a Windows service.

8.2.1.1 Starting via a script

You can use the following scripts to start a local proxy container.

The procedure startcontainer in the subdirectory shsc of the proxy container home
directory is available for starting a local proxy container.

Proceed as follows:

1. Open a shell or a DOS command prompt window.

2. Change to the proxy container home directory.

3. Call the script as follows:

shsc/startcontainer.sh (under Solaris/Linux systems) or

shsc\startcontainer.cmd (under Windows systems)

8.2.1.2 Starting using the proxy container program group under Windows

You can also start a local proxy container on a Windows system using the proxy container
program group:

1. Open the program group FUJITSU Software BeanConnect V3.0B00 - Proxy
<proxy_cont_name>

2. Select the command Proxy Container Startup - <proxy_cont_name>.

Administering on command level Administering BeanConnect

272 BeanConnect V3.0B

8.2.1.3 Starting as a Windows service

If BeanConnect is installed under Windows, the proxy container is set up as a service with
the name BeanConnect30B <proxy_cont_name>.
By default, the service has the startup type manual. If required, you can set the startup type
to automatic to ensure that the proxy container is always available.

To start a local proxy container as a service:

1. From the program group Start - Settings - Control Panel, select the entry
Administrative Tools - Services.

2. Select the Start command from the context menu of the service
BeanConnect30B <proxy_cont_name>.

You can also start a proxy container as a service using the Management Console (see
section “Starting a proxy” on page 267).

When the proxy container executes as a service, its first output to stdout is written to the file
utmp.out and its first output to stderr is written to the file utmp.err.
If the log files are switched then the files are named utmp.err.<timestamp> and
utmp.out.<timestamp>. The log files for the last application run are automatically saved in
the directory out-err.

If you start the proxy container as a service, no DOS window is opened for output to stdout
or for error messages. You can, however, open windows specially for this purpose. Output
is written during operation and is updated automatically (see chapter “High availability and
scalability” on page 504).

8.2.1.4 Starting after abnormal termination of a proxy container run

If the proxy container cannot be started, for instance because the previous proxy container
run was terminated abnormally, proceed as follows:

● On Solaris/Linux systems, switch to the proxy container home directory and call the
script shsc/remove.sh.

● On Windows systems, select Forced Clear from the program group
FUJITSU Software BeanConnect V3.0B00 - Proxy <proxy_cont_name>.
or
switch to the proxy container home directory and call the script
shsc/remove.cmd.

● If you are operating the Management Console in expert mode (in Solaris, Linux or
Windows systems), choose Forced Clear from the proxy's context menu.

Administering BeanConnect Administering on command level

BeanConnect V3.0B 273

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
23

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
8

8.2.2 Restarting a proxy container

It may be necessary to restart the proxy container after certain configuration activities (see
section “Saving and activating the configuration of the BeanConnect proxy” on page 243).

8.2.2.1 Restarting using a script

You can use the following scripts to restart a local proxy container.

The procedure change in the subdirectory shsc of the proxy container home directory is
available for restarting a local proxy container.

Proceed as follows:

1. Open a shell or a DOS command prompt window.

2. Switch to the proxy container home directory.

3. Call the script as follows:

shsc/change.sh (under Solaris/Linux) or

shsc\change.cmd (under Windows)

8.2.2.2 Restarting using the proxy container program group under Windows

You can restart a local proxy container on a Windows system using the proxy container
program group:

● From the program group
FUJITSU Software BeanConnect V3.0B00 - Proxy <proxy_cont_name>, select the
command Proxy Container Restart.

Administering on command level Administering BeanConnect

274 BeanConnect V3.0B

8.2.3 Stopping a proxy container

You can stop a local proxy container using a script or using the proxy container program
group on a Windows system.

8.2.3.1 Stopping using a local script

You can use the following scripts for stopping the proxy container.

The procedure shutcontainer in the subdirectory shsc of the proxy container home
directory is available for stopping a local proxy container.

Proceed as follows:

1. Open a shell or a DOS command prompt window.

2. Switch to the proxy container home directory

3. Call the script as follows:

shsc/shutcontainer.sh (under Solaris/Linux) or

shsc\shutcontainer.cmd (under Windows)

8.2.3.2 Stopping using the proxy container program group under Windows

You can also stop a local proxy container on a Windows system using the proxy container
program group:

● From the program group
FUJITSU Software BeanConnect V3.0B00 - Proxy <proxy_cont_name>, select the
command Proxy Container Shutdown.

8.2.3.3 Stopping as a Windows service

If a proxy container was started as a service on a Windows system, you can stop it in the
Services dialog box as follows.

1. From the program group Start - Settings - Control Panel, select the entry
Administrative Tools - Services.

2. Select Stop from the context menu of the service
BeanConnect30B <proxy_cont_name>.

i If the proxy container was started as service with the start type automatic, it can
only be stopped in this way.

Administering BeanConnect Starting an MC-CmdHandler as a service (Windows)

BeanConnect V3.0B 275

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
23

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
8

8.3 Starting an MC-CmdHandler as a service on Windows
systems

If the MC-CmdHandler is to be started as a service on Windows systems then it must
always first be configured as a service, see “Configuring an MC-CmdHandler as a service
on Windows systems” on page 249. After this, the service has the autostart type Manual.

Use the Control Panel to set the autostart type to Automatic. This causes the service to be
started automatically when the Windows system is started.

Administering the openUTM-LU62 Gateway Administering BeanConnect

276 BeanConnect V3.0B

8.4 Administering the openUTM-LU62 Gateway

The openUTM-LU62 Gateway can be administered by the Management Console (see
section “Administering a BeanConnect proxy via the Management Console” on page 266)
or directly using scripts. On Solaris and Linux systems you can call all administration
commands from a shell as described below.

i After installation of the openUTM-LU62 Gateway on Solaris or Linux systems, all
users are authorized to administer it. If for security reasons you want to restrict the
administration rights to certain users, proceed as follows:

In the openUTM-LU62 Gateway home directory (default: /opt/lib/utmlu62), you
will find the file u62_users. In this file you can configure a list of users who are to
have administration permission. User names must be separated by blank, tab,
comma or new line.

If the list defined in the u62_users file is not empty, administration access will be
denied for all users not contained in the list (except root, which always has admin-
istration permission).

Under Windows it is recommended that you open a DOS command prompt window with

Start - Programs - openUTM-LU62 - command prompt

From that DOS command prompt window, you can call the commands described below
without the prefix <LU62_home>/.

8.4.1 Starting the openUTM-LU62 Gateway

The following command starts openUTM-LU62 as a background process, where
<LU62_home> refers to the installation directory of the openUTM-LU62 Gateway:

<LU62_home>/u62_start

8.4.2 Stopping the openUTM-LU62 Gateway

The following command stops the openUTM-LU62 Gateway, where <LU62_home> refers to
the installation directory of the openUTM-LU62 Gateway:

<LU62_home>/u62_adm -e

Under Windows you can select the following entry from the program group instead:

Start - Programs - openUTM-LU62 - Stop openUTM-LU62

Administering BeanConnect Administering the openUTM-LU62 Gateway

BeanConnect V3.0B 277

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
23

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
8

8.4.3 Displaying status information on the openUTM-LU62

The following command displays information on the current status of the openUTM-LU62
Gateway:

<LU62_home>/u62_sta

Under Windows you can select the following entry from the program group instead:

Start - Programs - openUTM-LU62 - status information

Administering the communication service Administering BeanConnect

278 BeanConnect V3.0B

8.5 Administering the communication service

This section describes how to start the SNA daemon and how you start the communication
service (SNAP-IX in Solaris systems or IBM Communications Server in Linux and Windows
systems) in a command line.

For further information on administering SNAP-IX or the IBM Communications Server
please refer to the manufacturer's documentation.

8.5.1 Starting and stopping the SNA daemon (Linux and Solaris systems)

The SNA daemon must be running to administer the Communication Service. If not, an
error message is output.

Starting the SNA daemon

1. Switch to the directory /opt/sna/bin (Solaris) systems or /opt/ibm/sna/bin (Linux)
systems in the system on which the communication service was installed.

2. Enter the command ./sna start.

Stopping the SNA daemon

1. Switch to the directory /opt/sna/bin (Solaris systems) or /opt/ibm/sna/bin (Linux
systems) in the system on which the communication service was installed.

2. Enter the command./sna stop.

8.5.2 Starting and stopping a communication service in a command line
(Linux and Solaris systems)

In Linux and Solaris systems, the BeanConnect Management Console generates the
scripts cs-start-all.sh and cs-stop.sh for a BeanConnect proxy every time the commu-
nication service's configuration changes. These scripts are generated on saving and make
it possible to start or stop the proxy component in a command line.

If all the proxy components are located on the same host then the scripts are located in the
directory <Proxy_Home>/shsc, where <Proxy_Home> is the proxy container's home directory.

In contrast, if the openUTM-LU62 Gateway and communication service are running on
separate hosts then the script is made available in the MC-CmdHandler which the
Management Console uses for the administration of these proxy components. In this case,
the script is located in the directory <MC-CmdHandler_Home>/shsc, where
<MC-CmdHandler_Home> is the home directory of the MC-CmdHandler.

Administering BeanConnect Administering the communication service

BeanConnect V3.0B 279

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
23

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
8

Starting the communication service

Proceed as follows to start the communication service in a command line:

● Open a shell on the host on which the communication service is installed.

● Go to the proxy container's home directory (installation on proxy host) or to the MC-
CmdHandler's home directory (installation on separate host).

● Call the script:

shsc/cs-start-all.sh

Stopping the communication service

Proceed as follows to stop the communication service in a command line:

● Open a shell on the host on which the communication service is installed.

● Go to the proxy container's home directory (installation on proxy host) or to the MC-
CmdHandler's home directory (installation on separate host).

● Call the script:

shsc/cs-stop.sh

Checking availability Administering BeanConnect

280 BeanConnect V3.0B

8.6 Checking the availability of BeanConnect proxies

The availability of BeanConnect proxies refers to the availability of the proxy containers
(including the components required for CICS) and their communication partners (EIS
partners, resource adapters, MC-CmdHandlers). The availability check can take the form
of a full check or an individual component or partner-specific check.

The following options are available:

● Checking the availability of a proxy

● Checking the availability of a BeanConnect resource adapter

● Checking the availability of an openUTM-LU62 Gateway and a communication service

● Checking the availability of an MC-CmdHandler

● Checking the availability of an EIS partner

i You can also check the availability of a proxy cluster. For details, see “Special
characteristics of proxy clusters” on page 282.

8.6.1 Checking the availability of a proxy

You can check the availability of a proxy (and its communication partners) in the
Management Console by selecting Check Availability from the context menu of the
relevant proxy node in the navigation tree.

You can also force an automatic availability check to be carried out at predefined time
intervals by setting the parameter Automatic Availability Check in the proxy's property
sheet.

The Management Console checks the availability of:

● Proxy containers

● All the resource adapters assigned to the proxy

● All the MC-CmdHandlers

● The openUTM-LU62 Gateway and communication service if the proxy is configured for
CICS partners

● All EIS partners

The proxy container must be running to check the availability of the resource adapter and
the EIS partners. In the case of CICS partners, the openUTM-LU62 Gateway and the
communication service must also be running.

Administering BeanConnect Checking availability

BeanConnect V3.0B 281

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
23

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
8

The Management Console displays an action dialog box in which you can monitor the
actions and results.

Figure 47: Checking the availability of a BeanConnect proxy

If one of the components is unavailable, select the entry and click Result Details to output
detailed information on the results of the check. This information can be useful for
diagnosis.

When configuring a proxy, you can define an interval for regular availability checks.

Checking availability Administering BeanConnect

282 BeanConnect V3.0B

Special characteristics of proxy clusters

● To check the availability of all the components in a cluster, choose the Check Avail-
ability command from the proxy cluster's context menu.

● To check the availability of an individual proxy in the cluster, select the proxy in the
Cluster Proxies panel and choose the Check Availability command in the context
menu.

8.6.2 Checking the availability of a BeanConnect resource adapter

To check the availability of an individual resource adapter in the Management Console,
open the resource adapter's context menu in the navigation tree and choose the Check
Availability command. The associated proxy container must be running.

Figure 48: Checking the availability of a resource adapter

Select a line and click Result Details to obtain the detailed results of the check.

Administering BeanConnect Checking availability

BeanConnect V3.0B 283

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
23

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
8

For each configured resource adapter, the detailed results of the check contain a result
string in the following form:

-/+[host:hostname,port:portnumber]

The sign (+/-) indicates the availability:
+ means available
- means not available

Figure 49: Checking the availability of a resource adapter - result details

Checking availability Administering BeanConnect

284 BeanConnect V3.0B

8.6.3 Checking the availability of an openUTM-LU62 Gateway and a
communication service

To check the availability of an openUTM-LU62 Gateway and a communication service in
the Management Console, click the openUTM-LU62 Gateway or Communication
Services at the topmost level and choose the Check Availability command in the context
menu. The associated MC-CmdHandler must be running when you perform the check. This
also applies if the component is running on the same host as the proxy.

Figure 50: Checking the availability of an openUTM-LU62 Gateway

Click Result Details to obtain the detailed results of the check as illustrated in the figure.

Administering BeanConnect Checking availability

BeanConnect V3.0B 285

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
23

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
8

8.6.4 Checking the availability of an MC-CmdHandler

8.6.4.1 Checking the availability of the MC-CmdHandler with the Management Console

You can use the Management Console to check the availability of an MC-CmdHandler
client instance. To do this, click the corresponding node at the topmost level and choose the
Show MC-CmdHandler Client Instances command in the context menu to open the MC-
CmdHandler Client Instances panel.

Figure 51: Availability of an MC-CmdHandler instance

The Availability column in this table indicates whether or not the MC-CmdHandler is
available.

To check the availability of a remote MC-CmdHandler, select the relevant line and choose
the Check Availability command in the context menu.

"Internal" MC-CmdHandlers are identified as <locally coupled> in the list. Their availability
cannot be checked since they are implicitly available.

8.6.4.2 Checking the availability of the MC-CmdHandler in the command line

Solaris and Linux systems

You use the following script in the proxy container's home directory to check whether the
MC-CmdHandler is running:

● shsc/checkmccmdhandler.sh

In the case of a stand-alone MC-CmdHandler, the scripts are located in the directory shsc
below the MC-CmdHandler's installation directory.

Checking availability Administering BeanConnect

286 BeanConnect V3.0B

Windows systems

Check whether the MC-CmdHandler is running by choosing the command by opening the
Start menu and choosing the command MC-CmdHandler Check
in the program group FUJITSU Software BeanConnect V3.0B00 - Proxy <container> -
MC-CmdHandler.

You can also check the availability of the MC-CmdHandlers by running the following script
located in the proxy container's home directory:

● shsc\checkmccmdhandler.cmd

Administering BeanConnect Checking availability

BeanConnect V3.0B 287

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
23

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
8

8.6.5 Checking the availability of an EIS partner

You can only check the availability of an EIS partner if a service was specified in the EIS
when the EIS partner was configured. This service is called when the availability check is
performed and the service's output message is output by the Management Console when
you choose the Result Details command.

To check the availability of an EIS partner in the Management Console, open the EIS
partner's context menu in the navigation tree and choose the Check Availability
command. The associated proxy container must be running. In the case of CICS partners,
the openUTM-LU62 Gateway and the communication service must also be running.

Figure 52: Checking the availability of an EIS partner

Select a line and click Result Details to view the EIS output message. If an error occurs,
you will see diagnostic information as illustrated in the example.

Monitoring the resource adapter Administering BeanConnect

288 BeanConnect V3.0B

8.7 Monitoring the resource adapter with the Management
Console

The resource adapter can be monitored via MBean clients. For this to be possible, an
MBean client must be configured in the Management Console, see section “Configuring the
Management Console as a JMX client” on page 250.

The MBean client has a fixed assignment to a resource adapter and is displayed in the
resource adapter's tree.

i It is also possible to define a stand-alone MBean client which is not assigned to any
resource adapter.

For further information, see section “Setting up free JMX clients” on page 255.

Figure 53: Navigation tree for an MBean

The following nodes are present below the MBean Client node:

Subscribed Notifications

Permits access to all subscribed notifications. You must perform subscription explicitly.

Received Notifications

Permits access to all received notifications. If notifications have been received then the
node is displayed in bold. It is followed by the number of received notifications in brackets.

Statistics Collectors

Permits access to the statistics collectors. This node is only displayed if statistics collectors
have been configured, see section “Collecting and displaying diagnostic values” on
page 293.

Administering BeanConnect Monitoring the resource adapter

BeanConnect V3.0B 289

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
23

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
8

Favorite MBeans

Indicates the MBeans that have been included in the list of favorites. The list of favorites
provides a clearer overview by providing a separate depiction of the frequently used
MBeans. You can define favorites by choosing Add to Favorites in the relevant context
menu.

All Beans

Permits access to all the MBeans including the MBeans listed under Favorite MBeans.

8.7.1 Establishing a connection to the MBean server

Most actions are only possible if there is a connection to the MBean server. If no such
connection has so far been established, choose Connect To MBean Server from the
context menu of the MBean client.

Monitoring the resource adapter Administering BeanConnect

290 BeanConnect V3.0B

8.7.2 Displaying MBean object names

When you open the All MBeans or Favorite MBeans nodes, all the defined MBean
domains or, alternatively, all the domains present in the favorites are displayed. You can
then open the individual MBean domains to see the MBean object names. Alternatively,
you can choose the Show MBeans command in the context menu.

Figure 54: MBean - object name subtree

For each MBean, you see a list containing the elements Attributes, Notifications and, if
operations are possible for the MBean, Operations.

Administering BeanConnect Monitoring the resource adapter

BeanConnect V3.0B 291

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
23

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
8

8.7.3 Displaying and modifying MBean attributes

MBeans usually possess extensive lists of attributes. You can output the current values of
these attributes via the Management Console. You can also modify some of these attri-
butes.

8.7.3.1 Displaying MBean attributes

To view an MBean's attributes, expand the MBean's node and click Attributes. Alterna-
tively, you can choose Show MBean Attributes from the context menu.

Figure 55: MBean - attribute table

When you click an attribute in the table to select it, the details are displayed in the lower part
of the window. This detailed view is intended for extensive attributes that cannot be
displayed in full in the table.

The columns of the table have the following meanings:

Name / Description

Name and more detailed description of the attribute.

Type

Type of attribute value, e.g. string, integer, Boolean.

Value

Value of the attribute.

Monitoring the resource adapter Administering BeanConnect

292 BeanConnect V3.0B

Exception

Specifies whether the JMX server delivered an exception when determining the value of the
attribute If this is the case, you can display the exception in the attribute's detailed view.

Read

Specifies whether the attribute can be queried at the JMX server. This is the case for the
majority of attributes.

Write

Specifies whether the attribute values can be modified.

Writable

Specifies whether the attribute value can be modified via the Management Console.

Only attributes with "simple" value types (string, integer, Boolean) can be modified via the
Management Console. Attributes with complex (e.g. composite) values cannot usually be
modified via the Management Console. These attributes are then identified as Write but not
as Writable.

8.7.3.2 Modifying MBean attribute values

The Management Console allows you to modify all the attributes that are identified as
Writable in the table. To do this, proceed as follows:

● In the attribute's context menu, choose Set MBean Attribute Value. Alternatively,
select the attribute and click the Set Value button.

● You then edit the values in the following dialog.

The Management Console outputs a message after performing the action. This contains
either a confirmation of the change or an error message if it was not possible to perform the
modification.

Administering BeanConnect Monitoring the resource adapter

BeanConnect V3.0B 293

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
23

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
8

8.7.4 Collecting and displaying diagnostic values

You can create statistics via the Management Console by configuring statistics collectors.
The statistics collectors poll the values of the MBean attributes at regular intervals;

8.7.4.1 Configuring, displaying and modifying statistics collectors

You can configure a statistics collector for every attribute of an MBean. The Management
Console then generates a node with the name Statistics Collectors below the MBean
client. All the statistics collectors for the MBean client are displayed below this node.

You set up a statistics collector as follows:

● Display the attributes for the required MBean, see section “Displaying MBean attri-
butes” on page 291.

● Select the attribute in the table and choose the command Collect Attribute Values in
the attribute's context menu.

When you click the Statistics Collectors node, a table with all the statistics collectors
available for the MBean is output. Alternatively, you can choose Show Statistics
Collectors from the corresponding node's context menu. You will find more details on the
meaning of the table columns in the online Help system.

You can modify the data collection interval for each statistics collector. To do this, select the
required statistics collector in the table, choose Edit Properties in the context menu and
then modify the interval in the following dialog. Alternatively, you can click the Edit button
below the table.

To remove a statistics collector from the table, choose the command Remove MBean
Statistics Collector from the statistics collector's context menu (alternatively: Remove
button below the table). Removing a statistics collector also deletes all the data that has
been collected by this collector up to the time of deletion.

8.7.4.2 Displaying statistical values

You can view the values for a statistics collector by displaying the table of statistics
collectors and choosing the command Show Statistic Values in the required collector's
context menu. Alternatively, you can select the collector and click the Show Values button
below the table.

Monitoring the resource adapter Administering BeanConnect

294 BeanConnect V3.0B

Figure 56: MBean - statistical values

The table with the collected statistical values contains the three columns Time, Value and
Exception, see the online Help system. The Exception column outputs any exception
which the JMX server may have output when determining the statistical value. When you
click a statistical value with the mouse, details such as the complete text of an exception
are displayed in the lower part of the window.

8.7.5 Subscribing to and displaying MBean notifications

The MBeans of type ResourceAdapter, ManagedConnectionFactory, Inbound and
MessageEndpoint issue notifications. These are messages which the resource adapter
generates when certain events occur and which can be displayed in the Management
Console. Before you can display notifications, you must have explicitly subscribed to these
in the Management Console (Subscribe procedure).

The following table indicates the notifications that you can subscribe to:

Type of MBean Name and meaning of the notification

Resource adapter BeanConnect.Started
The resource adapter has been started.

BeanConnect.Stopped
The resource adapter has been stopped.

ManagedConnectionFactory BeanConnect.Connection.Error
The resource adapter has thrown an exception for a connection.

BeanConnect.Transaction.Rollback
The connection is involved in a transaction that has been rolled
back.

BeanConnect.Transaction.Heuristic
A heuristic decision has been made for the transaction branch in
which the connection is involved.

Administering BeanConnect Monitoring the resource adapter

BeanConnect V3.0B 295

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
23

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
8

8.7.5.1 Subscribing to MBean notifications

You can subscribe to the MBean Notifications either all at once or individually:

● If you want to subscribe to all an MBean's notifications at once, choose the command
Subscribe MBean Notifications in the MBean node's context menu.

● If you want to subscribe to an individual notification, expand the Notifications node in
an MBean's subtree. All the notifications to which you can subscribe are then displayed.
You should now choose Subscribe MBean Notifications of this type in the context
menu of the required notification.

If you want to terminate your subscription to a notification, use the command Unsubscribe
MBean Notification in the context menu of an MBean's Notifications node or choose
Unsubscribe MBean Notifications of this type from the context menu of a specific notifi-
cation type node.

Inbound BeanConnect.MessageEndpoint.Activation
The application server has activated a message endpoint in
BeanConnect.

BeanConnect.MessageEndpoint.Deactivation
The application server has deactivated a message endpoint in
BeanConnect.

BeanConnect.MessageEndpoint.Unknown
A message has arrived for an unknown message endpoint.

BeanConnect.Transaction.Rollback
A transaction has been rolled back during recovery.

BeanConnect.Transaction.Heuristic
A heuristic decision has been made for a transaction during
recovery.

MessageEndpoint BeanConnect.MessageEndpoint.Error
An error occurred when calling the message endpoint.

BeanConnect.MessageEndpoint.Exception
An exception was thrown when calling the message endpoint.

BeanConnect.Transaction.Rollback
The message endpoint is involved in a transaction that has been
rolled back.

BeanConnect.Transaction.Heuristic
A heuristic decision has been made for the transaction branch in
which the message endpoint is involved.

Type of MBean Name and meaning of the notification

Monitoring the resource adapter Administering BeanConnect

296 BeanConnect V3.0B

The settings for the notifications are retained even after the Management Console is shut
down. As a result, it is not necessary to resubscribe to notifications for which you already
have a subscription each time the Management Console is started. Instead, these notifi-
cations are supplied automatically once the connection to the JMX server has been estab-
lished. However, no notifications generated during the period when the Management
Console was not logged in at the MBean server are supplied.

8.7.5.2 Displaying MBean notifications

The Management Console indicates that notifications have been received by displaying the
corresponding nodes in bold. The number of notifications is indicated in parentheses next
to the node. You can view the MBean notifications in the following ways.

● To view all the notifications from all the MBean clients, click the Received Notifications
node below the MBean Client node or choose the command Show Received
Notifications in this node's context menu.

● To view all the notifications for a specific MBean, expand the relevant MBean's subtree
and click the Notifications node. Alternatively: Choose the command Show Received
Notifications in this node's context menu.

● To view all the notifications of a given type, click a notification type node or choose
Show Received Notifications in its context menu.

The notifications and associated attributes are listed in table form in a new window. To
display detailed information for a notification, click to select the notification or choose the
command Show MBean Attributes from the context menu. The details are displayed in the
lower window area. You will find more information on the meaning of the table columns in
the online Help system.

You can delete a notification using the command Remove MBean Notification from the
context menu. Alternatively, you can select the notification and click the Remove button
below the table.

i Received notifications are not saved when the Management Console is shut down
and are therefore not displayed in the next session.

Administering BeanConnect Monitoring the resource adapter

BeanConnect V3.0B 297

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
23

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
8

8.7.6 Displaying and executing MBean operations

The Management Console allows you to perform operations on MBeans. These are specific
actions that are performed in the resource adapter, e.g. resetting statistics counters or
checking availability.

Every MBean possesses an Operations node. Clicking this node or choosing Show
MBean Operations from the context menu outputs a table which lists all the operations for
the corresponding MBean.

Figure 57: MBean operations

When you click an operation, the detailed information is displayed in the window at the
bottom.

Operations that you can perform using the Management Console are identified accordingly
in the column Invocable. In a similar way to when modifying attribute values, the
Management Console can only execute operations which have no or only simple parameter
types. Proceed as follows to execute this type of operation:

● In the operation's context menu, choose the command Invoke MBean Operation....
Alternatively, you can select the operation and click the Invoke button below the table.

● Enter the call (invocation) parameters in the subsequent dialog (if necessary). The
dialog may consist of several sheets. The operation is not performed until you confirm
with OK.

The Management Console outputs a message after execution. This contains either the
result of the operation or an error message if it was not possible to perform the operation.

Switching a resource adapter in the cluster to another proxy

You can use the MBean operation selectProxyApplication to stop a proxy while the
cluster is running and simultaneously switch the resource adapter(s) to a different proxy
("soft" switchover). This has the advantage of minimizing negative impacts on operation. In
contrast, if you stop a running proxy in a proxy cluster directly via the context menu then the
connections administered by this proxy are immediately cleared, with the result, for
example, that open transactions are interrupted and may have to be rolled back.

Monitoring the resource adapter Administering BeanConnect

298 BeanConnect V3.0B

You can avoid this by performing a "soft" switchover. Proceed as follows:

● Shut down the proxy using the openUTM tool kdcshut and specify a wait time.

To do this, open a shell or DOS command window and enter the following command
(with "\" in Windows systems):

<openUTM-Server_home>/ex/kdcshut <Proxy_home> time

Here, <openUTM-Server_home> is the openUTM installation directory, <Proxy_home> is
the fully qualified path name of the proxy and time is the wait time in minutes (recom-
mended value: at least 10 minutes). On the one hand, this call prevents any new
connections from being established and, on the other, it stops the proxy from being shut
down immediately.

● Immediately after this in the Management Console, call the resource adapter MBean in
a resource adapter instance that is operating with the proxy that you want to shut down.
In this MBean, call the operation selectProxyApplication in order to assign a different
proxy to the resource adapter instance. BeanConnect selects the new proxy automati-
cally using internal algorithms.

If the application server is configured as a cluster, you must perform this operation for
every resource adapter instance in the application server cluster that is assigned to the
proxy that you want to shut down. The resource adapter MBean's CurrentProxyUrl
attribute indicates the proxy to which a resource adapter instance is assigned.

● Once you have switched the resource adapter to the new proxy, you can shut down the
earlier proxy by calling kdcshut again and specifying a short wait time (e.g. 5 minutes):

<openUTM-Server_home>/ex/kdcshut <Proxy_home> 5 G

The parameters 5 and G cause the proxy to be shut down once all the connections have
been cleared but at the latest at the end of the 5 minute wait time.

BeanConnect V3.0B 299

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9 Command Line Interface of the BeanConnect
Management Console (MC-CLI)

With the Management Console Command Line Interface (abbreviated to MC-CLI in the
following), BeanConnect provides a set of Jython functions which allow you to start
BeanConnect Management Console functions from a Jython script. It makes sense to use
the MC-CLI, for example, whenever large volumes of data have to be configured or
frequently recurring administration tasks have to be performed (see also section “Appli-
cation scenarios (examples)” on page 419).

Figure 58: Command Line Interface (CLI) and the Management Console graphical user interface (GUI)

You can process the same configuration sequentially with both the BeanConnect
Management Console GUI and with MC-CLI scripts. In both cases, the configuration is
represented by one and the same configuration file named console.properties.xml. It is
not possible to configure and administer multiple Management Console settings simultane-
ously (both via the GUI and using MC-CLI).

Basic classes of the Management Console

Jython-
user script

at the MC-CLI

Control
via the GUI

of the Management Console

console.properties.xml
Configuration file

Overview of MC-CLI Command Line Interface (MC-CLI)

300 BeanConnect V3.0B

9.1 Overview of MC-CLI

All proxy objects and proxy cluster objects, i.e. proxies, proxy clusters, resource adapters,
EIS partners, inbound users, inbound services, outbound services, inbound message
endpoints and outbound communication endpoints, as well as the Communication Service
and openUTM-LU62 Gateway proxy components, can be configured and administered via
CLI user scripts.

You can create the above-mentioned objects (except for the proxies), read and modify the
properties of the objects, and remove objects from the configuration. You can read the
properties of the todo topics and delete todo topics.

You can also run administration functions for the objects. You can, for example, check avail-
ability and administrability or start and stop proxies or proxy clusters.

MC-CLI modules and functions

The MC-CLI interface consists of a number of modules each of which contains a group of
functions:

● The module BcAdminMain contains functions that are used to start and exit a
Management Console session at the MC-CLI.

The parameter console_home is used to access the central file
console.properties.xml which contains the configuration data.

● The module BcAdminAction contains functions which analyze the results of an admin-
istration call and return information about the event and all the subactions.

● A module for each object type that can be administered and configured via the MC-CLI.
Each of these modules contains the functions required to administer and configure the
corresponding object type. The available modules are listed in the following table.

BcAdminProxy Functions for configuring and administering a proxy

BcAdminProxyCluster Functions for configuring and administering a proxy cluster

BcAdminCommService Functions for configuring and administering a communi-
cation service (proxy components for communication with
CICS partners)

BcAdminLu62Gateway Functions for configuring and administering an openUTM-
LU62 Gateway (proxy components for communication with
CICS partners)

BcAdminRa Functions for configuring and administering a resource
adapter

BcAdminEisPartner Functions for configuring and administering an EIS partner

BcAdminInboundService Functions for configuring an inbound service

Command Line Interface (MC-CLI) Overview of MC-CLI

BeanConnect V3.0B 301

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

The modules contain various functions depending on the object type. You will find a list
of all the functions present in these modules in the following table.

section “Functions” on page 313 indicates which functions are available for the corre-
sponding object types and which object properties can be read and/or modified.

BcAdminInboundMsgEndpoint Functions for configuring an inbound message endpoint

BcAdminInboundUser Functions for configuring an inbound user

BcAdminOutboundService Functions for configuring an outbound service

BcAdminOutboundCommEndpoint Functions for configuring an outbound message endpoint

BcAdminTodo Information functions and functions for handling a todo
topic

create() Add a new object to the configuration

getObject() Read an existing object from the configuration

authenticate() Authenticate caller

remove() Remove an object from the configuration

getProperties() Read the properties of the object

modifyProperties() Modify the properties of the object

getList() Read a list of objects of a given type that are linked to this object

perform() Start administrative actions, e.g. checkAvailability, start, stop

addProxy() Add a proxy to the proxy cluster

removeProxy() Remove a proxy from the proxy cluster

getMasterProxy() Read master proxy of a proxy cluster

setMasterProxy() Change the master proxy of a proxy cluster

getAssignment() Read assignment of a proxy component to a proxy

setAssignment() Change assignment of a proxy component to a proxy

getProxies() Read all proxies to which this proxy component is assigned

getGatewayPorts() Read Lu62Gateway listener ports of a proxy or of all proxies in the
cluster

setGatewayPorts() Change Lu62Gateway listener ports of a proxy or of multiple
proxies in the cluster

getLuNames() Read logical unit name of a proxy or of all proxies in the cluster

setLuNames() Change logical unit name of a proxy or of multiple proxies in the
cluster

Overview of MC-CLI Command Line Interface (MC-CLI)

302 BeanConnect V3.0B

The exact meanings of the functions and object properties are described in the
Management Console's online help system. For more information on the online help
system, see section “Starting the Management Console's online Help system” on page 155.

The names of the object properties are mostly identical to those used in the graphical user
interface and even when they differ, they are nevertheless unambiguous.

Command Line Interface (MC-CLI) Creating and calling MC-CLI user scripts

BeanConnect V3.0B 303

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.2 Creating and calling MC-CLI user scripts

Following installation of the BeanConnect Management Console, the lib subdirectory of
the BeanConnect installation directory contains the jar file BeanConnectMcCli.jar which
contains the MC-CLI's Jython modules. This jar file must be present in the CLASSPATH when
the MC-CLI functions are called.

The product Jython must also be installed on your computer and the installation directory
must be specified in PATH/JYTHONPATH.

For further information on the product Jython, see the BeanConnect Release Notice.

9.2.1 Prerequisites when calling an MC-CLI user script

In order for it to be possible to use the Jython modules provided in theMC-CLI, the following
conditions must be fulfilled when an MC-CLI user script is started.

The scripts startBcAdmin.cmd (Windows) and startBcAdmin.sh (Linux and Solaris
systems) in the subdirectory cli-sample of the Management Console installation directory
(see section “Application scenarios (examples)” on page 419) are available as examples.

● CLASSPATH must contain the BeanConnect jar files from the lib directory. The
CLASSPATH is set by the script javaenv.cmd (Windows systems) or javaenv.sh (Linux
and Solaris systems). Call this script with:

<MC_home>\bin\javaenv.cmd (Windows) or

<MC_home>/bin/javaenv.sh (Unix /Linux systems)

<console-home> stands for the Management Console installation directory.

● JYTHONPATH must contain the Jython installation directory:

set JYTHONPATH=<jython_home> (Windows) or
JYTHONPATH=<jython_home> (Unix /Linux systems)

● PATH must be extended to include the Jython installation directory:

set PATH=<jython_home>;%PATH% (Windows) or
PATH=<jython_home>:$PATH (Linux and Solaris systems)

Creating and calling MC-CLI user scripts Command Line Interface (MC-CLI)

304 BeanConnect V3.0B

● You must specify the following VM arguments in the Jython command used to start the
CLI user script:

– –DBEANCONNECTPATH=<beanConnect_lib>
<beanConnect_lib> is the directory containing the BeanConnect jar files.

– –DBEANCONNECT_JDK_HOME=<jdk_home>
<jdk_home> is the JDK installation directory

– –DBEANCONNECT_USERCONS=<MC_home>
<MC_home> is the Management Console installation directory

– –Dlog4jCfgFile=<log4j_properties_file>
<log4j_properties_file> is the file containing the log4j properties. In most cases,
this is the file log4j.properties.xml in the config subdirectory of the Management
Console installation directory.

9.2.2 Preparing the configuration

You cannot use the MC-CLI functions to add proxies to the configuration. The Management
Console recognizes newly installed local proxies on start-up and adds these to the config-
uration automatically. They are therefore available in the CLI.

Remote proxies must first be added to the configuration via the graphical user interface
before they can then be configured and administered via the MC-CLI.

Command Line Interface (MC-CLI) Creating and calling MC-CLI user scripts

BeanConnect V3.0B 305

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.2.3 Structure of the user script

In order for it to be possible to use the Jython modules provided in the MC-CLI, you must
take account of the following requirements in your MC-CLI script..

● Every MC-CLI script that addresses Java classes, must contain the corresponding
import statements for the Java classes of the MC-CLI (see section “Java classes” on
page 308):

import com.fujitsu.ts.jca.tools.mc.cli.BcDef as BcDef
import com.fujitsu.ts.jca.tools.mc.cli.BcParameterException

as BcParameterException
import com.fujitsu.ts.jca.tools.mc.cli.BcObjectException

 as BcObjectException
import com.fujitsu.ts.jca.tools.mc.cli.BcToolException

 as BcToolException

● You must issue an import statement import <mc-cli-module> for each MC-CLI module
whose functions are called in the script.
(e.g. import BcAdminMain)

● At the start of the script, you must call the function BcAdminMain.init() which starts the
Management Console session and reads the configuration file.
After that, you can call other MC-CLI functions.

● If a proxy or proxy cluster are protected by an administration password then you must
perform a successful authentication of this object before calling a function that uses the
proxy or proxy cluster as a parameter (see the function “authenticate() – Authenticate
at proxy cluster” on page 395).

● In order for changes to become effective, they must be explicitly saved and integrated
in the configuration of the associated component. This is done via the parameter action
(= "save", "update-config", "update-ra-xml") in the perform() function or the
parameter save_all=True in BcAdminMain.close().

● At the end of the script, it is necessary to call the function BcAdminMain.close() in order
to exit the Management Console session. Only then is it possible to start other
Management Console sessions using the same configuration file.

If a Management Console session is not exited correctly then the synchronization file
ConsoleInUse.txt in the Management Console installation directory may not be
deleted and all subsequent attempts to start a Management Console session will be
aborted. In such cases, this file must be deleted manually.

Creating and calling MC-CLI user scripts Command Line Interface (MC-CLI)

306 BeanConnect V3.0B

9.2.4 Specifying call parameters

The call parameters of the MC-CLI functions are usually positional parameters. Some
optional parameters are defined as keyword parameters (identified with (kw) below). If the
corresponding keyword is not specified when a function is called then the position of the
parameter is the determining factor.

When passing the parameters on MC-CLI function calls, you must observe some additional
rules depending on the parameter type (objects, properties of the objects):

Objects

At the MC-CLI, the following rules apply when specifying objects:

● In the case of the functions create() and getObject(), it may be necessary to specify
the higher-level BcObject of type BcObjectType.PROXY or
BcObjectType.PROXY_CLUSTER.

● The functions create() and getObject() return a created or read BcObject object of
type BcObjectType as the result.

This object can then be used to call all the other functions for this object (parameter:
bc_object).

● The function getList() returns a (Jython) dictionary with
key

Name of the object (property name)
value

Object of type BcObject

Each of these objects can then be used to call all the other functions for this object
(parameter: bc_object).

Properties

In the MC-CLI, the following rules apply to properties (parameter props in create() or
modifyProperties(), return in getProperties()):

● All properties are passed in Jython dictionaries.

● The property names always consist of lowercase letters, numbers, hyphens ('-') and
periods ('.').

● If multiple tabs with properties exist in the Management Console graphical user
interface, then the property name is prefixed by the name of the relevant tab, e.g.
"utm.", "timer.". Exception: The properties of the General tab. These have no prefix.

● Properties for time values have the unit as postfix (".sec" or ".min").

Command Line Interface (MC-CLI) Creating and calling MC-CLI user scripts

BeanConnect V3.0B 307

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

● The values of the properties are always specified as strings, including in the case of
integer values (e;g. for time values or port numbers).

● If a property is only able to assume certain values then these are defined in the Java
class BcDef. This is described in greater detail in the sections relating to the individual
functions.

● If an MC-CmdHandler is assigned to an object (proxy, resource adapter, etc.) via the
graphical user interface during configuration, then only the corresponding properties
admin-port and possibly also admin-pw are specified in the CLI.

Java classes Command Line Interface (MC-CLI)

308 BeanConnect V3.0B

9.3 Java classes

The MC-CLI interface uses the Java classes BcDef, BcObjectType, BcObject for the call
parameters and return values. For error handling, MC-CLI uses exceptions of the classes
BcObjectException, BcParameterException and BcToolException. These Java classes
are contained in the package com.fujitsu.ts.jca.tools.mc.cli.

This section gives you a brief overview of these classes. A full description of the Java
classes can be found in JavaDoc which is stored in the JavaDoc subdirectory of the
Management Console installation directory.

9.3.1 Class: BcDef

The class BcDef describes values of object properties, parameters and returns (action) that
are only able to assume specific values. As a result, the values do not have to be set or
checked on the basis of user-defined strings.

9.3.2 Class: BcObjectType

The type of an object of class BcObject is described via the class BcObjectType. The value
can be read using the method toString(). This value is also the input value for the
parameter list_type in the getList() functions.

The following values are available:

Objects toString()

BcObjectType.ACTION action

BcObjectType.COMMUNICATION_SERVICE communication-service

BcObjectType.EIS_PARTNER eis-partner

BcObjectType.INBOUND_MSG_ENDPOINT inbound-msg-endpoint

BcObjectType.INBOUND_SERVICE inbound-service

BcObjectType.INBOUND_USER inbound-user

BcObjectType.LU62GATEWAY lu62gateway

BcObjectType.OUTBOUND_COMM_ENDPOINT outbound-comm-endpoint

BcObjectType.OUTBOUND_SERVICE outbound-service

Command Line Interface (MC-CLI) Java classes

BeanConnect V3.0B 309

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.3.3 Class: BcObject

The class BcObject represents Management Console objects in the MC-CLI.

The functions create() and getObject() return the created or read objects of type
BcObject as their result. In the case of all other functions, the object of type BcObject that
is to be addressed can be specified as a parameter.

The function getList() returns a (Jython) dictionary which in turn contains objects of type
BcObject as a value.

The following methods are available:

9.3.3.1 getName()

9.3.3.2 getObjectType()

BcObjectType.PROXY proxy

BcObjectType.PROXY_CLUSTER proxy-cluster

BcObjectType.RESOURCE_ADAPTER resource-adapter

BcObjectType.TODO todo

Function: getName()

Reads the name of the object

Parameters: None

Return: (String)

Name of the object.. Corresponds to the property name of the object.

Function: getObjectType()

Reads the type of the object

Parameters: None

Return: (BcObjectType)

Type of the object, see section “Class: BcObjectType” on page 308.

Objects toString()

Java classes Command Line Interface (MC-CLI)

310 BeanConnect V3.0B

9.3.4 Exceptions

The MC-CLI functions usually do not return a return code specifying whether the function
was executed successfully. If a function cannot be executed then an exception from the
package com.fujitsu.ts.jca.tools.mc.cli is thrown. If necessary, such exceptions can
be caught in the script and processed appropriately.

The following exceptions are thrown:

9.3.4.1 Class: BcObjectException

Meaning:

An object necessary for this function cannot be found or the specified object cannot be
used.

Possible causes:

● The Management Console session has not been started or has already been termi-
nated.

● In all functions in which the parameter proxy_object was specified:

– The specified proxy object is invalid.
Reason: incorrect object type (BcObjectType) or the session in which the object
was generated has terminated.

Or:

– The proxy object requires an authentication which has not yet been conducted or
was conducted unsuccessfully.

● In all functions in which the parameter object_name/bc_object has to be specified:
The configuration does not contain an object of the required type with the specified
name or an invalid object was specified.

Message text:

"object not given" or

"no object <type> <object_name> given"

or similar.

Command Line Interface (MC-CLI) Java classes

BeanConnect V3.0B 311

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

Solution:

Depending on the message text, you should check

● whether a Management Console session has been started,

● whether the object belongs to the current session,

● whether authentication has been performed for the associated proxy object,

● whether the object is of the right type (BcObject with correct BcObjectType) or

● whether the specified object is present in the configuration.

9.3.4.2 Class: BcParameterException

Meaning:

An error occurred during the specification of function parameters or object properties.

Possible causes:

● The specification of this parameter or this property for this function or object type is not
permitted. This means that this property does not exist for this object type or cannot be
modified.

● The specified value is not permitted for this parameter or for the specified property (not
numerical or not in the permitted range of values) or is not permitted in combination with
other properties.

Message text:

"invalid / unchangeable property given" or

"invalid value <value> for property <key> given" or

"invalid parameter <key> given"

or similar.

Solution:

Depending on the message text, please check whether the property specified for this object
type exists or can be modified or whether the specified value is permitted for this parameter.

Java classes Command Line Interface (MC-CLI)

312 BeanConnect V3.0B

9.3.4.3 Class: BcToolException

Meaning:

An error occurred in one of the Management Console basic classes.

Possible causes:

● File access error

● Class access error

● Other errors depending on the type of exception

Message text:

Differs depending on exception type

Solution:

Depending on the message text, please check an error has occurred when accessing a file
or a Java class or there is any other error that can be corrected by the user. If this is not the
case, please contact the service/diagnostics department.

Command Line Interface (MC-CLI) Functions

BeanConnect V3.0B 313

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4 Functions

9.4.1 General

The MC-CLI interface consists of a number of modules, each of which contains the
functions for an object type that can be configured and administered using the MC-CLI, see
also section “Overview of MC-CLI” on page 300.

Each module together with its functions is described in this section. The descriptions are
presented in alphabetical order.

The exact meanings of the functions and properties are described in the Management
Console's online help system. For more information on the online help system, see section
“Starting the Management Console's online Help system” on page 155.

9.4.1.1 Parameter

The parameters specified for each function must be entered in the sequence indicated
(positional parameters). The keyword parameters are optional and depend on the function.
The description indicates whether or not they have to be specified. They are identified by
the presence of (kw) (= key word parameter).

In the following function descriptions, the data type that is expected for each parameter is
specified (e.g. Parameter: object_name (String)).

The Jython data type "Dictionary" is used in some functions. In the parameter descriptions,
this term is used as follows: "Dictionary with the key-value pairs..."

9.4.1.2 Properties

In the following section, there is a subsection entitled "Properties of an <object>" for all
modules that contain functions for a specific object type. The table present in this
subsection contains all the properties of objects of the named object type. The meanings of
the columns are as follows:

● The column "Keyword (key) in MC-CLI" contains the names by which the properties are
identified in the MC- CLI.

● The column "Field name in the GUI" contains the property names used in the
Management Console GUI and online help system.

Functions Command Line Interface (MC-CLI)

314 BeanConnect V3.0B

● The "Funct." column has the following meaning:

● The "Property value" column contains the values permitted for a property. The variables
have the following meanings:

The specification None is not permitted for a property value. Specifying an empty string
deletes the previous values of a property.

9.4.1.3 Messages

When many actions are executed, the Management Console generates messages which
are output in a separate protocol window. In the MC-CLI, these protocol messages are
output at stdout with the prefix MC-CLI:ProtocolMessage (asynchronous).

c (create) Property can be specified in create()

cd (create/default) Property can be specified in create(). If it is not specified, a
default value is set.

cm (create/mandatory) Property must be specified in create(). If it is not specified, a
BcParameterException is thrown.

g (get) Property is returned by getProperties()

m (modify) Property can be modified in modifyProperties()

m(s) (modify/synchronize) (only for resource adapters in clusters) Property can be modified
in modifyProperties(); all the resource adapters in the
cluster are synchronized on saving.

(String) String

(String numeric) String that consists only of numbers

BcDef.<prop>_xxx Values that are defined in the Java class BcDef and start with
"<prop>_", (e.g. BcDef.BOOL_xxx for BcDef.BOOL_TRUE and
BcDef.BOOL_FALSE)

Command Line Interface (MC-CLI) Functions

BeanConnect V3.0B 315

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.1.4 Returns

The returns described under Return are only returned if the function was executed
successfully.

The MC-CLI functions do not return a return code specifying whether the function was
executed successfully. If a function cannot be executed then an exception from the package
com.fujitsu.ts.jca.tools.mc.cli is thrown (see section “Exceptions” on page 310).
Such exceptions can be caught in the script and processed appropriately.

Actions started using the function perform() usually correspond to the actions that open an
action dialog box in the graphical user interface. The action dialog box outputs a table with
the description, status and results of all the subactions. In the MC-CLI, the function
perform() normally returns an object of class BcObject with object type
BcObjectType.ACTION. The functions of the module BcAdminAction can be used to extract
this information from this object.

BcAdminAction functions

316 BeanConnect V3.0B

9.4.2 BcAdminAction

The module BcAdminAction contains functions that analyze the result of a perform()call,
i.e. a BcObject object of type BcObjectType.ACTION, and return certain information.

BcAdminAction contains the functions:

● getCheckResults() – Show results of check actions

● getResults() – Show results of all subactions of an action

● isFinishedSuccessfully() – Show success/failure of an action

functions BcAdminAction

BeanConnect V3.0B 317

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.2.1 getCheckResults() – Show results of check actions

Function: BcAdminAction.getCheckResults()

Returns a dictionary that contains the results of all check proxy container subac-
tions of the specified type.

Parameters: bc_object (BcObject vom Typ BcObjectType.ACTION)

The result of a perform() call.

action_type

Type of check, possible specifications are:
BcDef.ACTION_CHECK_ADM
BcDef.ACTION_CHECK_AVAIL

object_type

Object type for which the check actions are to be read; the following specifications
are possible:
BcObjectType.COMMUNICATION_SERVICE.toString()
BcObjectType.LU62GATEWAY.toString()
BcObjectType.PROXY.toString() (Default)
BcObjectType.RESOURCE_ADAPTER.toString()

Return: Dictionary with key-value pairs consisting of the proxy name and check result
(value=result) of all check proxy container subactions.
Examples of the return
{"BCCnt1": "Available", "BcCnt2": "Not available"}
{"BCCnt1": "Administrable", "BcCnt2": "Not administrable"}

Exceptions: BcObjectException, BcToolException

Note: This function returns a selection of the results of the function getResults(), namely
information about the administrability (specification BcDef.ACTION_CHECK_ADM) or
the status (specification BcDef.ACTION_CHECK_AVAIL) of the components of the
specified type The return information contains key-value pairs with:
– key: Name of the component (object_name)
– value: Result of the subaction (result)
where object_name and result are the properties of the subaction as described in
getResult(). If the specified action was the return value of a check call for a proxy
then the dictionary contains only one element. If it was the return value of a check call
for a proxy cluster then it contains one element for each proxy in the cluster.

Example: ...
import BcAdminAction
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
bcaction=BcAdminProxy.perform(proxy_obj,action="check-avail")
checkProxy=BcAdminAction.getCheckResults(bcaction,\

BcDef.ACTION_CHECK_AVAIL)
...

BcAdminAction functions

318 BeanConnect V3.0B

9.4.2.2 getResults() – Show results of all subactions of an action

Function: BcAdminAction.getResults()

Returns a list of dictionaries containing the information for all the subactions of
this action.

Parameters: bc_object (BcObject vom Typ BcObjectType.ACTION)

The result of a perform() call.

Return: List of dictionaries with the key-value pairs for all the properties of the subactions.
A dictionary containing the information in the form of key-value pairs is returned for
each subaction. This information broadly corresponds to the columns of the action
dialog box in the graphical user interface, see the Layout of the Management
Console section of the Management Console online help system – Action dialog box
– Layout. There is some additional information that simplifies processing at program
level. The value (value) is always of type String, and can also be empty.

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminAction
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
bcaction=BcAdminProxy.perform(proxy_obj, "save")
iresDicn=BcAdminAction.getResults(bcaction)
...

functions BcAdminAction

BeanConnect V3.0B 319

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

Note:

● The most important values of object-type and action-type are defined in
BcObjectType and BcDef. However, it is also possible for non-predefined values to be
returned.

● In order to filter certain events out of this volume of information, it may be useful to
create your own functions that read individual items of information from the dictionary
returned by getResults() and prepare this as required. One example is available in the
form of getCheckResults() and another is present in the form of the function printRe-
sults() in the sample script sampleAdminProxyCluster.py.

● The id numbers of the subactions are hierarchically structured to show which
(sub)actions belong to which higher-level actions.

Keyword (key) in MC-
CLI

Column name in the
GUI

Meaning

action Action Text of the subaction

action-type Partly present in Action Type of subaction
(BcDef.ACTION_ xxx or
BcDef.ACTION_SA_xxx)

details Result Details Detailed information on the result, if
available

id # Number of the subaction

object-name Partly present in Action Name of the object affected by this
subaction

object-type Partly present in Action Type of object
(BcObjectType.xxx.toString())

result Result Result of the subaction
(BcDef.ACTION_RESULT_xxx)

stack StackTrace Detailed information about the stack if
an exception has occurred.

state Action State Status of the subaction
(BcDef.ACTION_STATE_xxx)

BcAdminAction functions

320 BeanConnect V3.0B

9.4.2.3 isFinishedSuccessfully() – Show success/failure of an action

Function: BcAdminAction.isFinishedSuccessfully()

Specifies whether it was possible to complete the initiated action successfully.

Parameters: bc_object
(BcObject of type BcObjectType.ACTION)

The result of a perform() call.

Return: True if the action could be completed successfully together with all its subactions.
False if at least one of the subactions could not be completed successfully.

Exceptions: BcObjectException

Example: ...
import BcAdminAction
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
...
bcaction=BcAdminProxy.perform(proxy_obj, "save")
isSucc=BcAdminAction.isFinishedSuccessfully(bcaction)
...

functions BcAdminCommunicationService

BeanConnect V3.0B 321

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.3 BcAdminCommunicationService

The module BcAdminCommunicationService contains all the functions available for config-
uring and administering a Management Console communication service object.

BcAdminCommunicationService contains the functions:

● create() – Add communication service to the configuration

● getObject() – Read communication service object from the configuration

● getProperties() – Read properties of a communication service

● getProxies() – Read the proxies assigned to the communication service

● modifyProperties() – Modify properties of an communication service

● perform() – Start administrative actions

● remove() – Remove communication service

BcAdminCommunicationService functions

322 BeanConnect V3.0B

9.4.3.1 create() – Add communication service to the configuration

9.4.3.2 getObject() – Read communication service object from the configuration

Function: BcAdminCommunicationService.create()

A communication service, whose properties you must pass to the MC-CLI in a
dictionary, is added to the configuration.

Parameters: props (Dictionary)

Dictionary with the key-value pairs for the properties that are to be assigned to
the communication service. You can find the possible values for key in section
“Properties of a communication service” on page 326.
The properties host, install-path, cp-name, cp-network and, in the case
of non-local communication services, admin-port and admin-pw must be
specified. All the other properties are either optional or set to the default values.

Return: (BcObject of type BcObjectType.COMMUNICATION_SERVICE)

The communication service added to the configuration.

Exceptions: BcParameterException, BcObjectException, BcToolException

Example:
import BcAdminCommunicationService

...
creProps= {"host": "bchost01", "install-path":
"/opt/ibm/sna/bin", "cp-name": "bccpn101", "cp-network": "P390",
"admin-port". "31002", "admin-pw": "admin"}
newCS=BcAdminCommunicationService.create(creProps)
...

Function: BcAdminCommunicationService.getObject()

Reads the communication service with the specified name from the configuration

Parameters: props (Dictionary)

Dictionary containing the key-value pairs for the host and install-path
properties of the communication service that is to be read. Optionally, the
property install-path-gw can be specified in order to guarantee a unique
assignment to the openUTM-LU62 Gateway.

Return: (BcObject of type BcObjectType.RESOURCE_ADAPTER)

The read communication service or None if no communication service with the
corresponding name exists.

Exceptions: BcObjectException, BcParameterException, BcToolException

Note: The property install-path-gw should be specified when reading a communi-
cation service because some of the properties of the communication service are
stored under this path.

functions BcAdminCommunicationService

BeanConnect V3.0B 323

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.3.3 getProperties() – Read properties of a communication service

Example: ...
import BcAdminCommunicationService
...
getProps={"host": "bchost01", "install-path":
"/opt/ibm/sna/bin"}
cs_obj=BcAdminCommunicationService.getObject(getProps)
...

Function: BcAdminCommunicationService.getProperties()

Reads all the properties of the specified communication service and returns a
dictionary with key-value pairs for the properties.

Parameters: bc_object (BcObject of type BcObjectType.COMMUNICATION_SERVICE)

 Communication service whose properties are to be read.

Return: Dictionary with the key-value pairs for all the properties of the communication service.
You can find the possible values for key in section “Properties of a communication
service” on page 326.

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminCommunicationService
...
getProps={"host": "bchost01", "install-path": "/opt/ibm/sna/bin"}
cs_obj=BcAdminCommunicationService.getObject(getProps)
csProps=BcAdminCommunicationService.getProperties(cs_obj)
...

BcAdminCommunicationService functions

324 BeanConnect V3.0B

9.4.3.4 getProxies() – Read the proxies assigned to the communication service

9.4.3.5 modifyProperties() – Modify properties of an communication service

Function: BcAdminCommunicationService.getProxies()

Reads all the proxies to which the specified communication service is assigned
and returns a dictionary with proxy names and proxy objects
(bc_object (BcObject of type BcObjectType.PROXY)).

Parameters: bc_object (BcObject of type BcObjectType.COMMUNICATION_SERVICE)

Communication service whose proxy assignment is to be read.

Return: Dictionary with the name-object pairs of all the proxies to which the communication
service is assigned.

Exceptions: BcObjectException, BcToolException

Note: The list of proxy names can also be read via the proxies property.

Example: ...
import BcAdminCommunicationService
...
getProps={"host": "bchost01", "install-path":"/opt/ibm/sna/bin"}
cs_obj=BcAdminCommunicationService.getObject(getProps)
proxyDicn=BcAdminCommunicationService.getProxies(cs_obj)
for proxy_name, proxy_obj in proxyDicn.iteritems():
 print "handle proxy " + proxy_name
...

Function: BcAdminCommunicationService.modifyProperties()

Modifies all the properties of the specified communication server that are present
in the specified dictionary.

Parameters: bc_object (BcObject of type BcObjectType.COMMUNICATION_SERVICE)

Communication service whose properties are to be modified.

props

Dictionary with the key-value pairs for the properties that are to be modified. You
can find the possible values for key in section “Properties of a communication
service” on page 326.

Return: None

Exceptions: BcObjectException, BcParameterException, BcToolException

functions BcAdminCommunicationService

BeanConnect V3.0B 325

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.3.6 perform() – Start administrative actions

Example: ...
import BcAdminCommunicationService
...
getProps={"host": "bchost01", "install-path": "/opt/ibm/sna/bin"}
cs_obj=BcAdminCommunicationService.getObject(getProps)
modProps={"desc":"modified"}
BcAdminCommunicationService.modifyProperties(cs_obj, modProps)
...

Function: BcAdminCommunicationService.perform()

Starts the specified action for the communication server.

Parameters: bc_object (BcObject of type BcObjectType.COMMUNICATION_SERVICE)

Communication service for which the action is to be started.

action (String)

Action that is to be started for the specified communication service. Possible
values are (see BcDef.ACTION_xxx in the MC-CLI-JavaDoc)

check-adm Checks the administrability of the communication service.

check-avail Checks the availability of the communication service

save Saves the changes that have been made for this commu-
nication service in the current session.

start Starts the communication service.

stop Stops the communication service.

Return: (BcObject of type BcObjectType.ACTION):
Contains all information about the started action and all its subactions. To obtain more
detailed information, you can call a function of the BcAdminAction module with this
object as parameter.

Exceptions: BcObjectException, BcParameterException, BcToolException

Example: ...
import BcAdminCommunicationSecvice
...
getProps={"host": "bchost01", "install-path": "/opt/ibm/sna/bin"}
cs_obj=BcAdminCommunicationService.getObject(getProps)
actResult=BcAdminCommunicationService.perform(cs_obj, "check-avail")
if BcAdminAction.isFinishedSuccessfully(actResult):
 resultString=BcAdminAction.getResults(actResult)[0]["result"]
 print "communication service is " +resultString
...

BcAdminCommunicationService functions

326 BeanConnect V3.0B

9.4.3.7 remove() – Remove communication service

9.4.3.8 Properties of a communication service

The following table contains all the properties of an communication Communication Service.

The meanings and values permitted for the various properties can be found in the
Management Console online help system under
Managing BeanConnect proxy components - Managing communication services - Commu-
nication services, table columns and communication service instance, properties.

Function: BcAdminCommunicationService.remove()

Removes the specified communication service from the configuration

Parameters: bc_object (BcObject of type BcObjectType.COMMUNICATION_SERVICE).

The communication service that is to be removed.

Return: None

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminCommunicationService
...
getProps={"host": "bchost01", "install-path": "/opt/ibm/sna/bin"}
cs_obj=BcAdminCommunicationService.getObject(getProps)
BcAdminCommunicationService.remove (cs_obj)
...

Keyword (key)
in MC-CLI 1

Field name in the
GUI1

Funct.1 Property value1

admin-port MC-CmdHandler Listener
Port

cm / g / m
a)

(String numeric)

admin-pw MC-CmdHandler User
Password

cm / m a) (String)

admin-state Administrable g BcDef.ACTION_RESULT_
ADMINISTRABLE or
BcDef.ACTION_RESULT_
NOT_ADMINISTRABLE 2

cp name Control Point Name cm / g / m
c)

(String)

cp network Control Point Network cm / g / m
c)

(String)

desc Description g / m c) (String)

functions BcAdminCommunicationService

BeanConnect V3.0B 327

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

Notes on the indices a) to g) in the tables:

a) If one of the properties host, admin-port or admin-pw is specified during a create or
modify operation, the associated MC CmdHandler is searched for or created inter-
nally and is assigned to the communication service. The MC CmdHandler must be
available as otherwise the call is rejected. In the case of a local host, it is not
necessary to specify admin-port and admin-pw.

host Host cm / g / m
a)e)

(String)

idblk IDBLK cd / g / m
c)

(String)

idnum IDNUM cd / g / m
c)

(String)

install-path Installation Path cm / g / m (String)

install-path-gw Installation
Path(Lu62Gateway)

c / g / m
f)

(String)

log.audit-log Audit Logging / Verbose
Audits

cd / g / m
b)

BcDef.LOGGING_MODE_x
xx with xxx =
ON/OFF/VERBOSE 2

log.except-log Activate Exception
Logging

cd / g / m
b)

BcDef.LOGGING_MODE_x
xx with xxx = ON/OFF 2

log.line-trac Activate Line Tracing cd / g / m
b)

BcDef.LOGGING_MODE_x
xx with xxx = ON/OFF 2

log.verbose-err Verbose Errors cd / g / m
b)

BcDef.LOGGING_MODE_x
xx with xxx = ON/OFF 2

mac-addr MAC Address cd / g / m
c)d)

(String)

name Name g (String)

op system Operating System g c) (String)

proxies Proxies g g) (String)

type Type g (String)
1 For the meanings of the columns and abbreviations, see section “Properties” on page 313

2 The possible values of xxx can be found in the JavaDoc (Java class BcDef) tn the JavaDoc subdirectory of the
Management Console installation directory

Keyword (key)
in MC-CLI 1

Field name in the
GUI1

Funct.1 Property value1

BcAdminCommunicationService functions

328 BeanConnect V3.0B

b) The properties with the prefix log. can only be read and modified in the case of
communication services on Linux or SNAP-IX on Solaris. Since the platform is not
known at the time of generation, the default values are set when the object is
generated.

c) If the MC-CmdHandler is not available, the value BcDef.VALUE_UNKNOWN (="<.>")
is output for these properties in getProperties().

d) The property mac-addr is only required if you are using at least one EIS partner of
the DLC type LAN. If it is not specified then the default value (empty string) is used.

e) The property host can only be changed if the host is the same. (i.e. modifiable but
will generally be rejected).

f) The property install-path-gw should be specified when creating a communi-
cation service because some of the properties of the communication service are
stored under this path. If it is not specified then an already configured Lu62
Gateway is searched for on the host on which the communication service is located.
If no gateway is found, the call is rejected with BcParameterException. If the
property install-path-gw is not specified when an object is read then it may not be
possible to read the properties of the communication service.

g) The proxies (with name and object) can also be read using the function
getProxies(). In this case, the names are sent as a comma-separated string.
Note: If the proxy names contain commas then it is possible that the returned infor-
mation may be ambiguous.

functions BcAdminEisPartner

BeanConnect V3.0B 329

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.4 BcAdminEisPartner

The module BcAdminEisPartner contains all the functions available for configuring and
administering a Management Console EIS partner object.

BcAdminEisPartner contains the functions:

● create() – Add EIS partner to the configuration

● getGatewayPorts() - Read openUTM-LU62 Gateway listener ports of the EIS partner
object

● getLuNames() - Read logical unit names of the EIS partner object

● getObject() – Read EIS partner object from the configuration

● getProperties() – Read properties of an EIS partner

● modifyGatewayPorts() - Modify openUTM-LU62 Gateway listener ports of the EIS
partner object

● modifyLuNames() - Modify logical unit names of the EIS partner object

● modifyProperties() – Modify properties of an EIS partner

● perform() – Start administrative actions

● remove() – Remove EIS partner

BcAdminEisPartner functions

330 BeanConnect V3.0B

9.4.4.1 create() – Add EIS partner to the configuration

Function: BcAdminEisPartner.create()

An EIS partner, whose properties you must pass to the MC-CLI in a dictionary,
is added to the configuration.

Parameters: object_name (String)

Name of the BeanConnect EIS partner

proxy_object
(BcObject of type BcObjectType.PROXY / BcObjectType.PROXY_CLUSTER)

Proxy or proxy cluster to which the EIS partner is to be assigned.
The specification of a proxy_object of type BcObjectType.PROXY is not
permitted if the proxy belongs to a proxy cluster. In this case, the proxy cluster
object must be specified as a parameter here.

props (kw)

Dictionary with the key-value pairs for the properties that are to be assigned to
the EIS partner. You can find the possible values for key in section “Properties of
an EIS partner” on page 337.
The properties name, type, utm.hosts, utm.listener-port and
utm.partner-lpap must be specified. All the other properties are either
optional or set to the default values.

Return: (BcObject of type BcObjectType.EIS_PARTNER)

The EIS partner newly added to the configuration

Exceptions: BcParameterException, BcObjectException, BcToolException

Example: ...
import BcAdminEisPartner
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
creProps= {"type":BcDef.PTYPE_UTM,"desc": "myEIS",\

"utm.hosts":"xyz","utm.partner-lpap":"LPAP",\
"utm.listener-port": "1234"}

newEis=BcAdminEisPartner.create("TestEIS",proxy_obj,creProps)
...

functions BcAdminEisPartner

BeanConnect V3.0B 331

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.4.2 getGatewayPorts() - Read openUTM-LU62 Gateway listener ports of the EIS partner
object

9.4.4.3 getLuNames() - Read logical unit names of the EIS partner object

Function: BcAdminEisPartner.getGatewayPorts()

Reads the openUTM-LU62 Gateway listener port of the EIS partner or the list of
ports for all the proxies in the cluster if the EIS partner is defined in the cluster.

Parameters: bcobject (BcObject of type BcObjectType.EIS_PARTNER)

EIS partner whose openUTM-LU62 Gateway listener ports are to be read.

Return: Dictionary with one element (or multiple elements in the case of a proxy cluster),
where key is the name of the proxy and value is the associated openUTM-LU62
Gateway listener port.

Exceptions: BcObjectException, BcParameterException, BcToolException

Note: – If the EIS partner is not of type cics, a BcObjectException is thrown.
– The port numbers can also be read via the property cs.lu62gateway-port.

Example: ...
import BcAdminEisPartner import BcAdminProxy
...
proxy_name="BCProxy"
proxy_obj=BcAdminProxy.getObject(proxy_name)
eis_obj=BcAdminEisPartner.getObject("testEIS",proxy_obj)
port_dicn=BcAdminEisPartner.getGatewayPorts(eis_obj)
gw_port=port_dicn[proxy_name]
...

Function: BcAdminEisPartner.getLuNames()

Reads the logical unit name of the EIS partner or the list of logical unit
names for all the proxies in the cluster if the EIS partner is defined in the cluster.

Parameters: bcobject (BcObject of type BcObjectType.EIS_PARTNER)

EIS partner whose logical unit name is to be read.

Return: Dictionary with one element (or multiple elements in the case of a proxy cluster),
where key is the name of the proxy and value is the associated logical unit name.

Exceptions: BcObjectException, BcParameterException, BcToolException

Note: – If the EIS partner is not of type cics, a BcObjectException is thrown.
– The logical unit names can also be read via the property cs.lu-name.

BcAdminEisPartner functions

332 BeanConnect V3.0B

9.4.4.4 getObject() – Read EIS partner object from the configuration

Example: ...
import BcAdminEisPartner import BcAdminProxy
...
proxy_name="BCProxy"
proxy_obj=BcAdminProxy.getObject(proxy_name)
eis_obj=BcAdminEisPartner.getObject("testEIS",proxy_obj)
luname_dicn=BcAdminEisPartner.getLuNames(eis_obj)
luname=luname_dicn[proxy_name]
...

Function: BcAdminEisPartner.getObject()

Reads the EIS partner with the specified name from the configuration

Parameters: object_name (string)

Name of the BeanConnect EIS partner that is to be read.

proxy_object
(BcObject of type BcObjectType.PROXY / BcObjectType.PROXY_CLUSTER)

Proxy or proxy cluster to which the EIS partner is assigned.

Return: (BcObject of type BcObjectType.EIS_PARTNER)

The read EIS partner or None if no EIS partner with a corresponding name exists.

Exceptions: BcObjectException, BcParameterException, BcToolException

Note: The specification of a proxy_object of type BcObjectType.PROXY is only
permitted if the proxy is not present in a proxy cluster. In this case, the proxy cluster
object must be specified as a parameter here.

Example: ...
import BcAdminEisPartner
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
eis_obj=BcAdminEisPartner.getObject("testEIS",proxy_obj)
...

functions BcAdminEisPartner

BeanConnect V3.0B 333

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.4.5 getProperties() – Read properties of an EIS partner

9.4.4.6 modifyGatewayPorts() - Modify openUTM-LU62 Gateway listener ports of the EIS
partner object

Function: BcAdminEisPartner.getProperties()

Reads all the properties of the specified EIS partner and returns a dictionary with
key-value pairs for the properties.

Parameters: bc_object (BcObject of type BcObjectType.EIS_PARTNER)

EIS partner whose properties are to be read.

Return: Dictionary with the key-value pairs for all the properties of the EIS partner. You can
find the possible values for key in section “Properties of an EIS partner” on page 337.
In the case of EIS partners with the property type="cics", no properties with the
prefix "utm." are output.

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminEisPartner
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
eis_obj=BcAdminEisPartner.getObject("testEIS",proxy_obj)
eisProps=BcAdminEisPartner.getProperties(eis_obj)
...

Function: BcAdminEisPartner.modifyGatewayPorts()

Modifies the openUTM-LU62 Gateway listener port of the EIS partner or a list of
ports for one or more proxies in the cluster if the EIS partner is defined in the
cluster.

Parameters: bc_object (BcObject of type BcObjectType.EIS_PARTNER)

EIS partner whose openUTM-LU62 Gateway listener ports are to be modified.

ports

Dictionary with one element (or multiple elements in the case of a proxy cluster),
where key (String) is the name of the proxy and value (String) is the associated
openUTM-LU62 Gateway listener port.

Return: None

Exceptions: BcObjectException, BcParameterException, BcToolException
Note: – If the EIS partner is not of type cics, a BcObjectException is thrown.

– The port numbers can also be modified via the property cs.lu62gateway-port.

BcAdminEisPartner functions

334 BeanConnect V3.0B

9.4.4.7 modifyLuNames() - Modify logical unit names of the EIS partner object

Example: ...
import BcAdminEisPartner import BcAdminProxy
...
proxy_name="BCProxy"
proxy_obj=BcAdminProxy.getObject(proxy_name)
eis_obj=BcAdminEisPartner.getObject("testEIS",proxy_obj)
port_dicn={proxy_name, "31002"}
BcAdminEisPartner.modifyGatewayPorts(eis_obj, port_dicn)
...

Function: BcAdminEisPartner.modifyLuNames()

Modifies the logical unit name of the EIS partner or a list of logical unit names for
one or more proxies in the cluster if the EIS partner is defined in the cluster.

Parameters: bc_object (BcObject of type BcObjectType.EIS_PARTNER)

EIS partner whose logical unit name is to be modified.

ports

Dictionary with one element, or multiple elements in the case of a proxy cluster,
where key (String) is the name of the proxy and value (String) is the associated
logical unit name.

Return: None

Exceptions: BcObjectException, BcParameterException, BcToolException
Note: – If the EIS partner is not of type cics, a BcObjectException is thrown.

– The port numbers can also be modified via the property cs.lu-name.

Example: ...
import BcAdminEisPartner import BcAdminProxy
...
proxy_name="BCProxy"
proxy_obj=BcAdminProxy.getObject(proxy_name)
eis_obj=BcAdminEisPartner.getObject("testEIS",proxy_obj)
luname_dicn={proxy_name, "CIC31"}
BcAdminEisPartner.modifyLuNames(eis_obj, luname_dicn)
...

functions BcAdminEisPartner

BeanConnect V3.0B 335

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.4.8 modifyProperties() – Modify properties of an EIS partner

9.4.4.9 perform() – Start administrative actions

Function: BcAdminEisPartner.modifyProperties()

Modifies all the properties of the specified EIS partner that are present in the
specified dictionary.

Parameters: bc_object (BcObject of type BcObjectType.EIS_PARTNER)

EIS partner whose properties are to be modified.

props

Dictionary with the key-value pairs for the properties that are to be modified. You
can find the possible values for key in section “Properties of an EIS partner” on
page 337.
In the case of EIS partners with the property type="cics", no properties with the
prefix "utm." may be specified.
In the case of EIS partners with the property type="utm", no properties with the
prefix "cics." or "cs." may be specified.

Return: None

Exceptions: BcObjectException, BcParameterException, BcToolException
Example: ...

import BcAdminEisPartner
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
eis_obj=BcAdminEisPartner.getObject("testEIS",proxy_obj)
modProps={"desc":"modified"}
BcAdminEisPartner.modifyProperties(eis_obj, modProps)
...

Function: BcAdminEisPartner.perform()

Starts the specified action for the EIS partner.

Parameters: bc_object (BcObject of type BcObjectType.EIS_PARTNER)

EIS partner for which the action is to be started.

action (String)

Action that is to be started for the specified EIS partner. Possible values are (see
BcDef.ACTION_xxx in the MC-CLI-JavaDoc)

check-avail Checks the availability of the EIS partner.

gen-config Generates a configuration file that must be integrated in
the configuration of the EIS partner.

BcAdminEisPartner functions

336 BeanConnect V3.0B

9.4.4.10 remove() – Remove EIS partner

Return: For action="gen-config":
– True (boolean) if the configuration files have been created.
– False (boolean) if the configuration files could not be created.
For action="check-avail":
– (String)

Check service output message if proxy and EIS partner have been started and
the service could be called successfully.

– (String)
Message from MC-CLI or the proxy or the EIS partner if the service could not be
called successfully.

Exceptions: BcObjectException, BcParameterException, BcToolException

Example: ...
import BcAdminEisPartner
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
eis_obj=BcAdminEisPartner.getObject("testEIS",proxy_obj)
isSucc=BcAdminEisPartner.perform(eis_obj,action="gen-config")
...

Function: BcAdminEisPartner.remove()

Removes the specified EIS partner from the configuration.

Parameters: bc_object (BcObject of type BcObjectType.EIS_PARTNER) .

EIS partner that is to be removed.

Return: None

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminEisPartner
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
eis_obj=BcAdminEisPartner.getObject("testEIS",proxy_obj)
BcAdminEisPartner.remove (eis_obj)
...

functions BcAdminEisPartner

BeanConnect V3.0B 337

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.4.11 Properties of an EIS partner

The following table contains all the properties of an EIS partner.

The meanings and values permitted for the various properties can be found in the
Management Console online help system under
Configuring BeanConnect Proxies – EIS Partners – Editing an EIS partner with the General,
UTM Partner, Communication Services, CICS Partner, Availability Check tabs.

Keyword (key)
in MC-CLI 1

Field name in the
GUI1

Funct.1 Property value1

active Active cd / g / m BcDef.BOOL_xxx2

avail.char-code Character Code cd / g / m BcDef.CHAR_CODE_xxx
2

avail.check-service Check Service c / g / m BcDef.EIS_AVAIL_NO_
CHECK_SERVICE or
(String)

avail.message Message c / g / m (String)

avail.password Password c / m (String)

avail.user Users c / g / m (String)

cics.cp-name 3 Control Point - Name cm / g / m (String)

cics.cp-network 3 Control Point - Network
Name

cm / g / m (String)

cics.dlc-type 3 DLCType cd / g / m BcDef.DLC_TYPE_xxx 2

cics.eis-platform 3 EIS Platform g BcDef.PLATFORM_xxx 2

cics.lu-ipaddress 3 Logical Unit - IP Address cm / g / m (String)

cics.lu-name 3 Logical Unit - Name cm / g / m (String)

cics.lu-network 3 Logical Unit - Network
Name

cm / g / m (String)

cics.mac-address 3 MAC Address cm 4 / g /
m

(String)

cics.partner-type 3 PartnerType cd / g / m BcDef.TYPE_xxx 2

cics.vtam-group-name 3 Vtam - Group Name cm / g / m (String)

cs.lu62gateway-port 3 5 Lu62 Gateway Listener
Port

cm / g / m (String numeric)

cs.lu-name 3 5 Logical Unit Name cm / g / m (String)

BcAdminEisPartner functions

338 BeanConnect V3.0B

cs.mode-name 3 Mode Name cm / g / m (String)

connections Connections cd / g / m (String numeric)

desc Description c / g / m (String)

name Name cm / g / m (String)

id ID g (String)

prefix Prefix cd / g / m 6 (String)

type Type cmcf / g BcDef.PTYPE_UTM /
BcDef.PTYPE_CICS

utm.access-point7 Access Point cd / g / m BcDef.ACCESS_POINT_
xxx2

utm.access-point-name7 Access Point Name c / g / m (String)

utm.admin-permission7 Admin Permission cd / g / m BcDef.BOOL_xxx2

utm.api-mode7 Application Program
Interface Mode of EIS
Partner

cd / g / m BcDef.EIS_API_MODE_
xxx2

utm.appl-entity-
qualifier7

Application Entity
Qualifier

cd / g / m (String)

utm.appl-process-title7 Application Process Title cd / g / m (String)

utm.hosts7 Hosts cm / g / m (String)

utm.mapped-hosts7 Mapped Hostnames cd / g / m (String)

utm.is-bs20007 Is BS2000 cd / g / m BcDef.BOOL_xxx2

utm.listener-port7 Listener Port cm / g / m (String numeric)

utm.partner-
idletimer.sec7

Partner Idletimer cd / g / m (String numeric)

utm.partner-lpap7 Partner LPAP cm / g / m (String)

utm.proxy-auto-conn7 Proxy AutoConnect cd / g / m (String numeric)

utm.proxy-cont-winners7 Proxy Contention-
Winners

cd / g / m (String numeric)

utm.proxy-host7 Proxy Hostname cd / g / m (String)

Keyword (key)
in MC-CLI 1

Field name in the
GUI1

Funct.1 Property value1

functions BcAdminEisPartner

BeanConnect V3.0B 339

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

Notes:

● Not all combinations of properties can be modified. In some cases, properties cannot
be modified if other properties have certain values. Thus, for example

– avail.user, avail.password, avail.char-code cannot be modified if
avail.check-service=BcDef.EIS_AVAIL_NO_CHECK_SERVICE

– utm.access-point-name, utm.transport-selector,
utm.transport-selector-format cannot be modified if
utm-access-point=BcDef.ACCESS_POINT_CREATE_GENERIC.

For more information, see the description (online help system) of the Management
Console (e.g. for utm.api-mode).

● The property Availability Check – Perform Check is not available here because no
automatic checks are performed in the MC-CLI.

● In the case of cs.lu62gateway-port and cs.lu-name, a string containing a list of values
is specified as follows for a proxy cluster: <value1>(<proxy-name1>),
<value2>(<proxy-name2>), … If a proxy name contains the special characters '(' or ')'
then it is no longer possible to interpret the string unambiguously. In this case, the
functions get/setGatewayPorts() and get/setLuNames() should be used.

utm.proxy-mapped-host7 Proxy Mapped Hostname g (String)

utm.proxy-idletimer.sec7 Proxy Idletimer cd / g / m (String numeric)

utm.transport-selector7 Transport Selector c / g / m (String)

utm.transport-selector
-format7

Transport Selector
Format

cd / g / m BcDef.TSEL_FORMAT_x
xx2

1 For the meanings of the columns and abbreviations, see section “Properties” on page 313
2 The possible values of xxx can be found in the JavaDoc (Java class BcDef) in the JavaDoc subdirectory of

the Management Console installation directory.

3 All properties with the prefix "cics." and "cs." can only be read and modified in the case of EIS partners of
type cics.

4 The property cics.mac-address is a mandatory parameter when creating the object if
"cics.dlc-type"=BcDef.DLC_TYPE_LAN ("lan") has been specified.

5 The properties can also be read using the getGatewayPorts()/getLuNames() functions and can be modified
using the modifyGatewayPorts()/modifyLuNames() functions.

6 If the ID number is > 99 then no default value is generated for the property prefix. The property therefore has
to be specified explicity at the time of creation.

7 Properties with the prefix "utm." can only be read and modified in the case of EIS partners of type utm.

Keyword (key)
in MC-CLI 1

Field name in the
GUI1

Funct.1 Property value1

BcAdminEisPartner functions

340 BeanConnect V3.0B

● In the case of utm.proxy-host, a string containing a list of values is specified as follows
for a proxy cluster: <value1>(<proxy-name1>), <value2>(<proxy-name2>), … If a proxy
name contains the special characters '(' or ')' then it is no longer possible to interpret the
string unambiguously.

● In the case of utm.proxy-mapped-host, a string containing a list of values is specified
as follows for a proxy cluster:
<mapped1>(<proxy-name1>), <mapped2>(<proxy-name2>), …
If a proxy name contains the special characters '(' or ')' then it is no longer possible to
interpret the string unambiguously.

● In the case of utm.hosts, a string containing a list of values is specified as follows:
<utmhost-name1>, <utmhost-name2>, …
In the case of an EIS partner that is not a UTM cluster application, the list consists of
only one element.

● In the case of utm.mapped-hosts, a string containing a list of values is specified as
follows: <mapped1>(<utmhost-name1>), <mapped2>(<utmhost-name2>), …
In the case of an EIS partner that is not a UTM cluster application, the list consists of
only one element.

functions BcAdminInboundMsgEndpoint

BeanConnect V3.0B 341

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.5 BcAdminInboundMsgEndpoint

The module BcAdminInboundMsgEndpoint contains all the functions available for config-
uring and administering a Management Console inbound message object.

BcAdminInboundMsgEndpoint contains the functions:

● create() – Add inbound message endpoint to the configuration

● getObject() – Read inbound message endpoint object from the configuration

● getProperties() – Read properties of an inbound message endpoint

● modifyProperties() – Modify properties of an inbound message endpoint

● remove() – Remove inbound message endpoint

BcAdminInboundMsgEndpoint functions

342 BeanConnect V3.0B

9.4.5.1 create() – Add inbound message endpoint to the configuration

Function: BcAdminInboundMsgEndpoint.create()

An inbound message endpoint, whose properties you must pass to the MC-CLI
in a dictionary, is added to the configuration.

Parameters: object_name (String)

Name of the BeanConnect inbound message endpoint

proxy_object
(BcObject of type BcObjectType.PROXY or BcObjectType.PROXY_CLUSTER)

Proxy or proxy cluster to which the inbound message endpoint is to be assigned.
The specification of a proxy_object of type BcObjectType.PROXY is not
permitted if the proxy belongs to a proxy cluster. In this case, the proxy cluster
object must be specified as a parameter here.

props

Dictionary with the key-value pairs for the properties that are to be assigned to
the inbound message endpoint. You can find the possible values for key in
section “Properties of an inbound message endpoint” on page 346.

Return: (BcObject of type BcObjectType.INBOUND_MSG_ENDPOINT)

The inbound message endpoint added to the configuration.

Exceptions: BcParameterException, BcObjectException, BcToolException

Example: ...
import BcAdminInboundMsgEndpoint
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
creProps={"desc":"my msg endpoint",\
"dial-type":BcDef.TYPE_DIALOG,\
"resource-adapter":"myRA","service-names":"TESTIS1, TESTIS2"}
me_obj=BcAdminInboundMsgEndpoint.create("myMEP", proxy_obj,\
props=creProps)
...

functions BcAdminInboundMsgEndpoint

BeanConnect V3.0B 343

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.5.2 getObject() – Read inbound message endpoint object from the configuration

Function: BcAdminInboundMsgEndpoint.getObject()

Reads the inbound message endpoint with the specified name from the configu-
ration

Parameters: object_name (String)

Name of the BeanConnect inbound message endpoint that is to be read.

proxy_object
(BcObject of type BcObjectType.PROXY / ObjectType.PROXY_CLUSTER)

The proxy or proxy cluster to which the inbound message endpoint is to be
assigned.
The specification of a proxy_object of type BcObjectType.PROXY is not
permitted if the proxy belongs to a proxy cluster. In this case, the proxy cluster
object must be specified as a parameter here.

Return: (BcObject of type BcObjectType.INBOUND_MSG_ENDPOINT)

The read inbound message endpoint or None if no inbound message endpoint
with a corresponding name exists.

Exceptions: BcObjectException, BcParameterException, BcToolException

Example: ...
import BcAdminInboundMsgEndpoint
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
me_obj=BcAdminInboundMsgEndpoint.getObject("myMEP",proxy_obj)
...

BcAdminInboundMsgEndpoint functions

344 BeanConnect V3.0B

9.4.5.3 getProperties() – Read properties of an inbound message endpoint

9.4.5.4 modifyProperties() – Modify properties of an inbound message endpoint

Function: BcAdminInboundMsgEndpoint.getProperties()

Reads all the properties of the specified inbound message endpoint and returns
a dictionary with key-value pairs for the properties.

Parameters: bc_object (BcObject of type BcObjectType.INBOUND_SERVICE)

 The inbound message endpoint whose properties are to be read.

Return: Dictionary with the key-value pairs for all the properties of the inbound message
endpoint. You can find the possible values for key in section “Properties of an
inbound message endpoint” on page 346.

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminInboundMsgEndpoint
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
me_obj=BcAdminInboundMsgEndpoint.getObject("myMEP",proxy_obj)
meProps=BcAdminInboundMsgEndpoint.getProperties(me_obj)
...

Function: BcAdminInboundMsgEndpoint.modifyProperties()

Modifies all the properties of the specified inbound message endpoint that are
present in the specified dictionary.

Parameters: bc_object (BcObject of type BcObjectType.INBOUND_MSG_ENDPOINT)

The inbound message endpoint whose properties are to be modified.

props

Dictionary with the key-value pairs for the properties that are to be modified. You
can find the possible values for key in section “Properties of an inbound message
endpoint” on page 346.

Return: None

Exceptions: BcObjectException, BcParameterException, BcToolException

functions BcAdminInboundMsgEndpoint

BeanConnect V3.0B 345

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.5.5 remove() – Remove inbound message endpoint

Example: ...
import BcAdminInboundMsgEndpoint
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
me_obj=BcAdminInboundMsgEndpoint.getObject("myMEP",proxy_obj)
modProps={"desc":"created","service-names":"TESTIS1, TESTIS2"}
BcAdminInboundMsgEndpoint.modifyProperties(me_obj,modProps)
...

Function: BcAdminInboundMsgEndpoint.remove()

Removes the specified inbound message endpoint from the configuration.

Parameters: bc_object (BcObject of type BcObjectType.INBOUND_MSG_ENDPOINT)

Inbound message endpoint that is to be removed.

Return: None

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminInboundMsgEndpoint
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
me_obj=BcAdminInboundMsgEndpoint.getObject("myMEP",proxy_obj)
BcAdminInboundMsgEndpoint.remove(me_obj)
...

BcAdminInboundMsgEndpoint functions

346 BeanConnect V3.0B

9.4.5.6 Properties of an inbound message endpoint

The following table contains all the properties of an inbound message endpoint.

The meanings and values permitted for the various properties can be found in the
Management Console online help system under
Configuring BeanConnect Proxies – Inbound – Inbound Message Endpoints – Inbound
Message Endpoint, Properties.

Keyword (key)
in MC-CLI 1

1 For the meanings of the columns and abbreviations, see section “Properties” on page 313

Field name in the
GUI1

Funct.1 Property value1

desc Description c / g / m (String)

dial-type Type (dial / asyn) cd / g / m BcDef.TYPE_xxx2

2 The possible values of xxx can be found in the JavaDoc (Java class BcDef) in the JavaDoc subdirectory of
the Management Console installation directory.

dlq-msgs Dead letter queue
Messages

g (String numeric)

name Name cm / g / m (String)

reply-timer.sec ReplyTimer cd / g / m (String numeric)

resource-adapter3

3 If the inbound message endpoint belongs to a proxy cluster then the property is not output by
getProperties() and may not be specified in modifyProperties().

Resource Adapter cm / g / m (String)

service-names Service Names cm / g / m (String)

state State g BcDef.STATE_xxx2

ta-timer.sec Transaction Timer cd / g / m (String numeric)

waiting-msgs Waiting Messages g (String numeric)

functions BcAdminInboundService

BeanConnect V3.0B 347

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.6 BcAdminInboundService

The module BcAdminInboundService contains all the functions available for configuring and
administering a Management Console inbound service object. Objects of type "inbound
service" are implicitly generated and removed via the configuration of the inbound message
endpoint. There are therefore no create() and remove() functions for inbound services.

BcAdminInboundService contains the functions:

● getObject() – Read inbound service object from the configuration

● getProperties() – Read properties of an inbound service

● modifyProperties() – Modify properties of an inbound service

9.4.6.1 getObject() – Read inbound service object from the configuration

Function: BcAdminInboundService.getObject()

Reads the inbound service with the specified name from the configuration

Parameters: object_name (String)

Name of the BeanConnect inbound service that is to be read.

proxy_object
(BcObject of type BcObjectType.PROXY / BcObjectType.PROXY_CLUSTER)

Proxy or proxy cluster to which the inbound service is assigned.
The specification of a proxy_object of type BcObjectType.PROXY is not
permitted if the proxy belongs to a proxy cluster. In this case, the proxy cluster
object must be specified as a parameter here.

Return: (BcObject of type BcObjectType.INBOUND_SERVICE)

The read inbound service or None if no inbound service with a corresponding
name exists.

Exceptions: BcObjectException, BcParameterException, BcToolException

Example: ...
import BcAdminInboundService
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
serv_obj=BcAdminInboundService.getObject("SRV",proxy_obj)
...

BcAdminInboundService functions

348 BeanConnect V3.0B

9.4.6.2 getProperties() – Read properties of an inbound service

Function: BcAdminInboundService.getProperties()

Reads all the properties of the specified inbound service and returns a dictionary
with key-value pairs for the properties.

Parameters: bc_object (BcObject of type BcObjectType.INBOUND_SERVICE)

Inbound service whose properties are to be read.

Return: Dictionary with the key-value pairs for all the properties of the inbound service. You
can find the possible values for key in section “Properties of an inbound service” on
page 350.

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminInboundService
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
is_obj=BcAdminInboundService.getObject("SRV",proxy_obj)
isProps=BcAdminInboundService.getProperties(is_obj)
...

functions BcAdminInboundService

BeanConnect V3.0B 349

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.6.3 modifyProperties() – Modify properties of an inbound service

Function: BcAdminInboundService.modifyProperties()

Modifies all the properties of the specified inbound service that are present in the
specified dictionary.

Parameters: bc_object
(BcObject of type BcObjectType.INBOUND_SERVICE)

Inbound service whose properties are to be modified.

props

Dictionary with the key-value pairs for the properties that are to be modified. You
can find the possible values for key in section “Properties of an inbound service”
on page 350.

Return: None

Exceptions: BcObjectException, BcParameterException, BcToolException
Example: ...

import BcAdminInboundService
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
is_obj=BcAdminInboundService.getObject("SRV",proxy_obj)
modProps{"desc":"modified"}
BcAdminInboundService.modifyProperties(is_obj,modProps)
...

BcAdminInboundService functions

350 BeanConnect V3.0B

9.4.6.4 Properties of an inbound service

The following table contains all the properties of an inbound service.

The meanings and values permitted for the various properties can be found in the
Management Console online help system under
Configuring BeanConnect Proxies – Inbound – Inbound services – Editing an inbound
service, General.

Keyword (key)
in MC-CLI 1

1 For the meanings of the columns and abbreviations, see section “Properties” on page 313

Field name in the
GUI1

Funct.1 Property value1

desc Description g / m (String)

dial-type Type g BcDef.TYPE_xxx2

2 The possible values of xxx can be found in the JavaDoc (Java class BcDef) in the JavaDoc subdirectory of
the Management Console installation directory.

inbound-msg-endpoint Inbound Message Endpoint g (String)

name Service Name g (String)

partner-char-code Partner Character Code g / m BcDef.CHAR_CODE_
xxx2

partner-encoding Partner Encoding g / m (String)

xatmi XATMI g / m BcDef.BOOL_xxx2

functions BcAdminInboundUser

BeanConnect V3.0B 351

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.7 BcAdminInboundUser

The module BcAdminInboundUser contains all the functions available for configuring and
administering a Management Console inbound user object.

BcAdminInboundUser contains the functions:

● create() – Add inbound user to the configuration

● getObject() – Read inbound user object from the configuration

● getProperties() – Read properties of an inbound user

● modifyProperties() – Modify properties of an inbound user

● remove() – Remove inbound user

BcAdminInboundUser functions

352 BeanConnect V3.0B

9.4.7.1 create() – Add inbound user to the configuration

Function: BcAdminInboundUser.create()

An inbound user, whose properties you must pass to the MC-CLI in a dictionary,
is added to the configuration.

Parameters: object_name (String)

Name of the BeanConnect inbound user

proxy_object
(BcObject of type BcObjectType.PROXY / BcObjectType.PROXY_CLUSTER)

 Proxy or proxy cluster to which the inbound user is to be assigned.
The specification of a proxy_object of type BcObjectType.PROXY is not
permitted if the proxy belongs to a proxy cluster. In this case, the proxy cluster
object must be specified as a parameter here.

props (kw)

Dictionary with the key-value pairs for the properties that are to be assigned to
the inbound user. You can find the possible values for key in section “Properties
of an inbound user” on page 356.

Return: (BcObject of type BcObjectType.INBOUND_USER)

The inbound user added to the configuration.

Exceptions: BcParameterException, BcObjectException, BcToolException

Example: ...
import BcAdminInboundUser
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
creProps={"desc":"created","password":"ADMIN"}
usr_obj=BcAdminInboundUser.create("USR",proxy_obj,props=creProps)
...

functions BcAdminInboundUser

BeanConnect V3.0B 353

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.7.2 getObject() – Read inbound user object from the configuration

Function: BcAdminInboundUser.getObject()

Reads the specified inbound user from the configuration.

Parameters: object_name (string)

Name of the BeanConnect inbound user that is to be read.

proxy_object (BcObject of type BcObjectType.PROXY /
BcObjectType.PROXY_CLUSTER)

Proxy or proxy cluster to which the inbound user is assigned.
The specification of a proxy_object of type BcObjectType.PROXY is only
permitted if the proxy is not present in a proxy cluster. In this case, the proxy
cluster object must be specified as a parameter here.

Return: (BcObject of type BcObjectType.INBOUND_USER)

The read inbound user or None if no inbound user with a corresponding name
exists.

Exceptions: BcObjectException, BcParameterException, BcToolException

Example: ...
import BcAdminInboundUser
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
user_obj =BcAdminInboundUser.getObject("USR",proxy_obj)
...

BcAdminInboundUser functions

354 BeanConnect V3.0B

9.4.7.3 getProperties() – Read properties of an inbound user

Function: BcAdminInboundUser.getProperties()

Reads all the properties of the specified inbound user and returns a dictionary
with key-value pairs for the properties.

Parameters: bc_object (BcObject of type BcObjectType.INBOUND_USER)

Inbound user whose properties are to be read.

Return: Dictionary with key-value pairs for the properties of the inbound user. You can find
the possible values for key in section “Properties of an inbound user” on page 356.

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminInboundUser
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
user_obj=BcAdminInboundUser.getObject("USR",proxy_obj)
userProps=BcAdminInboundUser.getProperties(user_obj)
...

functions BcAdminInboundUser

BeanConnect V3.0B 355

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.7.4 modifyProperties() – Modify properties of an inbound user

9.4.7.5 remove() – Remove inbound user

Function: BcAdminInboundUser.modifyProperties()

Modifies all the properties of the specified inbound user that are present in the
specified dictionary.

Parameters: bc_object (BcObject of type BcObjectType.INBOUND_USER)

 Inbound user whose properties are to be modified.

props

Dictionary with key-value pairs for the properties that are to be modified. You can
find the possible values for key in section “Properties of an inbound user” on
page 356.

Return: None

Exceptions: BcObjectException, BcParameterException, BcToolException
Example: ...

import BcAdminInboundUser
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
user_obj=BcAdminInboundUser.getObject("USR",proxy_obj)
modProps={"desc":"modified"}
BcAdminInboundUser.modifyProperties(user_obj,modProps)
...

Function: BcAdminInboundUser.remove()

Removes the specified inbound user from the configuration.

Parameters: bc_object (BcObject of type BcObjectType.INBOUND_USER)

Inbound user that is to be removed.

Return: None

Exceptions: BcObjectException, BcParameterException, BcToolException

Example: ...
import BcAdminInboundUser
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
user_obj=BcAdminInboundUser.getObject("USR",proxy_obj)
BcAdminInboundUser.remove (user_obj)
...

BcAdminInboundUser functions

356 BeanConnect V3.0B

9.4.7.6 Properties of an inbound user

The following table contains all the properties of an inbound user.

The meanings and values permitted for the various properties can be found in the
Management Console online help system under
Configuring BeanConnect Proxies – Inbound – Inbound Users – Editing an inbound user,
General.

Keyword (key)
in MC-CLI 1

1 For the meanings of the columns and abbreviations, see section “Properties” on page 313

Field name in the
GUI1

Funct.1 Property value1

desc Description c / g / m (String)

name Name cm / g (String)

password Password c / m (String)

functions BcAdminLu62Gateway

BeanConnect V3.0B 357

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.8 BcAdminLu62Gateway

The module BcAdminLu62Gateway contains all the functions available for configuring and
administering a Management Console openUTM-LU62 Gateway object.

BcAdminLu62Gateway contains the functions:

● create() – Add openUTM-LU62 Gateway to the configuration

● getObject() – Read openUTM-LU62 Gateway object from the configuration

● getProperties() – Read properties of an openUTM-LU62 Gateway

● getProxies() – Read the proxies assigned to the openUTM-LU62 Gateway

● modifyProperties() – Modify the properties of an openUTM-LU62 Gateway

● perform() – Start administrative actions

● Remove -remove openUTM-LU62 Gateway...

9.4.8.1 create() – Add openUTM-LU62 Gateway to the configuration

Function: BcAdminLu62Gateway.create()

An openUTM-LU62 Gateway, whose properties you must pass to the MC-CLI in
a dictionary, is added to the configuration.

Parameters: props (Dictionary)

Dictionary with the key-value pairs for the properties that are to be assigned to
the openUTM-LU62 Gateway. You can find the possible values for key in section
“Properties of an openUTM-LU62 Gateway” on page 363.
The properties host, install-path and, in the case of a non-local openUTM-
LU62 Gateway, admin-port and admin-pw must be specified. All the other
properties are either optional or set to the default values.

Return: (BcObject of type BcObjectType.LU62GATEWAY)

The openUTM-LU62 Gateway that has just been added to the configuration

Exceptions: BcParameterException, BcObjectException, BcToolException

Example:
import BcAdminLu62Gateway
...
creProps={"host": "bchost01", "install-path": "/opt/lib/utmlu62",
 "trave-level": BcDef.LOGGING_MODE_2,
 "admin-port". "31002", "admin-pw": "admin"}
gw_obj=BcAdminLu62Gateway.create(creProps)
...

BcAdminLu62Gateway functions

358 BeanConnect V3.0B

9.4.8.2 getObject() – Read openUTM-LU62 Gateway object from the configuration

9.4.8.3 getProperties() – Read properties of an openUTM-LU62 Gateway

Function: BcAdminLu62Gateway.getObject()

Reads the openUTM-LU62 Gateway with the specified name from the configu-
ration

Parameters: props (Dictionary)

Dictionary containing the key-value pairs host and install-path of the
openUTM-LU62 Gateway that is to be read. Optionally, the property install-
path-gw can be specified in order to guarantee a unique assignment to a
communication service.

Return: (BcObject of type BcObjectType.LU62GATEWAY)

The read openUTM-LU62 Gateway or None if no openUTM-LU62 Gateway with
the corresponding name exists.

Exceptions: BcObjectException, BcParameterException, BcToolException

Example: ...
import BcAdminCommunicationService
...
getProps={"host": "bchost01", "install-path": "/opt/ibm/sna/bin"}
cs_obj=BcAdminCommunicationService.getObject(getProps)
...

Function: BcAdminLu62Gateway.getProperties()

Reads all the properties of the specified openUTM-LU62 Gateway and returns a
dictionary with key-value pairs for the properties.

Parameters: bc_object (BcObject of type BcObjectType.LU62GATEWAY)

 openUTM-LU62 Gateway whose properties are to be read.

Return: Dictionary with the key-value pairs for all the properties of the openUTM-LU62
Gateway. You can find the possible values for key in section “Properties of an
openUTM-LU62 Gateway” on page 363.

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminLu62Gateway
...
getProps={"host": "bchost01", "install-path": "/opt/lib/utmlu62"}
gw_obj=BcAdminLu62Gateway.getObject(getProps)
gwProps=BcAdminLu62Gateway.getProperties(gw_obj)
...

functions BcAdminLu62Gateway

BeanConnect V3.0B 359

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.8.4 getProxies() – Read the proxies assigned to the openUTM-LU62 Gateway

Function: BcAdminLu62Gateway.getProxies()

Reads all the proxies to which the specified openUTM-LU62 Gateway is assigned
and returns a dictionary with proxy names and proxy objects
(bc_object (BcObject of type BcObjectType.PROXY)).

Parameters: bc_object (BcObject of type BcObjectType.LU62GATEWAY)

openUTM-LU62 Gateway whose proxy assignments are to be read.

Return: Dictionary with the name-object pairs of all the proxies to which the openUTM-LU62
Gateway is assigned.

Exceptions: BcObjectException, BcToolException

Note: The list of proxy names can also be read via the proxies property.

Example: ...
import BcAdminLu62Gateway
...
getProps={"host": "bchost01", "install-path": "/opt/lib/utmlu62"}
gw_obj=BcAdminLu62Gateway.getObject(getProps)
proxyDicn=BcAdminLu62Gateway.getProxies(gw_obj)
for proxy_name, proxy_obj in proxyDicn.iteritems():
 print "handle proxy " + proxy_name
...

BcAdminLu62Gateway functions

360 BeanConnect V3.0B

9.4.8.5 modifyProperties() – Modify the properties of an openUTM-LU62 Gateway

Function: BcAdminLu62Gateway.modifyProperties()

Modifies all the properties of the specified openUTM-LU62 Gateway that are
present in the specified dictionary.

Parameters: bc_object (BcObject of type BcObjectType.LU62GATEWAY)

openUTM-LU62 Gateway whose properties are to be modified.

props

Dictionary with the key-value pairs for the properties that are to be modified. You
can find the possible values for key in section “Properties of an openUTM-LU62
Gateway” on page 363.

Return: None

Exceptions: BcObjectException, BcParameterException, BcToolException
Example: ...

import BcAdminLu62Gateway
...
getProps={"host": "bchost01", "install-path": "/opt/lib/utmlu62"}
gw_obj=BcAdminLu62Gateway.getObject(getProps)
modProps={"desc":"modified"}
BcAdminLu62Gateway.modifyProperties(gw_obj, modProps)
...

functions BcAdminLu62Gateway

BeanConnect V3.0B 361

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.8.6 perform() – Start administrative actions

Function: BcAdminLu62Gateway.perform()

Starts the specified action for the openUTM-LU62 Gateway.

Parameters: bc_object (BcObject of type BcObjectType.LU62GATEWAY)

openUTM-LU62 Gateway for which the action is to be started.

action (String)

Action that is to be started for the specified openUTM-LU62 Gateway. Possible
values are (see BcDef.ACTION_xxx in the MC-CLI-JavaDoc)

check-adm Checks the administrability of the openUTM-LU62
Gateway.

check-avail Checks the availability of the openUTM-LU62 Gateway.

save Saves the changes that have been made for this
openUTM-LU62 Gateway in the current session.

start Starts the openUTM-LU62 Gateway.

stop Stops the openUTM-LU62 Gateway.

Return: (BcObject of type BcObjectType.ACTION):
Contains all information about the started action and all its subactions. To obtain more
detailed information, you can call a function of the BcAdminAction module with this
object as parameter.

Exceptions: BcObjectException, BcParameterException, BcToolException

Example: ...
import BcAdminLu62Gateway
...
getProps={"host": "bchost01", "install-path": "/opt/lib/utmlu62"}
gw_obj=BcAdminLu62Gateway.getObject(getProps)
actResult=BcAdminLu62Gateway.perform(gw_obj, "check-avail")
if BcAdminAction.isFinishedSuccessfully(actResult):
 resultString=BcAdminAction.getResults(actResult)[0]["result"]
 print "communication service is " +resultString
...

BcAdminLu62Gateway functions

362 BeanConnect V3.0B

9.4.8.7 Remove -remove openUTM-LU62 Gateway...

Function: BcAdminLu62Gateway.remove()

Removes the specified openUTM-LU62 Gateway from the configuration.

Parameters: bc_object (BcObject of type BcObjectType.LU62GATEWAY).

openUTM-LU62 Gateway that is to be removed.

Return: None

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminLu62Gateway
...
getProps={"host": "bchost01", "install-path": "/opt/lib/utmlu62"}
gw_obj=BcAdminLu62Gateway.getObject(getProps)
BcAdminLu62Gateway.remove (gw_obj)
...

functions BcAdminLu62Gateway

BeanConnect V3.0B 363

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.8.8 Properties of an openUTM-LU62 Gateway

The following table contains all the properties of an openUTM-LU62 Gateway.

The meanings and values permitted for the various properties can be found in the
Management Console online help system under
Managing BeanConnect proxy components - Managing openUTM-LU62 Gateways -openUTM-
LU62 Gateway, table columns and openUTM-LU62 Gateway instance, Properties.

Keyword (key)
in MC-CLI 1

1 For the meanings of the columns and abbreviations, see section “Properties” on page 313

Field name in the
GUI1

Funct.1 Property value1

admin-port MC-CmdHandler Listener
Port

cm / g / m
a)

(String numeric)

admin-pw MC-CmdHandler User
Password

cm / m a) (String)

admin-state Administrable g BcDef.ACTION_RESULT_
ADMINISTRABLE or
BcDef.ACTION_RESULT_
NOT_ADMINISTRABLE 2

2 The possible values of xxx can be found in the JavaDoc (Java class BcDef) tn the JavaDoc subdirectory of the
Management Console installation directory

desc Description g / m b) (String)

host Host cm / g / m
a)c)

(String)

install-path Installation Path cm / g / m (String)

install-path-cs Installation Path
(Communication Service)

c / g / m
f)

(String)

name Name g d) (String)

op system Operating System g b) (String)

proxies Proxies g e) (String)

trave-level Trace Level cd / g / m
b)

BcDef.LOGGING_MODE
_xxx with xxx = OFF/1/2/3 2

xaptp-trace XAP-TP Trace cd / g / m
b)

BcDef.LOGGING_MODE
_xxx with xxx = ON/OFF 2

BcAdminLu62Gateway functions

364 BeanConnect V3.0B

Notes on the indices a) to f) in the table:

a) If one of the properties host, admin-port or admin-pw is specified during a create or
modify operation, the associated MC CmdHandler is searched for or created inter-
nally and is assigned to the openUTM-LU62 Gateway. The MC CmdHandler must
be available as otherwise the call is rejected. In the case of a local host, it is not
necessary to specify admin-port and admin-pw.

b) If the MC-CmdHandler is not available, the value BcDef.VALUE_UNKNOWN (="<.>")
is output for these properties in getProperties().

c) The property host can only be changed if the host is the same. (i.e. modifiable but
will generally be rejected).

d) The name is generic and consists of the host name and the installation path:
"<host> [<install-path>]"

e) The proxies (with name and object) can also be read using the function
getProxies(). In this case, the names are sent as a comma-separated string.
Note: If the proxy names contain commas then it is possible that the returned infor-
mation may be ambiguous.

f) The property install-path-cs should be specified when creating an openUTM-
LU62 Gateway, because errors may occur when administering the openUTM-LU62
Gateway if there is no link to a communication service. If no communication service
has as yet been configured under the specified path, a new object is generated.
Some of the values that this contains are dummy values that must be adapted in
order to use the communication services. If the property is not specified, an already
configured communication service is searched for on the host on which the
openUTM-LU62 Gateway is located and is assigned to the openUTM-LU62
Gateway.

functions BcAdminMain

BeanConnect V3.0B 365

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.9 BcAdminMain

You can use the functions available in the module BcAdminMain to start or close a
Management Console session for the MC-CLI as well as to output a list of all the proxies,
proxy clusters and todo topics for the current BeanConnect configuration.

BcAdminMain contains the functions:

● close() – Close Management Console session

● getList() – Output list of all configured objects of an object type

● getVersion() – Read Management Console version

● init() – Start Management Console session for MC-CLI

9.4.9.1 close() – Close Management Console session

Function: BcAdminMain.close()

Closes the Management Console session and, depending on the entered
parameter, saves the as yet unsaved changes.

Parameters: save_all (boolean)

True All the changes should be saved.

False All the changes should be rejected (default).

Return: None

Note: – The close() call must be issued at the end of the function calls to the
Management Console in order to make it possible to conduct other Management
Console sessions. (end of serialization).

– All Java objects of type BcObject that have been generated in the current MC-
CLI session become invalid when close() is called and can no longer be used
(e.g. as parameters). You will have to regenerate these objects in a new MC-CLI
session if they are required.

Example: ...
import BcAdminMain
...

BcAdminMain.close(True)
...

BcAdminMain functions

366 BeanConnect V3.0B

9.4.9.2 getList() – Output list of all configured objects of an object type

i The list of proxies (list_type= "proxy") contains only individual (stand-alone)
proxies, i.e. no proxies that belong to a proxy cluster. You can read the proxies that
are present in a proxy cluster using the function getList() in the module
BcAdminProxyCluster.

Function: BcAdminMain.getlist()

Reads the names of all the objects of a type from the current BeanConnect
configuration and returns a dictionary with names and objects.

Parameters: list_type (String)

Type of object of which a list of all objects defined in the current configuration is
to be created. You can make the following specifications for list_type (see
also section “Class: BcObjectType” on page 308)

String or the value of one of the following toString() methods

„communication-
service"

BcObjectType.COMMUNICATION_SERVICE.toString()

"lu62gateway" BcObjectType.LU62GATEWAY.toString()

"proxy" BcObjectType.PROXY.toString()

"proxy-cluster" BcObjectType.PROXY_CLUSTER.toString()

"todo" BcObjectType.TODO.toString()

Return: Dictionary with all the objects of the specified type and the associated names as key.

Exceptions: BcParameterException, BcObjectException, BcToolException.

Example: ...
import BcAdminMain
...
''' get list of all proxys configured '''
bcproxys=BcAdminMain.getList("proxy")
...

functions BcAdminMain

BeanConnect V3.0B 367

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.9.3 getVersion() – Read Management Console version

9.4.9.4 init() – Start Management Console session for MC-CLI

Function: BcAdminMain.getVersion()

Returns the version of the Management Console and returns this as a string.

Parameters: None

Return: String containing the version of the Management Console

Exceptions: BcObjectException

Example: ...
import BcAdminMain
...
admver=BcAdminMain.getVersion()
...

Function: BcAdminMain.init()

Starts a Management Console session in which you can administer the
BeanConnect configuration via the MC-CLI. The configuration file
console.properties.xml is read from the config subdirectory of the
specified console subdirectory console_home in BeanConnect. If it is not
present, the file console.properties.xml is generated.

Parameters: console_home (String)

Installation directory of the Management Console.

log_mc_msgs (BcDef.BOOL_TRUE / BcDef.BOOL_FALSE)

BcDef.BOOL_TRUE (Default):
The messages that are generated asynchronously by the Management Console
are output at stdout.
BcDef.BOOL_FALSE:
The messages that are generated asynchronously by the Management Console
are not output.

Return: None

Exceptions: BcParameterException, BcObjectException, BcToolException

Note: The thrown BcToolException may be due to the fact that another Management
Console session already exists (starter from the graphical user interface or via the
MC-CLI). Close this session.
If no other session exists, you may need to delete the serialization file Console-
InUse.txt in the Management Console home directory.

BcAdminMain functions

368 BeanConnect V3.0B

Example: ...
import sys
import BcAdminMain
...
consoleHome=sys.argv[1]
BcAdminMain.init(consoleHome)
...

functions BcAdminOutboundCommEndpoint

BeanConnect V3.0B 369

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.10 BcAdminOutboundCommEndpoint

The module BcAdminOutboundCommEndpoint contains all the functions available for config-
uring and administering a Management Console outbound communication endpoint object.

BcAdminOutboundCommEndpoint contains the functions:

● create() – Add outbound communication endpoint to the configuration

● getObject() – Read outbound communication endpoint object from the configuration

● getProperties() – Read properties of an outbound communication endpoint

● modifyProperties() – Modify properties of an outbound communication endpoint

● remove() – Remove outbound communication endpoint

BcAdminOutboundCommEndpoint functions

370 BeanConnect V3.0B

9.4.10.1 create() – Add outbound communication endpoint to the configuration

Function: BcAdminOutboundCommEndpoint.create()

An outbound communication endpoint, whose properties you must pass to the
MC-CLI in a dictionary, is added to the configuration.

Parameters: object_name

Name of the BeanConnect outbound communication endpoint.

proxy_object
(BcObject of type BcObjectType.PROXY / BcObjectType.PROXY_CLUSTER)

Proxy or proxy cluster to which the outbound communication endpoint is to be
assigned.
The specification of a proxy_object of type BcObjectType.PROXY is not
permitted if the proxy belongs to a proxy cluster. In this case, the proxy cluster
object must be specified as a parameter here.

props (kw)

Dictionary with the key-value pairs for the properties that are to be assigned to
the outbound communication endpoint. You can find the possible values for key
in section “Properties of an outbound communication endpoint” on page 374.

Return: (BcObject of type BcObjectType.OUTBOUND_COMM_ENDPOINT)

The outbound communication endpoint added to the configuration.

Exceptions: BcParameterException, BcObjectException, BcToolException

Example: ...
import BcAdminOutboundCommEndpoint
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
crPr={"desc":"created","eis-partner":"EP","partner-
service":"TOS"}
ce_obj=BcAdminOutboundCommEndpoint.create("CEND",\

proxy_obj,props=crPr)
...

functions BcAdminOutboundCommEndpoint

BeanConnect V3.0B 371

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.10.2 getObject() –
Read outbound communication endpoint object from the configuration

Function: BcAdminOutboundCommEndpoint.getObject()

Reads the outbound communication endpoint with the specified name from the
configuration

Parameters: object_name (String)

Name of the BeanConnect outbound communication endpoint that is to be read.

proxy_object
(BcObject of type BcObjectType.PROXY / BcObjectType.PROXY_CLUSTER)

Proxy or proxy cluster to which the outbound communication endpoint is
assigned.
The specification of a proxy_object of type BcObjectType.PROXY is not
permitted if the proxy belongs to a proxy cluster. In this case, the proxy cluster
object must be specified as a parameter here.

Return: (BcObject of type BcObjectType.OUTBOUND_COMM_ENDPOINT)

The read outbound communication endpoint or None if no outbound communi-
cation endpoint with a corresponding name exists.

Exceptions: BcObjectException, BcParameterException, BcToolException

Example: ...
import BcAdminOutboundCommEndpoint
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
ce_obj=BcAdminOutboundCommEndpoint.getObject("CEND",proxy_obj)
...

BcAdminOutboundCommEndpoint functions

372 BeanConnect V3.0B

9.4.10.3 getProperties() – Read properties of an outbound communication endpoint

Function: BcAdminOutboundCommEndpoint.getProperties()

Reads all the properties of the specified outbound communication endpoint and
returns a dictionary with key-value pairs for the properties.

Parameters: bc_object
(BcObject of type BcObjectType.OUTBOUND_COMM_ENDPOINT)

The outbound communication endpoint whose properties are to be read.

Return: Dictionary with key-value pairs for the properties of the outbound communication
endpoint. You can find the possible values for key in section “Properties of an
outbound communication endpoint” on page 374.

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminOutboundCommEndpoint
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
ce_obj=BcAdminOutboundCommEndpoint.getObject("CEND",proxy_obj)
ceProps=BcAdminOutboundCommEndpoint.getProperties(ce_obj)
...

functions BcAdminOutboundCommEndpoint

BeanConnect V3.0B 373

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.10.4 modifyProperties() –
Modify properties of an outbound communication endpoint

Function: BcAdminOutboundCommEndpoint.modifyProperties()

Modifies all the properties of the specified outbound communication endpoint that
are present in the specified dictionary.

Parameters: bc_object
(BcObject of type BcObjectType.OUTBOUND_COMM_ENDPOINT)

The outbound communication endpoint whose properties are to be read.

props

Dictionary with the key-value pairs for the properties that are to be modified. You
can find the possible values for key in section “Properties of an outbound commu-
nication endpoint” on page 374.

Return: None

Exceptions: BcObjectException, BcParameterException, BcToolException
Example: ...

import BcAdminOutboundCommEndpoint
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
ce_obj=BcAdminOutboundCommEndpoint.getObject("CEND",proxy_obj)
modPr={"desc":"modified"}
BcAdminOutboundCommEndpoint.modifyProperties(ce_obj,modPr)
...

BcAdminOutboundCommEndpoint functions

374 BeanConnect V3.0B

9.4.10.5 remove() – Remove outbound communication endpoint

9.4.10.6 Properties of an outbound communication endpoint

The following table contains all the properties of an outbound communication endpoint.

The meanings and values permitted for the various properties can be found in the
Management Console online help system under
Configuring BeanConnect Proxies – Outbound – Outbound Communication Endpoints –
Outbound Communication Endpoints, Properties.

Function: BcAdminOutboundCommEndpoint.remove()

Removes the specified outbound communication endpoint from the configu-
ration.

Parameters: bc_object
(BcObject of type BcObjectType.OUTBOUND_COMM_ENDPOINT)

The outbound communication endpoint that is to be removed.

Return: None

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminOutboundCommEndpoint
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
ce_obj=BcAdminOutboundCommEndpoint.getObject("CEND",proxy_obj)
BcAdminOutboundCommEndpoint.remove(ce_obj)
...

Keyword (key)
in MC-CLI 1

1 For the meanings of the columns and abbreviations, see section “Properties” on page 313

Field name in the
GUI1

Funct.1 Property value1

desc Description c / g / m (String)

eis-partner EIS Partner cm / g / m (String)

name Name cm / g / m (String)

partner-service Partner Service cm / g / m (String)

functions BcAdminOutboundService

BeanConnect V3.0B 375

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.11 BcAdminOutboundService

The module BcAdminOutboundService contains all the functions available for configuring
and administering a Management Console outbound service object.

BcAdminOutboundService contains the functions:

● create() – Add outbound service to the configuration

● getObject() – Read outbound service object from the configuration

● getProperties() – Read properties of an outbound service

● modifyProperties() – Modify properties of an outbound service

● remove() – Remove outbound service

BcAdminOutboundService functions

376 BeanConnect V3.0B

9.4.11.1 create() – Add outbound service to the configuration

Function: BcAdminOutboundService.create()

An outbound service, whose properties you must pass to the MC-CLI in a
dictionary, is added to the configuration.

Parameters: object_name

Name of the BeanConnect outbound service.

proxy_object
(BcObject of type BcObjectType.PROXY / BcObjectType.PROXY_CLUSTER)

 Proxy or proxy cluster to which the outbound service is to be assigned.
The specification of a proxy_object of type BcObjectType.PROXY is not
permitted if the proxy belongs to a proxy cluster. In this case, the proxy cluster
object must be specified as a parameter here.

props (kw)

Dictionary with the key-value pairs for the properties that are to be assigned to
the outbound service. You can find the possible values for key in section
“Properties of an outbound service” on page 380.

Return: (BcObject of type BcObjectType.OUTBOUND_SERVICE)

The outbound service added to the configuration.

Exceptions: BcParameterException, BcObjectException, BcToolException

Example: ...
import BcAdminOutboundService
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
crPr={"desc":"created","dial-type":BcDef.TYPE DIALOG,\

"reply-timer.sec": "90"}
os_obj=BcAdminOutboundService.create("OSRV",proxy_obj,props=crPr)
...

functions BcAdminOutboundService

BeanConnect V3.0B 377

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.11.2 getObject() – Read outbound service object from the configuration

Function: BcAdminOutboundService.getObject()

Reads the specified outbound service from the configuration

Parameters: object_name

Name of the BeanConnect outbound service that is to be read.

proxy_object
(BcObject of type BcObjectType.PROXY / BcObjectType.PROXY_CLUSTER)

Proxy or proxy cluster to which the outbound service is assigned.
The specification of a proxy_object of type BcObjectType.PROXY is not
permitted if the proxy belongs to a proxy cluster. In this case, the proxy cluster
object must be specified as a parameter here.

Return: (BcObject of type BcObjectType.OUTBOUND_SERVICE)

The read outbound service or None if no outbound service with a corresponding
name exists.

Exceptions: BcObjectException, BcParameterException, BcToolException

Example: ...
import BcAdminOutboundService
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
os_obj=BcAdminOutboundService.getObject("OSRV",proxy_obj)
...

BcAdminOutboundService functions

378 BeanConnect V3.0B

9.4.11.3 getProperties() – Read properties of an outbound service

Function: BcAdminOutboundService.getProperties()

Reads all the properties of the specified outbound service and returns a dictionary
with key-value pairs for the properties.

Parameters: bc_object
(BcObject of type BcObjectType.OUTBOUND_SERVICE)

 Outbound service whose properties are to be read.

Return: Dictionary with key-value pairs for the properties of the outbound service. You can
find the possible values for key in section “Properties of an outbound service” on
page 380.

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminOutboundService
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
os_obj=BcAdminOutboundService.getObject("OSRV",proxy_obj)
os_props=BcAdminOutboundService.getProperties(os_obj)
...

functions BcAdminOutboundService

BeanConnect V3.0B 379

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.11.4 modifyProperties() – Modify properties of an outbound service

9.4.11.5 remove() – Remove outbound service

Function: BcAdminOutboundService.modifyProperties()

Modifies all the properties of the specified outbound service that is present in the
specified dictionary.

Parameters: bc_object
(BcObject of type BcObjectType.OUTBOUND_SERVICE)

 Outbound service whose properties are to be modified.

props

Dictionary with key-value pairs for the properties that are to be modified. You can
find the possible values for key in section “Properties of an outbound service” on
page 380.

Return: None

Exceptions: BcObjectException, BcParameterException, BcToolException
Example: ...

import BcAdminOutboundService
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
os_obj=BcAdminOutboundService.getObject("OSRV",proxy_obj)
modProps={"reply-timer.sec": "180"}
BcAdminOutboundService.modifyProperties(os_obj,modProps)
...

Function: BcAdminOutboundService.remove()

Removes the specified outbound service from the configuration

Parameters: bc_object
(BcObject of type BcObjectType.OUTBOUND_SERVICE)

The outbound service that is to be removed.

Return: None

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminOutboundService
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
os_obj=BcAdminOutboundService.getObject("OSRV",proxy_obj)
BcAdminOutboundService.remove (os_obj)
...

BcAdminOutboundService functions

380 BeanConnect V3.0B

9.4.11.6 Properties of an outbound service

The following table contains all the properties of an outbound service.

The meanings and values permitted for the various properties can be found in the
Management Console online help system under
Configuring BeanConnect Proxies – Outbound – Outbound services – Editing an outbound
service, General.

Keyword (key)
in MC-CLI 1

1 For the meanings of the columns and abbreviations, see section “Properties” on page 313

Field name in the
GUI1

Funct.1 Property value1

desc Description c / g / m (String)

dial-type Type cd / g BcDef.TYPE_xxx2

2 The possible values of xxx can be found in the JavaDoc (Java class BcDef) in the JavaDoc subdirectory of
the Management Console installation directory.

name Partner Service Name cm / g (String)

reply-timer.sec Reply Timer (sec) cd / g / m (String numeric)

functions BcAdminProxy

BeanConnect V3.0B 381

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.12 BcAdminProxy

The module BcAdminProxy contains all the functions available for configuring and adminis-
tering a Management Console proxy.

The module does not contain a create() function with which you can add new proxies to the
configuration. The Management Console recognizes newly installed local proxies on start-
up and adds these to the configuration automatically. Remote proxies must first be added
to the configuration via the graphical user interface.

BcAdminProxy contains the functions:

● authenticate() – Authenticate for proxy

● getAssignment() - Read the openUTM-LU62 Gateway or communication service
assigned to the proxy

● getList() – List all objects of an object type present in a proxy

● getObject() – Read proxy object from the configuration

● getProperties() – Read properties of a proxy

● modifyProperties() – Modify properties of a proxy

● perform() – Start administrative actions for a proxy

● getObject() – Remove proxy object from the configuration

● setAssignment() - Assign an openUTM-LU62 Gateway or a communication service to
the proxy

BcAdminProxy functions

382 BeanConnect V3.0B

9.4.12.1 authenticate() – Authenticate for proxy

Function: BcAdminProxy.authenticate()

You use this function to authenticate yourself in order to administer and
configure the specified proxy.

Parameters: bc_object (BcObject of type BcObjectType.PROXY)

Proxy object with which you want to authenticate yourself.

password (String)

Proxy's administration password.

Return: True

If authentication was successful:

BcParameterException

otherwise

Exceptions: BcObjectException, BcParameterException

Note: – If authentication is not successfully performed for a BcObject of type
BcObjectType.PROXY then no other function in which this object is specified as
a parameter can be executed. This also applies to the functions of other
modules, e.g. BcAdminInboundUser.create().

– If you save the proxy's administration password in the graphical user interface
then authentication is not required (see the Management Console's online help
system: Adding BeanConnect Proxies to the Management Console – Adding a
Proxy – Proxy Properties, General: Management Console Access, Admin User
Password, Use.

Example: ...
import BcAdminProxy
...
BcAdminProxy.authenticate(proxy_obj, admin_pw)
...

functions BcAdminProxy

BeanConnect V3.0B 383

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.12.2 getAssignment() - Read the openUTM-LU62 Gateway or communication service
assigned to the proxy

Function: BcAdminProxy.getAssignment()

Reads the CICS component (openUTM-LU62 Gateway or communication
service) that is assigned to the specified proxy and returns a dictionary
containing the element (name, object).

Parameters: bc_object (BcObject of type BcObjectType.PROXY)

Proxy object whose CICS component is to be read.

comp_type (String)

Type of component BcObjectType.LU62GATEWAY.toString() or
BcObjectType.COMMUNICATION_SERVICE.toString().

Return: Dictionary with one element containing the read component (name and BcObject of
type BcObjectType.LU62GATEWAY or BcObjectType.COMMUNICATION_SERVICE).

Exceptions: BcObjectException, BcParameterException

Example: ...
import BcAdminLu62Gateway
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
gw_dicn=BcAdminProxy.getAssignment(proxy_obj, "lu62gateway")
gw_name=gw_dicn.keys()[0]
gw_obj=gw_dicn[gw_name]
...

BcAdminProxy functions

384 BeanConnect V3.0B

9.4.12.3 getList() – List all objects of an object type present in a proxy

Function: BcAdminProxy.getList()

Reads all the objects of a certain type that are assigned to the proxy and returns
a dictionary with the names and objects of this type.

Parameters: bc_object (BcObject of type BcObjectType.PROXY)

Proxy whose objects of type list_type are to be listed.

list_type (String)

Type of object of which a list of all objects in the current configuration is to be
created. The following values can be specified for list_type (see also
section “Class: BcObjectType” on page 308):

String or the value of one of the following toString()
methods

"eis-partner" BcObjectType.EIS_PARTNER.toString()

"inbound-msg-
endpoint"

BcObjectType.INBOUND_MSG_ENDPOINT.
toString()

"inbound-service" BcObjectType.INBOUND_SERVICE.toString()

"inbound-user" BcObjectType.INBOUND_USER.toString()

"outbound-comm-
endpoint"

BcObjectType.OUTBOUND_COMM_ENDPOINT.
toString()

"outbound-service" BcObjectType.OUTBOUND_SERVICE.toString()

"resource-adapter" BcObjectType.RESOURCE_ADAPTER.toString()

Return: Dictionary with all the objects of this type that are assigned to this proxy and the
associated name as key.

Exceptions: BcParameterException, BcObjectException, BcToolException

Note: If the specified proxy belongs to a proxy cluster then you cannot use BcAdmin-
Proxy.getList() to read the objects configured in the proxy. They must be read
using BcAdminProxyCluster.getList().

Example: ...
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("proxy")
bcDicn=BcAdminProxy.getList(proxy_obj,"eis-partner")
...

functions BcAdminProxy

BeanConnect V3.0B 385

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.12.4 getObject() – Read proxy object from the configuration

9.4.12.5 getProperties() – Read properties of a proxy

Function: BcAdminProxy.getObject()

Reads the specified proxy from the configuration

Parameters: proxy_name (String)

Name of the BeanConnect proxy that is to be read.

Return: (BcObject of type BcObjectType.PROXY)

The read proxy or None if no proxy with a corresponding name exists.

Exceptions: BcObjectException, BcToolException

Note: Before you can use the returned object as an input parameter for other functions, you
must first perform an authentication (see the function “authenticate() – Authenticate
for proxy” on page 382).

Example: ...
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
...

Function: BcAdminProxy.getProperties()

Reads all the properties of the specified proxy and returns a dictionary with key-
value pairs for the properties.

Parameters: bc_object (BcObject of type BcObjectType.PROXY)

Proxy whose properties you want to read.

Return: Dictionary with the key-value pairs for all the properties of the proxy (see section
“Properties of a proxy” on page 390).

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminMain
import BcAdminProxy
...
bcproxies=BcAdminMain.getList("proxy")
proxy_obj=bcproxies["BCProxy"]
proxyProps=BcAdminProxy.getProperties(proxy_obj)
...

BcAdminProxy functions

386 BeanConnect V3.0B

9.4.12.6 modifyProperties() – Modify properties of a proxy

9.4.12.7 perform() – Start administrative actions for a proxy

Function: BcAdminProxy.modifyProperties()

Modifies all the properties of the specified property that are present in the
specified dictionary.

Parameters: bc_object (BcObject of type BcObjectType.PROXY)

Proxy whose properties you want to modify.

props (Dictionary)

Dictionary with the key-value pairs for the properties that are to be modified. You
can find the possible values for key in section “Properties of a proxy” on
page 390.

Return: None

Exceptions: BcObjectException, BcParameterException, BcToolException

Example: ...
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
modProps={"timer.shutdown-time.min": "2"}
BcAdminProxy.modifyProperties(proxy_obj,modProps)
...

Function: BcAdminProxy.perform()

Starts the action specified in action for the proxy.

Parameters: bc_object (BcObject of type BcObjectType.PROXY)

Proxy that is to be administered.

action (String)

Action that is to be started for the specified proxy. Possible values are (see
BcDef.ACTION_xxx in the MC-CLI-JavaDoc)

check-adm Checks the proxy's administration status.

check-avail Checks the proxy's availability. First of all the availability of
the proxy container is checked. This is followed by a check
of the proxy's components and communication partners.

restart Terminates and restarts the proxy.

save Saves the changes that have been made for this proxy in
this session.

start Starts the proxy.

stop Terminates the proxy.

functions BcAdminProxy

BeanConnect V3.0B 387

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

update-config Enters the saved changes in the configuration of the proxy.

params (kw)

Dictionary with the key-value pairs for the parameters that are to be passed to the
specified action.
If action=check-avail then the following key-value pair can be specified in the
dictionary params:

key="all-components“

value=BcDef.BOOL_TRUE
if the availability of all the components of the proxy is to be checked.
value=BcDef.BOOL_FALSE
if only the availability of the proxy container is to be checked (default).

If action=start, stop, restart or update-config, then the following key-
value pair can be specified in the dictionary params:

key = value =

all-components BcDef.BOOL_TRUE / BcDef.BOOL_FALSE

container BcDef.BOOL_TRUE / BcDef.BOOL_FALSE

communication-
service

BcDef.BOOL_TRUE / BcDef.BOOL_FALSE

lu62gateway BcDef.BOOL_TRUE / BcDef.BOOL_FALSE /
BcDef.COLDSTART (only possible for action=start)

The following meanings apply:

key="all-components“
Specifies whether the action should be performed for all components.

key=container
Specifies whether the action should be performed for the container of the proxy.

key=communication-service
Specifies whether the action should be performed for the communication service
of the proxy.

key=lu62gateway
Specifies whether the action should be performed for the openUTM-LU62
Gateway of the proxy.

value=BcDef.BOOL_TRUE
The specified action should be performed for this component of the proxy.

value=BcDef.BOOL_FALSE
The specified action should not be performed for this component of the proxy
(default).

value=BcDef.COLDSTART
The specified action should be performed as a cold start for this component of the
proxy (only permitted for action=start and key=lu62gateway).

BcAdminProxy functions

388 BeanConnect V3.0B

9.4.12.8 getObject() – Remove proxy object from the configuration

Return: (BcObject of type BcObjectType.ACTION)

Contains all information about the started action and all its subactions. To obtain
more detailed information, you can call a function of the BcAdminAction module
with this object as parameter.

Exceptions: BcParameterException, BcObjectException, BcToolException

Note: – If the proxy object belongs to a proxy cluster then the "save" action cannot be
initiated with BcAdminProxy.perform(). The modified properties are saved
directly in the modifyProperties() call or via BcAdminProxy-
Cluster.perform().

– If the proxy object belongs to a proxy cluster then the "update-config" action
cannot be initiated with BcAdminProxy.perform(). It must be initiated using
BcAdminProxyCluster.perform().

– If the key-value pair "all-components", BcDef.BOOL_TRUE is specified in
params for the actions start/stop/restart then other key-value pairs are
ignored.

Example: ...
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("proxy")
bcaction=BcAdminProxy.perform(proxy_obj,"check-avail")
...

Function: BcAdminProxy.remove()

Removes the specified proxy from the configuration.

Parameters: bc_object (BcObject of type BcObjectType.PROXY)

 Proxy object that is to be removed from the configuration.

Return: None

Exceptions: BcObjectException, BcParameterException.

Example: ...
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
BcAdminProxy.remove(proxy_obj)
..

functions BcAdminProxy

BeanConnect V3.0B 389

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.12.9 setAssignment() - Assign an openUTM-LU62 Gateway or a communication service to
the proxy

Function: BcAdminProxy.setAssignment()

Assigns a CICS component (openUTM-LU62 Gateway or communication
service) to the specified proxy cluster.

Parameters: bc_object (BcObject of type BcObjectType.PROXY)

Proxy object whose CICS component is to be assigned.

comp_type (String)

Type of component BcObjectType.LU62GATEWAY.toString() or
BcObjectType.COMMUNICATION_SERVICE.toString().

comp_obj (BcObject of type BcObjectType.LU62GATEWAY or
BcObjectType.COMMUNICATION_SERVICE)

openUTM-LU62 Gateway object or communication service object that is to be
assigned to the proxy.

Return: None

Exceptions: BcObjectException, BcParameterException

Example: ...
import BcAdminLu62Gateway
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
gw_props={"host": "bchost01", "install-path": "/opt/lib/utmlu62"}
gw_obj=BcAdminLu62Gateway.getObject(gw_props)
gw_dicn=BcAdminProxy.setAssignment(proxy_obj, "lu62gateway", gw_obj)
...

BcAdminProxy functions

390 BeanConnect V3.0B

9.4.12.10 Properties of a proxy

The following table contains all the properties of a proxy.

The meanings and values permitted for the various properties can be found in the
Management Console online help system under
Managing BeanConnect Proxies – Managing a Proxy via context menu – Editing the
properties of a proxy
and under:
Adding BeanConnect Proxies to the Management Console – Expert mode – Adding a
Proxy, Timer Settings/ Performance Settings.

Keyword (key)
in MC-CLI 1

Field name in the
GUI1

Funct.1 Property value1

admin-port MC-CmdHandler
Listener Port

g/ m (String numeric)

api-mode Application Program
Interface Mode/API Mode

g/ m c) BcDef.API_MODE_xxx 2

appl-process-title Container Application
Process Title

g/ m (String)

cluster.cluster-name (Node in navigation tree
via proxy)

g b) (String)

cluster.ip-address IP-Address g b) (String)

cluster.is-administrable Administrable g b) BcDef.ADM_STATE_xxx 2

cluster.is-master Master g b) BcDef.BOOL_xxx 2

dir Container Directory g (String)

host Host g 2 (String)

id ID g (String)

mapped-host mapped host name g f) (String)

name Name g/ m (String)

partner-type Possible EIS Partner Type g/ m c) BcDef.PTYPE_xxx 2

performance.
modify-start-par

Modify Standard Start
Parameter

g/ m c) BcDef.BOOL_xxx 2

functions BcAdminProxy

BeanConnect V3.0B 391

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

performance.nbr-par
-inb-rfc1006-conns

Number of Parallel
Connections:
InboundRfc1006

g/ m c) (String numeric)

performance.nbr-par
-inb-sock-conns

Number of Parallel
Connections:
InboundSocket

g/ m c) (String numeric)

performance.nbr-par
-inb-upic-conns

Number of Parallel
Connections:
InboundUpic

g/m c) (String numeric)

performance.nbr-par
-outb-conns

Number of Parallel
Connections:
Outbound

g c) (String numeric)

performance. proxy-
cache-size

Proxy Container Storage
Area Size: Cache

g/ m c) (String numeric)

performance.proxy-mode Proxy Container Mode
F(ast)/S(ecure) ?

g/ m c) BcDef.APPLI_MODE
_xxx 2

performance.
proxy-nbr-asyn-tasks

Number of Proxy
Container Processes:
asynTasks

g/ m c) (String numeric)

performance.
proxy-nbr-tasks

Number of Proxy
Container Processes:
tasks

g/ m c) (String numeric)

performance.
proxy-pagepool-size

Proxy Container Storage
Area Size: page pool

g/ m c) (String numeric)

port ContainerPort g (String numeric)

run-user-id ContainerRunUserID g/ m e) (String)

start-as-win-service Start as a service g/ m d) BcDef.BOOL_xxx 2

timer.asyn-conf.sec Asynch. Confirmation g/ m c) (String numeric)

timer.eis-partner -
reconnect.min

EisPartnerReconnect g/ m c) (String numeric)

timer.prep-to-commit.sec Prepare To Commit g/ m c) (String numeric)

timer.ra-check RA Check Interval g/ m c) (String numeric)

timer.ra-connect-time.sec RA Connection Time g/ m c) (String numeric)

Keyword (key)
in MC-CLI 1

Field name in the
GUI1

Funct.1 Property value1

BcAdminProxy functions

392 BeanConnect V3.0B

Notes (general)

● The password and security level can only be modified via the Management Console's
graphical user interface (e.g. it is not possible to read and modify the property Admin
User Password at the MC-CLI). To ensure secure access to the configuration, it is
advisable not to store the password permanently but to specify it each time a proxy
object is accessed. To do this, you use the function authenticate().

● The property General/Automatic Availability Check – Time Interval (sec) is not
available in MC-CLI since no automatic checks are performed in MC-CLI.

Notes on the indices a) to f) in the tables

a) The property host cannot be modified.

b) The properties are only output with the prefix "cluster." if the proxy object belongs
to a proxy cluster.

c) If the proxy object belongs to a proxy cluster then neither the properties with the
prefix "timer." and "performance." nor the properties partner-type, mapped-host
and api-mode can be modified with BcAdminProxy.modifyProperties()
These properties must be modified using BcAdminProxyCluster.modifyProp-
erties().

d) The properties start-as-win-service and win-service-name are not available for
proxies on Unix/Linux systems (they cannot be read or modified).

e) When a new proxy is added or a reinstallation is performed, the property run-user-
id must be set. Otherwise it is not possible to execute the perform() function.

f) If the proxy object belongs to a proxy cluster then the mapped-host property cannot
be modified.

timer.shutdown-time.min ShutdownTime g/ m c) (String numeric)

timer.ta-comm.sec Transaction Communi- g/ m c) (String numeric)

win-service-name Windows Service Name g d) (String)

1 For the meanings of the columns and abbreviations, see section “Properties” on page 313
2 The possible values of xxx can be found in the JavaDoc (Java class BcDef) in the JavaDoc subdirectory of

the Management Console installation directory.

Keyword (key)
in MC-CLI 1

Field name in the
GUI1

Funct.1 Property value1

functions BcAdminProxyCluster

BeanConnect V3.0B 393

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.13 BcAdminProxyCluster

The module BcAdminProxyCluster contains all the functions available for configuring and
administering a Management Console proxy cluster object.

BcAdminProxyCluster contains the functions:

● addProxy() – Add proxy to the proxy cluster

● authenticate() – Authenticate at proxy cluster

● create() – Add proxy cluster to the configuration

● getAssignment() - Read the openUTM-LU62 Gateway or communication service
assigned to the proxy cluster

● getList() – List all objects of a type in the proxy cluster

● getMasterProxy() – Read master proxy of a proxy cluster

● getObject() – Read proxy cluster object from the configuration

● getProperties() – Read properties of a proxy cluster

● modifyProperties() – Modify properties of a proxy cluster

● perform() – Start administrative actions

● remove() – Remove proxy cluster

● removeProxy() – Remove proxy from proxy cluster

● setAssignment() - Assign an openUTM-LU62 Gateway or a communication service to
the proxy cluster

● setAssignment() - Assign an openUTM-LU62 Gateway or a communication service to
the proxy cluster

BcAdminProxyCluster functions

394 BeanConnect V3.0B

9.4.13.1 addProxy() – Add proxy to the proxy cluster

Function: BcAdminProxyCluster.addProxy()

Add a standalone proxy to the specified cluster.

Parameters: bc_object (BcObject of type BcObjectType.PROXY_CLUSTER).

 Proxy cluster that is to be extended.

proxy_object (BcObject of type BcObjectType.PROXY).

Proxy that is to be added to the cluster.

Return: None

Exceptions: BcObjectException, BcParameterException BcToolException

Example: ...
import BcAdminProxyCluster
import BcAdminProxy
...
clstr_obj=BcAdminProxyCluster.getObject("BCCluster")
proxy_obj=BcAdminProxy.getObject("BCProxy")
proxyList=BcAdminProxyCluster.addProxy(clstr_obj,proxy_obj)
...

functions BcAdminProxyCluster

BeanConnect V3.0B 395

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.13.2 authenticate() – Authenticate at proxy cluster

Function: BcAdminProxyCluster.authenticate()

You can use this function to authenticate yourself in order to administer and
configure the specified proxy cluster.

Parameters: bc_object (BcObject of type BcObjectType.PROXY_CLUSTER).

Proxy cluster with which you want to authenticate yourself.

password (String)

Administration password of the proxy cluster

Return: True if authentication was successful,
BcParameterException otherwise

Exceptions: BcParameterException, BcObjectException

Note: – The master proxy's Admin User Password must be specified for the proxy
cluster.

– If authentication is not successfully performed for a BcObject of type
BcObjectType.PROXY then no other function in which this object is specified as
a parameter can be executed. This also applies to the functions of other
modules, e.g. BcAdminInboundUser.create().

– If you save the master proxy's administration password in the proxy cluster then
authentication is not required (see the Management Console's online help
system: Adding BeanConnect Proxies to the Management Console – Adding a
Proxy – Proxy Properties, General: Management Console Access, Admin User
Password, Use.

Example: ...
import BcAdminProxyCluster
...
clstr_obj=BcAdminProxyCluster.getObject("BCCluster")
clstr_aut=BcAdminProxyCluster.authenticate(clstr_obj,"BCpass")
...

BcAdminProxyCluster functions

396 BeanConnect V3.0B

9.4.13.3 create() – Add proxy cluster to the configuration

Function: BcAdminProxyCluster.create()

Adds a new proxy cluster, which contains the specified proxy as master proxy, to
the configuration.

Parameters: object_name (String)

Name of the new BeanConnect proxy cluster

proxy_object (BcObject of type BcObjectType.PROXY)

Proxy that is to be the master proxy of the proxy cluster.

props

Dictionary with the key-value pairs for the properties that are to be assigned to
the proxy cluster. You can find the possible values for key in section “Properties
of a proxy cluster” on page 406.

Return: (BcObject of type BcObjectType.PROXY_CLUSTER)

The proxy cluster added to the configuration.

Exceptions: BcParameterException, BcObjectException, BcToolException

Note: Before you can use the returned object as an input parameter for other functions, you
must first perform an authentication (see the function authenticate()).

Example: ...
import BcAdminProxyCluster
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
clstr_obj=BcAdminProxyCluster.create("BCCluster",proxy_obj)
...

functions BcAdminProxyCluster

BeanConnect V3.0B 397

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.13.4 getAssignment() - Read the openUTM-LU62 Gateway or communication service
assigned to the proxy cluster

Function: BcAdminProxyCluster.getAssignment()

Reads the CICS component (openUTM-LU62 Gateway or communication
service) that is assigned to the specified proxy cluster and returns a dictionary
containing the element (name, object).

Parameters: bc_object (BcObject of type BcObjectType.PROXY_CLUSTER)

Proxy cluster object whose CICS component is to be read.

comp_type (String)

Type of component BcObjectType.LU62GATEWAY.toString() or
BcObjectType.COMMUNICATION_SERVICE.toString().

Return: Dictionary with one element containing the read component (name and BcObject of
type BcObjectType.LU62GATEWAY or
BcObjectType.COMMUNICATION_SERVICE).

Exceptions: BcObjectException, BcParameterException

Note: The relevant component of the master proxy is read. It is possible that other compo-
nents are assigned to other proxies in this cluster. These can be read using the proxy
function getAssignment() in BcAdminProxy.

Example: ...
import BcAdminLu62Gateway
import BcAdminProxyCluster
...
clstr_obj=BcAdminProxyCluster.getObject("BCCluster")
gw_dicn=BcAdminProxyCluster.getAssignment(clstr_obj, "lu62gateway")
gw_name=gw_dicn.keys()[0]
gw_obj=gw_dicn[gw_name]
...

BcAdminProxyCluster functions

398 BeanConnect V3.0B

9.4.13.5 getList() – List all objects of a type in the proxy cluster

Function: BcAdminProxyCluster.getList()

Reads all the objects of a certain type that are assigned to the proxy cluster and
returns a dictionary with the names and objects of this type.

Parameters: bc_object (BcObject of type BcObjectType.PROXY_CLUSTER).

Proxy cluster for which the objects of the specified cluster are to be listed.

list_type (String)

Type of object of which a list of all objects in the current configuration is to be
created. The following values can be specified for list_type (see also section
“Class: BcObjectType” on page 308):

String or the value of one of the following toString() methods

"eis-partner" BcObjectType.EIS_PARTNER.toString()

"inbound-msg
-endpoint"

BcObjectType.INBOUND_MSG_ENDPOINT.toString(
)

"inbound-service" BcObjectType.INBOUND_SERVICE.toString()

"inbound-user" BcObjectType.INBOUND_USER.toString()

"outbound-comm
-endpoint"

BcObjectType.OUTBOUND_COMM_ENDPOINT.
toString()

"outbound-service" BcObjectType.OUTBOUND_SERVICE.toString()

"proxy" BcObjectType.PROXY.toString()

"resource
-adapter"

BcObjectType.RESOURCE_ADAPTER.toString()

Return: Dictionary with all the objects of this type that are assigned to this proxy cluster and
the associated name as key.

Exceptions: BcObjectException, BcParameterException, BcToolException

Example: ...
import BcAdminProxyCluster
...
clstr_obj=BcAdminProxyCluster.getObject("BCCluster")
proxyList=BcAdminProxyCluster.getList(clstr_obj,"proxy")
...

functions BcAdminProxyCluster

BeanConnect V3.0B 399

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.13.6 getMasterProxy() – Read master proxy of a proxy cluster

9.4.13.7 getObject() – Read proxy cluster object from the configuration

Function: BcAdminProxyCluster.getMasterProxy()

Returns the master proxy of the proxy cluster.

Parameters: bc_object (BcObject of type BcObjectType.PROXY_CLUSTER)

Proxy cluster whose master proxy is to be read.

Return: (BcObject of type BcObjectType.PROXY).

Master proxy of e proxy cluster

Exceptions: BcObjectException, BcParameterException, BcToolException

Example: ...
import BcAdminProxyCluster
...
clstr_obj=BcAdminProxyCluster.getObject("BCCluster")
m_proxy_obj=BcAdminProxyCluster.getMasterProxy(clstr_obj)
...

Function: BcAdminProxyCluster.getObject()

Reads the proxy cluster with the specified name from the configuration

Parameters: cluster_name (String)

Name of the BeanConnect proxy cluster that is to be read.

Return: (BcObject of type BcObjectType.PROXY_CLUSTER).

The read proxy cluster or None if no proxy cluster with a corresponding name
exists.

Exceptions: BcObjectException, BcToolException

Note: Before you can use the returned object as a call parameter for other functions, you
must first perform an authentication (see the function authenticate).

Example: ...
import BcAdminProxyCluster
...
clstr_obj=BcAdminProxyCluster.getObject("BCCluster")
...

BcAdminProxyCluster functions

400 BeanConnect V3.0B

9.4.13.8 getProperties() – Read properties of a proxy cluster

9.4.13.9 modifyProperties() – Modify properties of a proxy cluster

Function: BcAdminProxyCluster.getProperties()

Reads all the properties of the specified proxy cluster and returns a dictionary
with key-value pairs for the properties. You can find the possible values for key
in section “Properties of a proxy cluster” on page 406.

Parameters: bc_object (BcObject of type BcObjectType.PROXY_CLUSTER).

Proxy cluster whose properties are to be read.

Return: Dictionary with the key-value pairs for all the properties of the proxy cluster.

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminProxyCluster
...
clstr_obj=BcAdminProxyCluster.getObject("BCCluster")
clusterProps=BcAdminProxyCluster.getProperties(clstr_obj)
...

Function: BcAdminProxyCluster.modifyProperties()

Modifies the properties of the specified proxy cluster. You must pass the new
values of the properties that are to be modified to the function in a dictionary.

Parameters: bc_object (BcObject of type BcObjectType.PROXY_CLUSTER).

Proxy cluster whose properties are to be modified.

props

Dictionary with the key-value pairs for the properties that are to be modified. You
can find the possible values for key in section “Properties of a proxy cluster” on
page 406.

Return: None

Exceptions: BcObjectException, BcParameterException BcToolException

Example: ...
import BcAdminProxyCluster
...
modProps={"timer.shutdown-time.min": "2"}
clstr_obj=BcAdminProxyCluster.getObject("BCCluster")
BcAdminProxyCluster.modifyProperties(clstr_obj,modProps)
...

functions BcAdminProxyCluster

BeanConnect V3.0B 401

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.13.10 perform() – Start administrative actions

Function: BcAdminProxyCluster.perform()

Starts a given action for the proxy cluster.

Parameters: bc_object (BcObject of type BcObjectType.PROXY_CLUSTER).

Proxy cluster for which the action is to be started.

action (String)

Action that is to be started for the specified proxy. Possible values are (see
BcDef.ACTION_xxx in the MC-CLI-JavaDoc)

check-adm Checks the proxy cluster's administration status.

check-avail Checks the proxy cluster's execution status.

restart Terminates and restarts the proxy cluster.

save Saves the changes that have been made for this proxy
cluster in the current session.

start Starts the proxy cluster.

stop Terminates the proxy cluster.

update-config Enters the saved changes in the configuration of the proxy
cluster.

params (kw)

Dictionary with the key-value pairs for the parameters that are to be passed to the
specified action.

If action=start, stop, restart or update-config, then the following key-
value pair can be specified in the dictionary params:

key = value =

all-components BcDef.BOOL_TRUE / BcDef.BOOL_FALSE

container BcDef.BOOL_TRUE / BcDef.BOOL_FALSE

communication-
service

BcDef.BOOL_TRUE / BcDef.BOOL_FALSE

force-start BcDef.BOOL_TRUE / BcDef.BOOL_FALSE
(only possible for action=restart)

lu62gateway BcDef.BOOL_TRUE / BcDef.BOOL_FALSE /
BcDef.COLDSTART (only possible for action=start)

The following meanings apply:

key="all-components“
Specifies whether the action should be performed for all components.

key=container
Specifies whether the action should be performed for the container of the proxy
cluster.

BcAdminProxyCluster functions

402 BeanConnect V3.0B

key=communication-service
Specifies whether the action should be performed for the communication service
of the proxy cluster.

key=force-start
Specifies whether the components of the proxy cluster that are not currently
running should also be started.

key=lu62gateway
Specifies whether the action should be performed for the openUTM-LU62
Gateway of the proxy cluster.

value=BcDef.BOOL_TRUE
The specified action should be performed for this component of the proxy cluster.

value=BcDef.BOOL_FALSE
The specified action should not be performed for this component of the proxy
cluster (default).

value=BcDef.COLDSTART
The specified action should be performed as a cold start for this component of the
proxy cluster (only permitted for action=start and key=lu62gateway).

Return: (BcObject of type BcObjectType.ACTION).

– Contains all information about the started action and all its subactions. To obtain
more detailed information, you can call a function of the BcAdminAction module
with this object as parameter.

– None if the action was not started (e.g. if there is nothing to save on a save
action).

Exceptions: BcParameterException, BcObjectException, BcToolException

Note: – In the case of action=start, stop, restart, it may first be necessary to
perform an authentication for all proxies as otherwise the action cannot be
started for the proxies.

– If the key-value pair all-components, BcDef.BOOL_TRUE is specified in
params for the actions start/stop/restart/update-config then other key-
value pairs are ignored.

Example: ...
import BcAdminProxyCluster
...
clstr_obj=BcAdminProxyCluster.getObject("BCCluster")
bcaction=BcAdminProxyCluster.perform(clstr_obj,"stop")
...

functions BcAdminProxyCluster

BeanConnect V3.0B 403

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.13.11 remove() – Remove proxy cluster

9.4.13.12 removeProxy() – Remove proxy from proxy cluster

Function: BcAdminProxyCluster.remove()

Removes the specified proxy cluster from the configuration.

Parameters: bc_object (BcObject of type BcObjectType.PROXY_CLUSTER).

Proxy cluster that is to be removed.

Return: None

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminProxyCluster
...
clstr_obj=BcAdminProxyCluster.getObject("BCCluster")
BcAdminProxyCluster.remove(clstr_obj)
...

Function: BcAdminProxyCluster.removeProxy()

Removes the specified proxy from the proxy cluster and enters it in the list of
individual (standalone) proxies.

Parameters: bc_object (BcObject of type BcObjectType.PROXY_CLUSTER).

Proxy cluster in which the proxy is to be removed.

proxy_object (BcObject of type BcObjectType.PROXY).

Proxy that is to be removed from the cluster.

Return: None

Exceptions: BcObjectException, BcParameterException, BcToolException

Note: – If the specified proxy is the master proxy and the proxy cluster contains further
proxies then the function call is rejected.

– When the last proxy is removed from a cluster then the proxy cluster is also
automatically removed.

Example: ...
import BcAdminProxyCluster
import BcAdminProxy
...
clstr_obj=BcAdminProxyCluster.getObject("BCCluster")
proxy_dicn=BcAdminProxyCluster.getList(clstr_obj, "proxy")
proxy_obj=proxy_dicn["BCProxy"]
BcAdminProxyCluster.removeProxy(clstr_obj,proxy_obj)
...

BcAdminProxyCluster functions

404 BeanConnect V3.0B

9.4.13.13 setAssignment() - Assign an openUTM-LU62 Gateway or a communication service to
the proxy cluster

Function: BcAdminProxyCluster.setAssignment()

Assigns a CICS component (openUTM-LU62 Gateway or communication
service) to the specified proxy cluster.

Parameters: bc_object (BcObject of type BcObjectType.PROXY_CLUSTER)

Proxy cluster object whose CICS component is to be assigned.

comp_type (String)

Type of component BcObjectType.LU62GATEWAY.toString() or
BcObjectType.COMMUNICATION_SERVICE.toString().

comp_obj (BcObject of type BcObjectType.LU62GATEWAY or
BcObjectType.COMMUNICATION_SERVICE)

openUTM-LU62 Gateway object or communication service object that is to be
assigned to the proxy cluster.

Return: None

Exceptions: BcObjectException, BcParameterException

Note: If a CICS component is assigned to a proxy cluster then the CICS component is
implicitly assigned to the master proxy and to all other proxies in the cluster to which
no CICS component of this type is as yet assigned. All proxies in the cluster to which
a CICS component of this type is already explicitly assigned retain this assignment.

Example: ...
import BcAdminLu62Gateway
import BcAdminProxyCluster
...
clstr_obj=BcAdminProxyCluster.getObject("BCCluster")
gw_props={"host": "bchost01", "install-path": "/opt/lib/utmlu62"}
gw_obj=BcAdminLu62Gateway.getObject(gw_props)
gw_dicn=BcAdminProxy.setAssignment(clstr_obj, "lu62gateway", gw_obj)
...

functions BcAdminProxyCluster

BeanConnect V3.0B 405

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.13.14 setMasterProxy() – Change master proxy of a proxy cluster

Function: BcAdminProxyCluster.setMasterProxy()

Sets another proxy as the master proxy of the proxy cluster.

Parameters: bc_object (BcObject of type BcObjectType.PROXY_CLUSTER)

Proxy cluster in which the proxy is to become the new master proxy.

proxy_object (BcObject of type BcObjectType.PROXY).

Proxy that is to be the new master proxy of the proxy cluster.

Return: None

Exceptions: BcObjectException, BcParameterException, BcToolException

Example: ...
import BcAdminProxyCluster
import BcAdminProxy
...
clstr_obj=BcAdminProxyCluster.getObject("BCCluster")
proxy_dicn=BcAdminProxyCluster.getList(clstr_obj, "proxy")
new_mproxy_obj=proxy_dicn["BCProxy"]
BcAdminProxyCluster.setMasterProxy(clstr_obj, new_mproxy_obj)
...

BcAdminProxyCluster functions

406 BeanConnect V3.0B

9.4.13.15 Properties of a proxy cluster

The following table contains all the properties of a proxy cluster.

The meanings and values permitted for the various properties can be found in the
Management Console online help system under
BeanConnect Proxy Clusters – Configuring Proxy Clusters – Proxy Clusters, Properties
and under:
Adding BeanConnect Proxies to the Management Console – Expert mode – Adding a
Proxy, Timer Settings/ Performance Settings.

Keyword (key)
in MC-CLI 1

Field name in the
GUI1

Funct.1 Property value1

api-mode Application Interface
Mode/API Mode

cd / g / m BcDef.API_MODE_
xxx2

id ID g (String)

name Name cm / g / m (String)

partner-type Possible EIS Partner Types cd / g / m BcDef.PTYPE_xxx2

performance. modify-
start-par

Modify Standard Start
Parameter

cd / g / m BcDef.BOOL_xxx2

performance. nbr-par -
inb-rfc1006-conns

Number of Parallel Connec-
tions: InboundRfc1006

cd / g / m (String numeric)

performance.
nbr-par-inb-sock-conns

Number of Parallel Connec-
tions: InboundSocket

cd / g / m (String numeric)

performance.
nbr-par-inb-upic-conns

Number of Parallel Connec-
tions: InboundUpic

cd / g / m (String numeric)

performance.
nbr-par-outb-conns

Number of Parallel Connec-
tions: Outbound

g (String numeric)

performance.
proxy-cache-size

Proxy Container Storage
Area Size: Cache

cd / g / m (String numeric)

performance. proxy-mode Proxy Container Mode
F(ast)/S(ecure)

cd / g / m BcDef.APPLI_MOD
E_xxx2

functions BcAdminProxyCluster

BeanConnect V3.0B 407

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

i The property "General/Automatic Availability Check – Time Interval (sec)" is not
available in MC-CLI since no automatic checks are performed in the MC-CLI.

performance.
proxy-nbr-asyn-tasks

Number of Proxy Container
Processes: asynTasks

cd / g / m (String numeric)

performance. proxy-nbr-
tasks

Number of Proxy Container
Processes: tasks

cd / g / m (String numeric)

performance.
proxy-pagepool-size

Proxy Container Storage
Area Size: page pool

cd / g / m (String numeric)

timer.asyn-conf.sec Asynch. Confirmation cd / g / m (String numeric)

timer.eis-partner
-reconnect.min

EisPartnerReconnect cd / g / m (String numeric)

timer.prep-to
-commit.sec

Prepare To Commit cd / g / m (String numeric)

timer.ra-check-
interval.sec

Resource Adapter Check
Interval

cd / g / m (String numeric)

timer.ra-connect
-time.sec

Resource Adapter Connec-
tionTime

cd / g / m (String numeric)

timer.shutdown
-time.min

ShutdownTime cd / g / m (String numeric)

timer.ta-comm.sec Transaction Communication cd / g / m (String numeric)

1 For the meanings of the columns and abbreviations, see section “Properties” on page 313
2 The possible values of xxx can be found in the JavaDoc (Java class BcDef) in the JavaDoc subdirectory of

the Management Console installation directory.

Keyword (key)
in MC-CLI 1

Field name in the
GUI1

Funct.1 Property value1

BcAdminRA functions

408 BeanConnect V3.0B

9.4.14 BcAdminRA

The module BcAdminRa contains all the functions available for configuring and administering
a Management Console resource adapter object.

BcAdminRA contains the functions:

● create() – Add resource adapter to the configuration

● getObject() – Read resource adapter object from the configuration

● getProperties() – Read properties of a resource adapter

● modifyProperties() – Modify properties of a resource adapter

● perform() – Start administrative actions

functions BcAdminRA

BeanConnect V3.0B 409

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.14.1 create() – Add resource adapter to the configuration

Function: BcAdminRA.create()

A resource adapter is added to the configuration. You must pass the properties
of the resource adapter to the MC-CLI in a dictionary.

Parameters: object_name (String)

Name des BeanConnect resource adapter that is to be added to the configu-
ration.

proxy_object
(BcObject of type BcObjectType.PROXY / BcObjectType.PROXY_CLUSTER)

Proxy or proxy cluster to which the resource adapter is to be assigned.

props (kw)

Dictionary with the key-value pairs for the properties that are to be assigned to
the resource adapter. You can find the possible values for key in section
“Properties of a resource adapter” on page 414. The property host must be
specified.

Return: (BcObject of type BcObjectType.RESOURCE_ADAPTER)

The resource adapter added to the configuration.

Exceptions: BcParameterException, BcObjectException, BcToolException

Note: The specification of a proxy_object of type BcObjectType.PROXY is only
permitted if the proxy does not belong to a proxy cluster. In the case of proxies
belonging to a cluster, the proxy cluster object must be specified as a parameter here.

Example: ...
import BcAdminRA
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
creProps ={"host":"xyz","port-inbound":"1234","desc": "created",\

"ta-logging": BcDef.TA_LOGGING_NONE}
newRA=BcAdminRA.create("test-RA",proxy_obj,creProps)
...

BcAdminRA functions

410 BeanConnect V3.0B

9.4.14.2 getObject() – Read resource adapter object from the configuration

Function: BcAdminRA.getObject()

Reads the resource adapter with the specified name from the configuration

Parameters: object_name (String)

Name of the BeanConnect resource adapter that is to be read.

proxy_object
(BcObject of type BcObjectType.PROXY / BcObjectType.PROXY_CLUSTER)

Proxy or proxy cluster to which the resource adapter is assigned.
The specification of a proxy_object of type BcObjectType.PROXY is only
permitted if the proxy does not belong to a proxy cluster. In the case of proxies
belonging to a cluster, the proxy cluster object must be specified as a parameter
here.

Return: (BcObject of type BcObjectType.RESOURCE_ADAPTER).

The read resource adapter or None if no resource adapter with a corresponding
name exists.

Exceptions: BcObjectException, BcParameterException, BcToolException

Example: ...
import BcAdminRA
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
ra_obj=BcAdminRA.getObject("test-RA".proxy_obj)
...

functions BcAdminRA

BeanConnect V3.0B 411

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.14.3 getProperties() – Read properties of a resource adapter

Function: BcAdminRa.getProperties()

Reads all the properties of the specified resource adapter and returns a dictionary
with key-value pairs for the properties. You can find the possible values for key in
section “Properties of a resource adapter” on page 414.

Parameters: bc_object (BcObject of type BcObjectType.RESOURCE_ADAPTER).

Resource adapter whose properties are to be read.

Return: Dictionary with the key-value pairs for all the properties of the resource adapter.

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminRA
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
ra_obj=BcAdminRA.getObject("test-RA", proxy_obj)
raProps=BcAdminRA.getProperties(ra_obj)
...

BcAdminRA functions

412 BeanConnect V3.0B

9.4.14.4 modifyProperties() – Modify properties of a resource adapter

Function: BcAdminRa.modifyProperties()

Modifies all the properties of the specified resource adapter that are present in
the specified dictionary.

Parameters: bc_object (BcObject of type BcObjectType.RESOURCE_ADAPTER).

Resource adapter whose properties are to be modified.

props

Dictionary with the key-value pairs for the properties that are to be modified. For
possible values of key, see section “Properties of a resource adapter” on
page 414

Return: None

Exceptions: BcObjectException, BcParameterException, BcToolException
Example: ...

import BcAdminRA
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
ra_obj=BcAdminRA.getObject("test-RA", proxy_obj)
modProps={"desc":"modified"}
BcAdminRA.modifyProperties(ra_obj,modProps)
...

functions BcAdminRA

BeanConnect V3.0B 413

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.14.5 perform() – Start administrative actions

Function: BcAdminRA.perform()

Starts the specified action for the resource adapter.

Parameters: bc_object (BcObject of type BcObjectType.RESOURCE_ADAPTER).

Resource adapter for which the action is to be started.

action (String)

Action that is to be started for the specified resource adapter. Possible values are
(see BcDef.ACTION_xxx)

check-avail Checks the resource adapter's execution status.

update-ra-xml Enters the saved changes in the configuration of the
resource adapter.

params (kw) (Dictionary)

Dictionary with the key-value pairs for the parameters that are to be passed to the
specified action.
If action="update-ra-xml" then the following key-value pair must be specified
in the dictionary params:
key="rar-file-path"
value= Name of the resource adapter rar file in which the changes to the config-
uration are to be entered.

Return: For action="update-ra-xml":
True (boolean) if update has been initiated, otherwise BcToolException.
For action="check-avail":
bcaction (BcObject of type BcObjectType.ACTION)
containing all the information about the started action and all its subactions. To obtain
more detailed information, you can call a function of the BcAdminAction module with
this object as parameter.

Exceptions: BcObjectException, BcParameterException, BcToolException

Example: ...
import BcAdminRA
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
ra_obj=BcAdminRA.getObject("test-RA", proxy_obj)
bcaction=BcAdminRA.perform(ra_obj,"check-avail")
...

BcAdminRA functions

414 BeanConnect V3.0B

9.4.14.6 remove() – Remove resource adapter

9.4.14.7 Properties of a resource adapter

The following table contains all the properties of a resource adapter.

The meanings and values permitted for the various properties can be found in the
Management Console online help system under
Configuring BeanConnect Proxies - Resource Adapters - Resource Adapter, Properties.

Function: BcAdminRA.remove()

Removes the specified resource adapter from the configuration.

Parameters: bc_object (BcObject of type BcObjectType.RESOURCE_ADAPTER).

Resource adapter that is to be removed.

Return: None

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminRA
import BcAdminProxy
...
proxy_obj=BcAdminProxy.getObject("BCProxy")
ra_obj=BcAdminRA.getObject("test-RA", proxy_obj)
BcAdminRA.remove(ra_obj)
...

Keyword (key) in
MC-CLI1

Field name in the GUI1 Funct. in
standalone
proxy1

Funct. in
proxy cluster
1

Property value1

admin-port McCmdHandlerPort c / g / m c / g / m (String numeric)

admin-pw McCmdHandler
Password

c / m c / m (String)

desc Description c / g / m - (String)

host Host cm / g / m cm / g / m (String)

id ID g - (String numeric)

index Index g - (String numeric)

log4j-config-
file-path

Log4J Configuration
File Path

c / g / m c / g / m (String)

name Name cd / g / m c / g (String)

functions BcAdminRA

BeanConnect V3.0B 415

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

i If the properties proxy-reconnect-count, proxy-reconnect-interval.min, or ta-
log-dir, ta-logging are modified for a resource adapter that belongs to a proxy
cluster then all the resource adapters in this cluster are synchronized automatically
when the change is saved.

port-inbound Listener Port c / g / m c / g / m (String numeric)

proxy-
reconnect-count

ProxyReconnectCount – c / g / m(s) (String numeric)

proxy-
reconnect-
interval.min

ProxyReconnect
Interval

– c / g / m(s) (String numeric)

proxy-url-
outbound

Proxy URL for OLTP
Outbound Communi-
cation

g - (String)

ta-log-dir TransactionLoggingDir cd / g / m c / g / m(s) (String)

ta-logging TransactionLogging cd / g / m c / g / m(s) BcDef.TA_LOGGIN
G_xxx 2

1 For the meanings of the columns and abbreviations, see section “Properties” on page 313
2 The possible values of xxx can be found in the JavaDoc (Java class BcDef) in the JavaDoc subdirectory of

the Management Console installation directory.

Keyword (key) in
MC-CLI1

Field name in the GUI1 Funct. in
standalone
proxy1

Funct. in
proxy cluster
1

Property value1

BcAdminTodo functions

416 BeanConnect V3.0B

9.4.15 BcAdminTodo

The module BcAdminTodo contains all the functions available for configuring and adminis-
tering a Management Console todo topic object. Because todo topics do not have a name
via which they can be addressed, they can only be read via the list function
BcAdminMain.getList(BcObjectType.TODO.toString()).

BcAdminTodo contains the functions:

● getProperties() – Read properties of a todo topic

● remove() – Delete todo topic

functions BcAdminTodo

BeanConnect V3.0B 417

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.4.15.1 getProperties() – Read properties of a todo topic

9.4.15.2 remove() – Delete todo topic

Function: BcAdminTodo.getProperties()

Reads all the properties of the specified todo topic and returns a dictionary with
key-value pairs for the properties.

Parameters: bc_object (BcObject of type BcObjectType.TODO)

 The todo topic whose properties are to be read.

Return: Dictionary with the key-value pairs for all the properties of the todo topic. You can find
the possible values for key in section “Properties of a todo topic” on page 418.

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminTodo
...
todoProps=BcAdminTodo.getProperties(elem)
...

Function: BcAdminTodo.remove()

Deletes the specified todo topic from the configuration.

Parameters: bc_object (BcObject of type BcObjectType.TODO)

The todo topic that is to be deleted.

Return: None

Exceptions: BcObjectException, BcToolException

Example: ...
import BcAdminTodo
...
BcAdminTodo.remove(elem)
...

BcAdminTodo functions

418 BeanConnect V3.0B

9.4.15.3 Properties of a todo topic

The following table contains all the properties of a todo topic.

The meanings and values permitted for the various properties can be found in the
Management Console online help system under
Todo Topics – Todo Topic, Properties.

Keyword (key)
in MC-CLI 1

1 For the meanings of the columns and abbreviations, see section “Properties” on page 313

Field name in the
GUI1

Funct. 1 Property value1

comm-service Communication Service g (String)

components Component(s) g (String)

eis-partner EIS Partner g (String)

internal Internal g BcDef.BOOL_xxx2

2 The possible values of xxx can be found in the JavaDoc (Java class BcDef) in the JavaDoc subdirectory of
the Management Console installation directory.

lu62gateway openUTM-LU62
Gateway

g (String)

proxy Proxy g (String)

proxy-cluster Proxy cluster g (String)

related-file-name Related Configuration
File Name

g (String)

text Text g (String)

time Time g (String)

Command Line Interface (MC-CLI) Application scenarios (examples)

BeanConnect V3.0B 419

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.5 Application scenarios (examples)

This section describes the procedure to be followed for different application scenarios. It
describes the configuration for both outbound and inbound communication with an
openUTM application. In addition, you will also find examples of administrative activities
that you can automate by means of a script and a list of sample Jython scripts that are
supplied together with BeanConnect.

i Before configuration can be performed via the MC-CLI, either a local proxy must be
installed or a remote proxy must be added via the Management Console's graphical
user interface.

9.5.1 Configuring outbound communication with an openUTM application

Figure 59: Configuring outbound communication with an openUTM application

To configure outbound configuration with an openUTM application, you must call the
following MC-CLI functions in the specified order in a Jython script. You will find an example
of the configuration of outbound communication in the supplied Jython sample script
sampleAdminOutbound.py located in the directory cli-sample.

1. BcAdminMain.init()
Call the function BcAdminMain.init(<MC_home>) to start a Management Console
session.

The Management Console automatically recognizes an installed local proxy and opens
the corresponding configuration file console.properties.xml or creates this if it does
not already exist.

openUTM
OLTP

Application server

EJB
application

BeanConnect

Resource
adapter

BeanConnect
Proxy

OSI TP

Connection

MC-CLI
Jython

script

Application scenarios (examples) Command Line Interface (MC-CLI)

420 BeanConnect V3.0B

2. BcAdminMain.getlist() / BcAdminProxy.getObject()
Read the list of all configured proxies using BcAdminMain.getList(“proxy“) or use
BcAdminProxy.getObject(<proxy_name>) to read a specific proxy object.

You can use the values returned by the calls as the call parameter <bcproxy> in the calls
listed in points 3 to 8.

3. BcAdminProxy.authenticate()
Authenticate yourself with the proxy by calling
BcAdminProxy.authenticate(<bcproxy>, admin_pw).

4. BcAdminProxy.modifyProperties()
Configure the proxy by calling the function
BcAdminProxy.modifyProperties(<bcproxy>, properties) with the desired property
values in your script.

5. BcAdminEisPartner.create()
Define one (or more) EIS system(s) by calling the function
BcAdminEisPartner.create(<eisPartnerName>,<bcproxy> , properties) (multiple
times if necessary).

6. BcAdminOutboundService.create()
Define one (or more) outbound service(s) by calling the function
BcAdminOutboundService.create(<remoteTacName>,<bcproxy>, properties)
(multiple times if necessary).

7. BcAdminOutboundCommEndpoint.create()
Define one (or more) outbound communication endpoint(s) by calling the function
BcAdminOutboundCommEndpoint.create
(<communicationEndpointName>,<bcproxy>, properties) (multiple times if
necessary).

8. BcAdminProxy.perform()
Save and update the proxy configuration using the functions
BcAdminProxy.perform(<bcproxy>, "save") and
BcAdminProxy.perform(<bcproxy>, "update-config").

9. BcAdminEisPartner.perform()
Call the function BcAdminEisPartner.perform(<eisPartner>, "gen-config") to save
the configuration of the EIS partner(s).

10. BcAdminMain.close()
Call the function BcAdminMain.close() to terminate the Management Console session.

Command Line Interface (MC-CLI) Application scenarios (examples)

BeanConnect V3.0B 421

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.5.2 Configuring inbound communication with an openUTM application

Figure 60: Configuring inbound communication with an openUTM application

For the existing proxy configuration from section “Configuring outbound communication
with an openUTM application” on page 419, it is also possible to call a script to configure
inbound communication. You will find an example of the configuration of inbound commu-
nication in the supplied Jython sample script sampleAdminInbound.py located in the
directory cli-sample.

1. BcAdminMain.init()
Call the function BcAdminMain.init(<MC_home>) to start a Management Console
session.

The Management Console reads the configuration file console.properties.xml and
uses the configuration described above

2. BcAdminMain.getlist() / BcAdminProxy.getObject()
Read the list of all configured proxies using BcAdminMain.getList(“proxy“) or use
BcAdminProxy.getObject(<proxy_name>) to read a specific proxy object.

3. BcAdminProxy.authenticate()
Authenticate yourself with the proxy by calling
BcAdminProxy.authenticate(<bcproxy>, admin_pw).

4. BcAdminRA.create()
Define one (or more) resource adapters by calling the function
BcAdminRA.create(<resourceAdapterName>,<bcproxy>, properties) (multiple times
if necessary).

openUTM
OLTP applications

Application server

MDB
BeanConnect

Resource
adapter

OSI TPBeanConnect
Proxy Connection

MC-CLI
Jython

script

Application scenarios (examples) Command Line Interface (MC-CLI)

422 BeanConnect V3.0B

5. BcAdminInboundMsgEndpoint.create()
Set up one (or more) inbound message endpoint(s) by calling the function BcAdminIn-
boundMsgEndpoint.create(<messageEndpointName>, <bcproxy>, properties)
(multiple times if necessary).

6. BcAdminInboundUser.create()
If the EIS partner makes use of partner users, define one (or more) inbound user(s) by
calling the function BcAdminInboundUser.create(<userName>, <bcproxy>,
properties) (multiple times if necessary).

7. BcAdminInboundService.modifyProperties()
Define the properties of the corresponding UTM transaction code by calling the function
BcAdminInboundService.modifyProperties (<InboundService>, properties)
(multiple times if necessary).

8. BcAdminProxy.perform()
Save and update the proxy configuration using the functions
BcAdminProxy.perform(<bcproxy>, "save") and
BcAdminProxy.perform(<bcproxy>, "update-config").

9. BcAdminRA.perform()
Call the function BcAdminRa.perform(<resourceAdapter>,"update-ra-xml", params)
to save the configuration of the resource adapter(s).

10. BcAdminMain.close()
Call the function BcAdminMain.close() to terminate the Management Console session.

9.5.3 Administer proxies

When administering proxy components, it is possible to imagine various application
scenarios in which the use of scripts is more convenient than administration via the
Management Console GUI. Examples of this are:

● All the proxies, or all the proxies running on a given host, are to be shut down or
restarted, for example in order to update the configuration.

● The reply timer is to be deactivated for all inbound message endpoints of type=dialog,
for example due to network problems.

● Once the network problems have been resolved, the reply timer is to be set to the
default value once again.

Command Line Interface (MC-CLI) Application scenarios (examples)

BeanConnect V3.0B 423

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.5.4 Jython sample scripts

Jython sample scripts are supplied with the Management Console. These scripts output the
existing objects of the corresponding type together with their properties. It is also possible
to create, modify or delete new test objects. The names of the test objects begin with "test"
or "TEST". Actions (status query, start, stop) are started depending on the configuration.

When the Management Console has been installed, the following scripts are available in
the subdirectory cli-sample of the Management Console installation directory:

● startBcAdmin.cmd (for Windows platforms) or startBcAdmin.sh (for Unix/Linux
platforms) – start script.

startBcAdmin.cmd or startBcAdmin.sh calls the script sampleMccliStart.py.

● sampleMccliStart.py - Start Jython script from which the required sample scripts are
called depending on the specified options.

● sampleAdminCommService.py - Jython script with functions for the module
BcAdminCommunicationService.

● sampleAdminEisPartner.py – Jython script with functions for the module
BcAdminEisPartner.

● sampleAdminInbound.py – Jython script with functions for the modules
BcAdminInboundUser, BcAdminInboundService, BcAdminInboundMsgEndpoint.

● sampleAdminLu62Gateway.py - Jython script with functions for the module
BcAdminLu62Gateway.

● sampleAdminMain.py – Jython script with functions for the modules BcAdminMain and
BcAdminTodo.

● sampleAdminProxy.py – Jython script with functions for the module BcAdminProxy.

● sampleAdminProxyCluster.py – Jython script with functions for the module
BcAdminProxyCluster.

● sampleAdminRa.py – Jython script with functions for the module BcAdminRA.

● sampleAdminOutbound.py – Jython script with functions for the modules
BcAdminOutboundService, BcAdminOutboundCommEndpoint.

● sampleInitConfig.template.py - Template for adapting the configuration data and the
required scope of the samples.

Application scenarios (examples) Command Line Interface (MC-CLI)

424 BeanConnect V3.0B

Using the Jython sample scripts

Perform the sequence of steps described below:

Ê In the start script startBcAdmin.cmd or startBcAdmin.sh, set the environment variable
JYTHONPATH.

Ê Create an overwritable copy of sampleInitConfig.template.py with the name sample-
InitConfig.py. This file must always be located in the directory containing the scripts
(default after installation: cli-sample). It is used by all the Jython sample scripts.

Ê Adapt the configuration file sampleInitConfig.py , see section "Editing the configu-
ration file".

Ê Call the start script StartBcAdmin.cmd/sh, see section "Calling the start script". When
you do this, use the call options to specify which scripts and functions are to be
executed.

i You can also start any of the Jython sample scripts as a main program. However, if
you do this you must manually specify the parameters that are supplied in the start
script. It is therefore recommended to start the scripts via the central start script with
the corresponding options.

Editing the configuration file

The configuration file sampleInitConfig.py contains specifications relating to the objects
that are to be read by the sample scripts. Runtime parameters are also defined in this file.

Proceed as follows:

Ê In sampleInitConfig.py, replace the "****" placeholders in the individual object param-
eters for the proxy, EIS partner, resource adapter etc. with the actual values. The
following object parameters apply to all scripts:

console_home
Installation directory of the Management Console. Alternatively, the information
can also be read via the environment variable BEANCONNECT_USERCONS.

proxy_name
Name of the proxy for which the functions are to be executed (not necessary in
the case of sampleAdminMain.py).

admin_pw
Password of the proxy for which the functions are to be executed (not
necessary in the case of sampleAdminMain.py).

For details of the other parameters, see the inline description in sampleInitConfig.py.

Command Line Interface (MC-CLI) Application scenarios (examples)

BeanConnect V3.0B 425

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

Ê In sampleInitConfig.py, change the predefined runtime parameters (create, modify,
save, delete, start/stop proxy) if you wish. There are the following runtime parameters:

– bCreDelObjs=True/False
Generate and remove test objects (the object names start with "test" or "TEST")

– bModObjs=True/False
Modify test objects.

– bSaveMod=True/False
Save changes to configuration.

– Other script-specific switches (see also the comments in sampleInitConfig.py).

In most cases, bCreDelObjs=bModObjs=bSaveMod=True creates and modifies a test
object in a first pass through the scripts. This object is then removed in a second pass.
The sequence of the functions is usually controlled by the value of the property desc
("created" -> "modified" -> remove object):

– If a test object does not exist then it is created with desc="created".

– If a test object exists and desc= created", then the object is modified
(desc="modified").

– If a test object exists and desc="modified", then the object is removed from the
configuration.

Calling the start script

Open the Windows prompt or a Unix or Linux shell and enter the following command in the
directory cli-sample:

startBcAdmin.cmd [options] (Windows systems)

startBcAdmin.sh [options] (Unix and Linux systems)

You control the function scope using options. The following values are possible:

-help or -h
Help function. Simply outputs the possible parameters together with an expla-
nation.
Default value if no option has been specified.

-all Starts all the sample scripts sampleAdminXxx.

-cs Starts sampleAdminCommService.py.

-ei Starts sampleAdminEisPartner.py.

-gw Starts sampleAdminLu62Gateway.py.

-in Starts sampleAdminInbound.py.

Application scenarios (examples) Command Line Interface (MC-CLI)

426 BeanConnect V3.0B

-main Starts sampleAdminMain.py.

-out Starts sampleAdminOutbound.py.

-proxy Starts sampleAdminProxy.py.

-proxy-cl Starts sampleAdminProxyCluster.py.

-ra Starts sampleAdminRa.py.

-log Logging function, i.e. detailed output of the information that is read (list
elements, properties of the read objects). This can be specified in addition to all
the other options listed above.

Command Line Interface (MC-CLI) Application scenarios (examples)

BeanConnect V3.0B 427

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k0
9

9.5.5 Creating Jython scripts from MC-CLI recordings

It is useful to create Jython scripts on the basis of MC-CLI recordings if a sequence of
actions such as, for example, an inbound configuration for multiple proxies, is to be
repeated in the same way. You obtain the template for scripts of this type by executing the
required actions for a proxy in the Management Console and then outputting the MC-CLI
recording for this proxy to a file. This script can then be easily adapted for other proxies and
be used for their configuration.

Format of the recording file

Recording files are saved under <MC_home>/cli-rec.

The recording contains a script header with comments, import instructions, the start call for
the Management Console session and the assignment of proxy/cluster-specific variables.
This is followed by the MC-CLI calls of the recorded actions. If the recording is output to a
file, there is also a footer with comment lines relating to the possible end-of-script. The
recording, possibly after undergoing minor adaptations, is therefore an executable Jython
script.

Example

The shutdown timer for the proxy Test001 is set to 3 minutes via the Management Console.
The recording is written to a file at the end of the session. The recording file under the
console home directory has the name 2015-06-18.01-45.ProxyID.0.py and contains the
following entries:

''' MC-CLI Recording for 1.
 BeanConnect Management Console BeanConnect V3.0B00 2015-04-21-0607
'''
import BcAdminCommunicationService
import BcAdminEisPartner
import BcAdminInboundMsgEndpoint
import BcAdminInboundService
import BcAdminInboundUser
import BcAdminLu62Gateway
import BcAdminMain
import BcAdminOutboundCommEndpoint
import BcAdminOutboundService
import BcAdminProxy
import BcAdminProxyCluster
import BcAdminRA
import BcAdminTodo
import com.fujitsu.ts.jca.tools.mc.cli.BcObjectException as BcObjectException
import com.fujitsu.ts.jca.tools.mc.cli.BcParameterException as BcParameterException
import com.fujitsu.ts.jca.tools.mc.cli.BcToolException as BcToolException
import com.fujitsu.ts.jca.tools.mc.cli.BcObjectType as BcObjectType
import com.fujitsu.ts.jca.tools.mc.cli.BcDef as BcDef

Application scenarios (examples) Command Line Interface (MC-CLI)

428 BeanConnect V3.0B

''' init BC console for command line interface '''
consoleHome = "C:\\BeanConnect\\V3.0B00\\Console"
BcAdminMain.init(console_home=consoleHome)

''' end of statements for start of MC session ''' 2.

''' record start date/time: 2015-06-18:01-39 ''' 3.
''' MC-CLI record file for Proxy Test001 '''

''' assign proxy object '''
proxy_name = "Test001"
proxy_obj = BcAdminProxy.getObject(proxy_name)

''' proxy context menu "Edit Properties" '''
''' or button "Edit" in table "BeanConnect Proxies" '''
proxy_dicn = BcAdminProxy.getProperties(proxy_obj) 4.

''' proxy dialog "Edit Properties" exit with "OK" '''
proxy_dicn_new = {}
proxy_dicn_new["timer.shutdown-time.min"] = "3" 5.
BcAdminProxy.modifyProperties(proxy_obj,proxy_dicn_new)

''' proxy context menu "Save/Restart" - "Save Proxy" '''
result = BcAdminProxy.perform(proxy_obj,BcDef.ACTION_SAVE) 6.
''' TODO: analyse result '''

''' end of BeanConnect Management Console session '''
''' don't forget to save your changes! '''
''' close BC Management Console '''
BcAdminMain.close(False)

Explanation:

1. Start of the standard header. This is written for all recordings.

2. End of the standard header

3. Start of the session-specific recording for the proxy Test001

4. The proxy's properties are read in (via the Edit Properties property sheet)

5. Modification of shutdown timer

6. The changes are saved

BeanConnect V3.0B 429

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

10 Interfaces and programming

This chapter provides information on the following topics:

● BeanConnect-specific interfaces and Common Client Interface (CCI)

● Programming outbound communication

● Programming inbound communication

Before any communication between an EJB and an EIS application can take place, both
the configuration data of BeanConnect and the configuration of the EIS application have to
be set up properly.

● On outbound communication, an EJB that is deployed in a Java EE application server
calls a service in the EIS partner.

● On inbound communication, an EIS partner sends messages to an OLTP message-
driven bean that is deployed in a Java EE application server.

i The JavaDoc of BeanConnect, which is often referred to in the course of this
chapter is supplied with the resource adapter JAR file BC30B00_RA.jar and is
available after the installation of the resource adapter.

The JavaDoc is located in the resource adapter's installation directory:
– In Windows systems, under JavaDoc\api\index.html
– In Unix/Linux systems under JavaDoc/api/index.html

BeanConnect-specific interfaces and CCI Interfaces and programming

430 BeanConnect V3.0B

10.1 BeanConnect-specific interfaces and Common Client
Interface (CCI)

BeanConnect offers two different sets of interfaces:

● BeanConnect-specific interfaces

● Common Client Interface (CCI)

Recommendations: BeanConnect-specific interfaces or CCI

The Common Client Interface (CCI) is defined in the JCA specification of
Sun MicrosystemsTM. The CCI defines a standard API and addresses primarily the needs
of application development tools and EAI Frameworks (Enterprise Application Integration).
If you are familiar with the CCI in the JCA specification, it makes sense to use the CCI.

In any other case it is advisable to use the BeanConnect-specific interfaces, because the
associated programming effort is considerably reduced.

Differences between the BeanConnect-specific interfaces and CCI

For outbound communication, BeanConnect-specific interfaces and the CCI offer virtually
the same functionality.

For OLTP communication with openUTM partners and for CICS partners, the
BeanConnect-specific EISOltpConnection interface and the CCI offer the identical
functionality.
The BeanConnect-specific EISUpicConnection interface merely provides additional
functionality for UPIC connections to openUTM partners (see “Additional functionality
provided by the EISUpicConnection interface” on page 435).

For inbound communication, the BeanConnect-specific OltpMessageListener interface
and the CCI offer the same functionality for dialog communication. Additionally,
BeanConnect provides the AsyncOltpMessageListener interface for asynchronous
communication.

Interfaces and programming BeanConnect-specific interfaces and CCI

BeanConnect V3.0B 431

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

Selecting the interfaces to be used

For outbound communication, you specify the interface to be used as follows:

● In the application server-specific deployment descriptor file weblogic-ra.xml of the
resource adapter, you specify the connection factory interface in the <connection-
factory-interface> entry:

– For the BeanConnect-specific interfaces:

net.fsc.jca.communication.EISOltpConnectionFactory
or
net.fsc.jca.communication.EISUpicConnectionFactory (only if the EIS partner is
an openUTM application)

– For CCI:

net.fsc.jca.communication.cci.BCOltpConnectionFactory
or
net.fsc.jca.communication.cci.BCUpicConnectionFactory (only if the EIS
partner is an openUTM application)

● In the deployment descriptor file ejb-jar.xml of an EJB, you specify the connection
factory interface in the <res-type> entry:

– For the BeanConnect-specific interfaces:

net.fsc.jca.communication.EISOltpConnectionFactory or net.fsc.jca.commu-
nication.EISUpicConnectionFactory

– For CCI:

net.fsc.jca.communication.cci.BCOltpConnectionFactory or
net.fsc.jca.communication.cci.BCUpicConnectionFactory

For inbound communication, you specify your favored interface in the deployment
descriptor file ejb-jar.xml of the message-driven bean.

You specify the interface in the <messaging-type> entry:

● For the BeanConnect-specific interfaces:

net.fsc.jca.communication.AsyncOltpMessageListener or
net.fsc.jca.communication.OltpMessageListener

● For CCI:

javax.resource.cci.MessageListener

Programming outbound communication Interfaces and programming

432 BeanConnect V3.0B

10.2 Programming outbound communication

For outbound communication with an openUTM partner application, BeanConnect supports
the communication protocol OSI-TP, which can be used for distributed transaction
processing as well as for non-transactional communication, and the proprietary, non-trans-
actional protocol UPIC for access to openUTM applications.

For outbound communication with an CICS partner application, BeanConnect supports the
communication protocol LU6.2, which can be used for distributed transaction processing as
well as for non-transactional communication.

This section provides you with information on the following topics:

● BeanConnect-specific interfaces for outbound communication

● Common Client Interface (CCI) for outbound communication

● Programming information on outbound communication

● Program framework for outbound communication

● Outbound communication with XATMI partners

● Code samples for outbound communication

10.2.1 BeanConnect-specific interfaces for outbound communication

The BeanConnect-specific interfaces for outbound communication are contained in the
package net.fsc.jca.communication.

10.2.1.1 Connection factory interfaces

You use a connection factory to set up a connection. BeanConnect provides the following
connection factory interfaces:

● EISConnectionFactory

● EISOltpConnectionFactory

● EISUpicConnectionFactory (only if the EIS partner is an openUTM application)

The EISOltpConnectionFactory interface and the EISUpicConnectionFactory interface
extend the EisConnectionFactory interface without providing additional functionality.

Using the EISOltpConnectionFactory or EISUpicConnectionFactory interface makes
sense if you want to make sure that communication is processed by means of the OSI-TP
protocol or the UPIC protocol, respectively.
The use of the EISConnectionFactory interface is recommended.

Interfaces and programming Programming outbound communication

BeanConnect V3.0B 433

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

Example 12 Verifying that the OSI-TP protocol is used for communication (openUTM partner)

To verify that communication with the EIS application is processed by means of the OSI TP
protocol specify the following code sequence:

...
net.fsc.jca.communication.EISConnectionFactory cf =

(EISConnectionFactory)ic.lookup
("java:comp/env/<resourceRefName>");

...
if (! (cf instanceof EISOltpConnectionFactory))

throw new Exception("EISOltpConnectionFactory was
expected!");

...

An exception is thrown if not the OSI-TP protocol is used for communication.

10.2.1.2 Connection interfaces (overview)

BeanConnect provides the following connection interfaces:

● EISConnection

● EISOltpConnection

● EISUpicConnection (only if the EIS partner is an openUTM application)

The EISOltpConnection interface extends the EISConnection interface by providing
additional features such as data structure characteristics, for details see “Additional
functionality provided by the EISOltpConnection interface” on page 435).

The EISUpicConnection interface extends the EISConnection interface by providing
additional features such as data structure features (for details see “Additional functionality
provided by the EISUpicConnection interface” on page 435).

It is recommended that you use the EISOltpConnection and EISUpicConnection interfaces
only if you use the additional functionality offered by these interfaces.

Communication methods provided by the EISConnection interface

The EISConnection interface is extended by a number of interfaces. Each of them provides
methods for outbound communication between the EJB and the EIS application. For data
exchange, these methods are snd(), rcv(), call() and a number of variants of snd() and
rcv() such as sndString() or rcvRecord().

The communication methods offered by these interfaces differ in the data format on which
the methods are based:

● For byte-array-oriented access to EIS applications:

EISConnectionByteArray

Programming outbound communication Interfaces and programming

434 BeanConnect V3.0B

● For byte-container-oriented access to EIS applications:

EISConnectionByteContainer

An application may use the EISConnectionByteContainer interface and implement the
ByteContainer interface if it wants to exchange structured objects containing text and
binary information with a service in a partner application. Code conversion needs to be
performed for the text information of this object within the class that implements the
ByteContainer interface.

By providing an appropriate ByteContainer object, byte stream to string conversion is
handled while executing the sndRecord(), rcvRecord() or call() methods. The
objects you can obtain from Cobol2Java are objects that use this feature (see chapter
“Cobol2Java” on page 601).

● For OLTP message-oriented access to EIS applications:

EISConnectionOltpMessage

Objects of type OltpMessage are exchanged with the EIS application over this interface.
The OltpMessage object serves as a container for the message content, which is
assembled from one or more OltpMessageRecord objects and/or one or more OltpMes-
sagePart objects. While an OltpMessageRecord is of arbitrary length, an OltpMes-
sagePart may not exceed 32767 bytes. OltpMessagePart objects are mapped to
message parts by an openUTM partner application.

OltpMessageRecord objects and OltpMessagePart objects accept the following data
types:

– byte[]

– String

– ByteContainer

● For string-oriented access to EIS applications:

EISConnectionString

For code conversion in the course of the communication process the EncodingDef interface
is available.

For detailed information concerning these interfaces, please refer to the JavaDoc of
BeanConnect.

Interfaces and programming Programming outbound communication

BeanConnect V3.0B 435

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

Additional functionality provided by the EISOltpConnection interface

The EISOltpConnection interface extends the EISConnection interface by providing the
following additional functionality:

● Methods that are specific for asynchronous communication (see “Asynchronous
communication” on page 441): setDelayTime(), getDelayTime()

● The method setEndConversation()
The method specifies whether the EIS partner application may or may not terminate the
current conversation with the next send...() call.

To make use of the additional functionality offered by the EISOltpConnection interface you
have to cast the EISConnection object, which you obtain when you call the object EISCon-
nectionFactory with getConnection(), as type

con = (EISOltpConnection)cf.getConnection(...);

Additional functionality provided by the EISUpicConnection interface

The EISUpicConnection interface is only relevant if the EIS partner is an openUTM appli-
cation. It extends the EISConnection interface by providing the following additional function-
ality:

● "Emulation" of terminal functions

openUTM conversations which were programmed for terminals can also be addressed
with the aid of BeanConnect. “Emulation” of terminal functions is only possible with the
EISUpicConnection interface. Terminal functions such as function keys and cursor
positions can be handled using this interface.

● Using format names (format identifiers) when sending or receiving data

When data is exchanged between the resource adapter and the openUTM partner
application, it is possible to also send format names (format identifiers). Thus the
resource adapter can send to or receive from the openUTM partner structure infor-
mation about the data along with the user data itself. This function is only supported if
the requested service uses the KDCS interface.

● Restart functionality

The openUTM partner application performs an automatic service restart for user IDs
that have been defined with the USER control statement in conjunction with the
RESTART=YES operand.

● The method isInTransaction() which is used to query the transaction status at the
EIS partner.

Programming outbound communication Interfaces and programming

436 BeanConnect V3.0B

To make use of the additional functionality offered by the EISUpicConnection interface, you
have to cast the EISConnection object (which you get calling the getConnection() method
on the EISConnectionFactory object) to the type EISUpicConnection:

con = (EISUpicConnection)cf.getConnection(...);

10.2.1.3 Communication using the connection interfaces

The connection interfaces provide a variety of features which may be used by an EJB in a
communication with an EIS application. These may be used as alternatives or in
combination:

● Dialog communication (based on the EISConnection, EISOltpConnection and
EISUpicConnection interfaces)

● Asynchronous communication (based on the EISConnection interface and on
additional methods of the interface EISOltpConnection)

● Transactional communication

● Connection groups

● Code conversion

The following sections provide information concerning these topics. Examples of the most
common communication scenarios are given in the JavaDoc of BeanConnect.

Dialog communication

The recommended way for an EJB to communicate with an EIS application is by using the
methods of the EISConnectionOltpMessage interface. Objects of type OltpMessage are
exchanged with the EIS application over this interface. The OltpMessage object serves as
a container for the message content, which is assembled from one or more
OltpMessageRecord objects and/or one or more OltpMessagePart objects. While an
OltpMessageRecord is of arbitrary length, the length of an OltpMessagePart may not exceed
32767 bytes.

At the time of a sndOltpMessage() call, the data to be sent is merely handed over to
BeanConnect but not yet transferred to the EIS application. The request to the EIS appli-
cation is only actually sent when the first rcvOltpMessage() method is issued for this
connection.

The easiest way to call a dialog service in an EIS application is with the call() method.
This method allows RPC-like communication with an EIS application.

The following sections outline the communication between an EJB and an openUTM/CICS
program by means of OltpMessage objects.

Interfaces and programming Programming outbound communication

BeanConnect V3.0B 437

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

The options listed below are available for exchanging data between an EJB and an
openUTM/CICS program using OltpMessage objects:

● Data exchange based on OltpMessagePart objects with openUTM partners

● Data exchange based on OltpMessageRecord objects

You will find further examples of the most common communication scenarios as well as
code examples in the JavaDoc of BeanConnect.

Data exchange based on OltpMessagePart objects with openUTM partners

With MGET and MPUT, an openUTM program can receive or send one or more message parts
each with a maximum length of 32 Kbytes. Here the individual MessagePart objects corre-
spond directly to the MGET and MPUT calls in the openUTM program.

Data is thus exchanged according to the following scheme:

Figure 61: Data exchange based on OltpMessagePart objects (openUTM partners)

addMessagePart(...)
addMessagePart(...)

call(...)

MGET
MGET

MPUT
MPUT
MPUT

getMessageParts(...)

read part 1
read part 2

create OLTP message ...

EJB openUTM partner application

read part 3

Programming outbound communication Interfaces and programming

438 BeanConnect V3.0B

Data exchange based on OltpMessagePart objects with CICS partners

With RECEIVE and SEND, a CICS program can receive or send one or more message parts
each with a maximum length of 32 Kbytes. Here the individual MessagePart objects corre-
spond directly to the RECEIVE and SEND calls in the CICS program.

Data is thus exchanged according to the following scheme:

Figure 62: Data exchange based on OltpMessagePart objects (CICS partners)

Data exchange based on OltpMessageRecord objects

As an alternative to multiple MessagePart objects sent within an OltpMessage object, you
can use OltpMessageRecord objects sent within an OltpMessage object. In this case, you
can send and receive messages which are longer than 32 Kbytes without needing to break
it down into packets of 32 Kbytes as a Java programmer.

create OLTP message ...

addMessagePart(...)
addMessagePart(...)

call(...)

RECEIVE
RECEIVE

SEND
SEND
SEND

EJB CICS partner application

getMessageParts(...)

read part 1
read part 2
read part 3

Interfaces and programming Programming outbound communication

BeanConnect V3.0B 439

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

Figure 63: Data exchange based on OltpMessageRecord objects (OSI-TP protocol with openUTM partners)

Figure 64: Data exchange based on OltpMessageRecord objects (CICS partners)

create OLTP message ...

addMessageRecord(...)

call (...)

MGET in a loop until all message sections

MPUT
MPUT
MPUT

getMessageRecords(...)

have been received

EJB openUTM partner application

read record

create OLTP message ...

addMessageRecord(...)

call (...)

RECEIVE in a loop until all message

SEND
SEND
SEND

getMessageRecords(...)

EJB CICS partner application

read record

sections have been received

Programming outbound communication Interfaces and programming

440 BeanConnect V3.0B

When communicating with an openUTM application via the UPIC protocol, you can use
OltpMessageRecord objects and OltpMessagePart objects if you are working with different
format names.

Figure 65: Data exchange based on OltpMessageRecord objects (UPIC protocol)

create OLTP message ...

addMessageRecord("FORMAT2",...)

call(...)

MGET in a loop until all message sections with
KCRMF/kcrfn="FORMAT1"have been received

MGET in a loop until all message sections with
KCRMF/kcrfn="FORMAT2" have been received

MPUT with KCFM/kcfn="*FORMATA"

MPUT with KCFM/kcfn="*FORMATA"

MPUT with KCFM/kcfn="*FORMATA"

MPUT with KCFM/kcfn="*FORMATB"

MPUT with KCFM/kcfn="*FORMATB"

getMessageRecords(...)

All data of the 3 MPUT calls with *FORMATA has been received.
Format name can be read with getMapName() by OLTPMessageRecord.

All data of the 2 MPUT calls with *FORMATB has been received.
Format name can be read with getMapName() by OLTPMessageRecord.

EJB openUTM partner application

addMessageRecord("FORMAT1",...)

read record 1

read record 2

Interfaces and programming Programming outbound communication

BeanConnect V3.0B 441

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

Asynchronous communication

 A service is called asynchronous when it does not send a reply message.

The sending of an asynchronous message has to be explicitly triggered by the EJB with the
methods snd() + flush(), sndLast() or sndLastString() of the EISConnection interface,
which finalize the message and initiate the send cycle.

An asynchronous message may be sent to the EIS partner either immediately or after a
delay. With a delayed sending, the EJB must specify the delay time prior to calling the snd()
method. You specify the delay time by means of the setDelayTime() method. A delayed
message is stored by the BeanConnect proxy until the time delay has elapsed. The
message is then forwarded to the EIS application.

i An asynchronous message generated in a transaction is sent only if and when the
transaction is committed. If the transaction is rolled back, the asynchronous request
will not be sent. An asynchronous request with time delay 0 generated outside of a
transaction is sent immediately.

If you want to ensure that an asynchronous service is currently being addressed, you can
check this using the getPartnerType() method or you can use the setDelayTime(0)
method, which throws an exception if a dialog service is addressed unexpectedly. However,
the use of this method results in certain performance impairments.

Examples of asynchronous communication with an EIS partner can be found in the
JavaDoc of BeanConnect.

Transactional communication

During deployment of a connection factory, the configuration property transactional of the
connection factory has to be set (see “transactional” on page 113). A connection factory
may either support both transactional and non-transactional communication or it may be
limited to non-transactional communication only:

● If the connection factory supports transactional communication, the runtime
environment decides at the time a transaction is started whether the communication
within a conversation of such a connection will be transactional or not. A conversation
which is started while a transaction is open is always included in the transaction.

A conversation which was already open at the start of the transaction but on which no
communication has yet occurred is also included in the transaction. In these cases a
transactional protocol will be used for communication; otherwise a non-transactional
protocol will be used.

Programming outbound communication Interfaces and programming

442 BeanConnect V3.0B

● If the connection factory does not support transactional communication, the following
applies: For connections generated with this connection factory, a non-transactional
protocol is always used, no matter whether the communication takes place within or
outside an application server transaction. This allows the deployer of the resource
adapter to explicitly exclude an EIS service from a transaction that may be active in the
application server.

You can query the current status of a transaction using the isInDistributedTransaction()
method of the EISOltpConnection interface.

When a transactional protocol is used for communication, the application server transaction
and the transaction in the EIS partner are part of a single, distributed transaction which are
either committed or rolled back as a single unit. With transactional communication, a
conversation must not span more than one transaction. However, a conversation may
comprise more than one dialog step. This means that several snd()/rcv() pairs may be
exchanged with the EIS partner within a single transaction.

i If an EJB uses more than one transactional connection within a transactional EJB
method, it is strongly recommended that these connections are associated in a
single EISConnectionGroup (see the following section Connection groups). Doing
so helps to avoid a resource bottleneck.

Connection groups

The concept of associated connections enables an EJB to simultaneously send several
messages via more than one connection. This allows the processing of several dialog
services of one or more EIS partner application at the same time, thereby avoiding the time
delay caused by the sequential processing of a number of RPC-like calls.

You can associate a connection with another connection by means of an
EISConnectionGroup. You create the EISConnectionGroup using an
EISConnectionGroupFactory. You get an EISConnectionGroupFactory with the method
getEISConnectionGroupFactory()from a ConnectionFactory. For example:

ConnectionFactory cf1 = (ConnectionFactory)ic.lookup(...);
ConnectionFactory cf2 = (ConnectionFactory)ic.lookup(...);
EISConnectionGroupFactory cgf =

cf1.getEISConnectionGroupFactory();
EISConnectionGroup cg = cgf.getConnectionGroup();
con1 = (EISOltpConnection)cf1.getConnection(cg);
con2 = (EISOltpConnection)cf2.getConnection(cg);

You will find a code sample for Example 15 on page 456.

The simultaneous dispatch of the messages to all connections of the connection group is
initiated by calling the execute() method on the EISConnectionGroup-object. Connections
for transactional communication may be associated with connections for non-transactional
communication. For details see the JavaDoc of BeanConnect.

Interfaces and programming Programming outbound communication

BeanConnect V3.0B 443

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

Code conversion

Whenever String or ByteContainer objects are used, BeanConnect can perform a code
conversion. The methods for setting up the proper environment for a code conversion are
contained in the interface net.fsc.beanta.encoding.EncodingDef. This interface is
extended by the EISConnection interfaces of BeanConnect. If code conversion has not
already been activated at deployment time using the encodingActive configuration
property (see “encodingActive” on page 112), you can switch on code conversion by calling
the method setEncodingActive(). The code table to be used for a code conversion is
assigned by defining the encoding configuration property (see “encoding” on page 110) at
deployment time or by using the method setEncoding() of the EISConnection interface.
For details about code conversion of messages and on how to supply your own encoding
tables see chapter “Encoding and national language support” on page 479) and the
JavaDoc of package net.fsc.beanta.encoding.

Programming outbound communication Interfaces and programming

444 BeanConnect V3.0B

10.2.2 Common Client Interface (CCI) for outbound communication

The CCI interfaces for outbound communication are contained in the packages
javax.resource.cci and net.fsc.jca.communication.cci. For outbound communication,
the CCI offers almost the same functionality as the BeanConnect-specific interfaces (with
the exception of the additional functionality with openUTM partners offered by the EISUpic-
Connection interface). You find information on the program framework using the CCI
interface in section “Program framework for Common Client Interface (CCI)” on page 450.

Connection factory interfaces

On deployment of the resource adapter, you can specify that you want to use outbound
communication via CCI. To do this, you specify one of the following connection factory
interfaces (see “Selecting the interfaces to be used” on page 431) in the <connection-
factory-interface> element of the deployment descriptor file weblogic-ra.xml:

● net.fsc.jca.communication.cci.BCOltpConnectionFactory

● net.fsc.jca.communication.cci.BCUpicConnectionFactory
(only if the EIS partner is an openUTM application)

In your EJB code, you use a connection factory to set up a connection. CCI provides the
following connection factory interfaces:

● javax.resource.cci.ConnectionFactory

● net.fsc.jca.communication.cci.BCOltpConnectionFactory

● net.fsc.jca.communication.cci.BCUpicConnectionFactory
(only if the EIS partner is an openUTM application)

The BCOltpConnectionFactory interface and the BCUpicConnectionFactory interface
extend the javax.resource.cci.ConnectionFactory interface without providing additional
functionality.

Using the BCOltpConnectionFactory or BCUpicConnectionFactory interface makes sense
if you want to verify that communication is processed via the OSI-TP or UPIC protocol
respectively. Example 11 on page 259 applies analogously. It is recommended that you use
the interface javax.resource.cci.ConnectionFactory.

Connection interface

The CCI interface for the outbound communication is javax.resource.cci.Connection.

Interfaces and programming Programming outbound communication

BeanConnect V3.0B 445

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

10.2.3 Programming information on outbound communication

This section provides programming information on outbound communication between an
EJB and an EIS partner application.

10.2.3.1 Addressing an EIS application

A service of an EIS application which is used by your Java EE application has to be
configured during deployment by defining the configuration property connectionURL (see
connectionURL on page 109 and on page 125). If the Java EE application utilizes multiple
services of the same EIS partner in an EIS you may use the setServiceName() method of
the connection object to address a specific service explicitly:

connection.setServiceName(<service_name>);

10.2.3.2 Placing BeanConnect calls in an EJB

In the JNDI service of the application server, you have to execute a lookup() for a precon-
figured connection factory. A connection factory provides a getConnection() method that
returns a Connection object. During the deployment of the connection factory the properties
of this connection (EIS address, EIS service name, etc.) were configured. No matter which
type of connection factory has been deployed (EISUpicConnectionFactory or EISOltpCon-
nectionFactory), a Connection object that implements the EISConnection interface is
always returned. When the application no longer needs a Connection object, it must return
it to the application server for pooling or destruction by issuing the close() method for the
Connection object.

The application must make sure that it also releases the requested connections with
close() when errors occur. Otherwise, secondary errors may occur in the application
server.

It is recommended that the JNDI lookup() for a connection factory is executed during initial-
ization. In an EJB this can, for example, take place within the ejbCreate() or
setSessionContext() method.

The getConnection() method and the associated close() method must be called directly
within the business methods.

Programming outbound communication Interfaces and programming

446 BeanConnect V3.0B

10.2.3.3 Authentication (user ID and password)

Authentication takes place by means of user name and password. A distinction is made
between

● Container-managed authentication

● Application-managed authentication

It is recommended that you use container-managed authentication.

Container-managed authentication

In the case of container-managed authentication, the access data is handled by the
container. The EJB deployer configures the container-managed authentication with the
following entry in the EJB deployment descriptor:

<res-auth>Container</res-auth>

When using container-managed authentication, you call the getConnection() method
without parameters.

Please refer to section “Container-managed authentication” on page 115 for details.

Application-managed authentication

In the case of application-managed authentication, the access data is handled in the
program code of the EJB. The EJB deployer configures the application-managed authenti-
cation in the EJB deployment descriptor with the following entry:

<res-auth>Application</res-auth>

In the EJB source code, you use, for example, the following code sequence instead of the
getConnection() call without parameters:

javax.naming.InitialContext ic = new InitialContext();

String user = (String)ic.lookup("java:comp/env/User");
String password = (String)ic.lookup("java:comp/env/Password");
net.fsc.jca.communication.PasswordCredential pwc =
 new net.fsc.jca.communication.PasswordCredential
 (user, password);
con= (net.fsc.jca.communication.EISConnection)cf.getConnection(pwc);

Here, the user ID (user in the example) and the password (password in the example) are
defined as environment variables of the EJB. The deployer can adapt environment
variables as required. The environment variables can be accessed using the lookup()
method.

Interfaces and programming Programming outbound communication

BeanConnect V3.0B 447

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

10.2.3.4 Querying information on the conversation with the EIS application

The isInConversation() method of the connection object enables you to query the status
of the EIS application.

Example 13 Information on the conversation with the EIS application

You want to assure that the conversation with the EIS application will be terminated after
method execution has been completed:

...
String s = con.call("what will be the echo of this");

if (eis.isInConversation())
{
 con.terminate();
 con.close();
 throw new EJBException
 ("EJB Exception: EIS Partner Service not yet terminated ... ");
}

10.2.3.5 Programming hints with respect to CICS applications

CICS transactions have to be designed and coded to comply with the Distributed Trans-
action Programming (DTP) paradigm. For a description of this programming paradigm, see
the IBM CICS documentation, for example the "CICS Distributed Transaction Programming
Guide".

The following restrictions and rules have to be considered to allow outbound communi-
cation by means of BeanConnect:

● A CICS partner application may never use SYNCPOINT or ISSUE PREPARE itself. Instead,
it may only do so when requested to by the EJB in the Java EE application server.

● Basic conversation is not possible. Basic conversation is programmed for CICS by
using commands that begin with GDS, such as
EXEC CICS GDS ALLOCATE, for example.

● BeanConnect always establishes LU6.2 conversations with SYNCLEVEL 0 or 2 and
never with SYNCLEVEL 1. The SYNCLEVEL of an incoming conversation can be
queried in CICS-API using EXTRACT PROCESS.

● The default value of the communication property endConversation is false for CICS
partners and true for openUTM partners.

Programming outbound communication Interfaces and programming

448 BeanConnect V3.0B

10.2.3.6 Support of DPL (Distributed Program Link) programs

CICS provides different programming interfaces to invoke another CICS program or to
allow a program to be invoked by another CICS program. Two of these facilities are
important here.

● DTP (Distributed Transaction Processing) which enables a CICS transaction to commu-
nicate with a CICS application running in another system by exchanging messages.
DTP programs are coded using the APPC programming interface.

● DPL (Distributed Program Link) which enables a CICS program to invoke a program in
another CICS system and wait for the called program to return. Data is exchanged
between the programs in a communication area (COMMAREA). DPL is similar to a remote
procedure call.

BeanConnect makes it possible to invoke outbound transactions via DTP. However, it is not
possible to call a DPL program directly. For this, a DTP program is needed in which the
program link is wrapped.

An example of such a COBOL program fragment with the name DPLSERVR.CCP can be found
in the directory <BC_home>/<proxy_cont_name>/src (Solaris/Linux) respectively
<BC_home>\<proxy_cont_name>\src (Windows). This source code contains hints on the
changes which must be carried out to build a new program.

The DPL program is called with the CICS LINK command, which has three important param-
eters:

● PROGRAM to specify the name of the program to which control is to be passed uncondi-
tionally

● COMMAREA to specify the communication area that is made available to the linked
program

● LENGTH which specifies the length in bytes of the communication area.

The input data for the distributed program call is received in a message. The input data
must be copied to the communication area. The required output data has to be sent as
response to the EJB when the linked program returns.

Interfaces and programming Programming outbound communication

BeanConnect V3.0B 449

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

10.2.4 Program framework for outbound communication

This section provides a program framework for outbound communication between an EJB
and an EIS application. The framework contains the principal communication steps.

10.2.4.1 Program framework for BeanConnect-specific interfaces

In BeanConnect you specify the EIS partner to be addressed when deploying a managed
connection factory. You use the lookup() method to search for the connection factory and
obtain a connectivity object by calling the getConnection() method.

The connectivity object provided implements the EISConnection interface for communi-
cation with the EIS application:

1. Set up the initial context:

javax.naming.InitialContext ic = new InitialContext();

2. Reference a connection factory:

net.fsc.jca.communication.EISConnectionFactory cf =
 (EISConnectionFactory)ic.lookup
 ("java:comp/env/<resource_reference_name>");

3. Set up the connection:

net.fsc.jca.communication.EISConnection con = (EISConnection) cf.getCon-
nection();

4. If you use the EISConnection interface in order to specify the service name (TAC) or the
name of the EIS service, proceed as follows:

con.setServiceName(<name_of_the_service>);

However, you should note that for performance reasons, it is recommended that you
work with the preconfigured service names.

5. Create the message that you want to send

String requestMessage = "...";

6. Call the EIS application and receive the reply message:

String replyMessage = con.call(requestMessage);

7. Close the connection:

con.close();

Further information on how to program the EISConnection and EISOltpConnection inter-
faces is provided in the JavaDoc of the interface itself.

You will find a sample in Example 13 on page 447.

Programming outbound communication Interfaces and programming

450 BeanConnect V3.0B

10.2.4.2 Program framework for Common Client Interface (CCI)

When deploying a managed connection factory in BeanConnect you specify the EIS partner
to be addressed via this managed connection factory. You use the lookup() method to
search for the connection factory and obtain a connectivity object by calling the getCon-
nection() method.

You can request an interaction object via the CCI connection which you obtain from the CCI
connection factory. This interaction object implements an execute() method for initiating an
interaction. The execute() method also knows a BCCciInteractionSpec object in addition
to the input record and output record. In this BCCciInteractionSpec you define an inter-
actionVerb (SYNC_SEND, SYNC_SEND_RECEIVE or SYNC_RECEIVE) and, at the same time, the
name of the EIS application. This enables you to control an interaction by providing suitable
data instead of calling methods. The default value of the interactionVerb is
SYNC_SEND_RECEIVE.
For details, see the JavaDoc of BeanConnect.

Program framework for dialog communication (CCI)

For dialog communication with your server application over the CCI Interface in
BeanConnect, proceed as follows:

1. Set up the initial context:

javax.naming.InitialContext ic = new InitialContext();

2. Reference a connection factory:

javax.resource.cci.ConnectionFactory cf =
(ConnectionFactory)ic.lookup("java:comp/env/eis/myEIS");

A dialog service is assigned as the default service to the connection factory referenced
by eis/myEIS.

3. Set up the connection:

javax.resource.cci.Connection con = (Connection)cf.getConnection();

Alternatively, an EJB may pass security-related information (user ID/password) to
BeanConnect in a BCCciConnectionSpec object. In this case you specify:

net.fsc.jca.communication.cci.BCCciConnectionSpec;
cred = new BCCciConnectionSpec("myuser", "mypass");

javax.resource.cci.Connection con = (Connection)cf.getConnection(cred);

Interfaces and programming Programming outbound communication

BeanConnect V3.0B 451

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

4. Create an Interaction object and an InteractionSpec object:

Interaction ix = (Interaction)con.createInteraction();
BCCciInteractionSpec is = new

BCCciInteractionSpec(InteractionSpec.SYNC_SEND_RECEIVE);

Whereas an Interaction object is created from the Connection object on which it is to
be used, the InteractionSpec object is created using a constructor of the implemen-
tation class.

An Interaction object enables an EJB to communicate with an EIS application.
An InteractionSpec object holds properties for driving an interaction with this EIS
application. It is used by an interaction to execute the specified function in the EIS
application.

5. Create a BCRecord object that serves as a container for the message to the EIS and
another BCRecord object that serves as a container for the reply message. This is done
by means of a BCRecordFactory object:

net.fsc.jca.communication.cci.BCRecordFactory rf =
(BCRecordFactory)cf.getRecordFactory();

net.fsc.jca.communication.cci.BCRecord reqrec = (BCRecord) rf.createB-
CRecord("request");
net.fsc.jca.communication.cci.BCRecord replrec = (BCRecord) rf.createB-
CRecord("reply");

After creation, a BCRecord object contains an empty OltpMessage object, which can be
retrieved from the BCRecord object. Subsequently, the BCRecord object can be
populated with OltpMessageRecord or OltpMessagePart objects.

6. Populate the OltpMessage object of the message which is destined for the EIS with data
(here: with two OltpMessagePart objects):

net.fsc.jca.communication.OltpMessage request = reqrec.getOltpMessage();
request.addMessagePart("request - message part1");
request.addMessagePart("request - message part2");

7. Execute the interaction:

ix.execute(is, reqrec, replrec);

The BCRecord object returned from this call again holds an OltpMessage object, which
in turn contains the reply sent by the EIS application in an OltpMessageRecord or
OltpMessagePart object.

Programming outbound communication Interfaces and programming

452 BeanConnect V3.0B

8. Receive the reply message:

net.fsc.jca.communication.OltpMessage reply =
replrec.getOltpMessage();
java.util.Iterator<net.fsc.jca.communication.OltpMessagePart> it =
reply.getMessageParts();

net.fsc.jca.communication.OltpMessagePart msgPart;
String msgText="";

while (it.hasNext()) {
msgPart = (OltpMessagePart) it.next();
msgText += msgPart.getText();

}

9. Close the connection:

con.close();

Further information on how to program the CCI interfaces is provided in the JavaDoc of the
CCI.

You will find a code sample in Example 14 on page 455.

Program framework for asynchronous communication (CCI)

For asynchronous communication with your server application over the CCI Interface in
BeanConnect, proceed as follows:

1. Set up the initial context:

javax.naming.Context ic = new InitialContext();

2. Reference a ConnectionFactory:

javax.resource.cci.ConnectionFactory cf =
(ConnectionFactory)ic.lookup("java:comp/env/eis/myAsyncEIS");

3. Set up the connection:

javax.resource.cci.Connection con = (Connection)cf.getConnection();

Alternatively, an EJB may pass security-related information (user ID/password) to
BeanConnect in a BCCciConnectionSpec object. In this case you specify:

net.fsc.jca.communication.cci.BCCciConnectionSpec cred =
new BCCciConnectionSpec("myuser", "mypass");

 javax.resource.cci.Connection con = (Connection)cf.getConnection(cred);

Interfaces and programming Programming outbound communication

BeanConnect V3.0B 453

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

4. Create an Interaction object and an InteractionSpec object:

An Interaction object enables an EJB to communicate with a partner application. An
InteractionSpec object holds properties for driving an interaction with a partner appli-
cation. It is used by an interaction to execute the specified function in the EIS
application.

Whereas an Interaction object is created from the connection object on which it is to
be used, the InteractionSpec is created using a constructor of the implementation
class:

Interaction ix = (Interaction)con.createInteraction();
net.fsc.jca.communication.cci.BCCciInteractionSpec is = new

BCCciInteractionSpec(InteractionSpec.SYNC_SEND,
"ASYNTAC");

The assignment of the asynchronous service ASYNTAC specifies that communication will
be asynchronous.

Here, the SYNC_SEND has the same effect as a flush() call when using the
BeanConnect-specific interfaces.

5. Create a BCRecord object that serves as a container for the request message. This is
done by means of a recordFactory:

net.fsc.jca.communication.cci.BCRecordFactory rf=
(BCRecordFactory)cf.getRecordFactory();

net.fsc.jca.communication.cci.BCRecord reqrec =
rf.createBCRecord("request");

After creation, a BCRecord object contains an empty OltpMessage object, which can be
retrieved from the BCRecord object and then can be assigned with OltpMessageRecord
and/or OltpMessagePart objects.

6. Populate the OltpMessage object of the request record with data (here: with two
OltpMessagePart objects):

net.fsc.jca.communication.OltpMessage request = reqrec.getOltpMessage();
request.addMessagePart("request - message part1");
request.addMessagePart("request - message part2");

7. Execute the interaction:

ix.execute(is, reqrec);

8. Close the connection:

con.close();

Programming outbound communication Interfaces and programming

454 BeanConnect V3.0B

10.2.5 Outbound communication with XATMI partners

You need to take account of the following special characteristics if you program outbound
communication with XATMI partners:

● Transaction management

The transaction environment in the user program and the transactional property of the
ConnectionFactory determines whether communication with the partner application is
performed with or without Commit FU (TRAN or NOTRAN in XATMI).

● typed buffer

Only typed buffers of type X_OCTET are supported.

● Message length and message segments

When the OLTP message interface is used, a message segment in a message sent to
an XATMI partner may be a maximum of 32,000 bytes in length. Longer message
segments are rejected by means of an OltpMessageException. The same restriction to
32,000 bytes per message segment applies to all the EIS connection interface methods
for which the restriction for other partners is 32,767 bytes.

Messages to XATMI partners in request/reply mode may only consist of one message
segment and this may be a maximum of 32,000 bytes in length.

Messages to XATMI partners in conversational mode may consist of more than one
message segment. Each of these message segments may be up to 32,000 bytes in
length.

Messages passed to BeanConnect via interface methods for which there is no message
length restriction, e.g. sndRecord(String) are fragmented by BeanConnect into
message segments of a maximum of 32,000 bytes in length during communication with
XATMI partners in conversational mode. In the case of XATMI partners in request/reply
mode, messages with a length of more than 32,000 bytes are rejected with an
exception.

● The reception of a FAILURE_RI is indicated to an application by means of an
EISConnectionException.

● For XATMI partners, the default value of the communication property endConversation
is always false.

Interfaces and programming Programming outbound communication

BeanConnect V3.0B 455

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

10.2.6 Code samples for outbound communication

This section contains the following code samples:

● Dialog communication using the EISConnection interface

● Dialog communication using the CCI

● Associated connections using the EISConnectionGroup interface

Example 14 Dialog communication using the EISConnection interface

...
public String callService(String request) throws EJBException
{
 net.fsc.jca.communication.EISConnectionFactory cf = null;
 net.fsc.jca.communication.EISConnection con = null;
 String reply = null;

 try
 {
 javax.naming.InitialContext ic =
 new javax.naming.InitialContext();
 cf = (net.fsc.jca.communication.EISConnectionFactory)
 ic.lookup("java:comp/env/eis/myEIS");

con= cf.getConnection();

 reply = con.call(request);

con.close();
 con = null;

 return reply;
 }
 catch (Exception e)
 {
 if (con != null)
 {
 con.close();
 }
 throw new EJBException ("EJB Exception: " + e);
 }
}

To allow you to use this method, the deployment descriptor of the EJB must contain the
following information:

Programming outbound communication Interfaces and programming

456 BeanConnect V3.0B

<resource-ref>
 <res-ref-name>eis/myEIS</res-ref-name>
 <res-type>net.fsc.jca.communication.EISConnectionFactory</
 res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Unshareable</res-sharing-scope>
</resource-ref>

Example 15 Dialog communication using the CCI

...
public String sndRcvJavax(String user, String name, String data)
{

String retValue = "";
Connection connection = null;

try {
Context ic = new InitialContext();
ConnectionFactory cf =
(ConnectionFactory)ic.lookup("java:comp/env/eis/myEIS");

ConnectionSpec cred = new BCCciConnectionSpec (user, "");
connection = cf.getConnection(cred);
Interaction ix = connection.createInteraction();

InteractionSpec is =
new BCCciInteractionSpec(

InteractionSpec.SYNC_SEND_RECEIVE,"HELLO");
BCRecordFactory recordFactory =

(BCRecordFactory)cf.getRecordFactory();
BCRecord in = recordFactory.createBCRecord("SendRecord");
BCRecord out =

recordFactory.createBCRecord("ReceiveRecord");
OltpMessage inMsg = in.getOltpMessage();
inMsg.addMessagePart(data);

out = (BCRecord)ix.execute(is, in);

OltpMessage outMsg = out.getOltpMessage();
Iterator it<OltpMessagePart> = outMsg.getMessageParts();
OltpMessagePart msgPart;

while (it.hasNext()) {

Interfaces and programming Programming outbound communication

BeanConnect V3.0B 457

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

msgPart = it.next();
retValue += msgPart.getText();

}

} catch (Throwable ex) {
// Todo: Fehlerbehandlung
}// tryCatch
try {
if (connection != null)

connection.close(); }
catch (ResourceException e) {
retValue += "\n bei connection.close():\n"+getStackInfo(e);

}
return retValue;

} // sndRcvJavax

To allow you to use this method, the deployment descriptor of the EJB must contain the
following information:

<resource-ref>
 <res-ref-name>eis/myEIS</res-ref-name>
 <res-type>net.fsc.jca.communication.EISConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

Example 16 Associated connections using the EISConnectionGroup interface

...
EISOltpConnection con1 = null;
EISOltpConnection con2 = null;
try {

javax.naming.InitialContext ic =
new javax.naming.InitialContext();
cf = (net.fsc.jca.communication.EISConnectionFactory)
ic.lookup("java:comp/env/eis/myEIS");
EISConnectionGroupFactory cgf =

cf.getEISConnectionGroupFactory();
EISConnectionGroup cg = cgf.getConnectionGroup();
con1 = (EISOltpConnection)cf.getConnection(cg, new

PasswordCredential("upicusea", ""));
con2 = (EISOltpConnection)cf.getConnection(cg, new

PasswordCredential("upicuseb", ""));
OltpMessage om1 = con1.createMessage();
om1.addMessagePart("STAT");

Programming outbound communication Interfaces and programming

458 BeanConnect V3.0B

OltpMessage om2 = con2.createMessage();
om2.addMessagePart("osi-con,l=kdcall");
con1.sndOltpMessage(om1);
con2.sndOltpMessage(om2);
cg.execute();
String s;
om2 = con2.rcvOltpMessage();
Iterator iter<OltpMessageRecord> = om2.getMessageRecords();
for (s = ""; iter.hasNext();)

{ s+= iter.next()).getText(); }
String result_o = "";
result_o = result_o + "OltpConnection: KDCINF osi-con,

l=kdcall\n" + s + "\n";
om1 = con1.rcvOltpMessage();
iter = om1.getMessageRecords();
for (s = ""; iter.hasNext();) {

s+= ((OltpMessageRecord)iter.next()).getText(); }
result_o = addResult_o(result_o, "OltpConnection:

KDCINF STAT\n" + s + "\n");
s = cg.getGroupName();
result_o = result_o + "OltpConnection: KDCINF STAT\n" +s

+ "\n");
con1.close();
con2.close();
return result_o;

} catch(EISConnectionException ex) {
...

Interfaces and programming Programming inbound communication

BeanConnect V3.0B 459

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

10.3 Programming inbound communication

For inbound communication, an EIS application addresses an OLTP message-driven bean
which is deployed in the application server. Communication between the EIS application
and the OLTP message-driven bean requires that the OLTP message-driven bean has
been made known to BeanConnect using the Management Console.

This section provides you with information on the following topics:

● OLTP message-driven beans

● Inbound communication with openUTM partners

● Inbound communication with CICS applications

● Inbound communication with other EIS partners (openUTM)

● Inbound communication with XATMI partners

● BeanConnect-specific interfaces for inbound communication

● Common Client Interface (CCI) for inbound communication

● Code samples for inbound communication

10.3.1 OLTP message-driven beans

OLTP message-driven beans are the types of JCA-like message endpoint applications
supported by BeanConnect. An EIS application can call OLTP message-driven beans
deployed in an application server via BeanConnect.

In order to communicate with an OLTP message-driven bean, an EIS application sends a
message to a service known to BeanConnect. BeanConnect then passes the message to
an OLTP message-driven bean configured for the message endpoint name that is
associated with this service name. The connection between the service name and the
message endpoint name is established by the Management Console (see “Inbound
Message Endpoints” on page 160).

BeanConnect supports two types of OLTP message-driven beans:

● OLTP message-driven beans for dialog communication

● OLTP message-driven beans for asynchronous communication

Programming inbound communication Interfaces and programming

460 BeanConnect V3.0B

OLTP message-driven beans for dialog communication

An OLTP message-driven bean for dialog communication receives messages from an
EIS application and returns messages. The related BeanConnect-specific interface is
net.fsc.jca.communication.OltpMessageListener. The CCI interface
javax.resource.cci.MessageListener also matches the requirements for dialog commu-
nication.

These interfaces enable an OLTP message-driven bean to receive a message from and
send a reply message to the EIS application. The messages may contain one or more
message parts.

OLTP message-driven beans for asynchronous communication

An OLTP message-driven bean for asynchronous communication can receive a message
from an EIS application, but is not allowed to send a reply message. The associated
BeanConnect-specific interface is
net.fsc.jca.communication.AsyncOltpMessageListener. The message from the EIS
application may contain one or more message segments.

10.3.2 Inbound communication with openUTM partners

For inbound communication with an openUTM partner, BeanConnect supports the commu-
nication protocol OSI-TP (transactional or non-transactional) as well as transport-level
protocols such as RFC1006 or the openUTM-socket protocol, all of which are non-transac-
tional protocols.

The configuration of the openUTM partner application needs to be adapted properly in
order to be able to call an OLTP message-driven bean.

You can call an OLTP message-driven bean for asynchronous communication using the
OSI-TP protocol or a transport-level protocol. You can call OLTP message-driven beans for
dialog communication using the OSI-TP protocol.

● Connections to BeanConnect for communication using the OSI-TP protocol can be
configured with the Management Console (see chapter “Configuration of BeanConnect”
on page 175).

● Connections to BeanConnect for communication using a transport-level protocol must
be configured in the EIS (see chapter “Adapting the configuration in the EIS partner” on
page 257). The Management Console does not support the configuration of these
connections.

Interfaces and programming Programming inbound communication

BeanConnect V3.0B 461

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

● An LTAC must be configured in the EIS for each OLTP message-driven bean to be
called using the OSI-TP protocol. The RTAC name assigned to this LTAC must be
identical to the inbound service name of the inbound message endpoint which has been
assigned to this EJB at the time of deployment.

● The encoding of the user messages is determined on deployment of the
OLTP message-driven bean (activation-config properties encodingActive and
encoding, see section “Configuration properties in the ejb-jar.xml” on page 138) or on
the configuration of the inbound service, see section “Configuring inbound services” on
page 239.

The handshake functional unit of OSI-TP must not be used in communication with
OLTP message-driven beans.

The messages sent by an openUTM partner application to an OLTP message-driven bean
may consist of one or more message parts. Each message part can be read separately by
the OLTP message-driven bean. Likewise, the OLTP message-driven bean may assemble
the reply message from several message parts which are to be read by the openUTM
partner application with a sequence of MGET NT calls.

For details see section “Program framework using the interfaces
AsyncOltpMessageListener and OltpMessageListener” on page 468.

If you use the transport-level protocol to call an OLTP message-driven bean, the first
message part sent to this bean must be prefixed with the service name that was assigned
to the message endpoint corresponding to this EJB at the time of deployment.

i You can find further information in the openUTM documentation.

10.3.3 Inbound communication with CICS applications

BeanConnect supports the communication protocol LU6.2 for inbound communication with
a CICS application. To allow communication to take place by means of BeanConnect, some
additional restrictions and rules apply:

● Basic conversation is not supported. Basic conversation is programmed for CICS using
commands that begin with GDS.

● PIP data cannot be used for the CONNECT PROCESS call. The data is lost.

● It is not possible to use different mode names for different connections to the same
partner. For CICS/ESA V4.1 the mode name is set in the session definition and can then
be selected implicitly in the program interface using the SYSID parameter in the
ALLOCATE call.

Programming inbound communication Interfaces and programming

462 BeanConnect V3.0B

● If an LU6.2 conversation to the Java EE application server cannot be opened due to
internal connectivity problems in BeanConnect itself, CICS does not receive a detailed
rejection message. The detailed rejection messages can only be found in one of the
protocol files of BeanConnect.

● BeanConnect supports SYNCLEVEL 0 (non-transactional conversation) and
SYNCLEVEL 2 (transactional conversation).The SYNCLEVEL is set in CICS-API using
the SYNCLEVEL parameter for CONNECT PROCESS.

● If inbound communication uses SYNCLEVEL 2, the CICS program must call the proxy
for the end of the transaction with the commands SEND LAST and SYNCPOINT or ISSUE
PREPARE. Then the proxy terminates the transaction. CICS can request the end of the
transaction either when sending the user message or after receiving the answer.

● Only one-step dialogs are possible (one SEND INVITE call in the CICS program).
However, message and reply may comprise several parts. A SEND and a RECEIVE call
must be executed for each message part. The last part is indicated by the sender with
a SEND INVITE call.

● With SYNCLEVEL 0, the OLTP message-driven bean terminates communication. This
means that CICS may send a message using SEND INVITE and receive the corre-
sponding reply message using RECEIVE. Subsequently, the dialog is terminated and
SEND LAST is no longer permissible. However, it is possible for CICS to submit SEND LAST
instead of submitting the SEND INVITE / RECEIVE pair. Here, CICS sends the message
to the OLTP message-driven bean without receiving a corresponding reply message.

i A CICS program for inbound communication must be designed and coded to
comply with the Distributed Transaction Programming (DTP) paradigm. For a
description of this programming paradigm, see the IBM CICS documentation, e.g.
the CICS Distributed Transaction Programming Guide.

10.3.4 Inbound communication with other EIS partners (openUTM)

For inbound communication, BeanConnect supports the following EIS partners other than
openUTM or CICS:

● UPIC partners

● Transport-system partners such as RFC1006 partners or openUTM-socket partners

The following rules apply for communication using the UPIC protocol or transport-level
protocols (RFC1006 or the openUTM-socket protocol), all of which are non-transactional
protocols:

● UPIC partners can only be used to call OLTP message-driven beans for dialog commu-
nication. UPIC message parts are mapped onto OltpMessagePart objects and vice
versa.

Interfaces and programming Programming inbound communication

BeanConnect V3.0B 463

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

● If you use the transport-level protocol to call an OLTP message-driven bean, the first
message part sent to this bean must be prefixed with the inbound service name that
was assigned to the message endpoint corresponding to this EJB at the time of
deployment.

● The encoding of the user messages is determined on deployment of the
OLTP message-driven bean (activation-config properties encodingActive and
encoding, see section “Configuration properties in the ejb-jar.xml” on page 138) or
during the configuration of the inbound service (see section “Configuring inbound
services” on page 239).

10.3.5 Inbound communication with XATMI partners

During inbound communication, openUTM and UPIC partners that use the XATMI API are
also supported. In this case, communication with the openUTM partner is always performed
via the OSI-TP protocol.

The following applies to communication with XATMI partners:

● Only typed buffers of type X_OCTET are supported.

● An OLTP message-driven bean can use an OltpMessageContext object to determine
whether the calling EIS partner is an XATMI partner and - if it is - what paradigm it uses
(request/reply or conversational). For details, see section “Determining sender contexts
in the OLTP message-driven bean” on page 466.

● The length of a (coded) message segment must not exceed 32,000 bytes.

● In the request/reply paradigm, only one message segment may be sent.

Programming inbound communication Interfaces and programming

464 BeanConnect V3.0B

10.3.6 BeanConnect-specific interfaces for inbound communication

The following BeanConnect-specific interfaces of the package
net.fsc.jca.communication are supported for inbound communication:

● AsyncOltpMessageListener for asynchronous communication

To receive an inbound message, the interface provides the onMessage() method, which
contains the inbound message as a parameter.

● OltpMessageListener for dialog communication

To receive an inbound message and send a reply message, the interface provides the
onMessage() method, which contains the inbound message as a parameter and returns
a reply message to the EIS application.

10.3.6.1 Programming information on OLTP message-driven beans

● An OLTP message-driven bean must implement exactly one of the following interfaces:

– AsyncOltpMessageListener

– OltpMessageListener

● An OltpMessage object may consist of one or more OltpMessagePart objects and/or one
or more OltpMessageRecord objects. Whereas an OltpMessageRecord is of arbitrary
length, an OltpMessagePart object must not exceed a length of 32767 bytes.

You can retrieve the message content from OltpMessagePart and OltpMessageRecord
objects as an object of one of the following types:

– byte[]

– String

– ByteContainer

An OLTP message-driven bean may implement the ByteContainer interface if it wants
to exchange structured objects containing text and binary information with an EIS appli-
cation. Here, code conversion needs to be performed for the text information of the
structured object. For objects of type String, code conversion is performed by
BeanConnect. For details, see the JavaDoc of BeanConnect.

● The sequence in which OltpMessagePart- and/or OlpMessageRecord objects are
added to an OltpMessage or are returned by an OltpMessage corresponds to the
sequence in which the message was sent or received.

Interfaces and programming Programming inbound communication

BeanConnect V3.0B 465

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

● The interface OltpMessageContext serves two purposes:

– It provides a method for generating a reply message.

– It allows status information to be retrieved.

An OLTP message-driven bean may call the methods of the interface OltpMessage-
Context only from within the onMessage() method.

● When calling the method addMessagePart() or the method addMessageRecord() within
the method onMessage(), you must use the same OltpMessage that was used to call one
of the methods createMessagePart() or createMessageRecord() respectively.

● Asynchronous OLTP message-driven beans receive asynchronous messages, which
arrive independently of the initiator's availability. Therefore, neither a reply message nor
an exception thrown by an asynchronous OLTP message-driven bean can be returned
to the initiator of the asynchronous message.

● If transactional communication via the OSI-TP protocol is used between the EIS appli-
cation and BeanConnect, the method onMessage(OltpMessage) of a dialog based
OLTP message-driven bean participates in a distributed transaction, if the transaction
attribute Required has been assigned to this method.

● Asynchronous OLTP message-driven beans can never be part of a transaction that is
distributed between the EIS application and the application server.

● The method onMessage() of an asynchronous OLTP message-driven bean which has
been deployed with the transaction attribute Required is called in the transaction, which
has been started by the proxy (never by the EIS). If the transaction is rolled back, the
asynchronous message is redelivered to the OLTP message-driven bean if necessary.

The OLTP message-driven bean can detect such a situation by evaluating the delivery
count value of an asynchronous OltpMessage object. The redeliveryThreshold
activation-config property, which is specified at deployment of the OLTP message-
driven bean, defines the number of additional attempts to deliver the message if an
error occurs (see “reconnectThreshold” on page 129).

● The support methods of the interface EncodingDef are available through the interface
OltpMessageContext for exchanging messages in codes other than ASCII.

For detailed information, refer to the JavaDoc of BeanConnect.

Programming inbound communication Interfaces and programming

466 BeanConnect V3.0B

10.3.6.2 Determining sender contexts in the OLTP message-driven bean

An OLTP message-driven bean can obtain information about the sender via the object
OltpMessageContext. This includes, for example, the application name and host name of
the EIS partner and the inbound service with which the OLTP message-driven bean was
called in the proxy. It may, for example, be of interest to identify the inbound service, if
several different inbound services have been assigned to a message endpoint in the proxy
container.

The object OltpMessageContext provides the following methods for querying the sender
context:

● String getBCProxyName()

Name of the proxy application, fixed length of 8 characters

● String getBCProxyHost()

Name of the host on which the proxy is running, fixed length of 8 characters.

● String getBCProxyInboundService()

Name of the called inbound service in the proxy, fixed length of 8 characters.

● enum BCCommunicationProtocolType getBCCommunicationProtocol()

Identifier for the communication protocol via which the EIS partner called the inbound
service.

– In the case of dialog communication, the type of communication protocol (or client
protocol) can be determined from the enumeration class
BCCommunicationProtocolType.

– In the case of asynchronous communication, the protocol type of the logical access
point in the proxy is passed, see also getBCProxyLocalPartnerName().

BCCommunicationProtocolType returns the following values:

'2' corresponds to the protocol type OSI-TP

'3' corresponds to the protocol type UPIC

'5' corresponds to the protocol type RFC1006

'6' corresponds to the protocol type SOCKET

● String getBCPartnerTransportSelector()

String with a fixed length of 8 characters. In the case of asynchronous communication,
blanks are passed.

Interfaces and programming Programming inbound communication

BeanConnect V3.0B 467

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

In the case of dialog communication, the following elements are passed depending on
the protocol type:

– Protocol type UPIC, RFC1006 or SOCKET: Partner name of the client in the proxy

– Protocol type OSI-TP and openUTM partner in BS2000 systems: BCAM application
name of the remote host

– Protocol type OSI-TP and openUTM partner on open platforms: The partner appli-
cation's T selector

– Protocol type OSI-TP and CICS partner: TRANSPORT-SELECTOR which is
assigned to the CICS partner in the openUTM-LU62 Gateway

● String getBCPartnerNetworkSelector()

String with fixed length of 8 characters. In the case of asynchronous communication,
blanks are passed.

In the case of dialog communication, the following elements are passed depending on
the protocol type:

– Protocol type UPIC, RFC1006 or SOCKET: Processor name of the client

– Protocol type OSI-TP and openUTM partner in BS2000 systems: BCAM processor
name of the host on which the partner application is located

– Protocol type OSI-TP and openUTM partner on open platforms: Host name of the
partner computer

– Protocol type OSI-TP and CICS partner: NETWORK-SELECTOR assigned to the
CICS partner in the openUTM-LU62 Gateway

● String getBCProxyTransportSelector()

String with fixed length of 8 characters. In the case of asynchronous communication,
blanks are passed.

In the case of dialog communication, the following elements are passed depending on
the protocol type:

– Protocol type UPIC, RFC1006 or SOCKET: Application name in the proxy appli-
cation (BCAMAPPL name)

– Protocol type OSI-TP and openUTM partner: TRANSPORT-SELECTOR of the
ACCESS-POINT in the proxy application

– Protocol type OSI-TP and CICS partner: TRANSPORT-SELECTOR of the
associated ACCESS-POINT in the openUTM-LU62 Gateway.

Programming inbound communication Interfaces and programming

468 BeanConnect V3.0B

● String getBCProxyUserId()

User ID in the proxy application or, if the protocol type is OSI-TP and the EIS partner
has not passed any user ID, the connection name
(ASSOCIATION name). Fixed length of 8 characters.

● String getBCProxyLocalPartnerName()

Name of the logical access point in the proxy application. In the case of the protocol
type OSI-TP, this is the OSI-LPAP name; for all other protocol types, it is the LTERM
name. Fixed length of 8 characters.

● String getBCRaMessageEndpointName()

Name of the called message endpoint.

● boolean isBCPartnerXATMI()

true if the EIS partner communicates with the BeanConnect proxy via the XATMI
interface, otherwise false.

● boolean isBCPartnerXATMIConversational()

true if the EIS partner communicates with the BeanConnect proxy via the XATMI
interface and has selected the conversational communication paradigm, otherwise
false (i.e. request/reply paradigm).

Strings which are returned with a fixed length of 8 may be padded with blanks at the end if
necessary.

10.3.6.3 Program framework using the interfaces AsyncOltpMessageListener and
OltpMessageListener

An OLTP message-driven bean receives the inbound message as the inMsg parameter of
the onMessage() method. The received object is an OltpMessage object. From the
OltpMessage object you can retrieve an OltpMessageContext object which in turn contains
attributes of the received message and serves dialog OLTP message-driven beans as a
factory for creating a response message:

1. Access to the message context:

OltpMessageContext oltpMsgCtx = inMsg.getMessageContext();

2. Access the message content:

The OltpMessage object allows access to the message content which may be
processed in the form of OltpMessageRecord or OltpMessagePart objects.

In the case of OltpMessagePart objects you specify:

Interfaces and programming Programming inbound communication

BeanConnect V3.0B 469

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

String inMsgTxt = "";
if (inMsg.countMessageParts() > 0) {
OltpMessagePart inMsgPart;
Iterator it<OltpMessagePart> = inMsg.getMessageParts();

for (; it.hasNext();) {
inMsgPart = it.next();
inMsgTxt += inMsgPart.getText();

}
}

In the case of OltpMessageRecord objects you specify

if (inMsg.countMessageRecords() > 0) {
OltpMessageRecord inMsgRec;
Iterator it<OltpMessageRecord> = inMsg.getMessageRecords();

for (; it.hasNext();) {
inMsgRec = it.next();
inMsgTxt += inMsgRec.getText();

}
}

3. Creating a reply message (only in the case of OLTP message-driven beans for dialog
communication):

An OLTP message-driven bean for dialog communication uses the
OltpMessageContext interface to create an OltpMessage object for the reply message:

OltpMessage outMsg = oltpMsgCtx.createMessage();

4. The OltpMessage object needs to be populated with message content (only in the case
of OLTP message-driven beans for dialog communication). You can do this in different
ways using OltpMessageRecord and/or OltpMessagePart objects.

– You should construct the response message using OltpMessagePart objects if the
message recipient is to be sent a response structured in message segments. If the
recipient is an openUTM application then it reads each message segment trans-
ferred with an OltpMessagePart object by means of a separate MGET call.

– If it is not important for the response message to be structured in message
segments then it is more advantageous to use OltpMessageRecord objects.

You will find a code sample of an “OLTP message-driven beans for dialog communication”
on page 460 and a code sample of an “OLTP message-driven beans for asynchronous
communication” on page 460.

Programming inbound communication Interfaces and programming

470 BeanConnect V3.0B

10.3.7 Common Client Interface (CCI) for inbound communication

The CCI interface for the inbound communication is
javax.resource.cci.MessageListener. This interface offers the same functionality as the
BeanConnect-specific OltpMessageListener interface.

In addition, the interfaces net.fsc.jca.communication.cci.BCRecord and
net.fsc.jca.communication.OltpMessage may be used for inbound communication.

10.3.7.1 Programming information on OLTP message-driven beans (CCI)

An OLTP message-driven bean (CCI) must implement the interface
javax.resource.cci.MessageListener. OLTP message-driven beans (CCI) meet the
requirements for dialog communication. The corresponding rules described in the section
section “Programming information on OLTP message-driven beans” on page 464 apply.

10.3.7.2 Program framework using the interface javax.resource.cci.MessageListener

An OLTP message-driven bean (CCI) receives the inbound message as the record
parameter of the onMessage() method of the MessageListener interface. The received
object is of type BCRecord and contains an OltpMessage object. From the OltpMessage
object you can retrieve an OltpMessageContext object that in turn contains attributes of the
received message and also serves dialog OLTP message-driven beans as a factory for
creating a response message:

1. Extract the OltpMessage object from the BCRecord object:

OltpMessage inMsg = ((BCRecord)record).getOltpMessage();

2. Set up the message context:

String inMsgTxt;
OltpMessageContext oltpMsgCtx = inMsg.getMessageContext();

3. Access the message content:

The OltpMessage object allows access to the message content which may be
processed in the form of OltpMessageRecord or OltpMessagePart objects. From these
objects, you can retrieve the message content as an object of one of the following types:

● byte[]

● String

● ByteContainer

Interfaces and programming Programming inbound communication

BeanConnect V3.0B 471

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

In the case of OltpMessagePart objects you specify:

if (inMsg.countMessageParts() > 0) {
OltpMessagePart inMsgPart;
Iterator it<OltpMessagePart> = inMsg.getMessageParts();

for (; it.hasNext();) {
inMsgPart = it.next();
inMsgTxt = inMsgPart.getText();

}
 }

}

In the case of OltpMessageRecord objects you specify:

if (inMsg.countMessageRecords() > 0) {
OltpMessageRecord inMsgRec;
Iterator it<OltpMessageRecord> = inMsg.getMessageRecords();

for (; it.hasNext();) {
inMsgRec = (OltpMessageRecord) it.next();
inMsgTxt = inMsgRec.getText();

}

}

4. Create an OLTPMessage object for the reply message:

An OLTP message-driven bean for dialog communication uses the
OltpMessageContext interface to create an OltpMessage object for the reply message:

OltpMessage outMsg = oltpMsgCtx.createMessage();

5. The OltpMessage object needs to be populated with the reply message content.
You can do this in different ways using OltpMessageRecord and/or OltpMessagePart
objects.

In the case of OltpMessagePart objects you specify:

OltpMessagePart outMsgPart = outMsg.createMessagePart();
outMsgPart.setText("reply");
outMsg.addMessagePart(outMsgPart);

In the case of OltpMessageRecord objects you specify:

OltpMessageRecord outMsgRec = outMsg.createMessageRecord("");
outMsgRec.setText("reply");
outMsg.addMessageRecord(outMsgRec);

Programming inbound communication Interfaces and programming

472 BeanConnect V3.0B

6. Before return, the reply message needs to be set in the BCRecord object which is subse-
quently returned from this method:

((BCRecord)record).setOltpMessage(outMsg);

You will find a code sample in Example 18.

Interfaces and programming Programming inbound communication

BeanConnect V3.0B 473

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

10.3.8 Code samples for inbound communication

This section contains the following code samples:

● OLTP message-driven bean for dialog communication

● OLTP message-driven bean for asynchronous communication

● OLTP message-driven bean (CCI)

Example 17 OLTP message-driven bean for dialog communication

package net.fsc.jca.BeanConnect.oltpmdb;

import javax.ejb.EJBException;
import javax.ejb.MessageDrivenBean;
import javax.ejb.MessageDrivenContext;
import java.util.Iterator;
import net.fsc.jca.communication.*;

public class SampleDialogOltpMdbBean
 implements MessageDrivenBean, OltpMessageListener {

 public void ejbCreate()
 throws EJBException {
 // @TODO: add code
 }

 public void setMessageDrivenContext(MessageDrivenContext ctx)
 throws EJBException {
 // @TODO: add code
 }

 public void ejbRemove()
 throws EJBException {
 // @TODO: add code
 }

 public OltpMessage onMessage(OltpMessage inMsg) {
 String inMsgTxt;
 OltpMessageContext oltpMsgCtx = inMsg.getMessageContext();

 // read request
 try {
 if (inMsg.countMessageParts() > 0) {
 OltpMessagePart inMsgPart;
 Iterator it<OltpMessagePart> = inMsg.getMessageParts();

 for (; it.hasNext();) {

Programming inbound communication Interfaces and programming

474 BeanConnect V3.0B

 inMsgPart = it.next();
 inMsgTxt = inMsgPart.getText();
 // @TODO: process message part
 }

 // @TODO: process request
 }
 }
 catch (Exception ex) {
 // @TODO: handle exception
 }

 // setup reply
 OltpMessage outMsg = oltpMsgCtx.createMessage();
 OltpMessagePart outMsgPart = outMsg.createMessagePart();
 try {
 outMsgPart.setText("Reply from SampleDialogOltpMdbBean");
 }
 catch (OltpMessageException ex) {
 // @TODO: add exception handling
 }
 outMsg.addMessagePart(outMsgPart);

 return (outMsg);
 }
}

Example 18 OLTP message-driven bean for asynchronous communication

package net.fsc.jca.BeanConnect.oltpmdb;

import javax.ejb.EJBException;
import javax.ejb.MessageDrivenBean;
import javax.ejb.MessageDrivenContext;
import java.util.Iterator;
import net.fsc.jca.communication.*;

public class SampleAsynOltpMdbBean
 implements MessageDrivenBean,AsyncOltpMessageListener {
 public void ejbCreate()
 throws EJBException {
 // @TODO: add code
 }

 public void setMessageDrivenContext(MessageDrivenContext ctx)
 throws EJBException {
 // @TODO: add code
 }

Interfaces and programming Programming inbound communication

BeanConnect V3.0B 475

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

 public void ejbRemove()
 throws EJBException {
 // @TODO: add code
 }

 public void onMessage(OltpMessage inMsg) {
 String inMsgTxt;
 OltpMessageContext oltpMsgCtx = inMsg.getMessageContext();

 // read request

 try {
 if (inMsg.countMessageParts() > 0) {
 OltpMessagePart inMsgPart;
 Iterator it<OltpMessagePart> = inMsg.getMessageParts();

 for (; it.hasNext();) {
 inMsgPart = it.next();
 inMsgTxt = inMsgPart.getText();
 // @TODO: process message part
 }

 // @TODO: process request
 }
 }
 catch (Exception ex) {
 // @TODO: handle exception
 }

 return;
 }
}

Example 19 OLTP message-driven bean (CCI)

package net.fsc.jca.BeanConnect.oltpmdb;

import java.util.Iterator;

import javax.ejb.EJBException;
import javax.ejb.MessageDrivenBean;
import javax.ejb.MessageDrivenContext;
import javax.resource.cci.MessageListener;
import javax.resource.cci.Record;

import net.fsc.jca.communication.OltpMessage;
import net.fsc.jca.communication.OltpMessageContext;

Programming inbound communication Interfaces and programming

476 BeanConnect V3.0B

import net.fsc.jca.communication.OltpMessageException;
import net.fsc.jca.communication.OltpMessagePart;
import net.fsc.jca.communication.cci.BCRecord;

public class SampleCciOltpMdbBean
implements MessageDrivenBean, MessageListener {

public Record onMessage(Record record) {

String inMsgTxt;
OltpMessage inMsg = ((BCRecord)record).getOltpMessage();
OltpMessageContext oltpMsgCtx = inMsg.getMessageContext();

// read request
try {
if (inMsg.countMessageParts() > 0) {
OltpMessagePart inMsgPart;
Iterator it<OltpMessagePart> = inMsg.getMessageParts();

for (; it.hasNext();) {
inMsgPart = it.next();
inMsgTxt = inMsgPart.getText();
// @TODO: process message part

}

// @TODO: process request

}
}
catch (Exception ex) {

// @TODO: handle exception
}

// setup reply

OltpMessage outMsg = oltpMsgCtx.createMessage();
OltpMessagePart outMsgPart = outMsg.createMessagePart();
try {
outMsgPart.setText("Reply from SampleCciOltpMdbBean");

}
catch (OltpMessageException ex) {
// @TODO: add exception handling

}
outMsg.addMessagePart(outMsgPart);

((BCRecord)record).setOltpMessage(outMsg);
return record;

}

Interfaces and programming Programming inbound communication

BeanConnect V3.0B 477

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
24

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
0

/**
* Method ejbCreate() as required by EJB spec.
*/
public void ejbCreate()

throws EJBException {
// @TODO: add code

}

/**
* Method setMessageDrivenContext() as required by interface
* javax.ejb.MessageDrivenBean.
* javax.ejb.MessageDrivenBean#setMessageDrivenContext(
* MessageDrivenContext ctx)
*/
public void setMessageDrivenContext(MessageDrivenContext ctx)

throws EJBException {
// @TODO: add code

}

/**
* Method ejbRemove() as required by interface
* javax.ejb.MessageDrivenBean.
*
* @see javax.ejb.MessageDrivenBean#ejbRemove()
*/
public void ejbRemove()

throws EJBException {
// @TODO: add code
}

}

Programming inbound communication Interfaces and programming

478 BeanConnect V3.0B

BeanConnect V3.0B 479

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

.
A

ug
u

st
 2

0
15

S

ta
nd

 1
0:

34
.2

6
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

nS
E

A
S

\B
ea

nC
on

ne
ct

_V
30

B
\1

50
2

50
0_

M
a

nu
al

\e
n\

b
ea

n
co

nn
_e

.k
11

11 Encoding and national language support

This chapter provides the following information:

● The section Encoding describes the code conversion between a Java program using
Unicode and the specific encoding used by the partner system.

● The section National language support for message output describes the BeanConnect
National Language Support (NLS) feature for language- and country-specific message
display from the BeanConnect resource adapter, the BeanConnect proxy and the
BeanConnect Management Console.

11.1 Encoding

If BeanConnect receives printable data from partners on BS2000 or on an IBM mainframe,
the data stream encoded in 1-byte code (for example EBCDIC) must first be converted into
2-byte Unicode so that a Java program can process it directly. Correspondingly, conversion
from 2-byte Unicode to 1-byte code is required when a Java program with BeanConnect
sends data to the BS2000 or CICS partner.

To convert 1-byte code to 2-byte Unicode and vice versa, you have the following options:

● Standard conversion between EBCDIC code and Unicode for EIS partners of type
openUTM

● Standard conversion between EBCDIC code and Unicode for EIS partners of type CICS

● Using other predefined code tables

● Using custom charsets

You can find further detailed information on the topics discussed in this chapter in the
JavaDoc for BeanConnect concerning the package net.fsc.beanta.encoding.

All code tables used by the IBM systems can be found in

http://www-03.ibm.com/systems/i/software/globalization/codepages.html

Encoding Encoding and national language support

480 BeanConnect V3.0B

11.1.1 Standard conversion between EBCDIC code and Unicode for EIS
partners of type openUTM

In most cases you do not need to deal with conversion from EBCDIC code to Unicode and
vice versa as BeanConnect performs conversion automatically in accordance with the
standard code table OSD_EBCDIC_DF04_DRV.

Code conversion takes place automatically when the following requirements are met:

● The value true is specified in the configuration property encodingActive.

● Strings are used for communication.

i If the Java program is to receive the 1-byte EBCDIC data stream unconverted, byte
arrays must be used instead of strings.

Code table OSD_EBCDIC_DF04_DRV

The table below shows the assignment of 1-byte EBCDIC code, printable Unicode
characters, and 2-byte Unicode defined in the code table OSD_EBCDIC_DF04_DRV.

In the following table

● the x and y axes indicate the relevant 1-byte EBCDIC code

● the first line in a field indicates the 2-byte Unicode
(leading non-significant bytes are not indicated)

● the second line in a field indicates the Unicode printing character

Encoding and national language support Encoding

BeanConnect V3.0B 481

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

.
A

ug
u

st
 2

0
15

S

ta
nd

 1
0:

34
.2

6
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

nS
E

A
S

\B
ea

nC
on

ne
ct

_V
30

B
\1

50
2

50
0_

M
a

nu
al

\e
n\

b
ea

n
co

nn
_e

.k
11

Byte - character (Unicode) correspondence

Character (Unicode) - byte correspondence

Substitute character: 6F

In the following table

● the x and y axes indicate the relevant 2-byte Unicode

● the relevant field indicates the associated 1-byte EBCDIC code

 _0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F

0_ 00 01 02 03 85
…

09 86
†

7F

87
‡

8D

8E
Ž

0B 0C 0D 0E 0F

1_ 10 11

12

13

8F

A 8 97
—

18 19 9C
œ

9D

1C

1D 1E
-

1F

2_ 80
€

81

82
‚

83
ƒ

84
„

92
’

17 1B 88
ˆ

89
‰

8A
Š

8B
‹

8C
Œ

5 6 7

3_ 90

91
‘

16 93
“

94
”

95
•

96
–

4 98
˜

99
™

9A
š

9B
›

14

15

9E
ž

1A

4_ 20 A0 E2
â

7C
|

E0
à

E1
á

E3
ã

E5
å

E7
ç

F1
ñ

60
`

2E
.

3C
<

28
(

2B
+

F6
ö

5_ 26
&

E9
é

EA
ê

EB
ë

E8
è

ED
í

EE
î

EF
ï

EC
ì

0 21
!

24
$

2A
*

29
)

3B
;

AF
¯

6_ 2D
-

2F
/

C2
Â

A6
¦

C0
À

C1
Á

C3
Ã

C5
Å

C7
Ç

D1
Ñ

5E
^

2C
,

25
%

5F
_

3E
>

3F
?

7_ F8
ø

C9
É

CA
Ê

CB
Ë

C8
È

CD
Í

CE
Î

CF
Ï

CC
Ì

A8
¨

3A
:

23
#

A7
§

27
'

3D
=

22
"

8_ D8
Ø

61
a

62
b

63
c

64
d

65
e

66
f

67
g

68
h

69
i

AB
«

BB
»

F0
ð

FD
ý

FE
þ

B1
±

9_ B0
°

6A
j

6B
k

6C
l

6D
m

6E
n

6F
o

70
p

71
q

72
r

AA
ª

BA
º

E6
æ

B8
¸

C6
Æ

A4
¤

A_ B5
µ

7E
~

73
s

74
t

75
u

76
v

77
w

78
x

79
y

7A
z

A1
¡

BF
¿

D0
Ð

DD
Ý

DE
Þ

AE
®

B_ A2
¢

A3
£

A5
¥

B7
·

A9
©

40
@

B6
¶

BC
¼

BD
½

BE
¾

AC
¬

C4
Ä

D6
Ö

DC
Ü

B4
´

D7
×

C_ 7B
{

41
A

42
B

43
C

44
D

45
E

46
F

47
G

48
H

49
I

AD F4
ô

5B
[

F2
ò

F3
ó

F5
õ

D_ 7D
}

4A
J

4B
K

4C
L

4D
M

4E
N

4F
O

50
P

51
Q

52
R

B9
¹

FB
û

5D
]

F9
ù

FA
ú

FF
ÿ

E_ 5C
\

F7
÷

53
S

54
T

55
U

56
V

57
W

58
X

59
Y

5A
Z

B2
²

D4
Ô

DB
Û

D2
Ò

D3
Ó

D5
Õ

F_ 30
0

31
1

32
2

33
3

34
4

35
5

36
6

37
7

38
8

39
9

B3
³

E4
ä

D9
Ù

FC
ü

DA
Ú

DF
ß

Encoding Encoding and national language support

482 BeanConnect V3.0B

11.1.2 Standard conversion between EBCDIC code and Unicode for EIS
partners of type CICS

In most cases you do not need to deal with conversion from 1-byte code to Unicode and
vice versa as BeanConnect performs conversion automatically in accordance with the
standard JDK code table Cp1047.

Code conversion takes place automatically when the following requirements are met:

● The value true is specified in the configuration property encodingActive.

● Strings are used for communication.

● The connection URL is of type cics://

i If the Java program is to receive the 1-byte data stream unconverted, byte arrays
must be used instead of strings.

 _0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F
000_ 00 01 02 03 37 2D 2E 2F 16 05 15 0B 0C 0D 0E 0F

001_ 10 11 12 13 3C 3D 32 26 18 19 3F 27 1C 1D 1E 1F

002_ 40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61

003_ F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F
004_ B5 C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6

005_ D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 CC E0 DC 6A 6D

006_ 4A 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96

007_ 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 C0 43 D0 A1 7

008_ 20 21 22 23 24 4 6 8 28 29 2A 2B 2C 9 A 14

009_ 30 31 25 33 34 35 36 17 38 39 3A 3B 1A 1B 3E 5F

00A_ 41 AA B0 B1 9F B2 63 7C 79 B4 9A 8A BA CA AF 5F

00B_ 90 8F EA FA BE A0 B6 B3 9D DA 9B 8B B7 B8 B9 AB

00C_ 64 65 62 66 BB 67 9E 68 74 71 72 73 78 75 76 77

00D_ AC 69 ED EE EB EF BC BF 80 FC FE EC BD AD AE FF

00E_ 44 45 42 46 FB 47 9C 48 54 51 52 53 58 55 56 57

00F_ 8C 49 CD CE CB CF 4F E1 70 DD DE DB FD 8D 8E DF

Encoding and national language support Encoding

BeanConnect V3.0B 483

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

.
A

ug
u

st
 2

0
15

S

ta
nd

 1
0:

34
.2

6
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

nS
E

A
S

\B
ea

nC
on

ne
ct

_V
30

B
\1

50
2

50
0_

M
a

nu
al

\e
n\

b
ea

n
co

nn
_e

.k
11

11.1.3 Using other predefined code tables

In addition to the standard code table OSD_EBCDIC_DF04_DRV, the following code tables are
also supplied with the product BeanConnect:

● OSD_EBCDIC_DF03_IRV (only openUTM partners)

● OSD_EBCDIC_DF04_1 (only openUTM partners)

● OSD_EBCDIC_DF04_15 (only openUTM partners)

● code tables of the JVM (openUTM and CICS partners)

BeanConnect supports the code tables provided with the JVM. You will find a list of the JVM
code tables

● for JDK 1.7 at

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.ht
ml

You select the required code table at deployment time as follows:

● In the configuration property encoding specify the name of the required code table. You
specify a JMV code table with jdk:<jvm-code-table>.

● Set the configuration property encodingActive to true to activate it.

You select the required code table at runtime as follows:

● In the Java program activate the required code table with the setEncoding() method of
the EISConnection interface or the OltpMessageContext interface.

i You can use the Management Console to specify a code table for an inbound
service. This specification overwrites the value for encoding and sets encodin-
gActive to true, see section “Configuring inbound services” on page 239.

Example 20 Using predefined code tables

Code table OSD_EBCDIC_DF03_IRV is to be used:
connection.setEncoding(Encoding.getEncoding("OSD_EBCDIC_DF03_IRV"))

JVM code table CP1047 is to be used:
connection.setEncoding(Encoding.getEncoding("jdk:Cp1047"));
connection.setEncodingActive(true);

Encoding Encoding and national language support

484 BeanConnect V3.0B

The other predefined code tables are shown on the following pages.

In all the following Byte - Character (Unicode) Correspondence tables

● the x and y axes indicate the relevant 1-byte EBCDIC code

● the first line in a field indicates the 2-byte Unicode
(leading non-significant bytes are not indicated)

● the second line in a field indicates the Unicode printing character

In all the following Character (Unicode) - Byte Correspondence tables

● the x and y axes indicate the relevant 2-byte Unicode

● the relevant field indicates the associated 1-byte EBCDIC code

Encoding and national language support Encoding

BeanConnect V3.0B 485

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

.
A

ug
u

st
 2

0
15

S

ta
nd

 1
0:

34
.2

6
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

nS
E

A
S

\B
ea

nC
on

ne
ct

_V
30

B
\1

50
2

50
0_

M
a

nu
al

\e
n\

b
ea

n
co

nn
_e

.k
11

Code table OSD_EBCDIC_DF03_IRV

The table below shows the assignment of 1-byte EBCDIC code, printable Unicode
characters, and 2-byte Unicode defined in the code table OSD_EBCDIC_DF03_IRV.

Byte - character (Unicode) correspondence

Character (Unicode) - byte correspondence

Substitute character: 6F

 _0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F

0_ 00 01 02 03 FFFD

09 FFFD

7F

FFFD

FFFD

FFFD

0B 0C 0D 0E 0F

1_ 10

11

12

13

FFFD

0A 08 FFFD

18

19

FFFD

FFFD

1C

1D

1E
-

1F

2_ FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

17

1B

FFFD

FFFD

FFFD

FFFD

FFFD

05 06 07

3_ FFFD

FFFD

16

FFFD

FFFD

FFFD

FFFD

04 FFFD

FFFD

FFFD

FFFD

14

15

FFFD

1A

4_ 20 FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

60
`

2E
.

3C
<

28
(

2B
+

7C
|

5_ 26
&

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

21
!

24
$

2A
*

29
)

3B
;

FFFD

6_ 2D
-

2F
/

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

5E
^

2C
,

25
%

5F
_

3E
>

3F
?

7_ FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

3A
:

23
#

40
@

27
'

3D
=

22
"

8_ FFFD

61
a

62
b

63
c

64
d

65
e

66
f

67
g

68
h

69
i

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

9_ FFFD

6A
j

6B
k

6C
l

6D
m

6E
n

6F
o

70
p

71
q

72
r

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

A_ FFFD

FFFD

73
s

74
t

75
u

76
v

77
w

78
x

79
y

7A
z

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

B_ FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

5B
[

5C
\

5D
]

FFFD

FFFD

C_ FFFD

41
A

42
B

43
C

44
D

45
E

46
F

47
G

48
H

49
I

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

D_ FFFD

4A
J

4B
K

4C
L

4D
M

4E
N

4F
O

50
P

51
Q

52
R

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

E_ FFFD

FFFD

53
S

54
T

55
U

56
V

57
W

58
X

59
Y

5A
Z

FFFD

FFFD

FFFD

FFFD

FFFD

FFFD

F_ 30
0

31
1

32
2

33
3

34
4

35
5

36
6

37
7

38
8

39
9

FFFD

7B
{

FFFD

7D
}

FFFD

7E
~

Encoding Encoding and national language support

486 BeanConnect V3.0B

 _0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F
000_ 00 01 02 03 37 2D 2E 2F 16 05 15 0B 0C 0D 0E 0F

001_ 10 11 12 13 3C 3D 32 26 18 19 3F 27 1C 1D 1E 1F

002_ 40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61

003_ F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F
004_ 7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6

005_ D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 BB BC BD 6A 6D

006_ 4A 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96

007_ 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 FB 4F FD FF 07

008_ 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F
009_ 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F
00A_ 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F
00B_ 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F
00C_ 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F
00D_ 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F
00E_ 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F
00F_ 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F

Encoding and national language support Encoding

BeanConnect V3.0B 487

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

.
A

ug
u

st
 2

0
15

S

ta
nd

 1
0:

34
.2

6
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

nS
E

A
S

\B
ea

nC
on

ne
ct

_V
30

B
\1

50
2

50
0_

M
a

nu
al

\e
n\

b
ea

n
co

nn
_e

.k
11

Code table OSD_EBCDIC_DF04_1

The table below shows the assignment of 1-byte EBCDIC code, printable Unicode
characters, and 2-byte Unicode defined in the code table OSD_EBCDIC_DF04_1.

Byte - character (Unicode) correspondence

Character (Unicode) - byte correspondence

Substitute character: 6F

 _0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F
0_ 00 01 02 03 85

…
09 86

†
7F

87
‡

8D

8E
Ž

0B 0C 0D 0E 0F

1_ 10

11

12

13

8F

A 8 97
—

18

19

9C
œ

9D

1C

1D

1E
-

1F

2_ 80
€

81

82
‚

83
ƒ

84
„

92
’

17

1B

88
ˆ

89
‰

8A
Š

8B
‹

8C
Œ

05 06 07

3_ 90

91
‘

16

93
“

94
”

95
•

96
–

4 98
˜

99
™

9A
š

9B
›

14

15

9E
ž

1A

4_ 20 A0 E2
â

E4
ä

E0
à

E1
á

E3
ã

E5
å

E7
ç

F1
ñ

60
`

2E
.

3C
<

28
(

2B
+

7C
|

5_ 26
&

E9
é

EA
ê

EB
ë

E8
è

ED
í

EE
î

EF
ï

EC
ì

DF
ß

21
!

24
$

2A
*

29
)

3B
;

9F
Ÿ

6_ 2D
-

2F
/

C2
Â

C4
Ä

C0
À

C1
Á

C3
Ã

C5
Å

C7
Ç

D1
Ñ

5E
^

2C
,

25
%

5F
_

3E
>

3F
?

7_ F8
ø

C9
É

CA
Ê

CB
Ë

C8
È

CD
Í

CE
Î

CF
Ï

CC
Ì

A8
¨

3A
:

23
#

40
@

27
'

3D
=

22
"

8_ D8
Ø

61
a

62
b

63
c

64
d

65
e

66
f

67
g

68
h

69
i

AB
«

BB
»

F0
ð

FD
ý

FE
þ

B1
±

9_ B0
°

6A
j

6B
k

6C
l

6D
m

6E
n

6F
o

70
p

71
q

72
r

AA
ª

BA
º

E6
æ

B8
¸

C6
Æ

A4
¤

A_ B5
µ

AF
¯

73
s

74
t

75
u

76
v

77
w

78
x

79
y

7A
z

A1
¡

BF
¿

D0
Ð

DD
Ý

DE
Þ

AE
®

B_ A2
¢

A3
£

A5
¥

B7
·

A9
©

A7
§

B6
¶

BC
¼

BD
½

BE
¾

AC
¬

5B
[

5C
\

5D
]

B4
´

D7
×

C_ F9
ù

41
A

42
B

43
C

44
D

45
E

46
F

47
G

48
H

49
I

AD F4
ô

F6
ö

F2
ò

F3
ó

F5
õ

D_ A6
¦

4A
J

4B
K

4C
L

4D
M

4E
N

4F
O

50
P

51
Q

52
R

B9
¹

FB
û

FC
ü

DB
Û

FA
ú

FF
ÿ

E_ D9
Ù

F7
÷

53
S

54
T

55
U

56
V

57
W

58
X

59
Y

5A
Z

B2
²

D4
Ô

D6
Ö

D2
Ò

D3
Ó

D5
Õ

F_ 30
0

31
1

32
2

33
3

34
4

35
5

36
6

37
7

38
8

39
9

B3
³

7B
{

DC
Ü

7D
}

DA
Ú

7E
~

Encoding Encoding and national language support

488 BeanConnect V3.0B

 _0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F
000_ 00 01 02 03 37 2D 2E 2F 16 05 15 0B 0C 0D 0E 0F

001_ 10 11 12 13 3C 3D 32 26 18 19 3F 27 1C 1D 1E 1F

002_ 40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61

003_ F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F
004_ 7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6

005_ D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 BB BC BD 6A 6D

006_ 4A 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96

007_ 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 FB 4F FD FF 7

008_ 20 21 22 23 24 4 6 8 28 29 2A 2B 2C 9 A 14

009_ 30 31 25 33 34 35 36 17 38 39 3A 3B 1A 1B 3E 5F

00A_ 41 AA B0 B1 9F B2 D0 B5 79 B4 9A 8A BA CA AF A1

00B_ 90 8F EA FA BE A0 B6 B3 9D DA 9B 8B B7 B8 B9 AB

00C_ 64 65 62 66 63 67 9E 68 74 71 72 73 78 75 76 77

00D_ AC 69 ED EE EB EF EC BF 80 E0 FE DD FC AD AE 59

00E_ 44 45 42 46 43 47 9C 48 54 51 52 53 58 55 56 57

00F_ 8C 49 CD CE CB CF CC E1 70 C0 DE DB DC 8D 8E DF

Encoding and national language support Encoding

BeanConnect V3.0B 489

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

.
A

ug
u

st
 2

0
15

S

ta
nd

 1
0:

34
.2

6
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

nS
E

A
S

\B
ea

nC
on

ne
ct

_V
30

B
\1

50
2

50
0_

M
a

nu
al

\e
n\

b
ea

n
co

nn
_e

.k
11

Code table OSD_EBCDIC_DF04_15

The table below shows the assignment of 1-byte EBCDIC code, printable Unicode
characters, and 2-byte Unicode defined in the code table OSD_EBCDIC_DF04_15.

Byte - character (Unicode) correspondence

Character (Unicode) - byte correspondence

Substitute character: 6F

 _0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F

0_ 00 01 02 03 85
…

09 86
†

7F

87
‡

8D

8E
Ž

0B 0C 0D 0E 0F

1_ 10

11

12

13

8F

A 8 97
—

18

19

9C
œ

9D

1C

1D

1E
-

1F

2_ 80
€

81

82
‚

83
ƒ

84
„

92
’

17

1B

88
ˆ

89
‰

8A
Š

8B
‹

8C
Œ

5 6 7

3_ 90

91
‘

16

93
“

94
”

95
•

96
–

4 98
˜

99
™

9A
š

9B
›

14

15

9E
ž

1A

4_ 20 A0 E2
â

E4
ä

E0
à

E1
á

E3
ã

E5
å

E7
ç

F1
ñ

60
`

2E
.

3C
<

28
(

2B
+

7C
|

5_ 26
&

E9
é

EA
ê

EB
ë

E8
è

ED
í

EE
î

EF
ï

EC
ì

DF
ß

21
!

24
$

2A
*

29
)

3B
;

9F
Ÿ

6_ 2D
-

2F
/

C2
Â

C4
Ä

C0
À

C1
Á

C3
Ã

C5
Å

C7
Ç

D1
Ñ

5E
^

2C
,

25
%

5F
_

3E
>

3F
?

7_ F8
ø

C9
É

CA
Ê

CB
Ë

C8
È

CD
Í

CE
Î

CF
Ï

CC
Ì

161
š

3A
:

23
#

40
@

27
'

3D
=

22
"

8_ D8
Ø

61
a

62
b

63
c

64
d

65
e

66
f

67
g

68
h

69
i

AB
«

BB
»

F0
ð

FD
ý

FE
þ

B1
±

9_ B0
°

6A
j

6B
k

6C
l

6D
m

6E
n

6F
o

70
p

71
q

72
r

AA
ª

BA
º

E6
æ

17E
ž

C6
Æ

20AC
€

A_ B5
µ

AF
¯

73
s

74
t

75
u

76
v

77
w

78
x

79
y

7A
z

A1
¡

BF
¿

D0
Ð

DD
Ý

DE
Þ

AE
®

B_ A2
¢

A3
£

A5
¥

B7
·

A9
©

A7
§

B6
¶

152
Œ

153
œ

178
Ÿ

AC
¬

5B
[

5C
\

5D
]

17D
Ž

D7
×

C_ F9
ù

41
A

42
B

43
C

44
D

45
E

46
F

47
G

48
H

49
I

AD F4
ô

F6
ö

F2
ò

F3
ó

F5
õ

D_ 160
Š

4A
J

4B
K

4C
L

4D
M

4E
N

4F
O

50
P

51
Q

52
R

B9
¹

FB
û

FC
ü

DB
Û

FA
ú

FF
ÿ

E_ D9
Ù

F7
÷

53
S

54
T

55
U

56
V

57
W

58
X

59
Y

5A
Z

B2
²

D4
Ô

D6
Ö

D2
Ò

D3
Ó

D5
Õ

F_ 30
0

31
1

32
2

33
3

34
4

35
5

36
6

37
7

38
8

39
9

B3
³

7B
{

DC
Ü

7D
}

DA
Ú

7E
~

Encoding Encoding and national language support

490 BeanConnect V3.0B

Results for entries > 0x00FF

 _0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F
000_ 00 01 02 03 37 2D 2E 2F 16 05 15 0B 0C 0D 0E 0F

001_ 10 11 12 13 3C 3D 32 26 18 19 3F 27 1C 1D 1E 1F

002_ 40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61

003_ F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F
004_ 7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6

005_ D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 BB BC BD 6A 6D

006_ 4A 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96

007_ 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 FB 4F FD FF 7

008_ 20 21 22 23 24 4 6 8 28 29 2A 2B 2C 9 A 14

009_ 30 31 25 33 34 35 36 17 38 39 3A 3B 1A 1B 3E 5F

00A_ 41 AA B0 B1 9F B2 D0 B5 79 B4 9A 8A BA CA AF A1

00B_ 90 8F EA FA BE A0 B6 B3 9D DA 9B 8B B7 B8 B9 AB

00C_ 64 65 62 66 63 67 9E 68 74 71 72 73 78 75 76 77

00D_ AC 69 ED EE EB EF EC BF 80 E0 FE DD FC AD AE 59

00E_ 44 45 42 46 43 47 9C 48 54 51 52 53 58 55 56 57

00F_ 8C 49 CD CE CB CF CC E1 70 C0 DE DB DC 8D 8E DF

Zeichen (in) Byte (out)
152 Œ B7

153 œ B8

160 Š D0

161 š 79

178 Ÿ B9

17D Ž BE

17E ž 9D

20AC € 9F

Encoding and national language support Encoding

BeanConnect V3.0B 491

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

.
A

ug
u

st
 2

0
15

S

ta
nd

 1
0:

34
.2

6
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

nS
E

A
S

\B
ea

nC
on

ne
ct

_V
30

B
\1

50
2

50
0_

M
a

nu
al

\e
n\

b
ea

n
co

nn
_e

.k
11

11.1.4 Using custom charsets

There are two ways of generating user-defined character sets:

● You can generate a custom charset provider that is embedded in the JVM.

● You can generate a legacy code table.

11.1.4.1 Custom Charset Provider

This is the preferred method for using new custom charsets.

You can create your own code tables for use in the JVM and activate them by applying the
procedure described in section “Using other predefined code tables” on page 483. Instead
of a predefined JDK code table name, use your own code table name with the syntax
jdk:<my_code_table>.

A detailed description on how to implement and deploy your own code tables in the Java
runtime environment can be found in the Java documentation at

http://docs.oracle.com/javase/7/docs/api/java/nio/charset/package-
summary.html

and in the BeanConnect JavaDoc for the package net.fsc.beanta.encoding.

A Java sample code is present in the BeanConnect delivery scope in the package
net.fsc.beanconnect.encoding.sample.

In order to use your own code tables, you have to place the classes in the directory
<JDK>/jre/lib/ext. Further information is available in "Java Extension Mechanism".

11.1.4.2 Creating and using legacy code tables

You use the method described here if you do not want to extend the JVM for user-defined
character sets as described insection “Custom Charset Provider” on page 491 but instead
the extension is only to apply to BeanConnect.

If the predefined code tables do not satisfy your requirements, you can create code tables
of your own. A Java sample source for a user-defined code table is supplied with the
product. You will find this example in the JavaDoc for the package
net.fsc.beanta.encoding in the Encoding.CustomEncoder class.

To avoid problems with the class loaders when using the classes of your own code tables,
you should add the classes to the file BeanConnect.rar.

You select the required code table at deployment time as follows:

● In the configuration property encoding, specify the name of the required code table
using custom:<my-code-table>.

National language support National language support and encoding

492 BeanConnect V3.0B

● Set the configuration property encodingActive to true to activate it.

You select the required code table at runtime as follows:

● In the Java program activate the required code table with the setEncoding() method of
the EISConnection or the OltpMessageContext interface as follows:

OwnTable myTable = new OwnTable();
connection.setEncoding(new Encoding.CustomEncoder(myTable));
connection.setEncodingActive(true);

i For compatibility reasons, not only the procedure described for using customer-
defined code tables is supported, but also the following procedure for utilizing user-
defined code tables in which conversion is implemented with two Java programs:

OwnTable_ByteToChar myTableByteToChar = new
OwnTable_ByteToChar();
OwnTable_CharToByte myTableCharToByte = new
OwnTable_CharToByte();
setEncoding(new Encoding.Custom(myTableByteToChar,

myTableCharToByte));

These code tables only support 1-byte encoding. This means that the encoding source and
destination for one char can only be one byte. If you need 2-byte code tables, we
recommend the use of a custom charset which provides all options of code conversion.

11.2 National language support for message output

BeanConnect permits internationalization and localization of the messages of the
BeanConnect resource adapter, the BeanConnect proxy and the BeanConnect
Management Console. Internationalization and localization means that the messages that
a component passes to the users or writes to log files are output correctly for the relevant
environment (country, language).

For this, Java offers classes which provide support for internationalization (such as the
class Locale). To determine the language in which messages are to be output, there are
two criteria in BeanConnect:

● language (for example en)

● region (for example US)

The language code is defined as per ISO-639. The possible values for the region are
described in ISO-3166.

By default, BeanConnect supplies messages for the language en and the region US. If the
user does not make any explicit selection, the default values apply as specified by the
current JVM (Default-Locale).

National language support and encoding National language support

BeanConnect V3.0B 493

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

.
A

ug
u

st
 2

0
15

S

ta
nd

 1
0:

34
.2

6
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

nS
E

A
S

\B
ea

nC
on

ne
ct

_V
30

B
\1

50
2

50
0_

M
a

nu
al

\e
n\

b
ea

n
co

nn
_e

.k
11

BeanConnect provides two methods of changing these default settings:

● On starting a Java program, set the locale by defining the following two system
properties:

– net.fsc.tpbasics.i18n.defaultCountry and

– net.fsc.tpbasics.i18n.defaultLanguage

● Store the required settings in the file beanconnect_i18n.properties, which must be
accessible in the class path of the relevant JVM.

BeanConnect first tries to determine the settings using the system properties. If no system
properties have been defined, the system searches for the property file and reads the
settings from there. The standard method should be to set the locale in
beanconnect_i18n.properties.

Default configuration

A JAR file (BeanConnectI18N.jar) is deployed with the installation of the BeanConnect
resource adapter, the BeanConnect proxy or the BeanConnect Management Console. This
file must be entered in the class path of the JVM. By default, this file has the following
contents:

● beanconnect_i18n.properties for setting the locale

● the message files for the individual components (default language: en, US)

● a number of Java classes (Msg…class) which must remain unchanged in the JAR file.

To allow access to the message files, their names must follow a certain pattern.

Several message files with the name <component>.properties are included. These files
act as a fallback and are used if you have given incorrect values for the language and
region. The currently used message files are:

Resource adapter basics.properties
stub.properties
proxy.properties
ui.properties
oltpmsg.properties
jconnect.properties
encoding.properties

Proxy proxy.properties
oltpmsg.properties

Management Console mc.properties
tpbasics.properties

National language support National language support and encoding

494 BeanConnect V3.0B

In addition, a file <component>_en_US.properties can be contained in the JAR file. This is
generally an identical copy of the file <component>.properties, since en_US is the default
value for BeanConnect message files.

Examples of file names:

● proxy.properties

● proxy_de.properties

● proxy_en_US.properties

● proxy_fr_FR.properties

Introducing a new language

You can provide support for other languages by adding message files to the JAR file
BeanConnectI18N.jar. These message files are text files and can be edited with a text
editor (such as notepad, vi).

The following example shows the steps necessary for support of German messages.

1. Extract the default message file (for example proxy.properties) from the JAR file
using the command jar or the program WinZip.

2. Translate the messages into German.

3. Store the new message file with the name proxy_de_DE.properties and add it to the
JAR file under the same path (net.fsc.tpbasic.i18n.r) as the default file.

4. Extract the file beanconnect_i18n.properties.

5. Enter de as the language and DE as the country:

net.fsc.tpbasics.i18n.defaultLanguage=de

net.fsc.tpbasics.i18n.defaultCountry=DE

6. Write the file beanconnect_i18n.properties back to the JAR file.

Apply step 1 to 3 to all the other message files (stub.properties, ui.properties, etc.).

When switching to a new language, note that BeanConnectI18N.jar must be edited for the
BeanConnect resource adapter in the file BeanConnect.rar if the connector is deployed.

For the BeanConnect proxy and the BeanConnect Management Console the
BeanConnectI18N.jar file must be edited in the BeanConnect home directory
<BC_home>/lib.

BeanConnect V3.0B 495

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
2

12 High availability and scalability

The BeanConnect proxy container is installed with default configuration values. For heavy-
load operations it may be necessary to change this configuration. In most cases a specific
message is output to the proxy container logging when configuration limits are reached.

This chapter provides information on:

● Shared memory of the proxy container

● Number of proxy container processes

● Page pool area and cache of the proxy container

● Number of parallel connections to the EIS partner

● Asynchronous processing in the proxy container

● OSI-SCRATCH-AREA in the proxy container

● Number of semaphores in the proxy container

12.1 Shared memory of the proxy container

All messages sent and received by the proxy container are stored in a shared memory
before executing in one of the proxy container processes. During communication scenarios
with large quantities of data, it may happen that the shared memory in which messages are
buffered is too small.

You can solve this problem via the environment variables UTM_IPC_LETTER and
UTM_IPC_EXPT_LETTER, which are specified in the start procedure of the proxy container:

● Solaris and Linux systems:
<Proxy_home>/shsc/startcontainer.sh

● Windows systems:
<Proxy_home>\shsc\startcontainer.cmd

Shared memory of the proxy container High availability and scalability

496 BeanConnect V3.0B

12.1.1 Adapting the shared memory

The necessary modification depends on the insert in the U189 message:

● U189 &OBJ1 (&PTRM, &PRNM): IPC shortage of LETT EXTP FULL or
U189 &OBJ1 (&PTRM, &PRNM): IPC shortage of LETT MAX ILETT or
U189 &OBJ1 (&PTRM, &PRNM): IPC shortage of LETT MAX OLETT

These inserts mean that the size of a message exceeds the maximum size of the data
area for a connection. The default maximum size after installation is 32 (specified in
4KB units).

To correct it, you must change the value of the UTM_IPC_EXTP_LETTER environment
variable to a bigger value.

● U189 &OBJ1 (&PTRM, &PRNM): IPC shortage of LETT IPC FULL

These inserts mean that the size of all messages exceeds the maximum size of the data
area for all connections. The default maximum size after installation is 1600 (specified
in 4KB units).

To correct it, you must change the value of the UTM_IPC_LETTER environment variable to
a bigger value.

In most cases, however, the following "rule of thumb" can be used:

● UTM_IPC_EXTP_LETTER = maximum size of an outbound/inbound message in 4KB units

● UTM_IPC_LETTER = <nConn> * UTM_IPC_EXTP_LETTER, but not less than
1600 (6.4 MB).

<nConn> is the maximum number of connections between the proxy container and its
partner applications (EIS partner, resource adapter, Management Console).

High availability and scalability Number of proxy container processes

BeanConnect V3.0B 497

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
2

12.2 Number of proxy container processes

The maximum number of processes required in the proxy container is as high as the sum
of processes required for outbound and inbound communication.

Outbound communication

For outbound communication, the number of processes required of the bean is the number
of parallel connections of the bean if the connections are not organized in groups. If the
connections are organized in groups, the number of processes required is the number of
connection groups used at a time.

In addition, the total number of processes depends on the number of beans using outbound
communication at a time and whether this communication is transactional or non-transac-
tional. In the case of transactional communication, a proxy process is exclusively assigned
to a bean until the transaction is completed; in the case of non-transactional communication
this is done only for the time required for a conversation.

Inbound communication

For inbound communication, the number of required processes is at least as high as the
maximum number of parallel inbound messages. The parallel inbound messages can at
most be as many as the number of parallel connections to all EIS partners.

12.2.1 Displaying the workload of processes

You can display the workload of the container application in the Management Console:

1. Open the subtree of the proxy in the navigation area.

2. Under Advanced Features choose the entry Properties/Statistics.

The value for the workload is given in the Properties / Statistics panel under Workload. If
the value under Workload (maximum) is higher than 80%, you should increase the
number of processes (see the following section).

Number of proxy container processes High availability and scalability

498 BeanConnect V3.0B

12.2.2 Setting the number of processes

By default, three processes are started. You can change the number of processes in the
Management Console:

1. From the context menu of the proxy, select the entry Edit Properties.

2. In the Edit Properties of Local/Remote Proxy property sheet choose the Perfor-
mance Settings tab.

3. Under Number of Proxy Container Processes change the value for Total.

The maximum number of processes is limited by internal settings to 240. You should also
take into account that a higher number of processes also increases the system overhead
for managing those processes and affects the size of the recovery file.

Moreover, additional virtual memory is required for each container process. For example,
when running on Solaris systems in 32-bit mode, each additional utmwork process requires
approximately 30-40 MB of additional memory. The precise requirement is dependent on
the configuration.

v Caution!
If too little physical memory (RAM) is made available then the system transfers
memory areas to hard disk (paging). This can drastically slow down operation.

If there are more than 50 processes to be started, you additionally have to change the state-
ments MAX TASKS, MAX TASKS-IN-PGWT and/or MAX ASYNTASKS in the file input.system.txt
manually.

You find the file input.system.txt

● on Solaris and Linux systems under the directory:
<Proxy_home>/def

● on Windows systems under the directory:
<Proxy_home>\def

Adapt the statements as described in the following text:

● MAX TASKS=<number>

To increase the number of processes, increase the value for <number> in this statement.
<number> specifies the maximum number of processes.

● MAX TASKS-IN-PGWT=<number>

<number> specifies the maximum number of messages for outbound communication,
which can be processed in parallel.

High availability and scalability Page pool area and cache of the proxy container

BeanConnect V3.0B 499

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
2

● MAX ASYNTASKS=<number>

<number>specifies the maximum number of asynchronous messages for inbound
communication, which can be processed in parallel.

To activate these changes you have to carry out an update configuration and restart the
proxy (see section “Saving and activating the configuration of the BeanConnect proxy” on
page 243):

1. From the context menu of the proxy, choose the entry Update Configuration.

2. From the context menu of the proxy, choose the entry Start Proxy.

12.3 Page pool area and cache of the proxy container

The required memory size for the proxy container depends on the size and the number of
the outbound and inbound messages that must be processed in parallel. Asynchronous
outbound and inbound messages occupy memory in the proxy container until they are sent
or processed completely.

The cache of the proxy container is a shared memory. Therefore the main memory required
on the computer on which the proxy container is running depends on the cache size.

● If the Proxy Container Mode is set to Performance Enhanced (Non-durable
Asynchronous Processing) (default setting) and the main memory is sufficient, you
should set the cache to the same size as the page pool to avoid read/write access due
to a cache shortage.

● If the Proxy Container Mode is set to Durable Asynchronous Processing, the cache
can only save on read access, as the data is always saved in the page pool.

The setting for the Proxy Container Mode is to be found as described below:

1. From the context menu of the proxy, select the entry Edit Properties.

2. In the Edit Properties of Local/Remote Proxy property sheet choose the
Performance Settings tab.

i You must activate the Expert Mode to display the Performance Settings tab.
For detailed information refer to the online help system of the Management
Console.

Number of parallel connections to the EIS partner High availability and scalability

500 BeanConnect V3.0B

Changing the size of the storage areas

After installation, the size of the page pool area as well as the cache size is set to 20 MB.
You can change the size of these storage areas in the Management Console:

1. From the context menu of the proxy, select the entry Edit Properties.

2. In the Edit Properties of Local/Remote Proxy property sheet choose the Perfor-
mance Settings tab.

3. Under Proxy Container Storage Area Sizes change the value for Pagepool (MB) and
Cache (MB).

12.4 Number of parallel connections to the EIS partner

Parallel connections to an EIS partner via the OSI-TP or LU6.2 protocol

The number of parallel connections required from the proxy container to an EIS partner
depends on the maximum number of parallel messages that can be exchanged simultane-
ously between the applications in the application server and the EIS partners

You change the number of connections to the EIS partner in the Management Console:

1. Open the subtree of the proxy in the navigation area.

2. Open the subtree below EIS Partners.

3. From the context menu of the according EIS partner, choose the entry Edit Properties.

4. On the tab General specify the value for Connections.

The Management Console outputs the Number Of Connections Modified dialog box
where it suggests that you also modify the values of the other connection parameters. To
accept this suggestion, click Accept.

If you reject the suggestion with Cancel then please note that you must set sensible values
for the other connection parameters yourself:
If more outbound than inbound communication is carried out via the connections to an EIS
partner, less than half of the connections should be defined as contention winner. The
number has to be adjusted to the number of contention winners defined in the EIS config-
uration. The sum of both definitions has to be equal to the number of connections.

High availability and scalability Asynchronous processing in the proxy container

BeanConnect V3.0B 501

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
2

Number of parallel connections for inbound communication via the UPIC, RFC1006
or openUTM Socket protocol

You can change the number of UPIC, socket and RFC1006 connections for the inbound
communication in the Management Console:

1. From the context menu of the proxy, select the entry Edit Properties.

2. In the Edit Properties of Local/Remote Proxy property sheet choose the
Performance Settings tab.

3. Under Number of Parallel Connections change the value for Inbound UPIC,
Inbound Socket or Inbound RFC1006.

These values also refer to the number of parallel connections to all EIS systems which
communicate using these protocols. The default value for all three partner types is 10
parallel connections.

i The Management Console itself also requires a UPIC connection to communicate
with the proxy.

12.5 Asynchronous processing in the proxy container

For the settings for asynchronous processing in the proxy container the duration of the
requests has to be considered as well as whether inbound or outbound communication is
used.

12.5.1 Duration of asynchronous requests

Asynchronous outbound requests which have not yet been sent to the EIS will be deleted
by default when the proxy container is stopped. This applies to

● scheduled requests which have not yet reached their execution time.

● requests which could not be sent yet because there is no connection to the EIS partner.

Asynchronous inbound requests which have not yet been started will also be deleted when
the proxy container is stopped. This applies to

● requests which have not yet been sent to the application server.

● requests which have to be sent to the application server again (redelivery).

Asynchronous processing in the proxy container High availability and scalability

502 BeanConnect V3.0B

If you want asynchronous requests to last longer, set the Proxy Container Mode to
Durable Asynchronous Processing via the Management Console. In this case you
should increase the page pool size too, if necessary (see “Changing the size of the storage
areas” on page 500).

You change the setting for the Proxy Container Mode in the Management Console:

1. From the context menu of the proxy, select the entry Edit Properties.

2. In the Edit Properties of Local/Remote Proxy property sheet choose the
Performance Settings tab.

3. Under Proxy Container Mode choose the option for Durable Asynchronous
Processing.

i You must activate the Expert Mode to display the Performance Settings tab.
For detailed information refer to the online help system of the Management
Console.

12.5.2 Inbound communication

The number of processes that may be active in parallel for processing an asynchronous
inbound message depends on the application scenario, but may only be as high as the
number of available processes minus one. By default, the proxy is started with the setting
that a maximum of two processes at a time may be active for processing asynchronous
inbound messages.

You can change the number of processes in the Management Console:

1. From the context menu of the proxy, select the entry Edit Properties.

2. In the Edit Properties of Local/Remote Proxy property sheet choose the
Performance Settings tab.

3. Under Number of Proxy Containers change the value for For Asynchronous Jobs.

i You must activate the Expert Mode to display the Performance Settings tab.
For detailed information refer to the online help system of the Management
Console.

High availability and scalability OSI-SCRATCH-AREA in the proxy container

BeanConnect V3.0B 503

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
2

12.6 OSI-SCRATCH-AREA in the proxy container

The size of the dynamic storage area for OSI-TP connections is defined in the
input.system.txt file with the following statement:

MAX OSI-SCRATCH-AREA=<value>

<value> indicates the size of the storage area in KB.
The default value is 1024 (1MB), the maximum value is 32767 KB.

You find the file input.system.txt

● on Solaris and Linux systems under the directory:
<Proxy_home>/def

● on Windows systems under the directory:
<Proxy_home>\def

Adjusting the storage area

If the dynamic storage area is not sufficient during operation (e.g. due to a large number of
parallel connections), the execution of the proxy container is aborted with the message
K060. The message contains an insert specifying the reason for the abortion whose
description indicates a storage shortage, e.g. SACT28. Reasons for an abortion are
described in chapter “High availability and scalability” on page 504.

In this case you should change the value of the statement
MAX OSI-SCRATCH-AREA=<value>. As an initial measure it makes sense to double the value.
Then you must update the proxy configuration (e.g. in the Management Console: Update
Configuration command in the context menu of the proxy container).

Number of semaphores in the proxy container High availability and scalability

504 BeanConnect V3.0B

12.7 Number of semaphores in the proxy container

The proxy container uses a range of semaphore keys for global operations. If you run a
large number of container processes the maximum value should be increased. In the case
of a shortage, you will find the message U189 with the insert SEMA USED in the container
logging file (see page 581).

Increasing the number of semaphores

The number of semaphores is defined in the input.system.txt file with the following
statement:

MAX SEMARRAY=(<key>, <number>)

You find the file input.system.txt

● on Solaris and Linux systems under the directory:
<Proxy_home>/def

● on Windows systems under the directory:
<Proxy_home>\def

To increase the number of semaphores, increase the value for <number> in the
MAX SEMARRAY statement. For calculating <number> the following formula applies:

<number>=nProc/10+2

<nProc> specifies the number of container processes.

BeanConnect V3.0B 505

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

13 Logging, diagnostics and troubleshooting

This chapter provides information on the following topics:

● Logging with Log4j

● Logging with JDK logging

● Configuring logging with Log4j

● LogWriter for connection factories

● Diagnosis of the BeanConnect resource adapter

● Diagnosis of the BeanConnect proxy container

● Diagnosis of the BeanConnect Management Console

● Diagnosing the BeanConnect tools

● Diagnosis of the openUTM-LU62 Gateway

● Diagnosis of SNAP-IX for Solaris systems

● Diagnosis of the IBM Communications Server for Linux

● Diagnosis of the IBM Communications Server for Windows systems

● Collecting diagnostic information

● Error messages of the BeanConnect proxy container

● Error messages of the openUTM-LU62 Gateway

● Error codes

i Since the BeanConnect proxy is based on openUTM, you will also require the
openUTM manual "Messages, Debugging and Diagnostics" for diagnostic opera-
tions.

Logging with Log4j Logging, diagnostics and troubleshooting

506 BeanConnect V3.0B

13.1 Logging with Log4j

BeanConnect uses the software product Log4j for logging functionality. Log4j is part of the
Apache Jakarta project. Log4j offers interfaces for logging information (runtime information,
trace records, etc.) and for configuring log output.

Log4j uses configuration files written in XML. The names of these files are fixed. All
BeanConnect components using Log4j are delivered with preconfigured configuration
files.The names of the output files are predefined in the configuration files. Different
BeanConnect components use different names for their output files.

This section provides information on the following topics:

● Basic principles of Log4j

● Loggers

● Appenders

● How the rolling file appender works

i You can find more detailed information on Log4j at
http://logging.apache.org/log4j/2.x/manual/index.html

13.1.1 Basic principles of Log4j

Log4j uses two main components: the “logger”, which is the source of the messages, and
the “appender”, which defines the destination of the messages. The messages transferred
to a logger are output by all the appenders assigned to this logger.

13.1.1.1 Loggers

A logger is a source of messages. A program that is to write log information obtains logger
objects from Log4j and outputs its messages via these objects.

Name space

The logger name space has a hierarchical structure. The naming convention is the same
as that for Java packages. In other words, the individual levels of the hierarchy are
separated from each other by dots in the name. Within this hierarchy, loggers inherit their
properties from their parent loggers unless they have explicitly defined their own properties.
The root of the hierarchy is formed by the “root logger”, which does not have its own name
but is always present.

Logging, diagnostics and troubleshooting Logging with Log4j

BeanConnect V3.0B 507

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

Example 21 Logger name space

The logger called BeanConnect is the (direct) parent logger of the logger called
BeanConnect.info and is also the parent logger of the logger
BeanConnect.Datasources.OLTP.

Level

The level is a property that can be assigned to both a logger and a message. When the
logger is called, the logging program decides which level a message has. Depending on
which level has been assigned to the relevant logger, Log4j decides whether or not the
transferred message is to be logged. Messages are logged if the message level is greater
than or equal to the logger level. The logger is disabled if the level is OFF.

Log4j supports the following levels (in descending order):

Example 22 Logging level

If a logging event with the level DEBUG is passed to a logger assigned to the level INFO, this
message is suppressed, but INFO, WARN, ERROR and FATAL messages are still output.

If you set the logger level ERROR, only messages with the level ERROR and FATAL are output.

Level Meaning

FATAL Serious error, highest level

ERROR Error

WARN Warning

INFO Information

DEBUG Debug output

TRACE Trace output, lowest level

OFF Can only be assigned to loggers. All messages output via this logger
are suppressed. The logger is switched off.

Logging with Log4j Logging, diagnostics and troubleshooting

508 BeanConnect V3.0B

13.1.1.2 Appenders

The message destinations are defined by appenders. Log4j provides a number of different
predefined appenders, including the following:

● File appender

The messages are written to a file.

● Console appender

The messages are written to System.out or System.err.

● Socket appender

The messages are written to a socket and can thus also be sent between computers to
a Log4j socket reader that can further process the messages (see section “Configuring
the BeanConnect Management Console as a Log4j socket reader” on page 515 for the
resource adapter and for the proxy).

● Rolling file appender

The messages are written to a file. When the specified extent threshold is reached, the
file is closed and the messages are written to a new trace file.

The logging events transferred to a logger are output through the appender(s) assigned to
the logger.

Example 23 Output of logging events through the appender

If there is a logger called Trace to which the appenders Console (console appender) and
File (file appender) are assigned, any message that is output by this logger is output
through both the file appender and the console appender. It thus appears both in the file
and on the console.

13.1.1.3 How the rolling file appender works

The rolling file appender enables logging to a file with several backup files. You can
configure the maximum amount of disk space that the trace files may use. The rolling file
appender works in a single tasking environment (as in the resource adapter) as well as in
a multi tasking environment (as in the proxy container).

Logging files

The rolling file appender creates the files <File>.gen and (in a multi tasking configuration)
<File>.lck for internal use only and requires these in operation. <File> is the name of the
current logging file, e.g. BeanConnect.logging.txt. The file in the given example is
specified in the configuration file for the BeanConnectShortLoggingFile appender.

Logging, diagnostics and troubleshooting Logging with Log4j

BeanConnect V3.0B 509

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

The rolling file appender always writes to the logging file <File>. At switch-over:

● The file <File> is copied to a backup file.

● The file <File> is written again.

At switch-over, the oldest existing backup files are deleted when:

● After the file is copied, there are more backup files than the value specified for <MaxNbr-
BackupFiles> and

● <MaxNbrBackupFiles> is greater than 0.

Specifications in angle brackets (<>) such as<File> or <MaxNbrBackupFiles> are appender
properties. For further information, see section “Predefined logging configuration of a
resource adapter” on page 526 and section “Predefined logging configuration of a proxy”
on page 532.

Example 24 Logging files

In this example, <File>=<Filename>.txt and <MaxNbrBackupFiles>=3.

Situation before switch-over:

At switch-over, <Filename>.txt is copied to <Filename>.16.txt, <Filename>.13.txt is
deleted, and <Filename>.txt is then written again.

Situation after switch-over:

<Filename>.txt In use

<Filename>.13.txt Oldest backup file

<Filename>.14.txt

<Filename>.15.txt Newest backup file

<Filename>.txt In use

<Filename>.14.txt Oldest backup file

<Filename>.15.txt

<Filename>.16.txt Newest backup file

Logging with JDK logging Logging, diagnostics and troubleshooting

510 BeanConnect V3.0B

13.2 Logging with JDK logging

The Apache Log4j package is used as standard for logging in BeanConnect products. Since
the BeanConnect resource adapter runs in an application server, it is possible that Log4j
should/may not be used in the server environment.

To solve this problem, the BeanConnect Logging Framework is used at all points within the
resource adapter. This logging framework is based on the Apache Jakarta Commons
Logging package with BeanConnect specific extensions.

The BeanConnect Logging Framework supports the following logging packages as
standard:

● Apache Log4j

● Java Logging API

Logging with Apache Log4j is the default setting. It is used if you do not make any changes
to the BeanConnect RAR archive supplied with the resource adapter.

To use Java Logging, proceed as follows

● Delete the file BeanConnectLog4j.jar from the resource adapter's BeanConnect RAR
archive.

JDK logging functions in a similar way to Log4j, see section “Basic principles of Log4j” on
page 506.

You must enter the BeanConnect-specific logger manually in a JDK logging configuration
file. For a description of JDK logging, refer to the Java documentation under
http://docs.oracle.com/javase/7/docs/technotes/guides/logging/overview.html

Logging, diagnostics and troubleshooting Configuring logging with Log4j

BeanConnect V3.0B 511

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

13.3 Configuring logging with Log4j

This section contains information on the following topics:

● Configuring logging for BeanConnect resource adapter and proxy

● Editing the Log4j configuration file using the BeanConnect Management Console

● Configuring the BeanConnect Management Console as a Log4j socket reader

● Displaying the logging events in the BeanConnect Management Console

● Display the Log4j logging file using the BeanConnect Management Console

13.3.1 Configuring logging for BeanConnect resource adapter and proxy

The following Log4j configuration file is preconfigured for the BeanConnect resource
adapter:
BeanConnect.log4j.properties.xml. After installation of the resource adapter (see
chapter “Installing BeanConnect” on page 47), this XML file is stored in the config subdi-
rectory.

i If you want to use the Management Console to process the file
BeanConnect.log4j.properties.xml for the resource adapter then an MC-
CmdHandler must be available on the computer on which the application server is
running.

The Log4j configuration file log4j.properties.xml is preconfigured for the BeanConnect
proxy. After installation of the proxy (see chapter “Installing BeanConnect” on page 47),
this XML file is stored in the proxy's config subdirectory.

i The changes to the logging configuration do not take effect until you start or save
and restart the proxy (Save/Restart command - Save & Restart in the proxy's
context menu).

You can edit the configuration entries in both configuration files using a text editor.
Alternatively, you can edit the file using the Management Console as described below. The
Management Console allows you to add loggers or to configure and remove loggers and
appenders.

Configuring logging with Log4j Logging, diagnostics and troubleshooting

512 BeanConnect V3.0B

13.3.1.1 Configuring loggers

Use the Management Console to adapt the configuration of the loggers of a resource
adapter:

1. Open the Log4j configuration file as follows:

BeanConnect resource adapter:

Ê In the resource adapters' navigation tree, click the node
Log4j Configuration.

BeanConnect proxy:

Ê If necessary, start the MC-CmdHandler for the remote proxy.

Ê In the proxy's navigation tree, click the nodes
Advanced Features - Diagnosis - Configuration - Proxy Container Log4j.

The Management Console displays the configuration in the Logging Configuration
panel.

Figure 66: Configuring the loggers (example of BeanConnect proxy)

The loggers are displayed in a tree structure. All the existing loggers are listed under
the Loggers node. The identifier of a logger consists of its name and the level assigned
to it in parentheses. If the logger inherited the level from its parent, the level is indicated
by an arrow (-->).

Logging, diagnostics and troubleshooting Configuring logging with Log4j

BeanConnect V3.0B 513

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

2. To change the configuration, right-click a logger or one of its subnodes and choose the
appropriate command from the context menu.

You will find detailed information on the panels and the commands of the context menus in
the Management Console's online help system.

13.3.1.2 Configuring appenders

Use the Management Console to adapt the configuration of an appender:

1. Open the Log4j configuration file as follows:

BeanConnect resource adapter:

Ê In the resource adapter's navigation tree, click the node
Log4j Configuration.

BeanConnect proxy:

Ê If necessary, start the MC-CmdHandler for the remote proxy.

Ê In the proxy's navigation tree, click the nodes
Advanced Features - Diagnosis - Configuration - Proxy Container Log4j.

The Management Console displays the configuration in the Logging Configuration
panel.

Figure 67: Configuring the appenders (example of BeanConnect proxy)

Configuring logging with Log4j Logging, diagnostics and troubleshooting

514 BeanConnect V3.0B

The appenders are displayed in a tree structure. All the existing appenders are listed
under the Appenders node.

2. To change the configuration, right-click an appender or one of its subnodes and choose
the appropriate command from the context menu.

If you want to add a logger to the appender, for example, choose the Add Logger
command from the appender's context menu. The list displays all the loggers that can
still be added to the appender.

You will find detailed information on the panels and the commands of the context menus in
the Management Console's online help system.

13.3.2 Editing the Log4j configuration file using the BeanConnect
Management Console

The Management Console allows you to edit any Log4j configuration file in XML format:

1. Choose the Extras - Edit Log4j Configuration File command in the Management
Console.

The Choose Log4j Configuration File (XML) dialog box appears.

2. In this dialog box, select a configuration file in XML format.

The Management Console displays the configuration contained in this file in the Edit
Log4j Configuration File panel. You edit any configuration file in the same way as the
Log4j configuration file of a resource adapter or a proxy (see section “Loggers” on
page 506 and section “Appenders” on page 508).

You will find detailed information on the panels and commands of the context menus in the
Management Console's online help system.

Logging, diagnostics and troubleshooting Configuring logging with Log4j

BeanConnect V3.0B 515

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

13.3.3 Configuring the BeanConnect Management Console as a Log4j socket
reader

The Management Console can function as a Log4j socket reader for a resource adapter or
a proxy. Consequently, logging output can be sent directly to a Management Console
window (see section “Displaying the logging events in the BeanConnect Management
Console” on page 516.

To configure the Management Console for this, proceed as follows:

1. Choose the Configure Management Console as Listener command from the context
menu of any node in the Logging Configuration panel.

2. If the Management Console is to wait for logging events at the specified listener port
right from the start of any subsequent session, select the Automatically Begin to
Listen option on the General tab of the General Diagnostic Info Configuration panel.

3. BeanConnect resource adapter:
Set the appender BeanConnectMCSocketAppender as required in the resource adapter
file BeanConnect.log4j.properties.xml:

– The host on which the Management Console is running must be specified in the
RemoteHost parameter.

– In the Port parameter, you must specify the listener port at which the Management
Console waits for logging events from the proxy container.

i The Management Console provides a list of all the logging listeners. This can be
accessed via the Log4j Logging Listeners node at the topmost level of the
navigation tree.

For the proxy, configuration involves the following steps:
1. If a socket listener port has not yet been entered in the properties of the relevant proxy

for this case, the Management Console first asks for this port.

i The port is a local listener port and must therefore be different from all the other
local listener ports already used on the Management Console's host. However,
the Management Console can only check whether the ports entered are unique
by referring to its own data and is subject to the same constraint when enforcing
uniqueness. Listener ports used by other applications on the host cannot be
checked by the Management Console. The user has to check that they are
unique.

2. After the port has been entered, the Management Console checks whether the
following appenders exist in the logging configuration of the proxy:

– an async appender with the name BeanConnectManagementConsole

– a socket appender with the name BeanConnectMCSocketAppender

Configuring logging with Log4j Logging, diagnostics and troubleshooting

516 BeanConnect V3.0B

If these appenders are missing, they are created by the Management Console. If they
exist, certain parameters of the appenders are checked and set appropriately.

3. The Management Console assigns the BeanConnectManagementConsole appender to
the loggers BeanConnect and de.siemens (if they exist). Consequently, logging events
are output to the Management Console via these two loggers or via loggers that inherit
the appenders from these two loggers.

4. The Management Console activates logging for the current session and waits for
logging events at the specified listener port.

Changing a listener port

To change the socket listener port subsequently, proceed as follows:

● Click Advanced Features - Diagnosis - Configuration - General Diagnostic Info in
the navigation tree of the proxy and enter the MC Logging Listener Port.

i This change does not take effect until the proxy is started again or saved and
reloaded (Save/Restart - Save & Restart command in the context menu of the
proxy).

13.3.4 Displaying the logging events in the BeanConnect Management
Console

If you have configured the Management Console appropriately (see section “Configuring
the BeanConnect Management Console as a Log4j socket reader” on page 515), it
receives the logging events output to the socket appender provided on the relevant
resource adapter or proxy.

To display the logging events on the Management Console:

● Start the relevant proxy (see section “Starting a proxy” on page 267).

● Check whether the Automatically Begin to Listen option in the General Diagnostic
Info Configuration panel is set. Only if this option is selected does the Management
Console wait for logging events at the specified listener port right from the start.

Alternatively, you can also use the Start Listening command in the context menu of the
Proxy Container Log4j node beneath the Configuration node.

● Click Advanced Features - Diagnosis - Output - Proxy Container Log4j in the
navigation tree of the proxy.

Logging, diagnostics and troubleshooting Configuring logging with Log4j

BeanConnect V3.0B 517

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

The Management Console displays the messages received in the Logging Output
panel.

Figure 68: Logging output

The Logging Output panel consists of the following areas:

● Logger Tree: Displays all the loggers for which there are messages in the Management
Console. Loggers whose paths are shown in red in the structure have at least one
message with the logging level WARN.

● Logging Event List: Displays those logging events available in the Management
Console that match the current settings in the Logging Output panel. Messages that
appear in red have at least the logging level WARN.

When you select an event from the event list, it is displayed in detail in the lower part of
the event list.

You will find detailed information on the panels and commands of the context menus in the
Management Console's online help system.

Configuring logging with Log4j Logging, diagnostics and troubleshooting

518 BeanConnect V3.0B

Changing the layout of the panel

By default, the logger tree is displayed on the left of the panel and the message list on the
right. You can change this setting so that the logger tree and message list are each
displayed on a separate tab:

Ê Click the Properties button in the Logging Output panel.
The Logging Properties dialog box appears.

Ê Select the display mode under Display Mode.

– split
The logger tree and logging event list are displayed on the left and right of the panel
respectively.

– tabbed
The logger tree and logging event list are displayed on two separate tabs.

Activating/deactivating the display of the loggers

The event list only displays the events of loggers that are activated in the event list.

To activate or deactivate the display for a logger:

Click the relevant logger node or its check box. This node, all the nodes in the path of the
node up to the node logger and all the associated child nodes are activated/deactivated.

Changing the display of messages

Events are displayed in the event list in accordance with the following criteria:

● Only messages of the loggers that are activated in the logger tree (see the section
described above).

● Only messages that are not currently suppressed.

The Clear button in the Logging Output panel consigns to the background all the logging
events of the relevant proxy that currently exist in the Management Console. The
messages are then no longer included in the output in the panel although they still exist
in the Management Console. You can display them again by clicking the Consider All
button.

● Only those messages whose logging level corresponds at least to the minimum logging
level set for the list.

You set the logging level for the message list either by means of the buttons in the
Logging Output panel or by means of the Minimum Displayed Logging Level option
in the Logging Properties dialog box.

Logging, diagnostics and troubleshooting Configuring logging with Log4j

BeanConnect V3.0B 519

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

● If a Filter Mask is entered in the Logging Properties dialog box, only the messages
that contain the filter text in at least one column (a distinction is drawn between
uppercase and lowercase).

13.3.5 Display the Log4j logging file using the BeanConnect Management
Console

The Management Console allows you to display Log4j logging files in XML format offline.

A logging file in XML format is created, for example, when you have added an XML file
appender to a predefined file appender (Add XML File Appender command in the context
menu of the relevant file appender).

To display the logging file created:

1. Choose the Extras - Open Log4j Logging File (XMC) command in the Management
Console.

The Choose a Log4j Logging File (XMC) dialog box appears.

2. Select a logging file in XML format in this dialog box. By default, a logging file in XML
format has file name extension .xmc.

The Management Console displays the logging file offline in the Log4j Logging File
panel. The panel is structured in the same way as the Logging Output panel, in which
messages are output online in the Management Console (see section “Displaying the
logging events in the BeanConnect Management Console” on page 516).

LogWriter for connection factories Logging, diagnostics and troubleshooting

520 BeanConnect V3.0B

13.4 LogWriter for connection factories

The application server provides LogWriters to which the BeanConnect resource adapter
writes system level information on managed connection factories and managed connec-
tions when certain events occur. This information is intended for the application server
administrator and is not intended for the diagnosis of problems in application programs.

Events and event classes

The events are subdivided into the following classes which comprise specific events:

● Errors

● Transactions:

– Begin of a transaction for a connection

– Commit/Rollback of a transaction for a connection

● Lifecycle:

– Generation of a managed connection

– Request for a connection handle for a managed connection

– Switch of a connection handle for a managed connection

– Release of a connection handle and inclusion of the managed connection in the
application server's connection pool

– Removal of a managed connection from the application server's connection pool

– Release of a managed connection

– Application exceptions for a connection handle that are thrown to an application

– System exceptions that are thrown for a managed connection

Configuring a LogWriter in the application server

In the case of Oracle WebLogic Server, you configure the LogWriter for a managed
connection factory in the file weblogic-ra.xml as follows:

● Logging level

The logging level determines the granularity with which BeanConnect outputs
messages on a managed connection factory at the LogWriter. In the case of the Oracle

WebLogic Server, you configure the logging level in the file weblogic-ra.xml by speci-
fying the property logLevel. This value can be set separately for each managed
connection factory. There are four log levels: NONE, ERROR, INFO and ALL.

Logging, diagnostics and troubleshooting LogWriter for connection factories

BeanConnect V3.0B 521

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

For details, see section “Setting configuration properties for outbound communication
via OSI-TP / LU6.2” on page 106 and section “Setting the configuration properties for
UPIC” on page 125. You will find examples in Example 6 and Example 7.

● Logging attributes

You set further logging attributes in the subelement <logging>. You can find further
details on the subelement <logging> in the schema description for the file weblogic-
ra.xml in the Oracle Weblogic Server documentation.

Enter the path name of the file for the logging output in the attribute <log-filename>.

You can enable or disable logging using the attribute <logging-enabled>

You can use other attributes to control, for example, the size to which a log file can grow
or the maximum number of log files that can be created for a managed connection
factory if file rotation is configured.

Example

<logging>
 <log-filename>C:/temp/log/BeanConnect/echo.log</log-filename>
 <logging-enabled>true</logging-enabled>
 <rotation-type>bySize</rotation-type>
 <number-of-files-limited>true</number-of-files-limited>
 <file-count>3</file-count>
</logging>

If you are dealing with different connection factories then you should specify different
files. Otherwise, conflicts may occur when writing the files and the log records may be
truncated.

Example

<connection-instance>
 <jndi-name>eis/beanconnect_oltp_echo</jndi-name>
 <connection-properties>
 <logging>
 <log-filename>C:/temp/log/BeanConnect/echo.log</log-filename>
 <logging-enabled>true</logging-enabled>
 <rotation-type>bySize</rotation-type>
 <number-of-files-limited>true</number-of-files-limited>
 <file-count>3</file-count>
 </logging>
 <properties>
 <property>
 <name>ConnectionURL</name>
 <value>oltp://echo</value>
 </property>
 <property>
 <name>displayName</name>

LogWriter for connection factories Logging, diagnostics and troubleshooting

522 BeanConnect V3.0B

 <value>sample application/echo</value>
 </property>
 <property>
 <name>logLevel</name>
 <value>ALL</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>

Format of the logging records

All the records that BeanConnect writes to the LogWriter have the following structure:

BeanConnect:<date-time> <identifier> message

Example 25 Entries in the LogWriter file

1. In the case of lifecycle events, the date, time and identifier of the managed connection
are logged:
BeanConnect:2015-07-17 08:30:51.225+0100 <sample application/echo>:
Managed connection with id <BCU00002> destroyed

2. In the case of events which refer to an exception, the exception is also logged:
BeanConnect:2015-07-17 08:33:35.198+0100 <sample application/echo>:
rcvString(): Exception thrown for connection <BCU00003.2>:
net.fsc.jca.communication.EISConnectionException:
net.fsc.jca.communication.EISConnectionException:
exceptionShortageOfResources: shortage of resources (40Z,KD10): no
connection to partner; partner: (SMPOSICL,gssbwrit), Dialog, error code:

<date-time> Specifies the date and time on which the record was written.
Format (example): 2015-07-17 08:30:26.810+0100.

<identifier> Specifies the identifier.
In the case of a managed connection factory, this is the value configured in the
DisplayName property of the file weblogic-ra.xml, see section “Setting
configuration properties for outbound communication via OSI-TP / LU6.2” on
page 106 and section “Setting the configuration properties for UPIC” on
page 125.
In the case of a managed connection, the identifier has the form BCUnnnnn,
where each n stands for a digit.
In the case of a connection handle, the identifier has the form BCUnnnnn.i,
where each n stands for a digit and i stands for a number.

message Message output by the resource adapter

Logging, diagnostics and troubleshooting LogWriter for connection factories

BeanConnect V3.0B 523

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

undefined error code [EC_UNDEFINED:0], connectionId: , error code:
undefined error code [EC_UNDEFINED:0], connectionId: BCU00003.2, proxy:
MYPROXY:30004/BCU30004, userId: BCU00003; diagnostic string:

3. In the case of communications with transactions, six logging records are usually
generated:
BeanConnect:2015-07-17 08:30:27.138+0100 <sample application/echo>:
Managed connection with id <BCU00002> taken from pool
BeanConnect:2015-07-17 08:30:27.138+0100 <sample application/echo>:
Connection handle with id <BCU00002.1> created
BeanConnect:2015-07-17 08:30:27.653+0100 <sample application/echo>:
Transaction started for managed connection "BCU00002" with xid:
formatID=48801, gtrid=002157A9 D15A3057 A4BD, bqual=6569732F 6265616E
636F6E6E 6563745F 6F6C7470 5F656368 6F
BeanConnect:2015-07-17 08:30:43.815+0100 <sample application/echo>:
Transaction committed for managed connection "BCU00002" with xid:
formatID=48801, gtrid=002157A9 D15A3057 A4BD, bqual=6569732F 6265616E
636F6E6E 6563745F 6F6C7470 5F656368 6F
BeanConnect:2015-07-17 08:30:43.908+0100 <sample application/echo>:
Connection handle with id <BCU00002.1> released
BeanConnect:2015-07-17 08:30:44.267+0100 <sample application/echo>:
Managed connection with id <BCU00002> returned for pooling

4. In the case of communication without transactions, four logging records are usually
generated:
BeanConnect:2015-07-17 08:50:41.117+0100 <sample application/echo>:
Managed connection with id <BCU00005> taken from pool
BeanConnect:2015-07-17 08:50:41.117+0100 <sample application/echo>:
Connection handle with id <BCU00005.4> created
BeanConnect:2015-07-17 08:50:53.753+0100 <sample application/echo>:
Connection handle with id <BCU00005.4> released
BeanConnect:2015-07-17 08:50:54.112+0100 <sample application/echo>:
Managed connection with id <BCU00005> returned for pooling

Diagnosis of the BeanConnect resource adapter Logging, diagnostics and troubleshooting

524 BeanConnect V3.0B

13.5 Diagnosis of the BeanConnect resource adapter

This section provides information on the following topics:

● Overview of logging in the BeanConnect resource adapter

● Predefined logging configuration of a resource adapter

● Logging of user interface calls

13.5.1 Overview of logging in the BeanConnect resource adapter

This section provides information on logging in the BeanConnect resource adapter. The
logging facilities use Log4j by default. The scope of logging is controlled by configuration
files. The following configuration files are delivered with the BeanConnect resource adapter
installation:

● the file config/BeanConnect.log4j.properties.xml

basic logging information (default)

● The file config/BeanConnect.log4j.properties_default.xml

corresponds to the file config/BeanConnect.log4j.properties.xml

● the file config/BeanConnect.log4j.properties_debug.xml

detailed logging information

● the file config/BeanConnect.log4j.properties_error.xml

only the information on errors is logged

You can use one of these configuration files depending on your requirements.

You will find detailed information on controlling the depth of logging manually in section
“Logging with Log4j” on page 506 and section “Diagnosis of the BeanConnect resource
adapter” on page 524.

Default logging in the resource adapter

● After the resource adapter has been deployed, basic logging is activated automatically.

● The logging files are saved in the logging directory of the application server
(for Oracle WebLogic Server in
<WebLogicServerDomainDirectory>/servers/<ServerName>/logs).

Logging, diagnostics and troubleshooting Diagnosis of the BeanConnect resource adapter

BeanConnect V3.0B 525

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

● The following logging files are created:

– BeanConnect.logging.txt (information for the user)

– BeanConnect.extlogging.txt (logging data which you must send to system service
if an error occurs.)

– BeanConnect.extlogging.txt.xmc (additional logging data which you must send
to the system service if an error occurs.)

Adapting logging in the resource adapter

Copy the configuration files present in the resource adapter installation to the application
server's configuration directory.
For Oracle WebLogic Server, the directory is <WebLogicServerDomainDirectory>/config.

● To extend logging (comprehensive runtime logging):
Rename the copied file
config/BeanConnect.log4j.properties_debug.xm to
BeanConnect.log4j.properties.xml.

● To restrict logging (error logging only)
Rename the copied file
config/BeanConnect.log4j.properties_error.xml to
BeanConnect.log4j.properties.xml

● Application-specific logging control for the resource adapter
Adapt the file config/BeanConnect.log4j.properties.xml to your requirements as
described below (see section “Logging with Log4j” on page 506 and section “Diagnosis
of the BeanConnect resource adapter” on page 524) and rename it to
BeanConnect.log4j.properties.xml.

Diagnosis of the BeanConnect resource adapter Logging, diagnostics and troubleshooting

526 BeanConnect V3.0B

13.5.2 Predefined logging configuration of a resource adapter

Logging in the resource adapter is preconfigured with the following default values in the file
BeanConnect.log4j.properties.xml (see section “Configuring logging for BeanConnect
resource adapter and proxy” on page 511).

Appender

Name Description and Recommendation

BeanConnectSysoutShort Console appender with the destination System.out and
“short” output format, i.e. without a specification of the
message source.
At this appender, BeanConnect outputs messages on the
resource adapter configuration as well as warnings and
error messages.
Recommendation:
No further loggers should be assigned to this appender.

BeanConnectShortLoggingFile Rolling file appender for logging to a file with several
backup files (see section “How the rolling file appender
works” on page 508) and "short" output.
The same information is output to this appender that is sent
to BeanConnectSysoutShort.
At this appender, BeanConnect outputs messages on the
resource adapter configuration as well as warnings and
error messages
This appender has three parameters:
– File

(Relative) file name of the current logging file
Default: log/BeanConnect.logging.txt

– MaxNbrBackupFiles
Maximum number of backup files. If you specify 0 here,
no backup files are created.
Default: 10

– MaxFileSizePerProcessKB
The maximum size in KB that the output file is allowed
to reach before being rolled over to backup files.
Default: 1024

Recommendation:
No further loggers should be assigned to this appender.
However, the user may increase the level for the
BeanConnect.ui logger if necessary (i.e. from WARN to
INFO, DEBUG or TRACE).

Logging, diagnostics and troubleshooting Diagnosis of the BeanConnect resource adapter

BeanConnect V3.0B 527

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

BeanConnectLoggingFile Rolling file appender for logging to a file with several
backup files (see section “How the rolling file appender
works” on page 508) and, in contrast to
BeanConnectShortLoggingFile, more output with
technical details.
This appender is used for system diagnosis. If necessary,
BeanConnect writes detailed diagnostic log information to
this appender.
This appender has three parameters:
– File

(Relative) file name of the current logging file
Default: log/BeanConnect.extlogging.txt

– MaxNbrBackupFiles
Maximum number of backup files. If you specify 0 here,
no backup files are created.
Default: 10

– MaxFileSizePerProcessKB
The maximum size in KB that the output file is allowed
to reach before being rolled over to backup files.
Default: 1024

Recommendation:
No further loggers may be added to this appender. If
necessary, users should be able to increase the level for
the BeanConnect.ui logger (i.e. from WARN to INFO,
DEBUG or TRACE, see section “Logging of user interface
calls” on page 531) on their own initiative, i.e. without
consulting the system diagnostics.

Name Description and Recommendation

Diagnosis of the BeanConnect resource adapter Logging, diagnostics and troubleshooting

528 BeanConnect V3.0B

BeanConnectLoggingFileXML Rolling file appender for logging to a file with several
backup files (see section “How the rolling file appender
works” on page 508). The output of this appender has an
XML-like layout. The file is provided for input to the
Management Console (see also section “Display the Log4j
logging file using the BeanConnect Management Console”
on page 519).
The same information is output to this appender that is sent
to the appender BeanConnectLoggingFile. This
appender is used for system diagnosis. If necessary,
BeanConnect writes detailed diagnostic log information to
this appender.
This appender has three parameters:
– File

(Relative) file name of the current logging file
Default: log/BeanConnect.extlogging.txt.xmc

– MaxNbrBackupFiles
Maximum number of backup files. If you specify 0 here,
no backup files are created.
Default: 10

– MaxFileSizePerProcessKB
The maximum size in KB that the output file is allowed
to reach before being rolled over to backup files.
Default: 1024

Recommendation:
No further loggers may be added to this appender. If
necessary, users should be able to increase the level for
the BeanConnect.ui logger (i.e. from WARN to INFO,
DEBUG or TRACE, see section “Logging of user interface
calls” on page 531) on their own initiative, i.e. without
consulting the system diagnostics.

Name Description and Recommendation

Logging, diagnostics and troubleshooting Diagnosis of the BeanConnect resource adapter

BeanConnect V3.0B 529

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

Loggers

You are recommended not to change the logger settings - with the exception of the logger
BeanConnect.ui.

BeanConnectMCSocketAppender Auxiliary appender used to log to the Management
Console.
This appender has four parameters:
– RemoteHost

Host where the Management Console is running.
Default: localhost

– Port
Listener port of the Management Console.
Default: 31015

– LocationInfo
Always true.

– ReconnectionDelay
A positive integer representing the number of milli-
seconds between each failed connection attempt to the
server.
Default: 10000

Recommendation:
No further loggers should be added to this appender.

BeanConnectManagementConsole Appender for logging to the Management Console.
Recommendation:
Loggers that are to be displayed at the Management
Console should be added to this appender.

Name Description

BeanConnect Parent logger of all the other BeanConnect loggers
Level: WARN

BeanConnect.in Logger for BeanConnect inbound communication.

BeanConnect.info Logger for runtime information
Level: INFO

BeanConnect.out Logger for BeanConnect outbound communication.

BeanConnect.ui Logger for the BeanConnect user interface calls
Level: WARN
In the default configuration, the output of the logger
BeanConnect.ui is sent to the appenders BeanConnect-
ShortLoggingFile,
BeanConnectLoggingFile, BeanConnectLoggingFi-
leXML.

Name Description and Recommendation

Diagnosis of the BeanConnect resource adapter Logging, diagnostics and troubleshooting

530 BeanConnect V3.0B

de.siemens
net.fsc

Parent loggers of all class-specific BeanConnect loggers
that serve to output debug traces
Level: WARN

net.fsc.beanta.encoding Logger for BeanConnect's encoding support
Level: WARN

net.fsc.tpbasics.util.L Logger for supporting Log4j

Name Description

Logging, diagnostics and troubleshooting Diagnosis of the BeanConnect resource adapter

BeanConnect V3.0B 531

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

13.5.3 Logging of user interface calls

Application (EJB) calls to BeanConnect are logged at separate loggers
 (BeanConnect.ui and its child loggers). This output can assist users in diagnosing
problems in their applications.

Output to the logger BeanConnect.ui may use the levels INFO, DEBUG or TRACE. For a
summary, see the following table:

List of the BeanConnect.ui loggers, their levels and meaning

Example 26 Control of logging output

● Logger BeanConnect.ui set to level INFO:

All the user interface calls are logged without data.

● Logger BeanConnect.ui set to level DEBUG:

All the user interface calls are logged together with the data transferred on these calls.

● Logger BeanConnect.ui set to level TRACE:

All the user interface calls are logged together with the data transferred on these calls
and any encoded data.

● Logger BeanConnect.ui.out set to level INFO and BeanConnect.ui.data.net set to
level TRACE:

All the outbound interface calls are logged together with the encoded data. Calls at the
OLTP message interface and data transferred at the outbound interface are not logged.

Logger Level Meaning

BeanConnect.ui.out INFO Logging of outbound interface calls without data

BeanConnect.ui.oltpmsg INFO Logging of OLTP message interface calls without data

BeanConnect.ui.data.api DEBUG Logging of all data transferred at the user interface

BeanConnect.ui.data.net TRACE Logging of all data transferred at the user interface in
the form in which it is transferred in the network, i.e.
possibly recoded.

BeanConnect.ui.in INFO Logging of the OLTP message objects
transferred to and from the message endpoint appli-
cation

Diagnosis of the BeanConnect proxy container Logging, diagnostics and troubleshooting

532 BeanConnect V3.0B

13.6 Diagnosis of the BeanConnect proxy container

There is a variety of information available for diagnosis of a BeanConnect proxy container.
This information is distributed among a number of files in the container home directory on
the basis of functionality.

This section provides information on the following topics:

● Predefined logging configuration of a proxy

● Log files of the BeanConnect proxy container

● Traces of the BeanConnect proxy container

13.6.1 Predefined logging configuration of a proxy

The logging of each proxy is preconfigured with the following default values after
installation.

Appender

Name Description and Recommendation

BeanConnectSysoutShort Console appender with the destination System.out and
“short” output format, i.e. without any specification of the
message source.
BeanConnect outputs general messages as well as
warnings and error messages at this appender
Recommendation:
No further loggers should be added to this appender.

BeanConnectSysout Console appender with the destination System.out and
detailed output format for making easier the system
diagnosis.
BeanConnect outputs fatal messages for which no other
appender is configured to this appender.
Recommendation:
No further loggers should be added to this appender.

Logging, diagnostics and troubleshooting Diagnosis of the BeanConnect proxy container

BeanConnect V3.0B 533

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

BeanConnectLoggingFile Rolling file appender for logging to a file with several
backup files (see the section section “How the rolling file
appender works” on page 508)
This appender is used for system diagnosis. BeanConnect
writes detailed diagnostic logging information to this
appender if necessary.
This appender has three parameters:
– File

(Relative) file name of the current logging file
Default: logs/logging.txt

– MaxNbrBackupFiles
Maximum number of backup files. If you specify 0 here,
no backup files are created.
Default: 10

– MaxFileSizePerProcessKB
Process-specific switchover threshold in KB. When the
writing of a logging event causes the file size to exceed
this process-specific threshold, the file is switched. The
size of a logging file at switchover is thus somewhere
between the values for <MaxFileSizePerProcessKB>
and <number_of_processes>*
<MaxFileSizePerProcessKB>.
Default: 500

Recommendation:
No further loggers should be added to this appender.

BeanConnectLoggingFileXML Rolling file appender for logging to a file with multiple
backup files (see section “How the rolling file appender
works” on page 508). The output from this appender has an
XML-like layout. The file can be evaluated at the
Management Console (see also section “Display the Log4j
logging file using the BeanConnect Management Console”
on page 519).
Although this appender is preconfigured, it is not used in
the standard BeanConnect configuration. It is used for
system diagnostics. If necessary, BeanConnect writes
detailed diagnostic logging information to this appender.
Recommendation:
If required or if so requested by the system service, this
appender should be assigned the same loggers as the
appender BeanConnectLoggingFile.

Name Description and Recommendation

Diagnosis of the BeanConnect proxy container Logging, diagnostics and troubleshooting

534 BeanConnect V3.0B

Loggers

It is recommended not to change the logger settings.

Name Description

Root-Logger Level: FATAL.

BeanConnect Parent logger of all the other BeanConnect loggers
Level: ERROR

BeanConnect.c Logger for debug traces from the C components of
BeanConnect
Level: ERROR

BeanConnect.info Logger for runtime information
Level: INFO

BeanConnect.Datasources.OLTP Logger for OLTP data sources
Level: ERROR

BeanConnect.kdcs Logger for debug traces of the KDCS calls from the proxy
container application.
Level: ERROR

de.siemens
and
net.fsc

Parent loggers of all class-specific BeanConnect loggers
that serve to output debug traces.
Level: ERROR

net.fsc.tpbasics.util.L Logger for supporting Log4j
Level: WARN

net.fsc.beanta.encoding
.EncoderImpl

BeanConnect's logger for encoding support
Level: WARN

Logging, diagnostics and troubleshooting Diagnosis of the BeanConnect proxy container

BeanConnect V3.0B 535

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

13.6.2 Log files of the BeanConnect proxy container

The proxy container is based on openUTM. There are several logging and diagnosis files
with information from openUTM. This section provides information on the following topics:

● stdout/stderr log

● System log file SYSLOG

● Dumps and diagnostic dumps

● Application log under Windows

13.6.2.1 stdout/stderr log

Messages from the proxy container to stdout/stderr are logged to files in the proxy
container home directory. The files are available by default. The files utmp.err.<suffix>
and utmp.out.<suffix> are created for the first time when the proxy container is started
and the suffix YY-MM-DD.HHMMSS corresponds to the start time.

Switching the log file

At runtime, the proxy container application is set in such a way that stdout/stderr output
is switched to new files every day at midnight. The suffix YY-MM-DD.HHMMSS added to these
files corresponds to the switchover time.

In addition, you can also switch over the stdout/stderr files manually using the
Management Console. To do this, choose the Switch Protocol Files command in the proxy
or proxy cluster's context menu.

Displaying the log files

You can display the content of the files as follows:

● In the Management Console, choose the nodes Advanced Features - Diagnosis -
Output - General Diagnostic Info under the proxy container's node. In the case of a
proxy cluster, you must also select the proxy.

Select the entry Container STDERR Diagnostics or Container STDOUT Diagnostics
Then click the Show File button.
The Management Console then lists all the utmp.out.* or utmp.err.* files for
selection. Select the required files and click the OK button. The Management Console
transfers the selected files to the local diagnostic path of the proxy and displays them
in a Text File panel.

For details, please refer to the Management Console's online help system.

Diagnosis of the BeanConnect proxy container Logging, diagnostics and troubleshooting

536 BeanConnect V3.0B

● You can also view and evaluate these logs using a standard editor directly in the proxy
container's home directory.

● Under Windows you can also use the commands Advanced - Show STDERR
Diagnostics or Advanced - Show STDOUT Diagnostics in the program group of the
proxy container to display the utmp.err or utmp.out file respectively.

Backing up the log files

The files are backed up to the proxy container directory out-err the next time the proxy
container is started. Before the backup, all the files in the directory out-err are deleted. If
you want to use these files for diagnostic purposes, you must therefore back them up before
restarting the proxy.

If the proxy container is executed as a service on Windows systems (see section “Starting
the proxy container as a Windows service” on page 268), its first output to stdout is written
to the file utmp.out and its first output to stderr is written to the file utmp.err.
If the log is switched, the files have the names:
utmp.err.<suffix> and utmp.out.<suffix>.

The logs from the last application run are automatically backed up in the directory out-err.

13.6.2.2 System log file SYSLOG

The system log file records important events (in the form of binary messages) from the
proxy container run. It contains important information which can be used to diagnose errors.
It is stored in the file directory SYSLOG in the proxy container home directory. The file is
available by default.

It can be displayed as follows:

● In the Management Console, choose the nodes Advanced Features - Diagnosis -
Output - General Diagnostic Info under the proxy container's node and select the
entry Container Syslog Files. Then click the Show File button.

If there is more than one file of the selected type, the Select Diagnostic File To Show
dialog box opens showing the appropriate files on the host. Select the diagnostic file
you want to show.
The Management Console transfers the converted text file syslog.<number>.txt to the
local diagnostic path of the proxy and displays the file in a Text File panel.

For details, please refer to the Management Console's online help system.

● On Solaris and Linux systems, change to the proxy container home directory and call
the script as follows:

shsc/syslog.sh

Logging, diagnostics and troubleshooting Diagnosis of the BeanConnect proxy container

BeanConnect V3.0B 537

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

The available log files are listed and you are asked whether you want to display each
file in sequence. If you select a file, the formatted information is written to the slogout
file in the proxy container home directory and displayed in the system's default editor.

● On Windows systems (cmdline), choose the command Advanced - Show Syslog in
the program group of the proxy container.

A command line prompt is opened in which the available log files are listed. Select the
number of the file you want to display. The formatted information is then written to the
slog.out file in the proxy container home directory and displayed in the system's
default editor.

● On Windows systems, change to the proxy container home directory and call the script
as follows:

shsc\syslog.cmd

The formatted information is then written to the slog.out file in the proxy container
home directory and displayed in the system's default editor.

13.6.2.3 Dumps and diagnostic dumps

If the proxy container crashes or fatal errors occur while the proxy container is running, an
openUTM dump is generated and stored in the subdirectory DUMP of the proxy container
home directory.

i Please note that these dumps should be analyzed primarily by BeanConnect
specialists.

13.6.2.4 Application log under Windows

If the proxy container is started as a service and problems occur during startup, the appli-
cation log may provide additional information (see the section “Starting the proxy container
as a Windows service” on page 268):

1. Choose Start - Settings - Control Panel - Administrative Tools - Event Viewer.

2. In the event viewer, click Application Log, and then select the source openUTM.

Diagnosis of the BeanConnect proxy container Logging, diagnostics and troubleshooting

538 BeanConnect V3.0B

13.6.3 Traces of the BeanConnect proxy container

This section provides information on the following topics:

● OSS trace

● BCAM trace

● CMX trace

13.6.3.1 OSS trace

The function logs activities in the proxy container relating to OSI-TP connections to the
openUTM partner application or to the openUTM-LU62 Gateway.

By default the OSS trace is deactivated. To activate the OSS trace of the proxy container in
the Management Console:

1. Select the following nodes in the navigation tree of the proxy:
Advanced Features - Diagnosis - Configuration - General Diagnostic Info.

The General tab of the General Diagnostic Info Configuration panel is displayed.

2. Select the option Activate OSS Trace.

If the proxy container is running, the change comes into effect dynamically when saving the
proxy. If the proxy container is not running, the change comes to effect when the proxy is
next started.

The traces are written in a binary format to OSST.* files in the proxy container home
directory. You can evaluate and display the trace information:

● In the Management Console, choose the nodes
Advanced Features - Diagnosis - Output - General Diagnostic Info in the navigation
tree of the proxy and select the entry Container OSS Traces. Then click the Show File
button.

The Management Console transfers the converted text file osstrac.txt to the local
diagnostic path of the proxy (default: diag/<proxy_cont_name> in the Management
Console home directory) and displays the file in a Text File panel.

● On Solaris and Linux systems, change to the proxy container home directory and call
the script as follows:

shsc/ositrace.sh

The traces produced are then written to the osstrac.txt file in the proxy container
home directory and displayed in the system's default editor.

Logging, diagnostics and troubleshooting Diagnosis of the BeanConnect proxy container

BeanConnect V3.0B 539

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

● On Windows systems, change to the proxy container home directory and call the script
as follows:

shsc\ositrace.cmd

The traces produced are then written to the osstrac.txt file in the proxy container
home directory and displayed in the system's default editor.

For further diagnosis, you have to send the evaluated trace to the diagnostic system
service.

13.6.3.2 BCAM trace

The function logs all connection-oriented activities within the proxy container.

By default, the BCAM trace is deactivated. To activate the BCAM trace of the proxy
container in the Management Console:

1. Select the following nodes in the navigation tree of the proxy:
Advanced Features - Diagnosis - Configuration - General Diagnostic Info.

The General tab of the General Diagnostic Info Configuration panel is displayed.

2. Select the option Activate BCAM Trace.

If the proxy container is running, the change comes into effect dynamically when saving the
proxy. If the proxy is not running, the change comes to effect when the proxy is next started.

The traces are written in a binary format to KDCBTRC.* files in the proxy container home
directory. You can evaluate and display the trace information:

● In the Management Console choose the nodes Advanced Features - Diagnosis -
Output - General Diagnostic Info and select the entry Container BCAM Traces.
Then click the Show File button.

The Management Console transfers the converted text file btrc.txt to the local
diagnostic path of the proxy
(default: diag/<proxy_cont_name> in the Management Console home directory). The
Management Console displays the file in a Text File panel.

● On Solaris and Linux systems, change to the proxy container home directory and call
the script as follows:

shsc/nettrace.sh

The traces produced are then written to the btrc.txt file in the proxy container home
directory and displayed in the system's default editor.

Diagnosis of the BeanConnect proxy container Logging, diagnostics and troubleshooting

540 BeanConnect V3.0B

● On Windows systems, change to the proxy container home directory and call the script
as follows:

shsc\nettrace.cmd

The traces produced are then written to the btrc.txt file in the proxy container home
directory and displayed in the system's default editor.

For further diagnosis, you have to send the evaluated trace to the diagnostic system
service.

13.6.3.3 CMX trace

This function logs transport layer activities in the proxy container relating to connections to
the openUTM partner application or to the openUTM-LU62 Gateway.

By default the CMX trace is deactivated. To activate the CMX trace of the proxy container
in the Management Console:

1. Select the following nodes in the navigation tree of the proxy:
Advanced Features - Diagnosis - Configuration - General Diagnostic Info.

The General tab of the General Diagnostic Info Configuration panel is displayed.

2. Select the option Activate CMX Trace.

The change comes into effect when the proxy is next started.

Solaris and Linux systems

The CMX traces of the proxy container are written in a binary format in CMX* files in the cmxt
subdirectory of the proxy container home directory.

Windows systems

The CMX traces of the proxy container are written in binary format to <number>.CMX files.
These files are processed in the configured trace path of CMX. You can specify the trace
path by using the PCMX-32 tool Trace Control. Choose the command Options - Trace
Path and specify the path. To start Trace Control, select the command Trace Control from
the PCMX-32 program group. The PCMX-32 program group is available after installing
PCMX-32.

Logging, diagnostics and troubleshooting Diagnosis of the BeanConnect proxy container

BeanConnect V3.0B 541

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

Displaying the CMX traces in the BeanConnect Management Console

You can evaluate and display the CMX trace information in the Management Console.

In the Management Console, choose the nodes Advanced Features - Diagnosis - Output
- General Diagnostic Info under the proxy's node and select the entry Container CMX
Traces. Then click the Show File button.

The Management Console transfers the converted text file with the appended suffix .txt to
the local diagnostic path of the proxy (default: diag/<proxy_cont_name> in the Management
Console home directory). The Management Console displays the file in a Text File panel.

For further diagnosis, you have to send the evaluated trace to the diagnostic system
service.

Diagnosis of the BeanConnect Management Console Logging, diagnostics and troubleshooting

542 BeanConnect V3.0B

13.7 Diagnosis of the BeanConnect Management Console

The Management Console uses Log4j to output its own logging messages and debug
traces.

The traces are written in the file logging.txt in the subdirectory logs of the Management
Console. The files are always available by default. The content of the files can be displayed
using any text editor.

The output traces are controlled by the file log4j.properties.xml in the config subdi-
rectory of the Management Console.

There are two special loggers for the MC-CLI command line interface:

● name="com.fujitsu.ts" for the Java classes of the MC-CLI and

● name="mccli" for the Jython modules of the MC-CLI

You will find detailed information on the trace mechanism of the Management Console in
the Management Console's online help system.

Logging, diagnostics and troubleshooting Diagnosing the BeanConnect tools

BeanConnect V3.0B 543

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

13.8 Diagnosing the BeanConnect tools

MC-CmdHandler

By default, logging for the MC-CmdHandler is performed using Log4j. The scope of logging
is controlled via configuration files. The following configuration files are present in the
BeanConnect resource adapter installation:

● The file mccmdhandler.log4j.properties.xml

Basic logging data (default)

● The file mccmdhandler.log4j.properties_debug.xml

Detailed logging data

Diagnosis of the openUTM-LU62 Gateway Logging, diagnostics and troubleshooting

544 BeanConnect V3.0B

13.9 Diagnosis of the openUTM-LU62 Gateway

This section provides information on the following topics:

● Traces and logs of the openUTM-LU62 Gateway

● Diagnosis information for the openUTM-LU62 Gateway

13.9.1 Traces and logs of the openUTM-LU62 Gateway

The openUTM-LU62 Gateway writes messages into log files and optionally provides trace
information for diagnostics functionality. There are two different kinds of traces:

● Instance traces

● XAP-TP traces

You can define different trace levels to configure the extent of the instance traces.

13.9.1.1 Activate/deactivate traces

By default, the instance traces and the XAP-TP traces are deactivated. You can activate the
traces for the openUTM-LU62 Gateway using the Management Console.

Select the openUTM-LU62 Gateway under the item openUTM-LU62 Gateways in the
navigation tree or openUTM-LU62 Gateways in the proxy's navigation tree and choose
Edit Properties in the context menu. The table Edit Properties of openUTM-LU62
Gateway lists the defined values which you are now able to edit.

● Trace Level
Specifies the level of instance traces logged by the openUTM-LU62 Gateway.

● Activate XAP-TP Trace
Select this option to specify that the openUTM-LU62 Gateway is to log XAP-TP
traces.The function logs the activities of the components XAP-TP provider and OSS
with respect to connections to the proxy container.

If the openUTM-LU62 Gateway is running, the trace settings come into effect dynamically
when saving the openUTM-LU62 Gateway.

If the traces are activated, they are written in the following files:

● On Solaris and Linux systems:

– instance trace file
/opt/lib/utmlu62/PROT/inlog.<lu_name>.<suff>

– XAP-TP trace file
/opt/lib/utmlu62/PROT/xaplog.<lu_name>.<suff1>.<suff2>

Logging, diagnostics and troubleshooting Diagnosis of the openUTM-LU62 Gateway

BeanConnect V3.0B 545

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

● On Windows systems:

– instance trace file
<gateway_home>\PROT\inlog.<lu_name>.<suff>

– XAP-TP trace file
<gateway_home>\PROT\xaplog.<lu_name>.<suff1>.<suff2>

Here <lu_name> stands for a local LU alias name, <suff>/<suff1>/<suff2> are numerical
suffixes and <gateway_home> indicates the directory where the openUTM-LU62 Gateway is
installed.

13.9.1.2 Evaluating traces and logs

The traces of the openUTM-LU62 Gateway are written in binary format.

You can convert and display all the openUTM-LU62 Gateway traces and log files in the
Management Console:

1. Choose the following nodes in the navigation tree of the proxy:
Advanced Features - Diagnosis - Output - General Diagnostic Info

2. Select one of the following entries:

– LU62 Gateway Instance Traces

– LU62 Gateway Instance Protocol Flow

– LU62 Gateway XAP-TP Traces

– LU62 Gateway Protocol Files

3. Click the Show File button.

The Management Console transfers the converted text file to the local diagnostic path and
displays the file in a Text File panel.

Two files result from the conversion of a binary instance trace:

● generated instance trace

● instance log flow

In addition to the trace files the openUTM-LU62 Gateway writes messages into log files:

● On Solaris and Linux systems:

/opt/lib/utmlu62/PROT/prot.<lu_name>

● On Windows systems:

<gateway_home>\PROT\prot.<lu_name>.txt

Diagnosis of the openUTM-LU62 Gateway Logging, diagnostics and troubleshooting

546 BeanConnect V3.0B

Here <lu_name> stands for a local LU alias name and <gateway_home> indicates the
directory where the openUTM-LU62 Gateway is installed.

The names of the log files and the generated traces in the local diagnostic path are as
follows:

● instance traces: inlog.*.txt

● instance protocol flow: inlog.*.flow.txt

● XAP-TP traces: xaplog.*.txt

● log files: prot.*.txt

Instance protocol flow

In the instance protocol flow files you will find an abbreviated description of the protocol flow
(LU6.2 and OSI-TP protocol).

The openUTM-LU62 Gateway uses the APPC interface for communication via the LU6.2
protocol and the XAP-TP interface for communication via the OSI-TP protocol.

On the side of the LU6.2 protocol, the following information is displayed in the protocol flow
for every message:

● name of the APPC call

● TP-ID which is assigned by the SNAP-IX or the IBM Communications Server

● direction of processing

● additional parameters

The direction of processing is indicated by an arrow. An arrow pointing to the left indicates
a message sent by the openUTM-LU62 Gateway and an arrow pointing to the right
indicates a message received by the openUTM-LU62 Gateway.

The administration data is exchanged between the openUTM-LU62 Gateway and the
LU6.2 partner while the openUTM-LU62 Gateway is starting up or if a connection error
occurs. The transaction code X'06F2' is used for this purpose. These protocol flows are
indicated by a single arrow (-->). A protocol flow of an application program is indicated by
a double arrow (==>).

Each message contains a correlation number in order to make it easier to associate an
LU6.2 conversation and a parallel connection via XAP-TP. Protocol flows that are not
associated with a conversation are assigned the correlation number zero.

Additionally, every message is output with the time and the corresponding line number in
the original output file. The protocol flow does not contain user data. This user data can only
be found in the original output file.

Logging, diagnostics and troubleshooting Diagnosis of the openUTM-LU62 Gateway

BeanConnect V3.0B 547

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

13.9.2 Diagnosis information for the openUTM-LU62 Gateway

The following information is required when diagnosing errors:

● The status of the openUTM-LU62 Gateway. Check this using the Management
Console. Select the Check Availability command from the context menu of the
openUTM-LU62 Gateway.

The openUTM-LU62 Gateway and its availability are displayed in a table. If the
openUTM-LU62 Gateway is available, you can display detailed information by double-
clicking on this entry or by using the button Result Details.

The following information is relevant:

– LLU-NAME: Alias name of the local LU via which the EIS partner is identified. It
consists of

– the value specified for the EIS partner in the Management Console in the Prefix
field on the General tab of the Edit Properties of EIS Partner property sheet

– another generated name part to ensure that names are unique.

– atot: The number of parallel connections established between the proxy container
and the openUTM-LU62 Gateway.

– stot: The number of established connections (sessions) between the openUTM-
LU62 Gateway and the CICS application.

The number of control sessions is also output. If the number of control sessions is 0,
then a configuration error has occurred. If atot indicates the value 0, then a configu-
ration error has occurred or the proxy container has not been started. If stot indicates
the value 0, then a configuration error has occurred or the communication service has
not been started or the EIS partner is not running. If stot indicates the value 2, then a
configuration error has occurred and the specified mode is not known in VTAM on the
z/OS.

● The description of the error situation.

● All available diagnosis files:

– On Solaris and Linux systems:

– instance trace files
/opt/lib/utmlu62/PROT/inlog.<lu_name>.<suff>

– XAP-TP trace files
/opt/lib/utmlu62/PROT/xaplog.<lu_name>.<suff1>.<suff2>

– log files
/opt/lib/utmlu62/PROT/prot.<lu_name>

Diagnosis of the openUTM-LU62 Gateway Logging, diagnostics and troubleshooting

548 BeanConnect V3.0B

– On Windows systems:

– instance trace files
<gateway_home>\PROT\inlog.<lu_name>.<suff>

– XAP-TP trace files
<gateway_home>\PROT\xaplog.<lu_name>.<suff1>.<suff2>

– log files
<gateway_home>\PROT\prot.<lu_name>.txt

Here <lu_name> stands for a local LU alias name, <suff>, <suff1> and <suff2> are
numerical suffixes and <gateway_home> indicates the directory where the openUTM-
LU62 Gateway is installed.

v If you restart an openUTM-LU62 Gateway, the following diagnostic files in the
subdirectory <gateway_home>/PROT are deleted:
– in.dump.<lu_name>
– xaplog.<lu_name>.*
– xap.dump.<lu_name>.*
– prot.<lu_name>.old
– prot.<lu_name>.*.old
– core.<lu_name>

This means that you must save the diagnostic files before restarting the openUTM-
LU62 Gateway.

The files prot.<lu_name> and inlog.<lu_name>.* are saved with the suffix .old.
On Windows systems, the file prot.<lu_name> has the additional suffix .txt.

Logging, diagnostics and troubleshooting Diagnosis of SNAP-IX for Solaris systems

BeanConnect V3.0B 549

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

13.10 Diagnosis of SNAP-IX for Solaris systems

Logging files containing different types of messages and several trace options are provided
for diagnosing SNAP-IX problems.

Messages in log files

SNAP-IX differentiates between three types of messages in log files:

● Problem

Messages with the type Problem indicate a serious and unexpected event and are
always logged.

● Exception

Messages with the type Exception indicate events which degrade system performance
or which will cause problems or degrade performance in the future.

● Audit

Messages with the type Audit indicate normal events during the SNAP-IX run.

SNAP-IX traces

SNAP-IX provides several trace options for diagnosing SNAP-IX-specific problems (Line
Tracing, API Tracing, Client-Server-Tracing, TN Server Tracing and Internal Tracing).

13.10.1 Diagnosis with the Management Console

You can configure logging and traces for SNAP-IX and evaluate and display message logs
and trace files using the Management Console.

Configuring logging and traces

Select a communication service under the item Communications Services in the
navigation tree or in Communication Service in the proxy's navigation tree and then
choose Edit Properties in the communication service's (in this case SNAP-IX) context
menu. The table Edit Properties of Communication Service Instance lists the defined
values which you are now able to edit.

Check the appropriate options to activate or deactivate logging and traces. Additionally, you
can switch on more detailed versions of audit logging (with the Verbose Audits option) and
of problem and exception logging (with the Verbose Errors option).

Diagnosis of SNAP-IX for Solaris systems Logging, diagnostics and troubleshooting

550 BeanConnect V3.0B

If SNAP-IX is running, the change comes into effect when you save the Communication
Service.

Evaluating logging and traces

SNAP-IX writes the following files to the directory /var/opt/sna/:

● Audit messages to the logging file sna.aud.

● Error messages (problem and exception logging) to the logging file sna.err.

● Line traces in binary form to the trace files sna1.trc and sna2.trc.

To display these files, choose the following nodes in the navigation tree of the proxy:
Advanced Features - Diagnosis - Output - General Diagnostic Info. In the table, select
one of the entries SNAP-IX Audit Log, SNAP-IX Error Log or SNAP-IX Line Trace. Then
click the Show File button.

The Management Console converts a selected trace file to a text file and transfers the
converted text file or the message log file to the local diagnostic path and displays the file
in a Text File panel.

For detailed information, please refer to the SNAP-IX documentation.

Logging, diagnostics and troubleshooting Diagnosis: IBM Communications Server (Linux)

BeanConnect V3.0B 551

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

13.11 Diagnosis of the IBM Communications Server for Linux

Logging files containing different types of messages and several trace options are provided
for diagnosing IBM Communications Server problems.

Messages in Log Files

The IBM Communications Server differentiates between three types of messages in log
files:

● Problem

Messages with the type Problem indicate serious and unexpected events and are
always logged.

● Exception

Messages with the type Exception indicate events which degrade system performance
or which will cause problems or degrade performance in the future.

● Audit

Messages with the type Audit indicate normal events during the IBM Communications
Server run.

IBM Communications Server traces

The IBM Communications Server provides several trace options for diagnosing IBM-
Communications-Server-specific problems (Line Tracing, API Tracing, Client-Server-
Tracing, TN Server Tracing and Internal Tracing).

13.11.1 Diagnosis with the Management Console

You can configure logging and traces for the IBM Communications Server and evaluate and
display message logs and trace files using the Management Console.

Configuring logging and traces

Select a communication service under the item Communications Services in the
navigation tree or in Communication Service in the proxy's navigation tree and then
choose Edit Properties in the communication services (in this case IBM Communications
Server for Linux) context menu. The table Edit Properties of Communication Service
Instance lists the defined values which you are now able to edit.

Diagnosis: IBM Communications Server (Linux) Logging, diagnostics and troubleshooting

552 BeanConnect V3.0B

Check the appropriate options to activate or deactivate logging and traces. Additionally you
can switch on more detailed versions of audit logging (with the Verbose Audits option) and
of problem and exception logging (with the Verbose Errors option).

If the IBM Communications Server is running, the change comes into effect when you save
the Communication Service.

Evaluating logging and traces

The IBM Communications Server writes the following files to the directory
/var/opt/ibm/sna/:

● Audit messages to the logging file sna.aud.

● Error messages (problem and exception logging) to the logging file sna.err.

● Line traces in binary form to the trace files sna1.trc and sna2.trc.

To display these files, choose the following nodes in the navigation tree of the proxy:
Advanced Features - Diagnosis - Output - General Diagnostic Info. In the table, select
one of the entries Communications Server (Linux) Audit Log, Communications Server
(Linux) Error Log or Communications Server (Linux) Line Trace. Then click the Show
File button.

The Management Console converts a selected trace file to a text file and transfers the
converted text file or the message log file to the local diagnostic path and displays the file
in a Text File panel.

For detailed information, please refer to the IBM Communications Server documentation.

Logging, diagnostics and troubleshooting Diagnosis: IBM Communications Server (Windows)

BeanConnect V3.0B 553

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

13.12 Diagnosis of the IBM Communications Server for Windows
systems

On Windows systems, the IBM Communications Server provides a Log Viewer and a
Trace Facility for diagnosing problems. These tools have graphical user interfaces. You
can start the tools from the relevant program groups.

For detailed information, please refer to the IBM Communications Server documentation.

13.12.1 Diagnosis with the Management Console

You can evaluate and display the message log and the trace log files of the IBM Communi-
cations Server using the Management Console.

Configuring logging and traces

Select a communication service under the item Communications Services in the
navigation tree or in Communication Service in the proxy's navigation tree and then
choose Edit Properties in the communication service's (in this case IBM Communications
Server for Linux) context menu. The table Edit Properties of Communication Service
Instance lists the defined values which you are now able to edit.

Check the appropriate options to activate or deactivate logging and traces. Additionally you
can switch on more detailed versions of audit logging (with the Verbose Audits option) and
of problem and exception logging (with the Verbose Errors option).

If the IBM Communications Server is running, the change comes into effect when you save
the Communication Service.

Evaluating logging and traces

To display these files, choose the following nodes in the navigation tree of the proxy:
Advanced Features - Diagnosis - Output - General Diagnostic Info. In the table, select
one of the entries Communications Server (Windows) Message Log or Communica-
tions Server (Windows) Trace Log. Then click the Show File button.

The Management Console converts a selected trace file to a text file and transfers the
converted text file or the message log file to the local diagnostic path and displays the file
in a Text File panel.

Collecting diagnostic information Logging, diagnostics and troubleshooting

554 BeanConnect V3.0B

13.13 Collecting diagnostic information

BeanConnect provides support for gathering all available diagnostic information in the
proxy with a single mouse click.

In the Management Console, select the command Advanced Features - Diagnosis -
Output - General Diagnostic Info from the navigation tree of the proxy. Then click the
Get All Files button or select the Get All Files command from the context menu of any
table entry.

A Select File dialog box is opened where you can specify the target directory for the traces
and log files. In this dialog box, a subdirectory of the configured local diagnostic path is
proposed. The name of the subdirectory is built from the current date and time (<local-
diag-path>/<date-time>).

After selection of the target directory, the Management Console starts to collect all available
files with diagnostic information for the BeanConnect proxy and for the proxy components.
If necessary, the files are converted from binary format to text format and then the files are
copied into the target directory. An action dialog box is displayed which provides information
about the progress and the outcome of the action.

Logging, diagnostics and troubleshooting Error messages proxy container

BeanConnect V3.0B 555

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

13.14 Error messages of the BeanConnect proxy container

This section provides information on the following topics:

● Configuration error messages

● Runtime error messages

13.14.1 Configuration error messages

openUTM, on which the BeanConnect proxy container is based, is configured using the
configuration tool KDCDEF. The workflow and input to this tool are controlled by the
Management Console. KDCDEF normally works without any manual intervention by the
user.

v If you intervene in the configuration process and, for example, manipulate the
KDCDEF input files, successful configuration can no longer be guaranteed.

Each KDCDEF run is logged with messages to the kdcdef.out file in the def subdirectory
of the proxy container home directory. You will find error messages in this file if they are
available.

The configuration was successful if the process terminated with the message

● K450 KDCFILE generated; KAA size: &KAASIZE K

If errors are detected in the input files or another internal error occurs, the process is
terminated with one of the following messages:

● K448 KDCFILE generated with warnings; KAA size: &KAASIZE K

● K449 There was at least one ERROR. Generation aborted.

Please inform system service if you cannot identify any connection with manual
manipulation of the input files with respect to the preceding error messages.

Error messages proxy container Logging, diagnostics and troubleshooting

556 BeanConnect V3.0B

13.14.2 Runtime error messages

The messages generally indicate problems between the resource adapter and the proxy
container or between the proxy container and the EIS partner or openUTM-LU62 Gateway.
User errors or internal problems in BeanConnect or in the openUTM-LU62 Gateway could
be the reasons for these problems.

13.14.2.1 Types of messages

In BeanConnect, there are three groups of messages:

This chapter contains all messages of groups 2 and 3 which can be displayed at runtime of
the proxy container in alphabetical order. Messages of group 1 are not described.

The runtime messages are logged in the files utmp.out.<suffix> and utmp.err.<suffix>
where <suffix> indicates the date and time stamp. The files are saved in the proxy
container home directory.

Each message is preceded by an individual ID. A "&" character precedes the name of an
insert. The description of a message provides the meaning of those inserts needed by the
BeanConnect user. All other inserts are needed by system service for diagnosis. Some
inserts contain information on error codes during file processing (DMS error codes) or on
error codes of the system. These inserts are described in the section System error codes.

Meaning of the openUTM-specific terms in the BeanConnect proxy container which are
used in the messages:

Please check the following issues before contacting system service:

● Does the configuration of the proxy container in the Management Console correspond
to the configuration of the resource adapter, e.g. the values for proxyURL or
inboundListenerPort (see the configuration of resource adapter in section “Defining
general properties in ra.xml” on page 93 and the configuration in the Management
Console in section “Configuring a BeanConnect proxy cluster” on page 193)?

Group 1 Messages which log normal behavior.

Group 2 Messages which log problems and errors. You can respond to these
messages.Any notes or actions are described in this document.

Group 3 Internal messages from BeanConnect.

DMS File access

UTM openUTM component

UTM-D Component for distributed communication

XAP-TP Component for the OSI-TP protocol stack

Logging, diagnostics and troubleshooting Error messages proxy container

BeanConnect V3.0B 557

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

● Does the configuration of the proxy container in the Management Console correspond
to the configuration of the EIS partner or openUTM-LU62 Gateway, e.g. the values for
Host and Port?

● Have the proxy container, all proxy components and the EIS partner been started and
are they available? You can check availability with the Management Console (see
section “Checking the availability of BeanConnect proxies” on page 280).

The following lists contain the messages which can be issued by BeanConnect. Additional
information has been added to the descriptions to explain the actions (responses) to the
messages:

● K messages

● P messages

● U messages

K messages and U messages are output by default.

P messages only occur during the communication via the OSI-TP protocol, i.e. during
communication between the proxy container and the EIS partner or between the proxy
container and openUTM-LU62 Gateway.

If a K message is output, you should take into account the corresponding P or U message
where appropriate.

Error messages proxy container (K messages) Logging, diagnostics and troubleshooting

558 BeanConnect V3.0B

13.14.2.2 K messages

BCSYSEX K009 Transaction code &TAC is invalid (&RCDC) - input please

Invalid service name called by an EIS using a UPIC, Socket or RFC1006 connection.
Action: The table below lists the possible error codes together with error causes and
possible error recovery actions. If an error message occurs that is not described in the list
below, inform system service.

Error code &RCDC

BCSYSEX K017 Service &TCVG terminated by openUTM (&RCCC/&RCDC &RCF2A) - input please

An inbound transaction was rolled back.

Action: Normal behavior if &RCCC is 70Z and &RCDC is K306. Otherwise inform system
service.

K036 Connection setup: &PTRM/&PRNM/&BCAP/<RM &RSLT, &REA1

BeanConnect outputs the message when the connection from the resource adapter to the
proxy container is set up.

&RCDC Meaning

KM01 The service has not been generated.
Action: Configure an inbound service and assign this service name to the inbound
message endpoint or change the client program.

&RSLT Meaning

Y Connection set up.

N Connection was not set up; the cause is given in &REA1.

&REA1 Meaning

X' 00' Connection already set up.

X' 0A' BeanConnect proxy container shut down.
Action: Start the BeanConnect proxy container.

X' 0C' Connection cleardown being executed.
Action: Repeat the request.

X' 12' No further free entry available in terminal pool.
Action: Depends on the insert <ERM.

X' 1B' The IP address of the EIS partner could not be determined
Action: Check EIS partner host and /or inform network administration

X' 2E' The connection has not yet been completely cleared down.
Action: Repeat the request.

Logging, diagnostics and troubleshooting Error messages proxy container (K messages)

BeanConnect V3.0B 559

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

K040 Warning level &WLEV for &PGPOOL no longer exceeded

This message is only output if message K041 was previously output and means that the
measures recommended there are currently no longer necessary.

K041 Warning level &WLEV for &PGPOOL exceeded

Action: Increase the Proxy Container Storage Area Size (Page Pool) in the Performance
Settings tab of the Edit Properties of Proxy property sheet using the Management
Console and carry out the todo topics which are shown in the todo topic list of the
Management Console.

K043 DMS error &DMSE for file &FNAM

The DMS error code is output in insert &DMSE.

Action: The possible DMS error codes are described in section “Error codes” on page 598.
Alternatively inform system service.

K049 Error = &RCCC2 during application startup

The BeanConnect proxy container issues message K049 whenever the start of a container
task is aborted due to an error. The error code &RCCC2 shows the cause of the error.
Action: The table below lists the possible error codes together with error causes and
possible error recovery actions. If an error message occurs that is not described in the list
below, inform system service.

Error code &RCCC2

<ERM Meaning

BCRA Action: Increase the Number of Parallel Outbound Connections in the Perfor-
mance Settings tab of the Edit Properties of Proxy property sheet in the
Management Console.

BCUP Action: Increase the Number of Parallel Inbound UPIC Connections in the Perfor-
mance Settings tab of the Edit Properties of Proxy property sheet in the
Management Console.

BCSO Action: Increase the Number of Parallel Inbound Socket Connections in the Perfor-
mance Settings tab of the Edit Properties of Proxy property sheet in the
Management Console.

Code Error cause Action

20 Shared memory cannot be allocated by the first
task of the BeanConnect proxy container due to
insufficient address space.

Check system generation.

Error messages proxy container (K messages) Logging, diagnostics and troubleshooting

560 BeanConnect V3.0B

21 Shared memory cannot be allocated by the first
task of the BeanConnect proxy container due to
insufficient address space or due to the proxy
container being terminated.

As for 20 or normal behavior.

22 File access error. See DMS error code, section “Error
codes” on page 598.

24 File access error. See DMS error code, section “Error
codes” on page 598.

32 The task lock bourse could not be created. This
error occurs when there are too few semaphore
entries available for the BeanConnect processes.
This can occur when the termination of a process
and its restart overlap.

Start again with a larger number of
semaphores (see the section “Number
of semaphores in the proxy container”
on page 504).

33 BeanConnect refuses to start more tasks for the
proxy container because the proxy container has
already terminated (normal or abnormal termi-
nation).

 Normal behavior.

35 While restarting a proxy container task,
BeanConnect detects that the proxy container is
being aborted.

 Normal behavior.

50 As for 20. Check system generation.

55 DMS error with KDCA file. See DMS error code, section “Error
codes” on page 598.

56 DMS error with page pool file. See DMS error code, section “Error
codes” on page 598.

57 DMS error with restart file. See DMS error code, section “Error
codes” on page 598.

58 Error with the SYSLOG file of the BeanConnect
proxy. Possible causes:
The <Proxy_home>/SYSLOG directory is not
correct.

Delete (if necessary) and regenerate
the prepared SYSLOG file in the
<Proxy_home> directory with following
commands:
– Solaris and Linux:

. ./initenv.sh
$UTMPATH/ex/kdcslog . 20

– Windows:
initenv.cmd
%UTMPATH%\ex\kdcslog . 20

59 Error when opening SYSLOG file. See DMS error code, section “Error
codes” on page 598.

79 A BeanConnect proxy container task makes a
request, but it runs out of memory.

Check system generation.

Code Error cause Action

Logging, diagnostics and troubleshooting Error messages proxy container (K messages)

BeanConnect V3.0B 561

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

K055 Asynchronous service &ATAC1 terminated by openUTM; KCRCCC=&RCCC;
KCRCDC=&RCDC;user=&USER; LTERM=<RM

An asynchronous inbound transaction was rolled back and the asynchronous inbound
message will be redelivered if necessary.

Action: Normal behavior when KCRCCC is 000 and KCRCDC is 0000 or KCRCCC is 70Z
and KCRCDC is K306. Otherwise inform system service.

K060 Application run aborted; reason = &TRMA

BeanConnect creates a memory dump whenever a proxy container application is aborted
or a dump requested. Such a dump is produced for each work process of the proxy
container.

The Group column in the table below describes the reason group to which the dump error
code (&TRMA) belongs. The following groups exist:

If an error message occurs that is not described in the list below, inform system service.

84 Insufficient memory. Check system generation.

85 Insufficient memory. Check system generation.

91 Error when starting BeanConnect proxy container.
You can find a detailed description of the error
under message K124.

See message K124 on page 569.

A The cause is a user error, e.g. an error in
– generating and administering proxy container applications with the Management

Console
– generating the system (e.g. division of the address space)

D The dump was created for diagnostic purposes.

F The dump is a continuation dump, another task has caused the BeanConnect proxy
container to terminate abnormally.

M The cause is a memory bottleneck.

U, S, X The cause is an internal error in BeanConnect.

Code Group Reason

ALGxxx ASU Shared memory bottleneck.
Action: Tune the system kernel.

ASIS99 D BeanConnect proxy container was terminated abnormally by the adminis-
trator.

Code Error cause Action

Error messages proxy container (K messages) Logging, diagnostics and troubleshooting

562 BeanConnect V3.0B

BRSREM F BeanConnect proxy container was terminated abnormally by the adminis-
trator.

CACHT1
through
CACHT6

F After a process has initiated the abnormal termination of the BeanConnect
proxy container, another task of the BeanConnect proxy container has termi-
nated abnormally itself (= continuation dump).
Action: Depends on the reason for the abnormal termination of the proxy
container.

DIAGDP D A diagnostic dump has been generated. The BeanConnect proxy container is
running normally.

ENDE14 F As for code CACHT1.

ENDPET A The BeanConnect proxy container cannot be terminated normally because
distributed transactions still exist with the status PTC (prepare to commit).
The transaction can be terminated after the BeanConnect proxy container has
been restarted. Additionally, a connection to the EIS partners that are involved
in the distributed transactions must exist.
Action: Restart the BeanConnect proxy container.

FMMM10 A An input message cannot be stored because the page pool is full.
Action: Increase the Proxy Container Storage Area Size (Page Pool) in the
Performance Settings tab of the Edit Properties of Proxy property sheet in
the Management Console.

IOyxxx ASU An unrecoverable error has occurred during file processing, yxxx = DMS error
code, see the section section “Error codes” on page 598.

IPC035 A Error on locking the IPC shared memory segment. This may be caused by the
remove script being called or by a Forced Clear while the BeanConnect
proxy container is still running.

IPC037 FU After a process has initiated abnormal termination of the BeanConnect proxy
container, another task of the BeanConnect proxy container has terminated
abnormally itself (= continuation dump).

IPCEND FU After a process has initiated abnormal termination of the BeanConnect proxy
container, another process of the BeanConnect proxy container has termi-
nated abnormally itself (= continuation dump).

IPCREM F The BeanConnect proxy container was terminated abnormally with the
remove script or Forced Clear.

ISLPT1
through
ISLPT4

F As for code CACHT1.

LATCT1 F As for code CACHT1.

JVMABT The JVM has initiated the abnormal termination of the BeanConnect proxy
container, see also file hs_err*.log in the container directory

LCACT1 F As for code CACHT1.

Code Group Reason

Logging, diagnostics and troubleshooting Error messages proxy container (K messages)

BeanConnect V3.0B 563

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

LKAA04 US As for code CACHT1.

LKAAT1 F As for code CACHT1.

LKLCT1
through
LKLCT4

F As for code CACHT1.

LPCMT1 F As for code CACHT1.

OSAFT2 F As for code CACHT1.

OSTM07 A A log record for a distributed transaction cannot be backed up, since the page
pool is full.
Action: Increase the Proxy Container Storage Area Size (Page Pool) in the
Performance Settings tab of the Edit Properties of Proxy property sheet in
the Management Console.

PCMM05 AU The page pool is full.
Action: Increase the Proxy Container Storage Area Size (Page Pool) in the
Performance Settings tab of the Edit Properties of Proxy property sheet in
the Management Console.

PEND02 A No further data can be written because the page pool is full.
Action: Increase the Proxy Container Storage Area Size (Page Pool) in the
Performance Settings tab of the Edit Properties of Proxy property sheet in
the Management Console.

PENDER AUD A dump was created after abnormal termination of a transaction. Before this,
the message K017 or K055 was output. The proxy container is still running
normally.

PENDT1
PENDT2

F As for code CACHT1.

PUTR01 AU Error on writing to file.
Possible reason: Disk storage bottleneck.

PWRT03 AMU Memory bottleneck.
Action: Check memory requirements and operating system generation.

PWRT06 F As for code CACHT1.

RESTRT D The diagnostic dump is taken with a restart of the BeanConnect proxy
container after an abnormal termination.

SACT28 M Memory bottleneck.
Action: Modify the value for OSI-SCRATCH-AREA in the proxy container and
update the configuration files of the proxy container. Otherwise inform system
service. For details see chapter “Encoding and national language support” on
page 494.

Code Group Reason

Error messages proxy container (K messages) Logging, diagnostics and troubleshooting

564 BeanConnect V3.0B

K065 Net message: &PTRM/&PRNM/&BCAP/<RM &FIL1B &FIL2B

Action: Depends on the values FIL1B and FIL2B.

The inserts &FIL1B and &FIL2B have the following meaning:

SHM002 A The shared memory key is not unique on the host. This may be an inherited
error from K078 OSS 03.
Action: Check the proxy container generation.The used shared memory keys
are written to the <Proxy_home>/def/input.system.txt file.
Parameter: MAX *SHMKEY. The shared memory keys depend on the
generated port number. If necessary, you must generate the proxy container
with another port number.

SLOG09 SU Problem when writing the message buffer to the current SYSLOG file.
Action: The DMS error code in the preceding K043 message may explain the
cause of the error. Otherwise inform system service.

SLOG10 SU An attempt by a continuation work process to switch over to the current
SYSLOG file generation has failed.
Action: It may be necessary to take into account any preceding K043
messages. Otherwise inform system service.

SMSG03 ASU Problem when writing the message buffer to the current SYSLOG file.
Action: The DMS error code in the preceding K043 message may explain the
cause of the error. Otherwise inform system service.

STnnnn ADSU Error when processing the start of a proxy container task, where nnnn is the
number indicating the error cause in the message "K049 Error nnnn during
application startup".
Processes of the BeanConnect proxy container that are still active continue
running.

WAITT1
WAITT2

F As for code CACHT1.

XATT02 F As for code CACHT1.

XFGE01 F As for code CACHT1.

FIL1B Meaning

X' F0' - X' FF' Normal behavior.

other See actions for FIL2B.

FIL2B Meaning Actions

00000008 Invalid parameter. Inform system service.

00000014 Connection letter too long. Inform system service.

Code Group Reason

Logging, diagnostics and troubleshooting Error messages proxy container (K messages)

BeanConnect V3.0B 565

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

K075 Program exchange aborted by the task &PID; &CTYP &PROG &PVER

Action: Inform system service.

K078 ffffffff yyyyyyyyy

Meaning of the parameters:

If an error code ffffffff occurs that is not described in the list below, inform system service.

00000030 Internal error. Inform system service.

0400001C Resource bottleneck. Inform system service.

04000020 BeanConnect proxy container not signed
on.

Inform system service.

30000020 Error signing on. Inform system service.

other Connection-specific events. Normal behavior.

ffffffff Contains a short code for the error that has occurred (see table below).

yyyyyyyyy Specific, context-related error message.

ffffffff Reason Actions

ALME Memory bottleneck on application start. Check memory requirement, tune
operating system.

ATEXIT 00 - 04 Process termination. Information message.

DIAG 01 - 07 Information about the process
environment.

Information message.

ENV 00 - 04 Information about the process
environment.

Information message.

IPC 02 Memory bottleneck when creating the
IPC shared memory.

Tune system kernel parameter.

IPC 03 - 07 Information about the dimension of the
IPC shared memory.

Information message.

MEM 01 Memory bottleneck when starting the
application. Full text:
K078 MEM 01 in utmwork nn Bytes not
available.

Check storage requirements; tune
operating system.

MSG 01 - 02 Information about the process
environment.

Information message.

NET 01 Information about the process
environment.

Information message.

FIL2B Meaning Actions

Error messages proxy container (K messages) Logging, diagnostics and troubleshooting

566 BeanConnect V3.0B

OSS 03 Error while loading the OSS shared
memories into the address space.

Check storage requirements; tune
operating system.

PIPE 01 Information about the process
environment.

Information message.

SEM 01 Error while creating a semaphore. A
semaphore is not unique on the host.

Check the proxy container generation.
The semaphore keys depend on the
generated port number. The used
semaphore keys are written to the file
<Proxy_home>/
def/input.system.txt
(MAX SEMARRAY). Change the first
value in the brackets or you must
generate the proxy container with
another port number.

SIGNAL nn Signal handling in utmwork process. Information message.

SYSPROT 01 -
02

Information about the process
environment.

Information message

ffffffff Reason Actions

Logging, diagnostics and troubleshooting Error messages proxy container (K messages)

BeanConnect V3.0B 567

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

K104 UTM-D TIMEOUT (&RCVDANNO): &LSES, &LPAP, &AGUS; old state: (&OCVST,
&OTAST); action: &ACTION; new state: (&NCVST, &NTAST).

Reason: Timeout during communication between the proxy container and the EIS partner.

Action: Depends on the value of RCVDANNO.

ACTION Meaning

ASYNCH Timeout during asynchronous communication: Either the association occupancy
timer or the reply timer has expired.

STPROG Timeout during outbound dialog communication without any impact on the trans-
action.

COMMIT
RESET

Timeout during outbound/inbound communication: The transaction is either
committed (COMMIT) or rolled back (RESET).

RCVDANNO
(Bytes 1-2)

Meaning

X'F331 A timer has expired during inbound communication after the sending of a response
to the EIS.
Action: Use the Management Console to increase the value of Transaction
Communication Timer in the Timer Settings tab of the Edit Properties of Proxy
property sheet.

X'F332' A timer has expired during outbound communication after all the EIS partners
involved in the distributed transaction have been requested to initiate termination of
the transaction.
Action: Use the Management Console to check and, if necessary, increase the value
for Reply Timer in the Edit Properties of an Outbound Service property sheet for
all the outbound services involved in the transaction.

X'F333' The ready timer has expired during inbound communication via OSI-TP.
Action: Use the Management Console to increase the value of Prepare to Commit
Timer in the Timer Settings tab of the Edit Properties of Proxy property sheet.

X'F400' The OSI-TP association occupancy timer for a dialog job has expired during
outbound communication.

X'F520' The OSI-TP association occupancy timer for an asynchronous job (internal timer of
60 seconds) has expired during outbound communication.

X'F522' The timer which monitors reception of acknowledgment of an asynchronous
message sent via an OSI-TP association during outbound communication has
expired.

X'F534' The response timer has expired during outbound communication for a dialog job.
Action: Use the Management Console to increase the value for Reply Timer in the
outbound service's Edit Properties of an Outbound Service property sheet.

Error messages proxy container (K messages) Logging, diagnostics and troubleshooting

568 BeanConnect V3.0B

K119 OSI-TP error information: &OSLPAP, &USER, &TAC, &DIA1, &DIA2, &DIA3

The inserts &DIA1, &DIA2, &DIA3 contain the reasons for outputting message K119.

Reason with openUTM: The dialog with the EIS partner was terminated.

Reason with CICS: The dialog with the proxy component openUTM-LU62 Gateway was
terminated.

Action: See the table below.

&DIA1 &DIA2 &DIA3 Meaning

01 06 02 No free connection available.
Action: Increase the number of connections in the General tab of the
Edit Properties of an EIS Partner property sheet in the Management
Console.

02 02 01 Outbound communication: The outbound service is not known in the
EIS.
Action: Harmonize the partner service name specified in the outbound
service with the service name generated in the EIS.

02 03 18 Outbound communication: The EIS partner has rejected auhentication
with the specified security credentials.
Action: Check the configuration or programming.

02 03 19 Outbound communication: The EIS partner has rejected the OSI-TP
dialog because the partner LPAP which represents the proxy container
in the EIS partner is locked or is in QUIET state.

02 03 21 Outbound communication: Memory bottleneck at the EIS partner.

02 03 22 Outbound communication: The outbound service is not known in the EIS
partner or is locked or there is no authorization.
Possible action: Harmonize the partner service name specified in the
outbound service with the service name generated in the EIS.

02 03 23 Outbound communication: The outbound service is known in the EIS
partner but cannot be called.

02 03 24 Outbound communication: The queue level for the asynchronous
outbound service has been reached at the EIS partner.

02 03 25 Outbound communication: The dialog-based outbound service is
configured as an asynchronous service in the EIS partner.

03 03 18 Inbound communication: The user employed by the EIS partner for the
dialog is not configured in the proxy container or the employed password
is false.
Action: Check the configuration.

Logging, diagnostics and troubleshooting Error messages proxy container (K messages)

BeanConnect V3.0B 569

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

K124 Error: &RCXAPTP at startup of XAP-TP occurred in phase: &PHAXAPTP

Action:

For RCXAPTP = 106: Possible cause: Work process could not be started because proxy is
already shut down

Otherwise: Inform system service.

03 03 21 Inbound communication: The proxy container storage area (page pool)
is full.
Action: In the Management Console, increase the value of Pagepool in
the Performance Settings tab in Proxy Container Storage Area Size
in the Edit Properties of Proxy property sheet i

04 02 00
01

The EIS partner has terminated the dialog.
Action: See the messages in the EIS partner.

09
09

03
03

21
31

The proxy container storage area (page pool) is full.
Action: In the Management Console, increase the value of Pagepool in
Proxy Container Storage Area Size in the Performance Settings tab
of the Edit Properties of Proxy property sheet

10 11
12
13
15
16

xx
xx
xx
xx
xx

No free connection available
Action: In the Management Console, increase the number of connec-
tions (Connections) in the General tab of the Edit Properties of an EIS
Partner property sheet.

10 17 xx An inbound dialog process is active for every connection to the EIS
partner and another inbound process is received on a connection that
was closed and newly generated during this time.
Action: Increase the reply timer in the Edit Properties of an Outbound
Service property sheet in the Management Console. The specified
value must be greater than the reply timer in the EIS partner

 other values Inform system service.

&DIA1 &DIA2 &DIA3 Meaning

Error messages proxy container (K messages) Logging, diagnostics and troubleshooting

570 BeanConnect V3.0B

K128 UTM-D job rejected: &CON/&PRNM/&BCAP/&LPAP &LSES &REA1 &RCDC &TAC

Meaning of the inserts with openUTM:

The insert &REA1 contains the reason that message K128 was output.

Insert Meaning

&CON OSI-CON name

&PRNM Eight blanks

&BCAP ACCESS-POINT name

<RM OSI-LPAP name

&REA1 Meaning Action

X' 01' Invalid service name called by an EIS using an OSI-
TP connection.

If &RCDC=KM01:
Configure an inbound message
endpoint and assign this service
name to the inbound message
endpoint or change the OSI-TP
client.
Otherwise inform the system
service.

X' 02' Service name is generated with an error.
- Recipient tpsu title in TP-BEGIN-DIALOGUE-RI

Inform system service.

X' 03' An asynchronous service is to be started, the
service which is assigned to the message endpoint
is configured as a dialog-orientated service.
- Receipt of a TP-END-DIALOGUE-RI protocol
 element

Check whether the OLTP
message-driven bean implements
the asynchronous interface and
maybe enter the inbound message
endpoint with the asynchronous
service again.
Or change the OSI-TP client.

X' 04' A dialog-orientated service is to be started, the
service which is assigned to the message endpoint
is configured as an asynchronous service.

Check whether the OLTP
message-driven bean implements
the dialog-orientated interface and
maybe enter the inbound message
endpoint with the dialog-orientated
service again.
Or change the OSI-TP client.

X' 05' An asynchronous service is to be started, but the
message queue of the service has reached the
generated threshold.
- The connection is cleared down.

Inform system service.

Logging, diagnostics and troubleshooting Error messages proxy container (K messages)

BeanConnect V3.0B 571

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

K135 UPIC message: &PTRM/&PRNM/&BCAP/<RM/&UPCREAS/&UPCSTAT/&UPCPROT/
&UPVENC1/&UPPENC2

Action if UPCREAS = 0D:
Increase the proxy container storage area size in the Performance Settings tab of the
Edit Properties of Proxy property sheet in the Management Console.

Action if UPCREAS ≠0D: Inform system service.

K139 Switching SYSLOG failed! Still using file &FNAM

Action: It may be possible to ascertain the reason for the error that occurred on switchover
from the DMS error code in the preceding message K043. Otherwise inform system
service.

K147 Sign on for &USRTYPE user &USER not successful &PTRm/&PRNM/&BCAP/<RM
Reason: &REA7

Reason: Depends on the &USER value.

Action: Depends on the &REA7 value.

&USER Reason

BCURAxxx Outbound communication in a cluster configuration or in multiple resource adapter
mode.
If REA7=U3: Normal behavior
Otherwise: Problems during communication between the resource adapter and the
proxy container

BCUxxxxx Outbound communication: Problems during communication between the resource
adapter and the proxy container.

BCADMIN Administration: Problems communicating with the proxy container in the Management
Console.

other Inbound communication: Problems during communication between the EIS partner
and the proxy container.

&REA7 Meaning

U1 Inbound: The USER that is used for the dialog by the EIS partner is not configured in
the proxy container. See section “Configuring inbound communication” on page 234.
Outbound: Internal error. Inform system service.

U3 Inbound: You have tried to start more than one parallel dialog with the same user and
without commit functionality.
Outbound: Internal error. Inform system service.

Error messages proxy container (K messages) Logging, diagnostics and troubleshooting

572 BeanConnect V3.0B

K152 Heuristic report: &COND &MTYPE &OLPAP &USER <AC &AAIS &AAID

Action: Depends on the &COND value.

K160 The &TACNTR. transaction of the &TCVG service was reset by &RBCAUSER
(&RCCC/&RCDC); (pid: &TASK).

If &TCVG = KDCGIOPU, there is an outbound communication process.

For inbound communication &TCVG contains the service name that is assigned to the
message endpoint in the Management Console.

Action with openUTM: Normal behavior, see the process in the resource adapter or EIS
partner.

Action with CICS: Normal behavior, see the process in the resource adapter or proxy
component openUTM-LU62 Gateway.

U4 Inbound: The password used for the dialog by the EIS partner is not configured in the
proxy container. See section “Configuring inbound communication” on page 234.
Outbound: Internal error. Inform system service.
Administration: An incorrect password is specified in the Management Console for
access to the proxy container.

U17 The administrator has started termination of the proxy container. It is therefore not
possible to start the dialog.

other Inform system service.

&COND Meaning

MIX Inbound: The application server and the EIS partner are not synchronized with respect
to transaction security.
Possible database inconsistency. To coordinate this, manual contact to one of the
involved databases is required.
Outbound: The EIS partner has detected a heuristic MIX.

HAZ The application server has rolled back the transaction. The termination of this trans-
action (commit/rollback) is unknown in the EIS partner.
Possible database inconsistency. To coordinate this, manual contact to one of the
involved databases is required.

&REA7 Meaning

Logging, diagnostics and troubleshooting Error messages proxy container (K messages)

BeanConnect V3.0B 573

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

K204 XA (&TNSPID) Precommit requires global rollback; cause: &XATXT TA= &INTTAID

Action: Inform system service if the value of the insert &XATXT is not equal to one of the
following values.

K210 XA (&TNSPID) Return code: &XATXT Open RM &TEXT32, &INSTNUM

Action: Inform system service.

K211 XA (&TNSPID) Return code: &XATXT Close RM &TEXT32, &INSTNUM

Action: Inform system service.

K212 XA (&TNSPID) xa_start(&XAFLAG) - Return code &XATXT TA= &INTTAID

Action: Inform system service.

K213 XA (&TNSPID) xa_end(&XAFLAG) - Return code &XATXT TA= &INTTAID

Action: Inform system service.

K214 XA (&TNSPID) xa_commit() - Return code &XATXT TA= &INTTAID

Cause: Normal behavior if no abnormal termination of the proxy container follows.

Action: Inform system service on abnormal termination.

K215 XA (&TNSPID) xa_rollback() - Return code &XATXT TA= &INTTAID

Cause: Normal behavior if no abnormal termination of the proxy container follows.

Action: Inform system service on abnormal termination.

&XATXT Meaning

XA_RBROLLBACK Rollback for unspecified reason

XA_RBCOMMFAIL Rollback due to a internal communication error in the Resource Manager

XA_RBDEADLOCK Rolback due to a deadlock

XA_RBINTEGRITY Rollback due to a resource inconsistency

XA_RBOTHER Rollback for unspecified reason

XA_RBPROTO Rollback due to an internal protocol error in the Resource Manager

XA_RBTIMEOUT Rollback due to transaction period timeout

XA_RBTRANSIENT Rollback due to a temporary error

Error messages proxy container (K messages) Logging, diagnostics and troubleshooting

574 BeanConnect V3.0B

K216 XA (&TNSPID) Return code &XATXT, recover PTC list, RM: &TEXT32,&INSTNUM

Cause: Normal behavior if no abnormal termination of the proxy container follows.

Action:

● Abnormal termination during the start-up phase may be caused by a faulty connection
to the resource adapter (e.g. incorrect port number or invalid protocol between the
proxy container and the resource adapter). The cause is described in more detail in the
messages in the log files utmp.err.* and utmp.out.* as well as in the proxy container's
logging file. If an incorrect port number has been assigned to the resource adapter then
this can be set correctly using the Management Console. It is possible to restart the
proxy container.

If the BeanConnect proxy container and the resource adapter have different versions,
the resource adapter clears the connection and the proxy container is therefore termi-
nated while still in the start-up phase. The comment on the incorrect version designation
is logged in resource adapter logging.

● If the cause of abnormal termination during the start-up phase cannot be identified as
described above, please inform the system service.

K217 XA (&TNSPID) xa_prepare() - Return code &XATXT TA= &INTTAID

Cause: Normal behavior if no abnormal termination of the proxy container follows.

Action: Inform system service on abnormal termination.

K218 XA (&TNSPID) xa_forget() - Return code &XATXT TA= &INTTAID

Cause: Normal behavior if no abnormal termination of the proxy container follows.

Action: Inform system service on abnormal termination.

K220 XA (&TNSPID) Error: xa_switch definition not found for specified RM: &TEXT32

Action: Inform system service.

K221 XA (&TNSPID) Error: Start parameters not found for defined RM: &TEXT32

Action: Inform system service.

K222 XA (&TNSPID) Error: Linked RM is not &XASPEC compatible &TEXT32

Action: Inform system service.

K223 XA (&TNSPID) Syntax error in start parameters

Action: Inform system service.

K224 XA (&TNSPID) &XACALL - return code &XASTAT from RM instance &INSTNUM,
&TEXT32 is not XA(CAE) compliant

Action: Inform system service.

Logging, diagnostics and troubleshooting Error messages proxy container (K messages)

BeanConnect V3.0B 575

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

K225 XA (&TNSPID) recursive call: &XADBC1 - Error/signal in DB/XA connection for &XADBC2

Action: Inform system service.

K230 XA (&TNSPID) Int. error: &TEXT32

Action: Inform system service.

K231 XA (&TNSPID) Int. error: PETA not supported

Action: Inform system service.

K232 XA (&TNSPID) Int. error: DBSTAT secondary opcode inconsistent

Action: Inform system service.

Error messages proxy container (P messages) Logging, diagnostics and troubleshooting

576 BeanConnect V3.0B

13.14.2.3 P messages

All messages from the OSI-TP protocol stack start with the letter “P”.

P messages with openUTM occur between the proxy container and the EIS partner.

P messages with CICS can occur in the proxy container or in the openUTM-LU62 Gateway.
If the term "proxy component" is used for the description of the P message, the proxy
container or the openUTM-LU62 Gateway is meant, depending on the component where
the message occurred.

P001 Error on OSS call (&XPFUNC): &ACPNT, &XPRET, &XPERR, &XP1INFO, &XP2INFO

Error on OSI-TP communication between the proxy container and the EIS partner or
between the proxy components.

If the error has been reported by the transport system, message P012 is also output.

Action: Inform system service.

P002 Error on association establishment (&XPFUNC): &ACPNT, &OSLPAP, &XPRET, &XPERR,
&XP1INFO, &XP2INFO

Error on OSI-TP connection generation between the proxy container and the EIS partner or
between the proxy components.

If the error has been reported by the transport system, message P012 is also output.

Action: Inform system service.

P003 Association rejected (a_assin()): &ACPNT, reason: &XPRJCT, length: &XPLTH

Action: Inform system service.

P004 Association rejected (a_assin()): &ACPNT, &OSLPAP, reason: &XPRJCT

This message is issued if a request to establish an association was rejected by the EIS
partner.

Action: See the table below.

XPRJCT Action

1 - 16 Inform system service.

17 Unknown partner application.
Action: Check the generation in the proxy container and in the EIS system openUTM
resp. in the proxy components. Possibly the generation input which is generated by the
Management Console was not activated at one of the partners or at the components.

18 - 33 Inform system service.

Logging, diagnostics and troubleshooting Error messages proxy container (P messages)

BeanConnect V3.0B 577

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

P005 Association rejected (a_assin()): &ACPNT, reason: unknown partner,
N-SEL: &XPNSEL, T-SEL: &XPTSEL
S-SEL: (&XPLSSEL,&XPCSSEL,&XPHSSEL)
P-SEL: (&XPLPSEL,&XPCPSEL,&XPHPSEL)

This message is issued if a request to establish an association was rejected from outside
because the remote partner is not known to the local application.

Action: Check the generation in the proxy container and in the EIS system openUTM resp.
in the proxy components. Possibly the generation input which is generated by the
Management Console was not activated at one of the partners or at the components.

P006 Association rejected (a_assin()): &ACPNT &OSLPAP, reason: wrong application context
name (&XP0OBID, &XP1OBID, &XP2OBID, &XP3OBID, &XP4OBID, &XP5OBID,
&XP6OBID, &XP7OBID, &XP8OBID, &XP9OBID)

This message is issued if a request to establish an association was rejected from outside.
The application context name for the remote partner does not match the application context
name generated for this partner in the local application.

Action: Check the generation in the proxy container and in the EIS system openUTM resp.
in the proxy components. Possibly the generation input which is generated by the
Management Console was not activated at one of the partners or at the components.

P007 Error on association establishment (a_assrs()): &ACPNT, &OSLPAP, &XPRET, &XPERR,
&XP1INFO, &XP2INFO

This message is output when a request to establish an association from outside returns an
error. If the error has been reported by the transport system, message P012 is also output.

Action: Inform system service.

34 - 35 Configuration problem. A different number of connections was generated on both sides.
Action: Check the generation in the proxy container and in the EIS system openUTM
resp. in the proxy components. Possibly the generation input which is generated by the
Management Console was not activated at one of the partners or at the components.

36 - 39 Inform system service.

40 Timeout during connection establishment. Connection establishment was started but
could not be completed in the specified time.
Action with openUTM partner: See the messages of the EIS partner. Alternatively, inform
system service.
Action with CICS partner: See the messages of the EIS partner and the proxy compo-
nents and try to find out which component did not respond. Alternatively, inform system
service.

41 - 46 Inform system service.

XPRJCT Action

Error messages proxy container (P messages) Logging, diagnostics and troubleshooting

578 BeanConnect V3.0B

P008 Association (&XPOSAS) established: &ACPNT, &OSLPAP

This message is issued when an association has been established.

Action: Normal behavior.

P009 Association (&XPOSAS) rejected (a_asscf()): &ACPNT, &OSLPAP, reason: &XPRJCT,
length: &XPLTH

This message is issued when active establishment of an association is rejected because
the confirmation from the communication partner cannot be accepted.

Action: Inform system service.

P010 Association (&XPOSAS) rejected (a_asscf()): &ACPNT, &OSLPAP, reason: unknown
partner:
N-SEL: &XPNSEL, T-SEL: &XPTSEL
S-SEL: (&XPLSSEL,&XPCSSEL,&XPHSSEL)
P-SEL: (&XPLPSEL,&XPCPSEL,&XPHPSEL)

This message is issued when active establishment of an association is rejected because
the remote partner confirms establishment of an association with an address which is
unknown to the local application.

Action: Inform system service.

P011 Association (&XPOSAS) rejected (a_asscf()): &ACPNT &OSLPAP, reason: wrong appli-
cation context name (&XP0OBID, &XP1OBID, &XP2OBID, &XP3OBID, &XP4OBID,
&XP5OBID, &XP6OBID, &XP7OBID, &XP8OBID, &XP9OBID)

This message is issued when active establishment of an association is rejected because
the remote partner confirms establishment of an association with an application context
name other than the one configured for this partner in the local application.

Action: Check the generation in the proxy container and in the EIS system openUTM resp.
in the proxy components. Possibly the generation input which is generated by the
Management Console was not activated at one of the partners or at the components.

P012 CMX diagnostic information: &XPCTYPE, &XPCCLS, &XPCVAL

Action:

XPCVAL > 15: Error code from the transport system. Inform system service.

XPCVAL <other value>: Inform system service.

Logging, diagnostics and troubleshooting Error messages proxy container (P messages)

BeanConnect V3.0B 579

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

P013 Association (&XPOSAS) rejected (a_asscf()): &ACPNT, &OSLPAP, reason:
&XPCRES, &XPSRC, &XPNDIA,
CCR V2 = &XP1BOOL, Version Incompatibility = &XP2BOOL,
ContWin Assignment rejected = &XP3BOOL,
Bid mandatory rejected = &XP4BOOL, No reason = &XP5BOOL

This message is issued when active establishment of a connection to the EIS system resp.
between the proxy components is rejected by the remote partner.

Action:

– If XP1BOOL, XP2BOOL or XP4BOOL are set to TRUE: Inform system service.

– If XP3BOOL = TRUE: Temporary shortage concerning the number of connections.

– If XP5BOOL = TRUE: Action depends on XPNDIA, see the table below.

P014 Error on association disconnection (&XPOSAS) (&XPFUNC): &ACPNT, &OSLPAP,
&XPRET, &XPERR, &XP1INFO, &XP2INFO

Action: Inform system service.

P015 Association disconnected (&XPFUNC): &ACPNT, &OSLPAP, &XPLNK, &XPSRC,
&XPNDIA, &XPINI, &XP1INFO, &XP2INFO

This message is issued when an OSI-TP association is cleared.

Action: See the table below.

XPNDIA Action

1 Inform system service.

2 - 10 Configuration problem.
Action: Check the generation in the proxy container and in the EIS system openUTM
resp. in the proxy components. Possibly the generation input which is generated by
the Management Console was not activated at one of the partners or at the compo-
nents.
With openUTM partners: Check that the host name specified in the Management
Console for the EIS partner corresponds to the host name used in the connection
request. In the event of an error, the correct name is output in message U315 of the
proxy container. If message U315 contains the value *ANY for the host name, you
must add the host name of the openUTM partner application to the host file of the
system.

11 - 24 Inform system service.

XPINI Meaning

0 Normal behavior.

401 The local transport system has cleared the association. The subsequent message P012
contains the detailed CMX return code.

Error messages proxy container (P messages) Logging, diagnostics and troubleshooting

580 BeanConnect V3.0B

P016 Association (&XPOSAS) disconnected (a_relin()): &ACPNT, &OSLPAP, &XPLNK,
&XPNDIA

This message is issued if an association is cleared because a "release indication" was
received.

Action: See the table below.

P017 OSS decoding error: &XPDU, &XP1DIA, &XP2DIA, &XP3DIA

Action: Inform system service.

P018 FSM protocol error: &ACPNT, &OSLPAP, &XPPTYP, &XPFSMN

Action: Inform system service.

P019 APDU contains invalid value: &ACPNT, &OSLPAP, &XPAPDU, &XP3INFO

Action: Inform system service.

402 openUTM partner:
The EIS partner's transport system has cleared the connection.
CICS partner: The openUTM-LU62 proxy component's transport system has cleared the
connection.
&XP1INFO contains the reason for the connection cleardown.
The following is a subset of &XP1INFO values:
0 (T_USER)
The communication partner cleared the connection, possibly as a result of a user error on
the partner side.
258 (T_RSAP_NOTATT)
The partner cleared the connection because the addressed communication endpoint was
not registered there.
482 (T_RLNOCONN)
The local transport system could not establish the connection because no network
connection is available.

403 -
406

Inform system service.

407 The originator is the local proxy component.

408 The EIS partner or the proxy component openUTM-LU62 Gateway initiated the abort.

XPNDIA Meaning

0 NO_REASON_GIVEN

21 - 23 The association is cleared by the EIS partner or by the partner proxy component with
release.

XPINI Meaning

Logging, diagnostics and troubleshooting Error messages proxy container (U messages)

BeanConnect V3.0B 581

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

13.14.2.4 U messages

U184 &OBJ1 DMS error &DMSE for file &FNAM

Action: See the DMS error code in section “Error codes” on page 598 or inform system
service.

U185 kdcdef not allowed during application run

Action: User error. You can update the proxy container configuration only after you have
stopped the proxy container.

U189 &OBJ1 (&PTRM, &PRNM): IPC shortage of &IPCOBJ &IPCREAS

Action: For the meaning of the inserts &IPCOBJ and &IPCREAS see the table below. For
inserts which are not contained in the table inform system service.

&IPCOBJ &IPCREAS Meaning Action

TSAP tsapname openUTM network
process not yet started.
It was not possible to log in
at transport system

Normal behavior at application start.
Otherwise:
Check BCAMAPPL and ACCESS-POINT
in openUTM generation.

EXTP
EXTP
EXTP

WORK USED
NET USED
EXTP USED

Entire process adminis-
tration table in use

Check UTM generation regarding
semaphores

NET PROC DEAD openUTM net process
terminated.

See the earlier message U3nn.

LETT IPC FULL Data area already too full
to take any more data for
this connection.

Check openUTM generation or
UTM_IPC_LETTER environment variable
(see note below).

LETT EXTP FULL Data area for received
messages already fully
occupied.

Check openUTM generation or
UTM_IPC_LETTER environment variable
(see note below).

LETT USED Data area is occupied. Check openUTM generation or
UTM_IPC_LETTER environment variable
(see note below).

LETT
LETT

MAX ILETT
MAX OLETT

Maximum data area per
connection in use.

Check openUTM generation or
UTM_IPC_EXPT_LETTER environment
variable (see note below).

SEMA USED Maximum number of
semaphores in use.

Check openUTM generation or
UTM_IPC_EXPT_LETTER environment
variable (see note below).

Error messages proxy container (U messages) Logging, diagnostics and troubleshooting

582 BeanConnect V3.0B

i The message with &PCOBJ=LETT refers to the data area in shared memory which
is used for the exchange of messages between the proxy container processes.

Increase the value for the environment variables UTM_IPC_LETTER (default: 1600)
and UTM_IPC_EXTP_LETTER (default: 32) in the following file:
– Solaris and Linux systems:

<Proxy_home>/shsc/startcontainer.sh
– Windows systems:

<Proxy_home>\shsc\startcontainer.cmd

To activate the value, you must restart the proxy. You can find further information in
section “Shared memory of the proxy container” on page 495.

U190 &OBJ1 SHM error (key: &SHMKEY, lth: &SHMLTH): &UERRNO

The insert &UERRNO has the following meaning:

U205 utmtimer: Error &UERRNO during utmtimer run

The insert &UERRNO has the following meaning:

U206 utmtimer: Message with incorrect type received

Action: Inform system service.

U207 utmtimer: Reallocation of timer list from &DIA1 to &DIA2 elements

Action: Inform system service.

U223 &OBJ1 UTM application &APPL still running according to internal status, appfile: &OBJ3

You have tried to start the proxy container more than once.

&UERRNO Meaning Action

1 The shared memory cannot be
established with the specified size.

User error.
Action: If necessary, the system has to be
tuned. Please refer to the release notes.

2 - 5 The shared memory cannot be
established.

Inform system service.

&UERRNO Meaning Action

1 - 11 and
13 - 21

Internal error. Inform system service.

12, 22, 32 Proxy container is being terminated. Normal behavior.

29 - 31, 40 Internal error. Inform system service.

Logging, diagnostics and troubleshooting Error messages proxy container (U messages)

BeanConnect V3.0B 583

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

U227 &OBJ1 UTM application &APPL terminated by kdcrem

Action: Remove script or Forced Clear has been activated.

U228 utmmain: Read error on pipe, errno: &ERRNO

Action: Inform system service.

U229 utmmain: &OBJ1 process died, pid: &PID, &SIGEXIT (&STRTIME)

Action: Inform system service.

U231 utmmain: utmwork process died, pid: &PID
unexpected exit code: &EXTCODE &SIGEXIT (&STRTIME)

Action: Inform system service.

U304 &OBJ1 (pid: &PID, &TNSNAME): &NETFCT call: Error &NETERR

Error during activation of communication endpoint &NETFCT.

Action: Configuration problem (see message U305) or inform system service.

U305 &OBJ1 (pid: &PID): CMX application &BCAP already attached

Error during activation of communication endpoint &BCAP. This communication endpoint is
not unique on the host.

Action: The communication endpoints depend on the container name and the generated
container port number. The used communication endpoints are written to the file
<Proxy_home>/def/input.system.txt (BCAMAPPL <communication endpoint>). You must
install the proxy container with another container name or port number.

U306 &OBJ1 (pid: &PID, &TNSNAME): Error &UERRNO during process run

Action: See the table below.

The insert &UERRNO has the following meaning:

&UERRNO Meaning Action

1 - 11 Internal error during container
connection setup.

Inform system service.

12 No work process when receiving. Normal behavior when the proxy container
terminates.

13 Internal error during container
connection setup.

Inform system service.

14 Concurrent clearing of connections. Normal behavior.

19 - 21 Internal error during container
connection setup.

Inform system service.

22 No work process when sending -
application terminated.

Normal behavior when the proxy container
terminates.

Error messages proxy container (U messages) Logging, diagnostics and troubleshooting

584 BeanConnect V3.0B

U307 &OBJ1 (pid: &PID, &TNSNAME): Invalid event &EVENT

Action: Inform system service.

U309 &OBJ1 (pid: &PID, &TNSNAME): KDCSTRMA called - reason: &TRMA (&STRTIME)

Action: Inform system service.

23 - 24 Internal error during container
connection setup.

Inform system service.

25 Connection was cleared down by
the container.

Normal behavior.

26 Connection cleardown was
identified on sending.

Normal behavior.

27 - 36 Internal error during container
connection setup.

Inform system service.

37 - 38 Login for local communication
endpoints was unsuccessful (error
when activating the communication
endpoint)

User error: Change the configuration, see also
U304/U305.

41 - 43 Internal error during container
connection setup.

Inform system service.

44 Recipient of connection setup
request could not be determined.

User error: Change the configuration.

45 Connection already cleared down. Normal behavior.

46 Invalid port number on connection
setup request from openUTM

User error: Generation incorrect or incomplete

47 - 58 Internal error during container
connection setup.

Inform system service.

82 Sender of connection setup request
could not be determined.

User error: Change the configuration.

83 - 283 Internal error during container
connection setup.

Inform system service.

&UERRNO Meaning Action

Logging, diagnostics and troubleshooting Error messages of the openUTM-LU62 Gateway

BeanConnect V3.0B 585

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

13.15 Error messages of the openUTM-LU62 Gateway

This section lists all messages of the openUTM-LU62 Gateway:

● openUTM-LU62 Gateway error messages on start-up

● openUTM-LU62 Gateway error messages at runtime

● openUTM-LU62 Gateway error messages on status queries

● openUTM-LU62 Gateway error messages during administration

● openUTM-LU62 Gateway error messages during configuration

13.15.1 openUTM-LU62 Gateway error messages on start-up

When the openUTM-LU62 Gateway starts, the openUTM-LU62 utility
u62_start outputs messages to stdout.

All the messages start with the string u62_start <nn>, where <nn> indicates the message
number.

● The messages with the following numbers indicate normal behavior:
17, 18, 24, 25, 26, 28, 29

● For information on the messages with the numbers 05, 06 and 07, see below.

● If any other u62_start <nn> messages which are not listed are output, inform the
system service.

05 Directory &DIRNAME cannot be read, errno &ERRNO (&ERRTEXT)

Action: For ERRNO, see section “System error codes” on page 599 and/or inform the
system service.

06 Configuration file &FILENAME cannot be opened, errno &ERRNO (&ERRTEXT)

Action: For ERRNO, see section “System error codes” on page 599 and/or inform the
system service.

07 Error reading configuration file &FILENAME, errno &ERRNO (&ERRTEXT)

Action: For ERRNO, see section “System error codes” on page 599 and/or inform the
system service.

Error messages of the openUTM-LU62 Gateway Logging, diagnostics and troubleshooting

586 BeanConnect V3.0B

13.15.2 openUTM-LU62 Gateway error messages at runtime

Messages concerning the OSI-TP protocol stack for connections between the proxy
container and the openUTM-LU62 Gateway begin with letter P. All of these messages are
described in the section section “P messages” on page 576.

All other messages of the openUTM-LU62 Gateway begin with the string
u62_tp[<comp>]<nnn>.

In this prefix, <comp> specifies the sub-component of the openUTM-LU62 Gateway and
<nnn> the message number.

004 Error on signal handling, errno &ERRNO (&ERRTEXT)

Action: Inform system service.

006 Error opening the configuration file &FILENAME, errno &ERRNO (&ERRTEXT)

Action: For ERRNO see the section section “System error codes” on page 599 or inform
system service.

010 The instance for the local LU name &LUNAME is already running

Action: Inform system service.

012 Internal error occurred

Action: Inform system service.

015 PID file &PIDFILE cannot be created, errno &ERRNO (&ERRTEXT)

Action: For ERRNO see the section section “System error codes” on page 599 or inform
system service.

016 Write to PID file &PIDFILE failed, errno &ERRNO (&ERRTEXT)

Action: For ERRNO see the section section “System error codes” on page 599 or inform
system service.

026 Crash of openUTM-LU62 in module &MODULNAME

Action: Inform system service. Save the contents of the following directory:

● On Solaris and Linux systems: /opt/lib/utmlu62/PROT

● On Windows systems: <gateway_home>\utmlu62\PROT

If possible, you should reproduce the error with the instance trace activated.

027 Shutdown by the XAP-TP provider: &REASON

Action: Inform system service. Save the contents of the following directory:

● On Solaris and Linux systems: /opt/lib/utmlu62/PROT

Logging, diagnostics and troubleshooting Error messages of the openUTM-LU62 Gateway

BeanConnect V3.0B 587

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

● On Windows systems: <gateway_home>\utmlu62\PROT

If possible, you should reproduce the error with the XAP-TP trace activated.

036 Error in allocating a new shared memory of length &LEN, errno &ERRNO (&ERRTEXT)

Action: For ERRNO see section “System error codes” on page 599 or inform system
service.

040 Error in the configuration of the local LU &LLUNAME or of the partner LU &RLUNAME

Action: Generation error in one of the following proxy components:

● On Solaris systems: SNAP-IX

● On Linux and Windows systems: IBM Communications Server

048 The node is deactivated: No conversations can be established

The node of the SNAP-IX or IBM Communications Server was presumably deactivated by
the administrator. It is no longer possible to start conversations to the EIS partner.

Action: Check the following proxy component:

● On Solaris systems: SNAP-IX

● On Linux and Windows systems: IBM Communications Server

302 Conversation rejected, TP Name &TPNAME, job submitted by LU6.2 side: Restart of the
nominated control instance not completed yet

This can occur when the connection to the EIS partner is re-established after a crash, but
the connection between the openUTM-LU62 Gateway and the proxy container has not yet
been re-established.
Action: Repeat the job.

303 Incoming conversation (TP Name &TPNAME, job submitted by LU6.2 side) supplies initial-
ization data that will be discarded by openUTM-LU62.

Action: Inform system service.

304 Conversation rejected, TP Name &TPNAME, job submitted by LU6.2 side: Security data
not supported by the OSI TP partner or contain invalid characters.

Action: Inform system service.

305 Conversation rejected, TP Name &TPNAME, job submitted by LU6.2 side: The alias name
&ALIAS of the partner LU is not identical with the configured name &CONFALIAS.

Action: Check the openUTM-LU62 Gateway generation.

306 Conversation rejected, TP Name &TPNAME, job submitted by LU6.2 side: Service TPs
using mapped (!) conversations are not supported!

Error messages of the openUTM-LU62 Gateway Logging, diagnostics and troubleshooting

588 BeanConnect V3.0B

The LU6.2 partner has attempted to start a conversation with a non-printable TP name
(i.e. a transaction code between X'00' and X'3F'). The openUTM-LU62 Gateway does not
support these types of service TPs, except for the resync-TP X'06F2'. This message
appears, for example, when the EXEC CICS START function that addresses the service TP
X'02' in the openUTM-LU62 Gateway is used.

307 Conversation rejected, TP Name &TPNAME, job submitted by LU6.2 side: Configuration
error: The net name of the local and/or of the partner LU has been changed!

Action: Check the openUTM-LU62 Gateway generation.

308 Conversation rejected, TP Name &TPNAME, job submitted by LU6.2 side: Error in the
exchange of the log names between the local and the remote LU!

The LU6.2 partner has opened a conversation to the openUTM-LU62 Gateway with sync-
level 2 although the log names have not yet been exchanged between the two LUs, or a
fatal error occurred the last time the log names were exchanged. The openUTM-LU62
Gateway reacts to this protocol violation by immediately closing the conversation.
Action: The administrator of the transactional resources must check which actions must be
reset. System service cannot check this.

309 RECEIVE_ALLOCATE rejected due to configuration error: The local LU alias name
&LUNAME is not configured!

Action: Check the generation of

● The openUTM-LU62 Gateway

● On Solaris systems: SNAP-IX

● On Linux and Windows systems: IBM Communications Server

310 RECEIVE_ALLOCATE failed: LU6.2 base software is not running!

Action: Start the following proxy component:

● On Solaris systems: SNAP-IX

● On Linux and Windows systems: IBM Communications Server

311 RECEIVE_ALLOCATE failed: system error (errno &ERRNO) occurred: &ERRTEXT

Error

● On Solaris systems: in SNAP-IX

● On Linux and Windows systems: in the IBM Communications Server

Action: For ERRNO see section “System error codes” on page 599 or inform system
service.

312 Allocation of a conversation to the LU6.2 partner rejected, TP Name &TPNAME, job
submitted by OSI TP side.

Logging, diagnostics and troubleshooting Error messages of the openUTM-LU62 Gateway

BeanConnect V3.0B 589

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

Action: Check the generation of

● The openUTM-LU62 Gateway

● On Solaris systems: SNAP-IX

● On Linux and Windows systems: IBM Communications Server

313 Allocation of a conversation to the LU6.2 partner rejected, TP Name &TPNAME, job
submitted by OSI TP side: The LU6.2 base software is not running!

Reason: The proxy component is not started.

Action: Start the following proxy component:

● On Solaris systems: SNAP-IX

● On Linux and Windows systems: IBM Communications Server

314 Allocation of a conversation to the LU6.2 partner rejected, TP Name &TPNAME, job
submitted by OSI TP side: system error (errno &ERRNO) occurred: &ERRTEXT

Error

● On Solaris systems: in SNAP-IX

● On Linux and Windows systems: in the IBM Communications Server

Action: For ERRNO see section “System error codes” on page 599 or inform system
service.

315 Actively allocated conversation to LU6.2 partner deallocated (TP Name &TPNAME, job
submitted by OSI TP side) again due to a configuration error: The net name of the local
and/or of the partner LU has been changed!

Action: Check the generation of

● The openUTM-LU62 Gateway

● On Solaris systems: SNAP-IX

● On Linux and Windows systems: IBM Communications Server

320 Allocation of a conversation to LU6.2 partner failed, TP Name &TPNAME, job submitted by
OSI TP side: Allocation error (code = &ERRTEXT)

No conversations to the TP &TPNAME of the LU6.2 partner can be actively opened at the
moment. (&TPNAME is in this case the CICS transaction code, for example.) The error
code &ERRTXT then contains the return code of the corresponding LU6.2 call in plain text.

Action: Start the CICS application.

321 Allocation of a conversation to LU6.2 partner failed, TP Name &TPNAME, job submitted by
OSI TP side: Inconsistency in the configurations of openUTM-LU62 and the LU6.2 base
software

Error messages of the openUTM-LU62 Gateway Logging, diagnostics and troubleshooting

590 BeanConnect V3.0B

Action: Check the generation of

● The openUTM-LU62 Gateway

● On Solaris systems: SNAP-IX

● On Linux and Windows systems: IBM Communications Server

322 Allocation of a conversation to LU6.2 partner failed, TP Name &TPNAME, job submitted by
OSI TP side: Security data invalid

Action: Inform system service.

332 Conversation to the LU6.2 partner (TP Name &TPNAME, job submitted by OSI TP side)
terminated by shutdown of the LU6.2 base software!

Action: Check the diagnostic information and restart

● On Solaris systems: SNAP-IX

● On Linux and Windows systems: IBM Communications Server

333 Conversation to the LU6.2 partner (TP Name &TPNAME, job submitted by LU6.2 side)
terminated by shutdown of the LU6.2 base software!

Action: Check the diagnostic information and restart

● On Solaris systems: SNAP-IX

● On Linux and Windows systems: IBM Communications Server

334 Conversation to the LU6.2 partner (TP Name &TPNAME, job submitted by OSI TP side)
terminated by conversation error!

Possibly caused by an administrative shutdown of all sessions.
Action: Inform the administrator or system service.

335 Conversation to the LU6.2 partner (TP Name &TPNAME, job submitted by LU6.2 side)
terminated by conversation error!

Possibly caused by an administrative shutdown of all sessions.
Action: Inform the administrator or system service.

336 User control data received on a conversation to the LU6.2 partner (TP Name &TPNAME,
job submitted by OSI TP side) => Termination of the conversation by openUTM-LU62!

Action: Inform system service.

337 User control data received on a conversation to the LU6.2 partner (TP Name &TPNAME,
job submitted by LU6.2 side) => Termination of the conversation by openUTM-LU62!

Action: Inform system service.

Logging, diagnostics and troubleshooting Error messages of the openUTM-LU62 Gateway

BeanConnect V3.0B 591

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

338 Return code AP_STATE_CHECK received on a conversation to the LU6.2 partner (TP
Name &TPNAME, job submitted by OSI TP side) => Termination of the conversation by
openUTM-LU62!

Action: Inform system service.

339 Return code AP_STATE_CHECK received on a conversation to the LU6.2 partner (TP
Name &TPNAME, job submitted by LU6.2 side) => Termination of the conversation by
openUTM-LU62!

Action: Inform system service.

340 Incoming conversation to the LU6.2 partner rejected, (TP Name &TPNAME, job submitted
by LU6.2 side) Expiration of the timer for the supervision of the association allocation

This maximum wait time is configurable in the openUTM-LU62 Gateway using the
parameter ALLOC-TIME, where the default value is 30 seconds. If this message appears
often, you should either increase the session limit or decrease the number of parallel
connections for the openUTM-LU62 Gateway. Alternatively, inform system service.

341 Incoming conversation to the LU6.2 partner rejected, (TP Name &TPNAME, job submitted
by OSI TP side) Expiration of the timer for the supervision of the association allocation

This maximum wait time is configurable in the openUTM-LU62 Gateway using the
parameter ALLOC-TIME, where the default value is 30 seconds. If this message appears
often, you should either increase the session limit or decrease the number of parallel
connections for the openUTM-LU62 Gateway. Alternatively, inform system service.

350 XAP-TP provider rejects association allocation (TP Name &TPNAME): result = &RES,
source = &SRC, reason = &RSN

The proxy container rejects the association.
Action: See the proxy container messages.

351 XAP-TP provider reports loss of association (TP Name &TPNAME): source = &SRC,
reason = &RSN, event = &EVT

The proxy container rejects the association.
Action: See the proxy container messages.

352 OSI-TP partner (XAP-TP user) rejects begin dialogue request: TP Name &TPNAME, job
submitted by LU6.2 side

The proxy container rejects the dialog request.
Action: See the corresponding proxy container message or inform system service.

353 OSI-TP partner (XAP-TP user) rejects begin dialogue request: TP Name &TPNAME, job
submitted by OSI TP side: Reason = &RSN

The proxy container rejects the dialog request.
Action: See the corresponding proxy container message or inform system service.

Error messages of the openUTM-LU62 Gateway Logging, diagnostics and troubleshooting

592 BeanConnect V3.0B

354 Diagnostic information in the initialization data of AP_TP_BEGIN_DIALOGUE_CNF:
0xhhhh (d,d)

hhhh represents the hexadecimal value and d,d represent the according decimal values.

For UTM as OSI-TP partner, the initialization data contains further information on the
reason, why the dialog has been rejected. The first value shows whether the fault is
transient (1) or permanent (2).

The second value shows the detailed reason for rejection.

For the meaning of these values see section “K messages” on page 558, description DIA3
in message K119 for DIA1=2.

361 Incoming dialogue rejected, job submitted by OSI-TP side: Cannot decode local TPSU title

Action: Inform system service.

373 Incoming dialogue rejected, TP Name &TPNAME, job submitted by OSI-TP side: Restart
of the nominated control instance not completed yet

Action: Repeat the job.

374 Incoming dialogue rejected, TP Name &TPNAME, job submitted by OSI-TP side: Remote
application process title is not consistent with the configuration

Action: Check the generation of the proxy container and the openUTM-LU62 Gateway.

375 Incoming dialogue rejected, TP Name &TPNAME, job submitted by OSI-TP side: Remote
application entity qualifier is not consistent with the configuration

Action: Check the generation of the proxy container and the openUTM-LU62 Gateway.

390 OSI-TP dialogue aborted by partner (XAP-TP provider), TP Name &TPNAME, job
submitted by LU6.2 side

Action: See the corresponding proxy container message or inform system service.

391 OSI-TP dialogue aborted by partner (XAP-TP provider), TP Name &TPNAME, job
submitted by OSI TP side

Action: See the corresponding proxy container message or inform system service.

392 OSI-TP dialogue aborted by partner (XAP-TP user), TP Name &TPNAME, job submitted
by LU6.2 side

Action: See the corresponding proxy container message or inform system service.

393 OSI-TP dialogue aborted by partner (XAP-TP user), TP Name &TPNAME, job submitted
by OSI TP side

Action: See the corresponding proxy container message or inform system service.

Logging, diagnostics and troubleshooting Error messages of the openUTM-LU62 Gateway

BeanConnect V3.0B 593

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

408 OSI-TP partner indicates heuristic mix. TP Name &TPNAME, job submitted by &PARTNER
side

Probably the transaction between the proxy container and openUTM-LU62 Gateway is
inconsistent.
Action: You usually need to change the participating database manually in this case to
recoordinate the inconsistent database records. Inform system service.

409 OSI-TP partner indicates heuristic hazard. TP Name &TPNAME, job submitted by
&PARTNER side

Probably the transaction between the proxy container and openUTM-LU62 Gateway is
inconsistent.
Action: You usually need to change the participating database manually in this case to
recoordinate the inconsistent database records. Inform system service.

410 Syncpoint request received from LU6.2 job-receiving service. TP Name &TPNAME. Trans-
action is aborted.

A job receiving program on the CICS side has requested a syncpoint (e.g. EXEC CICS
SYNCPOINT) without having been requested to do so by the proxy container. This is
prohibited. The transaction is aborted. &TPNAME specifies the transaction code on the
CICS side.
Action: Change the CICS application program.

420 Error during resynchronization of a transaction. LU6.2 partner does not accept the state
&STATE.

A transaction has been interrupted in the commit phase due to a loss of the connection on
the LU6.2 side. An error has occurred during resynchronization with the LU6.2 partner. The
transaction cannot be reset or aborted.
Action: You usually need to change the participating database manually in this case to
recoordinate the inconsistent database records. The administrator must abort the trans-
action manually.

421 Log name error during resynchronization of a transaction.

A transaction has been interrupted in the commit phase due to a loss of the connection on
the LU6.2 side. An error has occurred during resynchronization with the LU6.2 partner. The
transaction cannot be reset or aborted.
Action: You usually need to change the participating database manually in this case to
recoordinate the inconsistent database records. The administrator must abort the trans-
action manually.

Error messages of the openUTM-LU62 Gateway Logging, diagnostics and troubleshooting

594 BeanConnect V3.0B

423 Protocol error of LU6.2 partner: Compare States &LUWSTATE &RRI received in state
&STATE1/&STATE2.

Malfunction of the EIS partner.
Action: You usually need to change the participating database manually in this case to
recoordinate the inconsistent database records. Inform the EIS partner's administrator.

424 LU6.2 partner indicates a protocol error. State: &STATE1/&STATE2, TP Name &TPNAME,
job submitted by &PARTNER side.

Action: Inform system service.

425 Invalid log record (error type &ERROR). Transaction is removed.

A faulty log record was read during a warm start of the openUTM-LU62 Gateway. The
transaction recorded in this log record can therefore not be resynchronized.
Action: You usually need to change the participating database manually in this case to
recoordinate the inconsistent database records. The administrator must abort the
transaction manually.

426 Problem at the XAP-TP interface. &EVENT received.

Action: Inform system service.

427 Error &ERRNO when issuing &CALL.

An error has occurred in a Solaris or Linux system call. This can lead to the abnormal
termination of the openUTM-LU62 Gateway.
Action: For ERRNO see section “System error codes” on page 599 or inform system
service.

510 The LU (alias name = &ALIASNAME, net name = &NETNAME) has returned an abnormal
reply to the Exchange Logname command.

Action: Inform system service.

511 A cold start has been attempted by LU (alias name = &ALIASNAME, net name =
&NETNAME), but the local LU has logical units of work that are awaiting resynchronization
from the previous activation.

Action: Inform system service.

Logging, diagnostics and troubleshooting Error messages of the openUTM-LU62 Gateway

BeanConnect V3.0B 595

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

13.15.3 openUTM-LU62 Gateway error messages on status queries

When checking the availability of the openUTM-LU62 Gateway in the Management
Console, the openUTM-LU62 u62_sta utility outputs messages to stdout.

All these messages begin with the prefix u62_sta <nn>, where <nn> specifies the message
number.

● For messages with the numbers 06, 09, 12 and 13 see below.

● For all the other u62_sta <nn> messages that are not listed above, inform system
service.

06 Instance &INST: Instance is still initializing or terminating.

The proxy component openUTM-LU62 Gateway is currently being started or terminated.
Action: Repeat the state request.

09 Instance &INST: Instance does not respond in time.

Delay which can occur with high load and in large configurations.
Action: Try checking again. Otherwise increase the preset waiting time of 20 seconds in the
following script:

● Solaris and Linux systems: <Proxy_home>/shsc/checkgateway.sh

● Windows systems: <Proxy_home>\shsc\checkgateway.cmd

12 No openUTM-LU62 instance active.

The proxy component openUTM-LU62 Gateway has not been started yet.
Action: Start the openUTM-LU62 Gateway.

13 The given instance is not active.

The proxy component openUTM-LU62 Gateway has not been started yet.
Action: Start the openUTM-LU62 Gateway.

Error messages of the openUTM-LU62 Gateway Logging, diagnostics and troubleshooting

596 BeanConnect V3.0B

13.15.4 openUTM-LU62 Gateway error messages during administration

When administering the openUTM-LU62 Gateway in the Management Console
(activating/deactivating traces) the openUTM-LU62 u62_adm utility outputs messages to
stdout.

All these messages begin with the prefix u62_adm <nn>, where <nn> specifies the message
number.

● Messages with the following numbers indicate normal behavior:
20 to 45, 56

● For messages with the numbers 06, 09, 12, 13, 52, 53 and 59 see below.

● For all the other u62_adm <nn> messages that are not listed above, inform system
service.

06 Instance &INST: Instance is still initializing or terminating.

The proxy component openUTM-LU62 Gateway is currently being started or terminated.
Action: Repeat the action.

09 Instance &INST: Instance does not respond in time.

Delay which can occur with high load and in large configurations.
Action: Repeat the action.

12 No openUTM-LU62 instance active.

The proxy component openUTM-LU62 Gateway has not been started yet.
Action: Start the openUTM-LU62 Gateway.

13 The given instance is not active.

The proxy component openUTM-LU62 Gateway has not been started yet.
Action: Start the openUTM-LU62 Gateway.

52 Error opening the trace file &FILENAME, errno &ERRNO (&ERRTXT)

Action: For ERRNO see section “System error codes” on page 599 or inform system
service.

53 Error reading from trace file &FILENAME, errno &ERRNO (&ERRTXT)

The specified file is not a trace file of the openUTM-LU62 Gateway.
Action: Specify the correct file.

59 Extracting the protocol trace may take some time. Please wait ...

Action: Wait for trace extraction to be completed.

Logging, diagnostics and troubleshooting Error messages of the openUTM-LU62 Gateway

BeanConnect V3.0B 597

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

13.15.5 openUTM-LU62 Gateway error messages during configuration

When configuring the openUTM-LU62 Gateway in the Management Console (update
configuration), the openUTM-LU62 u62_gen utility outputs messages to stdout.

All these messages begin with the prefix u62_gen <nn>, where <nn> specifies the message
number.

● A message with the number u62_gen 60 indicates normal behavior.

● For the messages 51, 58, and 59 see below.

● For all the other u62_gen <nn> messages that are not listed above, inform system
service.

51 File &FILENAME cannot be opened, errno &ERRNO (&ERRTEXT)

Action: For ERRNO see section “System error codes” on page 599 or inform system
service.

58 Error in writing to file &FILENAME, errno &ERRNO (&ERRTEXT)

Action: For ERRNO see section “System error codes” on page 599 or inform system
service.

59 Error in reading from file &FILENAME, errno &ERRNO (&ERRTEXT)

Action: For ERRNO see section “System error codes” on page 599 or inform system
service.

Error codes Logging, diagnostics and troubleshooting

598 BeanConnect V3.0B

13.16 Error codes

This section provides information on the following topics:

● Error codes during file processing (DMS error codes)

● System error codes

13.16.1 Error codes during file processing (DMS error codes)

In conjunction with file processing, return codes in the form yxxx occur in the event of an
error. These are also known as DMS errors and have the following meanings:

In addition, the errors CONS, LERR, OERR, REND, RERR, WERR, SXDE, SDDE and SDFE can occur.
These have the following meaning:

CONS The data contents are inconsistent.
LERR lseek could not be positioned at the desired point.
OERR An attempt was made to open a directory as a normal file.
REND End-of-file reached on reading from a file.
RERR Insufficient bytes could be read.
WERR Insufficient bytes could be written.
SXDE A directory could not be created.
SDDE A directory could not be deleted.
SDFE A file could not be deleted.

y The first character y denotes the function in which the error occurred. y may have the following
values:
A Error in loading shared memories into the address space
C Error in close call
D Error in signing off from a shared memory area
F Error in fstat/stat call
G Error in allocating shared memory
L Error in lseek call
O Error in open call
R Error in read call
W Error in write call
X Error in create call

xxx The three characters xxx represent, in printable form, the error number which is stored by the
operating system in the external variable errno. The meanings of the individual error numbers
are described in the operating system manuals and in the errno.h header file. You will find
some of the error codes which occur most often in section “System error codes” on page 599.

Logging, diagnostics and troubleshooting Error codes

BeanConnect V3.0B 599

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
29

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
3

13.16.2 System error codes

Several messages from the BeanConnect proxy container and the openUTM-LU62
Gateway contain as an insert a message number which is returned by the operating
system. The actions in response to these messages depend on the error code.

The following table provides information on the most frequent reasons for errors. All other
reasons not listed in this table are severe errors. Inform system service if these errors occur.

ERRNO Meaning

2 File or directory not available.

12 Storage bottleneck in the system.

13 No access rights for file or directory.

17 File already exists.

28 Disk bottleneck.

36 Operating facility deleted.

Error codes Logging, diagnostics and troubleshooting

600 BeanConnect V3.0B

BeanConnect V3.0B 601

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
30

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
4

14 Cobol2Java

BeanConnect clients can communicate with a COBOL application on a BS2000 system
using a number of different protocols. Byte arrays or strings are used for the exchange of
information. The structure of the information is defined by the COBOL application. As a
result, it is difficult for application developers to exchange data with the legacy service since
this demands precise knowledge of the data structure of the COBOL program. Cobol2Java
helps simplify the integration of BS2000-COBOL applications and BeanConnect clients.

This chapter contains information on the following subjects:

● Mapping COBOL data types to Java classes

● Converting COBOL data types

● Programming reference

● Example

● Error messages and error handling

14.1 Mapping COBOL data types to Java classes

Cobol2Java permits the object-oriented mapping of COBOL data structures to Java
classes.

Cobol2Java consists of the following parts:

● Cobol2XML, a BS2000 tool for generation of an XML description of a BS2000 COBOL
structure

● a framework with Cobol2Java conversion classes

● a program generator for the generation of application-specific classes on the basis of
this framework

The program generator makes use of an XSLT stylesheet to generate application-specific
Java classes. This is performed on the basis of an XML description of the COBOL service
that you can generate using the Cobol2XML tool in BS2000 systems.

Mapping COBOL data types to Java classes Cobol2Java

602 BeanConnect V3.0B

The Cobol2Java classes are able to process the byte arrays of a COBOL program or
generate a byte array that can be interpreted by the COBOL service. To access the
individual data fields within the byte array, Cobol2Java provides data access methods
appropriate for the data type as it is defined in the COBOL structure.

The figure below illustrates the generation operation.

Figure 69: Cobol2Java generation procedure

The Cobol2XML tool in a BS2000 system can be used to generate an XML file from the
BS2000-COBOL source. Cobol2Java then uses this file as the basis for creation of the Java
classes.

It is also possible to use Cobol2Java with COBOL programs developed for other platforms,
such as Unix or Linux systems. For this to be possible, the XML description must be
generated on a BS2000 system. It is not, however, possible to guarantee full functionality
since the memory allocation is dependent on the COBOL compiler.

COBOL source

BS2000
Cobol2XML

COBOL-XML
description

Cobol2Java
program

(XSLT

XSLT stylesheet

Java class

Java class

Java class

processing)

Cobol2Java Mapping COBOL data types to Java classes

BeanConnect V3.0B 603

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
30

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
4

14.1.1 System requirements

The following operating systems are supported as Cobol2Java target platforms:

● Solaris, Linux and other Unix systems

● Windows

The following programs must be installed before you can use Cobol2Java:

● Java SDK

● Ant (supplied)

Cobol2XML must be installed on a BS2000 system.

14.1.2 Installation

The components required for Cobol2Java are made available together with the
BeanConnect tools.

The installation of Cobol2Java is described in section “Installing the BeanConnect tools” on
page 76.

The following directory structure is created on installation:

Directory Files Meaning

/ build.xml Ant script

cobol2java.properties Configuration file

runAnt.sh Ant script (Unix/Linux system)

runAnt.bat Ant script (Windows system)

xml2java.sh Script (Unix/Linux system)

xml2java.cmd Script (Windows system)

/api JavaDoc

/BS2Files/ftp COB2XML.LIB BS2000 tool Cobol2XML for file
transfer with FTP

/BS2Files/openFT COB2XML.LIB BS2000 tool Cobol2XML for file
transfer with openFT

/Docs Copyright.htm Copyright notes for the employed
openSource products

Readme.pdf Release Notice

/lib ant.jar
ant-launcher.jar

Ant

Mapping COBOL data types to Java classes Cobol2Java

604 BeanConnect V3.0B

BeanConnectCob2java.jar Transfer tool: XML to Java

BeanConnectCob2java_ext.jar Necessary for the execution of
the generated Cobol2Java
classes if Cobol2Java is used in a
separate program without
BeanConnect

BeanConnectEncoding.jar Code conversion

functions.xslt XSLT stylesheet

mkcob2java.xslt XSLT stylesheet

newformat.dtd Document Type Definition

samples *.xml Sample XML files generated
using Cobol2XML within the
BS2000 system

newformat.dtd Document Type Definition

Directory Files Meaning

Cobol2Java Converting COBOL data types

BeanConnect V3.0B 605

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
30

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
4

14.2 Converting COBOL data types

Mapping COBOL data types to Java classes comprises the following steps:

● Creating an XML description for a COBOL program in a BS2000 system

● Generating Java classes on Unix, Linux or Windows systems

14.2.1 Creating an XML description for a COBOL program in a BS2000 system

The BS2000 tool Cobol2XML is used to convert a COBOL program or COPY element to
XML. The following steps are required:

● Transferring the LMS library COB2XML.LIB to the BS2000 system

● Converting the data structures from COBOL programs or COPY elements to XML using
the procedure D.XMLPROG or D.XMLCOPY

● Transferring the XML descriptions in text format to Unix, Linux or Windows systems for
further processing with Cobol2Java.

14.2.1.1 Transferring the LMS library to a BS2000 system

Cobol2XML is a BS2000 tool. You must therefore transfer the library COB2XML.LIB to a
BS2000 user ID. Depending on the transfer mode, you can either transfer the file
COB2XML.LIB under cobol2java/BS2Files/ftp or the file COB2XML.LIB under
cobol2java/BS2Files/openFT.

i When transferring with ftp, use binary mode.
When transferring with openFT, use the file type binary.
If the BS2000 system does not possess sufficient storage space, with ftp you may
get the error message DD33 (File not present).

v Do not rename the library in the BS2000 system since the conversion procedure
accesses elements of this library.

Converting COBOL data types Cobol2Java

606 BeanConnect V3.0B

14.2.1.2 Converting the data structures

The conversion procedure can only be called under the user ID where the library
COB2XML.LIB is stored.

Before calling the conversion procedure, assign the link names COBLIB<n>
(<n>= 1, .., 9) to the COPY libraries required for compilation of the source. For example, for
a UTM COBOL program assign a link name to the library containing the UTM-COPY
elements in order to ensure that the UTM-COPY elements can be found. You do this using
the command ADD-FILE-LINK:

/ADD-FILE-LINK COBLIB1, <copy_library>

(see also the manual “COBOL2000 (BS2000), COBOL-Compiler”).

i The link name COBLIB is used internally.

You can then start the procedures D.XMLPROG or D.XMLCOPY from the library COB2XML.LIB.
The parameters are described in the sections below.

14.2.1.3 D.XMLPROG

D.XMLPROG generates an XML description of the data structures used in a COBOL program
on the basis of the corresponding program source.

Start D.XMLPROG with the command CALL-PROCEDURE as follows:

CALL-PROC
FROM-FILE=*LIBRARY-ELEMENT(LIBRARY=COB2XML.LIB,ELEM=D.XMLPROG)
,PROCEDURE-PARAMETERS=(
{SRC=FILE,TSTNAM=<cobol_source>|SRC=LIB,LIB=<cobol_lib>,
TSTNAM=<cobol_source>},
[XMLOUT=<ouptput_file>,]
[COBRUN=<compiler_options>])

Description of the parameters:

SRC=FILE,TSTNAM=<cobol_source>

The COBOL program from whose data structures an XML description is to be
generated can be found in the file <cobol_source>.

SRC=LIB,LIB=<cobol_lib>, TSTNAM=<cobol_source>

The COBOL program from whose data structures an XML description is to be
generated can be found in the element <cobol_source> in the LMS library <cobol_lib>.

Cobol2Java Converting COBOL data types

BeanConnect V3.0B 607

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
30

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
4

XMLOUT=<output_file>

Name of the file to which the data structures are written in XML format. The name must
have the suffix .xml. If this parameter is not specified and the link name XMLLINK is not
defined then the XML description is written to the file XMLFIL.COBOL.<progID>.XML
where <progID> stands for the program name defined in PROGRAM-ID.

COBRUN=<compiler_options>

Specification of compiler options in the form of a string of maximum 121 characters. You
separate the individual options with commas. You can specify, for example:

COMMENT=YES/NO

Comment lines are not output if the option COMMENT=NO is set.

DTD=YES/NO

The reference to the Document Type Definition is not output if the option DTD=NO is set.

14.2.1.4 D.XMLCOPY

D.XMLCOPY generates an XML description of the data structures defined in a COBOL COPY
element on the basis of the corresponding COPY element.

You start D.XMLCOPY with the command CALL-PROCEDURE as follows:

CALL-PROC
FROM-FILE=*LIBRARY-ELEMENT(LIBRARY=COB2XML.LIB,ELEM=D.XMLCOPY)
,PROCEDURE-PARAMETERS=(
LIB=<cobol_lib>,
ELEM=<cobol_copy>,
[XMLOUT=<output_file>,]
[COBRUN=<compiler_options>])

Description of the parameters:

LIB=<cobol_lib>, ELEM=<cobol_copy>

The COBOL COPY element from whose data structures an XML description is to be
generated is available as the element <cobol_copy> in the LMS library <cobol_lib>.

XMLOUT=<output_file>

Name of the file to which the data structures are written in XML format. The name must
have the suffix .xml. If this parameter is not specified and the link name XMLLINK is not
defined then the XML description is written to the file XMLFIL.COBOL.<cobol_copy>.XML
where <cobol_copy> stands for the name of the COPY element.

COBRUN=<compiler_options>

Specification of compiler options in the form of a string of maximum 121 characters. You
separate the individual options with commas. You can specify, for example:

Converting COBOL data types Cobol2Java

608 BeanConnect V3.0B

COMMENT=YES/NO

Comment lines are not output if the option COMMENT=NO is set.

DTD=YES/NO

The reference to the Document Type Definition is not output if the option DTD=NO is set.

14.2.1.5 Example call

/PROC A
/REMARK is necessary for converting UTM programs
/ADD-FILE-LINK COBLIB1,$TSOS.SYSLIB.UTM.062.COB
/ADD-FILE-LINK COBLIB2,COBOLCOPY.LIB
/CALL-PROC F-F=*LIB(LIB=COB2XML.LIB,ELEM=D.XMLPROG),P-P=(SRC=FILE -
/ ,TSTNAM=COBTAC.CBL -
/ ,XMLOUT=COBTAC.XML),LOG=N
/ENDP

14.2.1.6 Generated files

The output from D.XMLPROG and D.XMLCOPY can be found in the file which is either

● assigned previously to the link name XMLLINK using the ADD-FILE-LINK command, or

● specified in the XMLOUT parameter.

If you do not make use of any of these possibilities, the output from D.XMLPROG and
D.XMLCOPY is written to the file XMLFIL.COBOL.<progID>.XML. Here <progID> stands for the
program name defined in PROGRAM-ID (D.XMLPROG) or the name of the COPY element
(D.XMLCOPY).

You have to transfer the generated files containing the XML description in text format to
Unix, Linux or Windows systems for further processing with Cobol2Java.

Cobol2Java Converting COBOL data types

BeanConnect V3.0B 609

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
30

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
4

14.2.2 Generating Java classes on Unix, Linux or Windows systems

You can generate Java classes with or without Ant.

14.2.2.1 Generating Java classes with Ant

Java classes are generated by means of an Ant script. The parameters are given with the
file cobol2java.properties as follows:
xml.file=<xml_file>
cobol.struct=<list_of_structure_names>
package.name=<package_name>
doc.dir=<doc_directory>
jar.dest=<jarfile_name>
code.convention={java|cobol}
undef.pic9=<undef_value>

Description of the parameters:

xml.file=<xml_file>

The parameter xml.file specifies the name of the file containing the XML description
of the COBOL structure that is to be processed.

v Make sure that the DTD newformat.dtd is located in the same directory as the
XML file. You can find a copy of newformat.dtd in the directories lib and
samples.

cobol.struct=<list_of_structure_names>

In the parameter cobol.struct, specify a space-separated list of COBOL structures.
Cobol2Java searches all the elements (records as well as fields) in the input file for the
names contained in <list_of_structure_names>. For each found element a Java class
is generated. At least one structure name must be specified.

Certain specifications for the parameter cobol.struct are of little use. You should
therefore observe the following restrictions:

– Do not specify two structures that are nested one within the other in a single call.
Reason: The class of the lower-level structure is generated twice (as root level and
as sub-level class). The class that is generated later overwrites the first and errors
occur during the compilation and use of the classes.

– Do not enter any recurrent structure or field names (occurs, Array). Reason: It is
only possible to access the first element of the array via the generated class.
Instead, you should specify higher-level structures.

– The specification of recurrent structure or field names is not permitted. A message
is output and no Java classes are generated.

Converting COBOL data types Cobol2Java

610 BeanConnect V3.0B

package.name=<package_name>

The parameter package.name contains the name of the package under which the
generated Java classes are to be grouped.

doc.dir=<doc_directory>

doc.dir contains the name of the directory for JavaDoc.

jar.dest=<jarfile_name>

jar.dest contains the name of the JAR file that is to be generated.

code.convention={java|cobol}

code.convention specifies the naming convention that is to be used by the Java
classes. If cobol is specified then all the names are taken over from the COBOL
program wherever possible. Otherwise, all the names are adapted to the Java naming
conventions for the naming of classes, variables, methods and objects (see also section
“Naming conventions” on page 615).

undef.pic9=<undef-value>

undef.pic9 specifies the specific value in Pic9 fields that is to indicate "undefined".
Here, <undef-value> can have the following form:

If undef.pic9 is not specified then '0' is the predefined value for undefined Pic9 fields.

Caution! If you specify the byte value with encoding active then you may need to take
account of code conversion. See also section “Reading a data field” on page 618.

i If you compile generated Java classes, it is important that the class and file names
correspond in terms of the use of case-sensitive notation. Since the Windows file
system does not make any distinction between uppercase/lowercase, the Java
compiler may report the following error when compiling, for example, a class Benid
within a file BENID.java:
"[javac] BENID.java:19:class Benid is public, should be declared in a
file named Benid.java"

This error occurs if you create the same COBOL structure with
code.convention=cobol and then again with code.convention=java. If you want to
modify code.convention, you must first delete the sources that were created
beforehand in the src directory.

0x<nn> where <nn> is the hexadecimal byte value, or

"'<char>'" where <char> is a printing character with a 1-byte representation.
To obtain the value '<char>' in the Java class, the parameter must also be
specified in quotes ("), e.g. undef.pic9="''"

Cobol2Java Converting COBOL data types

BeanConnect V3.0B 611

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
30

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
4

To start the program you call the script runAnt.sh (Unix/Linux system) or runAnt.bat
(Windows). This starts generation using the Ant program supplied with Cobol2Java. This
generation process results in the Java sources being created in the src directory, compiled,
and stored in the JAR file specified in jar.dest. If you do not want to use the Ant supplied,
call Ant in the directory containing the build.xml file.

i Some of the tools used here require a very large amount of RAM. You should
therefore use the options-Xss (stack size) and -Xmx (heap size) to make the
adaptations necessary for the large data structures. In Unix/Linux systems, it may
also be necessary to adapt the stack size limit using the ulimit command.

v If runAnt is to run correctly, it must be possible to call the Java programs javac and
javadoc; i.e. the Java SDK program directory must be present in the environment
variable PATH.

It is necessary to use the separator "/" or "\\" when specifying the path names for
xml.file, doc.dir and jar.dest since Ant interprets "\" and the following character
as a control character.

Example 27 Example for a cobol2java.properties file

Properties to set for Cobol2Java Program
used by Ant

Name of Source XML generated by the BS2000 COBOL Compiler
Make sure the DTD File is available!!
xml.file=cobkb.xml

Name of the COBOL Records
Space separated list:
cobol.struct=RECORD1 RECORD3 will create Java classes for
RECORD1 and RECORD3
cobol.struct=MPUT-MSG

Name of the package to be generated
package.name=de.siemens.cob2java.cobkb
#

Directory for JavaDoc
doc.dir=doc/cobkb

Jar file name
jar.dest=cobkb.jar

Converting COBOL data types Cobol2Java

612 BeanConnect V3.0B

Determines what code convention the generated code will use
#
code.convention=java
code.convention=cobol

code.convention=java

defines a non numeric value which marks a PIC9 field as undefined

undef.pic9=0x20

14.2.2.2 Generating Java classes without Ant

The generation procedure described above is usable limited for batch processing and bulk
data operations.

If you are in the Cobol2Java home directory you can call the following command in order to
perform a large number of generations on the basis of your own specifications.

java -Xss8m -Xmx512m -classpath lib/BeanConnectCob2java.jar
de.siemens.cob2java.Cob2Java [-undef.pic9=<default-value>] <xml_file>
<package_name>
<code_convention>
<cobol_struct1> [<cobol_struct2> ...]

Description of the parameters:

undef.pic9=<default-value>

undef.pic9 specifies the specific value for Pic9 fields that is to represent "undefined".
For details, see the description of undef.pic9 in section “Generating Java classes with
Ant” on page 609.

<xml_file>

Name of the XML file containing the description of the COBOL data structures.

<package_name>

Package name for the generated classes.

<code_convention>

Convention used by the generated classes: cobol or java.

When using this parameter, please note the comments concerning the
code.convention parameter on page 610.

<cobol_struct>[1...<n>]

Space-separated list of COBOL structures that are to be converted. At least one name
must be specified.

Cobol2Java Converting COBOL data types

BeanConnect V3.0B 613

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
30

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
4

i Since some of the tools used here require a large amount of memory, it is generally
necessary to use the options
 -Xss (stack size) and -Xmx (heap size) and make the required adaptations for
large data structures. In Unix/Linux systems, it may also be necessary to adapt the
stack size limit using the ulimit command.

Example 28 Generating Java classes

java -Xss8m -Xmx512m -classpath lib/BeanConnectCob2java.jar
de.siemens.cob2java.Cob2Java cobkb.xml de.cobol java MPUT-MSG BENID

This program simply generates the Java classes in the subdirectory src. It does not perform
any compilation or create any JAR files or documentation.

An example can be found in the script xml2java.sh on Unix/Linux systems or xml2java.cmd
on Windows systems.

v Make sure that the DTD newformat.dtd is located in the same directory as the XML
file. You can find a copy of newformat.dtd in the directories lib and samples.

Programming reference Cobol2Java

614 BeanConnect V3.0B

14.3 Programming reference

This section contains a presentation of the framework that is used to convert COBOL data
types to Java and vice versa.

14.3.1 Type assignment

The table below presents an overview of the Java classes present in the framework
together with a brief description of the COBOL types for which the classes are used.

The directory api-doc contains the documentation for these classes.

The table below indicates the support provided for the various COBOL types and clauses:

Java class Description

DataType Basic class for all conversion classes

CobolRecord Basic class for COBOL structures

PicX For alphabetical/alphanumerical COBOL types: PIC X(n)

PicN For national COBOL types: PIC N(n)

Pic9 For positive, integer numerical COBOL types: PIC 9

Pic9COMP For integer numerical COBOL types: PIC S9(n) and
PIC 9(n) USAGE [COMP, BINARY, COMP-5]

PicU For COBOL types for which Cobol2Java offers no special data conversion
classes. The data is made available in the Java program without
conversion as a byte array.

COBOL clause Java support

Data structures with level numbers CobolRecord

Pic X (n) (alphanumerical) PicX

Combinations of A, X, 9
(not only 9)

PicX

Pic 9 (n) (numerical) Pic9

Pic N (n) (national) PicN

BINARY, COMP, COMP-5 Pic9Comp for PIC9(1)to PIC9(18)
Not supported:
PIC 9(19) to PIC 9(31) is mapped to PicU

COMP-1, COMP-2, COMP-3 Not supported.

Alphanumerical, ready for printing
Alphabetical, ready for printing

Mapped to PicX.
The preparation mask is ignored.

Cobol2Java Programming reference

BeanConnect V3.0B 615

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
30

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
4

14.3.2 Naming conventions

This section describes how the names in the Java classes are constructed for the different
code conventions.

When cobol is used as code convention, the following mapping rules apply:

● The COBOL name is retained as far as possible.

● Hyphens are replaced by underscores.

● All arrays are indexed with 0.

If java is used as code convention then the following mapping rules apply:

● All uppercase are converted to lowercase.

● Letters following a hyphen are written in uppercase. All hyphens are removed.

● The first letter of a class name is written in uppercase.

● The names of get methods are formed from get plus the attribute name and the first
letter of the attribute name is written in uppercase.

● The names of set methods are formed from set plus the attribute name and the first
letter of the attribute name is written in uppercase.

● All arrays are indexed with 0.

Numerical, ready for printing Not supported. Mapped to PicU.

BLANK WHEN ZERO Not supported. Mapped to PicU.

INDEX Not supported.

POINTER; PROCEDURE POINTER,
OBJECT REFERENCE

Not supported.

JUSTIFIED RIGHT PicX, ignored.

SYNCHRONIZED Supported.

Level number 77 Supported.

OCCURS Limited support.
– Dynamic arrays (OCCURS DEPENDING ON) are created

with a fixed length.
– OCCURS INDEXED BY, OCCURS KEY IS is not

supported.

REDEFINES Supported.

RENAMES Supported.

COBOL clause Java support

Programming reference Cobol2Java

616 BeanConnect V3.0B

Example 29 Name assignment for the different code conventions

Depending on the code convention, the following names are formed for the COBOL field
named EMPLOYEE-RECORD:

If the data structure contains substructures with the name FILLER or if the program contains
multiple substructures with the same name then these structures are numbered in order in
accordance with their sequence in the xml input file. When the Java classes are generated,
this number n is appended to the generated names in the form _R_n.

If the data structure contains fields with the name FILLER then these fields are numbered
in order in accordance with their sequence in the xml input file. When the Java classes are
generated, this number n is appended to the generated names in the form _n.

Code convention Java attribute name Java get/set method name

cobol EMPLOYEE_RECORD getEMPLOYEE_RECORD ()
setEMPLOYEE_RECORD ()

java employeeRecord getEmployeeRecord()
setEmployeeRecord()

Cobol2Java Programming reference

BeanConnect V3.0B 617

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
30

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
4

14.3.3 Accessing COBOL fields

The hierarchical COBOL data structure is mapped to a hierarchical class structure.

Consequently, a field <XXX> can be addressed as follows:

The construction can be used to achieve high-performance access to deeply nested fields.

Instead of

in.getArray2(1).getLineTab().getLinex(3).getKeyx().setData1
(1,"Value1");
in.getArray2(1).getLineTab().getLinex(3).getKeyx().setData2
(1,"Value2");

the fields can be accessed level by level:
Keyx keyx;
keyx = in.getArray2(1).getLineTab().getLinex(3).getKeyx();
keyx.setData1(1,"Value1");
keyx.setData2(1,"Value2");

14.3.3.1 Writing a data field

To write a data field <XXX> it is necessary to call the method setXXX(). An object of the
COBOL data field type is passed as the parameter.

EmployeeRecord out = new EmployeeRecord();
out.setLastName(new PicX("LastName"));

For each COBOL data type, there are additional methods with parameters of the type
String, or int and long:

Read access: level01.getLevel02().getLevel03().get<XXX>()

Write access: level01.getLevel02().getLevel03().set<XXX>()

for PicX, PicN: setXXX(String): out.setLastName("LastName");

for Pic9: setXXX(int), setXXX(long)

Programming reference Cobol2Java

618 BeanConnect V3.0B

14.3.3.2 Reading a data field

To read a data field <XXX> it is necessary to call the method get<XXX>(). The return value
supplied by this method is an object of the same type as the COBOL data field. Each object
possesses methods adapted to the type that are used to extract the data:

When COBOL is used, it is possible that a numerical data field (PIC 9(n)) is initialized with
a non-numerical value, e.g. blanks or 'X00'. To avoid the output of any
NumberFormatException when accessing this type of "undefined" field, the following
methods are available to check the content:

The default value for "undefined" can be specified when the Java class is created.
(see section “Generating Java classes on Unix, Linux or Windows systems” on page 609).

If a data field is only initialized with the default value for "undefined" (isUndefined() returns
true) and if this default value is not numerical, then the value 0 is returned when the field
is read.

14.3.3.3 Replacement data type PicU

The replacement data type PicU is used for non-supported data fields. This permits
transparent access to the data. The application programmer can then process this data with
his/her own resources. The unchanged data of the partner application is provided as byte
array.

This type possesses the following methods:

14.3.3.4 Setting and reading the data for the entire structure (for sending and receiving)

The data for an entire record or data group is read using the getBytes() method and written
using the setBytes() method.

With the communication methods of BeanConnect for sending and receiving data
(sndRecord(), rcvRecord() and call() methods with the ByteContainer parameter) it is
also possible to specify the Java objects directly because all classes representing COBOL
structures generated by Cobol2Java implement the ByteContainer interface.

for PicX: toString()

for Pic9: longValue()

for Pic9: isUndefined(), isUndefined(byte)

Read access: getBytes()

Write access: setBytes()

Cobol2Java Programming reference

BeanConnect V3.0B 619

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
30

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
4

Example 30 Sending and receiving data

// Java object which was created by Cobol2Java
EmployeeRecord emplRecord = new EmployeeRecord();
// Set encoding of the connection
emplRecord.setEncoding(connection.getEncoding());
emplRecord.setEncodingActive(connection.isEncodingActive());
// Connection object: sndRecord/rcvRecord method
connection.sndRecord(emplRecord);
connection.rcvRecord(emplRecord);

With the sndRecord() call the data from emplRecord is sent on the connection and with the
rcvRecord() call the data from the connection is stored in emplRecord.

Detailed information on encoding is provided in the chapter “Encoding and national
language support” on page 479.

i To modify a data field XXX, it is not sufficient simply to modify the object obtained via
the get<XXX> method. Instead, the field has to be modified using one of the
set<XXX> methods.

Example 31 Getting and storing data

// Data is received and stored in the EmployeeRecord
connection.rcvRecord(in); (1)
PicX lastName;
String newName = "MyName";
lastName = in.getLastName(); (2)
lastName.setString(newName); (3)
in.setLastName(lastName); (4)
// or in.setLastName(newName); (5)
// The data stored in EmployeeRecord is sent connection.sndRecord(in);

where:

(1) Java class which was created by Cobol2Java from a COBOL data structure

(2) Return data field as PicX object

(3) Modify PicX object

(4) Modify data field via set method with PicX parameter

(5) Modify data field via set method with String parameter

Programming reference Cobol2Java

620 BeanConnect V3.0B

14.3.4 Java/EBCDIC conversion

For conversion, proceed as follows:

1. Create the Cobol2Java objects with an empty constructor.

cob2javaclass cob2java = new cob2javaclass();

2. Then set the encoding of the connection:

cob2java.setEncoding(connection.getEncoding());
cob2java.setEncodingActive(connection.isEncodingActive());

3. Specify the Cobol2Java objects directly in the communication methods:

sndRecord(ByteContainer), rcvRecord(ByteContainer),
call(ByteContainer, ByteContainer)

Detailed information on encoding is provided in the chapter “Encoding and national
language support” on page 479.

14.3.5 Formatted mode support

Cobol2Java provides restricted formatted mode support. The Kcat class is used to simplify
the use of +formats. This class contains constants for KDCS ATTRIBUTE for formatted mode
support.

Cobol2Java Example

BeanConnect V3.0B 621

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
30

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
4

14.4 Example

This section provides an example for the conversion of the data types in a COBOL program
into Java classes. It contains information on how to convert a simple COBOL program in a
standard case. Below you will find information on the:

● COBOL example program

● Creating the XML description

● Generating the Java classes

● Use of the generated classes

14.4.1 COBOL example program

The following program employee.cbl is used as an example.

IDENTIFICATION DIVISION.
PROGRAM-ID. EMPLOYEE.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 EMPLOYEE-RECORD
05 EMPLOYEE-NUMBER PIC X(08).
05 FIRST-NAME PIC X(20).
05 LAST-NAME PIC X(20).
05 PAY-METHOD PIC X.
05 SALARY-INFO.

10 ANNUAL-SALARY PIC 9(5).
LINKAGE SECTION.

COPY KCKBC.
...
COPY KCPAC.

PROCEDURE DIVISION
...

14.4.2 Creating the XML description

The XML description employee.xml can be generated in the BS2000 system with
Cobol2XML on the basis of the COBOL program employee.cbl. The file employee.xml must
then be transferred to the Unix, Linux or Windows system.

Detailed information on Cobol2XML is provided in Creating an XML description for a
COBOL program in a BS2000 system.

Example Cobol2Java

622 BeanConnect V3.0B

Transferring the LMS library COB2XML.LIB to a BS2000 system

Send the file COB2XML.LIB to the BS2000 system (see section “Transferring the LMS library
to a BS2000 system” on page 605).

Converting the data structures from the COBOL program to XML

1. Log on to the BS2000 system under the user ID where the files COB2XML.LIB and
EMPLOYEE.CBL are located.

2. Assign the link name COBLIB<n> (<n>= 1, .., 9) to the COPY libraries required for
converting the source:

/ADD-FILE-LINK COBLIB1, $TSOS.SYSLIB.UTM.062.COB

3. Start the D.XMLPROG procedures from the COB2XML.LIB library:

CALL-PROC
FROM-FILE=*LIBRARY-ELEMENT(LIBRARY=COB2XML.LIB,ELEM
 =D.XMLPROG)
,PROCEDURE-PARAMETERS=(
SRC=FILE,TSTNAM=employee.cbl,
XMLOUT=employee.xml)

The D.XMLPROG procedure generates the XML description of the data structures used in
the COBOL program in the file employee.cbl. The XML description is stored in the file
employee.xml.

Transferring the XML descriptions to the Unix, Linux or Windows system

Transfer the XML description employee.xml in text format to the Unix, Linux or Windows
system, for example to the samples subdirectory of Cobol2Java, for further processing.

14.4.3 Generating the Java classes

The EmployeeRecord class is generated by Cobol2Java in Unix, Linux or Windows systems
on the basis of the XML file employee.xml. The classes are generated by Ant, compiled,
and packed in the JAR file employee.jar, which can then be used as a basis for a
BeanConnect client. You call Ant with the script runAnt.

Detailed information on generation is provided in section “Generating Java classes on Unix,
Linux or Windows systems” on page 609.

Cobol2Java Example

BeanConnect V3.0B 623

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
30

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
4

Defining the configuration

Edit the parameter file cobol2java.properties for Ant as follows:

xml.file=samples/employee.xml
cobol.struct=EMPLOYEE-RECORD
package.name=de.siemens.cob2java.test
doc.dir=doc
jar.dest=employee.jar
code.convention=java

Setting the PATH variable

To enable runAnt to run, it must be possible to call the Java programs javac and javadoc.

Extend your PATH environment variable by adding the Java SDK program directory.

Starting generation

1. Switch to the Cobol2Java home directory.

2. Call runAnt.sh (Unix/Linux systems) or runAnt.bat (Windows systems).

During generation, the Java sources are created in the src directory, compiled, and stored
in the JAR file employee.jar. The JavaDoc of the created classes can be found in the doc
directory.

14.4.4 Use of the generated classes

It is possible to create applications on the basis of the generated classes. The following
class provides an example of a BeanConnect client on the basis of the class
EmployeeRecord.

package net.fsc.jca.beanconnect.qa;

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

import de.siemens.cob2java.cobtypes.*; // Runtime of Cobol2Java
import de.siemens.cob2java.test.EmployeeRecord

public class EmployeeServiceBean implements SessionBean
{
 private net.fsc.jca.communication.EISConnectionFactory cf;
 public void ejbCreate() throws javax.ejb.CreateException
 {
 try {
 javax.naming.Context ic = new
 javax.naming.InitialContext();

Example Cobol2Java

624 BeanConnect V3.0B

 cf =(net.fsc.jca.communication.EISConnectionFactory)
 ic.lookup
 ("java:comp/env/eis/myEIS");

 } catch (javax.naming.NamingException ex) {
 throw new javax.ejb.CreateException
 ("NamingException:"+ex);
 }
 }

 public void ejbActivate()
 {
 }

 public void ejbPassivate()
 {
 }

 public void ejbRemove()
 {
 }

 public void setSessionContext(SessionContext ctx)
 {
 }

 public String addSalary(String employeeNr, int
 salaryIncrease)
 {
 String retValue = "";
 net.fsc.jca.communication.EISConnection con = null;
 try {
 con = cf.getConnection();
 con.setServiceName("EMPLOYEE");

 // Create EmployeeRecord and accept the encoding setting
 // of the connection
 EmployeeRecord employee = new EmployeeRecord();
 try
 { employee.setEncoding(con.getEncoding()); }
 catch (net.fsc.beanta.encoding.EncoderException encEx) {
 // todo Error handling
 } // catch EncoderException
 employee.setEncodingActive(con.isEncodingActive());

 // Fetch the required EmployeeData
 employee.setEmployeeNumber(employeeNr);
 con.sndRecord(employee);
 con.rcvRecord(employee);

Cobol2Java Example

BeanConnect V3.0B 625

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

n
d

10
:3

4.
30

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

n
C

o
nn

ec
t_

V
30

B
\1

5
02

50
0

_M
a

nu
a

l\e
n\

be
an

co
n

n_
e.

k1
4

 // Increase the salary and send modification
 int oldSalary =employee.getSalaryInfo().
 getAnnualSalary().intValue();
 employee.getSalaryInfo().setAnnualSalary(oldSalary+
 salaryIncrease);
 con.sndRecord(employee);
 con.rcvRecord(employee);

 retValue="Salary for "+employee.getLastName()+"
 increased from "+oldSalary +" to "+
 employee.getSalaryInfo().getAnnualSalary();

 con.close();

 } // try
 catch (net.fsc.jca.communication.EISConnectionException
 eisEx) {
 if (con != null) {
 try { con.close();
 } catch(Throwable thr) { }
 }
 throw new javax.ejb.EJBException
 ("EISConnectionException:"+eisEx);
 } // catch EISConnectionException
 catch (de.siemens.cob2java.cobtypes.
 Cob2JavaException cobEx) {
 if (con != null) {
 try { con.close();
 } catch(Throwable thr) { }
 }
 throw new javax.ejb.EJBException("Cob2JavaException:
 "+cobEx);
 } // catch Cob2JavaException
 return retValue;
 } // addSalary
}

Error messages and error handling Cobol2Java

626 BeanConnect V3.0B

14.5 Error messages and error handling

The following table provides an overview of the error messages that may be output by the
tool Cobol2Java:

If a data element that is not supported by Cobol2Java is encountered then a generic data
element of type PicU is generated. Developers can access the information relating to this
element by means of getBytes/setBytes.

Error handling in the Cobol2Java classes is based on COBOL and is extremely tolerant.
Input data longer than the field it is to be stored in is truncated to the destination field length.
Invalid inputs, for example the input of an invalid number, result in the generation of a
NumberFormatException.

No Errors Error handling

1 No compatible XSLT Processor
found.

Check whether all the required JAR files are
present in the Cobol2Java lib directory.

2 TransformerFactory-
ConfigurationError

See 1.

3 Could not create file <name> Please make sure that you possess the necessary
data access authorizations for the data medium.

4 No Record/Field <name> found in
specified XML document

The name of the data structure is incorrect. Please
check.

5 WARNING! Multiple occurrence
of <name>

The document contains multiple structures with the
specified name. In this case, there is no generation.

BeanConnect V3.0B 627

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

. A
ug

us
t 2

01
5

 S
ta

n
d

10
:3

5.
09

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\B
e

an
C

o
nn

e
ct

_
V

3
0B

\1
5

02
5

00
_M

an
ua

l\e
n\

be
a

nc
on

n_
e

.m
ix

Glossary

A term in italic font means that it is explained somewhere else in the glossary.

access point
See service access point.

ACID properties
Acronym for the fundamental properties of a transaction: atomicity, consistency,
isolation and durability.

advanced program-to-program communication (APPC)
Another name for the LU6.2 protocol and the underlying architecture.

APPC
See advanced program-to-program communication (APPC).

appender
Log4j message destination. The logging messages transferred to a logger are
output by the appender(s) assigned to the logger.

application entity
An application entity represents all the aspects of a real application which are
relevant to communications. An application entity is identified by a globally
unique name ("globally" is used here in its literal sense, i.e. worldwide), the
application process title (APT). Every application entity represents precisely one
application process. One application process can encompass several application
entities.

application entity qualifier (AEQ)
According to the OSI standard, the application entity qualifier identifies a service
access point within an application.

application entity title
An application entity title is a globally unique name for an application entity
("globally" is used here in its literal sense, i.e. worldwide). It is made up of the
application process title (APT) of the relevant application process and the applica-
tion entity qualifier (AEQ).

application process Glossary

628 BeanConnect V3.0B

application process
The application process represents an application in the OSI reference model. It
is uniquely identified globally by the application process title (APT).

application process title (APT)
According to the OSI standard, the application process title is used for the
unique identification of applications on a global (i.e. worldwide) basis.

association (OSI)
An association is a communication relationship between two application entitys.

application server
An application server (Java EE Server) is the basic component of an EJB archi-
tecture. The application server offers the services of enterprise applications to
the EJB clients.

application server cluster
Cluster consisting of multiple application servers. In such a cluster, n instances
of the application server can be assigned to m proxy instances.

asynchronous job
Job carried out by the job receiver at a later time. Processing is carried out inde-
pendently of the job submitter.

asynchronous service
A service in openUTM which processes a background job.

authentication
See system access control.

authorization
See data access control.

Basic Communication Access Method (BCAM)
BCAM forms the basis for the data communication system for BS2000 hosts or
in the BeanConnect proxy container.

basic conversation
A basic conversation is a type of APPC conversation in which the CICS applica-
tion must add control bytes to the application data for transmission to the part-
ner.

BCAM
see Basic Communication Access Method (BCAM).

Glossary BeanConnect Management Console

BeanConnect V3.0B 629

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

. A
ug

us
t 2

01
5

 S
ta

n
d

10
:3

5.
09

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\B
e

an
C

o
nn

e
ct

_
V

3
0B

\1
5

02
5

00
_M

an
ua

l\e
n\

be
a

nc
on

n_
e

.m
ix

BeanConnect Management Console
The BeanConnect Management Console is the tool for administering and con-
figuring the BeanConnect components. It provides a graphical user interface
and a command line interface.

BeanConnect proxy
A BeanConnect proxy is the BeanConnect component which communicates
with the resource adapter within the application server as well as with the EIS.
A BeanConnect proxy consists of a proxy container based on the transaction
monitor openUTM.
During communication with an EIS partner of type CICS, a BeanConnect proxy
consists additionally of an openUTM-LU62 Gateway and the communication ser-
vice.

BeanConnect proxy container
The BeanConnect proxy container is the core of the BeanConnect proxy. The
proxy container comprises the definitions of the objects used for outbound com-
munication and inbound communication and the configuration of the communica-
tion partner (resource adapter and EIS partners).

BeanConnect resource adapter
The BeanConnect resource adapter is the BeanConnect component that is run-
ning on the application server and that implements the JCA-compliant inter-
faces. In the case of outbound communication via the OSI-TP protocol and in the
case of outbound communication, the BeanConnect proxy is additionally needed for
the connection between the EIS and the resource adapter.

CCI
See common client interface (CCI).

CICS
See Customer Information Control System (CICS).

cluster
A cluster is a number of networked computers that are seen as a single com-
puter from the outside for many purposes. As a rule, the individual elements in
a cluster are connected to each other over a fast network. The aim of establish-
ing a cluster is to increase CPU capacity or availability.
See also application server cluster and proxy cluster.

CMX
See Communications Manager for Unix Systems (CMX).

common client interface (CCI) Glossary

630 BeanConnect V3.0B

common client interface (CCI)
CCI is a component of the Java EE connector architecture (JCA) and provides an
EIS independent client API for accessing EISs.

communication service
Service required by a BeanConnect proxy for communication between the proxy
container and a CICS partner. The communication service works directly with
the openUTM-LU62 Gateway and is provided by the IBM Communications Server
or SNAP-IX independently of the platform. SNAP-IX or the IBM Communications
Server represent software prerequisites for BeanConnect if communication is
to be performed with CICS partners. However, they are not supplied with
BeanConnect.

Communications Manager for Unix Systems (CMX)
CMX is the basic product for communication software running on operating sys-
tems like Solaris. A license is required for its use.

component
Reusable software unit with standardized interfaces that can usually be
manipulated in a development environment.

configuration property
Configuration properties are used to configure the resource adapter. A configura-
tion property is set in a configuration file by means of XML tags.

connection factory
A connection factory is used by an EJB of an application server to open a con-
nection to an external data source (EIS). The connection factory is provided
when the application server is started in the JNDI name directory.

connection pooling
Connection pooling manages connections that are expensive to create and
destroy. Connection pooling is used to improve scalability and performance in
an application environment.

connector architecture
See Java EE connector architecture (JCA).

container.properties
Configuration file of a BeanConnect proxy. Many of the changes you make using
the BeanConnect Management Console are saved in the container.properties
file.

Glossary contention winner / contention loser

BeanConnect V3.0B 631

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

. A
ug

us
t 2

01
5

 S
ta

n
d

10
:3

5.
09

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\B
e

an
C

o
nn

e
ct

_
V

3
0B

\1
5

02
5

00
_M

an
ua

l\e
n\

be
a

nc
on

n_
e

.m
ix

contention winner / contention loser
Each connection between two partners is managed by one of the partners. This
partner is called the contention winner, while the other partner is referred to as
the contention loser. Jobs can be initiated by both partners. If both partners sub-
mit a job at the same time, priority is given to the contention winner.

control point (CP)
The control point is responsible for managing the end node and its resources in
an APPN (advanced peer-to-peer-networking) network.

conversation
A conversation is a logical connection between two transaction programs in an
LU6.2 session. A conversation begins with Allocate and ends with Deallocate. A
conversation allocates a session for its entire life and locks out all other users.

CP
See control point (CP).

Customer Information Control System (CICS)
CICS is the IBM transaction monitor. CICS is available for various platforms
such as CICS/ESA for the z/OS operating system. An OLTP application based
on CICS is called a CICS application.

data access control
The application server checks whether a communication partner/client is autho-
rized to access a particular business method. The access rights are set as part
of the configuration.

data link control (DLC)
Data link control is the service provided by the data link layer. The data link layer
corresponds to layer 2 of the Open Systems Interconnection model for network
communication (LAN, Enterprise Extender for example).

deployment descriptor
A deployment descriptor is a file in XML format that is used for the deployment
of EJBs or resource adapters. A deployment descriptor provides configuration
information that is not contained in the EJB code or the resource adapter code.

dialog service
Service which processes a job interactively (synchronously) in conjunction with
the job submitter. A dialog service processes dialog messages received from the
job submitter and generates dialog messages to be sent to the job submitter. A
dialog service comprises at least one transaction. In general for openUTM, a dia-
log service encompasses at least one dialog step.

dialog step Glossary

632 BeanConnect V3.0B

dialog step
A dialog step starts when a dialog message is received by the openUTM applica-
tion. It ends when the openUTM application responds.

distributed program link (DPL)
DPL is a program interface that enables a CICS program to call another CICS
program which may reside on a remote CICS system. DPL is like calling a sub-
program.

distributed transaction
See global transaction.

distributed transaction processing (DTP)
with openUTM partners:
Transaction-oriented distributed processing with global transactions. Distributed
processing means that jobs are processed by several different applications.
with CICS partners:
Distributed transaction processing is a programming interface that enables a
CICS transaction to invoke another CICS transaction (possibly in another CICS
system). DTP supports the handling of global transactions. It is similar to the cli-
ent-sever programming model.

DLC
See data link control (DLC).

DPL
See distributed program link (DPL).

DTP
See distributed transaction processing (DTP).

EIS
See Enterprise Information System (EIS).

EJB
See Enterprise JavaBeans (EJB).

EJB container
Runtime environment for EJB components. It is embedded in an application
server.

Glossary Enterprise Information System (EIS)

BeanConnect V3.0B 633

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

. A
ug

us
t 2

01
5

 S
ta

n
d

10
:3

5.
09

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\B
e

an
C

o
nn

e
ct

_
V

3
0B

\1
5

02
5

00
_M

an
ua

l\e
n\

be
a

nc
on

n_
e

.m
ix

Enterprise Information System (EIS)
This is a term used to describe external data sources such as ERP systems
(Enterprise Resource Planning systems such as SAP), OLTP applications such
as openUTM applications/CICS applications or database systems such as Oracle
DB, SESAM, UDS.
An EIS that communicates with the application server by means of BeanConnect
is called an EIS partner.

Enterprise JavaBeans (EJB)
Enterprise JavaBeansTM (EJB) is a component technology that allows the
development of cross-platform, multitier, distributed server applications within a
modular architecture.

function unit commit
A function group in the OSI-TP protocol that is required to create distributed trans-
actions. Whether or not the functional unit commit may be used is negotiated
when an association is set up between the two partners. OSI-TP dialogs can
run with or without the functional unit commit in an association in which the func-
tional unit commit was agreed to. An association is a communication relation-
ship between two applications.

function unit handshake
A function group in the OSI-TP protocol that can be used by the communication
partners to coordinate the processing of a dialog at application level. This func-
tion makes it possible to request processing confirmations and send positive or
negative confirmations. No inter-application transaction management is linked to
this function.

global transaction
A global transaction is a transaction extending over more than one application.

IBM Communications Server
IBM Communications Server is an IBM product that connects applications in
SNA networks with applications in TCP/IP networks.
In BeanConnect, the IBM Communications Server is used for communication
between a BeanConnect proxy and a CICS partner application using the LU6.2
protocol on Linux and Windows systems.

IDE
Integrated Development Environment. In the case of BeanConnect, this is the
open source development environment NetBeans IDE.

inbound communication Glossary

634 BeanConnect V3.0B

inbound communication
Inbound communication is communication from an EIS to a Java EE application
server.

inbound message endpoint
An inbound message endpoint is an endpoint of the inbound communication
within the Java EE application server.
For each inbound message endpoint in the application server, an identically
named inbound message endpoint must be configured in the BeanConnect proxy
by means of the BeanConnect Management Console. A BeanConnect proxy may
have several endpoints.

inbound service
Inbound services represent the objects addressed by the EIS partners during
inbound communication. The inbound services known to the Management Con-
sole are defined implicitly by the inbound message endpoints.
Exactly one inbound message endpoint is assigned to each inbound service.

inbound user
An inbound user is a user name and password that can be delivered from the
EIS to the BeanConnect proxy during inbound communication.

J2EE®

Old name for Java EE.

Java EE
Java Platform, Enterprise Edition, abbreviated to Java EE (previously J2EE), is
the specification of a software architecture for the transaction-based execution
of applications programmed in Java.

Java EE connector architecture (JCA)
Java EE connector architecture
Defines a standard architecture for connecting the Java EE platform to hetero-
geneous Enterprise Information Systems.

Java Development Kit (JDK)
Standard development environment from Sun Microsystems for developing
applications written in Java.

Java Naming and Directory Interface (JNDI)
JNDI is a standard Java extension that provides a uniform API for accessing the
directory and naming services of different vendors.

Glossary JCA

BeanConnect V3.0B 635

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

. A
ug

us
t 2

01
5

 S
ta

n
d

10
:3

5.
09

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\B
e

an
C

o
nn

e
ct

_
V

3
0B

\1
5

02
5

00
_M

an
ua

l\e
n\

be
a

nc
on

n_
e

.m
ix

JCA
See Java EE connector architecture (JCA).

JDK
See Java Development Kit (JDK).

JMX
Java Management Extensions (JMX) is a specification developed by the Java
Community Process (JSR-3) for managing and monitoring Java applications.

JMX client
Client that can access a JMX server and make use of its services. In
BeanConnect, the Management Console represents the JMX client implemen-
tation.

JMX server
Instance in a Java application that provides services for monitoring the applica-
tion. In a BeanConnect environment, the application server implements the
JMX server functionality.

JNDI name
Name of a Java object in a programming environment in which the
Java Naming and Directory Interface (JNDI) is used.

job-receiving service
A job-receiving service is a service started by a job-submitting service of another
server application.

job-submitting service
A job-submitting service is a service which requests another service from a dif-
ferent server application (job-receiving service) in order to process a job.

Jython
Jython (formerly JPython) is a pure Java implementation of the Python pro-
gramming language and therefore makes it possible to execute Python pro-
grams on all Java platforms. Python is a universal, usually interpreted, high-
level programming language.

KDCA
Default name of the KDCFILE.

KDCDEF
openUTM generation tool resp. generation tool of the BeanConnect proxy con-
tainer.

KDCFILE Glossary

636 BeanConnect V3.0B

KDCFILE
Configuration file of a BeanConnect proxy container. The file contains data
required by the container application for execution. The file is created with the
generation tool KDCDEF.
with openUTM partners:
Configuration file of an openUTM partner application. The file contains data
required by the openUTM partner application for execution. The file is created
with the openUTM generation tool KDCDEF.

KDCS
Universal openUTM program interface compliant with the national DIN 66 265
standard and which includes some extensions. KDCS (compatible data com-
munications interface) allows dialog services to be created, for instance, and pro-
vides calls for distributed processing. In BeanConnect, KDCS is only used as
an internal interface.

Log4j
BeanConnect uses the software product Log4j to provide trace and logging
functionality. Log4j is a component of the Apache Jakarta project. Log4j pro-
vides interfaces for logging information (runtime information, trace records etc.)
and for configuring the log output.
Log4j is configured by means of the BeanConnect Management Console.

logger
A logger is a Log4j message source. Programs that must write logging informa-
tion retrieve logger objects with predefined names from Log4j and output their
messages via these objects. The destination to which Log4j sends the mes-
sages is transparent to the program.

logical unit (LU)
A logical unit is a logical virtual port which provides a user with access to net-
work services in an SNA network. The logical unit corresponds with the control
point (CP) and a partner logical unit representing, for example, a user program.

LU
See logical unit (LU).

LU6.2 protocol
The LU6.2 protocol is a component of the IBM network. LU6.2 defines methods
for program-to-program communication between applications on different com-
puters.

Glossary Management Console Command Line Interface (MC-CLI)

BeanConnect V3.0B 637

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

. A
ug

us
t 2

01
5

 S
ta

n
d

10
:3

5.
09

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\B
e

an
C

o
nn

e
ct

_
V

3
0B

\1
5

02
5

00
_M

an
ua

l\e
n\

be
a

nc
on

n_
e

.m
ix

Management Console Command Line Interface (MC-CLI)
Management Console command line interface (MC-CLI)
Set of Jython which can be used to start BeanConnect Management Console func-
tions from a Java script.

mapped conversation
A mapped conversation is a type of APPC conversation in which the data passed
to and received from another APPC application is simply user data. The user is
not concerned with the internal data formats demanded by the architecture.

mapped host name
UTM host name of the partner application. On open platforms, the UTM host
name is mapped to the real host name via the UTM host name file. On BS2000
systems this is done using internal BS2000 mechanisms.

MBean
Managed Bean which represents a resource of a JMX server.

MC-CLI
Command Line Interface of the Management Console.

MC-CLI recording
Recording of Management Console actions The recordings are created in the
form of MC-CLI functions.

MC-CmdHandler
The MC-CmdHandler is a BeanConnect component which is required in order
to administer another, remote BeanConnect component using the BeanConnect
Management Console. In this case, the function scope is the same as when
administering a local component.

message
A message is a data packet that consists of a header and a body. The header
contains addressing data, the network routing and possibly data on the mes-
sage format. The body contains the actual message in the form of business data
or system messages.

message-driven bean
A message-driven bean is a component of the Enterprise JavaBeans specifica-
tion from Sun Microsystems.
Message-driven beans are beans for the reception of messages. Message-
driven beans are only called by the EJB container and therefore have no home
or remote interfaces.

message endpoint Glossary

638 BeanConnect V3.0B

message endpoint
message endpoint
A message endpoint is a message-driven bean application deployed in an
application server.

message listener
message listener
Message consumer. The message listener object is sent messages as soon as
they become available. Message-driven beans are message listeners.

message listener interface
message listener interface
Interface that a message listener must implement. Inbound resource adapters
provide specific message listener interfaces which message listeners must
implement if they are to consume messages from this resource adapter.

mode name
The mode name is a symbolic name for a list of session properties and is
required for all interconnection requests over SNA. The mode name is used by
the initiator of a session.

multiple resource adapter mode
Configuration in which a BeanConnect proxy interacts with multiple resource adapt-
ers. These resource adapters may be located on different application servers.

multi-step transaction
A multi-step transaction is a transaction which comprises more than one dialog
step.

naming
Mapping of names to object references. The mapping is usually performed via
a naming service.

network name
A network name is a name identifying an SNA network and is a component of
the logical unit name, see logical unit (LU).

OLTP message-driven bean
OLTP message-driven beans are EJBs that receive and process jobs from
OLTP applications (openUTM/CICS applications). The OLTP application
addresses the OLTP message-driven bean via an inbound message endpoint.

Glossary openUTM

BeanConnect V3.0B 639

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

. A
ug

us
t 2

01
5

 S
ta

n
d

10
:3

5.
09

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\B
e

an
C

o
nn

e
ct

_
V

3
0B

\1
5

02
5

00
_M

an
ua

l\e
n\

be
a

nc
on

n_
e

.m
ix

openUTM
Transaction monitor from Fujitsu Siemens Computers and basic component of
the BeanConnect proxy container.

openUTM application
An OLTP application based on the transaction monitor openUTM of Fujitsu
Technology Solutions.

openUTM-LU62 Gateway
openUTM-LU62 is a BeanConnect proxy component which acts as the intercon-
nection with partner applications supporting the SNA protocol LU6.2, particu-
larly with CICS applications.

openUTM socket protocol (USP)
A protocol used by openUTM partner applications to convert byte streams into
messages that require the TCP/IP transport system.

Oracle WebLogic Server
Java EE 6-compliant application server from Oracle Corporation.

OSI-LPAP partner
OSI-LPAP partners are the addresses of the OSI-TP partners generated in the
BeanConnect proxy container. In the case of distributed processing via the OSI-TP
protocol, an OSI-LPAP partner for each partner application must be configured
in the proxy container. In the case of openUTM partners, the OSI-LPAP partner
in the proxy container represents the partner application and in the case of
CICS partners, it mirrors the openUTM-LU62 Gateway instance. During com-
munication, the partner application is addressed by the name of the assigned
OSI-LPAP partner and not by the application name or address.

OSI reference model
The OSI reference model provides a framework for standardizing communica-
tions in open systems. ISO, the International Organization for Standardization,
described this model in the ISO IS7498 standard. The OSI reference model
divides the necessary functions for system communication into seven logical
layers. These layers have clearly defined interfaces to the neighboring layers.

OSI-TP Glossary

640 BeanConnect V3.0B

OSI-TP
Open System Interconnection Transaction Processing.
A communication protocol defined by ISO for distributed transaction processing.
A partner of an application that communicates with the BeanConnect proxy con-
tainer via the OSI-TP protocol is called an OSI-TP partner.
In the case of openUTM partners this is the EIS partner and in the case of CICS
partners it is the openUTM-LU62 Gateway.
With CICS, this protocol is used for communication between the BeanConnect
proxy container and the openUTM-LU62 Gateway.

OSS
OSI Session Service
OSS forms the basis for OSI-TP data communication in the BeanConnect proxy
container.

outbound communication
Outbound communication is communication from the Java EE application server
to the EIS.

outbound communication endpoint
An outbound communication endpoint is a symbolic name representing a ser-
vice of the partner EIS.

outbound service
An outbound service object describes a service (transaction code) inside the EIS
partner for outbound communication.

PCMX
The basis for communication software which runs on the Solaris, Linux and
Windows operating systems.

physical unit (PU)
Every node in an SNA network contains a physical unit as an addressable SNA
instance. Before two logical units (LUs) can open a communication relationship
in the SNA network, a communication relationship must first be opened
between the corresponding PUs.

proxy cluster
Cluster consisting of more than one BeanConnect proxy and which is adminis-
tered via the BeanConnect Management Console.

proxy container
See BeanConnect proxy container.

Glossary PU

BeanConnect V3.0B 641

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

. A
ug

us
t 2

01
5

 S
ta

n
d

10
:3

5.
09

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\B
e

an
C

o
nn

e
ct

_
V

3
0B

\1
5

02
5

00
_M

an
ua

l\e
n\

be
a

nc
on

n_
e

.m
ix

PU
See physical unit (PU).

resource adapter
Resource adapters (also referred to as connectors) connect the application
server to an EIS, see also BeanConnect resource adapter.

resource manager
Resource managers (RMs) manage data resources. Database systems are
examples of resource managers.

RFC1006
A protocol defined by the IETF (Internet Engineering Task Force) belonging to
the TCP/IP family that implements the ISO transport services (transport class
0) based on TCP/IP.

schema
see XML Schema.

service
Services process the jobs that are sent to a server application. Services can be
requested by clients or by other servers. A service of an openUTM application or
of a CICS application comprises one or more transactions. The first transaction
is called with the service TAC or transaction program name.
With openUTM, there are two types of services: dialog services and asynchronous
services. openUTM provides the program units of a service with common data
areas.

service access point
In the OSI reference model, a layer has access to the services of the layer below
at the service access point. In the local system, the service access point is iden-
tified by a selector. During communication, the openUTM application links up to
a service access point. A connection is established between two service access
points.

session
A session is understood to be a communication relationship between two LUs,
more generally between two addressable SNA instances.

single-step transaction
transaction which encompasses precisely one dialog step.

SNA
See Systems Network Architecture (SNA).

SNAP-IX Glossary

642 BeanConnect V3.0B

SNAP-IX
SNAP-IX is a product from Data Connection that connects applications in SNA
networks with applications in TCP/IP networks.
In BeanConnect, SNAP-IX is used for communication between a BeanConnect
proxy and a CICS partner application using the LU6.2 protocol on Solaris sys-
tems.

synchronization level (sync-level)
Designation in LU6.2 that characterizes the transaction security for distributed
processing:

– For sync-level 0 (none), only net data and error messages may be sent.
Acknowledgments are not allowed.

– For sync-level 1 (confirm), simple acknowledgments may also be sent in
addition to net data and error messages.

– For sync-level 2 (sync point), full transaction security is activated for
distributed transactions.

synchronization point (sync point)
A logical point within the flow of a distributed process at which the common
resources are brought to a defined state. The term "end of transaction" is used
instead in openUTM.

system access control
This involves the application server checking whether a user ID is authorized to
work with the application server.

Systems Network Architecture (SNA)
SNA is the designation for a series of communication protocols defined by IBM.

TAC
See transaction code (TAC).

transaction
Processing section within a service which has the ACID properties. If, during the
course of a transaction, changes are made to the application information, they
are either made consistently and in their entirety or not at all (all-or-nothing
rule). The end of the transaction forms a synchronization point (sync point).

transaction code (TAC)
Name by means of which a service of an openUTM application can be called.

Glossary user ID

BeanConnect V3.0B 643

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

. A
ug

us
t 2

01
5

 S
ta

n
d

10
:3

5.
09

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\B
e

an
C

o
nn

e
ct

_
V

3
0B

\1
5

02
5

00
_M

an
ua

l\e
n\

be
a

nc
on

n_
e

.m
ix

user ID
Identifier for a user defined in the configuration for the openUTM / CICS appli-
cation (with an optional password for system access control) and to whom special
data access rights (data access control) have been assigned. A client must
specify this ID (and any password which has been assigned) when signing on
to the openUTM application/CICS application.

USP
See openUTM socket protocol (USP).

UTM
See openUTM.

UTM application
See openUTM application.

Virtual Telecommunications Access Method (VTAM)
The component in an IBM host system that is responsible for remote data pro-
cessing.

Web Service Description Language (WSDL)
The Web Services Description Language (WSDL) defines a platform, program-
ming language and protocol-independent XML specification for the description
of network services (Web services) for message exchange.

XML
XML (eXtensible Markup Language) is a metalanguage standardized by W3C
(WWW Consortium) in which the interchange formats for data and the associ-
ated information can be defined.

XML Schema
XML Schema is a W3C recommendation for the definition of XML document
structures. The structure is described in the form of an XML document. In addi-
tion, a large number of data types are supported.

XML Schema Glossary

644 BeanConnect V3.0B

BeanConnect V3.0B 645

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
24

. A
u

gu
st

 2
01

5
 S

ta
n

d
10

:3
5.

10
P

fa
d:

 P
:\F

T
S

-B
S

\o
p

en
S

E
A

S
\B

ea
n

C
o

nn
e

ct
_

V
3

0B
\1

5
02

5
00

_M
an

ua
l\e

n\
be

an
co

n
n_

e
.li

t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

i PDF files of all openUTM manuals are included on the openUTM Enterprise DVD
with open platforms and on the openUTM WinAdmin DVD (for BS2000 systems).

openUTM
Concepts and Functions
User Guide

openUTM
Programming Applications with KDCS for COBOL, C and C++
Core Manual

openUTM
Generating Applications
User Guide

openUTM
Using openUTM Applications under Unix Systems and Windows Systems
User Guide

openUTM
Administering Applications
User Guide

openUTM
Messages, Debugging and Diagnostics in Unix Systems and Windows Systems
User Guide

openUTM
Using openUTM Applications under BS2000 Systems
User Guide

http://manuals.ts.fujitsu.com

Related publications

646 BeanConnect V3.0B

openUTM
Messages, Debugging and Diagnostics in BS2000 Systems
User Guide

openUTM
XML for openUTM

openUTM Client
for the UPIC Carrier System
Client-Server Communication with openUTM
User Guide

openUTM WinAdmin
Graphical Administration Workstation for openUTM
Description and online help system

openUTM WebAdmin
Web Interface for Administering openUTM
Description and online help system

openUTM, openUTM-LU62
Distributed Transaction Processing
between openUTM and CICS, IMS and LU6.2 Applications
User Guide

WS4UTM (Unix systems and Windows systems)
WebServices for openUTM

openUTM
Master Index

BeanConnect V3.0B 647

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

nd
 1

0:
35

.1
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

nC
on

n
ec

t_
V

30
B

\1
50

2
50

0_
M

a
nu

al
\e

n\
be

an
co

nn
_

e.
si

x

Index

A
aborted application run 561
address an EIS application 445
administrable proxy 159
administration 265

functions 165
MC-CmdHandler 247
user password 184

Ant 603, 609, 622
appender 508

BeanConnectLoggingFile 508, 527, 533
BeanConnectLoggingFileXML 528
BeanConnectManagementConsole 529
BeanConnectMCSocketAppender 529
BeanConnectShortLoggingFile 526
BeanConnectSysout 532
BeanConnectSysoutShort 526, 532
configuring 513

application process title 192
application recommendations

BeanConnect-specific interfaces or CCI 430
application run aborted 561
application server

deployment descriptor 121, 135
generating statistics 293
monitoring with MBean clients 288

application-managed authentication 115, 446
associated connections 442
asynchronous communication 43, 441, 452, 460
asynchronous request

durability 501
inbound communication 502

authentication
application-managed 115, 446
container-managed 115, 446

user ID and password 446
availability

EIS partners 287
MC-CmdHandler 285
resource adapters 282, 284

availability of the proxy 280

B
BC_home 47
BC_inst_dir 47
BcAdminAction 316
BcAdminCommunicationService 321
BcAdminEisPartner 329
BcAdminInboundMsgEndpoint 341
BcAdminInboundService 347
BcAdminInboundUser 351
BcAdminLu62Gateway 357
BcAdminMain 357
BcAdminOutboundCommEndpoint 369
BcAdminOutboundService 375
BcAdminProxy 300, 381
BcAdminProxyCluster 300, 393
BcAdminRA 408
BcAdminTodo 416
BCAM configuration 260
BCAM trace 539
BcDef 308
BcObject 309
BcObjectException 310
BcObjectType 308
BcParameterException 311
BcToolException 312
BeanConnect

communication variants 40
components 19, 32

Index

648 BeanConnect V3.0B

features 34
installing under Linux 57
installing under Solaris 49
installing under Windows 65
target group 20

BeanConnect Management Console siehe Man-
agement Console

BeanConnect proxy see proxy
BeanConnect resource adapter see resource

adapter
BeanConnect tools 32, 87

uninstalling 87
beanconnect_i18n.properties 493
BeanConnect_Install.ini 72
BeanConnect-specific interfaces

application recommendations 430
connection factory interfaces 432
connection interfaces 433
for inbound communication 464
for outbound communication 432
program framework for inbound

communication 468
program framework for outbound

communication 449
BeanConnectI18N.jar 493
BS2000 system

COBOL application 601
BS2000 system as EIS partner 260
bufferedIO, property 109
byte array 433
byte container 434

C
call parameters

MC-CLI 306
CCI 444

application recommendations 430
asynchronous communication 452
Common Client Interface (CCI) 44
connection factory interfaces 444
connection interfaces 444
dialog communication 450
inbound communication 470
outbound communication 444

program framework for inbound
communication 470

program framework for outbound
communication 450

programming information 470
charset

custom 491
check availability

proxy cluster 280
CICS 27

configuration 262
input file 263

CICS application
inbound communication 461
outbound communication 447

CICS program
invoking by another CICS program 448

cluster
adding proxy 195
displaying 195
generating 194
master 270
removing 196
removing proxy from 196

CMX
installing under Linux 58

CMX trace 540
COB2XML.LIB 603, 605
COBOL application

integrating with BeanConnect 601
COBOL clause

supported by Cobol2Java 614
COBOL COPY element

converting to XML 605
COBOL data structure

converting to XML 606
COBOL data type

mapping to Java class 605
supported by Cobol2Java 614

COBOL program
converting to XML 605

Cobol2Java 601
code conventions 615
conversion class 601

Index

BeanConnect V3.0B 649

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

nd
 1

0:
35

.1
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

nC
on

n
ec

t_
V

30
B

\1
50

2
50

0_
M

a
nu

al
\e

n\
be

an
co

nn
_

e.
si

x

directory structure 603
error handling 626
example 621
formatted mode support 620
generation procedure 602
installing 603
Java-EBCDIC conversion 620
javadoc 603
naming conventions 615
programming reference 614
supported COBOL types and clauses 614
system requirements 603

Cobol2XML 601, 605
example 621
library 605
system requirements 603

code conversion 443, 479
code samples

inbound communication 473
outbound communication 455

code table
IBM 479
OSD_EBCDIC_DF03_IRV 485
OSD_EBCDIC_DF04_1 487
OSD_EBCDIC_DF04_15 489
OSD_EBCDIC_DF04_DRV 480
predefined 483
standard 480, 482
user-defined 491

command line installation
proxy container 72

Command Line Interface (MC-CLI)
Common Client Interface see CCI
communication

asynchronous 43, 441, 460
dialog 43, 436, 460
inbound 41, 45, 459
non-transactional 44
outbound 41, 44, 229, 432
transactional 43, 441

communication methods 433
communication protocol 40
communication service 35

starting with the Management Console 267

configuration
activating 243
CICS 262
EIS 257
EIS partner 163, 206
error messages 555
files 174
proxy 162
saving 243

configuration file for EIS partner 226
connection

between BeanConnect and EIS partner 261
between BeanConnect and openUTM

via OSI-TP protocol 258
via RFC1006 protocol 260
via socket protocol 260
via UPIC protocol 259

connection factory 432
for deployment in the application server 121,

135
interfaces 432, 444

connection group see associated connections
connection interface 433

communication methods 433
inbound communication 464, 470
outbound communication 433
outbound communication (CCI) 444

connection management 28
connection pooling 114, 130
ConnectionFactory object 120
connections, associated 442
connectionURL, property 109

OSI-TP communication 109
UPIC communication 125

console.properties.xml 174
container-managed authentication 115, 446
custom charset 491

D
D.XMLCOPY 607
D.XMLPROG 606
data exchange

based on OltpMessagePart objects 437, 438

Index

650 BeanConnect V3.0B

based on OltpMessageRecord objects 438,
440

DEBUG 507
deployment descriptor

application server 121, 135
EJB 121, 135, 431
message-driven bean 431
resource adapter 121, 135, 431

diagnosis 161
diagnosis support 167
diagnostics

dumps and diagnostic dumps 537
IBM Communications Server (Linux) 551
IBM Communications Server (Windows) 553
Log4j 506
Management Console 542
openUTM-LU62 Gateway 544
proxy container 532
resource adapter 524
SNAP-IX 549
stderr log 535
stdout log 535

dialog communication 43, 436, 450, 460
display

MBean 290
MBean attributes 291

DMS error 559, 598
return codes 598

DPL (Distributed Program Link) 448
DTP (Distributed Transaction Processing) 448
dumps 537

E
EBCDIC 480
EIS

configuration 257
EIS application

addressing 445
querying information 447

EIS partner 160
adding to the Management Console 207, 218
availability 287
configuration 163
configuration files 226

configuration via the Management
Console 206

inbound communication connections 500
EJB

code file 120, 134
deploying 120, 134
deployment descriptor 121, 135
placing BeanConnect calls 445

ejb-jar.xml 121, 431
example 142

encoding 479
encoding, property

inbound 139
outbound 110, 127

encodingActive, property
inbound 140
outbound 112, 128

endConversation
XATMI outbound 454

Enterprise Java Bean see EJB
ERROR 507
error codes 598
error message

configuration 555
openUTM-LU62 Gateway 585
proxy 555
runtime 556
u62_adm 596
u62_gen 597
u62_sta 595
u62_start 585
u62_tp 586

error number, DMS errors 598
establish connection

to MBean server 289
expert mode 191

F
FATAL 507
FQDN file 261

G
general configuration property 93
generic work context 29

Index

BeanConnect V3.0B 651

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

nd
 1

0:
35

.1
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

nC
on

n
ec

t_
V

30
B

\1
50

2
50

0_
M

a
nu

al
\e

n\
be

an
co

nn
_

e.
si

x

global configuration property
inboundListenerPort 97
proxyReconnectCount 151
proxyReconnectInterval 152
proxyURL 94
resourceAdapterAddresses 150

group, dump error code K060 561

H
high availability 495
host name file

transferring 261

I
IBM code tables 479
IBM Communications Server 35

diagnostics for Linux 551
diagnostics for Windows 553
starting with the Management Console 267
traces for Linux 551

inbound communication 41, 45, 99
BeanConnect-specific interfaces 464
CCI 470
CICS application 461
communication types 42
interfaces 45
MC-CLI example 421
non-openUTM application 462
openUTM application 460
program 459
selecting the interface to be used 431

inbound message endpoint 160
adding to the Management Console 234

inbound programming
XATMI partners 463

inbound user 160
inboundListenerPort, property 97
INFO 507
install

BeanConnect under Linux 57
BeanConnect under Solaris 49
BeanConnect under Windows 65
CMX under Linux 58
Management Console under Linux 63

Management Console under Solaris 55
Management Console under Windows 70
master installation under Linux 57
master installation under Solaris 49
master installation under Windows 65
openUTM under Linux 59
openUTM under Solaris 51
openUTM under Windows 66
parameter file 72
PCMX under Solaris 50
PCMX under Windows 65
proxy container under Linux 61
proxy container under Solaris 53
proxy container under Windows 68
proxy container via Windows command

line 72
resource adapter 74

installation
updating under Linux 79
updating under Solaris 77
updating under Windows 81

installation program
starting an update on Solaris systems 77
starting under Linux 60
starting under Solaris 52
starting update under Linux 79
starting update under Windows 81

interface 429
BeanConnect-specific 432, 464
for inbound communication 464
for outbound communication 432
javax.resource.cci 444
javax.resource.cci.MessageListener 45, 470
net.fsc.jca.communication 44
net.fsc.jca.communication.cci 44

interface net.fsc.jca.communication.
AsyncOltpMessageListener 45, 468
EISConnection 433
EISConnectionByteArray 433
EISConnectionByteContainer 434
EISConnectionFactory 432
EISConnectionString 434
EISOltpConnection 433, 434, 435
EISOltpConnectionFactory 432

Index

652 BeanConnect V3.0B

EISUpicConnection 433, 435
EISUpicConnectionFactory 432
EncodingDef 434
OltpMessageListener 45, 468

interfaces and programming 429
internationalization 492

J
J2EE application server 28
Java class

BcDef 308
BcObject 309
BcObjectException 310
BcObjectType 308
BcParameterException 311
example for generating from COBOL XML

file 622
for internationalization 492
generating with Ant 609

example 611
parameters 609

generating without Ant 612
example 613
parameters 612

used for COBOL type 614
Java classes

MC-CLI 308
Java EE

application server 27
Java-Klasse

BcToolException 312
javax.resource.cci.Connection interface 444
javax.resource.cci.MessageListener

interface 470
Jave EE

Oracle WebLogic Server Connection
Architecture 27

JCA 1.5 specification 28
JCA contract 28

Common Client Interface 29
connection management 28
generic work context 29
lifecycle management 28
message inflow 29

security management 28
security work context 29
transaction inflow 29
transaction management 28
work management 29

Jython 299, 303
Jython installation directory 303
Jython sample scripts 423

calling 425
configuration file 424

Jython script
creating from recording 427

K
K messages 558
K009 558
K017 558
K036 558
K040

pagepool warning level 559
K041 559
K043 559
K049

start error 559
K055 561
K060 561
K065 564
K075 565
K078 565
K104 567
K119 568
K124 569
K128 570
K135 571
K139 571
K147 571
K152 572
K160 572
K204 573
K210 573
K211 573
K212 573
K213 573
K214 573

Index

BeanConnect V3.0B 653

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

nd
 1

0:
35

.1
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

nC
on

n
ec

t_
V

30
B

\1
50

2
50

0_
M

a
nu

al
\e

n\
be

an
co

nn
_

e.
si

x

K215 573
K216 574
K217 574
K218 574
K220 574
K221 574
K222 574
K223 574
K224 574
K225 575
K230 575
K231 575
KDCDEF

statements for OSI-TP communication 258
statements for socket or RFC1006

connection 260
statements for UPIC communication 259

kdcshut 298

L
language

changing via system properties 493
for message output 492
of online help system 156

lifecycle management 28
LINK command

parameter COMMAREA 448
parameter LENGTH 448
parameter PROGRAM 448
parameters 448

Linux
installing a proxy container 61
installing BeanConnect 57
installing CMX 58
installing Management Console 63
installing openUTM 59
installing packages 57
uninstalling BeanConnect 84
update installation 79

listener port 515
LMS library 605, 606, 607
localization 492
log window 157
Log4j 506

appender 508
configuration file in XML format 514
configuring appenders 513
configuring loggers 512
level 507
listener port 515
logger 506
rolling file appender 508
root logger 506
suppressing messages 518
XML logging file 519

log4j.properties.xml 174
logger 506

activating/deactivating the display of
messages 518

BeanConnect 529, 534
BeanConnect.c 534
BeanConnect.Datasources.OLTP 534
BeanConnect.in 529
BeanConnect.info 529, 534
BeanConnect.kdcs 534
BeanConnect.out 529
BeanConnect.ui 529
configuring 512
level 507
name space 506
net.fsc 530, 534
net.fsc.beanta.encoding 530
net.fsc.beanta.encoding.EncoderImpl 534
net.fsc.tpbasics.util.L 530, 534
root logger 534

logging
Log4j 506
proxy 535
resource adapter 524

logging configuration, predefined 532
logging file (XML) 519
logging files 508
logging level 518
logging output 516

example 517
LU6.2 protocol 40

Index

654 BeanConnect V3.0B

M
Management Console 19, 153, 266

administration functions 165
advanced features 161
as Log4j socket reader 515
diagnosis support 167
diagnostics 542
expert mode 191
installing under Linux 63
installing under Solaris 55
installing under Windows 70
language 156
logging file (XML) 519
managed objects 158
MC-CmdHandler 245
message output 492
navigation area 157
outputting messages 516
overview 36
protocol window 157
proxy navigation tree 178
shutting down 156
starting online help 155
starting under Solaris and Linux 155
starting under Windows 155
status bar 157
todo topics 161, 167
user interface 157
work area 157

Management Console Command
Line Interface (MC-CLI)

mapped host name 53, 61, 69
mapped name 209
mapping

long host names (BS2000) 261
long host names (open platforms) 260

master
proxy cluster 270

master installation
under Linux 57
under Solaris 49
under Windows 65

MBean
displaying 290

operations 297
subscribing to notifications 294

MBean attributes
displaying 291
modifying 292

MBean clients 288
MBean server

establishing a connection 289
MC_home 47
MC-CLI 19, 153, 265, 299

administration 300, 325, 335, 361, 422
call parameters 306
closing 365
communication (message endpoint) 341
creating user scripts 303
functions 313
functions (overview) 301
inbound communication (example) 421
inbound communication (inbound

service) 347
inbound communication (inbound user) 351
Java classes 308
logging 542
messages 314
modules (overview) 300
outbound communication 369, 375
outbound communication (example) 419
overview 300
returns 315
starting 303, 305, 367
structure of the user script 305

MC-CLI Jython modules 303
MC-CLI recording 24, 153, 168
MC-CmdHandler 36, 245

administering 247
availability 285
installing 76
security and privileges 246
shutting down 248
starting 247
uninstalling 87

message
BeanConnect proxy container 555
u62_adm 596

Index

BeanConnect V3.0B 655

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

nd
 1

0:
35

.1
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

nC
on

n
ec

t_
V

30
B

\1
50

2
50

0_
M

a
nu

al
\e

n\
be

an
co

nn
_

e.
si

x

u62_gen 597
u62_sta 595
u62_start 585
u62_tp 586

message file 493
message inflow 29
message length

XATMI outbound 454
message listener interface 41, 45
message output

determining the language 492
message types 556
message-driven bean see OLTP message-driven

bean
messageEndpoint, property 139
Messages

MC-CLI 314
messages

of the proxy 516
outputting 516
suppressing 518

messaging-type, property 138
modify MBean attributes 292
monitor

application server with MBean clients 288

N
navigation area 157
net.fsc.jca.communication 44
net.fsc.jca.communication.cci 44
non-openUTM application

inbound communication 462
non-transactional communication 44
notational conventions 26
notification

from MBeans 294
subscribing 295

O
OFF

logging output 507
OLTP Message-Driven Bean

Deployment 137
OLTP message-driven bean 459

asynchronous communication 460
code samples 473
dialog communication 460
programming information 464, 470
properties 138

OltpMessage object 438
OltpMessagePart object 437, 438
OltpMessageRecord object 440
online help

starting 155
online help system, language 156
openSEAS 19
openUTM 27, 34, 258

installing under Linux 59
installing under Solaris 51
installing under Windows 66

openUTM application
inbound communication 460

openUTM dump 537
openUTM partner 258

configuring in proxy 207
openUTM socket protocol 42, 261
openUTM-LU62 Gateway 35

administering 276
diagnostic information 547
diagnostics 544
displaying status information 277
error messages 585
starting 276
starting via the Management Console 267
stopping 276
traces 544

operate the proxy 265
operations on MBeans 297
Oracle WebLogic Server 30

Java EE Connection Architecture 27
orion-ejb-jar.xml 121
OSD_EBCDIC_DF03_IRV 485
OSD_EBCDIC_DF04_1 487
OSD_EBCDIC_DF04_15 489
OSD_EBCDIC_DF04_DRV 480
OSI-SCRATCH-AREA 503
OSI-TP error 568
OSS trace 538

Index

656 BeanConnect V3.0B

outbound communication 41, 44
BeanConnect-specific interfaces 432
CCI 444
CICS application 447
code samples 455
configuring with the Management

Console 229
connection factory interfaces 432
connection factory interfaces (CCI) 444
connection interface 433, 444
MC-CLI example 419
program framework 449
programming 432
programming information 445
selecting the interface to be used 431

outbound communication endpoint 161, 229
configuring in the Management Console 232

outbound programming
XATMI partners 454

outbound service 160, 229
configuring in the Management Console 229

output of recording to file
configuring 168

outputting messages 515

P
P messages 576
package net.fsc.jca.communication 44
pagepool area 499
parameter file for installation 72
password for authentication 446
PCMX

installing under Solaris 50
installing under Windows 65

PENDER 563
place BeanConnect calls in an EJB 445
port number 54, 62
port number interval, proxy container 69
predefined code table 483
privileges of MC-CmdHandler 246
process workload,workload 497
program 429

inbound communication 459
outbound communication 432

program framework
AsyncOltpMessageListener,

OltpMessageListener 468
BeanConnect-specific interfaces 449
inbound communication 468
inbound communication (CCI) 470
javax.resource.cci.MessageListener

interface 470
outbound communication 449
outbound communication (CCI) 450

programming information 445
OLTP message-driven bean 464
OLTP message-driven Beans (CCI) 470
outbound communication 445

properties_debug.xml
resource adapter 524

properties_default.xml
resource adapter 524

properties_error.xml
resource adapter 524

properties.xml
resource adapter 524

property
bufferedIO 109
connectionURL 109, 125
displayName 110
encoding (inbound) 139
encoding (outbound) 110, 127
encodingActive (inbound) 140
encodingActive (outbound) 112, 128
inboundListenerPort 97
logLevel 112
messageEndpoint 139
messaging-type 138
proxyReconnectCount 151
proxyReconnectInterval 152
proxyURL 94
reconnectThreshold 129
redeliveryThreshold 141
resourceAdapterAddresses 150
RevisionNumber 98
timeout 113, 129
transactional 113
transactionLogDir 97

Index

BeanConnect V3.0B 657

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

nd
 1

0:
35

.1
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

nC
on

n
ec

t_
V

30
B

\1
50

2
50

0_
M

a
nu

al
\e

n\
be

an
co

nn
_

e.
si

x

transactionLogging 95
protocol window 157
proxy 19, 159

adding to Management Console 178
adding to Management Console

automatically 180
administrable 159
availability 280
BCAM trace 539
CMX trace 540
components 35
configuration steps 176
configuring 162, 175
context menu 266
diagnostics 532
error messages 555
functions 34
general information 182
ID 183
log files 535
Log4j socket reader 515
managing via the Management Console 266
message output 492
name in the Management Console 183
navigation tree 178
operating 265
OSS trace 538
outputting messages 516
performance settings 191
predefined logging configuration 532
removing from the Management

Console 180
restarting via a local script 273
restarting via the Management Console 166,

269
restarting via the Windows program

group 273
shutting down 165
starting 165
starting after abnormal termination 272
starting as Windows service 268, 272
starting via a local script 271
starting via the Management Console 267
starting via the Windows program group 271

stopping as Windows service 274
stopping in cluster 297
stopping via a local script 274
stopping via the Management Console 269
stopping via the Windows program

group 274
timer settings for connection

surveillance 191
traces 538

proxy cluster
checking availability 280
defining 194
master 270
removing 196
synchronizing 270

proxy component
configuring 181
starting via the Management Console 267

proxy container
asynchronous processing 501
cache 499
high availability 495
installing under Linux 61
installing under Solaris 53
installing under Windows 68
installing under Windows via command

line 72
number of processes 497
OSI-SCRATCH-AREA 503
pagepool area 499
port number 69
semaphores 504
shared memory 495
starting via the Management Console 267
workload 497

Proxy_home 47
proxyReconnectCount, property 151
proxyReconnectInterval, property 152
proxyURL, property 94

R
ra.xml

Beispiel 104
example 102

Index

658 BeanConnect V3.0B

setting the global configuration properties 93
RAR file

declaring 100
reconnectThreshold, property 129
recording file

example 427
name 169

redeliveryThreshold, property 141
Resource Adapter

Deployment 100
resource adapter 19, 28, 159

availability 282, 284
configuration properties for outbound

communication 108, 125
configuring appenders 513
configuring loggers 512
deployment descriptor 121, 135
diagnostics 524
extend logging 525
functions 34
installing 74
logging 524
logging output 515
message output 492
predefined logging configuration 526
switching to other proxy 297
undeploying 101
update deployment 101

resource types 120, 134
resourceAdapterAddresses, property 150
restart proxy 166
returns

MC-CLI 315
RFC1006 application 261
RFC1006 connection

KDCDEF statements 260
RFC1006 protocol 42
rolling file appender 508
root logger 506
runAnt.bat (Windows system) 603, 611
runAnt.sh (Unix system) 603, 611
runtime

error messages 556

S
scalability 495
script

change 273
shutcontainer 274
startcontainer 271

section 301
security

MC-CmdHandler 246
security management 28
security settings

for connecting to EIS 115
security work context 29
select the interfaces to be used 431
semaphores

number 504
shared memory 495
shut down

Management Console 156
MC-CmdHandler 248

SNA daemon 278
SNA implementation 35
SNAP-IX 35

diagnostics 549
starting with the Management Console 267
traces 549

socket connection
KDCDEF statements 260

socket listener port 515
socket reader

Log4j 515
Solaris

installing a proxy container 53
installing BeanConnect 49
installing Management Console 55
installing openUTM 51
installing packages 49
installing PCMX 50
uninstalling BeanConnect 83
update installation 77

standard code table 480, 482
standard conversion 480, 482
start

Management Console 155

Index

BeanConnect V3.0B 659

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

4.
 A

u
gu

st
 2

01
5

 S
ta

nd
 1

0:
35

.1
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\B
ea

nC
on

n
ec

t_
V

30
B

\1
50

2
50

0_
M

a
nu

al
\e

n\
be

an
co

nn
_

e.
si

x

Management Console under Solaris and
Linux 155

Management Console under Windows 155
MC-CmdHandler 247
online help 155
proxy 165

statistical information 161
statistics

for the application server 293
statistics collector 293
status bar 157
stderr 535
stdout 535
stop

proxy in cluster 297
stop proxy 165

with wait time 298
string 434
structure of the documentation 20
structure of the manual 21
Structure of the user script 305
structure of the user script

structure (MC-CLI) 305
subscribe

notifications 295
subscribe notifications 295
switch

resource adapter to other proxy 297
synchronize.

proxy cluster 270
SYSLOG 536
system error codes

ERRNO 599
system log file 536

T
timeout, property 113, 129
todo topics 161, 167
tools 19

uninstalling 87
TPOOL statement 259
TRACE 507
traces

BCAM trace 539

CMX trace 540
IBM Communications Server (Linux) 551
openUTM-LU62 Gateway 544
OSS trace 538
proxy 538
SNAP-IX 549

transaction inflow 29
transaction management 28
transaction monitor openUTM 34
transaction-support 130
transactional communication 43, 441
transactional, property 113
transactionLogDir, property 97
transactionLogging, property 95
TRMA 561
TSEL-FORMAT statement 259
typed buffer 454
types, of messages 556

U
U messages 581
u62_adm

messages 596
u62_gen

messages 597
u62_sta

messages 595
u62_start

messages 585
u62_tp

messages 586
Unicode 480, 482
uninstall 87

BeanConnect under Linux 84
BeanConnect under Solaris 83
BeanConnect under Windows 85
MC-CmdHandler 87

update installation
under Linux 79
under Solaris 77
under Windows 81

UPIC application 261
UPIC message 571
UPIC protocol 42

Index

660 BeanConnect V3.0B

user ID for authentication 446
user interface 157
user-defined code table 491

V
VTAM

input file 263

W
WARN 507
weblogic-ra.xml 99, 431

example 117
weblogig-ra.xml

example (UPIC) 131
Windows

installing a proxy container 68
installing a proxy container via command

line 72
installing BeanConnect 65
installing Management Console 70
installing openUTM 66
installing PCMX 65
master installation 65
uninstalling BeanConnect 85
update installation 81

work area 157
work management 29

X
XATMI partners

configure 228
configure proxy for 192
inbound programming 463
outbound programming 454

XML
logging file 519

XML files 174
XML format

configuration file 514
XSLT stylesheet 601, 604

	Contents
	Preface
	Target group
	Structure of the BeanConnect documentation
	Structure of this manual
	Changes compared to the predecessor version
	Notes on third-party products and literature
	Notational conventions

	JCA adapter integration overview
	JCA adapter versions
	JCA adapter integration
	JCA 1.6 contracts
	SOA architecture
	JCA adapter integration in Oracle WebLogic Server

	BeanConnect architecture
	BeanConnect components
	BeanConnect resource adapter
	BeanConnect proxy
	BeanConnect Management Console
	BeanConnect tools

	Standard operation with one resource adapter and one proxy
	Multiple resource adapter mode

	BeanConnect as a JCA-compliant resource adapter
	Outbound and inbound communication
	Outbound communication
	Inbound communication

	Dialog and asynchronous communication
	Dialog communication
	Asynchronous communication

	Transactional and non-transactional communication
	Transactional communication
	Non-transactional communication

	Interfaces

	BeanConnect in cluster operation

	Installing BeanConnect
	Installing BeanConnect under Solaris systems
	Master installation
	Installing the BeanConnect product files
	Installing PCMX
	Installing openUTM
	Installing the openUTM-LU62 Gateway (for CICS partners)
	Silent installation

	Installing the BeanConnect proxy container and the Management Console

	Installing BeanConnect under Linux systems
	Master installation
	Installing PCMX
	Installing the openUTM-LU62 Gateway (for CICS partners)
	Installing openUTM
	Installing the BeanConnect product files
	Silent installation

	Installing the BeanConnect proxy container and the Management Console

	Installing BeanConnect under Windows systems
	Master installation
	Installing PCMX
	Installing openUTM
	Installing BeanConnect
	Installing the openUTM-LU62 Gateway (for CICS partners)

	Installing the BeanConnect proxy container via the command line

	Installing a BeanConnect resource adapter
	Installing the BeanConnect tools
	Update installation for the BeanConnect proxy container and Management Console
	Update installation under Solaris systems
	Update installation under Linux systems
	Update installation under Windows systems

	Uninstalling BeanConnect
	Uninstalling BeanConnect under Solaris systems
	Uninstalling BeanConnect under Linux
	Uninstalling BeanConnect under Windows systems

	Uninstalling the BeanConnect resource adapter
	Uninstalling the BeanConnect tools

	Configuration in the application server
	Overview
	Configuration files in the application server
	Configuration steps for outbound and inbound communication

	Configuring general properties for the resource adapter
	Defining general properties in ra.xml
	Defining the general properties of the resource adapter in weblogic- ra.xml
	Deploying and undeploying the resource adapter
	Deploying the resource adapter
	Update deployment of the resource adapter
	Undeploying the resource adapter

	Example of an ra.xml File
	Example of an weblogic-ra.xml file

	Setting configuration properties for outbound communication via OSI-TP / LU6.2
	Defining general and connection-specific properties for OSI-TP / LU6.2 in weblogic-ra.xml
	Defining the resource for OSI-TP / LU6.2
	Defining the JNDI name for OSI TP / LU6.2
	Defining configuration properties for OSI-TP / LU6.2
	Adapting connection pooling for OSI-TP / LU6.2
	Defining security settings (managing sign-on)
	Example: weblogic-ra.xml

	Deploying an Enterprise JavaBean for OSI-TP / LU6.2

	Configuring outbound communication via UPIC
	Defining general connection-specific properties for UPIC in weblogic- ra.xml
	Defining a resource for UPIC
	Defining the JNDI name for UPIC
	Setting the configuration properties for UPIC
	Adapting connection pooling for UPIC
	Defining transaction support for UPIC
	Example: weblogic-ra.xml (UPIC)

	Deploying an Enterprise JavaBean for UPIC

	Setting configuration properties for inbound communication
	Configuration properties in the ejb-jar.xml
	Defining configuration properties for inbound communication in weblogic-ejb-jar.xml
	Examples for ejb-jar.xml and weblogic-ejb-jar.xml

	Preparing resource adapter logging
	Special characteristics of multiple resource adapter mode
	Special characteristics in cluster operation

	BeanConnect Management Console
	Starting and shutting down the Management Console
	Starting the Management Console
	Starting the Management Console's online Help system
	Shutting down the Management Console

	User interface - Management Console window
	Navigation area in the Management Console
	Managed objects
	Additional functions and information

	Functions of the BeanConnect Management Console
	Configuration functions
	Configuration wizards
	Starting and stopping proxies
	Checking the availability of BeanConnect components and EIS partners
	Diagnosis support
	Todo topics
	MC-CLI recording: Recording Management Console actions
	Cluster support
	Management Console as a JMX client

	Administrative data of the Management Console

	Configuration of BeanConnect
	Configuration steps
	Adding a BeanConnect proxy to the Management Console
	Adding a new proxy
	Removing a proxy

	Configuring the BeanConnect proxy
	General information on the proxy
	Proxy Components: CICS partners
	Modifying the administration password
	Configuration options in expert mode
	Timer Settings
	Performance Settings
	Application Program Interface Mode (API Mode)
	Container Application Process Title

	Configuring a BeanConnect proxy cluster
	Generating a proxy cluster
	Adding a proxy to the proxy cluster
	Removing a proxy from a cluster / removing a proxy cluster

	Configuring the BeanConnect resource adapter
	Adding a resource adapter (no cluster operation)
	Adding a resource adapter in cluster operation
	Resource adapter configuration file

	Configuring the EIS partners
	Configuring EIS partners of type openUTM
	Adding EIS partners of the type UTM
	Configuration files for EIS partners of type openUTM

	Configuring EIS partners of type CICS
	Adding EIS partners of the type CICS
	Configuration files for the EIS partners of the type CICS

	Configuring EIS partners of type XATMI
	Removing an EIS partner

	Configuring outbound communication
	Configuring outbound services
	Configuring outbound communication endpoints

	Configuring inbound communication
	Configuring inbound message endpoints
	Configuring inbound services
	Setting up users for access to inbound message endpoints
	Configuring the error message prefix for inbound communication

	Saving and activating the configuration of the BeanConnect proxy
	Configuring the Management Console command handler (MC-CmdHandler)
	Security and privileges
	Administering the MC-CmdHandler
	Starting the MC-CmdHandler
	Shutting down the MC-CmdHandler
	Configuring an MC-CmdHandler as a service

	Configuring the Management Console as a JMX client
	Defined resource adapter MBeans
	Setting up the JMX client in the Management Console
	Setting up a JMX client
	Establishing and clearing a connection to the JMX server
	Removing a JMX client

	Adapting the configuration in the EIS partner
	Adapting the configuration in EIS partners of type openUTM
	Defining connections between BeanConnect and openUTM
	Defining an OSI-TP connection between BeanConnect and openUTM
	Defining a UPIC connection for outbound communication between the openUTM partner and BeanConnect
	Defining a socket connection between the openUTM partner and BeanConnect
	Defining a BCMAP entry (only for BS2000 partners)
	Mapping of long host names for openUTM partners on open platforms
	Mapping of long host names for UTM partners on BS2000 platforms

	Defining connections between BeanConnect and other EIS partners

	Adapting the configuration in EIS partners of type CICS
	Configuration in the CICS
	Configuration of VTAM on an IBM mainframe

	Administering BeanConnect
	Administering a BeanConnect proxy via the Management Console
	Starting a proxy
	Restarting a proxy
	Stopping a proxy
	Special characteristics in cluster operation

	Administering a BeanConnect proxy container on command level
	Starting a proxy container
	Starting via a script
	Starting using the proxy container program group under Windows
	Starting as a Windows service
	Starting after abnormal termination of a proxy container run

	Restarting a proxy container
	Restarting using a script
	Restarting using the proxy container program group under Windows

	Stopping a proxy container
	Stopping using a local script
	Stopping using the proxy container program group under Windows
	Stopping as a Windows service

	Starting an MC-CmdHandler as a service on Windows systems
	Administering the openUTM-LU62 Gateway
	Starting the openUTM-LU62 Gateway
	Stopping the openUTM-LU62 Gateway
	Displaying status information on the openUTM-LU62

	Administering the communication service
	Starting and stopping the SNA daemon (Linux and Solaris systems)
	Starting and stopping a communication service in a command line (Linux and Solaris systems)

	Checking the availability of BeanConnect proxies
	Checking the availability of a proxy
	Checking the availability of a BeanConnect resource adapter
	Checking the availability of an openUTM-LU62 Gateway and a communication service
	Checking the availability of an MC-CmdHandler
	Checking the availability of the MC-CmdHandler with the Management Console
	Checking the availability of the MC-CmdHandler in the command line

	Checking the availability of an EIS partner

	Monitoring the resource adapter with the Management Console
	Establishing a connection to the MBean server
	Displaying MBean object names
	Displaying and modifying MBean attributes
	Displaying MBean attributes
	Modifying MBean attribute values

	Collecting and displaying diagnostic values
	Configuring, displaying and modifying statistics collectors
	Displaying statistical values

	Subscribing to and displaying MBean notifications
	Subscribing to MBean notifications
	Displaying MBean notifications

	Displaying and executing MBean operations

	Command Line Interface of the BeanConnect Management Console (MC-CLI)
	Overview of MC-CLI
	Creating and calling MC-CLI user scripts
	Prerequisites when calling an MC-CLI user script
	Preparing the configuration
	Structure of the user script
	Specifying call parameters

	Java classes
	Class: BcDef
	Class: BcObjectType
	Class: BcObject
	getName()
	getObjectType()

	Exceptions
	Class: BcObjectException
	Class: BcParameterException
	Class: BcToolException

	Functions
	General
	Parameter
	Properties
	Messages
	Returns

	BcAdminAction
	getCheckResults() – Show results of check actions
	getResults() – Show results of all subactions of an action
	isFinishedSuccessfully() – Show success/failure of an action

	BcAdminCommunicationService
	create() – Add communication service to the configuration
	getObject() – Read communication service object from the configuration
	getProperties() – Read properties of a communication service
	getProxies() – Read the proxies assigned to the communication service
	modifyProperties() – Modify properties of an communication service
	perform() – Start administrative actions
	remove() – Remove communication service
	Properties of a communication service

	BcAdminEisPartner
	create() – Add EIS partner to the configuration
	getGatewayPorts() - Read openUTM-LU62 Gateway listener ports of the EIS partner object
	getLuNames() - Read logical unit names of the EIS partner object
	getObject() – Read EIS partner object from the configuration
	getProperties() – Read properties of an EIS partner
	modifyGatewayPorts() - Modify openUTM-LU62 Gateway listener ports of the EIS partner object
	modifyLuNames() - Modify logical unit names of the EIS partner object
	modifyProperties() – Modify properties of an EIS partner
	perform() – Start administrative actions
	remove() – Remove EIS partner
	Properties of an EIS partner

	BcAdminInboundMsgEndpoint
	create() – Add inbound message endpoint to the configuration
	getObject() – Read inbound message endpoint object from the configuration
	getProperties() – Read properties of an inbound message endpoint
	modifyProperties() – Modify properties of an inbound message endpoint
	remove() – Remove inbound message endpoint
	Properties of an inbound message endpoint

	BcAdminInboundService
	getObject() – Read inbound service object from the configuration
	getProperties() – Read properties of an inbound service
	modifyProperties() – Modify properties of an inbound service
	Properties of an inbound service

	BcAdminInboundUser
	create() – Add inbound user to the configuration
	getObject() – Read inbound user object from the configuration
	getProperties() – Read properties of an inbound user
	modifyProperties() – Modify properties of an inbound user
	remove() – Remove inbound user
	Properties of an inbound user

	BcAdminLu62Gateway
	create() – Add openUTM-LU62 Gateway to the configuration
	getObject() – Read openUTM-LU62 Gateway object from the configuration
	getProperties() – Read properties of an openUTM-LU62 Gateway
	getProxies() – Read the proxies assigned to the openUTM-LU62 Gateway
	modifyProperties() – Modify the properties of an openUTM-LU62 Gateway
	perform() – Start administrative actions
	Remove -remove openUTM-LU62 Gateway...
	Properties of an openUTM-LU62 Gateway

	BcAdminMain
	close() – Close Management Console session
	getList() – Output list of all configured objects of an object type
	getVersion() – Read Management Console version
	init() – Start Management Console session for MC-CLI

	BcAdminOutboundCommEndpoint
	create() – Add outbound communication endpoint to the configuration
	getObject() – Read outbound communication endpoint object from the configuration
	getProperties() – Read properties of an outbound communication endpoint
	modifyProperties() – Modify properties of an outbound communication endpoint
	remove() – Remove outbound communication endpoint
	Properties of an outbound communication endpoint

	BcAdminOutboundService
	create() – Add outbound service to the configuration
	getObject() – Read outbound service object from the configuration
	getProperties() – Read properties of an outbound service
	modifyProperties() – Modify properties of an outbound service
	remove() – Remove outbound service
	Properties of an outbound service

	BcAdminProxy
	authenticate() – Authenticate for proxy
	getAssignment() - Read the openUTM-LU62 Gateway or communication service assigned to the proxy
	getList() – List all objects of an object type present in a proxy
	getObject() – Read proxy object from the configuration
	getProperties() – Read properties of a proxy
	modifyProperties() – Modify properties of a proxy
	perform() – Start administrative actions for a proxy
	getObject() – Remove proxy object from the configuration
	setAssignment() - Assign an openUTM-LU62 Gateway or a communication service to the proxy
	Properties of a proxy

	BcAdminProxyCluster
	addProxy() – Add proxy to the proxy cluster
	authenticate() – Authenticate at proxy cluster
	create() – Add proxy cluster to the configuration
	getAssignment() - Read the openUTM-LU62 Gateway or communication service assigned to the proxy cluster
	getList() – List all objects of a type in the proxy cluster
	getMasterProxy() – Read master proxy of a proxy cluster
	getObject() – Read proxy cluster object from the configuration
	getProperties() – Read properties of a proxy cluster
	modifyProperties() – Modify properties of a proxy cluster
	perform() – Start administrative actions
	remove() – Remove proxy cluster
	removeProxy() – Remove proxy from proxy cluster
	setAssignment() - Assign an openUTM-LU62 Gateway or a communication service to the proxy cluster
	setMasterProxy() – Change master proxy of a proxy cluster
	Properties of a proxy cluster

	BcAdminRA
	create() – Add resource adapter to the configuration
	getObject() – Read resource adapter object from the configuration
	getProperties() – Read properties of a resource adapter
	modifyProperties() – Modify properties of a resource adapter
	perform() – Start administrative actions
	remove() – Remove resource adapter
	Properties of a resource adapter

	BcAdminTodo
	getProperties() – Read properties of a todo topic
	remove() – Delete todo topic
	Properties of a todo topic

	Application scenarios (examples)
	Configuring outbound communication with an openUTM application
	Configuring inbound communication with an openUTM application
	Administer proxies
	Jython sample scripts
	Creating Jython scripts from MC-CLI recordings

	Interfaces and programming
	BeanConnect-specific interfaces and Common Client Interface (CCI)
	Programming outbound communication
	BeanConnect-specific interfaces for outbound communication
	Connection factory interfaces
	Connection interfaces (overview)
	Communication using the connection interfaces

	Common Client Interface (CCI) for outbound communication
	Programming information on outbound communication
	Addressing an EIS application
	Placing BeanConnect calls in an EJB
	Authentication (user ID and password)
	Querying information on the conversation with the EIS application
	Programming hints with respect to CICS applications
	Support of DPL (Distributed Program Link) programs

	Program framework for outbound communication
	Program framework for BeanConnect-specific interfaces
	Program framework for Common Client Interface (CCI)

	Outbound communication with XATMI partners
	Code samples for outbound communication

	Programming inbound communication
	OLTP message-driven beans
	Inbound communication with openUTM partners
	Inbound communication with CICS applications
	Inbound communication with other EIS partners (openUTM)
	Inbound communication with XATMI partners
	BeanConnect-specific interfaces for inbound communication
	Programming information on OLTP message-driven beans
	Determining sender contexts in the OLTP message-driven bean
	Program framework using the interfaces AsyncOltpMessageListener and OltpMessageListener

	Common Client Interface (CCI) for inbound communication
	Programming information on OLTP message-driven beans (CCI)
	Program framework using the interface javax.resource.cci.MessageListener

	Code samples for inbound communication

	Encoding and national language support
	Encoding
	Standard conversion between EBCDIC code and Unicode for EIS partners of type openUTM
	Standard conversion between EBCDIC code and Unicode for EIS partners of type CICS
	Using other predefined code tables
	Using custom charsets
	Custom Charset Provider
	Creating and using legacy code tables

	National language support for message output

	High availability and scalability
	Shared memory of the proxy container
	Adapting the shared memory

	Number of proxy container processes
	Displaying the workload of processes
	Setting the number of processes

	Page pool area and cache of the proxy container
	Number of parallel connections to the EIS partner
	Asynchronous processing in the proxy container
	Duration of asynchronous requests
	Inbound communication

	OSI-SCRATCH-AREA in the proxy container
	Number of semaphores in the proxy container

	Logging, diagnostics and troubleshooting
	Logging with Log4j
	Basic principles of Log4j
	Loggers
	Appenders
	How the rolling file appender works

	Logging with JDK logging
	Configuring logging with Log4j
	Configuring logging for BeanConnect resource adapter and proxy
	Configuring loggers
	Configuring appenders

	Editing the Log4j configuration file using the BeanConnect Management Console
	Configuring the BeanConnect Management Console as a Log4j socket reader
	Displaying the logging events in the BeanConnect Management Console
	Display the Log4j logging file using the BeanConnect Management Console

	LogWriter for connection factories
	Diagnosis of the BeanConnect resource adapter
	Overview of logging in the BeanConnect resource adapter
	Predefined logging configuration of a resource adapter
	Logging of user interface calls

	Diagnosis of the BeanConnect proxy container
	Predefined logging configuration of a proxy
	Log files of the BeanConnect proxy container
	stdout/stderr log
	System log file SYSLOG
	Dumps and diagnostic dumps
	Application log under Windows

	Traces of the BeanConnect proxy container
	OSS trace
	BCAM trace
	CMX trace

	Diagnosis of the BeanConnect Management Console
	Diagnosing the BeanConnect tools
	Diagnosis of the openUTM-LU62 Gateway
	Traces and logs of the openUTM-LU62 Gateway
	Activate/deactivate traces
	Evaluating traces and logs

	Diagnosis information for the openUTM-LU62 Gateway

	Diagnosis of SNAP-IX for Solaris systems
	Diagnosis with the Management Console

	Diagnosis of the IBM Communications Server for Linux
	Diagnosis with the Management Console

	Diagnosis of the IBM Communications Server for Windows systems
	Diagnosis with the Management Console

	Collecting diagnostic information
	Error messages of the BeanConnect proxy container
	Configuration error messages
	Runtime error messages
	Types of messages
	K messages
	P messages
	U messages

	Error messages of the openUTM-LU62 Gateway
	openUTM-LU62 Gateway error messages on start-up
	openUTM-LU62 Gateway error messages at runtime
	openUTM-LU62 Gateway error messages on status queries
	openUTM-LU62 Gateway error messages during administration
	openUTM-LU62 Gateway error messages during configuration

	Error codes
	Error codes during file processing (DMS error codes)
	System error codes

	Cobol2Java
	Mapping COBOL data types to Java classes
	System requirements
	Installation

	Converting COBOL data types
	Creating an XML description for a COBOL program in a BS2000 system
	Transferring the LMS library to a BS2000 system
	Converting the data structures
	D.XMLPROG
	D.XMLCOPY
	Example call
	Generated files

	Generating Java classes on Unix, Linux or Windows systems
	Generating Java classes with Ant
	Generating Java classes without Ant

	Programming reference
	Type assignment
	Naming conventions
	Accessing COBOL fields
	Writing a data field
	Reading a data field
	Replacement data type PicU
	Setting and reading the data for the entire structure (for sending and receiving)

	Java/EBCDIC conversion
	Formatted mode support

	Example
	COBOL example program
	Creating the XML description
	Generating the Java classes
	Use of the generated classes

	Error messages and error handling

	Glossary
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

